OpenBLAS/lapack-netlib/SRC/chetri_rook.c

1241 lines
33 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static complex c_b2 = {0.f,0.f};
static integer c__1 = 1;
/* > \brief \b CHETRI_ROOK computes the inverse of HE matrix using the factorization obtained with the bounded
Bunch-Kaufman ("rook") diagonal pivoting method. */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download CHETRI_ROOK + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetri_
rook.f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetri_
rook.f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetri_
rook.f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE CHETRI_ROOK( UPLO, N, A, LDA, IPIV, WORK, INFO ) */
/* CHARACTER UPLO */
/* INTEGER INFO, LDA, N */
/* INTEGER IPIV( * ) */
/* COMPLEX A( LDA, * ), WORK( * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CHETRI_ROOK computes the inverse of a complex Hermitian indefinite matrix */
/* > A using the factorization A = U*D*U**H or A = L*D*L**H computed by */
/* > CHETRF_ROOK. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > Specifies whether the details of the factorization are stored */
/* > as an upper or lower triangular matrix. */
/* > = 'U': Upper triangular, form is A = U*D*U**H; */
/* > = 'L': Lower triangular, form is A = L*D*L**H. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the block diagonal matrix D and the multipliers */
/* > used to obtain the factor U or L as computed by CHETRF_ROOK. */
/* > */
/* > On exit, if INFO = 0, the (Hermitian) inverse of the original */
/* > matrix. If UPLO = 'U', the upper triangular part of the */
/* > inverse is formed and the part of A below the diagonal is not */
/* > referenced; if UPLO = 'L' the lower triangular part of the */
/* > inverse is formed and the part of A above the diagonal is */
/* > not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[in] IPIV */
/* > \verbatim */
/* > IPIV is INTEGER array, dimension (N) */
/* > Details of the interchanges and the block structure of D */
/* > as determined by CHETRF_ROOK. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension (N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its */
/* > inverse could not be computed. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date November 2013 */
/* > \ingroup complexHEcomputational */
/* > \par Contributors: */
/* ================== */
/* > */
/* > \verbatim */
/* > */
/* > November 2013, Igor Kozachenko, */
/* > Computer Science Division, */
/* > University of California, Berkeley */
/* > */
/* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
/* > School of Mathematics, */
/* > University of Manchester */
/* > \endverbatim */
/* ===================================================================== */
/* Subroutine */ void chetri_rook_(char *uplo, integer *n, complex *a,
integer *lda, integer *ipiv, complex *work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
real r__1;
complex q__1, q__2;
/* Local variables */
complex temp, akkp1;
real d__;
integer j, k;
real t;
extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer
*, complex *, integer *);
extern logical lsame_(char *, char *);
extern /* Subroutine */ void chemv_(char *, integer *, complex *, complex *
, integer *, complex *, integer *, complex *, complex *, integer *
), ccopy_(integer *, complex *, integer *, complex *,
integer *), cswap_(integer *, complex *, integer *, complex *,
integer *);
integer kstep;
logical upper;
real ak;
integer kp;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
real akp1;
/* -- LAPACK computational routine (version 3.5.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* November 2013 */
/* ===================================================================== */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--ipiv;
--work;
/* Function Body */
*info = 0;
upper = lsame_(uplo, "U");
if (! upper && ! lsame_(uplo, "L")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < f2cmax(1,*n)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CHETRI_ROOK", &i__1, (ftnlen)11);
return;
}
/* Quick return if possible */
if (*n == 0) {
return;
}
/* Check that the diagonal matrix D is nonsingular. */
if (upper) {
/* Upper triangular storage: examine D from bottom to top */
for (*info = *n; *info >= 1; --(*info)) {
i__1 = *info + *info * a_dim1;
if (ipiv[*info] > 0 && (a[i__1].r == 0.f && a[i__1].i == 0.f)) {
return;
}
/* L10: */
}
} else {
/* Lower triangular storage: examine D from top to bottom. */
i__1 = *n;
for (*info = 1; *info <= i__1; ++(*info)) {
i__2 = *info + *info * a_dim1;
if (ipiv[*info] > 0 && (a[i__2].r == 0.f && a[i__2].i == 0.f)) {
return;
}
/* L20: */
}
}
*info = 0;
if (upper) {
/* Compute inv(A) from the factorization A = U*D*U**H. */
/* K is the main loop index, increasing from 1 to N in steps of */
/* 1 or 2, depending on the size of the diagonal blocks. */
k = 1;
L30:
/* If K > N, exit from loop. */
if (k > *n) {
goto L70;
}
if (ipiv[k] > 0) {
/* 1 x 1 diagonal block */
/* Invert the diagonal block. */
i__1 = k + k * a_dim1;
i__2 = k + k * a_dim1;
r__1 = 1.f / a[i__2].r;
a[i__1].r = r__1, a[i__1].i = 0.f;
/* Compute column K of the inverse. */
if (k > 1) {
i__1 = k - 1;
ccopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &work[1], &c__1);
i__1 = k - 1;
q__1.r = -1.f, q__1.i = 0.f;
chemv_(uplo, &i__1, &q__1, &a[a_offset], lda, &work[1], &c__1,
&c_b2, &a[k * a_dim1 + 1], &c__1);
i__1 = k + k * a_dim1;
i__2 = k + k * a_dim1;
i__3 = k - 1;
cdotc_(&q__2, &i__3, &work[1], &c__1, &a[k * a_dim1 + 1], &
c__1);
r__1 = q__2.r;
q__1.r = a[i__2].r - r__1, q__1.i = a[i__2].i;
a[i__1].r = q__1.r, a[i__1].i = q__1.i;
}
kstep = 1;
} else {
/* 2 x 2 diagonal block */
/* Invert the diagonal block. */
t = c_abs(&a[k + (k + 1) * a_dim1]);
i__1 = k + k * a_dim1;
ak = a[i__1].r / t;
i__1 = k + 1 + (k + 1) * a_dim1;
akp1 = a[i__1].r / t;
i__1 = k + (k + 1) * a_dim1;
q__1.r = a[i__1].r / t, q__1.i = a[i__1].i / t;
akkp1.r = q__1.r, akkp1.i = q__1.i;
d__ = t * (ak * akp1 - 1.f);
i__1 = k + k * a_dim1;
r__1 = akp1 / d__;
a[i__1].r = r__1, a[i__1].i = 0.f;
i__1 = k + 1 + (k + 1) * a_dim1;
r__1 = ak / d__;
a[i__1].r = r__1, a[i__1].i = 0.f;
i__1 = k + (k + 1) * a_dim1;
q__2.r = -akkp1.r, q__2.i = -akkp1.i;
q__1.r = q__2.r / d__, q__1.i = q__2.i / d__;
a[i__1].r = q__1.r, a[i__1].i = q__1.i;
/* Compute columns K and K+1 of the inverse. */
if (k > 1) {
i__1 = k - 1;
ccopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &work[1], &c__1);
i__1 = k - 1;
q__1.r = -1.f, q__1.i = 0.f;
chemv_(uplo, &i__1, &q__1, &a[a_offset], lda, &work[1], &c__1,
&c_b2, &a[k * a_dim1 + 1], &c__1);
i__1 = k + k * a_dim1;
i__2 = k + k * a_dim1;
i__3 = k - 1;
cdotc_(&q__2, &i__3, &work[1], &c__1, &a[k * a_dim1 + 1], &
c__1);
r__1 = q__2.r;
q__1.r = a[i__2].r - r__1, q__1.i = a[i__2].i;
a[i__1].r = q__1.r, a[i__1].i = q__1.i;
i__1 = k + (k + 1) * a_dim1;
i__2 = k + (k + 1) * a_dim1;
i__3 = k - 1;
cdotc_(&q__2, &i__3, &a[k * a_dim1 + 1], &c__1, &a[(k + 1) *
a_dim1 + 1], &c__1);
q__1.r = a[i__2].r - q__2.r, q__1.i = a[i__2].i - q__2.i;
a[i__1].r = q__1.r, a[i__1].i = q__1.i;
i__1 = k - 1;
ccopy_(&i__1, &a[(k + 1) * a_dim1 + 1], &c__1, &work[1], &
c__1);
i__1 = k - 1;
q__1.r = -1.f, q__1.i = 0.f;
chemv_(uplo, &i__1, &q__1, &a[a_offset], lda, &work[1], &c__1,
&c_b2, &a[(k + 1) * a_dim1 + 1], &c__1);
i__1 = k + 1 + (k + 1) * a_dim1;
i__2 = k + 1 + (k + 1) * a_dim1;
i__3 = k - 1;
cdotc_(&q__2, &i__3, &work[1], &c__1, &a[(k + 1) * a_dim1 + 1]
, &c__1);
r__1 = q__2.r;
q__1.r = a[i__2].r - r__1, q__1.i = a[i__2].i;
a[i__1].r = q__1.r, a[i__1].i = q__1.i;
}
kstep = 2;
}
if (kstep == 1) {
/* Interchange rows and columns K and IPIV(K) in the leading */
/* submatrix A(1:k,1:k) */
kp = ipiv[k];
if (kp != k) {
if (kp > 1) {
i__1 = kp - 1;
cswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[kp * a_dim1 +
1], &c__1);
}
i__1 = k - 1;
for (j = kp + 1; j <= i__1; ++j) {
r_cnjg(&q__1, &a[j + k * a_dim1]);
temp.r = q__1.r, temp.i = q__1.i;
i__2 = j + k * a_dim1;
r_cnjg(&q__1, &a[kp + j * a_dim1]);
a[i__2].r = q__1.r, a[i__2].i = q__1.i;
i__2 = kp + j * a_dim1;
a[i__2].r = temp.r, a[i__2].i = temp.i;
/* L40: */
}
i__1 = kp + k * a_dim1;
r_cnjg(&q__1, &a[kp + k * a_dim1]);
a[i__1].r = q__1.r, a[i__1].i = q__1.i;
i__1 = k + k * a_dim1;
temp.r = a[i__1].r, temp.i = a[i__1].i;
i__1 = k + k * a_dim1;
i__2 = kp + kp * a_dim1;
a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
i__1 = kp + kp * a_dim1;
a[i__1].r = temp.r, a[i__1].i = temp.i;
}
} else {
/* Interchange rows and columns K and K+1 with -IPIV(K) and */
/* -IPIV(K+1) in the leading submatrix A(k+1:n,k+1:n) */
/* (1) Interchange rows and columns K and -IPIV(K) */
kp = -ipiv[k];
if (kp != k) {
if (kp > 1) {
i__1 = kp - 1;
cswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[kp * a_dim1 +
1], &c__1);
}
i__1 = k - 1;
for (j = kp + 1; j <= i__1; ++j) {
r_cnjg(&q__1, &a[j + k * a_dim1]);
temp.r = q__1.r, temp.i = q__1.i;
i__2 = j + k * a_dim1;
r_cnjg(&q__1, &a[kp + j * a_dim1]);
a[i__2].r = q__1.r, a[i__2].i = q__1.i;
i__2 = kp + j * a_dim1;
a[i__2].r = temp.r, a[i__2].i = temp.i;
/* L50: */
}
i__1 = kp + k * a_dim1;
r_cnjg(&q__1, &a[kp + k * a_dim1]);
a[i__1].r = q__1.r, a[i__1].i = q__1.i;
i__1 = k + k * a_dim1;
temp.r = a[i__1].r, temp.i = a[i__1].i;
i__1 = k + k * a_dim1;
i__2 = kp + kp * a_dim1;
a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
i__1 = kp + kp * a_dim1;
a[i__1].r = temp.r, a[i__1].i = temp.i;
i__1 = k + (k + 1) * a_dim1;
temp.r = a[i__1].r, temp.i = a[i__1].i;
i__1 = k + (k + 1) * a_dim1;
i__2 = kp + (k + 1) * a_dim1;
a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
i__1 = kp + (k + 1) * a_dim1;
a[i__1].r = temp.r, a[i__1].i = temp.i;
}
/* (2) Interchange rows and columns K+1 and -IPIV(K+1) */
++k;
kp = -ipiv[k];
if (kp != k) {
if (kp > 1) {
i__1 = kp - 1;
cswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[kp * a_dim1 +
1], &c__1);
}
i__1 = k - 1;
for (j = kp + 1; j <= i__1; ++j) {
r_cnjg(&q__1, &a[j + k * a_dim1]);
temp.r = q__1.r, temp.i = q__1.i;
i__2 = j + k * a_dim1;
r_cnjg(&q__1, &a[kp + j * a_dim1]);
a[i__2].r = q__1.r, a[i__2].i = q__1.i;
i__2 = kp + j * a_dim1;
a[i__2].r = temp.r, a[i__2].i = temp.i;
/* L60: */
}
i__1 = kp + k * a_dim1;
r_cnjg(&q__1, &a[kp + k * a_dim1]);
a[i__1].r = q__1.r, a[i__1].i = q__1.i;
i__1 = k + k * a_dim1;
temp.r = a[i__1].r, temp.i = a[i__1].i;
i__1 = k + k * a_dim1;
i__2 = kp + kp * a_dim1;
a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
i__1 = kp + kp * a_dim1;
a[i__1].r = temp.r, a[i__1].i = temp.i;
}
}
++k;
goto L30;
L70:
;
} else {
/* Compute inv(A) from the factorization A = L*D*L**H. */
/* K is the main loop index, decreasing from N to 1 in steps of */
/* 1 or 2, depending on the size of the diagonal blocks. */
k = *n;
L80:
/* If K < 1, exit from loop. */
if (k < 1) {
goto L120;
}
if (ipiv[k] > 0) {
/* 1 x 1 diagonal block */
/* Invert the diagonal block. */
i__1 = k + k * a_dim1;
i__2 = k + k * a_dim1;
r__1 = 1.f / a[i__2].r;
a[i__1].r = r__1, a[i__1].i = 0.f;
/* Compute column K of the inverse. */
if (k < *n) {
i__1 = *n - k;
ccopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &work[1], &c__1);
i__1 = *n - k;
q__1.r = -1.f, q__1.i = 0.f;
chemv_(uplo, &i__1, &q__1, &a[k + 1 + (k + 1) * a_dim1], lda,
&work[1], &c__1, &c_b2, &a[k + 1 + k * a_dim1], &c__1);
i__1 = k + k * a_dim1;
i__2 = k + k * a_dim1;
i__3 = *n - k;
cdotc_(&q__2, &i__3, &work[1], &c__1, &a[k + 1 + k * a_dim1],
&c__1);
r__1 = q__2.r;
q__1.r = a[i__2].r - r__1, q__1.i = a[i__2].i;
a[i__1].r = q__1.r, a[i__1].i = q__1.i;
}
kstep = 1;
} else {
/* 2 x 2 diagonal block */
/* Invert the diagonal block. */
t = c_abs(&a[k + (k - 1) * a_dim1]);
i__1 = k - 1 + (k - 1) * a_dim1;
ak = a[i__1].r / t;
i__1 = k + k * a_dim1;
akp1 = a[i__1].r / t;
i__1 = k + (k - 1) * a_dim1;
q__1.r = a[i__1].r / t, q__1.i = a[i__1].i / t;
akkp1.r = q__1.r, akkp1.i = q__1.i;
d__ = t * (ak * akp1 - 1.f);
i__1 = k - 1 + (k - 1) * a_dim1;
r__1 = akp1 / d__;
a[i__1].r = r__1, a[i__1].i = 0.f;
i__1 = k + k * a_dim1;
r__1 = ak / d__;
a[i__1].r = r__1, a[i__1].i = 0.f;
i__1 = k + (k - 1) * a_dim1;
q__2.r = -akkp1.r, q__2.i = -akkp1.i;
q__1.r = q__2.r / d__, q__1.i = q__2.i / d__;
a[i__1].r = q__1.r, a[i__1].i = q__1.i;
/* Compute columns K-1 and K of the inverse. */
if (k < *n) {
i__1 = *n - k;
ccopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &work[1], &c__1);
i__1 = *n - k;
q__1.r = -1.f, q__1.i = 0.f;
chemv_(uplo, &i__1, &q__1, &a[k + 1 + (k + 1) * a_dim1], lda,
&work[1], &c__1, &c_b2, &a[k + 1 + k * a_dim1], &c__1);
i__1 = k + k * a_dim1;
i__2 = k + k * a_dim1;
i__3 = *n - k;
cdotc_(&q__2, &i__3, &work[1], &c__1, &a[k + 1 + k * a_dim1],
&c__1);
r__1 = q__2.r;
q__1.r = a[i__2].r - r__1, q__1.i = a[i__2].i;
a[i__1].r = q__1.r, a[i__1].i = q__1.i;
i__1 = k + (k - 1) * a_dim1;
i__2 = k + (k - 1) * a_dim1;
i__3 = *n - k;
cdotc_(&q__2, &i__3, &a[k + 1 + k * a_dim1], &c__1, &a[k + 1
+ (k - 1) * a_dim1], &c__1);
q__1.r = a[i__2].r - q__2.r, q__1.i = a[i__2].i - q__2.i;
a[i__1].r = q__1.r, a[i__1].i = q__1.i;
i__1 = *n - k;
ccopy_(&i__1, &a[k + 1 + (k - 1) * a_dim1], &c__1, &work[1], &
c__1);
i__1 = *n - k;
q__1.r = -1.f, q__1.i = 0.f;
chemv_(uplo, &i__1, &q__1, &a[k + 1 + (k + 1) * a_dim1], lda,
&work[1], &c__1, &c_b2, &a[k + 1 + (k - 1) * a_dim1],
&c__1);
i__1 = k - 1 + (k - 1) * a_dim1;
i__2 = k - 1 + (k - 1) * a_dim1;
i__3 = *n - k;
cdotc_(&q__2, &i__3, &work[1], &c__1, &a[k + 1 + (k - 1) *
a_dim1], &c__1);
r__1 = q__2.r;
q__1.r = a[i__2].r - r__1, q__1.i = a[i__2].i;
a[i__1].r = q__1.r, a[i__1].i = q__1.i;
}
kstep = 2;
}
if (kstep == 1) {
/* Interchange rows and columns K and IPIV(K) in the trailing */
/* submatrix A(k:n,k:n) */
kp = ipiv[k];
if (kp != k) {
if (kp < *n) {
i__1 = *n - kp;
cswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + 1 +
kp * a_dim1], &c__1);
}
i__1 = kp - 1;
for (j = k + 1; j <= i__1; ++j) {
r_cnjg(&q__1, &a[j + k * a_dim1]);
temp.r = q__1.r, temp.i = q__1.i;
i__2 = j + k * a_dim1;
r_cnjg(&q__1, &a[kp + j * a_dim1]);
a[i__2].r = q__1.r, a[i__2].i = q__1.i;
i__2 = kp + j * a_dim1;
a[i__2].r = temp.r, a[i__2].i = temp.i;
/* L90: */
}
i__1 = kp + k * a_dim1;
r_cnjg(&q__1, &a[kp + k * a_dim1]);
a[i__1].r = q__1.r, a[i__1].i = q__1.i;
i__1 = k + k * a_dim1;
temp.r = a[i__1].r, temp.i = a[i__1].i;
i__1 = k + k * a_dim1;
i__2 = kp + kp * a_dim1;
a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
i__1 = kp + kp * a_dim1;
a[i__1].r = temp.r, a[i__1].i = temp.i;
}
} else {
/* Interchange rows and columns K and K-1 with -IPIV(K) and */
/* -IPIV(K-1) in the trailing submatrix A(k-1:n,k-1:n) */
/* (1) Interchange rows and columns K and -IPIV(K) */
kp = -ipiv[k];
if (kp != k) {
if (kp < *n) {
i__1 = *n - kp;
cswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + 1 +
kp * a_dim1], &c__1);
}
i__1 = kp - 1;
for (j = k + 1; j <= i__1; ++j) {
r_cnjg(&q__1, &a[j + k * a_dim1]);
temp.r = q__1.r, temp.i = q__1.i;
i__2 = j + k * a_dim1;
r_cnjg(&q__1, &a[kp + j * a_dim1]);
a[i__2].r = q__1.r, a[i__2].i = q__1.i;
i__2 = kp + j * a_dim1;
a[i__2].r = temp.r, a[i__2].i = temp.i;
/* L100: */
}
i__1 = kp + k * a_dim1;
r_cnjg(&q__1, &a[kp + k * a_dim1]);
a[i__1].r = q__1.r, a[i__1].i = q__1.i;
i__1 = k + k * a_dim1;
temp.r = a[i__1].r, temp.i = a[i__1].i;
i__1 = k + k * a_dim1;
i__2 = kp + kp * a_dim1;
a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
i__1 = kp + kp * a_dim1;
a[i__1].r = temp.r, a[i__1].i = temp.i;
i__1 = k + (k - 1) * a_dim1;
temp.r = a[i__1].r, temp.i = a[i__1].i;
i__1 = k + (k - 1) * a_dim1;
i__2 = kp + (k - 1) * a_dim1;
a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
i__1 = kp + (k - 1) * a_dim1;
a[i__1].r = temp.r, a[i__1].i = temp.i;
}
/* (2) Interchange rows and columns K-1 and -IPIV(K-1) */
--k;
kp = -ipiv[k];
if (kp != k) {
if (kp < *n) {
i__1 = *n - kp;
cswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + 1 +
kp * a_dim1], &c__1);
}
i__1 = kp - 1;
for (j = k + 1; j <= i__1; ++j) {
r_cnjg(&q__1, &a[j + k * a_dim1]);
temp.r = q__1.r, temp.i = q__1.i;
i__2 = j + k * a_dim1;
r_cnjg(&q__1, &a[kp + j * a_dim1]);
a[i__2].r = q__1.r, a[i__2].i = q__1.i;
i__2 = kp + j * a_dim1;
a[i__2].r = temp.r, a[i__2].i = temp.i;
/* L110: */
}
i__1 = kp + k * a_dim1;
r_cnjg(&q__1, &a[kp + k * a_dim1]);
a[i__1].r = q__1.r, a[i__1].i = q__1.i;
i__1 = k + k * a_dim1;
temp.r = a[i__1].r, temp.i = a[i__1].i;
i__1 = k + k * a_dim1;
i__2 = kp + kp * a_dim1;
a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
i__1 = kp + kp * a_dim1;
a[i__1].r = temp.r, a[i__1].i = temp.i;
}
}
--k;
goto L80;
L120:
;
}
return;
/* End of CHETRI_ROOK */
} /* chetri_rook__ */