1057 lines
33 KiB
C
1057 lines
33 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef blasint logical;
|
|
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
#ifdef __cplusplus
|
|
typedef logical (*L_fp)(...);
|
|
#else
|
|
typedef logical (*L_fp)();
|
|
#endif
|
|
|
|
static float spow_ui(float x, integer n) {
|
|
float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static double dpow_ui(double x, integer n) {
|
|
double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#ifdef _MSC_VER
|
|
static _Fcomplex cpow_ui(complex x, integer n) {
|
|
complex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow.r *= x.r, pow.i *= x.i;
|
|
if(u >>= 1) x.r *= x.r, x.i *= x.i;
|
|
else break;
|
|
}
|
|
}
|
|
_Fcomplex p={pow.r, pow.i};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex float cpow_ui(_Complex float x, integer n) {
|
|
_Complex float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
|
|
_Dcomplex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
|
|
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
|
|
else break;
|
|
}
|
|
}
|
|
_Dcomplex p = {pow._Val[0], pow._Val[1]};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex double zpow_ui(_Complex double x, integer n) {
|
|
_Complex double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
static integer pow_ii(integer x, integer n) {
|
|
integer pow; unsigned long int u;
|
|
if (n <= 0) {
|
|
if (n == 0 || x == 1) pow = 1;
|
|
else if (x != -1) pow = x == 0 ? 1/x : 0;
|
|
else n = -n;
|
|
}
|
|
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
|
|
u = n;
|
|
for(pow = 1; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
|
|
{
|
|
double m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
|
|
{
|
|
float m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i]) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i]) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static complex c_b1 = {0.f,0.f};
|
|
static complex c_b2 = {1.f,0.f};
|
|
static integer c__1 = 1;
|
|
static integer c__12 = 12;
|
|
static integer c__2 = 2;
|
|
static integer c__49 = 49;
|
|
|
|
/* > \brief \b CHSEQR */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download CHSEQR + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chseqr.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chseqr.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chseqr.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE CHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, W, Z, LDZ, */
|
|
/* WORK, LWORK, INFO ) */
|
|
|
|
/* INTEGER IHI, ILO, INFO, LDH, LDZ, LWORK, N */
|
|
/* CHARACTER COMPZ, JOB */
|
|
/* COMPLEX H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > CHSEQR computes the eigenvalues of a Hessenberg matrix H */
|
|
/* > and, optionally, the matrices T and Z from the Schur decomposition */
|
|
/* > H = Z T Z**H, where T is an upper triangular matrix (the */
|
|
/* > Schur form), and Z is the unitary matrix of Schur vectors. */
|
|
/* > */
|
|
/* > Optionally Z may be postmultiplied into an input unitary */
|
|
/* > matrix Q so that this routine can give the Schur factorization */
|
|
/* > of a matrix A which has been reduced to the Hessenberg form H */
|
|
/* > by the unitary matrix Q: A = Q*H*Q**H = (QZ)*T*(QZ)**H. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] JOB */
|
|
/* > \verbatim */
|
|
/* > JOB is CHARACTER*1 */
|
|
/* > = 'E': compute eigenvalues only; */
|
|
/* > = 'S': compute eigenvalues and the Schur form T. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] COMPZ */
|
|
/* > \verbatim */
|
|
/* > COMPZ is CHARACTER*1 */
|
|
/* > = 'N': no Schur vectors are computed; */
|
|
/* > = 'I': Z is initialized to the unit matrix and the matrix Z */
|
|
/* > of Schur vectors of H is returned; */
|
|
/* > = 'V': Z must contain an unitary matrix Q on entry, and */
|
|
/* > the product Q*Z is returned. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The order of the matrix H. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] ILO */
|
|
/* > \verbatim */
|
|
/* > ILO is INTEGER */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] IHI */
|
|
/* > \verbatim */
|
|
/* > IHI is INTEGER */
|
|
/* > */
|
|
/* > It is assumed that H is already upper triangular in rows */
|
|
/* > and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally */
|
|
/* > set by a previous call to CGEBAL, and then passed to ZGEHRD */
|
|
/* > when the matrix output by CGEBAL is reduced to Hessenberg */
|
|
/* > form. Otherwise ILO and IHI should be set to 1 and N */
|
|
/* > respectively. If N > 0, then 1 <= ILO <= IHI <= N. */
|
|
/* > If N = 0, then ILO = 1 and IHI = 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] H */
|
|
/* > \verbatim */
|
|
/* > H is COMPLEX array, dimension (LDH,N) */
|
|
/* > On entry, the upper Hessenberg matrix H. */
|
|
/* > On exit, if INFO = 0 and JOB = 'S', H contains the upper */
|
|
/* > triangular matrix T from the Schur decomposition (the */
|
|
/* > Schur form). If INFO = 0 and JOB = 'E', the contents of */
|
|
/* > H are unspecified on exit. (The output value of H when */
|
|
/* > INFO > 0 is given under the description of INFO below.) */
|
|
/* > */
|
|
/* > Unlike earlier versions of CHSEQR, this subroutine may */
|
|
/* > explicitly H(i,j) = 0 for i > j and j = 1, 2, ... ILO-1 */
|
|
/* > or j = IHI+1, IHI+2, ... N. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDH */
|
|
/* > \verbatim */
|
|
/* > LDH is INTEGER */
|
|
/* > The leading dimension of the array H. LDH >= f2cmax(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] W */
|
|
/* > \verbatim */
|
|
/* > W is COMPLEX array, dimension (N) */
|
|
/* > The computed eigenvalues. If JOB = 'S', the eigenvalues are */
|
|
/* > stored in the same order as on the diagonal of the Schur */
|
|
/* > form returned in H, with W(i) = H(i,i). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] Z */
|
|
/* > \verbatim */
|
|
/* > Z is COMPLEX array, dimension (LDZ,N) */
|
|
/* > If COMPZ = 'N', Z is not referenced. */
|
|
/* > If COMPZ = 'I', on entry Z need not be set and on exit, */
|
|
/* > if INFO = 0, Z contains the unitary matrix Z of the Schur */
|
|
/* > vectors of H. If COMPZ = 'V', on entry Z must contain an */
|
|
/* > N-by-N matrix Q, which is assumed to be equal to the unit */
|
|
/* > matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit, */
|
|
/* > if INFO = 0, Z contains Q*Z. */
|
|
/* > Normally Q is the unitary matrix generated by CUNGHR */
|
|
/* > after the call to CGEHRD which formed the Hessenberg matrix */
|
|
/* > H. (The output value of Z when INFO > 0 is given under */
|
|
/* > the description of INFO below.) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDZ */
|
|
/* > \verbatim */
|
|
/* > LDZ is INTEGER */
|
|
/* > The leading dimension of the array Z. if COMPZ = 'I' or */
|
|
/* > COMPZ = 'V', then LDZ >= MAX(1,N). Otherwise, LDZ >= 1. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WORK */
|
|
/* > \verbatim */
|
|
/* > WORK is COMPLEX array, dimension (LWORK) */
|
|
/* > On exit, if INFO = 0, WORK(1) returns an estimate of */
|
|
/* > the optimal value for LWORK. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LWORK */
|
|
/* > \verbatim */
|
|
/* > LWORK is INTEGER */
|
|
/* > The dimension of the array WORK. LWORK >= f2cmax(1,N) */
|
|
/* > is sufficient and delivers very good and sometimes */
|
|
/* > optimal performance. However, LWORK as large as 11*N */
|
|
/* > may be required for optimal performance. A workspace */
|
|
/* > query is recommended to determine the optimal workspace */
|
|
/* > size. */
|
|
/* > */
|
|
/* > If LWORK = -1, then CHSEQR does a workspace query. */
|
|
/* > In this case, CHSEQR checks the input parameters and */
|
|
/* > estimates the optimal workspace size for the given */
|
|
/* > values of N, ILO and IHI. The estimate is returned */
|
|
/* > in WORK(1). No error message related to LWORK is */
|
|
/* > issued by XERBLA. Neither H nor Z are accessed. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal */
|
|
/* > value */
|
|
/* > > 0: if INFO = i, CHSEQR failed to compute all of */
|
|
/* > the eigenvalues. Elements 1:ilo-1 and i+1:n of W */
|
|
/* > contain those eigenvalues which have been */
|
|
/* > successfully computed. (Failures are rare.) */
|
|
/* > */
|
|
/* > If INFO > 0 and JOB = 'E', then on exit, the */
|
|
/* > remaining unconverged eigenvalues are the eigen- */
|
|
/* > values of the upper Hessenberg matrix rows and */
|
|
/* > columns ILO through INFO of the final, output */
|
|
/* > value of H. */
|
|
/* > */
|
|
/* > If INFO > 0 and JOB = 'S', then on exit */
|
|
/* > */
|
|
/* > (*) (initial value of H)*U = U*(final value of H) */
|
|
/* > */
|
|
/* > where U is a unitary matrix. The final */
|
|
/* > value of H is upper Hessenberg and triangular in */
|
|
/* > rows and columns INFO+1 through IHI. */
|
|
/* > */
|
|
/* > If INFO > 0 and COMPZ = 'V', then on exit */
|
|
/* > */
|
|
/* > (final value of Z) = (initial value of Z)*U */
|
|
/* > */
|
|
/* > where U is the unitary matrix in (*) (regard- */
|
|
/* > less of the value of JOB.) */
|
|
/* > */
|
|
/* > If INFO > 0 and COMPZ = 'I', then on exit */
|
|
/* > (final value of Z) = U */
|
|
/* > where U is the unitary matrix in (*) (regard- */
|
|
/* > less of the value of JOB.) */
|
|
/* > */
|
|
/* > If INFO > 0 and COMPZ = 'N', then Z is not */
|
|
/* > accessed. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date December 2016 */
|
|
|
|
/* > \ingroup complexOTHERcomputational */
|
|
|
|
/* > \par Contributors: */
|
|
/* ================== */
|
|
/* > */
|
|
/* > Karen Braman and Ralph Byers, Department of Mathematics, */
|
|
/* > University of Kansas, USA */
|
|
|
|
/* > \par Further Details: */
|
|
/* ===================== */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > Default values supplied by */
|
|
/* > ILAENV(ISPEC,'CHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK). */
|
|
/* > It is suggested that these defaults be adjusted in order */
|
|
/* > to attain best performance in each particular */
|
|
/* > computational environment. */
|
|
/* > */
|
|
/* > ISPEC=12: The CLAHQR vs CLAQR0 crossover point. */
|
|
/* > Default: 75. (Must be at least 11.) */
|
|
/* > */
|
|
/* > ISPEC=13: Recommended deflation window size. */
|
|
/* > This depends on ILO, IHI and NS. NS is the */
|
|
/* > number of simultaneous shifts returned */
|
|
/* > by ILAENV(ISPEC=15). (See ISPEC=15 below.) */
|
|
/* > The default for (IHI-ILO+1) <= 500 is NS. */
|
|
/* > The default for (IHI-ILO+1) > 500 is 3*NS/2. */
|
|
/* > */
|
|
/* > ISPEC=14: Nibble crossover point. (See IPARMQ for */
|
|
/* > details.) Default: 14% of deflation window */
|
|
/* > size. */
|
|
/* > */
|
|
/* > ISPEC=15: Number of simultaneous shifts in a multishift */
|
|
/* > QR iteration. */
|
|
/* > */
|
|
/* > If IHI-ILO+1 is ... */
|
|
/* > */
|
|
/* > greater than ...but less ... the */
|
|
/* > or equal to ... than default is */
|
|
/* > */
|
|
/* > 1 30 NS = 2(+) */
|
|
/* > 30 60 NS = 4(+) */
|
|
/* > 60 150 NS = 10(+) */
|
|
/* > 150 590 NS = ** */
|
|
/* > 590 3000 NS = 64 */
|
|
/* > 3000 6000 NS = 128 */
|
|
/* > 6000 infinity NS = 256 */
|
|
/* > */
|
|
/* > (+) By default some or all matrices of this order */
|
|
/* > are passed to the implicit double shift routine */
|
|
/* > CLAHQR and this parameter is ignored. See */
|
|
/* > ISPEC=12 above and comments in IPARMQ for */
|
|
/* > details. */
|
|
/* > */
|
|
/* > (**) The asterisks (**) indicate an ad-hoc */
|
|
/* > function of N increasing from 10 to 64. */
|
|
/* > */
|
|
/* > ISPEC=16: Select structured matrix multiply. */
|
|
/* > If the number of simultaneous shifts (specified */
|
|
/* > by ISPEC=15) is less than 14, then the default */
|
|
/* > for ISPEC=16 is 0. Otherwise the default for */
|
|
/* > ISPEC=16 is 2. */
|
|
/* > \endverbatim */
|
|
|
|
/* > \par References: */
|
|
/* ================ */
|
|
/* > */
|
|
/* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
|
|
/* > Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 */
|
|
/* > Performance, SIAM Journal of Matrix Analysis, volume 23, pages */
|
|
/* > 929--947, 2002. */
|
|
/* > \n */
|
|
/* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
|
|
/* > Algorithm Part II: Aggressive Early Deflation, SIAM Journal */
|
|
/* > of Matrix Analysis, volume 23, pages 948--973, 2002. */
|
|
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void chseqr_(char *job, char *compz, integer *n, integer *ilo,
|
|
integer *ihi, complex *h__, integer *ldh, complex *w, complex *z__,
|
|
integer *ldz, complex *work, integer *lwork, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
address a__1[2];
|
|
integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3[2];
|
|
real r__1, r__2, r__3;
|
|
complex q__1;
|
|
char ch__1[2];
|
|
|
|
/* Local variables */
|
|
integer kbot, nmin;
|
|
extern logical lsame_(char *, char *);
|
|
extern /* Subroutine */ void ccopy_(integer *, complex *, integer *,
|
|
complex *, integer *);
|
|
logical initz;
|
|
complex workl[49];
|
|
logical wantt, wantz;
|
|
extern /* Subroutine */ void claqr0_(logical *, logical *, integer *,
|
|
integer *, integer *, complex *, integer *, complex *, integer *,
|
|
integer *, complex *, integer *, complex *, integer *, integer *);
|
|
complex hl[2401] /* was [49][49] */;
|
|
extern /* Subroutine */ void clahqr_(logical *, logical *, integer *,
|
|
integer *, integer *, complex *, integer *, complex *, integer *,
|
|
integer *, complex *, integer *, integer *), clacpy_(char *,
|
|
integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex
|
|
*, complex *, integer *);
|
|
extern int xerbla_(char *, integer *, ftnlen);
|
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
|
|
integer *, integer *, ftnlen, ftnlen);
|
|
logical lquery;
|
|
|
|
|
|
/* -- LAPACK computational routine (version 3.7.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* December 2016 */
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
/* ==== Matrices of order NTINY or smaller must be processed by */
|
|
/* . CLAHQR because of insufficient subdiagonal scratch space. */
|
|
/* . (This is a hard limit.) ==== */
|
|
|
|
/* ==== NL allocates some local workspace to help small matrices */
|
|
/* . through a rare CLAHQR failure. NL > NTINY = 15 is */
|
|
/* . required and NL <= NMIN = ILAENV(ISPEC=12,...) is recom- */
|
|
/* . mended. (The default value of NMIN is 75.) Using NL = 49 */
|
|
/* . allows up to six simultaneous shifts and a 16-by-16 */
|
|
/* . deflation window. ==== */
|
|
|
|
/* ==== Decode and check the input parameters. ==== */
|
|
|
|
/* Parameter adjustments */
|
|
h_dim1 = *ldh;
|
|
h_offset = 1 + h_dim1 * 1;
|
|
h__ -= h_offset;
|
|
--w;
|
|
z_dim1 = *ldz;
|
|
z_offset = 1 + z_dim1 * 1;
|
|
z__ -= z_offset;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
wantt = lsame_(job, "S");
|
|
initz = lsame_(compz, "I");
|
|
wantz = initz || lsame_(compz, "V");
|
|
r__1 = (real) f2cmax(1,*n);
|
|
q__1.r = r__1, q__1.i = 0.f;
|
|
work[1].r = q__1.r, work[1].i = q__1.i;
|
|
lquery = *lwork == -1;
|
|
|
|
*info = 0;
|
|
if (! lsame_(job, "E") && ! wantt) {
|
|
*info = -1;
|
|
} else if (! lsame_(compz, "N") && ! wantz) {
|
|
*info = -2;
|
|
} else if (*n < 0) {
|
|
*info = -3;
|
|
} else if (*ilo < 1 || *ilo > f2cmax(1,*n)) {
|
|
*info = -4;
|
|
} else if (*ihi < f2cmin(*ilo,*n) || *ihi > *n) {
|
|
*info = -5;
|
|
} else if (*ldh < f2cmax(1,*n)) {
|
|
*info = -7;
|
|
} else if (*ldz < 1 || wantz && *ldz < f2cmax(1,*n)) {
|
|
*info = -10;
|
|
} else if (*lwork < f2cmax(1,*n) && ! lquery) {
|
|
*info = -12;
|
|
}
|
|
|
|
if (*info != 0) {
|
|
|
|
/* ==== Quick return in case of invalid argument. ==== */
|
|
|
|
i__1 = -(*info);
|
|
xerbla_("CHSEQR", &i__1, (ftnlen)6);
|
|
return;
|
|
|
|
} else if (*n == 0) {
|
|
|
|
/* ==== Quick return in case N = 0; nothing to do. ==== */
|
|
|
|
return;
|
|
|
|
} else if (lquery) {
|
|
|
|
/* ==== Quick return in case of a workspace query ==== */
|
|
|
|
claqr0_(&wantt, &wantz, n, ilo, ihi, &h__[h_offset], ldh, &w[1], ilo,
|
|
ihi, &z__[z_offset], ldz, &work[1], lwork, info);
|
|
/* ==== Ensure reported workspace size is backward-compatible with */
|
|
/* . previous LAPACK versions. ==== */
|
|
/* Computing MAX */
|
|
r__2 = work[1].r, r__3 = (real) f2cmax(1,*n);
|
|
r__1 = f2cmax(r__2,r__3);
|
|
q__1.r = r__1, q__1.i = 0.f;
|
|
work[1].r = q__1.r, work[1].i = q__1.i;
|
|
return;
|
|
|
|
} else {
|
|
|
|
/* ==== copy eigenvalues isolated by CGEBAL ==== */
|
|
|
|
if (*ilo > 1) {
|
|
i__1 = *ilo - 1;
|
|
i__2 = *ldh + 1;
|
|
ccopy_(&i__1, &h__[h_offset], &i__2, &w[1], &c__1);
|
|
}
|
|
if (*ihi < *n) {
|
|
i__1 = *n - *ihi;
|
|
i__2 = *ldh + 1;
|
|
ccopy_(&i__1, &h__[*ihi + 1 + (*ihi + 1) * h_dim1], &i__2, &w[*
|
|
ihi + 1], &c__1);
|
|
}
|
|
|
|
/* ==== Initialize Z, if requested ==== */
|
|
|
|
if (initz) {
|
|
claset_("A", n, n, &c_b1, &c_b2, &z__[z_offset], ldz);
|
|
}
|
|
|
|
/* ==== Quick return if possible ==== */
|
|
|
|
if (*ilo == *ihi) {
|
|
i__1 = *ilo;
|
|
i__2 = *ilo + *ilo * h_dim1;
|
|
w[i__1].r = h__[i__2].r, w[i__1].i = h__[i__2].i;
|
|
return;
|
|
}
|
|
|
|
/* ==== CLAHQR/CLAQR0 crossover point ==== */
|
|
|
|
/* Writing concatenation */
|
|
i__3[0] = 1, a__1[0] = job;
|
|
i__3[1] = 1, a__1[1] = compz;
|
|
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
|
|
nmin = ilaenv_(&c__12, "CHSEQR", ch__1, n, ilo, ihi, lwork, (ftnlen)6,
|
|
(ftnlen)2);
|
|
nmin = f2cmax(15,nmin);
|
|
|
|
/* ==== CLAQR0 for big matrices; CLAHQR for small ones ==== */
|
|
|
|
if (*n > nmin) {
|
|
claqr0_(&wantt, &wantz, n, ilo, ihi, &h__[h_offset], ldh, &w[1],
|
|
ilo, ihi, &z__[z_offset], ldz, &work[1], lwork, info);
|
|
} else {
|
|
|
|
/* ==== Small matrix ==== */
|
|
|
|
clahqr_(&wantt, &wantz, n, ilo, ihi, &h__[h_offset], ldh, &w[1],
|
|
ilo, ihi, &z__[z_offset], ldz, info);
|
|
|
|
if (*info > 0) {
|
|
|
|
/* ==== A rare CLAHQR failure! CLAQR0 sometimes succeeds */
|
|
/* . when CLAHQR fails. ==== */
|
|
|
|
kbot = *info;
|
|
|
|
if (*n >= 49) {
|
|
|
|
/* ==== Larger matrices have enough subdiagonal scratch */
|
|
/* . space to call CLAQR0 directly. ==== */
|
|
|
|
claqr0_(&wantt, &wantz, n, ilo, &kbot, &h__[h_offset],
|
|
ldh, &w[1], ilo, ihi, &z__[z_offset], ldz, &work[
|
|
1], lwork, info);
|
|
|
|
} else {
|
|
|
|
/* ==== Tiny matrices don't have enough subdiagonal */
|
|
/* . scratch space to benefit from CLAQR0. Hence, */
|
|
/* . tiny matrices must be copied into a larger */
|
|
/* . array before calling CLAQR0. ==== */
|
|
|
|
clacpy_("A", n, n, &h__[h_offset], ldh, hl, &c__49);
|
|
i__1 = *n + 1 + *n * 49 - 50;
|
|
hl[i__1].r = 0.f, hl[i__1].i = 0.f;
|
|
i__1 = 49 - *n;
|
|
claset_("A", &c__49, &i__1, &c_b1, &c_b1, &hl[(*n + 1) *
|
|
49 - 49], &c__49);
|
|
claqr0_(&wantt, &wantz, &c__49, ilo, &kbot, hl, &c__49, &
|
|
w[1], ilo, ihi, &z__[z_offset], ldz, workl, &
|
|
c__49, info);
|
|
if (wantt || *info != 0) {
|
|
clacpy_("A", n, n, hl, &c__49, &h__[h_offset], ldh);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ==== Clear out the trash, if necessary. ==== */
|
|
|
|
if ((wantt || *info != 0) && *n > 2) {
|
|
i__1 = *n - 2;
|
|
i__2 = *n - 2;
|
|
claset_("L", &i__1, &i__2, &c_b1, &c_b1, &h__[h_dim1 + 3], ldh);
|
|
}
|
|
|
|
/* ==== Ensure reported workspace size is backward-compatible with */
|
|
/* . previous LAPACK versions. ==== */
|
|
|
|
/* Computing MAX */
|
|
r__2 = (real) f2cmax(1,*n), r__3 = work[1].r;
|
|
r__1 = f2cmax(r__2,r__3);
|
|
q__1.r = r__1, q__1.i = 0.f;
|
|
work[1].r = q__1.r, work[1].i = q__1.i;
|
|
}
|
|
|
|
/* ==== End of CHSEQR ==== */
|
|
|
|
return;
|
|
} /* chseqr_ */
|
|
|