OpenBLAS/lapack-netlib/SRC/cgeevx.c

1295 lines
39 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static integer c__1 = 1;
static integer c__0 = 0;
static integer c_n1 = -1;
/* > \brief <b> CGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
rices</b> */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download CGEEVX + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeevx.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeevx.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeevx.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE CGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, W, VL, */
/* LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONDE, */
/* RCONDV, WORK, LWORK, RWORK, INFO ) */
/* CHARACTER BALANC, JOBVL, JOBVR, SENSE */
/* INTEGER IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N */
/* REAL ABNRM */
/* REAL RCONDE( * ), RCONDV( * ), RWORK( * ), */
/* $ SCALE( * ) */
/* COMPLEX A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ), */
/* $ W( * ), WORK( * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGEEVX computes for an N-by-N complex nonsymmetric matrix A, the */
/* > eigenvalues and, optionally, the left and/or right eigenvectors. */
/* > */
/* > Optionally also, it computes a balancing transformation to improve */
/* > the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */
/* > SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues */
/* > (RCONDE), and reciprocal condition numbers for the right */
/* > eigenvectors (RCONDV). */
/* > */
/* > The right eigenvector v(j) of A satisfies */
/* > A * v(j) = lambda(j) * v(j) */
/* > where lambda(j) is its eigenvalue. */
/* > The left eigenvector u(j) of A satisfies */
/* > u(j)**H * A = lambda(j) * u(j)**H */
/* > where u(j)**H denotes the conjugate transpose of u(j). */
/* > */
/* > The computed eigenvectors are normalized to have Euclidean norm */
/* > equal to 1 and largest component real. */
/* > */
/* > Balancing a matrix means permuting the rows and columns to make it */
/* > more nearly upper triangular, and applying a diagonal similarity */
/* > transformation D * A * D**(-1), where D is a diagonal matrix, to */
/* > make its rows and columns closer in norm and the condition numbers */
/* > of its eigenvalues and eigenvectors smaller. The computed */
/* > reciprocal condition numbers correspond to the balanced matrix. */
/* > Permuting rows and columns will not change the condition numbers */
/* > (in exact arithmetic) but diagonal scaling will. For further */
/* > explanation of balancing, see section 4.10.2 of the LAPACK */
/* > Users' Guide. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] BALANC */
/* > \verbatim */
/* > BALANC is CHARACTER*1 */
/* > Indicates how the input matrix should be diagonally scaled */
/* > and/or permuted to improve the conditioning of its */
/* > eigenvalues. */
/* > = 'N': Do not diagonally scale or permute; */
/* > = 'P': Perform permutations to make the matrix more nearly */
/* > upper triangular. Do not diagonally scale; */
/* > = 'S': Diagonally scale the matrix, ie. replace A by */
/* > D*A*D**(-1), where D is a diagonal matrix chosen */
/* > to make the rows and columns of A more equal in */
/* > norm. Do not permute; */
/* > = 'B': Both diagonally scale and permute A. */
/* > */
/* > Computed reciprocal condition numbers will be for the matrix */
/* > after balancing and/or permuting. Permuting does not change */
/* > condition numbers (in exact arithmetic), but balancing does. */
/* > \endverbatim */
/* > */
/* > \param[in] JOBVL */
/* > \verbatim */
/* > JOBVL is CHARACTER*1 */
/* > = 'N': left eigenvectors of A are not computed; */
/* > = 'V': left eigenvectors of A are computed. */
/* > If SENSE = 'E' or 'B', JOBVL must = 'V'. */
/* > \endverbatim */
/* > */
/* > \param[in] JOBVR */
/* > \verbatim */
/* > JOBVR is CHARACTER*1 */
/* > = 'N': right eigenvectors of A are not computed; */
/* > = 'V': right eigenvectors of A are computed. */
/* > If SENSE = 'E' or 'B', JOBVR must = 'V'. */
/* > \endverbatim */
/* > */
/* > \param[in] SENSE */
/* > \verbatim */
/* > SENSE is CHARACTER*1 */
/* > Determines which reciprocal condition numbers are computed. */
/* > = 'N': None are computed; */
/* > = 'E': Computed for eigenvalues only; */
/* > = 'V': Computed for right eigenvectors only; */
/* > = 'B': Computed for eigenvalues and right eigenvectors. */
/* > */
/* > If SENSE = 'E' or 'B', both left and right eigenvectors */
/* > must also be computed (JOBVL = 'V' and JOBVR = 'V'). */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the N-by-N matrix A. */
/* > On exit, A has been overwritten. If JOBVL = 'V' or */
/* > JOBVR = 'V', A contains the Schur form of the balanced */
/* > version of the matrix A. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] W */
/* > \verbatim */
/* > W is COMPLEX array, dimension (N) */
/* > W contains the computed eigenvalues. */
/* > \endverbatim */
/* > */
/* > \param[out] VL */
/* > \verbatim */
/* > VL is COMPLEX array, dimension (LDVL,N) */
/* > If JOBVL = 'V', the left eigenvectors u(j) are stored one */
/* > after another in the columns of VL, in the same order */
/* > as their eigenvalues. */
/* > If JOBVL = 'N', VL is not referenced. */
/* > u(j) = VL(:,j), the j-th column of VL. */
/* > \endverbatim */
/* > */
/* > \param[in] LDVL */
/* > \verbatim */
/* > LDVL is INTEGER */
/* > The leading dimension of the array VL. LDVL >= 1; if */
/* > JOBVL = 'V', LDVL >= N. */
/* > \endverbatim */
/* > */
/* > \param[out] VR */
/* > \verbatim */
/* > VR is COMPLEX array, dimension (LDVR,N) */
/* > If JOBVR = 'V', the right eigenvectors v(j) are stored one */
/* > after another in the columns of VR, in the same order */
/* > as their eigenvalues. */
/* > If JOBVR = 'N', VR is not referenced. */
/* > v(j) = VR(:,j), the j-th column of VR. */
/* > \endverbatim */
/* > */
/* > \param[in] LDVR */
/* > \verbatim */
/* > LDVR is INTEGER */
/* > The leading dimension of the array VR. LDVR >= 1; if */
/* > JOBVR = 'V', LDVR >= N. */
/* > \endverbatim */
/* > */
/* > \param[out] ILO */
/* > \verbatim */
/* > ILO is INTEGER */
/* > \endverbatim */
/* > */
/* > \param[out] IHI */
/* > \verbatim */
/* > IHI is INTEGER */
/* > ILO and IHI are integer values determined when A was */
/* > balanced. The balanced A(i,j) = 0 if I > J and */
/* > J = 1,...,ILO-1 or I = IHI+1,...,N. */
/* > \endverbatim */
/* > */
/* > \param[out] SCALE */
/* > \verbatim */
/* > SCALE is REAL array, dimension (N) */
/* > Details of the permutations and scaling factors applied */
/* > when balancing A. If P(j) is the index of the row and column */
/* > interchanged with row and column j, and D(j) is the scaling */
/* > factor applied to row and column j, then */
/* > SCALE(J) = P(J), for J = 1,...,ILO-1 */
/* > = D(J), for J = ILO,...,IHI */
/* > = P(J) for J = IHI+1,...,N. */
/* > The order in which the interchanges are made is N to IHI+1, */
/* > then 1 to ILO-1. */
/* > \endverbatim */
/* > */
/* > \param[out] ABNRM */
/* > \verbatim */
/* > ABNRM is REAL */
/* > The one-norm of the balanced matrix (the maximum */
/* > of the sum of absolute values of elements of any column). */
/* > \endverbatim */
/* > */
/* > \param[out] RCONDE */
/* > \verbatim */
/* > RCONDE is REAL array, dimension (N) */
/* > RCONDE(j) is the reciprocal condition number of the j-th */
/* > eigenvalue. */
/* > \endverbatim */
/* > */
/* > \param[out] RCONDV */
/* > \verbatim */
/* > RCONDV is REAL array, dimension (N) */
/* > RCONDV(j) is the reciprocal condition number of the j-th */
/* > right eigenvector. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. If SENSE = 'N' or 'E', */
/* > LWORK >= f2cmax(1,2*N), and if SENSE = 'V' or 'B', */
/* > LWORK >= N*N+2*N. */
/* > For good performance, LWORK must generally be larger. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates the optimal size of the WORK array, returns */
/* > this value as the first entry of the WORK array, and no error */
/* > message related to LWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] RWORK */
/* > \verbatim */
/* > RWORK is REAL array, dimension (2*N) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > > 0: if INFO = i, the QR algorithm failed to compute all the */
/* > eigenvalues, and no eigenvectors or condition numbers */
/* > have been computed; elements 1:ILO-1 and i+1:N of W */
/* > contain eigenvalues which have converged. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date June 2016 */
/* @generated from zgeevx.f, fortran z -> c, Tue Apr 19 01:47:44 2016 */
/* > \ingroup complexGEeigen */
/* ===================================================================== */
/* Subroutine */ void cgeevx_(char *balanc, char *jobvl, char *jobvr, char *
sense, integer *n, complex *a, integer *lda, complex *w, complex *vl,
integer *ldvl, complex *vr, integer *ldvr, integer *ilo, integer *ihi,
real *scale, real *abnrm, real *rconde, real *rcondv, complex *work,
integer *lwork, real *rwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
i__2, i__3;
real r__1, r__2;
complex q__1, q__2;
/* Local variables */
char side[1];
real anrm;
integer ierr, itau, iwrk, nout, i__, k;
extern /* Subroutine */ void cscal_(integer *, complex *, complex *,
integer *);
integer icond;
extern logical lsame_(char *, char *);
extern real scnrm2_(integer *, complex *, integer *);
extern /* Subroutine */ void cgebak_(char *, char *, integer *, integer *,
integer *, real *, integer *, complex *, integer *, integer *), cgebal_(char *, integer *, complex *, integer *,
integer *, integer *, real *, integer *), slabad_(real *,
real *);
logical scalea;
extern real clange_(char *, integer *, integer *, complex *, integer *,
real *);
real cscale;
extern /* Subroutine */ void cgehrd_(integer *, integer *, integer *,
complex *, integer *, complex *, complex *, integer *, integer *),
clascl_(char *, integer *, integer *, real *, real *, integer *,
integer *, complex *, integer *, integer *);
extern real slamch_(char *);
extern /* Subroutine */ void csscal_(integer *, real *, complex *, integer
*), clacpy_(char *, integer *, integer *, complex *, integer *,
complex *, integer *);
extern int xerbla_(char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
logical select[1];
real bignum;
extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *,
real *, integer *, integer *, real *, integer *, integer *);
extern integer isamax_(integer *, real *, integer *);
extern /* Subroutine */ void chseqr_(char *, char *, integer *, integer *,
integer *, complex *, integer *, complex *, complex *, integer *,
complex *, integer *, integer *), cunghr_(integer
*, integer *, integer *, complex *, integer *, complex *, complex
*, integer *, integer *), ctrsna_(char *, char *, logical *,
integer *, complex *, integer *, complex *, integer *, complex *,
integer *, real *, real *, integer *, integer *, complex *,
integer *, real *, integer *);
integer minwrk, maxwrk;
logical wantvl, wntsnb;
integer hswork;
logical wntsne;
real smlnum;
logical lquery, wantvr, wntsnn, wntsnv;
extern /* Subroutine */ void ctrevc3_(char *, char *, logical *, integer *,
complex *, integer *, complex *, integer *, complex *, integer *,
integer *, integer *, complex *, integer *, real *, integer *,
integer *);
char job[1];
real scl, dum[1], eps;
complex tmp;
integer lwork_trevc__;
/* -- LAPACK driver routine (version 3.7.1) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* June 2016 */
/* ===================================================================== */
/* Test the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--w;
vl_dim1 = *ldvl;
vl_offset = 1 + vl_dim1 * 1;
vl -= vl_offset;
vr_dim1 = *ldvr;
vr_offset = 1 + vr_dim1 * 1;
vr -= vr_offset;
--scale;
--rconde;
--rcondv;
--work;
--rwork;
/* Function Body */
*info = 0;
lquery = *lwork == -1;
wantvl = lsame_(jobvl, "V");
wantvr = lsame_(jobvr, "V");
wntsnn = lsame_(sense, "N");
wntsne = lsame_(sense, "E");
wntsnv = lsame_(sense, "V");
wntsnb = lsame_(sense, "B");
if (! (lsame_(balanc, "N") || lsame_(balanc, "S") || lsame_(balanc, "P")
|| lsame_(balanc, "B"))) {
*info = -1;
} else if (! wantvl && ! lsame_(jobvl, "N")) {
*info = -2;
} else if (! wantvr && ! lsame_(jobvr, "N")) {
*info = -3;
} else if (! (wntsnn || wntsne || wntsnb || wntsnv) || (wntsne || wntsnb)
&& ! (wantvl && wantvr)) {
*info = -4;
} else if (*n < 0) {
*info = -5;
} else if (*lda < f2cmax(1,*n)) {
*info = -7;
} else if (*ldvl < 1 || wantvl && *ldvl < *n) {
*info = -10;
} else if (*ldvr < 1 || wantvr && *ldvr < *n) {
*info = -12;
}
/* Compute workspace */
/* (Note: Comments in the code beginning "Workspace:" describe the */
/* minimal amount of workspace needed at that point in the code, */
/* as well as the preferred amount for good performance. */
/* CWorkspace refers to complex workspace, and RWorkspace to real */
/* workspace. NB refers to the optimal block size for the */
/* immediately following subroutine, as returned by ILAENV. */
/* HSWORK refers to the workspace preferred by CHSEQR, as */
/* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
/* the worst case.) */
if (*info == 0) {
if (*n == 0) {
minwrk = 1;
maxwrk = 1;
} else {
maxwrk = *n + *n * ilaenv_(&c__1, "CGEHRD", " ", n, &c__1, n, &
c__0, (ftnlen)6, (ftnlen)1);
if (wantvl) {
ctrevc3_("L", "B", select, n, &a[a_offset], lda, &vl[
vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &
work[1], &c_n1, &rwork[1], &c_n1, &ierr);
lwork_trevc__ = (integer) work[1].r;
maxwrk = f2cmax(maxwrk,lwork_trevc__);
chseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vl[
vl_offset], ldvl, &work[1], &c_n1, info);
} else if (wantvr) {
ctrevc3_("R", "B", select, n, &a[a_offset], lda, &vl[
vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &
work[1], &c_n1, &rwork[1], &c_n1, &ierr);
lwork_trevc__ = (integer) work[1].r;
maxwrk = f2cmax(maxwrk,lwork_trevc__);
chseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vr[
vr_offset], ldvr, &work[1], &c_n1, info);
} else {
if (wntsnn) {
chseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &w[1], &
vr[vr_offset], ldvr, &work[1], &c_n1, info);
} else {
chseqr_("S", "N", n, &c__1, n, &a[a_offset], lda, &w[1], &
vr[vr_offset], ldvr, &work[1], &c_n1, info);
}
}
hswork = (integer) work[1].r;
if (! wantvl && ! wantvr) {
minwrk = *n << 1;
if (! (wntsnn || wntsne)) {
/* Computing MAX */
i__1 = minwrk, i__2 = *n * *n + (*n << 1);
minwrk = f2cmax(i__1,i__2);
}
maxwrk = f2cmax(maxwrk,hswork);
if (! (wntsnn || wntsne)) {
/* Computing MAX */
i__1 = maxwrk, i__2 = *n * *n + (*n << 1);
maxwrk = f2cmax(i__1,i__2);
}
} else {
minwrk = *n << 1;
if (! (wntsnn || wntsne)) {
/* Computing MAX */
i__1 = minwrk, i__2 = *n * *n + (*n << 1);
minwrk = f2cmax(i__1,i__2);
}
maxwrk = f2cmax(maxwrk,hswork);
/* Computing MAX */
i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "CUNGHR",
" ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
maxwrk = f2cmax(i__1,i__2);
if (! (wntsnn || wntsne)) {
/* Computing MAX */
i__1 = maxwrk, i__2 = *n * *n + (*n << 1);
maxwrk = f2cmax(i__1,i__2);
}
/* Computing MAX */
i__1 = maxwrk, i__2 = *n << 1;
maxwrk = f2cmax(i__1,i__2);
}
maxwrk = f2cmax(maxwrk,minwrk);
}
work[1].r = (real) maxwrk, work[1].i = 0.f;
if (*lwork < minwrk && ! lquery) {
*info = -20;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGEEVX", &i__1, (ftnlen)6);
return;
} else if (lquery) {
return;
}
/* Quick return if possible */
if (*n == 0) {
return;
}
/* Get machine constants */
eps = slamch_("P");
smlnum = slamch_("S");
bignum = 1.f / smlnum;
slabad_(&smlnum, &bignum);
smlnum = sqrt(smlnum) / eps;
bignum = 1.f / smlnum;
/* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
icond = 0;
anrm = clange_("M", n, n, &a[a_offset], lda, dum);
scalea = FALSE_;
if (anrm > 0.f && anrm < smlnum) {
scalea = TRUE_;
cscale = smlnum;
} else if (anrm > bignum) {
scalea = TRUE_;
cscale = bignum;
}
if (scalea) {
clascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
ierr);
}
/* Balance the matrix and compute ABNRM */
cgebal_(balanc, n, &a[a_offset], lda, ilo, ihi, &scale[1], &ierr);
*abnrm = clange_("1", n, n, &a[a_offset], lda, dum);
if (scalea) {
dum[0] = *abnrm;
slascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &c__1, &
ierr);
*abnrm = dum[0];
}
/* Reduce to upper Hessenberg form */
/* (CWorkspace: need 2*N, prefer N+N*NB) */
/* (RWorkspace: none) */
itau = 1;
iwrk = itau + *n;
i__1 = *lwork - iwrk + 1;
cgehrd_(n, ilo, ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, &
ierr);
if (wantvl) {
/* Want left eigenvectors */
/* Copy Householder vectors to VL */
*(unsigned char *)side = 'L';
clacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
;
/* Generate unitary matrix in VL */
/* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
/* (RWorkspace: none) */
i__1 = *lwork - iwrk + 1;
cunghr_(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], &
i__1, &ierr);
/* Perform QR iteration, accumulating Schur vectors in VL */
/* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
/* (RWorkspace: none) */
iwrk = itau;
i__1 = *lwork - iwrk + 1;
chseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &w[1], &vl[
vl_offset], ldvl, &work[iwrk], &i__1, info);
if (wantvr) {
/* Want left and right eigenvectors */
/* Copy Schur vectors to VR */
*(unsigned char *)side = 'B';
clacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
}
} else if (wantvr) {
/* Want right eigenvectors */
/* Copy Householder vectors to VR */
*(unsigned char *)side = 'R';
clacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
;
/* Generate unitary matrix in VR */
/* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
/* (RWorkspace: none) */
i__1 = *lwork - iwrk + 1;
cunghr_(n, ilo, ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], &
i__1, &ierr);
/* Perform QR iteration, accumulating Schur vectors in VR */
/* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
/* (RWorkspace: none) */
iwrk = itau;
i__1 = *lwork - iwrk + 1;
chseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &w[1], &vr[
vr_offset], ldvr, &work[iwrk], &i__1, info);
} else {
/* Compute eigenvalues only */
/* If condition numbers desired, compute Schur form */
if (wntsnn) {
*(unsigned char *)job = 'E';
} else {
*(unsigned char *)job = 'S';
}
/* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
/* (RWorkspace: none) */
iwrk = itau;
i__1 = *lwork - iwrk + 1;
chseqr_(job, "N", n, ilo, ihi, &a[a_offset], lda, &w[1], &vr[
vr_offset], ldvr, &work[iwrk], &i__1, info);
}
/* If INFO .NE. 0 from CHSEQR, then quit */
if (*info != 0) {
goto L50;
}
if (wantvl || wantvr) {
/* Compute left and/or right eigenvectors */
/* (CWorkspace: need 2*N, prefer N + 2*N*NB) */
/* (RWorkspace: need N) */
i__1 = *lwork - iwrk + 1;
ctrevc3_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset],
ldvl, &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &i__1, &
rwork[1], n, &ierr);
}
/* Compute condition numbers if desired */
/* (CWorkspace: need N*N+2*N unless SENSE = 'E') */
/* (RWorkspace: need 2*N unless SENSE = 'E') */
if (! wntsnn) {
ctrsna_(sense, "A", select, n, &a[a_offset], lda, &vl[vl_offset],
ldvl, &vr[vr_offset], ldvr, &rconde[1], &rcondv[1], n, &nout,
&work[iwrk], n, &rwork[1], &icond);
}
if (wantvl) {
/* Undo balancing of left eigenvectors */
cgebak_(balanc, "L", n, ilo, ihi, &scale[1], n, &vl[vl_offset], ldvl,
&ierr);
/* Normalize left eigenvectors and make largest component real */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
scl = 1.f / scnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
csscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
i__2 = *n;
for (k = 1; k <= i__2; ++k) {
i__3 = k + i__ * vl_dim1;
/* Computing 2nd power */
r__1 = vl[i__3].r;
/* Computing 2nd power */
r__2 = r_imag(&vl[k + i__ * vl_dim1]);
rwork[k] = r__1 * r__1 + r__2 * r__2;
/* L10: */
}
k = isamax_(n, &rwork[1], &c__1);
r_cnjg(&q__2, &vl[k + i__ * vl_dim1]);
r__1 = sqrt(rwork[k]);
q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
tmp.r = q__1.r, tmp.i = q__1.i;
cscal_(n, &tmp, &vl[i__ * vl_dim1 + 1], &c__1);
i__2 = k + i__ * vl_dim1;
i__3 = k + i__ * vl_dim1;
r__1 = vl[i__3].r;
q__1.r = r__1, q__1.i = 0.f;
vl[i__2].r = q__1.r, vl[i__2].i = q__1.i;
/* L20: */
}
}
if (wantvr) {
/* Undo balancing of right eigenvectors */
cgebak_(balanc, "R", n, ilo, ihi, &scale[1], n, &vr[vr_offset], ldvr,
&ierr);
/* Normalize right eigenvectors and make largest component real */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
scl = 1.f / scnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
csscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
i__2 = *n;
for (k = 1; k <= i__2; ++k) {
i__3 = k + i__ * vr_dim1;
/* Computing 2nd power */
r__1 = vr[i__3].r;
/* Computing 2nd power */
r__2 = r_imag(&vr[k + i__ * vr_dim1]);
rwork[k] = r__1 * r__1 + r__2 * r__2;
/* L30: */
}
k = isamax_(n, &rwork[1], &c__1);
r_cnjg(&q__2, &vr[k + i__ * vr_dim1]);
r__1 = sqrt(rwork[k]);
q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
tmp.r = q__1.r, tmp.i = q__1.i;
cscal_(n, &tmp, &vr[i__ * vr_dim1 + 1], &c__1);
i__2 = k + i__ * vr_dim1;
i__3 = k + i__ * vr_dim1;
r__1 = vr[i__3].r;
q__1.r = r__1, q__1.i = 0.f;
vr[i__2].r = q__1.r, vr[i__2].i = q__1.i;
/* L40: */
}
}
/* Undo scaling if necessary */
L50:
if (scalea) {
i__1 = *n - *info;
/* Computing MAX */
i__3 = *n - *info;
i__2 = f2cmax(i__3,1);
clascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[*info + 1]
, &i__2, &ierr);
if (*info == 0) {
if ((wntsnv || wntsnb) && icond == 0) {
slascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &rcondv[
1], n, &ierr);
}
} else {
i__1 = *ilo - 1;
clascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[1], n,
&ierr);
}
}
work[1].r = (real) maxwrk, work[1].i = 0.f;
return;
/* End of CGEEVX */
} /* cgeevx_ */