2037 lines
61 KiB
C
2037 lines
61 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef blasint logical;
|
|
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
#ifdef __cplusplus
|
|
typedef logical (*L_fp)(...);
|
|
#else
|
|
typedef logical (*L_fp)();
|
|
#endif
|
|
|
|
static float spow_ui(float x, integer n) {
|
|
float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static double dpow_ui(double x, integer n) {
|
|
double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#ifdef _MSC_VER
|
|
static _Fcomplex cpow_ui(complex x, integer n) {
|
|
complex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow.r *= x.r, pow.i *= x.i;
|
|
if(u >>= 1) x.r *= x.r, x.i *= x.i;
|
|
else break;
|
|
}
|
|
}
|
|
_Fcomplex p={pow.r, pow.i};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex float cpow_ui(_Complex float x, integer n) {
|
|
_Complex float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
|
|
_Dcomplex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
|
|
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
|
|
else break;
|
|
}
|
|
}
|
|
_Dcomplex p = {pow._Val[0], pow._Val[1]};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex double zpow_ui(_Complex double x, integer n) {
|
|
_Complex double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
static integer pow_ii(integer x, integer n) {
|
|
integer pow; unsigned long int u;
|
|
if (n <= 0) {
|
|
if (n == 0 || x == 1) pow = 1;
|
|
else if (x != -1) pow = x == 0 ? 1/x : 0;
|
|
else n = -n;
|
|
}
|
|
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
|
|
u = n;
|
|
for(pow = 1; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
|
|
{
|
|
double m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
|
|
{
|
|
float m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i]) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i]) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static complex c_b1 = {1.f,0.f};
|
|
static integer c__1 = 1;
|
|
|
|
/* > \brief \b CLAHEF_RK computes a partial factorization of a complex Hermitian indefinite matrix using bound
|
|
ed Bunch-Kaufman (rook) diagonal pivoting method. */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download CLAHEF_RK + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clahef_
|
|
rk.f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clahef_
|
|
rk.f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clahef_
|
|
rk.f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE CLAHEF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW, */
|
|
/* INFO ) */
|
|
|
|
/* CHARACTER UPLO */
|
|
/* INTEGER INFO, KB, LDA, LDW, N, NB */
|
|
/* INTEGER IPIV( * ) */
|
|
/* COMPLEX A( LDA, * ), E( * ), W( LDW, * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > CLAHEF_RK computes a partial factorization of a complex Hermitian */
|
|
/* > matrix A using the bounded Bunch-Kaufman (rook) diagonal */
|
|
/* > pivoting method. The partial factorization has the form: */
|
|
/* > */
|
|
/* > A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: */
|
|
/* > ( 0 U22 ) ( 0 D ) ( U12**H U22**H ) */
|
|
/* > */
|
|
/* > A = ( L11 0 ) ( D 0 ) ( L11**H L21**H ) if UPLO = 'L', */
|
|
/* > ( L21 I ) ( 0 A22 ) ( 0 I ) */
|
|
/* > */
|
|
/* > where the order of D is at most NB. The actual order is returned in */
|
|
/* > the argument KB, and is either NB or NB-1, or N if N <= NB. */
|
|
/* > */
|
|
/* > CLAHEF_RK is an auxiliary routine called by CHETRF_RK. It uses */
|
|
/* > blocked code (calling Level 3 BLAS) to update the submatrix */
|
|
/* > A11 (if UPLO = 'U') or A22 (if UPLO = 'L'). */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] UPLO */
|
|
/* > \verbatim */
|
|
/* > UPLO is CHARACTER*1 */
|
|
/* > Specifies whether the upper or lower triangular part of the */
|
|
/* > Hermitian matrix A is stored: */
|
|
/* > = 'U': Upper triangular */
|
|
/* > = 'L': Lower triangular */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The order of the matrix A. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] NB */
|
|
/* > \verbatim */
|
|
/* > NB is INTEGER */
|
|
/* > The maximum number of columns of the matrix A that should be */
|
|
/* > factored. NB should be at least 2 to allow for 2-by-2 pivot */
|
|
/* > blocks. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] KB */
|
|
/* > \verbatim */
|
|
/* > KB is INTEGER */
|
|
/* > The number of columns of A that were actually factored. */
|
|
/* > KB is either NB-1 or NB, or N if N <= NB. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] A */
|
|
/* > \verbatim */
|
|
/* > A is COMPLEX array, dimension (LDA,N) */
|
|
/* > On entry, the Hermitian matrix A. */
|
|
/* > If UPLO = 'U': the leading N-by-N upper triangular part */
|
|
/* > of A contains the upper triangular part of the matrix A, */
|
|
/* > and the strictly lower triangular part of A is not */
|
|
/* > referenced. */
|
|
/* > */
|
|
/* > If UPLO = 'L': the leading N-by-N lower triangular part */
|
|
/* > of A contains the lower triangular part of the matrix A, */
|
|
/* > and the strictly upper triangular part of A is not */
|
|
/* > referenced. */
|
|
/* > */
|
|
/* > On exit, contains: */
|
|
/* > a) ONLY diagonal elements of the Hermitian block diagonal */
|
|
/* > matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); */
|
|
/* > (superdiagonal (or subdiagonal) elements of D */
|
|
/* > are stored on exit in array E), and */
|
|
/* > b) If UPLO = 'U': factor U in the superdiagonal part of A. */
|
|
/* > If UPLO = 'L': factor L in the subdiagonal part of A. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] E */
|
|
/* > \verbatim */
|
|
/* > E is COMPLEX array, dimension (N) */
|
|
/* > On exit, contains the superdiagonal (or subdiagonal) */
|
|
/* > elements of the Hermitian block diagonal matrix D */
|
|
/* > with 1-by-1 or 2-by-2 diagonal blocks, where */
|
|
/* > If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; */
|
|
/* > If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. */
|
|
/* > */
|
|
/* > NOTE: For 1-by-1 diagonal block D(k), where */
|
|
/* > 1 <= k <= N, the element E(k) is set to 0 in both */
|
|
/* > UPLO = 'U' or UPLO = 'L' cases. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] IPIV */
|
|
/* > \verbatim */
|
|
/* > IPIV is INTEGER array, dimension (N) */
|
|
/* > IPIV describes the permutation matrix P in the factorization */
|
|
/* > of matrix A as follows. The absolute value of IPIV(k) */
|
|
/* > represents the index of row and column that were */
|
|
/* > interchanged with the k-th row and column. The value of UPLO */
|
|
/* > describes the order in which the interchanges were applied. */
|
|
/* > Also, the sign of IPIV represents the block structure of */
|
|
/* > the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2 */
|
|
/* > diagonal blocks which correspond to 1 or 2 interchanges */
|
|
/* > at each factorization step. */
|
|
/* > */
|
|
/* > If UPLO = 'U', */
|
|
/* > ( in factorization order, k decreases from N to 1 ): */
|
|
/* > a) A single positive entry IPIV(k) > 0 means: */
|
|
/* > D(k,k) is a 1-by-1 diagonal block. */
|
|
/* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
|
|
/* > interchanged in the submatrix A(1:N,N-KB+1:N); */
|
|
/* > If IPIV(k) = k, no interchange occurred. */
|
|
/* > */
|
|
/* > */
|
|
/* > b) A pair of consecutive negative entries */
|
|
/* > IPIV(k) < 0 and IPIV(k-1) < 0 means: */
|
|
/* > D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
|
|
/* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
|
|
/* > 1) If -IPIV(k) != k, rows and columns */
|
|
/* > k and -IPIV(k) were interchanged */
|
|
/* > in the matrix A(1:N,N-KB+1:N). */
|
|
/* > If -IPIV(k) = k, no interchange occurred. */
|
|
/* > 2) If -IPIV(k-1) != k-1, rows and columns */
|
|
/* > k-1 and -IPIV(k-1) were interchanged */
|
|
/* > in the submatrix A(1:N,N-KB+1:N). */
|
|
/* > If -IPIV(k-1) = k-1, no interchange occurred. */
|
|
/* > */
|
|
/* > c) In both cases a) and b) is always ABS( IPIV(k) ) <= k. */
|
|
/* > */
|
|
/* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
|
|
/* > */
|
|
/* > If UPLO = 'L', */
|
|
/* > ( in factorization order, k increases from 1 to N ): */
|
|
/* > a) A single positive entry IPIV(k) > 0 means: */
|
|
/* > D(k,k) is a 1-by-1 diagonal block. */
|
|
/* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
|
|
/* > interchanged in the submatrix A(1:N,1:KB). */
|
|
/* > If IPIV(k) = k, no interchange occurred. */
|
|
/* > */
|
|
/* > b) A pair of consecutive negative entries */
|
|
/* > IPIV(k) < 0 and IPIV(k+1) < 0 means: */
|
|
/* > D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
|
|
/* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
|
|
/* > 1) If -IPIV(k) != k, rows and columns */
|
|
/* > k and -IPIV(k) were interchanged */
|
|
/* > in the submatrix A(1:N,1:KB). */
|
|
/* > If -IPIV(k) = k, no interchange occurred. */
|
|
/* > 2) If -IPIV(k+1) != k+1, rows and columns */
|
|
/* > k-1 and -IPIV(k-1) were interchanged */
|
|
/* > in the submatrix A(1:N,1:KB). */
|
|
/* > If -IPIV(k+1) = k+1, no interchange occurred. */
|
|
/* > */
|
|
/* > c) In both cases a) and b) is always ABS( IPIV(k) ) >= k. */
|
|
/* > */
|
|
/* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] W */
|
|
/* > \verbatim */
|
|
/* > W is COMPLEX array, dimension (LDW,NB) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDW */
|
|
/* > \verbatim */
|
|
/* > LDW is INTEGER */
|
|
/* > The leading dimension of the array W. LDW >= f2cmax(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > */
|
|
/* > < 0: If INFO = -k, the k-th argument had an illegal value */
|
|
/* > */
|
|
/* > > 0: If INFO = k, the matrix A is singular, because: */
|
|
/* > If UPLO = 'U': column k in the upper */
|
|
/* > triangular part of A contains all zeros. */
|
|
/* > If UPLO = 'L': column k in the lower */
|
|
/* > triangular part of A contains all zeros. */
|
|
/* > */
|
|
/* > Therefore D(k,k) is exactly zero, and superdiagonal */
|
|
/* > elements of column k of U (or subdiagonal elements of */
|
|
/* > column k of L ) are all zeros. The factorization has */
|
|
/* > been completed, but the block diagonal matrix D is */
|
|
/* > exactly singular, and division by zero will occur if */
|
|
/* > it is used to solve a system of equations. */
|
|
/* > */
|
|
/* > NOTE: INFO only stores the first occurrence of */
|
|
/* > a singularity, any subsequent occurrence of singularity */
|
|
/* > is not stored in INFO even though the factorization */
|
|
/* > always completes. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date December 2016 */
|
|
|
|
/* > \ingroup complexHEcomputational */
|
|
|
|
/* > \par Contributors: */
|
|
/* ================== */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > December 2016, Igor Kozachenko, */
|
|
/* > Computer Science Division, */
|
|
/* > University of California, Berkeley */
|
|
/* > */
|
|
/* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
|
|
/* > School of Mathematics, */
|
|
/* > University of Manchester */
|
|
/* > */
|
|
/* > \endverbatim */
|
|
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void clahef_rk_(char *uplo, integer *n, integer *nb, integer
|
|
*kb, complex *a, integer *lda, complex *e, integer *ipiv, complex *w,
|
|
integer *ldw, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3, i__4, i__5;
|
|
real r__1, r__2;
|
|
complex q__1, q__2, q__3, q__4, q__5;
|
|
|
|
/* Local variables */
|
|
logical done;
|
|
integer imax, jmax, j, k, p;
|
|
real t, alpha;
|
|
extern /* Subroutine */ void cgemm_(char *, char *, integer *, integer *,
|
|
integer *, complex *, complex *, integer *, complex *, integer *,
|
|
complex *, complex *, integer *);
|
|
extern logical lsame_(char *, char *);
|
|
extern /* Subroutine */ void cgemv_(char *, integer *, integer *, complex *
|
|
, complex *, integer *, complex *, integer *, complex *, complex *
|
|
, integer *);
|
|
real sfmin;
|
|
extern /* Subroutine */ void ccopy_(integer *, complex *, integer *,
|
|
complex *, integer *);
|
|
integer itemp;
|
|
extern /* Subroutine */ void cswap_(integer *, complex *, integer *,
|
|
complex *, integer *);
|
|
integer kstep;
|
|
real stemp, r1;
|
|
complex d11, d21, d22;
|
|
integer jb, ii, jj, kk, kp;
|
|
real absakk;
|
|
extern /* Subroutine */ void clacgv_(integer *, complex *, integer *);
|
|
integer kw;
|
|
extern integer icamax_(integer *, complex *, integer *);
|
|
extern real slamch_(char *);
|
|
extern /* Subroutine */ void csscal_(integer *, real *, complex *, integer
|
|
*);
|
|
real colmax, rowmax;
|
|
integer kkw;
|
|
|
|
|
|
/* -- LAPACK computational routine (version 3.7.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* December 2016 */
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
--e;
|
|
--ipiv;
|
|
w_dim1 = *ldw;
|
|
w_offset = 1 + w_dim1 * 1;
|
|
w -= w_offset;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
|
|
/* Initialize ALPHA for use in choosing pivot block size. */
|
|
|
|
alpha = (sqrt(17.f) + 1.f) / 8.f;
|
|
|
|
/* Compute machine safe minimum */
|
|
|
|
sfmin = slamch_("S");
|
|
|
|
if (lsame_(uplo, "U")) {
|
|
|
|
/* Factorize the trailing columns of A using the upper triangle */
|
|
/* of A and working backwards, and compute the matrix W = U12*D */
|
|
/* for use in updating A11 (note that conjg(W) is actually stored) */
|
|
|
|
/* Initialize the first entry of array E, where superdiagonal */
|
|
/* elements of D are stored */
|
|
|
|
e[1].r = 0.f, e[1].i = 0.f;
|
|
|
|
/* K is the main loop index, decreasing from N in steps of 1 or 2 */
|
|
|
|
k = *n;
|
|
L10:
|
|
|
|
/* KW is the column of W which corresponds to column K of A */
|
|
|
|
kw = *nb + k - *n;
|
|
|
|
/* Exit from loop */
|
|
|
|
if (k <= *n - *nb + 1 && *nb < *n || k < 1) {
|
|
goto L30;
|
|
}
|
|
|
|
kstep = 1;
|
|
p = k;
|
|
|
|
/* Copy column K of A to column KW of W and update it */
|
|
|
|
if (k > 1) {
|
|
i__1 = k - 1;
|
|
ccopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &w[kw * w_dim1 + 1], &
|
|
c__1);
|
|
}
|
|
i__1 = k + kw * w_dim1;
|
|
i__2 = k + k * a_dim1;
|
|
r__1 = a[i__2].r;
|
|
w[i__1].r = r__1, w[i__1].i = 0.f;
|
|
if (k < *n) {
|
|
i__1 = *n - k;
|
|
q__1.r = -1.f, q__1.i = 0.f;
|
|
cgemv_("No transpose", &k, &i__1, &q__1, &a[(k + 1) * a_dim1 + 1],
|
|
lda, &w[k + (kw + 1) * w_dim1], ldw, &c_b1, &w[kw *
|
|
w_dim1 + 1], &c__1);
|
|
i__1 = k + kw * w_dim1;
|
|
i__2 = k + kw * w_dim1;
|
|
r__1 = w[i__2].r;
|
|
w[i__1].r = r__1, w[i__1].i = 0.f;
|
|
}
|
|
|
|
/* Determine rows and columns to be interchanged and whether */
|
|
/* a 1-by-1 or 2-by-2 pivot block will be used */
|
|
|
|
i__1 = k + kw * w_dim1;
|
|
absakk = (r__1 = w[i__1].r, abs(r__1));
|
|
|
|
/* IMAX is the row-index of the largest off-diagonal element in */
|
|
/* column K, and COLMAX is its absolute value. */
|
|
/* Determine both COLMAX and IMAX. */
|
|
|
|
if (k > 1) {
|
|
i__1 = k - 1;
|
|
imax = icamax_(&i__1, &w[kw * w_dim1 + 1], &c__1);
|
|
i__1 = imax + kw * w_dim1;
|
|
colmax = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[imax +
|
|
kw * w_dim1]), abs(r__2));
|
|
} else {
|
|
colmax = 0.f;
|
|
}
|
|
|
|
if (f2cmax(absakk,colmax) == 0.f) {
|
|
|
|
/* Column K is zero or underflow: set INFO and continue */
|
|
|
|
if (*info == 0) {
|
|
*info = k;
|
|
}
|
|
kp = k;
|
|
i__1 = k + k * a_dim1;
|
|
i__2 = k + kw * w_dim1;
|
|
r__1 = w[i__2].r;
|
|
a[i__1].r = r__1, a[i__1].i = 0.f;
|
|
if (k > 1) {
|
|
i__1 = k - 1;
|
|
ccopy_(&i__1, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1],
|
|
&c__1);
|
|
}
|
|
|
|
/* Set E( K ) to zero */
|
|
|
|
if (k > 1) {
|
|
i__1 = k;
|
|
e[i__1].r = 0.f, e[i__1].i = 0.f;
|
|
}
|
|
|
|
} else {
|
|
|
|
/* ============================================================ */
|
|
|
|
/* BEGIN pivot search */
|
|
|
|
/* Case(1) */
|
|
/* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
|
|
/* (used to handle NaN and Inf) */
|
|
if (! (absakk < alpha * colmax)) {
|
|
|
|
/* no interchange, use 1-by-1 pivot block */
|
|
|
|
kp = k;
|
|
|
|
} else {
|
|
|
|
/* Lop until pivot found */
|
|
|
|
done = FALSE_;
|
|
|
|
L12:
|
|
|
|
/* BEGIN pivot search loop body */
|
|
|
|
|
|
/* Copy column IMAX to column KW-1 of W and update it */
|
|
|
|
if (imax > 1) {
|
|
i__1 = imax - 1;
|
|
ccopy_(&i__1, &a[imax * a_dim1 + 1], &c__1, &w[(kw - 1) *
|
|
w_dim1 + 1], &c__1);
|
|
}
|
|
i__1 = imax + (kw - 1) * w_dim1;
|
|
i__2 = imax + imax * a_dim1;
|
|
r__1 = a[i__2].r;
|
|
w[i__1].r = r__1, w[i__1].i = 0.f;
|
|
|
|
i__1 = k - imax;
|
|
ccopy_(&i__1, &a[imax + (imax + 1) * a_dim1], lda, &w[imax +
|
|
1 + (kw - 1) * w_dim1], &c__1);
|
|
i__1 = k - imax;
|
|
clacgv_(&i__1, &w[imax + 1 + (kw - 1) * w_dim1], &c__1);
|
|
|
|
if (k < *n) {
|
|
i__1 = *n - k;
|
|
q__1.r = -1.f, q__1.i = 0.f;
|
|
cgemv_("No transpose", &k, &i__1, &q__1, &a[(k + 1) *
|
|
a_dim1 + 1], lda, &w[imax + (kw + 1) * w_dim1],
|
|
ldw, &c_b1, &w[(kw - 1) * w_dim1 + 1], &c__1);
|
|
i__1 = imax + (kw - 1) * w_dim1;
|
|
i__2 = imax + (kw - 1) * w_dim1;
|
|
r__1 = w[i__2].r;
|
|
w[i__1].r = r__1, w[i__1].i = 0.f;
|
|
}
|
|
|
|
/* JMAX is the column-index of the largest off-diagonal */
|
|
/* element in row IMAX, and ROWMAX is its absolute value. */
|
|
/* Determine both ROWMAX and JMAX. */
|
|
|
|
if (imax != k) {
|
|
i__1 = k - imax;
|
|
jmax = imax + icamax_(&i__1, &w[imax + 1 + (kw - 1) *
|
|
w_dim1], &c__1);
|
|
i__1 = jmax + (kw - 1) * w_dim1;
|
|
rowmax = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&
|
|
w[jmax + (kw - 1) * w_dim1]), abs(r__2));
|
|
} else {
|
|
rowmax = 0.f;
|
|
}
|
|
|
|
if (imax > 1) {
|
|
i__1 = imax - 1;
|
|
itemp = icamax_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1);
|
|
i__1 = itemp + (kw - 1) * w_dim1;
|
|
stemp = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[
|
|
itemp + (kw - 1) * w_dim1]), abs(r__2));
|
|
if (stemp > rowmax) {
|
|
rowmax = stemp;
|
|
jmax = itemp;
|
|
}
|
|
}
|
|
|
|
/* Case(2) */
|
|
/* Equivalent to testing for */
|
|
/* ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX */
|
|
/* (used to handle NaN and Inf) */
|
|
|
|
i__1 = imax + (kw - 1) * w_dim1;
|
|
if (! ((r__1 = w[i__1].r, abs(r__1)) < alpha * rowmax)) {
|
|
|
|
/* interchange rows and columns K and IMAX, */
|
|
/* use 1-by-1 pivot block */
|
|
|
|
kp = imax;
|
|
|
|
/* copy column KW-1 of W to column KW of W */
|
|
|
|
ccopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw *
|
|
w_dim1 + 1], &c__1);
|
|
|
|
done = TRUE_;
|
|
|
|
/* Case(3) */
|
|
/* Equivalent to testing for ROWMAX.EQ.COLMAX, */
|
|
/* (used to handle NaN and Inf) */
|
|
|
|
} else if (p == jmax || rowmax <= colmax) {
|
|
|
|
/* interchange rows and columns K-1 and IMAX, */
|
|
/* use 2-by-2 pivot block */
|
|
|
|
kp = imax;
|
|
kstep = 2;
|
|
done = TRUE_;
|
|
|
|
/* Case(4) */
|
|
} else {
|
|
|
|
/* Pivot not found: set params and repeat */
|
|
|
|
p = imax;
|
|
colmax = rowmax;
|
|
imax = jmax;
|
|
|
|
/* Copy updated JMAXth (next IMAXth) column to Kth of W */
|
|
|
|
ccopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw *
|
|
w_dim1 + 1], &c__1);
|
|
|
|
}
|
|
|
|
|
|
/* END pivot search loop body */
|
|
|
|
if (! done) {
|
|
goto L12;
|
|
}
|
|
|
|
}
|
|
|
|
/* END pivot search */
|
|
|
|
/* ============================================================ */
|
|
|
|
/* KK is the column of A where pivoting step stopped */
|
|
|
|
kk = k - kstep + 1;
|
|
|
|
/* KKW is the column of W which corresponds to column KK of A */
|
|
|
|
kkw = *nb + kk - *n;
|
|
|
|
/* Interchange rows and columns P and K. */
|
|
/* Updated column P is already stored in column KW of W. */
|
|
|
|
if (kstep == 2 && p != k) {
|
|
|
|
/* Copy non-updated column K to column P of submatrix A */
|
|
/* at step K. No need to copy element into columns */
|
|
/* K and K-1 of A for 2-by-2 pivot, since these columns */
|
|
/* will be later overwritten. */
|
|
|
|
i__1 = p + p * a_dim1;
|
|
i__2 = k + k * a_dim1;
|
|
r__1 = a[i__2].r;
|
|
a[i__1].r = r__1, a[i__1].i = 0.f;
|
|
i__1 = k - 1 - p;
|
|
ccopy_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + (p + 1) *
|
|
a_dim1], lda);
|
|
i__1 = k - 1 - p;
|
|
clacgv_(&i__1, &a[p + (p + 1) * a_dim1], lda);
|
|
if (p > 1) {
|
|
i__1 = p - 1;
|
|
ccopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[p * a_dim1 +
|
|
1], &c__1);
|
|
}
|
|
|
|
/* Interchange rows K and P in the last K+1 to N columns of A */
|
|
/* (columns K and K-1 of A for 2-by-2 pivot will be */
|
|
/* later overwritten). Interchange rows K and P */
|
|
/* in last KKW to NB columns of W. */
|
|
|
|
if (k < *n) {
|
|
i__1 = *n - k;
|
|
cswap_(&i__1, &a[k + (k + 1) * a_dim1], lda, &a[p + (k +
|
|
1) * a_dim1], lda);
|
|
}
|
|
i__1 = *n - kk + 1;
|
|
cswap_(&i__1, &w[k + kkw * w_dim1], ldw, &w[p + kkw * w_dim1],
|
|
ldw);
|
|
}
|
|
|
|
/* Interchange rows and columns KP and KK. */
|
|
/* Updated column KP is already stored in column KKW of W. */
|
|
|
|
if (kp != kk) {
|
|
|
|
/* Copy non-updated column KK to column KP of submatrix A */
|
|
/* at step K. No need to copy element into column K */
|
|
/* (or K and K-1 for 2-by-2 pivot) of A, since these columns */
|
|
/* will be later overwritten. */
|
|
|
|
i__1 = kp + kp * a_dim1;
|
|
i__2 = kk + kk * a_dim1;
|
|
r__1 = a[i__2].r;
|
|
a[i__1].r = r__1, a[i__1].i = 0.f;
|
|
i__1 = kk - 1 - kp;
|
|
ccopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp +
|
|
1) * a_dim1], lda);
|
|
i__1 = kk - 1 - kp;
|
|
clacgv_(&i__1, &a[kp + (kp + 1) * a_dim1], lda);
|
|
if (kp > 1) {
|
|
i__1 = kp - 1;
|
|
ccopy_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1
|
|
+ 1], &c__1);
|
|
}
|
|
|
|
/* Interchange rows KK and KP in last K+1 to N columns of A */
|
|
/* (columns K (or K and K-1 for 2-by-2 pivot) of A will be */
|
|
/* later overwritten). Interchange rows KK and KP */
|
|
/* in last KKW to NB columns of W. */
|
|
|
|
if (k < *n) {
|
|
i__1 = *n - k;
|
|
cswap_(&i__1, &a[kk + (k + 1) * a_dim1], lda, &a[kp + (k
|
|
+ 1) * a_dim1], lda);
|
|
}
|
|
i__1 = *n - kk + 1;
|
|
cswap_(&i__1, &w[kk + kkw * w_dim1], ldw, &w[kp + kkw *
|
|
w_dim1], ldw);
|
|
}
|
|
|
|
if (kstep == 1) {
|
|
|
|
/* 1-by-1 pivot block D(k): column kw of W now holds */
|
|
|
|
/* W(kw) = U(k)*D(k), */
|
|
|
|
/* where U(k) is the k-th column of U */
|
|
|
|
/* (1) Store subdiag. elements of column U(k) */
|
|
/* and 1-by-1 block D(k) in column k of A. */
|
|
/* (NOTE: Diagonal element U(k,k) is a UNIT element */
|
|
/* and not stored) */
|
|
/* A(k,k) := D(k,k) = W(k,kw) */
|
|
/* A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k) */
|
|
|
|
/* (NOTE: No need to use for Hermitian matrix */
|
|
/* A( K, K ) = REAL( W( K, K) ) to separately copy diagonal */
|
|
/* element D(k,k) from W (potentially saves only one load)) */
|
|
ccopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &
|
|
c__1);
|
|
if (k > 1) {
|
|
|
|
/* (NOTE: No need to check if A(k,k) is NOT ZERO, */
|
|
/* since that was ensured earlier in pivot search: */
|
|
/* case A(k,k) = 0 falls into 2x2 pivot case(3)) */
|
|
|
|
/* Handle division by a small number */
|
|
|
|
i__1 = k + k * a_dim1;
|
|
t = a[i__1].r;
|
|
if (abs(t) >= sfmin) {
|
|
r1 = 1.f / t;
|
|
i__1 = k - 1;
|
|
csscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
|
|
} else {
|
|
i__1 = k - 1;
|
|
for (ii = 1; ii <= i__1; ++ii) {
|
|
i__2 = ii + k * a_dim1;
|
|
i__3 = ii + k * a_dim1;
|
|
q__1.r = a[i__3].r / t, q__1.i = a[i__3].i / t;
|
|
a[i__2].r = q__1.r, a[i__2].i = q__1.i;
|
|
/* L14: */
|
|
}
|
|
}
|
|
|
|
/* (2) Conjugate column W(kw) */
|
|
|
|
i__1 = k - 1;
|
|
clacgv_(&i__1, &w[kw * w_dim1 + 1], &c__1);
|
|
|
|
/* Store the superdiagonal element of D in array E */
|
|
|
|
i__1 = k;
|
|
e[i__1].r = 0.f, e[i__1].i = 0.f;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* 2-by-2 pivot block D(k): columns kw and kw-1 of W now hold */
|
|
|
|
/* ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k) */
|
|
|
|
/* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
|
|
/* of U */
|
|
|
|
/* (1) Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2 */
|
|
/* block D(k-1:k,k-1:k) in columns k-1 and k of A. */
|
|
/* (NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT */
|
|
/* block and not stored) */
|
|
/* A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw) */
|
|
/* A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) = */
|
|
/* = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) ) */
|
|
|
|
if (k > 2) {
|
|
|
|
/* Factor out the columns of the inverse of 2-by-2 pivot */
|
|
/* block D, so that each column contains 1, to reduce the */
|
|
/* number of FLOPS when we multiply panel */
|
|
/* ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1). */
|
|
|
|
/* D**(-1) = ( d11 cj(d21) )**(-1) = */
|
|
/* ( d21 d22 ) */
|
|
|
|
/* = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) = */
|
|
/* ( (-d21) ( d11 ) ) */
|
|
|
|
/* = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) * */
|
|
|
|
/* * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) = */
|
|
/* ( ( -1 ) ( d11/conj(d21) ) ) */
|
|
|
|
/* = 1/(|d21|**2) * 1/(D22*D11-1) * */
|
|
|
|
/* * ( d21*( D11 ) conj(d21)*( -1 ) ) = */
|
|
/* ( ( -1 ) ( D22 ) ) */
|
|
|
|
/* = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*( -1 ) ) = */
|
|
/* ( ( -1 ) ( D22 ) ) */
|
|
|
|
/* = ( (T/conj(d21))*( D11 ) (T/d21)*( -1 ) ) = */
|
|
/* ( ( -1 ) ( D22 ) ) */
|
|
|
|
/* Handle division by a small number. (NOTE: order of */
|
|
/* operations is important) */
|
|
|
|
/* = ( T*(( D11 )/conj(D21)) T*(( -1 )/D21 ) ) */
|
|
/* ( (( -1 ) ) (( D22 ) ) ), */
|
|
|
|
/* where D11 = d22/d21, */
|
|
/* D22 = d11/conj(d21), */
|
|
/* D21 = d21, */
|
|
/* T = 1/(D22*D11-1). */
|
|
|
|
/* (NOTE: No need to check for division by ZERO, */
|
|
/* since that was ensured earlier in pivot search: */
|
|
/* (a) d21 != 0 in 2x2 pivot case(4), */
|
|
/* since |d21| should be larger than |d11| and |d22|; */
|
|
/* (b) (D22*D11 - 1) != 0, since from (a), */
|
|
/* both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.) */
|
|
|
|
i__1 = k - 1 + kw * w_dim1;
|
|
d21.r = w[i__1].r, d21.i = w[i__1].i;
|
|
r_cnjg(&q__2, &d21);
|
|
c_div(&q__1, &w[k + kw * w_dim1], &q__2);
|
|
d11.r = q__1.r, d11.i = q__1.i;
|
|
c_div(&q__1, &w[k - 1 + (kw - 1) * w_dim1], &d21);
|
|
d22.r = q__1.r, d22.i = q__1.i;
|
|
q__1.r = d11.r * d22.r - d11.i * d22.i, q__1.i = d11.r *
|
|
d22.i + d11.i * d22.r;
|
|
t = 1.f / (q__1.r - 1.f);
|
|
|
|
/* Update elements in columns A(k-1) and A(k) as */
|
|
/* dot products of rows of ( W(kw-1) W(kw) ) and columns */
|
|
/* of D**(-1) */
|
|
|
|
i__1 = k - 2;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = j + (k - 1) * a_dim1;
|
|
i__3 = j + (kw - 1) * w_dim1;
|
|
q__4.r = d11.r * w[i__3].r - d11.i * w[i__3].i,
|
|
q__4.i = d11.r * w[i__3].i + d11.i * w[i__3]
|
|
.r;
|
|
i__4 = j + kw * w_dim1;
|
|
q__3.r = q__4.r - w[i__4].r, q__3.i = q__4.i - w[i__4]
|
|
.i;
|
|
c_div(&q__2, &q__3, &d21);
|
|
q__1.r = t * q__2.r, q__1.i = t * q__2.i;
|
|
a[i__2].r = q__1.r, a[i__2].i = q__1.i;
|
|
i__2 = j + k * a_dim1;
|
|
i__3 = j + kw * w_dim1;
|
|
q__4.r = d22.r * w[i__3].r - d22.i * w[i__3].i,
|
|
q__4.i = d22.r * w[i__3].i + d22.i * w[i__3]
|
|
.r;
|
|
i__4 = j + (kw - 1) * w_dim1;
|
|
q__3.r = q__4.r - w[i__4].r, q__3.i = q__4.i - w[i__4]
|
|
.i;
|
|
r_cnjg(&q__5, &d21);
|
|
c_div(&q__2, &q__3, &q__5);
|
|
q__1.r = t * q__2.r, q__1.i = t * q__2.i;
|
|
a[i__2].r = q__1.r, a[i__2].i = q__1.i;
|
|
/* L20: */
|
|
}
|
|
}
|
|
|
|
/* Copy diagonal elements of D(K) to A, */
|
|
/* copy superdiagonal element of D(K) to E(K) and */
|
|
/* ZERO out superdiagonal entry of A */
|
|
|
|
i__1 = k - 1 + (k - 1) * a_dim1;
|
|
i__2 = k - 1 + (kw - 1) * w_dim1;
|
|
a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
|
|
i__1 = k - 1 + k * a_dim1;
|
|
a[i__1].r = 0.f, a[i__1].i = 0.f;
|
|
i__1 = k + k * a_dim1;
|
|
i__2 = k + kw * w_dim1;
|
|
a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
|
|
i__1 = k;
|
|
i__2 = k - 1 + kw * w_dim1;
|
|
e[i__1].r = w[i__2].r, e[i__1].i = w[i__2].i;
|
|
i__1 = k - 1;
|
|
e[i__1].r = 0.f, e[i__1].i = 0.f;
|
|
|
|
/* (2) Conjugate columns W(kw) and W(kw-1) */
|
|
|
|
i__1 = k - 1;
|
|
clacgv_(&i__1, &w[kw * w_dim1 + 1], &c__1);
|
|
i__1 = k - 2;
|
|
clacgv_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1);
|
|
|
|
}
|
|
|
|
/* End column K is nonsingular */
|
|
|
|
}
|
|
|
|
/* Store details of the interchanges in IPIV */
|
|
|
|
if (kstep == 1) {
|
|
ipiv[k] = kp;
|
|
} else {
|
|
ipiv[k] = -p;
|
|
ipiv[k - 1] = -kp;
|
|
}
|
|
|
|
/* Decrease K and return to the start of the main loop */
|
|
|
|
k -= kstep;
|
|
goto L10;
|
|
|
|
L30:
|
|
|
|
/* Update the upper triangle of A11 (= A(1:k,1:k)) as */
|
|
|
|
/* A11 := A11 - U12*D*U12**H = A11 - U12*W**H */
|
|
|
|
/* computing blocks of NB columns at a time (note that conjg(W) is */
|
|
/* actually stored) */
|
|
|
|
i__1 = -(*nb);
|
|
for (j = (k - 1) / *nb * *nb + 1; i__1 < 0 ? j >= 1 : j <= 1; j +=
|
|
i__1) {
|
|
/* Computing MIN */
|
|
i__2 = *nb, i__3 = k - j + 1;
|
|
jb = f2cmin(i__2,i__3);
|
|
|
|
/* Update the upper triangle of the diagonal block */
|
|
|
|
i__2 = j + jb - 1;
|
|
for (jj = j; jj <= i__2; ++jj) {
|
|
i__3 = jj + jj * a_dim1;
|
|
i__4 = jj + jj * a_dim1;
|
|
r__1 = a[i__4].r;
|
|
a[i__3].r = r__1, a[i__3].i = 0.f;
|
|
i__3 = jj - j + 1;
|
|
i__4 = *n - k;
|
|
q__1.r = -1.f, q__1.i = 0.f;
|
|
cgemv_("No transpose", &i__3, &i__4, &q__1, &a[j + (k + 1) *
|
|
a_dim1], lda, &w[jj + (kw + 1) * w_dim1], ldw, &c_b1,
|
|
&a[j + jj * a_dim1], &c__1);
|
|
i__3 = jj + jj * a_dim1;
|
|
i__4 = jj + jj * a_dim1;
|
|
r__1 = a[i__4].r;
|
|
a[i__3].r = r__1, a[i__3].i = 0.f;
|
|
/* L40: */
|
|
}
|
|
|
|
/* Update the rectangular superdiagonal block */
|
|
|
|
if (j >= 2) {
|
|
i__2 = j - 1;
|
|
i__3 = *n - k;
|
|
q__1.r = -1.f, q__1.i = 0.f;
|
|
cgemm_("No transpose", "Transpose", &i__2, &jb, &i__3, &q__1,
|
|
&a[(k + 1) * a_dim1 + 1], lda, &w[j + (kw + 1) *
|
|
w_dim1], ldw, &c_b1, &a[j * a_dim1 + 1], lda);
|
|
}
|
|
/* L50: */
|
|
}
|
|
|
|
/* Set KB to the number of columns factorized */
|
|
|
|
*kb = *n - k;
|
|
|
|
} else {
|
|
|
|
/* Factorize the leading columns of A using the lower triangle */
|
|
/* of A and working forwards, and compute the matrix W = L21*D */
|
|
/* for use in updating A22 (note that conjg(W) is actually stored) */
|
|
|
|
/* Initialize the unused last entry of the subdiagonal array E. */
|
|
|
|
i__1 = *n;
|
|
e[i__1].r = 0.f, e[i__1].i = 0.f;
|
|
|
|
/* K is the main loop index, increasing from 1 in steps of 1 or 2 */
|
|
|
|
k = 1;
|
|
L70:
|
|
|
|
/* Exit from loop */
|
|
|
|
if (k >= *nb && *nb < *n || k > *n) {
|
|
goto L90;
|
|
}
|
|
|
|
kstep = 1;
|
|
p = k;
|
|
|
|
/* Copy column K of A to column K of W and update column K of W */
|
|
|
|
i__1 = k + k * w_dim1;
|
|
i__2 = k + k * a_dim1;
|
|
r__1 = a[i__2].r;
|
|
w[i__1].r = r__1, w[i__1].i = 0.f;
|
|
if (k < *n) {
|
|
i__1 = *n - k;
|
|
ccopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &w[k + 1 + k *
|
|
w_dim1], &c__1);
|
|
}
|
|
if (k > 1) {
|
|
i__1 = *n - k + 1;
|
|
i__2 = k - 1;
|
|
q__1.r = -1.f, q__1.i = 0.f;
|
|
cgemv_("No transpose", &i__1, &i__2, &q__1, &a[k + a_dim1], lda, &
|
|
w[k + w_dim1], ldw, &c_b1, &w[k + k * w_dim1], &c__1);
|
|
i__1 = k + k * w_dim1;
|
|
i__2 = k + k * w_dim1;
|
|
r__1 = w[i__2].r;
|
|
w[i__1].r = r__1, w[i__1].i = 0.f;
|
|
}
|
|
|
|
/* Determine rows and columns to be interchanged and whether */
|
|
/* a 1-by-1 or 2-by-2 pivot block will be used */
|
|
|
|
i__1 = k + k * w_dim1;
|
|
absakk = (r__1 = w[i__1].r, abs(r__1));
|
|
|
|
/* IMAX is the row-index of the largest off-diagonal element in */
|
|
/* column K, and COLMAX is its absolute value. */
|
|
/* Determine both COLMAX and IMAX. */
|
|
|
|
if (k < *n) {
|
|
i__1 = *n - k;
|
|
imax = k + icamax_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
|
|
i__1 = imax + k * w_dim1;
|
|
colmax = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[imax +
|
|
k * w_dim1]), abs(r__2));
|
|
} else {
|
|
colmax = 0.f;
|
|
}
|
|
|
|
if (f2cmax(absakk,colmax) == 0.f) {
|
|
|
|
/* Column K is zero or underflow: set INFO and continue */
|
|
|
|
if (*info == 0) {
|
|
*info = k;
|
|
}
|
|
kp = k;
|
|
i__1 = k + k * a_dim1;
|
|
i__2 = k + k * w_dim1;
|
|
r__1 = w[i__2].r;
|
|
a[i__1].r = r__1, a[i__1].i = 0.f;
|
|
if (k < *n) {
|
|
i__1 = *n - k;
|
|
ccopy_(&i__1, &w[k + 1 + k * w_dim1], &c__1, &a[k + 1 + k *
|
|
a_dim1], &c__1);
|
|
}
|
|
|
|
/* Set E( K ) to zero */
|
|
|
|
if (k < *n) {
|
|
i__1 = k;
|
|
e[i__1].r = 0.f, e[i__1].i = 0.f;
|
|
}
|
|
|
|
} else {
|
|
|
|
/* ============================================================ */
|
|
|
|
/* BEGIN pivot search */
|
|
|
|
/* Case(1) */
|
|
/* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
|
|
/* (used to handle NaN and Inf) */
|
|
|
|
if (! (absakk < alpha * colmax)) {
|
|
|
|
/* no interchange, use 1-by-1 pivot block */
|
|
|
|
kp = k;
|
|
|
|
} else {
|
|
|
|
done = FALSE_;
|
|
|
|
/* Loop until pivot found */
|
|
|
|
L72:
|
|
|
|
/* BEGIN pivot search loop body */
|
|
|
|
|
|
/* Copy column IMAX to column k+1 of W and update it */
|
|
|
|
i__1 = imax - k;
|
|
ccopy_(&i__1, &a[imax + k * a_dim1], lda, &w[k + (k + 1) *
|
|
w_dim1], &c__1);
|
|
i__1 = imax - k;
|
|
clacgv_(&i__1, &w[k + (k + 1) * w_dim1], &c__1);
|
|
i__1 = imax + (k + 1) * w_dim1;
|
|
i__2 = imax + imax * a_dim1;
|
|
r__1 = a[i__2].r;
|
|
w[i__1].r = r__1, w[i__1].i = 0.f;
|
|
|
|
if (imax < *n) {
|
|
i__1 = *n - imax;
|
|
ccopy_(&i__1, &a[imax + 1 + imax * a_dim1], &c__1, &w[
|
|
imax + 1 + (k + 1) * w_dim1], &c__1);
|
|
}
|
|
|
|
if (k > 1) {
|
|
i__1 = *n - k + 1;
|
|
i__2 = k - 1;
|
|
q__1.r = -1.f, q__1.i = 0.f;
|
|
cgemv_("No transpose", &i__1, &i__2, &q__1, &a[k + a_dim1]
|
|
, lda, &w[imax + w_dim1], ldw, &c_b1, &w[k + (k +
|
|
1) * w_dim1], &c__1);
|
|
i__1 = imax + (k + 1) * w_dim1;
|
|
i__2 = imax + (k + 1) * w_dim1;
|
|
r__1 = w[i__2].r;
|
|
w[i__1].r = r__1, w[i__1].i = 0.f;
|
|
}
|
|
|
|
/* JMAX is the column-index of the largest off-diagonal */
|
|
/* element in row IMAX, and ROWMAX is its absolute value. */
|
|
/* Determine both ROWMAX and JMAX. */
|
|
|
|
if (imax != k) {
|
|
i__1 = imax - k;
|
|
jmax = k - 1 + icamax_(&i__1, &w[k + (k + 1) * w_dim1], &
|
|
c__1);
|
|
i__1 = jmax + (k + 1) * w_dim1;
|
|
rowmax = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&
|
|
w[jmax + (k + 1) * w_dim1]), abs(r__2));
|
|
} else {
|
|
rowmax = 0.f;
|
|
}
|
|
|
|
if (imax < *n) {
|
|
i__1 = *n - imax;
|
|
itemp = imax + icamax_(&i__1, &w[imax + 1 + (k + 1) *
|
|
w_dim1], &c__1);
|
|
i__1 = itemp + (k + 1) * w_dim1;
|
|
stemp = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[
|
|
itemp + (k + 1) * w_dim1]), abs(r__2));
|
|
if (stemp > rowmax) {
|
|
rowmax = stemp;
|
|
jmax = itemp;
|
|
}
|
|
}
|
|
|
|
/* Case(2) */
|
|
/* Equivalent to testing for */
|
|
/* ABS( REAL( W( IMAX,K+1 ) ) ).GE.ALPHA*ROWMAX */
|
|
/* (used to handle NaN and Inf) */
|
|
|
|
i__1 = imax + (k + 1) * w_dim1;
|
|
if (! ((r__1 = w[i__1].r, abs(r__1)) < alpha * rowmax)) {
|
|
|
|
/* interchange rows and columns K and IMAX, */
|
|
/* use 1-by-1 pivot block */
|
|
|
|
kp = imax;
|
|
|
|
/* copy column K+1 of W to column K of W */
|
|
|
|
i__1 = *n - k + 1;
|
|
ccopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k *
|
|
w_dim1], &c__1);
|
|
|
|
done = TRUE_;
|
|
|
|
/* Case(3) */
|
|
/* Equivalent to testing for ROWMAX.EQ.COLMAX, */
|
|
/* (used to handle NaN and Inf) */
|
|
|
|
} else if (p == jmax || rowmax <= colmax) {
|
|
|
|
/* interchange rows and columns K+1 and IMAX, */
|
|
/* use 2-by-2 pivot block */
|
|
|
|
kp = imax;
|
|
kstep = 2;
|
|
done = TRUE_;
|
|
|
|
/* Case(4) */
|
|
} else {
|
|
|
|
/* Pivot not found: set params and repeat */
|
|
|
|
p = imax;
|
|
colmax = rowmax;
|
|
imax = jmax;
|
|
|
|
/* Copy updated JMAXth (next IMAXth) column to Kth of W */
|
|
|
|
i__1 = *n - k + 1;
|
|
ccopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k *
|
|
w_dim1], &c__1);
|
|
|
|
}
|
|
|
|
|
|
/* End pivot search loop body */
|
|
|
|
if (! done) {
|
|
goto L72;
|
|
}
|
|
|
|
}
|
|
|
|
/* END pivot search */
|
|
|
|
/* ============================================================ */
|
|
|
|
/* KK is the column of A where pivoting step stopped */
|
|
|
|
kk = k + kstep - 1;
|
|
|
|
/* Interchange rows and columns P and K (only for 2-by-2 pivot). */
|
|
/* Updated column P is already stored in column K of W. */
|
|
|
|
if (kstep == 2 && p != k) {
|
|
|
|
/* Copy non-updated column KK-1 to column P of submatrix A */
|
|
/* at step K. No need to copy element into columns */
|
|
/* K and K+1 of A for 2-by-2 pivot, since these columns */
|
|
/* will be later overwritten. */
|
|
|
|
i__1 = p + p * a_dim1;
|
|
i__2 = k + k * a_dim1;
|
|
r__1 = a[i__2].r;
|
|
a[i__1].r = r__1, a[i__1].i = 0.f;
|
|
i__1 = p - k - 1;
|
|
ccopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &a[p + (k + 1) *
|
|
a_dim1], lda);
|
|
i__1 = p - k - 1;
|
|
clacgv_(&i__1, &a[p + (k + 1) * a_dim1], lda);
|
|
if (p < *n) {
|
|
i__1 = *n - p;
|
|
ccopy_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + 1 + p
|
|
* a_dim1], &c__1);
|
|
}
|
|
|
|
/* Interchange rows K and P in first K-1 columns of A */
|
|
/* (columns K and K+1 of A for 2-by-2 pivot will be */
|
|
/* later overwritten). Interchange rows K and P */
|
|
/* in first KK columns of W. */
|
|
|
|
if (k > 1) {
|
|
i__1 = k - 1;
|
|
cswap_(&i__1, &a[k + a_dim1], lda, &a[p + a_dim1], lda);
|
|
}
|
|
cswap_(&kk, &w[k + w_dim1], ldw, &w[p + w_dim1], ldw);
|
|
}
|
|
|
|
/* Interchange rows and columns KP and KK. */
|
|
/* Updated column KP is already stored in column KK of W. */
|
|
|
|
if (kp != kk) {
|
|
|
|
/* Copy non-updated column KK to column KP of submatrix A */
|
|
/* at step K. No need to copy element into column K */
|
|
/* (or K and K+1 for 2-by-2 pivot) of A, since these columns */
|
|
/* will be later overwritten. */
|
|
|
|
i__1 = kp + kp * a_dim1;
|
|
i__2 = kk + kk * a_dim1;
|
|
r__1 = a[i__2].r;
|
|
a[i__1].r = r__1, a[i__1].i = 0.f;
|
|
i__1 = kp - kk - 1;
|
|
ccopy_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (kk +
|
|
1) * a_dim1], lda);
|
|
i__1 = kp - kk - 1;
|
|
clacgv_(&i__1, &a[kp + (kk + 1) * a_dim1], lda);
|
|
if (kp < *n) {
|
|
i__1 = *n - kp;
|
|
ccopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
|
|
+ kp * a_dim1], &c__1);
|
|
}
|
|
|
|
/* Interchange rows KK and KP in first K-1 columns of A */
|
|
/* (column K (or K and K+1 for 2-by-2 pivot) of A will be */
|
|
/* later overwritten). Interchange rows KK and KP */
|
|
/* in first KK columns of W. */
|
|
|
|
if (k > 1) {
|
|
i__1 = k - 1;
|
|
cswap_(&i__1, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda);
|
|
}
|
|
cswap_(&kk, &w[kk + w_dim1], ldw, &w[kp + w_dim1], ldw);
|
|
}
|
|
|
|
if (kstep == 1) {
|
|
|
|
/* 1-by-1 pivot block D(k): column k of W now holds */
|
|
|
|
/* W(k) = L(k)*D(k), */
|
|
|
|
/* where L(k) is the k-th column of L */
|
|
|
|
/* (1) Store subdiag. elements of column L(k) */
|
|
/* and 1-by-1 block D(k) in column k of A. */
|
|
/* (NOTE: Diagonal element L(k,k) is a UNIT element */
|
|
/* and not stored) */
|
|
/* A(k,k) := D(k,k) = W(k,k) */
|
|
/* A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k) */
|
|
|
|
/* (NOTE: No need to use for Hermitian matrix */
|
|
/* A( K, K ) = REAL( W( K, K) ) to separately copy diagonal */
|
|
/* element D(k,k) from W (potentially saves only one load)) */
|
|
i__1 = *n - k + 1;
|
|
ccopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], &
|
|
c__1);
|
|
if (k < *n) {
|
|
|
|
/* (NOTE: No need to check if A(k,k) is NOT ZERO, */
|
|
/* since that was ensured earlier in pivot search: */
|
|
/* case A(k,k) = 0 falls into 2x2 pivot case(3)) */
|
|
|
|
/* Handle division by a small number */
|
|
|
|
i__1 = k + k * a_dim1;
|
|
t = a[i__1].r;
|
|
if (abs(t) >= sfmin) {
|
|
r1 = 1.f / t;
|
|
i__1 = *n - k;
|
|
csscal_(&i__1, &r1, &a[k + 1 + k * a_dim1], &c__1);
|
|
} else {
|
|
i__1 = *n;
|
|
for (ii = k + 1; ii <= i__1; ++ii) {
|
|
i__2 = ii + k * a_dim1;
|
|
i__3 = ii + k * a_dim1;
|
|
q__1.r = a[i__3].r / t, q__1.i = a[i__3].i / t;
|
|
a[i__2].r = q__1.r, a[i__2].i = q__1.i;
|
|
/* L74: */
|
|
}
|
|
}
|
|
|
|
/* (2) Conjugate column W(k) */
|
|
|
|
i__1 = *n - k;
|
|
clacgv_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
|
|
|
|
/* Store the subdiagonal element of D in array E */
|
|
|
|
i__1 = k;
|
|
e[i__1].r = 0.f, e[i__1].i = 0.f;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* 2-by-2 pivot block D(k): columns k and k+1 of W now hold */
|
|
|
|
/* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
|
|
|
|
/* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
|
|
/* of L */
|
|
|
|
/* (1) Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2 */
|
|
/* block D(k:k+1,k:k+1) in columns k and k+1 of A. */
|
|
/* NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT */
|
|
/* block and not stored. */
|
|
/* A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1) */
|
|
/* A(k+2:N,k:k+1) := L(k+2:N,k:k+1) = */
|
|
/* = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) ) */
|
|
|
|
if (k < *n - 1) {
|
|
|
|
/* Factor out the columns of the inverse of 2-by-2 pivot */
|
|
/* block D, so that each column contains 1, to reduce the */
|
|
/* number of FLOPS when we multiply panel */
|
|
/* ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1). */
|
|
|
|
/* D**(-1) = ( d11 cj(d21) )**(-1) = */
|
|
/* ( d21 d22 ) */
|
|
|
|
/* = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) = */
|
|
/* ( (-d21) ( d11 ) ) */
|
|
|
|
/* = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) * */
|
|
|
|
/* * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) = */
|
|
/* ( ( -1 ) ( d11/conj(d21) ) ) */
|
|
|
|
/* = 1/(|d21|**2) * 1/(D22*D11-1) * */
|
|
|
|
/* * ( d21*( D11 ) conj(d21)*( -1 ) ) = */
|
|
/* ( ( -1 ) ( D22 ) ) */
|
|
|
|
/* = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*( -1 ) ) = */
|
|
/* ( ( -1 ) ( D22 ) ) */
|
|
|
|
/* = ( (T/conj(d21))*( D11 ) (T/d21)*( -1 ) ) = */
|
|
/* ( ( -1 ) ( D22 ) ) */
|
|
|
|
/* Handle division by a small number. (NOTE: order of */
|
|
/* operations is important) */
|
|
|
|
/* = ( T*(( D11 )/conj(D21)) T*(( -1 )/D21 ) ) */
|
|
/* ( (( -1 ) ) (( D22 ) ) ), */
|
|
|
|
/* where D11 = d22/d21, */
|
|
/* D22 = d11/conj(d21), */
|
|
/* D21 = d21, */
|
|
/* T = 1/(D22*D11-1). */
|
|
|
|
/* (NOTE: No need to check for division by ZERO, */
|
|
/* since that was ensured earlier in pivot search: */
|
|
/* (a) d21 != 0 in 2x2 pivot case(4), */
|
|
/* since |d21| should be larger than |d11| and |d22|; */
|
|
/* (b) (D22*D11 - 1) != 0, since from (a), */
|
|
/* both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.) */
|
|
|
|
i__1 = k + 1 + k * w_dim1;
|
|
d21.r = w[i__1].r, d21.i = w[i__1].i;
|
|
c_div(&q__1, &w[k + 1 + (k + 1) * w_dim1], &d21);
|
|
d11.r = q__1.r, d11.i = q__1.i;
|
|
r_cnjg(&q__2, &d21);
|
|
c_div(&q__1, &w[k + k * w_dim1], &q__2);
|
|
d22.r = q__1.r, d22.i = q__1.i;
|
|
q__1.r = d11.r * d22.r - d11.i * d22.i, q__1.i = d11.r *
|
|
d22.i + d11.i * d22.r;
|
|
t = 1.f / (q__1.r - 1.f);
|
|
|
|
/* Update elements in columns A(k) and A(k+1) as */
|
|
/* dot products of rows of ( W(k) W(k+1) ) and columns */
|
|
/* of D**(-1) */
|
|
|
|
i__1 = *n;
|
|
for (j = k + 2; j <= i__1; ++j) {
|
|
i__2 = j + k * a_dim1;
|
|
i__3 = j + k * w_dim1;
|
|
q__4.r = d11.r * w[i__3].r - d11.i * w[i__3].i,
|
|
q__4.i = d11.r * w[i__3].i + d11.i * w[i__3]
|
|
.r;
|
|
i__4 = j + (k + 1) * w_dim1;
|
|
q__3.r = q__4.r - w[i__4].r, q__3.i = q__4.i - w[i__4]
|
|
.i;
|
|
r_cnjg(&q__5, &d21);
|
|
c_div(&q__2, &q__3, &q__5);
|
|
q__1.r = t * q__2.r, q__1.i = t * q__2.i;
|
|
a[i__2].r = q__1.r, a[i__2].i = q__1.i;
|
|
i__2 = j + (k + 1) * a_dim1;
|
|
i__3 = j + (k + 1) * w_dim1;
|
|
q__4.r = d22.r * w[i__3].r - d22.i * w[i__3].i,
|
|
q__4.i = d22.r * w[i__3].i + d22.i * w[i__3]
|
|
.r;
|
|
i__4 = j + k * w_dim1;
|
|
q__3.r = q__4.r - w[i__4].r, q__3.i = q__4.i - w[i__4]
|
|
.i;
|
|
c_div(&q__2, &q__3, &d21);
|
|
q__1.r = t * q__2.r, q__1.i = t * q__2.i;
|
|
a[i__2].r = q__1.r, a[i__2].i = q__1.i;
|
|
/* L80: */
|
|
}
|
|
}
|
|
|
|
/* Copy diagonal elements of D(K) to A, */
|
|
/* copy subdiagonal element of D(K) to E(K) and */
|
|
/* ZERO out subdiagonal entry of A */
|
|
|
|
i__1 = k + k * a_dim1;
|
|
i__2 = k + k * w_dim1;
|
|
a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
|
|
i__1 = k + 1 + k * a_dim1;
|
|
a[i__1].r = 0.f, a[i__1].i = 0.f;
|
|
i__1 = k + 1 + (k + 1) * a_dim1;
|
|
i__2 = k + 1 + (k + 1) * w_dim1;
|
|
a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
|
|
i__1 = k;
|
|
i__2 = k + 1 + k * w_dim1;
|
|
e[i__1].r = w[i__2].r, e[i__1].i = w[i__2].i;
|
|
i__1 = k + 1;
|
|
e[i__1].r = 0.f, e[i__1].i = 0.f;
|
|
|
|
/* (2) Conjugate columns W(k) and W(k+1) */
|
|
|
|
i__1 = *n - k;
|
|
clacgv_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
|
|
i__1 = *n - k - 1;
|
|
clacgv_(&i__1, &w[k + 2 + (k + 1) * w_dim1], &c__1);
|
|
|
|
}
|
|
|
|
/* End column K is nonsingular */
|
|
|
|
}
|
|
|
|
/* Store details of the interchanges in IPIV */
|
|
|
|
if (kstep == 1) {
|
|
ipiv[k] = kp;
|
|
} else {
|
|
ipiv[k] = -p;
|
|
ipiv[k + 1] = -kp;
|
|
}
|
|
|
|
/* Increase K and return to the start of the main loop */
|
|
|
|
k += kstep;
|
|
goto L70;
|
|
|
|
L90:
|
|
|
|
/* Update the lower triangle of A22 (= A(k:n,k:n)) as */
|
|
|
|
/* A22 := A22 - L21*D*L21**H = A22 - L21*W**H */
|
|
|
|
/* computing blocks of NB columns at a time (note that conjg(W) is */
|
|
/* actually stored) */
|
|
|
|
i__1 = *n;
|
|
i__2 = *nb;
|
|
for (j = k; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
|
|
/* Computing MIN */
|
|
i__3 = *nb, i__4 = *n - j + 1;
|
|
jb = f2cmin(i__3,i__4);
|
|
|
|
/* Update the lower triangle of the diagonal block */
|
|
|
|
i__3 = j + jb - 1;
|
|
for (jj = j; jj <= i__3; ++jj) {
|
|
i__4 = jj + jj * a_dim1;
|
|
i__5 = jj + jj * a_dim1;
|
|
r__1 = a[i__5].r;
|
|
a[i__4].r = r__1, a[i__4].i = 0.f;
|
|
i__4 = j + jb - jj;
|
|
i__5 = k - 1;
|
|
q__1.r = -1.f, q__1.i = 0.f;
|
|
cgemv_("No transpose", &i__4, &i__5, &q__1, &a[jj + a_dim1],
|
|
lda, &w[jj + w_dim1], ldw, &c_b1, &a[jj + jj * a_dim1]
|
|
, &c__1);
|
|
i__4 = jj + jj * a_dim1;
|
|
i__5 = jj + jj * a_dim1;
|
|
r__1 = a[i__5].r;
|
|
a[i__4].r = r__1, a[i__4].i = 0.f;
|
|
/* L100: */
|
|
}
|
|
|
|
/* Update the rectangular subdiagonal block */
|
|
|
|
if (j + jb <= *n) {
|
|
i__3 = *n - j - jb + 1;
|
|
i__4 = k - 1;
|
|
q__1.r = -1.f, q__1.i = 0.f;
|
|
cgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &q__1,
|
|
&a[j + jb + a_dim1], lda, &w[j + w_dim1], ldw, &c_b1,
|
|
&a[j + jb + j * a_dim1], lda);
|
|
}
|
|
/* L110: */
|
|
}
|
|
|
|
/* Set KB to the number of columns factorized */
|
|
|
|
*kb = k - 1;
|
|
|
|
}
|
|
return;
|
|
|
|
/* End of CLAHEF_RK */
|
|
|
|
} /* clahef_rk__ */
|
|
|