1668 lines
45 KiB
C
1668 lines
45 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef blasint logical;
|
|
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
#ifdef __cplusplus
|
|
typedef logical (*L_fp)(...);
|
|
#else
|
|
typedef logical (*L_fp)();
|
|
#endif
|
|
|
|
static float spow_ui(float x, integer n) {
|
|
float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static double dpow_ui(double x, integer n) {
|
|
double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#ifdef _MSC_VER
|
|
static _Fcomplex cpow_ui(complex x, integer n) {
|
|
complex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow.r *= x.r, pow.i *= x.i;
|
|
if(u >>= 1) x.r *= x.r, x.i *= x.i;
|
|
else break;
|
|
}
|
|
}
|
|
_Fcomplex p={pow.r, pow.i};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex float cpow_ui(_Complex float x, integer n) {
|
|
_Complex float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
|
|
_Dcomplex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
|
|
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
|
|
else break;
|
|
}
|
|
}
|
|
_Dcomplex p = {pow._Val[0], pow._Val[1]};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex double zpow_ui(_Complex double x, integer n) {
|
|
_Complex double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
static integer pow_ii(integer x, integer n) {
|
|
integer pow; unsigned long int u;
|
|
if (n <= 0) {
|
|
if (n == 0 || x == 1) pow = 1;
|
|
else if (x != -1) pow = x == 0 ? 1/x : 0;
|
|
else n = -n;
|
|
}
|
|
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
|
|
u = n;
|
|
for(pow = 1; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
|
|
{
|
|
double m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
|
|
{
|
|
float m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i]) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i]) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static integer c__0 = 0;
|
|
static real c_b27 = 1.f;
|
|
|
|
/* > \brief \b CGSVJ0 pre-processor for the routine cgesvj. */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download CGSVJ0 + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgsvj0.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgsvj0.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgsvj0.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE CGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS, */
|
|
/* SFMIN, TOL, NSWEEP, WORK, LWORK, INFO ) */
|
|
|
|
/* INTEGER INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP */
|
|
/* REAL EPS, SFMIN, TOL */
|
|
/* CHARACTER*1 JOBV */
|
|
/* COMPLEX A( LDA, * ), D( N ), V( LDV, * ), WORK( LWORK ) */
|
|
/* REAL SVA( N ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > CGSVJ0 is called from CGESVJ as a pre-processor and that is its main */
|
|
/* > purpose. It applies Jacobi rotations in the same way as CGESVJ does, but */
|
|
/* > it does not check convergence (stopping criterion). Few tuning */
|
|
/* > parameters (marked by [TP]) are available for the implementer. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] JOBV */
|
|
/* > \verbatim */
|
|
/* > JOBV is CHARACTER*1 */
|
|
/* > Specifies whether the output from this procedure is used */
|
|
/* > to compute the matrix V: */
|
|
/* > = 'V': the product of the Jacobi rotations is accumulated */
|
|
/* > by postmulyiplying the N-by-N array V. */
|
|
/* > (See the description of V.) */
|
|
/* > = 'A': the product of the Jacobi rotations is accumulated */
|
|
/* > by postmulyiplying the MV-by-N array V. */
|
|
/* > (See the descriptions of MV and V.) */
|
|
/* > = 'N': the Jacobi rotations are not accumulated. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] M */
|
|
/* > \verbatim */
|
|
/* > M is INTEGER */
|
|
/* > The number of rows of the input matrix A. M >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The number of columns of the input matrix A. */
|
|
/* > M >= N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] A */
|
|
/* > \verbatim */
|
|
/* > A is COMPLEX array, dimension (LDA,N) */
|
|
/* > On entry, M-by-N matrix A, such that A*diag(D) represents */
|
|
/* > the input matrix. */
|
|
/* > On exit, */
|
|
/* > A_onexit * diag(D_onexit) represents the input matrix A*diag(D) */
|
|
/* > post-multiplied by a sequence of Jacobi rotations, where the */
|
|
/* > rotation threshold and the total number of sweeps are given in */
|
|
/* > TOL and NSWEEP, respectively. */
|
|
/* > (See the descriptions of D, TOL and NSWEEP.) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] D */
|
|
/* > \verbatim */
|
|
/* > D is COMPLEX array, dimension (N) */
|
|
/* > The array D accumulates the scaling factors from the complex scaled */
|
|
/* > Jacobi rotations. */
|
|
/* > On entry, A*diag(D) represents the input matrix. */
|
|
/* > On exit, A_onexit*diag(D_onexit) represents the input matrix */
|
|
/* > post-multiplied by a sequence of Jacobi rotations, where the */
|
|
/* > rotation threshold and the total number of sweeps are given in */
|
|
/* > TOL and NSWEEP, respectively. */
|
|
/* > (See the descriptions of A, TOL and NSWEEP.) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] SVA */
|
|
/* > \verbatim */
|
|
/* > SVA is REAL array, dimension (N) */
|
|
/* > On entry, SVA contains the Euclidean norms of the columns of */
|
|
/* > the matrix A*diag(D). */
|
|
/* > On exit, SVA contains the Euclidean norms of the columns of */
|
|
/* > the matrix A_onexit*diag(D_onexit). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] MV */
|
|
/* > \verbatim */
|
|
/* > MV is INTEGER */
|
|
/* > If JOBV = 'A', then MV rows of V are post-multipled by a */
|
|
/* > sequence of Jacobi rotations. */
|
|
/* > If JOBV = 'N', then MV is not referenced. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] V */
|
|
/* > \verbatim */
|
|
/* > V is COMPLEX array, dimension (LDV,N) */
|
|
/* > If JOBV = 'V' then N rows of V are post-multipled by a */
|
|
/* > sequence of Jacobi rotations. */
|
|
/* > If JOBV = 'A' then MV rows of V are post-multipled by a */
|
|
/* > sequence of Jacobi rotations. */
|
|
/* > If JOBV = 'N', then V is not referenced. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDV */
|
|
/* > \verbatim */
|
|
/* > LDV is INTEGER */
|
|
/* > The leading dimension of the array V, LDV >= 1. */
|
|
/* > If JOBV = 'V', LDV >= N. */
|
|
/* > If JOBV = 'A', LDV >= MV. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] EPS */
|
|
/* > \verbatim */
|
|
/* > EPS is REAL */
|
|
/* > EPS = SLAMCH('Epsilon') */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] SFMIN */
|
|
/* > \verbatim */
|
|
/* > SFMIN is REAL */
|
|
/* > SFMIN = SLAMCH('Safe Minimum') */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] TOL */
|
|
/* > \verbatim */
|
|
/* > TOL is REAL */
|
|
/* > TOL is the threshold for Jacobi rotations. For a pair */
|
|
/* > A(:,p), A(:,q) of pivot columns, the Jacobi rotation is */
|
|
/* > applied only if ABS(COS(angle(A(:,p),A(:,q)))) > TOL. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] NSWEEP */
|
|
/* > \verbatim */
|
|
/* > NSWEEP is INTEGER */
|
|
/* > NSWEEP is the number of sweeps of Jacobi rotations to be */
|
|
/* > performed. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WORK */
|
|
/* > \verbatim */
|
|
/* > WORK is COMPLEX array, dimension (LWORK) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LWORK */
|
|
/* > \verbatim */
|
|
/* > LWORK is INTEGER */
|
|
/* > LWORK is the dimension of WORK. LWORK >= M. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit. */
|
|
/* > < 0: if INFO = -i, then the i-th argument had an illegal value */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date June 2016 */
|
|
|
|
/* > \ingroup complexOTHERcomputational */
|
|
|
|
/* > \par Further Details: */
|
|
/* ===================== */
|
|
/* > */
|
|
/* > CGSVJ0 is used just to enable CGESVJ to call a simplified version of */
|
|
/* > itself to work on a submatrix of the original matrix. */
|
|
/* > */
|
|
/* > \par Contributor: */
|
|
/* ================== */
|
|
/* > */
|
|
/* > Zlatko Drmac (Zagreb, Croatia) */
|
|
/* > */
|
|
/* > \par Bugs, Examples and Comments: */
|
|
/* ================================= */
|
|
/* > */
|
|
/* > Please report all bugs and send interesting test examples and comments to */
|
|
/* > drmac@math.hr. Thank you. */
|
|
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void cgsvj0_(char *jobv, integer *m, integer *n, complex *a,
|
|
integer *lda, complex *d__, real *sva, integer *mv, complex *v,
|
|
integer *ldv, real *eps, real *sfmin, real *tol, integer *nsweep,
|
|
complex *work, integer *lwork, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4, i__5,
|
|
i__6, i__7;
|
|
real r__1, r__2;
|
|
complex q__1, q__2, q__3;
|
|
|
|
/* Local variables */
|
|
real aapp;
|
|
complex aapq;
|
|
real aaqq;
|
|
integer ierr;
|
|
real bigtheta;
|
|
extern /* Subroutine */ void crot_(integer *, complex *, integer *,
|
|
complex *, integer *, real *, complex *);
|
|
complex ompq;
|
|
integer pskipped;
|
|
real aapp0, aapq1, temp1;
|
|
integer i__, p, q;
|
|
real t;
|
|
extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer
|
|
*, complex *, integer *);
|
|
real apoaq, aqoap;
|
|
extern logical lsame_(char *, char *);
|
|
real theta, small;
|
|
extern /* Subroutine */ void ccopy_(integer *, complex *, integer *,
|
|
complex *, integer *), cswap_(integer *, complex *, integer *,
|
|
complex *, integer *);
|
|
logical applv, rsvec;
|
|
extern /* Subroutine */ void caxpy_(integer *, complex *, complex *,
|
|
integer *, complex *, integer *);
|
|
logical rotok;
|
|
real rootsfmin;
|
|
extern real scnrm2_(integer *, complex *, integer *);
|
|
real cs, sn;
|
|
extern /* Subroutine */ void clascl_(char *, integer *, integer *, real *,
|
|
real *, integer *, integer *, complex *, integer *, integer *);
|
|
extern int xerbla_(char *, integer *, ftnlen);
|
|
integer ijblsk, swband;
|
|
extern integer isamax_(integer *, real *, integer *);
|
|
integer blskip;
|
|
extern /* Subroutine */ void classq_(integer *, complex *, integer *, real
|
|
*, real *);
|
|
real mxaapq, thsign, mxsinj;
|
|
integer ir1, emptsw, notrot, iswrot, jbc;
|
|
real big;
|
|
integer kbl, lkahead, igl, ibr, jgl, nbl, mvl;
|
|
real rootbig, rooteps;
|
|
integer rowskip;
|
|
real roottol;
|
|
|
|
|
|
/* -- LAPACK computational routine (version 3.8.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* June 2016 */
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* from BLAS */
|
|
/* from LAPACK */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
--sva;
|
|
--d__;
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
v_dim1 = *ldv;
|
|
v_offset = 1 + v_dim1 * 1;
|
|
v -= v_offset;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
applv = lsame_(jobv, "A");
|
|
rsvec = lsame_(jobv, "V");
|
|
if (! (rsvec || applv || lsame_(jobv, "N"))) {
|
|
*info = -1;
|
|
} else if (*m < 0) {
|
|
*info = -2;
|
|
} else if (*n < 0 || *n > *m) {
|
|
*info = -3;
|
|
} else if (*lda < *m) {
|
|
*info = -5;
|
|
} else if ((rsvec || applv) && *mv < 0) {
|
|
*info = -8;
|
|
} else if (rsvec && *ldv < *n || applv && *ldv < *mv) {
|
|
*info = -10;
|
|
} else if (*tol <= *eps) {
|
|
*info = -13;
|
|
} else if (*nsweep < 0) {
|
|
*info = -14;
|
|
} else if (*lwork < *m) {
|
|
*info = -16;
|
|
} else {
|
|
*info = 0;
|
|
}
|
|
|
|
/* #:( */
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("CGSVJ0", &i__1, (ftnlen)6);
|
|
return;
|
|
}
|
|
|
|
if (rsvec) {
|
|
mvl = *n;
|
|
} else if (applv) {
|
|
mvl = *mv;
|
|
}
|
|
rsvec = rsvec || applv;
|
|
rooteps = sqrt(*eps);
|
|
rootsfmin = sqrt(*sfmin);
|
|
small = *sfmin / *eps;
|
|
big = 1.f / *sfmin;
|
|
rootbig = 1.f / rootsfmin;
|
|
bigtheta = 1.f / rooteps;
|
|
roottol = sqrt(*tol);
|
|
|
|
|
|
emptsw = *n * (*n - 1) / 2;
|
|
notrot = 0;
|
|
|
|
|
|
swband = 0;
|
|
/* [TP] SWBAND is a tuning parameter [TP]. It is meaningful and effective */
|
|
/* if CGESVJ is used as a computational routine in the preconditioned */
|
|
/* Jacobi SVD algorithm CGEJSV. For sweeps i=1:SWBAND the procedure */
|
|
/* works on pivots inside a band-like region around the diagonal. */
|
|
/* The boundaries are determined dynamically, based on the number of */
|
|
/* pivots above a threshold. */
|
|
|
|
kbl = f2cmin(8,*n);
|
|
/* [TP] KBL is a tuning parameter that defines the tile size in the */
|
|
/* tiling of the p-q loops of pivot pairs. In general, an optimal */
|
|
/* value of KBL depends on the matrix dimensions and on the */
|
|
/* parameters of the computer's memory. */
|
|
|
|
nbl = *n / kbl;
|
|
if (nbl * kbl != *n) {
|
|
++nbl;
|
|
}
|
|
|
|
/* Computing 2nd power */
|
|
i__1 = kbl;
|
|
blskip = i__1 * i__1;
|
|
/* [TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL. */
|
|
|
|
rowskip = f2cmin(5,kbl);
|
|
/* [TP] ROWSKIP is a tuning parameter. */
|
|
|
|
lkahead = 1;
|
|
/* [TP] LKAHEAD is a tuning parameter. */
|
|
|
|
/* Quasi block transformations, using the lower (upper) triangular */
|
|
/* structure of the input matrix. The quasi-block-cycling usually */
|
|
/* invokes cubic convergence. Big part of this cycle is done inside */
|
|
/* canonical subspaces of dimensions less than M. */
|
|
|
|
|
|
|
|
i__1 = *nsweep;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
|
|
|
|
mxaapq = 0.f;
|
|
mxsinj = 0.f;
|
|
iswrot = 0;
|
|
|
|
notrot = 0;
|
|
pskipped = 0;
|
|
|
|
/* Each sweep is unrolled using KBL-by-KBL tiles over the pivot pairs */
|
|
/* 1 <= p < q <= N. This is the first step toward a blocked implementation */
|
|
/* of the rotations. New implementation, based on block transformations, */
|
|
/* is under development. */
|
|
|
|
i__2 = nbl;
|
|
for (ibr = 1; ibr <= i__2; ++ibr) {
|
|
|
|
igl = (ibr - 1) * kbl + 1;
|
|
|
|
/* Computing MIN */
|
|
i__4 = lkahead, i__5 = nbl - ibr;
|
|
i__3 = f2cmin(i__4,i__5);
|
|
for (ir1 = 0; ir1 <= i__3; ++ir1) {
|
|
|
|
igl += ir1 * kbl;
|
|
|
|
/* Computing MIN */
|
|
i__5 = igl + kbl - 1, i__6 = *n - 1;
|
|
i__4 = f2cmin(i__5,i__6);
|
|
for (p = igl; p <= i__4; ++p) {
|
|
|
|
|
|
i__5 = *n - p + 1;
|
|
q = isamax_(&i__5, &sva[p], &c__1) + p - 1;
|
|
if (p != q) {
|
|
cswap_(m, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 +
|
|
1], &c__1);
|
|
if (rsvec) {
|
|
cswap_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
|
|
v_dim1 + 1], &c__1);
|
|
}
|
|
temp1 = sva[p];
|
|
sva[p] = sva[q];
|
|
sva[q] = temp1;
|
|
i__5 = p;
|
|
aapq.r = d__[i__5].r, aapq.i = d__[i__5].i;
|
|
i__5 = p;
|
|
i__6 = q;
|
|
d__[i__5].r = d__[i__6].r, d__[i__5].i = d__[i__6].i;
|
|
i__5 = q;
|
|
d__[i__5].r = aapq.r, d__[i__5].i = aapq.i;
|
|
}
|
|
|
|
if (ir1 == 0) {
|
|
|
|
/* Column norms are periodically updated by explicit */
|
|
/* norm computation. */
|
|
/* Caveat: */
|
|
/* Unfortunately, some BLAS implementations compute SNCRM2(M,A(1,p),1) */
|
|
/* as SQRT(S=CDOTC(M,A(1,p),1,A(1,p),1)), which may cause the result to */
|
|
/* overflow for ||A(:,p)||_2 > SQRT(overflow_threshold), and to */
|
|
/* underflow for ||A(:,p)||_2 < SQRT(underflow_threshold). */
|
|
/* Hence, SCNRM2 cannot be trusted, not even in the case when */
|
|
/* the true norm is far from the under(over)flow boundaries. */
|
|
/* If properly implemented SCNRM2 is available, the IF-THEN-ELSE-END IF */
|
|
/* below should be replaced with "AAPP = SCNRM2( M, A(1,p), 1 )". */
|
|
|
|
if (sva[p] < rootbig && sva[p] > rootsfmin) {
|
|
sva[p] = scnrm2_(m, &a[p * a_dim1 + 1], &c__1);
|
|
} else {
|
|
temp1 = 0.f;
|
|
aapp = 1.f;
|
|
classq_(m, &a[p * a_dim1 + 1], &c__1, &temp1, &
|
|
aapp);
|
|
sva[p] = temp1 * sqrt(aapp);
|
|
}
|
|
aapp = sva[p];
|
|
} else {
|
|
aapp = sva[p];
|
|
}
|
|
|
|
if (aapp > 0.f) {
|
|
|
|
pskipped = 0;
|
|
|
|
/* Computing MIN */
|
|
i__6 = igl + kbl - 1;
|
|
i__5 = f2cmin(i__6,*n);
|
|
for (q = p + 1; q <= i__5; ++q) {
|
|
|
|
aaqq = sva[q];
|
|
|
|
if (aaqq > 0.f) {
|
|
|
|
aapp0 = aapp;
|
|
if (aaqq >= 1.f) {
|
|
rotok = small * aapp <= aaqq;
|
|
if (aapp < big / aaqq) {
|
|
cdotc_(&q__3, m, &a[p * a_dim1 + 1], &
|
|
c__1, &a[q * a_dim1 + 1], &
|
|
c__1);
|
|
q__2.r = q__3.r / aaqq, q__2.i =
|
|
q__3.i / aaqq;
|
|
q__1.r = q__2.r / aapp, q__1.i =
|
|
q__2.i / aapp;
|
|
aapq.r = q__1.r, aapq.i = q__1.i;
|
|
} else {
|
|
ccopy_(m, &a[p * a_dim1 + 1], &c__1, &
|
|
work[1], &c__1);
|
|
clascl_("G", &c__0, &c__0, &aapp, &
|
|
c_b27, m, &c__1, &work[1],
|
|
lda, &ierr);
|
|
cdotc_(&q__2, m, &work[1], &c__1, &a[
|
|
q * a_dim1 + 1], &c__1);
|
|
q__1.r = q__2.r / aaqq, q__1.i =
|
|
q__2.i / aaqq;
|
|
aapq.r = q__1.r, aapq.i = q__1.i;
|
|
}
|
|
} else {
|
|
rotok = aapp <= aaqq / small;
|
|
if (aapp > small / aaqq) {
|
|
cdotc_(&q__3, m, &a[p * a_dim1 + 1], &
|
|
c__1, &a[q * a_dim1 + 1], &
|
|
c__1);
|
|
q__2.r = q__3.r / aapp, q__2.i =
|
|
q__3.i / aapp;
|
|
q__1.r = q__2.r / aaqq, q__1.i =
|
|
q__2.i / aaqq;
|
|
aapq.r = q__1.r, aapq.i = q__1.i;
|
|
} else {
|
|
ccopy_(m, &a[q * a_dim1 + 1], &c__1, &
|
|
work[1], &c__1);
|
|
clascl_("G", &c__0, &c__0, &aaqq, &
|
|
c_b27, m, &c__1, &work[1],
|
|
lda, &ierr);
|
|
cdotc_(&q__2, m, &a[p * a_dim1 + 1], &
|
|
c__1, &work[1], &c__1);
|
|
q__1.r = q__2.r / aapp, q__1.i =
|
|
q__2.i / aapp;
|
|
aapq.r = q__1.r, aapq.i = q__1.i;
|
|
}
|
|
}
|
|
|
|
/* AAPQ = AAPQ * CONJG( CWORK(p) ) * CWORK(q) */
|
|
aapq1 = -c_abs(&aapq);
|
|
/* Computing MAX */
|
|
r__1 = mxaapq, r__2 = -aapq1;
|
|
mxaapq = f2cmax(r__1,r__2);
|
|
|
|
/* TO rotate or NOT to rotate, THAT is the question ... */
|
|
|
|
if (abs(aapq1) > *tol) {
|
|
r__1 = c_abs(&aapq);
|
|
q__1.r = aapq.r / r__1, q__1.i = aapq.i /
|
|
r__1;
|
|
ompq.r = q__1.r, ompq.i = q__1.i;
|
|
|
|
/* [RTD] ROTATED = ROTATED + ONE */
|
|
|
|
if (ir1 == 0) {
|
|
notrot = 0;
|
|
pskipped = 0;
|
|
++iswrot;
|
|
}
|
|
|
|
if (rotok) {
|
|
|
|
aqoap = aaqq / aapp;
|
|
apoaq = aapp / aaqq;
|
|
theta = (r__1 = aqoap - apoaq, abs(
|
|
r__1)) * -.5f / aapq1;
|
|
|
|
if (abs(theta) > bigtheta) {
|
|
|
|
t = .5f / theta;
|
|
cs = 1.f;
|
|
r_cnjg(&q__2, &ompq);
|
|
q__1.r = t * q__2.r, q__1.i = t *
|
|
q__2.i;
|
|
crot_(m, &a[p * a_dim1 + 1], &
|
|
c__1, &a[q * a_dim1 + 1],
|
|
&c__1, &cs, &q__1);
|
|
if (rsvec) {
|
|
r_cnjg(&q__2, &ompq);
|
|
q__1.r = t * q__2.r, q__1.i = t * q__2.i;
|
|
crot_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
|
|
v_dim1 + 1], &c__1, &cs, &q__1);
|
|
}
|
|
/* Computing MAX */
|
|
r__1 = 0.f, r__2 = t * apoaq *
|
|
aapq1 + 1.f;
|
|
sva[q] = aaqq * sqrt((f2cmax(r__1,
|
|
r__2)));
|
|
/* Computing MAX */
|
|
r__1 = 0.f, r__2 = 1.f - t *
|
|
aqoap * aapq1;
|
|
aapp *= sqrt((f2cmax(r__1,r__2)));
|
|
/* Computing MAX */
|
|
r__1 = mxsinj, r__2 = abs(t);
|
|
mxsinj = f2cmax(r__1,r__2);
|
|
|
|
} else {
|
|
|
|
|
|
thsign = -r_sign(&c_b27, &aapq1);
|
|
t = 1.f / (theta + thsign * sqrt(
|
|
theta * theta + 1.f));
|
|
cs = sqrt(1.f / (t * t + 1.f));
|
|
sn = t * cs;
|
|
|
|
/* Computing MAX */
|
|
r__1 = mxsinj, r__2 = abs(sn);
|
|
mxsinj = f2cmax(r__1,r__2);
|
|
/* Computing MAX */
|
|
r__1 = 0.f, r__2 = t * apoaq *
|
|
aapq1 + 1.f;
|
|
sva[q] = aaqq * sqrt((f2cmax(r__1,
|
|
r__2)));
|
|
/* Computing MAX */
|
|
r__1 = 0.f, r__2 = 1.f - t *
|
|
aqoap * aapq1;
|
|
aapp *= sqrt((f2cmax(r__1,r__2)));
|
|
|
|
r_cnjg(&q__2, &ompq);
|
|
q__1.r = sn * q__2.r, q__1.i = sn
|
|
* q__2.i;
|
|
crot_(m, &a[p * a_dim1 + 1], &
|
|
c__1, &a[q * a_dim1 + 1],
|
|
&c__1, &cs, &q__1);
|
|
if (rsvec) {
|
|
r_cnjg(&q__2, &ompq);
|
|
q__1.r = sn * q__2.r, q__1.i = sn * q__2.i;
|
|
crot_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
|
|
v_dim1 + 1], &c__1, &cs, &q__1);
|
|
}
|
|
}
|
|
i__6 = p;
|
|
i__7 = q;
|
|
q__2.r = -d__[i__7].r, q__2.i = -d__[
|
|
i__7].i;
|
|
q__1.r = q__2.r * ompq.r - q__2.i *
|
|
ompq.i, q__1.i = q__2.r *
|
|
ompq.i + q__2.i * ompq.r;
|
|
d__[i__6].r = q__1.r, d__[i__6].i =
|
|
q__1.i;
|
|
|
|
} else {
|
|
ccopy_(m, &a[p * a_dim1 + 1], &c__1, &
|
|
work[1], &c__1);
|
|
clascl_("G", &c__0, &c__0, &aapp, &
|
|
c_b27, m, &c__1, &work[1],
|
|
lda, &ierr);
|
|
clascl_("G", &c__0, &c__0, &aaqq, &
|
|
c_b27, m, &c__1, &a[q *
|
|
a_dim1 + 1], lda, &ierr);
|
|
q__1.r = -aapq.r, q__1.i = -aapq.i;
|
|
caxpy_(m, &q__1, &work[1], &c__1, &a[
|
|
q * a_dim1 + 1], &c__1);
|
|
clascl_("G", &c__0, &c__0, &c_b27, &
|
|
aaqq, m, &c__1, &a[q * a_dim1
|
|
+ 1], lda, &ierr);
|
|
/* Computing MAX */
|
|
r__1 = 0.f, r__2 = 1.f - aapq1 *
|
|
aapq1;
|
|
sva[q] = aaqq * sqrt((f2cmax(r__1,r__2)))
|
|
;
|
|
mxsinj = f2cmax(mxsinj,*sfmin);
|
|
}
|
|
/* END IF ROTOK THEN ... ELSE */
|
|
|
|
/* In the case of cancellation in updating SVA(q), SVA(p) */
|
|
/* recompute SVA(q), SVA(p). */
|
|
|
|
/* Computing 2nd power */
|
|
r__1 = sva[q] / aaqq;
|
|
if (r__1 * r__1 <= rooteps) {
|
|
if (aaqq < rootbig && aaqq >
|
|
rootsfmin) {
|
|
sva[q] = scnrm2_(m, &a[q * a_dim1
|
|
+ 1], &c__1);
|
|
} else {
|
|
t = 0.f;
|
|
aaqq = 1.f;
|
|
classq_(m, &a[q * a_dim1 + 1], &
|
|
c__1, &t, &aaqq);
|
|
sva[q] = t * sqrt(aaqq);
|
|
}
|
|
}
|
|
if (aapp / aapp0 <= rooteps) {
|
|
if (aapp < rootbig && aapp >
|
|
rootsfmin) {
|
|
aapp = scnrm2_(m, &a[p * a_dim1 +
|
|
1], &c__1);
|
|
} else {
|
|
t = 0.f;
|
|
aapp = 1.f;
|
|
classq_(m, &a[p * a_dim1 + 1], &
|
|
c__1, &t, &aapp);
|
|
aapp = t * sqrt(aapp);
|
|
}
|
|
sva[p] = aapp;
|
|
}
|
|
|
|
} else {
|
|
/* A(:,p) and A(:,q) already numerically orthogonal */
|
|
if (ir1 == 0) {
|
|
++notrot;
|
|
}
|
|
/* [RTD] SKIPPED = SKIPPED + 1 */
|
|
++pskipped;
|
|
}
|
|
} else {
|
|
/* A(:,q) is zero column */
|
|
if (ir1 == 0) {
|
|
++notrot;
|
|
}
|
|
++pskipped;
|
|
}
|
|
|
|
if (i__ <= swband && pskipped > rowskip) {
|
|
if (ir1 == 0) {
|
|
aapp = -aapp;
|
|
}
|
|
notrot = 0;
|
|
goto L2103;
|
|
}
|
|
|
|
/* L2002: */
|
|
}
|
|
/* END q-LOOP */
|
|
|
|
L2103:
|
|
/* bailed out of q-loop */
|
|
|
|
sva[p] = aapp;
|
|
|
|
} else {
|
|
sva[p] = aapp;
|
|
if (ir1 == 0 && aapp == 0.f) {
|
|
/* Computing MIN */
|
|
i__5 = igl + kbl - 1;
|
|
notrot = notrot + f2cmin(i__5,*n) - p;
|
|
}
|
|
}
|
|
|
|
/* L2001: */
|
|
}
|
|
/* end of the p-loop */
|
|
/* end of doing the block ( ibr, ibr ) */
|
|
/* L1002: */
|
|
}
|
|
/* end of ir1-loop */
|
|
|
|
/* ... go to the off diagonal blocks */
|
|
|
|
igl = (ibr - 1) * kbl + 1;
|
|
|
|
i__3 = nbl;
|
|
for (jbc = ibr + 1; jbc <= i__3; ++jbc) {
|
|
|
|
jgl = (jbc - 1) * kbl + 1;
|
|
|
|
/* doing the block at ( ibr, jbc ) */
|
|
|
|
ijblsk = 0;
|
|
/* Computing MIN */
|
|
i__5 = igl + kbl - 1;
|
|
i__4 = f2cmin(i__5,*n);
|
|
for (p = igl; p <= i__4; ++p) {
|
|
|
|
aapp = sva[p];
|
|
if (aapp > 0.f) {
|
|
|
|
pskipped = 0;
|
|
|
|
/* Computing MIN */
|
|
i__6 = jgl + kbl - 1;
|
|
i__5 = f2cmin(i__6,*n);
|
|
for (q = jgl; q <= i__5; ++q) {
|
|
|
|
aaqq = sva[q];
|
|
if (aaqq > 0.f) {
|
|
aapp0 = aapp;
|
|
|
|
|
|
/* Safe Gram matrix computation */
|
|
|
|
if (aaqq >= 1.f) {
|
|
if (aapp >= aaqq) {
|
|
rotok = small * aapp <= aaqq;
|
|
} else {
|
|
rotok = small * aaqq <= aapp;
|
|
}
|
|
if (aapp < big / aaqq) {
|
|
cdotc_(&q__3, m, &a[p * a_dim1 + 1], &
|
|
c__1, &a[q * a_dim1 + 1], &
|
|
c__1);
|
|
q__2.r = q__3.r / aaqq, q__2.i =
|
|
q__3.i / aaqq;
|
|
q__1.r = q__2.r / aapp, q__1.i =
|
|
q__2.i / aapp;
|
|
aapq.r = q__1.r, aapq.i = q__1.i;
|
|
} else {
|
|
ccopy_(m, &a[p * a_dim1 + 1], &c__1, &
|
|
work[1], &c__1);
|
|
clascl_("G", &c__0, &c__0, &aapp, &
|
|
c_b27, m, &c__1, &work[1],
|
|
lda, &ierr);
|
|
cdotc_(&q__2, m, &work[1], &c__1, &a[
|
|
q * a_dim1 + 1], &c__1);
|
|
q__1.r = q__2.r / aaqq, q__1.i =
|
|
q__2.i / aaqq;
|
|
aapq.r = q__1.r, aapq.i = q__1.i;
|
|
}
|
|
} else {
|
|
if (aapp >= aaqq) {
|
|
rotok = aapp <= aaqq / small;
|
|
} else {
|
|
rotok = aaqq <= aapp / small;
|
|
}
|
|
if (aapp > small / aaqq) {
|
|
cdotc_(&q__3, m, &a[p * a_dim1 + 1], &
|
|
c__1, &a[q * a_dim1 + 1], &
|
|
c__1);
|
|
r__1 = f2cmax(aaqq,aapp);
|
|
q__2.r = q__3.r / r__1, q__2.i =
|
|
q__3.i / r__1;
|
|
r__2 = f2cmin(aaqq,aapp);
|
|
q__1.r = q__2.r / r__2, q__1.i =
|
|
q__2.i / r__2;
|
|
aapq.r = q__1.r, aapq.i = q__1.i;
|
|
} else {
|
|
ccopy_(m, &a[q * a_dim1 + 1], &c__1, &
|
|
work[1], &c__1);
|
|
clascl_("G", &c__0, &c__0, &aaqq, &
|
|
c_b27, m, &c__1, &work[1],
|
|
lda, &ierr);
|
|
cdotc_(&q__2, m, &a[p * a_dim1 + 1], &
|
|
c__1, &work[1], &c__1);
|
|
q__1.r = q__2.r / aapp, q__1.i =
|
|
q__2.i / aapp;
|
|
aapq.r = q__1.r, aapq.i = q__1.i;
|
|
}
|
|
}
|
|
|
|
/* AAPQ = AAPQ * CONJG(CWORK(p))*CWORK(q) */
|
|
aapq1 = -c_abs(&aapq);
|
|
/* Computing MAX */
|
|
r__1 = mxaapq, r__2 = -aapq1;
|
|
mxaapq = f2cmax(r__1,r__2);
|
|
|
|
/* TO rotate or NOT to rotate, THAT is the question ... */
|
|
|
|
if (abs(aapq1) > *tol) {
|
|
r__1 = c_abs(&aapq);
|
|
q__1.r = aapq.r / r__1, q__1.i = aapq.i /
|
|
r__1;
|
|
ompq.r = q__1.r, ompq.i = q__1.i;
|
|
notrot = 0;
|
|
/* [RTD] ROTATED = ROTATED + 1 */
|
|
pskipped = 0;
|
|
++iswrot;
|
|
|
|
if (rotok) {
|
|
|
|
aqoap = aaqq / aapp;
|
|
apoaq = aapp / aaqq;
|
|
theta = (r__1 = aqoap - apoaq, abs(
|
|
r__1)) * -.5f / aapq1;
|
|
if (aaqq > aapp0) {
|
|
theta = -theta;
|
|
}
|
|
|
|
if (abs(theta) > bigtheta) {
|
|
t = .5f / theta;
|
|
cs = 1.f;
|
|
r_cnjg(&q__2, &ompq);
|
|
q__1.r = t * q__2.r, q__1.i = t *
|
|
q__2.i;
|
|
crot_(m, &a[p * a_dim1 + 1], &
|
|
c__1, &a[q * a_dim1 + 1],
|
|
&c__1, &cs, &q__1);
|
|
if (rsvec) {
|
|
r_cnjg(&q__2, &ompq);
|
|
q__1.r = t * q__2.r, q__1.i = t * q__2.i;
|
|
crot_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
|
|
v_dim1 + 1], &c__1, &cs, &q__1);
|
|
}
|
|
/* Computing MAX */
|
|
r__1 = 0.f, r__2 = t * apoaq *
|
|
aapq1 + 1.f;
|
|
sva[q] = aaqq * sqrt((f2cmax(r__1,
|
|
r__2)));
|
|
/* Computing MAX */
|
|
r__1 = 0.f, r__2 = 1.f - t *
|
|
aqoap * aapq1;
|
|
aapp *= sqrt((f2cmax(r__1,r__2)));
|
|
/* Computing MAX */
|
|
r__1 = mxsinj, r__2 = abs(t);
|
|
mxsinj = f2cmax(r__1,r__2);
|
|
} else {
|
|
|
|
|
|
thsign = -r_sign(&c_b27, &aapq1);
|
|
if (aaqq > aapp0) {
|
|
thsign = -thsign;
|
|
}
|
|
t = 1.f / (theta + thsign * sqrt(
|
|
theta * theta + 1.f));
|
|
cs = sqrt(1.f / (t * t + 1.f));
|
|
sn = t * cs;
|
|
/* Computing MAX */
|
|
r__1 = mxsinj, r__2 = abs(sn);
|
|
mxsinj = f2cmax(r__1,r__2);
|
|
/* Computing MAX */
|
|
r__1 = 0.f, r__2 = t * apoaq *
|
|
aapq1 + 1.f;
|
|
sva[q] = aaqq * sqrt((f2cmax(r__1,
|
|
r__2)));
|
|
/* Computing MAX */
|
|
r__1 = 0.f, r__2 = 1.f - t *
|
|
aqoap * aapq1;
|
|
aapp *= sqrt((f2cmax(r__1,r__2)));
|
|
|
|
r_cnjg(&q__2, &ompq);
|
|
q__1.r = sn * q__2.r, q__1.i = sn
|
|
* q__2.i;
|
|
crot_(m, &a[p * a_dim1 + 1], &
|
|
c__1, &a[q * a_dim1 + 1],
|
|
&c__1, &cs, &q__1);
|
|
if (rsvec) {
|
|
r_cnjg(&q__2, &ompq);
|
|
q__1.r = sn * q__2.r, q__1.i = sn * q__2.i;
|
|
crot_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
|
|
v_dim1 + 1], &c__1, &cs, &q__1);
|
|
}
|
|
}
|
|
i__6 = p;
|
|
i__7 = q;
|
|
q__2.r = -d__[i__7].r, q__2.i = -d__[
|
|
i__7].i;
|
|
q__1.r = q__2.r * ompq.r - q__2.i *
|
|
ompq.i, q__1.i = q__2.r *
|
|
ompq.i + q__2.i * ompq.r;
|
|
d__[i__6].r = q__1.r, d__[i__6].i =
|
|
q__1.i;
|
|
|
|
} else {
|
|
if (aapp > aaqq) {
|
|
ccopy_(m, &a[p * a_dim1 + 1], &
|
|
c__1, &work[1], &c__1);
|
|
clascl_("G", &c__0, &c__0, &aapp,
|
|
&c_b27, m, &c__1, &work[1]
|
|
, lda, &ierr);
|
|
clascl_("G", &c__0, &c__0, &aaqq,
|
|
&c_b27, m, &c__1, &a[q *
|
|
a_dim1 + 1], lda, &ierr);
|
|
q__1.r = -aapq.r, q__1.i =
|
|
-aapq.i;
|
|
caxpy_(m, &q__1, &work[1], &c__1,
|
|
&a[q * a_dim1 + 1], &c__1)
|
|
;
|
|
clascl_("G", &c__0, &c__0, &c_b27,
|
|
&aaqq, m, &c__1, &a[q *
|
|
a_dim1 + 1], lda, &ierr);
|
|
/* Computing MAX */
|
|
r__1 = 0.f, r__2 = 1.f - aapq1 *
|
|
aapq1;
|
|
sva[q] = aaqq * sqrt((f2cmax(r__1,
|
|
r__2)));
|
|
mxsinj = f2cmax(mxsinj,*sfmin);
|
|
} else {
|
|
ccopy_(m, &a[q * a_dim1 + 1], &
|
|
c__1, &work[1], &c__1);
|
|
clascl_("G", &c__0, &c__0, &aaqq,
|
|
&c_b27, m, &c__1, &work[1]
|
|
, lda, &ierr);
|
|
clascl_("G", &c__0, &c__0, &aapp,
|
|
&c_b27, m, &c__1, &a[p *
|
|
a_dim1 + 1], lda, &ierr);
|
|
r_cnjg(&q__2, &aapq);
|
|
q__1.r = -q__2.r, q__1.i =
|
|
-q__2.i;
|
|
caxpy_(m, &q__1, &work[1], &c__1,
|
|
&a[p * a_dim1 + 1], &c__1)
|
|
;
|
|
clascl_("G", &c__0, &c__0, &c_b27,
|
|
&aapp, m, &c__1, &a[p *
|
|
a_dim1 + 1], lda, &ierr);
|
|
/* Computing MAX */
|
|
r__1 = 0.f, r__2 = 1.f - aapq1 *
|
|
aapq1;
|
|
sva[p] = aapp * sqrt((f2cmax(r__1,
|
|
r__2)));
|
|
mxsinj = f2cmax(mxsinj,*sfmin);
|
|
}
|
|
}
|
|
/* END IF ROTOK THEN ... ELSE */
|
|
|
|
/* In the case of cancellation in updating SVA(q), SVA(p) */
|
|
/* Computing 2nd power */
|
|
r__1 = sva[q] / aaqq;
|
|
if (r__1 * r__1 <= rooteps) {
|
|
if (aaqq < rootbig && aaqq >
|
|
rootsfmin) {
|
|
sva[q] = scnrm2_(m, &a[q * a_dim1
|
|
+ 1], &c__1);
|
|
} else {
|
|
t = 0.f;
|
|
aaqq = 1.f;
|
|
classq_(m, &a[q * a_dim1 + 1], &
|
|
c__1, &t, &aaqq);
|
|
sva[q] = t * sqrt(aaqq);
|
|
}
|
|
}
|
|
/* Computing 2nd power */
|
|
r__1 = aapp / aapp0;
|
|
if (r__1 * r__1 <= rooteps) {
|
|
if (aapp < rootbig && aapp >
|
|
rootsfmin) {
|
|
aapp = scnrm2_(m, &a[p * a_dim1 +
|
|
1], &c__1);
|
|
} else {
|
|
t = 0.f;
|
|
aapp = 1.f;
|
|
classq_(m, &a[p * a_dim1 + 1], &
|
|
c__1, &t, &aapp);
|
|
aapp = t * sqrt(aapp);
|
|
}
|
|
sva[p] = aapp;
|
|
}
|
|
/* end of OK rotation */
|
|
} else {
|
|
++notrot;
|
|
/* [RTD] SKIPPED = SKIPPED + 1 */
|
|
++pskipped;
|
|
++ijblsk;
|
|
}
|
|
} else {
|
|
++notrot;
|
|
++pskipped;
|
|
++ijblsk;
|
|
}
|
|
|
|
if (i__ <= swband && ijblsk >= blskip) {
|
|
sva[p] = aapp;
|
|
notrot = 0;
|
|
goto L2011;
|
|
}
|
|
if (i__ <= swband && pskipped > rowskip) {
|
|
aapp = -aapp;
|
|
notrot = 0;
|
|
goto L2203;
|
|
}
|
|
|
|
/* L2200: */
|
|
}
|
|
/* end of the q-loop */
|
|
L2203:
|
|
|
|
sva[p] = aapp;
|
|
|
|
} else {
|
|
|
|
if (aapp == 0.f) {
|
|
/* Computing MIN */
|
|
i__5 = jgl + kbl - 1;
|
|
notrot = notrot + f2cmin(i__5,*n) - jgl + 1;
|
|
}
|
|
if (aapp < 0.f) {
|
|
notrot = 0;
|
|
}
|
|
|
|
}
|
|
|
|
/* L2100: */
|
|
}
|
|
/* end of the p-loop */
|
|
/* L2010: */
|
|
}
|
|
/* end of the jbc-loop */
|
|
L2011:
|
|
/* 2011 bailed out of the jbc-loop */
|
|
/* Computing MIN */
|
|
i__4 = igl + kbl - 1;
|
|
i__3 = f2cmin(i__4,*n);
|
|
for (p = igl; p <= i__3; ++p) {
|
|
sva[p] = (r__1 = sva[p], abs(r__1));
|
|
/* L2012: */
|
|
}
|
|
/* ** */
|
|
/* L2000: */
|
|
}
|
|
/* 2000 :: end of the ibr-loop */
|
|
|
|
if (sva[*n] < rootbig && sva[*n] > rootsfmin) {
|
|
sva[*n] = scnrm2_(m, &a[*n * a_dim1 + 1], &c__1);
|
|
} else {
|
|
t = 0.f;
|
|
aapp = 1.f;
|
|
classq_(m, &a[*n * a_dim1 + 1], &c__1, &t, &aapp);
|
|
sva[*n] = t * sqrt(aapp);
|
|
}
|
|
|
|
/* Additional steering devices */
|
|
|
|
if (i__ < swband && (mxaapq <= roottol || iswrot <= *n)) {
|
|
swband = i__;
|
|
}
|
|
|
|
if (i__ > swband + 1 && mxaapq < sqrt((real) (*n)) * *tol && (real) (*
|
|
n) * mxaapq * mxsinj < *tol) {
|
|
goto L1994;
|
|
}
|
|
|
|
if (notrot >= emptsw) {
|
|
goto L1994;
|
|
}
|
|
|
|
/* L1993: */
|
|
}
|
|
/* end i=1:NSWEEP loop */
|
|
|
|
/* #:( Reaching this point means that the procedure has not converged. */
|
|
*info = *nsweep - 1;
|
|
goto L1995;
|
|
|
|
L1994:
|
|
/* #:) Reaching this point means numerical convergence after the i-th */
|
|
/* sweep. */
|
|
|
|
*info = 0;
|
|
/* #:) INFO = 0 confirms successful iterations. */
|
|
L1995:
|
|
|
|
/* Sort the vector SVA() of column norms. */
|
|
i__1 = *n - 1;
|
|
for (p = 1; p <= i__1; ++p) {
|
|
i__2 = *n - p + 1;
|
|
q = isamax_(&i__2, &sva[p], &c__1) + p - 1;
|
|
if (p != q) {
|
|
temp1 = sva[p];
|
|
sva[p] = sva[q];
|
|
sva[q] = temp1;
|
|
i__2 = p;
|
|
aapq.r = d__[i__2].r, aapq.i = d__[i__2].i;
|
|
i__2 = p;
|
|
i__3 = q;
|
|
d__[i__2].r = d__[i__3].r, d__[i__2].i = d__[i__3].i;
|
|
i__2 = q;
|
|
d__[i__2].r = aapq.r, d__[i__2].i = aapq.i;
|
|
cswap_(m, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 + 1], &c__1);
|
|
if (rsvec) {
|
|
cswap_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q * v_dim1 + 1], &
|
|
c__1);
|
|
}
|
|
}
|
|
/* L5991: */
|
|
}
|
|
|
|
return;
|
|
} /* cgsvj0_ */
|
|
|