OpenBLAS/lapack-netlib/SRC/DEPRECATED/dlatzm.c

509 lines
14 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
/* Table of constant values */
static integer c__1 = 1;
static doublereal c_b5 = 1.;
/* > \brief \b DLATZM */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DLATZM + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlatzm.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlatzm.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlatzm.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DLATZM( SIDE, M, N, V, INCV, TAU, C1, C2, LDC, WORK ) */
/* CHARACTER SIDE */
/* INTEGER INCV, LDC, M, N */
/* DOUBLE PRECISION TAU */
/* DOUBLE PRECISION C1( LDC, * ), C2( LDC, * ), V( * ), WORK( * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > This routine is deprecated and has been replaced by routine DORMRZ. */
/* > */
/* > DLATZM applies a Householder matrix generated by DTZRQF to a matrix. */
/* > */
/* > Let P = I - tau*u*u**T, u = ( 1 ), */
/* > ( v ) */
/* > where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector if */
/* > SIDE = 'R'. */
/* > */
/* > If SIDE equals 'L', let */
/* > C = [ C1 ] 1 */
/* > [ C2 ] m-1 */
/* > n */
/* > Then C is overwritten by P*C. */
/* > */
/* > If SIDE equals 'R', let */
/* > C = [ C1, C2 ] m */
/* > 1 n-1 */
/* > Then C is overwritten by C*P. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] SIDE */
/* > \verbatim */
/* > SIDE is CHARACTER*1 */
/* > = 'L': form P * C */
/* > = 'R': form C * P */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix C. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix C. */
/* > \endverbatim */
/* > */
/* > \param[in] V */
/* > \verbatim */
/* > V is DOUBLE PRECISION array, dimension */
/* > (1 + (M-1)*abs(INCV)) if SIDE = 'L' */
/* > (1 + (N-1)*abs(INCV)) if SIDE = 'R' */
/* > The vector v in the representation of P. V is not used */
/* > if TAU = 0. */
/* > \endverbatim */
/* > */
/* > \param[in] INCV */
/* > \verbatim */
/* > INCV is INTEGER */
/* > The increment between elements of v. INCV <> 0 */
/* > \endverbatim */
/* > */
/* > \param[in] TAU */
/* > \verbatim */
/* > TAU is DOUBLE PRECISION */
/* > The value tau in the representation of P. */
/* > \endverbatim */
/* > */
/* > \param[in,out] C1 */
/* > \verbatim */
/* > C1 is DOUBLE PRECISION array, dimension */
/* > (LDC,N) if SIDE = 'L' */
/* > (M,1) if SIDE = 'R' */
/* > On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1 */
/* > if SIDE = 'R'. */
/* > */
/* > On exit, the first row of P*C if SIDE = 'L', or the first */
/* > column of C*P if SIDE = 'R'. */
/* > \endverbatim */
/* > */
/* > \param[in,out] C2 */
/* > \verbatim */
/* > C2 is DOUBLE PRECISION array, dimension */
/* > (LDC, N) if SIDE = 'L' */
/* > (LDC, N-1) if SIDE = 'R' */
/* > On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the */
/* > m x (n - 1) matrix C2 if SIDE = 'R'. */
/* > */
/* > On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P */
/* > if SIDE = 'R'. */
/* > \endverbatim */
/* > */
/* > \param[in] LDC */
/* > \verbatim */
/* > LDC is INTEGER */
/* > The leading dimension of the arrays C1 and C2. LDC >= (1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is DOUBLE PRECISION array, dimension */
/* > (N) if SIDE = 'L' */
/* > (M) if SIDE = 'R' */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date December 2016 */
/* > \ingroup doubleOTHERcomputational */
/* ===================================================================== */
/* Subroutine */ void dlatzm_(char *side, integer *m, integer *n, doublereal *
v, integer *incv, doublereal *tau, doublereal *c1, doublereal *c2,
integer *ldc, doublereal *work)
{
/* System generated locals */
integer c1_dim1, c1_offset, c2_dim1, c2_offset, i__1;
doublereal d__1;
/* Local variables */
extern /* Subroutine */ void dger_(integer *, integer *, doublereal *,
doublereal *, integer *, doublereal *, integer *, doublereal *,
integer *);
extern logical lsame_(char *, char *);
extern /* Subroutine */ void dgemv_(char *, integer *, integer *,
doublereal *, doublereal *, integer *, doublereal *, integer *,
doublereal *, doublereal *, integer *), dcopy_(integer *,
doublereal *, integer *, doublereal *, integer *), daxpy_(integer
*, doublereal *, doublereal *, integer *, doublereal *, integer *)
;
/* -- LAPACK computational routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */
/* ===================================================================== */
/* Parameter adjustments */
--v;
c2_dim1 = *ldc;
c2_offset = 1 + c2_dim1 * 1;
c2 -= c2_offset;
c1_dim1 = *ldc;
c1_offset = 1 + c1_dim1 * 1;
c1 -= c1_offset;
--work;
/* Function Body */
if (f2cmin(*m,*n) == 0 || *tau == 0.) {
return;
}
if (lsame_(side, "L")) {
/* w := (C1 + v**T * C2)**T */
dcopy_(n, &c1[c1_offset], ldc, &work[1], &c__1);
i__1 = *m - 1;
dgemv_("Transpose", &i__1, n, &c_b5, &c2[c2_offset], ldc, &v[1], incv,
&c_b5, &work[1], &c__1);
/* [ C1 ] := [ C1 ] - tau* [ 1 ] * w**T */
/* [ C2 ] [ C2 ] [ v ] */
d__1 = -(*tau);
daxpy_(n, &d__1, &work[1], &c__1, &c1[c1_offset], ldc);
i__1 = *m - 1;
d__1 = -(*tau);
dger_(&i__1, n, &d__1, &v[1], incv, &work[1], &c__1, &c2[c2_offset],
ldc);
} else if (lsame_(side, "R")) {
/* w := C1 + C2 * v */
dcopy_(m, &c1[c1_offset], &c__1, &work[1], &c__1);
i__1 = *n - 1;
dgemv_("No transpose", m, &i__1, &c_b5, &c2[c2_offset], ldc, &v[1],
incv, &c_b5, &work[1], &c__1);
/* [ C1, C2 ] := [ C1, C2 ] - tau* w * [ 1 , v**T] */
d__1 = -(*tau);
daxpy_(m, &d__1, &work[1], &c__1, &c1[c1_offset], &c__1);
i__1 = *n - 1;
d__1 = -(*tau);
dger_(m, &i__1, &d__1, &work[1], &c__1, &v[1], incv, &c2[c2_offset],
ldc);
}
return;
/* End of DLATZM */
} /* dlatzm_ */