OpenBLAS/lapack-netlib/SRC/cheevr.c

1309 lines
41 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static integer c__10 = 10;
static integer c__1 = 1;
static integer c__2 = 2;
static integer c__3 = 3;
static integer c__4 = 4;
static integer c_n1 = -1;
/* > \brief <b> CHEEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE mat
rices</b> */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download CHEEVR + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cheevr.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cheevr.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cheevr.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE CHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, */
/* ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, */
/* RWORK, LRWORK, IWORK, LIWORK, INFO ) */
/* CHARACTER JOBZ, RANGE, UPLO */
/* INTEGER IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK, */
/* $ M, N */
/* REAL ABSTOL, VL, VU */
/* INTEGER ISUPPZ( * ), IWORK( * ) */
/* REAL RWORK( * ), W( * ) */
/* COMPLEX A( LDA, * ), WORK( * ), Z( LDZ, * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CHEEVR computes selected eigenvalues and, optionally, eigenvectors */
/* > of a complex Hermitian matrix A. Eigenvalues and eigenvectors can */
/* > be selected by specifying either a range of values or a range of */
/* > indices for the desired eigenvalues. */
/* > */
/* > CHEEVR first reduces the matrix A to tridiagonal form T with a call */
/* > to CHETRD. Then, whenever possible, CHEEVR calls CSTEMR to compute */
/* > the eigenspectrum using Relatively Robust Representations. CSTEMR */
/* > computes eigenvalues by the dqds algorithm, while orthogonal */
/* > eigenvectors are computed from various "good" L D L^T representations */
/* > (also known as Relatively Robust Representations). Gram-Schmidt */
/* > orthogonalization is avoided as far as possible. More specifically, */
/* > the various steps of the algorithm are as follows. */
/* > */
/* > For each unreduced block (submatrix) of T, */
/* > (a) Compute T - sigma I = L D L^T, so that L and D */
/* > define all the wanted eigenvalues to high relative accuracy. */
/* > This means that small relative changes in the entries of D and L */
/* > cause only small relative changes in the eigenvalues and */
/* > eigenvectors. The standard (unfactored) representation of the */
/* > tridiagonal matrix T does not have this property in general. */
/* > (b) Compute the eigenvalues to suitable accuracy. */
/* > If the eigenvectors are desired, the algorithm attains full */
/* > accuracy of the computed eigenvalues only right before */
/* > the corresponding vectors have to be computed, see steps c) and d). */
/* > (c) For each cluster of close eigenvalues, select a new */
/* > shift close to the cluster, find a new factorization, and refine */
/* > the shifted eigenvalues to suitable accuracy. */
/* > (d) For each eigenvalue with a large enough relative separation compute */
/* > the corresponding eigenvector by forming a rank revealing twisted */
/* > factorization. Go back to (c) for any clusters that remain. */
/* > */
/* > The desired accuracy of the output can be specified by the input */
/* > parameter ABSTOL. */
/* > */
/* > For more details, see DSTEMR's documentation and: */
/* > - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations */
/* > to compute orthogonal eigenvectors of symmetric tridiagonal matrices," */
/* > Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. */
/* > - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and */
/* > Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, */
/* > 2004. Also LAPACK Working Note 154. */
/* > - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric */
/* > tridiagonal eigenvalue/eigenvector problem", */
/* > Computer Science Division Technical Report No. UCB/CSD-97-971, */
/* > UC Berkeley, May 1997. */
/* > */
/* > */
/* > Note 1 : CHEEVR calls CSTEMR when the full spectrum is requested */
/* > on machines which conform to the ieee-754 floating point standard. */
/* > CHEEVR calls SSTEBZ and CSTEIN on non-ieee machines and */
/* > when partial spectrum requests are made. */
/* > */
/* > Normal execution of CSTEMR may create NaNs and infinities and */
/* > hence may abort due to a floating point exception in environments */
/* > which do not handle NaNs and infinities in the ieee standard default */
/* > manner. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] JOBZ */
/* > \verbatim */
/* > JOBZ is CHARACTER*1 */
/* > = 'N': Compute eigenvalues only; */
/* > = 'V': Compute eigenvalues and eigenvectors. */
/* > \endverbatim */
/* > */
/* > \param[in] RANGE */
/* > \verbatim */
/* > RANGE is CHARACTER*1 */
/* > = 'A': all eigenvalues will be found. */
/* > = 'V': all eigenvalues in the half-open interval (VL,VU] */
/* > will be found. */
/* > = 'I': the IL-th through IU-th eigenvalues will be found. */
/* > For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and */
/* > CSTEIN are called */
/* > \endverbatim */
/* > */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > = 'U': Upper triangle of A is stored; */
/* > = 'L': Lower triangle of A is stored. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA, N) */
/* > On entry, the Hermitian matrix A. If UPLO = 'U', the */
/* > leading N-by-N upper triangular part of A contains the */
/* > upper triangular part of the matrix A. If UPLO = 'L', */
/* > the leading N-by-N lower triangular part of A contains */
/* > the lower triangular part of the matrix A. */
/* > On exit, the lower triangle (if UPLO='L') or the upper */
/* > triangle (if UPLO='U') of A, including the diagonal, is */
/* > destroyed. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[in] VL */
/* > \verbatim */
/* > VL is REAL */
/* > If RANGE='V', the lower bound of the interval to */
/* > be searched for eigenvalues. VL < VU. */
/* > Not referenced if RANGE = 'A' or 'I'. */
/* > \endverbatim */
/* > */
/* > \param[in] VU */
/* > \verbatim */
/* > VU is REAL */
/* > If RANGE='V', the upper bound of the interval to */
/* > be searched for eigenvalues. VL < VU. */
/* > Not referenced if RANGE = 'A' or 'I'. */
/* > \endverbatim */
/* > */
/* > \param[in] IL */
/* > \verbatim */
/* > IL is INTEGER */
/* > If RANGE='I', the index of the */
/* > smallest eigenvalue to be returned. */
/* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/* > Not referenced if RANGE = 'A' or 'V'. */
/* > \endverbatim */
/* > */
/* > \param[in] IU */
/* > \verbatim */
/* > IU is INTEGER */
/* > If RANGE='I', the index of the */
/* > largest eigenvalue to be returned. */
/* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/* > Not referenced if RANGE = 'A' or 'V'. */
/* > \endverbatim */
/* > */
/* > \param[in] ABSTOL */
/* > \verbatim */
/* > ABSTOL is REAL */
/* > The absolute error tolerance for the eigenvalues. */
/* > An approximate eigenvalue is accepted as converged */
/* > when it is determined to lie in an interval [a,b] */
/* > of width less than or equal to */
/* > */
/* > ABSTOL + EPS * f2cmax( |a|,|b| ) , */
/* > */
/* > where EPS is the machine precision. If ABSTOL is less than */
/* > or equal to zero, then EPS*|T| will be used in its place, */
/* > where |T| is the 1-norm of the tridiagonal matrix obtained */
/* > by reducing A to tridiagonal form. */
/* > */
/* > See "Computing Small Singular Values of Bidiagonal Matrices */
/* > with Guaranteed High Relative Accuracy," by Demmel and */
/* > Kahan, LAPACK Working Note #3. */
/* > */
/* > If high relative accuracy is important, set ABSTOL to */
/* > SLAMCH( 'Safe minimum' ). Doing so will guarantee that */
/* > eigenvalues are computed to high relative accuracy when */
/* > possible in future releases. The current code does not */
/* > make any guarantees about high relative accuracy, but */
/* > future releases will. See J. Barlow and J. Demmel, */
/* > "Computing Accurate Eigensystems of Scaled Diagonally */
/* > Dominant Matrices", LAPACK Working Note #7, for a discussion */
/* > of which matrices define their eigenvalues to high relative */
/* > accuracy. */
/* > \endverbatim */
/* > */
/* > \param[out] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The total number of eigenvalues found. 0 <= M <= N. */
/* > If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
/* > \endverbatim */
/* > */
/* > \param[out] W */
/* > \verbatim */
/* > W is REAL array, dimension (N) */
/* > The first M elements contain the selected eigenvalues in */
/* > ascending order. */
/* > \endverbatim */
/* > */
/* > \param[out] Z */
/* > \verbatim */
/* > Z is COMPLEX array, dimension (LDZ, f2cmax(1,M)) */
/* > If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
/* > contain the orthonormal eigenvectors of the matrix A */
/* > corresponding to the selected eigenvalues, with the i-th */
/* > column of Z holding the eigenvector associated with W(i). */
/* > If JOBZ = 'N', then Z is not referenced. */
/* > Note: the user must ensure that at least f2cmax(1,M) columns are */
/* > supplied in the array Z; if RANGE = 'V', the exact value of M */
/* > is not known in advance and an upper bound must be used. */
/* > \endverbatim */
/* > */
/* > \param[in] LDZ */
/* > \verbatim */
/* > LDZ is INTEGER */
/* > The leading dimension of the array Z. LDZ >= 1, and if */
/* > JOBZ = 'V', LDZ >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] ISUPPZ */
/* > \verbatim */
/* > ISUPPZ is INTEGER array, dimension ( 2*f2cmax(1,M) ) */
/* > The support of the eigenvectors in Z, i.e., the indices */
/* > indicating the nonzero elements in Z. The i-th eigenvector */
/* > is nonzero only in elements ISUPPZ( 2*i-1 ) through */
/* > ISUPPZ( 2*i ). This is an output of CSTEMR (tridiagonal */
/* > matrix). The support of the eigenvectors of A is typically */
/* > 1:N because of the unitary transformations applied by CUNMTR. */
/* > Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The length of the array WORK. LWORK >= f2cmax(1,2*N). */
/* > For optimal efficiency, LWORK >= (NB+1)*N, */
/* > where NB is the f2cmax of the blocksize for CHETRD and for */
/* > CUNMTR as returned by ILAENV. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates the optimal sizes of the WORK, RWORK and */
/* > IWORK arrays, returns these values as the first entries of */
/* > the WORK, RWORK and IWORK arrays, and no error message */
/* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] RWORK */
/* > \verbatim */
/* > RWORK is REAL array, dimension (MAX(1,LRWORK)) */
/* > On exit, if INFO = 0, RWORK(1) returns the optimal */
/* > (and minimal) LRWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LRWORK */
/* > \verbatim */
/* > LRWORK is INTEGER */
/* > The length of the array RWORK. LRWORK >= f2cmax(1,24*N). */
/* > */
/* > If LRWORK = -1, then a workspace query is assumed; the */
/* > routine only calculates the optimal sizes of the WORK, RWORK */
/* > and IWORK arrays, returns these values as the first entries */
/* > of the WORK, RWORK and IWORK arrays, and no error message */
/* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] IWORK */
/* > \verbatim */
/* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
/* > On exit, if INFO = 0, IWORK(1) returns the optimal */
/* > (and minimal) LIWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LIWORK */
/* > \verbatim */
/* > LIWORK is INTEGER */
/* > The dimension of the array IWORK. LIWORK >= f2cmax(1,10*N). */
/* > */
/* > If LIWORK = -1, then a workspace query is assumed; the */
/* > routine only calculates the optimal sizes of the WORK, RWORK */
/* > and IWORK arrays, returns these values as the first entries */
/* > of the WORK, RWORK and IWORK arrays, and no error message */
/* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > > 0: Internal error */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date June 2016 */
/* > \ingroup complexHEeigen */
/* > \par Contributors: */
/* ================== */
/* > */
/* > Inderjit Dhillon, IBM Almaden, USA \n */
/* > Osni Marques, LBNL/NERSC, USA \n */
/* > Ken Stanley, Computer Science Division, University of */
/* > California at Berkeley, USA \n */
/* > Jason Riedy, Computer Science Division, University of */
/* > California at Berkeley, USA \n */
/* > */
/* ===================================================================== */
/* Subroutine */ void cheevr_(char *jobz, char *range, char *uplo, integer *n,
complex *a, integer *lda, real *vl, real *vu, integer *il, integer *
iu, real *abstol, integer *m, real *w, complex *z__, integer *ldz,
integer *isuppz, complex *work, integer *lwork, real *rwork, integer *
lrwork, integer *iwork, integer *liwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2;
real r__1, r__2;
/* Local variables */
real anrm;
integer imax;
real rmin, rmax;
logical test;
integer itmp1, i__, j, indrd, indre;
real sigma;
extern logical lsame_(char *, char *);
integer iinfo;
extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
char order[1];
integer indwk;
extern /* Subroutine */ void cswap_(integer *, complex *, integer *,
complex *, integer *);
integer lwmin;
logical lower;
extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
integer *);
logical wantz;
integer nb, jj;
logical alleig, indeig;
integer iscale, ieeeok, indibl, indrdd, indifl, indree;
logical valeig;
extern real slamch_(char *);
extern /* Subroutine */ void chetrd_(char *, integer *, complex *, integer
*, real *, real *, complex *, complex *, integer *, integer *), csscal_(integer *, real *, complex *, integer *);
real safmin;
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
real abstll, bignum;
integer indtau, indisp;
extern /* Subroutine */ void cstein_(integer *, real *, real *, integer *,
real *, integer *, integer *, complex *, integer *, real *,
integer *, integer *, integer *);
integer indiwo, indwkn;
extern real clansy_(char *, char *, integer *, complex *, integer *, real
*);
extern /* Subroutine */ void cstemr_(char *, char *, integer *, real *,
real *, real *, real *, integer *, integer *, integer *, real *,
complex *, integer *, integer *, integer *, logical *, real *,
integer *, integer *, integer *, integer *);
integer indrwk, liwmin;
logical tryrac;
extern /* Subroutine */ void ssterf_(integer *, real *, real *, integer *);
integer lrwmin, llwrkn, llwork, nsplit;
real smlnum;
extern /* Subroutine */ void cunmtr_(char *, char *, char *, integer *,
integer *, complex *, integer *, complex *, complex *, integer *,
complex *, integer *, integer *), sstebz_(
char *, char *, integer *, real *, real *, integer *, integer *,
real *, real *, real *, integer *, integer *, real *, integer *,
integer *, real *, integer *, integer *);
logical lquery;
integer lwkopt;
real eps, vll, vuu;
integer llrwork;
real tmp1;
/* -- LAPACK driver routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* June 2016 */
/* ===================================================================== */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--w;
z_dim1 = *ldz;
z_offset = 1 + z_dim1 * 1;
z__ -= z_offset;
--isuppz;
--work;
--rwork;
--iwork;
/* Function Body */
ieeeok = ilaenv_(&c__10, "CHEEVR", "N", &c__1, &c__2, &c__3, &c__4, (
ftnlen)6, (ftnlen)1);
lower = lsame_(uplo, "L");
wantz = lsame_(jobz, "V");
alleig = lsame_(range, "A");
valeig = lsame_(range, "V");
indeig = lsame_(range, "I");
lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;
/* Computing MAX */
i__1 = 1, i__2 = *n * 24;
lrwmin = f2cmax(i__1,i__2);
/* Computing MAX */
i__1 = 1, i__2 = *n * 10;
liwmin = f2cmax(i__1,i__2);
/* Computing MAX */
i__1 = 1, i__2 = *n << 1;
lwmin = f2cmax(i__1,i__2);
*info = 0;
if (! (wantz || lsame_(jobz, "N"))) {
*info = -1;
} else if (! (alleig || valeig || indeig)) {
*info = -2;
} else if (! (lower || lsame_(uplo, "U"))) {
*info = -3;
} else if (*n < 0) {
*info = -4;
} else if (*lda < f2cmax(1,*n)) {
*info = -6;
} else {
if (valeig) {
if (*n > 0 && *vu <= *vl) {
*info = -8;
}
} else if (indeig) {
if (*il < 1 || *il > f2cmax(1,*n)) {
*info = -9;
} else if (*iu < f2cmin(*n,*il) || *iu > *n) {
*info = -10;
}
}
}
if (*info == 0) {
if (*ldz < 1 || wantz && *ldz < *n) {
*info = -15;
}
}
if (*info == 0) {
nb = ilaenv_(&c__1, "CHETRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
(ftnlen)1);
/* Computing MAX */
i__1 = nb, i__2 = ilaenv_(&c__1, "CUNMTR", uplo, n, &c_n1, &c_n1, &
c_n1, (ftnlen)6, (ftnlen)1);
nb = f2cmax(i__1,i__2);
/* Computing MAX */
i__1 = (nb + 1) * *n;
lwkopt = f2cmax(i__1,lwmin);
work[1].r = (real) lwkopt, work[1].i = 0.f;
rwork[1] = (real) lrwmin;
iwork[1] = liwmin;
if (*lwork < lwmin && ! lquery) {
*info = -18;
} else if (*lrwork < lrwmin && ! lquery) {
*info = -20;
} else if (*liwork < liwmin && ! lquery) {
*info = -22;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CHEEVR", &i__1, (ftnlen)6);
return;
} else if (lquery) {
return;
}
/* Quick return if possible */
*m = 0;
if (*n == 0) {
work[1].r = 1.f, work[1].i = 0.f;
return;
}
if (*n == 1) {
work[1].r = 2.f, work[1].i = 0.f;
if (alleig || indeig) {
*m = 1;
i__1 = a_dim1 + 1;
w[1] = a[i__1].r;
} else {
i__1 = a_dim1 + 1;
i__2 = a_dim1 + 1;
if (*vl < a[i__1].r && *vu >= a[i__2].r) {
*m = 1;
i__1 = a_dim1 + 1;
w[1] = a[i__1].r;
}
}
if (wantz) {
i__1 = z_dim1 + 1;
z__[i__1].r = 1.f, z__[i__1].i = 0.f;
isuppz[1] = 1;
isuppz[2] = 1;
}
return;
}
/* Get machine constants. */
safmin = slamch_("Safe minimum");
eps = slamch_("Precision");
smlnum = safmin / eps;
bignum = 1.f / smlnum;
rmin = sqrt(smlnum);
/* Computing MIN */
r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
rmax = f2cmin(r__1,r__2);
/* Scale matrix to allowable range, if necessary. */
iscale = 0;
abstll = *abstol;
if (valeig) {
vll = *vl;
vuu = *vu;
}
anrm = clansy_("M", uplo, n, &a[a_offset], lda, &rwork[1]);
if (anrm > 0.f && anrm < rmin) {
iscale = 1;
sigma = rmin / anrm;
} else if (anrm > rmax) {
iscale = 1;
sigma = rmax / anrm;
}
if (iscale == 1) {
if (lower) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *n - j + 1;
csscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1);
/* L10: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
csscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1);
/* L20: */
}
}
if (*abstol > 0.f) {
abstll = *abstol * sigma;
}
if (valeig) {
vll = *vl * sigma;
vuu = *vu * sigma;
}
}
/* Initialize indices into workspaces. Note: The IWORK indices are */
/* used only if SSTERF or CSTEMR fail. */
/* WORK(INDTAU:INDTAU+N-1) stores the complex scalar factors of the */
/* elementary reflectors used in CHETRD. */
indtau = 1;
/* INDWK is the starting offset of the remaining complex workspace, */
/* and LLWORK is the remaining complex workspace size. */
indwk = indtau + *n;
llwork = *lwork - indwk + 1;
/* RWORK(INDRD:INDRD+N-1) stores the real tridiagonal's diagonal */
/* entries. */
indrd = 1;
/* RWORK(INDRE:INDRE+N-1) stores the off-diagonal entries of the */
/* tridiagonal matrix from CHETRD. */
indre = indrd + *n;
/* RWORK(INDRDD:INDRDD+N-1) is a copy of the diagonal entries over */
/* -written by CSTEMR (the SSTERF path copies the diagonal to W). */
indrdd = indre + *n;
/* RWORK(INDREE:INDREE+N-1) is a copy of the off-diagonal entries over */
/* -written while computing the eigenvalues in SSTERF and CSTEMR. */
indree = indrdd + *n;
/* INDRWK is the starting offset of the left-over real workspace, and */
/* LLRWORK is the remaining workspace size. */
indrwk = indree + *n;
llrwork = *lrwork - indrwk + 1;
/* IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in SSTEBZ and */
/* stores the block indices of each of the M<=N eigenvalues. */
indibl = 1;
/* IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in SSTEBZ and */
/* stores the starting and finishing indices of each block. */
indisp = indibl + *n;
/* IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors */
/* that corresponding to eigenvectors that fail to converge in */
/* SSTEIN. This information is discarded; if any fail, the driver */
/* returns INFO > 0. */
indifl = indisp + *n;
/* INDIWO is the offset of the remaining integer workspace. */
indiwo = indifl + *n;
/* Call CHETRD to reduce Hermitian matrix to tridiagonal form. */
chetrd_(uplo, n, &a[a_offset], lda, &rwork[indrd], &rwork[indre], &work[
indtau], &work[indwk], &llwork, &iinfo);
/* If all eigenvalues are desired */
/* then call SSTERF or CSTEMR and CUNMTR. */
test = FALSE_;
if (indeig) {
if (*il == 1 && *iu == *n) {
test = TRUE_;
}
}
if ((alleig || test) && ieeeok == 1) {
if (! wantz) {
scopy_(n, &rwork[indrd], &c__1, &w[1], &c__1);
i__1 = *n - 1;
scopy_(&i__1, &rwork[indre], &c__1, &rwork[indree], &c__1);
ssterf_(n, &w[1], &rwork[indree], info);
} else {
i__1 = *n - 1;
scopy_(&i__1, &rwork[indre], &c__1, &rwork[indree], &c__1);
scopy_(n, &rwork[indrd], &c__1, &rwork[indrdd], &c__1);
if (*abstol <= *n * 2.f * eps) {
tryrac = TRUE_;
} else {
tryrac = FALSE_;
}
cstemr_(jobz, "A", n, &rwork[indrdd], &rwork[indree], vl, vu, il,
iu, m, &w[1], &z__[z_offset], ldz, n, &isuppz[1], &tryrac,
&rwork[indrwk], &llrwork, &iwork[1], liwork, info);
/* Apply unitary matrix used in reduction to tridiagonal */
/* form to eigenvectors returned by CSTEMR. */
if (wantz && *info == 0) {
indwkn = indwk;
llwrkn = *lwork - indwkn + 1;
cunmtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau]
, &z__[z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
}
}
if (*info == 0) {
*m = *n;
goto L30;
}
*info = 0;
}
/* Otherwise, call SSTEBZ and, if eigenvectors are desired, CSTEIN. */
/* Also call SSTEBZ and CSTEIN if CSTEMR fails. */
if (wantz) {
*(unsigned char *)order = 'B';
} else {
*(unsigned char *)order = 'E';
}
sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &rwork[indrd], &
rwork[indre], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &
rwork[indrwk], &iwork[indiwo], info);
if (wantz) {
cstein_(n, &rwork[indrd], &rwork[indre], m, &w[1], &iwork[indibl], &
iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[
indiwo], &iwork[indifl], info);
/* Apply unitary matrix used in reduction to tridiagonal */
/* form to eigenvectors returned by CSTEIN. */
indwkn = indwk;
llwrkn = *lwork - indwkn + 1;
cunmtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[
z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
}
/* If matrix was scaled, then rescale eigenvalues appropriately. */
L30:
if (iscale == 1) {
if (*info == 0) {
imax = *m;
} else {
imax = *info - 1;
}
r__1 = 1.f / sigma;
sscal_(&imax, &r__1, &w[1], &c__1);
}
/* If eigenvalues are not in order, then sort them, along with */
/* eigenvectors. */
if (wantz) {
i__1 = *m - 1;
for (j = 1; j <= i__1; ++j) {
i__ = 0;
tmp1 = w[j];
i__2 = *m;
for (jj = j + 1; jj <= i__2; ++jj) {
if (w[jj] < tmp1) {
i__ = jj;
tmp1 = w[jj];
}
/* L40: */
}
if (i__ != 0) {
itmp1 = iwork[indibl + i__ - 1];
w[i__] = w[j];
iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
w[j] = tmp1;
iwork[indibl + j - 1] = itmp1;
cswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
&c__1);
}
/* L50: */
}
}
/* Set WORK(1) to optimal workspace size. */
work[1].r = (real) lwkopt, work[1].i = 0.f;
rwork[1] = (real) lrwmin;
iwork[1] = liwmin;
return;
/* End of CHEEVR */
} /* cheevr_ */