1280 lines
36 KiB
C
1280 lines
36 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef blasint logical;
|
|
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
#ifdef __cplusplus
|
|
typedef logical (*L_fp)(...);
|
|
#else
|
|
typedef logical (*L_fp)();
|
|
#endif
|
|
|
|
static float spow_ui(float x, integer n) {
|
|
float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static double dpow_ui(double x, integer n) {
|
|
double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#ifdef _MSC_VER
|
|
static _Fcomplex cpow_ui(complex x, integer n) {
|
|
complex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow.r *= x.r, pow.i *= x.i;
|
|
if(u >>= 1) x.r *= x.r, x.i *= x.i;
|
|
else break;
|
|
}
|
|
}
|
|
_Fcomplex p={pow.r, pow.i};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex float cpow_ui(_Complex float x, integer n) {
|
|
_Complex float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
|
|
_Dcomplex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
|
|
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
|
|
else break;
|
|
}
|
|
}
|
|
_Dcomplex p = {pow._Val[0], pow._Val[1]};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex double zpow_ui(_Complex double x, integer n) {
|
|
_Complex double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
static integer pow_ii(integer x, integer n) {
|
|
integer pow; unsigned long int u;
|
|
if (n <= 0) {
|
|
if (n == 0 || x == 1) pow = 1;
|
|
else if (x != -1) pow = x == 0 ? 1/x : 0;
|
|
else n = -n;
|
|
}
|
|
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
|
|
u = n;
|
|
for(pow = 1; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
|
|
{
|
|
double m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
|
|
{
|
|
float m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i]) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i]) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static real c_b9 = 1.f;
|
|
static real c_b10 = 0.f;
|
|
static integer c__2 = 2;
|
|
|
|
/* > \brief \b CLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd. */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download CLALSA + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clalsa.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clalsa.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clalsa.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE CLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U, */
|
|
/* LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR, */
|
|
/* GIVCOL, LDGCOL, PERM, GIVNUM, C, S, RWORK, */
|
|
/* IWORK, INFO ) */
|
|
|
|
/* INTEGER ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS, */
|
|
/* $ SMLSIZ */
|
|
/* INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ), */
|
|
/* $ K( * ), PERM( LDGCOL, * ) */
|
|
/* REAL C( * ), DIFL( LDU, * ), DIFR( LDU, * ), */
|
|
/* $ GIVNUM( LDU, * ), POLES( LDU, * ), RWORK( * ), */
|
|
/* $ S( * ), U( LDU, * ), VT( LDU, * ), Z( LDU, * ) */
|
|
/* COMPLEX B( LDB, * ), BX( LDBX, * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > CLALSA is an itermediate step in solving the least squares problem */
|
|
/* > by computing the SVD of the coefficient matrix in compact form (The */
|
|
/* > singular vectors are computed as products of simple orthorgonal */
|
|
/* > matrices.). */
|
|
/* > */
|
|
/* > If ICOMPQ = 0, CLALSA applies the inverse of the left singular vector */
|
|
/* > matrix of an upper bidiagonal matrix to the right hand side; and if */
|
|
/* > ICOMPQ = 1, CLALSA applies the right singular vector matrix to the */
|
|
/* > right hand side. The singular vector matrices were generated in */
|
|
/* > compact form by CLALSA. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] ICOMPQ */
|
|
/* > \verbatim */
|
|
/* > ICOMPQ is INTEGER */
|
|
/* > Specifies whether the left or the right singular vector */
|
|
/* > matrix is involved. */
|
|
/* > = 0: Left singular vector matrix */
|
|
/* > = 1: Right singular vector matrix */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] SMLSIZ */
|
|
/* > \verbatim */
|
|
/* > SMLSIZ is INTEGER */
|
|
/* > The maximum size of the subproblems at the bottom of the */
|
|
/* > computation tree. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The row and column dimensions of the upper bidiagonal matrix. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] NRHS */
|
|
/* > \verbatim */
|
|
/* > NRHS is INTEGER */
|
|
/* > The number of columns of B and BX. NRHS must be at least 1. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] B */
|
|
/* > \verbatim */
|
|
/* > B is COMPLEX array, dimension ( LDB, NRHS ) */
|
|
/* > On input, B contains the right hand sides of the least */
|
|
/* > squares problem in rows 1 through M. */
|
|
/* > On output, B contains the solution X in rows 1 through N. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDB */
|
|
/* > \verbatim */
|
|
/* > LDB is INTEGER */
|
|
/* > The leading dimension of B in the calling subprogram. */
|
|
/* > LDB must be at least f2cmax(1,MAX( M, N ) ). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] BX */
|
|
/* > \verbatim */
|
|
/* > BX is COMPLEX array, dimension ( LDBX, NRHS ) */
|
|
/* > On exit, the result of applying the left or right singular */
|
|
/* > vector matrix to B. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDBX */
|
|
/* > \verbatim */
|
|
/* > LDBX is INTEGER */
|
|
/* > The leading dimension of BX. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] U */
|
|
/* > \verbatim */
|
|
/* > U is REAL array, dimension ( LDU, SMLSIZ ). */
|
|
/* > On entry, U contains the left singular vector matrices of all */
|
|
/* > subproblems at the bottom level. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDU */
|
|
/* > \verbatim */
|
|
/* > LDU is INTEGER, LDU = > N. */
|
|
/* > The leading dimension of arrays U, VT, DIFL, DIFR, */
|
|
/* > POLES, GIVNUM, and Z. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] VT */
|
|
/* > \verbatim */
|
|
/* > VT is REAL array, dimension ( LDU, SMLSIZ+1 ). */
|
|
/* > On entry, VT**H contains the right singular vector matrices of */
|
|
/* > all subproblems at the bottom level. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] K */
|
|
/* > \verbatim */
|
|
/* > K is INTEGER array, dimension ( N ). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] DIFL */
|
|
/* > \verbatim */
|
|
/* > DIFL is REAL array, dimension ( LDU, NLVL ). */
|
|
/* > where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] DIFR */
|
|
/* > \verbatim */
|
|
/* > DIFR is REAL array, dimension ( LDU, 2 * NLVL ). */
|
|
/* > On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record */
|
|
/* > distances between singular values on the I-th level and */
|
|
/* > singular values on the (I -1)-th level, and DIFR(*, 2 * I) */
|
|
/* > record the normalizing factors of the right singular vectors */
|
|
/* > matrices of subproblems on I-th level. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] Z */
|
|
/* > \verbatim */
|
|
/* > Z is REAL array, dimension ( LDU, NLVL ). */
|
|
/* > On entry, Z(1, I) contains the components of the deflation- */
|
|
/* > adjusted updating row vector for subproblems on the I-th */
|
|
/* > level. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] POLES */
|
|
/* > \verbatim */
|
|
/* > POLES is REAL array, dimension ( LDU, 2 * NLVL ). */
|
|
/* > On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old */
|
|
/* > singular values involved in the secular equations on the I-th */
|
|
/* > level. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] GIVPTR */
|
|
/* > \verbatim */
|
|
/* > GIVPTR is INTEGER array, dimension ( N ). */
|
|
/* > On entry, GIVPTR( I ) records the number of Givens */
|
|
/* > rotations performed on the I-th problem on the computation */
|
|
/* > tree. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] GIVCOL */
|
|
/* > \verbatim */
|
|
/* > GIVCOL is INTEGER array, dimension ( LDGCOL, 2 * NLVL ). */
|
|
/* > On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the */
|
|
/* > locations of Givens rotations performed on the I-th level on */
|
|
/* > the computation tree. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDGCOL */
|
|
/* > \verbatim */
|
|
/* > LDGCOL is INTEGER, LDGCOL = > N. */
|
|
/* > The leading dimension of arrays GIVCOL and PERM. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] PERM */
|
|
/* > \verbatim */
|
|
/* > PERM is INTEGER array, dimension ( LDGCOL, NLVL ). */
|
|
/* > On entry, PERM(*, I) records permutations done on the I-th */
|
|
/* > level of the computation tree. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] GIVNUM */
|
|
/* > \verbatim */
|
|
/* > GIVNUM is REAL array, dimension ( LDU, 2 * NLVL ). */
|
|
/* > On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S- */
|
|
/* > values of Givens rotations performed on the I-th level on the */
|
|
/* > computation tree. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] C */
|
|
/* > \verbatim */
|
|
/* > C is REAL array, dimension ( N ). */
|
|
/* > On entry, if the I-th subproblem is not square, */
|
|
/* > C( I ) contains the C-value of a Givens rotation related to */
|
|
/* > the right null space of the I-th subproblem. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] S */
|
|
/* > \verbatim */
|
|
/* > S is REAL array, dimension ( N ). */
|
|
/* > On entry, if the I-th subproblem is not square, */
|
|
/* > S( I ) contains the S-value of a Givens rotation related to */
|
|
/* > the right null space of the I-th subproblem. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] RWORK */
|
|
/* > \verbatim */
|
|
/* > RWORK is REAL array, dimension at least */
|
|
/* > MAX( (SMLSZ+1)*NRHS*3, N*(1+NRHS) + 2*NRHS ). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] IWORK */
|
|
/* > \verbatim */
|
|
/* > IWORK is INTEGER array, dimension (3*N) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit. */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date June 2017 */
|
|
|
|
/* > \ingroup complexOTHERcomputational */
|
|
|
|
/* > \par Contributors: */
|
|
/* ================== */
|
|
/* > */
|
|
/* > Ming Gu and Ren-Cang Li, Computer Science Division, University of */
|
|
/* > California at Berkeley, USA \n */
|
|
/* > Osni Marques, LBNL/NERSC, USA \n */
|
|
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void clalsa_(integer *icompq, integer *smlsiz, integer *n,
|
|
integer *nrhs, complex *b, integer *ldb, complex *bx, integer *ldbx,
|
|
real *u, integer *ldu, real *vt, integer *k, real *difl, real *difr,
|
|
real *z__, real *poles, integer *givptr, integer *givcol, integer *
|
|
ldgcol, integer *perm, real *givnum, real *c__, real *s, real *rwork,
|
|
integer *iwork, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, difl_dim1,
|
|
difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset,
|
|
poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset,
|
|
z_dim1, z_offset, b_dim1, b_offset, bx_dim1, bx_offset, i__1,
|
|
i__2, i__3, i__4, i__5, i__6;
|
|
complex q__1;
|
|
|
|
/* Local variables */
|
|
integer jcol, nlvl, sqre, jrow, i__, j, jimag, jreal, inode, ndiml;
|
|
extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *,
|
|
integer *, real *, real *, integer *, real *, integer *, real *,
|
|
real *, integer *);
|
|
integer ndimr;
|
|
extern /* Subroutine */ void ccopy_(integer *, complex *, integer *,
|
|
complex *, integer *);
|
|
integer i1;
|
|
extern /* Subroutine */ void clals0_(integer *, integer *, integer *,
|
|
integer *, integer *, complex *, integer *, complex *, integer *,
|
|
integer *, integer *, integer *, integer *, real *, integer *,
|
|
real *, real *, real *, real *, integer *, real *, real *, real *,
|
|
integer *);
|
|
integer ic, lf, nd, ll, nl, nr;
|
|
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
|
extern void slasdt_(
|
|
integer *, integer *, integer *, integer *, integer *, integer *,
|
|
integer *);
|
|
integer im1, nlf, nrf, lvl, ndb1, nlp1, lvl2, nrp1;
|
|
|
|
|
|
/* -- LAPACK computational routine (version 3.7.1) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* June 2017 */
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
b_dim1 = *ldb;
|
|
b_offset = 1 + b_dim1 * 1;
|
|
b -= b_offset;
|
|
bx_dim1 = *ldbx;
|
|
bx_offset = 1 + bx_dim1 * 1;
|
|
bx -= bx_offset;
|
|
givnum_dim1 = *ldu;
|
|
givnum_offset = 1 + givnum_dim1 * 1;
|
|
givnum -= givnum_offset;
|
|
poles_dim1 = *ldu;
|
|
poles_offset = 1 + poles_dim1 * 1;
|
|
poles -= poles_offset;
|
|
z_dim1 = *ldu;
|
|
z_offset = 1 + z_dim1 * 1;
|
|
z__ -= z_offset;
|
|
difr_dim1 = *ldu;
|
|
difr_offset = 1 + difr_dim1 * 1;
|
|
difr -= difr_offset;
|
|
difl_dim1 = *ldu;
|
|
difl_offset = 1 + difl_dim1 * 1;
|
|
difl -= difl_offset;
|
|
vt_dim1 = *ldu;
|
|
vt_offset = 1 + vt_dim1 * 1;
|
|
vt -= vt_offset;
|
|
u_dim1 = *ldu;
|
|
u_offset = 1 + u_dim1 * 1;
|
|
u -= u_offset;
|
|
--k;
|
|
--givptr;
|
|
perm_dim1 = *ldgcol;
|
|
perm_offset = 1 + perm_dim1 * 1;
|
|
perm -= perm_offset;
|
|
givcol_dim1 = *ldgcol;
|
|
givcol_offset = 1 + givcol_dim1 * 1;
|
|
givcol -= givcol_offset;
|
|
--c__;
|
|
--s;
|
|
--rwork;
|
|
--iwork;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
|
|
if (*icompq < 0 || *icompq > 1) {
|
|
*info = -1;
|
|
} else if (*smlsiz < 3) {
|
|
*info = -2;
|
|
} else if (*n < *smlsiz) {
|
|
*info = -3;
|
|
} else if (*nrhs < 1) {
|
|
*info = -4;
|
|
} else if (*ldb < *n) {
|
|
*info = -6;
|
|
} else if (*ldbx < *n) {
|
|
*info = -8;
|
|
} else if (*ldu < *n) {
|
|
*info = -10;
|
|
} else if (*ldgcol < *n) {
|
|
*info = -19;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("CLALSA", &i__1, (ftnlen)6);
|
|
return;
|
|
}
|
|
|
|
/* Book-keeping and setting up the computation tree. */
|
|
|
|
inode = 1;
|
|
ndiml = inode + *n;
|
|
ndimr = ndiml + *n;
|
|
|
|
slasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr],
|
|
smlsiz);
|
|
|
|
/* The following code applies back the left singular vector factors. */
|
|
/* For applying back the right singular vector factors, go to 170. */
|
|
|
|
if (*icompq == 1) {
|
|
goto L170;
|
|
}
|
|
|
|
/* The nodes on the bottom level of the tree were solved */
|
|
/* by SLASDQ. The corresponding left and right singular vector */
|
|
/* matrices are in explicit form. First apply back the left */
|
|
/* singular vector matrices. */
|
|
|
|
ndb1 = (nd + 1) / 2;
|
|
i__1 = nd;
|
|
for (i__ = ndb1; i__ <= i__1; ++i__) {
|
|
|
|
/* IC : center row of each node */
|
|
/* NL : number of rows of left subproblem */
|
|
/* NR : number of rows of right subproblem */
|
|
/* NLF: starting row of the left subproblem */
|
|
/* NRF: starting row of the right subproblem */
|
|
|
|
i1 = i__ - 1;
|
|
ic = iwork[inode + i1];
|
|
nl = iwork[ndiml + i1];
|
|
nr = iwork[ndimr + i1];
|
|
nlf = ic - nl;
|
|
nrf = ic + 1;
|
|
|
|
/* Since B and BX are complex, the following call to SGEMM */
|
|
/* is performed in two steps (real and imaginary parts). */
|
|
|
|
/* CALL SGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU, */
|
|
/* $ B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX ) */
|
|
|
|
j = nl * *nrhs << 1;
|
|
i__2 = *nrhs;
|
|
for (jcol = 1; jcol <= i__2; ++jcol) {
|
|
i__3 = nlf + nl - 1;
|
|
for (jrow = nlf; jrow <= i__3; ++jrow) {
|
|
++j;
|
|
i__4 = jrow + jcol * b_dim1;
|
|
rwork[j] = b[i__4].r;
|
|
/* L10: */
|
|
}
|
|
/* L20: */
|
|
}
|
|
sgemm_("T", "N", &nl, nrhs, &nl, &c_b9, &u[nlf + u_dim1], ldu, &rwork[
|
|
(nl * *nrhs << 1) + 1], &nl, &c_b10, &rwork[1], &nl);
|
|
j = nl * *nrhs << 1;
|
|
i__2 = *nrhs;
|
|
for (jcol = 1; jcol <= i__2; ++jcol) {
|
|
i__3 = nlf + nl - 1;
|
|
for (jrow = nlf; jrow <= i__3; ++jrow) {
|
|
++j;
|
|
rwork[j] = r_imag(&b[jrow + jcol * b_dim1]);
|
|
/* L30: */
|
|
}
|
|
/* L40: */
|
|
}
|
|
sgemm_("T", "N", &nl, nrhs, &nl, &c_b9, &u[nlf + u_dim1], ldu, &rwork[
|
|
(nl * *nrhs << 1) + 1], &nl, &c_b10, &rwork[nl * *nrhs + 1], &
|
|
nl);
|
|
jreal = 0;
|
|
jimag = nl * *nrhs;
|
|
i__2 = *nrhs;
|
|
for (jcol = 1; jcol <= i__2; ++jcol) {
|
|
i__3 = nlf + nl - 1;
|
|
for (jrow = nlf; jrow <= i__3; ++jrow) {
|
|
++jreal;
|
|
++jimag;
|
|
i__4 = jrow + jcol * bx_dim1;
|
|
i__5 = jreal;
|
|
i__6 = jimag;
|
|
q__1.r = rwork[i__5], q__1.i = rwork[i__6];
|
|
bx[i__4].r = q__1.r, bx[i__4].i = q__1.i;
|
|
/* L50: */
|
|
}
|
|
/* L60: */
|
|
}
|
|
|
|
/* Since B and BX are complex, the following call to SGEMM */
|
|
/* is performed in two steps (real and imaginary parts). */
|
|
|
|
/* CALL SGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU, */
|
|
/* $ B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX ) */
|
|
|
|
j = nr * *nrhs << 1;
|
|
i__2 = *nrhs;
|
|
for (jcol = 1; jcol <= i__2; ++jcol) {
|
|
i__3 = nrf + nr - 1;
|
|
for (jrow = nrf; jrow <= i__3; ++jrow) {
|
|
++j;
|
|
i__4 = jrow + jcol * b_dim1;
|
|
rwork[j] = b[i__4].r;
|
|
/* L70: */
|
|
}
|
|
/* L80: */
|
|
}
|
|
sgemm_("T", "N", &nr, nrhs, &nr, &c_b9, &u[nrf + u_dim1], ldu, &rwork[
|
|
(nr * *nrhs << 1) + 1], &nr, &c_b10, &rwork[1], &nr);
|
|
j = nr * *nrhs << 1;
|
|
i__2 = *nrhs;
|
|
for (jcol = 1; jcol <= i__2; ++jcol) {
|
|
i__3 = nrf + nr - 1;
|
|
for (jrow = nrf; jrow <= i__3; ++jrow) {
|
|
++j;
|
|
rwork[j] = r_imag(&b[jrow + jcol * b_dim1]);
|
|
/* L90: */
|
|
}
|
|
/* L100: */
|
|
}
|
|
sgemm_("T", "N", &nr, nrhs, &nr, &c_b9, &u[nrf + u_dim1], ldu, &rwork[
|
|
(nr * *nrhs << 1) + 1], &nr, &c_b10, &rwork[nr * *nrhs + 1], &
|
|
nr);
|
|
jreal = 0;
|
|
jimag = nr * *nrhs;
|
|
i__2 = *nrhs;
|
|
for (jcol = 1; jcol <= i__2; ++jcol) {
|
|
i__3 = nrf + nr - 1;
|
|
for (jrow = nrf; jrow <= i__3; ++jrow) {
|
|
++jreal;
|
|
++jimag;
|
|
i__4 = jrow + jcol * bx_dim1;
|
|
i__5 = jreal;
|
|
i__6 = jimag;
|
|
q__1.r = rwork[i__5], q__1.i = rwork[i__6];
|
|
bx[i__4].r = q__1.r, bx[i__4].i = q__1.i;
|
|
/* L110: */
|
|
}
|
|
/* L120: */
|
|
}
|
|
|
|
/* L130: */
|
|
}
|
|
|
|
/* Next copy the rows of B that correspond to unchanged rows */
|
|
/* in the bidiagonal matrix to BX. */
|
|
|
|
i__1 = nd;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
ic = iwork[inode + i__ - 1];
|
|
ccopy_(nrhs, &b[ic + b_dim1], ldb, &bx[ic + bx_dim1], ldbx);
|
|
/* L140: */
|
|
}
|
|
|
|
/* Finally go through the left singular vector matrices of all */
|
|
/* the other subproblems bottom-up on the tree. */
|
|
|
|
j = pow_ii(c__2, nlvl);
|
|
sqre = 0;
|
|
|
|
for (lvl = nlvl; lvl >= 1; --lvl) {
|
|
lvl2 = (lvl << 1) - 1;
|
|
|
|
/* find the first node LF and last node LL on */
|
|
/* the current level LVL */
|
|
|
|
if (lvl == 1) {
|
|
lf = 1;
|
|
ll = 1;
|
|
} else {
|
|
i__1 = lvl - 1;
|
|
lf = pow_ii(c__2, i__1);
|
|
ll = (lf << 1) - 1;
|
|
}
|
|
i__1 = ll;
|
|
for (i__ = lf; i__ <= i__1; ++i__) {
|
|
im1 = i__ - 1;
|
|
ic = iwork[inode + im1];
|
|
nl = iwork[ndiml + im1];
|
|
nr = iwork[ndimr + im1];
|
|
nlf = ic - nl;
|
|
nrf = ic + 1;
|
|
--j;
|
|
clals0_(icompq, &nl, &nr, &sqre, nrhs, &bx[nlf + bx_dim1], ldbx, &
|
|
b[nlf + b_dim1], ldb, &perm[nlf + lvl * perm_dim1], &
|
|
givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &
|
|
givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *
|
|
poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf +
|
|
lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[
|
|
j], &s[j], &rwork[1], info);
|
|
/* L150: */
|
|
}
|
|
/* L160: */
|
|
}
|
|
goto L330;
|
|
|
|
/* ICOMPQ = 1: applying back the right singular vector factors. */
|
|
|
|
L170:
|
|
|
|
/* First now go through the right singular vector matrices of all */
|
|
/* the tree nodes top-down. */
|
|
|
|
j = 0;
|
|
i__1 = nlvl;
|
|
for (lvl = 1; lvl <= i__1; ++lvl) {
|
|
lvl2 = (lvl << 1) - 1;
|
|
|
|
/* Find the first node LF and last node LL on */
|
|
/* the current level LVL. */
|
|
|
|
if (lvl == 1) {
|
|
lf = 1;
|
|
ll = 1;
|
|
} else {
|
|
i__2 = lvl - 1;
|
|
lf = pow_ii(c__2, i__2);
|
|
ll = (lf << 1) - 1;
|
|
}
|
|
i__2 = lf;
|
|
for (i__ = ll; i__ >= i__2; --i__) {
|
|
im1 = i__ - 1;
|
|
ic = iwork[inode + im1];
|
|
nl = iwork[ndiml + im1];
|
|
nr = iwork[ndimr + im1];
|
|
nlf = ic - nl;
|
|
nrf = ic + 1;
|
|
if (i__ == ll) {
|
|
sqre = 0;
|
|
} else {
|
|
sqre = 1;
|
|
}
|
|
++j;
|
|
clals0_(icompq, &nl, &nr, &sqre, nrhs, &b[nlf + b_dim1], ldb, &bx[
|
|
nlf + bx_dim1], ldbx, &perm[nlf + lvl * perm_dim1], &
|
|
givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &
|
|
givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *
|
|
poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf +
|
|
lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[
|
|
j], &s[j], &rwork[1], info);
|
|
/* L180: */
|
|
}
|
|
/* L190: */
|
|
}
|
|
|
|
/* The nodes on the bottom level of the tree were solved */
|
|
/* by SLASDQ. The corresponding right singular vector */
|
|
/* matrices are in explicit form. Apply them back. */
|
|
|
|
ndb1 = (nd + 1) / 2;
|
|
i__1 = nd;
|
|
for (i__ = ndb1; i__ <= i__1; ++i__) {
|
|
i1 = i__ - 1;
|
|
ic = iwork[inode + i1];
|
|
nl = iwork[ndiml + i1];
|
|
nr = iwork[ndimr + i1];
|
|
nlp1 = nl + 1;
|
|
if (i__ == nd) {
|
|
nrp1 = nr;
|
|
} else {
|
|
nrp1 = nr + 1;
|
|
}
|
|
nlf = ic - nl;
|
|
nrf = ic + 1;
|
|
|
|
/* Since B and BX are complex, the following call to SGEMM is */
|
|
/* performed in two steps (real and imaginary parts). */
|
|
|
|
/* CALL SGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU, */
|
|
/* $ B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX ) */
|
|
|
|
j = nlp1 * *nrhs << 1;
|
|
i__2 = *nrhs;
|
|
for (jcol = 1; jcol <= i__2; ++jcol) {
|
|
i__3 = nlf + nlp1 - 1;
|
|
for (jrow = nlf; jrow <= i__3; ++jrow) {
|
|
++j;
|
|
i__4 = jrow + jcol * b_dim1;
|
|
rwork[j] = b[i__4].r;
|
|
/* L200: */
|
|
}
|
|
/* L210: */
|
|
}
|
|
sgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b9, &vt[nlf + vt_dim1], ldu, &
|
|
rwork[(nlp1 * *nrhs << 1) + 1], &nlp1, &c_b10, &rwork[1], &
|
|
nlp1);
|
|
j = nlp1 * *nrhs << 1;
|
|
i__2 = *nrhs;
|
|
for (jcol = 1; jcol <= i__2; ++jcol) {
|
|
i__3 = nlf + nlp1 - 1;
|
|
for (jrow = nlf; jrow <= i__3; ++jrow) {
|
|
++j;
|
|
rwork[j] = r_imag(&b[jrow + jcol * b_dim1]);
|
|
/* L220: */
|
|
}
|
|
/* L230: */
|
|
}
|
|
sgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b9, &vt[nlf + vt_dim1], ldu, &
|
|
rwork[(nlp1 * *nrhs << 1) + 1], &nlp1, &c_b10, &rwork[nlp1 * *
|
|
nrhs + 1], &nlp1);
|
|
jreal = 0;
|
|
jimag = nlp1 * *nrhs;
|
|
i__2 = *nrhs;
|
|
for (jcol = 1; jcol <= i__2; ++jcol) {
|
|
i__3 = nlf + nlp1 - 1;
|
|
for (jrow = nlf; jrow <= i__3; ++jrow) {
|
|
++jreal;
|
|
++jimag;
|
|
i__4 = jrow + jcol * bx_dim1;
|
|
i__5 = jreal;
|
|
i__6 = jimag;
|
|
q__1.r = rwork[i__5], q__1.i = rwork[i__6];
|
|
bx[i__4].r = q__1.r, bx[i__4].i = q__1.i;
|
|
/* L240: */
|
|
}
|
|
/* L250: */
|
|
}
|
|
|
|
/* Since B and BX are complex, the following call to SGEMM is */
|
|
/* performed in two steps (real and imaginary parts). */
|
|
|
|
/* CALL SGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU, */
|
|
/* $ B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX ) */
|
|
|
|
j = nrp1 * *nrhs << 1;
|
|
i__2 = *nrhs;
|
|
for (jcol = 1; jcol <= i__2; ++jcol) {
|
|
i__3 = nrf + nrp1 - 1;
|
|
for (jrow = nrf; jrow <= i__3; ++jrow) {
|
|
++j;
|
|
i__4 = jrow + jcol * b_dim1;
|
|
rwork[j] = b[i__4].r;
|
|
/* L260: */
|
|
}
|
|
/* L270: */
|
|
}
|
|
sgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b9, &vt[nrf + vt_dim1], ldu, &
|
|
rwork[(nrp1 * *nrhs << 1) + 1], &nrp1, &c_b10, &rwork[1], &
|
|
nrp1);
|
|
j = nrp1 * *nrhs << 1;
|
|
i__2 = *nrhs;
|
|
for (jcol = 1; jcol <= i__2; ++jcol) {
|
|
i__3 = nrf + nrp1 - 1;
|
|
for (jrow = nrf; jrow <= i__3; ++jrow) {
|
|
++j;
|
|
rwork[j] = r_imag(&b[jrow + jcol * b_dim1]);
|
|
/* L280: */
|
|
}
|
|
/* L290: */
|
|
}
|
|
sgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b9, &vt[nrf + vt_dim1], ldu, &
|
|
rwork[(nrp1 * *nrhs << 1) + 1], &nrp1, &c_b10, &rwork[nrp1 * *
|
|
nrhs + 1], &nrp1);
|
|
jreal = 0;
|
|
jimag = nrp1 * *nrhs;
|
|
i__2 = *nrhs;
|
|
for (jcol = 1; jcol <= i__2; ++jcol) {
|
|
i__3 = nrf + nrp1 - 1;
|
|
for (jrow = nrf; jrow <= i__3; ++jrow) {
|
|
++jreal;
|
|
++jimag;
|
|
i__4 = jrow + jcol * bx_dim1;
|
|
i__5 = jreal;
|
|
i__6 = jimag;
|
|
q__1.r = rwork[i__5], q__1.i = rwork[i__6];
|
|
bx[i__4].r = q__1.r, bx[i__4].i = q__1.i;
|
|
/* L300: */
|
|
}
|
|
/* L310: */
|
|
}
|
|
|
|
/* L320: */
|
|
}
|
|
|
|
L330:
|
|
|
|
return;
|
|
|
|
/* End of CLALSA */
|
|
|
|
} /* clalsa_ */
|
|
|