1193 lines
35 KiB
C
1193 lines
35 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef blasint logical;
|
|
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static integer c_n1 = -1;
|
|
static doublereal c_b27 = 1.;
|
|
static doublereal c_b38 = 0.;
|
|
|
|
/* > \brief <b> DGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
|
|
rices</b> */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download DGEGV + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgegv.f
|
|
"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgegv.f
|
|
"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgegv.f
|
|
"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE DGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI, */
|
|
/* BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO ) */
|
|
|
|
/* CHARACTER JOBVL, JOBVR */
|
|
/* INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N */
|
|
/* DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
|
|
/* $ B( LDB, * ), BETA( * ), VL( LDVL, * ), */
|
|
/* $ VR( LDVR, * ), WORK( * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > This routine is deprecated and has been replaced by routine DGGEV. */
|
|
/* > */
|
|
/* > DGEGV computes the eigenvalues and, optionally, the left and/or right */
|
|
/* > eigenvectors of a real matrix pair (A,B). */
|
|
/* > Given two square matrices A and B, */
|
|
/* > the generalized nonsymmetric eigenvalue problem (GNEP) is to find the */
|
|
/* > eigenvalues lambda and corresponding (non-zero) eigenvectors x such */
|
|
/* > that */
|
|
/* > */
|
|
/* > A*x = lambda*B*x. */
|
|
/* > */
|
|
/* > An alternate form is to find the eigenvalues mu and corresponding */
|
|
/* > eigenvectors y such that */
|
|
/* > */
|
|
/* > mu*A*y = B*y. */
|
|
/* > */
|
|
/* > These two forms are equivalent with mu = 1/lambda and x = y if */
|
|
/* > neither lambda nor mu is zero. In order to deal with the case that */
|
|
/* > lambda or mu is zero or small, two values alpha and beta are returned */
|
|
/* > for each eigenvalue, such that lambda = alpha/beta and */
|
|
/* > mu = beta/alpha. */
|
|
/* > */
|
|
/* > The vectors x and y in the above equations are right eigenvectors of */
|
|
/* > the matrix pair (A,B). Vectors u and v satisfying */
|
|
/* > */
|
|
/* > u**H*A = lambda*u**H*B or mu*v**H*A = v**H*B */
|
|
/* > */
|
|
/* > are left eigenvectors of (A,B). */
|
|
/* > */
|
|
/* > Note: this routine performs "full balancing" on A and B */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] JOBVL */
|
|
/* > \verbatim */
|
|
/* > JOBVL is CHARACTER*1 */
|
|
/* > = 'N': do not compute the left generalized eigenvectors; */
|
|
/* > = 'V': compute the left generalized eigenvectors (returned */
|
|
/* > in VL). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] JOBVR */
|
|
/* > \verbatim */
|
|
/* > JOBVR is CHARACTER*1 */
|
|
/* > = 'N': do not compute the right generalized eigenvectors; */
|
|
/* > = 'V': compute the right generalized eigenvectors (returned */
|
|
/* > in VR). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The order of the matrices A, B, VL, and VR. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] A */
|
|
/* > \verbatim */
|
|
/* > A is DOUBLE PRECISION array, dimension (LDA, N) */
|
|
/* > On entry, the matrix A. */
|
|
/* > If JOBVL = 'V' or JOBVR = 'V', then on exit A */
|
|
/* > contains the real Schur form of A from the generalized Schur */
|
|
/* > factorization of the pair (A,B) after balancing. */
|
|
/* > If no eigenvectors were computed, then only the diagonal */
|
|
/* > blocks from the Schur form will be correct. See DGGHRD and */
|
|
/* > DHGEQZ for details. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > The leading dimension of A. LDA >= f2cmax(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] B */
|
|
/* > \verbatim */
|
|
/* > B is DOUBLE PRECISION array, dimension (LDB, N) */
|
|
/* > On entry, the matrix B. */
|
|
/* > If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the */
|
|
/* > upper triangular matrix obtained from B in the generalized */
|
|
/* > Schur factorization of the pair (A,B) after balancing. */
|
|
/* > If no eigenvectors were computed, then only those elements of */
|
|
/* > B corresponding to the diagonal blocks from the Schur form of */
|
|
/* > A will be correct. See DGGHRD and DHGEQZ for details. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDB */
|
|
/* > \verbatim */
|
|
/* > LDB is INTEGER */
|
|
/* > The leading dimension of B. LDB >= f2cmax(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] ALPHAR */
|
|
/* > \verbatim */
|
|
/* > ALPHAR is DOUBLE PRECISION array, dimension (N) */
|
|
/* > The real parts of each scalar alpha defining an eigenvalue of */
|
|
/* > GNEP. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] ALPHAI */
|
|
/* > \verbatim */
|
|
/* > ALPHAI is DOUBLE PRECISION array, dimension (N) */
|
|
/* > The imaginary parts of each scalar alpha defining an */
|
|
/* > eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th */
|
|
/* > eigenvalue is real; if positive, then the j-th and */
|
|
/* > (j+1)-st eigenvalues are a complex conjugate pair, with */
|
|
/* > ALPHAI(j+1) = -ALPHAI(j). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] BETA */
|
|
/* > \verbatim */
|
|
/* > BETA is DOUBLE PRECISION array, dimension (N) */
|
|
/* > The scalars beta that define the eigenvalues of GNEP. */
|
|
/* > */
|
|
/* > Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and */
|
|
/* > beta = BETA(j) represent the j-th eigenvalue of the matrix */
|
|
/* > pair (A,B), in one of the forms lambda = alpha/beta or */
|
|
/* > mu = beta/alpha. Since either lambda or mu may overflow, */
|
|
/* > they should not, in general, be computed. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] VL */
|
|
/* > \verbatim */
|
|
/* > VL is DOUBLE PRECISION array, dimension (LDVL,N) */
|
|
/* > If JOBVL = 'V', the left eigenvectors u(j) are stored */
|
|
/* > in the columns of VL, in the same order as their eigenvalues. */
|
|
/* > If the j-th eigenvalue is real, then u(j) = VL(:,j). */
|
|
/* > If the j-th and (j+1)-st eigenvalues form a complex conjugate */
|
|
/* > pair, then */
|
|
/* > u(j) = VL(:,j) + i*VL(:,j+1) */
|
|
/* > and */
|
|
/* > u(j+1) = VL(:,j) - i*VL(:,j+1). */
|
|
/* > */
|
|
/* > Each eigenvector is scaled so that its largest component has */
|
|
/* > abs(real part) + abs(imag. part) = 1, except for eigenvectors */
|
|
/* > corresponding to an eigenvalue with alpha = beta = 0, which */
|
|
/* > are set to zero. */
|
|
/* > Not referenced if JOBVL = 'N'. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDVL */
|
|
/* > \verbatim */
|
|
/* > LDVL is INTEGER */
|
|
/* > The leading dimension of the matrix VL. LDVL >= 1, and */
|
|
/* > if JOBVL = 'V', LDVL >= N. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] VR */
|
|
/* > \verbatim */
|
|
/* > VR is DOUBLE PRECISION array, dimension (LDVR,N) */
|
|
/* > If JOBVR = 'V', the right eigenvectors x(j) are stored */
|
|
/* > in the columns of VR, in the same order as their eigenvalues. */
|
|
/* > If the j-th eigenvalue is real, then x(j) = VR(:,j). */
|
|
/* > If the j-th and (j+1)-st eigenvalues form a complex conjugate */
|
|
/* > pair, then */
|
|
/* > x(j) = VR(:,j) + i*VR(:,j+1) */
|
|
/* > and */
|
|
/* > x(j+1) = VR(:,j) - i*VR(:,j+1). */
|
|
/* > */
|
|
/* > Each eigenvector is scaled so that its largest component has */
|
|
/* > abs(real part) + abs(imag. part) = 1, except for eigenvalues */
|
|
/* > corresponding to an eigenvalue with alpha = beta = 0, which */
|
|
/* > are set to zero. */
|
|
/* > Not referenced if JOBVR = 'N'. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDVR */
|
|
/* > \verbatim */
|
|
/* > LDVR is INTEGER */
|
|
/* > The leading dimension of the matrix VR. LDVR >= 1, and */
|
|
/* > if JOBVR = 'V', LDVR >= N. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WORK */
|
|
/* > \verbatim */
|
|
/* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
|
|
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LWORK */
|
|
/* > \verbatim */
|
|
/* > LWORK is INTEGER */
|
|
/* > The dimension of the array WORK. LWORK >= f2cmax(1,8*N). */
|
|
/* > For good performance, LWORK must generally be larger. */
|
|
/* > To compute the optimal value of LWORK, call ILAENV to get */
|
|
/* > blocksizes (for DGEQRF, DORMQR, and DORGQR.) Then compute: */
|
|
/* > NB -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR; */
|
|
/* > The optimal LWORK is: */
|
|
/* > 2*N + MAX( 6*N, N*(NB+1) ). */
|
|
/* > */
|
|
/* > If LWORK = -1, then a workspace query is assumed; the routine */
|
|
/* > only calculates the optimal size of the WORK array, returns */
|
|
/* > this value as the first entry of the WORK array, and no error */
|
|
/* > message related to LWORK is issued by XERBLA. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
|
|
/* > = 1,...,N: */
|
|
/* > The QZ iteration failed. No eigenvectors have been */
|
|
/* > calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */
|
|
/* > should be correct for j=INFO+1,...,N. */
|
|
/* > > N: errors that usually indicate LAPACK problems: */
|
|
/* > =N+1: error return from DGGBAL */
|
|
/* > =N+2: error return from DGEQRF */
|
|
/* > =N+3: error return from DORMQR */
|
|
/* > =N+4: error return from DORGQR */
|
|
/* > =N+5: error return from DGGHRD */
|
|
/* > =N+6: error return from DHGEQZ (other than failed */
|
|
/* > iteration) */
|
|
/* > =N+7: error return from DTGEVC */
|
|
/* > =N+8: error return from DGGBAK (computing VL) */
|
|
/* > =N+9: error return from DGGBAK (computing VR) */
|
|
/* > =N+10: error return from DLASCL (various calls) */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date December 2016 */
|
|
|
|
/* > \ingroup doubleGEeigen */
|
|
|
|
/* > \par Further Details: */
|
|
/* ===================== */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > Balancing */
|
|
/* > --------- */
|
|
/* > */
|
|
/* > This driver calls DGGBAL to both permute and scale rows and columns */
|
|
/* > of A and B. The permutations PL and PR are chosen so that PL*A*PR */
|
|
/* > and PL*B*R will be upper triangular except for the diagonal blocks */
|
|
/* > A(i:j,i:j) and B(i:j,i:j), with i and j as close together as */
|
|
/* > possible. The diagonal scaling matrices DL and DR are chosen so */
|
|
/* > that the pair DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to */
|
|
/* > one (except for the elements that start out zero.) */
|
|
/* > */
|
|
/* > After the eigenvalues and eigenvectors of the balanced matrices */
|
|
/* > have been computed, DGGBAK transforms the eigenvectors back to what */
|
|
/* > they would have been (in perfect arithmetic) if they had not been */
|
|
/* > balanced. */
|
|
/* > */
|
|
/* > Contents of A and B on Exit */
|
|
/* > -------- -- - --- - -- ---- */
|
|
/* > */
|
|
/* > If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or */
|
|
/* > both), then on exit the arrays A and B will contain the real Schur */
|
|
/* > form[*] of the "balanced" versions of A and B. If no eigenvectors */
|
|
/* > are computed, then only the diagonal blocks will be correct. */
|
|
/* > */
|
|
/* > [*] See DHGEQZ, DGEGS, or read the book "Matrix Computations", */
|
|
/* > by Golub & van Loan, pub. by Johns Hopkins U. Press. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void dgegv_(char *jobvl, char *jobvr, integer *n, doublereal *
|
|
a, integer *lda, doublereal *b, integer *ldb, doublereal *alphar,
|
|
doublereal *alphai, doublereal *beta, doublereal *vl, integer *ldvl,
|
|
doublereal *vr, integer *ldvr, doublereal *work, integer *lwork,
|
|
integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
|
|
vr_offset, i__1, i__2;
|
|
doublereal d__1, d__2, d__3, d__4;
|
|
|
|
/* Local variables */
|
|
doublereal absb, anrm, bnrm;
|
|
integer itau;
|
|
doublereal temp;
|
|
logical ilvl, ilvr;
|
|
integer lopt;
|
|
doublereal anrm1, anrm2, bnrm1, bnrm2, absai, scale, absar, sbeta;
|
|
extern logical lsame_(char *, char *);
|
|
integer ileft, iinfo, icols, iwork, irows, jc;
|
|
extern /* Subroutine */ void dggbak_(char *, char *, integer *, integer *,
|
|
integer *, doublereal *, doublereal *, integer *, doublereal *,
|
|
integer *, integer *);
|
|
integer nb;
|
|
extern /* Subroutine */ void dggbal_(char *, integer *, doublereal *,
|
|
integer *, doublereal *, integer *, integer *, integer *,
|
|
doublereal *, doublereal *, doublereal *, integer *);
|
|
integer in;
|
|
extern doublereal dlamch_(char *), dlange_(char *, integer *,
|
|
integer *, doublereal *, integer *, doublereal *);
|
|
integer jr;
|
|
doublereal salfai;
|
|
extern /* Subroutine */ void dgghrd_(char *, char *, integer *, integer *,
|
|
integer *, doublereal *, integer *, doublereal *, integer *,
|
|
doublereal *, integer *, doublereal *, integer *, integer *), dlascl_(char *, integer *, integer *, doublereal
|
|
*, doublereal *, integer *, integer *, doublereal *, integer *,
|
|
integer *);
|
|
doublereal salfar;
|
|
extern /* Subroutine */ void dgeqrf_(integer *, integer *, doublereal *,
|
|
integer *, doublereal *, doublereal *, integer *, integer *),
|
|
dlacpy_(char *, integer *, integer *, doublereal *, integer *,
|
|
doublereal *, integer *);
|
|
doublereal safmin;
|
|
extern /* Subroutine */ void dlaset_(char *, integer *, integer *,
|
|
doublereal *, doublereal *, doublereal *, integer *);
|
|
doublereal safmax;
|
|
char chtemp[1];
|
|
logical ldumma[1];
|
|
extern /* Subroutine */ void dhgeqz_(char *, char *, char *, integer *,
|
|
integer *, integer *, doublereal *, integer *, doublereal *,
|
|
integer *, doublereal *, doublereal *, doublereal *, doublereal *,
|
|
integer *, doublereal *, integer *, doublereal *, integer *,
|
|
integer *), dtgevc_(char *, char *,
|
|
logical *, integer *, doublereal *, integer *, doublereal *,
|
|
integer *, doublereal *, integer *, doublereal *, integer *,
|
|
integer *, integer *, doublereal *, integer *);
|
|
extern int xerbla_(char *, integer *, ftnlen);
|
|
integer ijobvl, iright;
|
|
logical ilimit;
|
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
|
|
integer *, integer *, ftnlen, ftnlen);
|
|
integer ijobvr;
|
|
extern /* Subroutine */ void dorgqr_(integer *, integer *, integer *,
|
|
doublereal *, integer *, doublereal *, doublereal *, integer *,
|
|
integer *);
|
|
doublereal onepls;
|
|
integer lwkmin, nb1, nb2, nb3;
|
|
extern /* Subroutine */ void dormqr_(char *, char *, integer *, integer *,
|
|
integer *, doublereal *, integer *, doublereal *, doublereal *,
|
|
integer *, doublereal *, integer *, integer *);
|
|
integer lwkopt;
|
|
logical lquery;
|
|
integer ihi, ilo;
|
|
doublereal eps;
|
|
logical ilv;
|
|
|
|
|
|
/* -- LAPACK driver routine (version 3.7.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* December 2016 */
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
/* Decode the input arguments */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
b_dim1 = *ldb;
|
|
b_offset = 1 + b_dim1 * 1;
|
|
b -= b_offset;
|
|
--alphar;
|
|
--alphai;
|
|
--beta;
|
|
vl_dim1 = *ldvl;
|
|
vl_offset = 1 + vl_dim1 * 1;
|
|
vl -= vl_offset;
|
|
vr_dim1 = *ldvr;
|
|
vr_offset = 1 + vr_dim1 * 1;
|
|
vr -= vr_offset;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
if (lsame_(jobvl, "N")) {
|
|
ijobvl = 1;
|
|
ilvl = FALSE_;
|
|
} else if (lsame_(jobvl, "V")) {
|
|
ijobvl = 2;
|
|
ilvl = TRUE_;
|
|
} else {
|
|
ijobvl = -1;
|
|
ilvl = FALSE_;
|
|
}
|
|
|
|
if (lsame_(jobvr, "N")) {
|
|
ijobvr = 1;
|
|
ilvr = FALSE_;
|
|
} else if (lsame_(jobvr, "V")) {
|
|
ijobvr = 2;
|
|
ilvr = TRUE_;
|
|
} else {
|
|
ijobvr = -1;
|
|
ilvr = FALSE_;
|
|
}
|
|
ilv = ilvl || ilvr;
|
|
|
|
/* Test the input arguments */
|
|
|
|
/* Computing MAX */
|
|
i__1 = *n << 3;
|
|
lwkmin = f2cmax(i__1,1);
|
|
lwkopt = lwkmin;
|
|
work[1] = (doublereal) lwkopt;
|
|
lquery = *lwork == -1;
|
|
*info = 0;
|
|
if (ijobvl <= 0) {
|
|
*info = -1;
|
|
} else if (ijobvr <= 0) {
|
|
*info = -2;
|
|
} else if (*n < 0) {
|
|
*info = -3;
|
|
} else if (*lda < f2cmax(1,*n)) {
|
|
*info = -5;
|
|
} else if (*ldb < f2cmax(1,*n)) {
|
|
*info = -7;
|
|
} else if (*ldvl < 1 || ilvl && *ldvl < *n) {
|
|
*info = -12;
|
|
} else if (*ldvr < 1 || ilvr && *ldvr < *n) {
|
|
*info = -14;
|
|
} else if (*lwork < lwkmin && ! lquery) {
|
|
*info = -16;
|
|
}
|
|
|
|
if (*info == 0) {
|
|
nb1 = ilaenv_(&c__1, "DGEQRF", " ", n, n, &c_n1, &c_n1, (ftnlen)6, (
|
|
ftnlen)1);
|
|
nb2 = ilaenv_(&c__1, "DORMQR", " ", n, n, n, &c_n1, (ftnlen)6, (
|
|
ftnlen)1);
|
|
nb3 = ilaenv_(&c__1, "DORGQR", " ", n, n, n, &c_n1, (ftnlen)6, (
|
|
ftnlen)1);
|
|
/* Computing MAX */
|
|
i__1 = f2cmax(nb1,nb2);
|
|
nb = f2cmax(i__1,nb3);
|
|
/* Computing MAX */
|
|
i__1 = *n * 6, i__2 = *n * (nb + 1);
|
|
lopt = (*n << 1) + f2cmax(i__1,i__2);
|
|
work[1] = (doublereal) lopt;
|
|
}
|
|
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("DGEGV ", &i__1, 6);
|
|
return;
|
|
} else if (lquery) {
|
|
return;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n == 0) {
|
|
return;
|
|
}
|
|
|
|
/* Get machine constants */
|
|
|
|
eps = dlamch_("E") * dlamch_("B");
|
|
safmin = dlamch_("S");
|
|
safmin += safmin;
|
|
safmax = 1. / safmin;
|
|
onepls = eps * 4 + 1.;
|
|
|
|
/* Scale A */
|
|
|
|
anrm = dlange_("M", n, n, &a[a_offset], lda, &work[1]);
|
|
anrm1 = anrm;
|
|
anrm2 = 1.;
|
|
if (anrm < 1.) {
|
|
if (safmax * anrm < 1.) {
|
|
anrm1 = safmin;
|
|
anrm2 = safmax * anrm;
|
|
}
|
|
}
|
|
|
|
if (anrm > 0.) {
|
|
dlascl_("G", &c_n1, &c_n1, &anrm, &c_b27, n, n, &a[a_offset], lda, &
|
|
iinfo);
|
|
if (iinfo != 0) {
|
|
*info = *n + 10;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Scale B */
|
|
|
|
bnrm = dlange_("M", n, n, &b[b_offset], ldb, &work[1]);
|
|
bnrm1 = bnrm;
|
|
bnrm2 = 1.;
|
|
if (bnrm < 1.) {
|
|
if (safmax * bnrm < 1.) {
|
|
bnrm1 = safmin;
|
|
bnrm2 = safmax * bnrm;
|
|
}
|
|
}
|
|
|
|
if (bnrm > 0.) {
|
|
dlascl_("G", &c_n1, &c_n1, &bnrm, &c_b27, n, n, &b[b_offset], ldb, &
|
|
iinfo);
|
|
if (iinfo != 0) {
|
|
*info = *n + 10;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Permute the matrix to make it more nearly triangular */
|
|
/* Workspace layout: (8*N words -- "work" requires 6*N words) */
|
|
/* left_permutation, right_permutation, work... */
|
|
|
|
ileft = 1;
|
|
iright = *n + 1;
|
|
iwork = iright + *n;
|
|
dggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
|
|
ileft], &work[iright], &work[iwork], &iinfo);
|
|
if (iinfo != 0) {
|
|
*info = *n + 1;
|
|
goto L120;
|
|
}
|
|
|
|
/* Reduce B to triangular form, and initialize VL and/or VR */
|
|
/* Workspace layout: ("work..." must have at least N words) */
|
|
/* left_permutation, right_permutation, tau, work... */
|
|
|
|
irows = ihi + 1 - ilo;
|
|
if (ilv) {
|
|
icols = *n + 1 - ilo;
|
|
} else {
|
|
icols = irows;
|
|
}
|
|
itau = iwork;
|
|
iwork = itau + irows;
|
|
i__1 = *lwork + 1 - iwork;
|
|
dgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
|
|
iwork], &i__1, &iinfo);
|
|
if (iinfo >= 0) {
|
|
/* Computing MAX */
|
|
i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
|
|
lwkopt = f2cmax(i__1,i__2);
|
|
}
|
|
if (iinfo != 0) {
|
|
*info = *n + 2;
|
|
goto L120;
|
|
}
|
|
|
|
i__1 = *lwork + 1 - iwork;
|
|
dormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
|
|
work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, &
|
|
iinfo);
|
|
if (iinfo >= 0) {
|
|
/* Computing MAX */
|
|
i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
|
|
lwkopt = f2cmax(i__1,i__2);
|
|
}
|
|
if (iinfo != 0) {
|
|
*info = *n + 3;
|
|
goto L120;
|
|
}
|
|
|
|
if (ilvl) {
|
|
dlaset_("Full", n, n, &c_b38, &c_b27, &vl[vl_offset], ldvl)
|
|
;
|
|
i__1 = irows - 1;
|
|
i__2 = irows - 1;
|
|
dlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[ilo +
|
|
1 + ilo * vl_dim1], ldvl);
|
|
i__1 = *lwork + 1 - iwork;
|
|
dorgqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[
|
|
itau], &work[iwork], &i__1, &iinfo);
|
|
if (iinfo >= 0) {
|
|
/* Computing MAX */
|
|
i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
|
|
lwkopt = f2cmax(i__1,i__2);
|
|
}
|
|
if (iinfo != 0) {
|
|
*info = *n + 4;
|
|
goto L120;
|
|
}
|
|
}
|
|
|
|
if (ilvr) {
|
|
dlaset_("Full", n, n, &c_b38, &c_b27, &vr[vr_offset], ldvr)
|
|
;
|
|
}
|
|
|
|
/* Reduce to generalized Hessenberg form */
|
|
|
|
if (ilv) {
|
|
|
|
/* Eigenvectors requested -- work on whole matrix. */
|
|
|
|
dgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
|
|
ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &iinfo);
|
|
} else {
|
|
dgghrd_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda,
|
|
&b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
|
|
vr_offset], ldvr, &iinfo);
|
|
}
|
|
if (iinfo != 0) {
|
|
*info = *n + 5;
|
|
goto L120;
|
|
}
|
|
|
|
/* Perform QZ algorithm */
|
|
/* Workspace layout: ("work..." must have at least 1 word) */
|
|
/* left_permutation, right_permutation, work... */
|
|
|
|
iwork = itau;
|
|
if (ilv) {
|
|
*(unsigned char *)chtemp = 'S';
|
|
} else {
|
|
*(unsigned char *)chtemp = 'E';
|
|
}
|
|
i__1 = *lwork + 1 - iwork;
|
|
dhgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[
|
|
b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset],
|
|
ldvl, &vr[vr_offset], ldvr, &work[iwork], &i__1, &iinfo);
|
|
if (iinfo >= 0) {
|
|
/* Computing MAX */
|
|
i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
|
|
lwkopt = f2cmax(i__1,i__2);
|
|
}
|
|
if (iinfo != 0) {
|
|
if (iinfo > 0 && iinfo <= *n) {
|
|
*info = iinfo;
|
|
} else if (iinfo > *n && iinfo <= *n << 1) {
|
|
*info = iinfo - *n;
|
|
} else {
|
|
*info = *n + 6;
|
|
}
|
|
goto L120;
|
|
}
|
|
|
|
if (ilv) {
|
|
|
|
/* Compute Eigenvectors (DTGEVC requires 6*N words of workspace) */
|
|
|
|
if (ilvl) {
|
|
if (ilvr) {
|
|
*(unsigned char *)chtemp = 'B';
|
|
} else {
|
|
*(unsigned char *)chtemp = 'L';
|
|
}
|
|
} else {
|
|
*(unsigned char *)chtemp = 'R';
|
|
}
|
|
|
|
dtgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb,
|
|
&vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[
|
|
iwork], &iinfo);
|
|
if (iinfo != 0) {
|
|
*info = *n + 7;
|
|
goto L120;
|
|
}
|
|
|
|
/* Undo balancing on VL and VR, rescale */
|
|
|
|
if (ilvl) {
|
|
dggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
|
|
vl[vl_offset], ldvl, &iinfo);
|
|
if (iinfo != 0) {
|
|
*info = *n + 8;
|
|
goto L120;
|
|
}
|
|
i__1 = *n;
|
|
for (jc = 1; jc <= i__1; ++jc) {
|
|
if (alphai[jc] < 0.) {
|
|
goto L50;
|
|
}
|
|
temp = 0.;
|
|
if (alphai[jc] == 0.) {
|
|
i__2 = *n;
|
|
for (jr = 1; jr <= i__2; ++jr) {
|
|
/* Computing MAX */
|
|
d__2 = temp, d__3 = (d__1 = vl[jr + jc * vl_dim1],
|
|
abs(d__1));
|
|
temp = f2cmax(d__2,d__3);
|
|
/* L10: */
|
|
}
|
|
} else {
|
|
i__2 = *n;
|
|
for (jr = 1; jr <= i__2; ++jr) {
|
|
/* Computing MAX */
|
|
d__3 = temp, d__4 = (d__1 = vl[jr + jc * vl_dim1],
|
|
abs(d__1)) + (d__2 = vl[jr + (jc + 1) *
|
|
vl_dim1], abs(d__2));
|
|
temp = f2cmax(d__3,d__4);
|
|
/* L20: */
|
|
}
|
|
}
|
|
if (temp < safmin) {
|
|
goto L50;
|
|
}
|
|
temp = 1. / temp;
|
|
if (alphai[jc] == 0.) {
|
|
i__2 = *n;
|
|
for (jr = 1; jr <= i__2; ++jr) {
|
|
vl[jr + jc * vl_dim1] *= temp;
|
|
/* L30: */
|
|
}
|
|
} else {
|
|
i__2 = *n;
|
|
for (jr = 1; jr <= i__2; ++jr) {
|
|
vl[jr + jc * vl_dim1] *= temp;
|
|
vl[jr + (jc + 1) * vl_dim1] *= temp;
|
|
/* L40: */
|
|
}
|
|
}
|
|
L50:
|
|
;
|
|
}
|
|
}
|
|
if (ilvr) {
|
|
dggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
|
|
vr[vr_offset], ldvr, &iinfo);
|
|
if (iinfo != 0) {
|
|
*info = *n + 9;
|
|
goto L120;
|
|
}
|
|
i__1 = *n;
|
|
for (jc = 1; jc <= i__1; ++jc) {
|
|
if (alphai[jc] < 0.) {
|
|
goto L100;
|
|
}
|
|
temp = 0.;
|
|
if (alphai[jc] == 0.) {
|
|
i__2 = *n;
|
|
for (jr = 1; jr <= i__2; ++jr) {
|
|
/* Computing MAX */
|
|
d__2 = temp, d__3 = (d__1 = vr[jr + jc * vr_dim1],
|
|
abs(d__1));
|
|
temp = f2cmax(d__2,d__3);
|
|
/* L60: */
|
|
}
|
|
} else {
|
|
i__2 = *n;
|
|
for (jr = 1; jr <= i__2; ++jr) {
|
|
/* Computing MAX */
|
|
d__3 = temp, d__4 = (d__1 = vr[jr + jc * vr_dim1],
|
|
abs(d__1)) + (d__2 = vr[jr + (jc + 1) *
|
|
vr_dim1], abs(d__2));
|
|
temp = f2cmax(d__3,d__4);
|
|
/* L70: */
|
|
}
|
|
}
|
|
if (temp < safmin) {
|
|
goto L100;
|
|
}
|
|
temp = 1. / temp;
|
|
if (alphai[jc] == 0.) {
|
|
i__2 = *n;
|
|
for (jr = 1; jr <= i__2; ++jr) {
|
|
vr[jr + jc * vr_dim1] *= temp;
|
|
/* L80: */
|
|
}
|
|
} else {
|
|
i__2 = *n;
|
|
for (jr = 1; jr <= i__2; ++jr) {
|
|
vr[jr + jc * vr_dim1] *= temp;
|
|
vr[jr + (jc + 1) * vr_dim1] *= temp;
|
|
/* L90: */
|
|
}
|
|
}
|
|
L100:
|
|
;
|
|
}
|
|
}
|
|
|
|
/* End of eigenvector calculation */
|
|
|
|
}
|
|
|
|
/* Undo scaling in alpha, beta */
|
|
|
|
/* Note: this does not give the alpha and beta for the unscaled */
|
|
/* problem. */
|
|
|
|
/* Un-scaling is limited to avoid underflow in alpha and beta */
|
|
/* if they are significant. */
|
|
|
|
i__1 = *n;
|
|
for (jc = 1; jc <= i__1; ++jc) {
|
|
absar = (d__1 = alphar[jc], abs(d__1));
|
|
absai = (d__1 = alphai[jc], abs(d__1));
|
|
absb = (d__1 = beta[jc], abs(d__1));
|
|
salfar = anrm * alphar[jc];
|
|
salfai = anrm * alphai[jc];
|
|
sbeta = bnrm * beta[jc];
|
|
ilimit = FALSE_;
|
|
scale = 1.;
|
|
|
|
/* Check for significant underflow in ALPHAI */
|
|
|
|
/* Computing MAX */
|
|
d__1 = safmin, d__2 = eps * absar, d__1 = f2cmax(d__1,d__2), d__2 = eps *
|
|
absb;
|
|
if (abs(salfai) < safmin && absai >= f2cmax(d__1,d__2)) {
|
|
ilimit = TRUE_;
|
|
/* Computing MAX */
|
|
d__1 = onepls * safmin, d__2 = anrm2 * absai;
|
|
scale = onepls * safmin / anrm1 / f2cmax(d__1,d__2);
|
|
|
|
} else if (salfai == 0.) {
|
|
|
|
/* If insignificant underflow in ALPHAI, then make the */
|
|
/* conjugate eigenvalue real. */
|
|
|
|
if (alphai[jc] < 0. && jc > 1) {
|
|
alphai[jc - 1] = 0.;
|
|
} else if (alphai[jc] > 0. && jc < *n) {
|
|
alphai[jc + 1] = 0.;
|
|
}
|
|
}
|
|
|
|
/* Check for significant underflow in ALPHAR */
|
|
|
|
/* Computing MAX */
|
|
d__1 = safmin, d__2 = eps * absai, d__1 = f2cmax(d__1,d__2), d__2 = eps *
|
|
absb;
|
|
if (abs(salfar) < safmin && absar >= f2cmax(d__1,d__2)) {
|
|
ilimit = TRUE_;
|
|
/* Computing MAX */
|
|
/* Computing MAX */
|
|
d__3 = onepls * safmin, d__4 = anrm2 * absar;
|
|
d__1 = scale, d__2 = onepls * safmin / anrm1 / f2cmax(d__3,d__4);
|
|
scale = f2cmax(d__1,d__2);
|
|
}
|
|
|
|
/* Check for significant underflow in BETA */
|
|
|
|
/* Computing MAX */
|
|
d__1 = safmin, d__2 = eps * absar, d__1 = f2cmax(d__1,d__2), d__2 = eps *
|
|
absai;
|
|
if (abs(sbeta) < safmin && absb >= f2cmax(d__1,d__2)) {
|
|
ilimit = TRUE_;
|
|
/* Computing MAX */
|
|
/* Computing MAX */
|
|
d__3 = onepls * safmin, d__4 = bnrm2 * absb;
|
|
d__1 = scale, d__2 = onepls * safmin / bnrm1 / f2cmax(d__3,d__4);
|
|
scale = f2cmax(d__1,d__2);
|
|
}
|
|
|
|
/* Check for possible overflow when limiting scaling */
|
|
|
|
if (ilimit) {
|
|
/* Computing MAX */
|
|
d__1 = abs(salfar), d__2 = abs(salfai), d__1 = f2cmax(d__1,d__2),
|
|
d__2 = abs(sbeta);
|
|
temp = scale * safmin * f2cmax(d__1,d__2);
|
|
if (temp > 1.) {
|
|
scale /= temp;
|
|
}
|
|
if (scale < 1.) {
|
|
ilimit = FALSE_;
|
|
}
|
|
}
|
|
|
|
/* Recompute un-scaled ALPHAR, ALPHAI, BETA if necessary. */
|
|
|
|
if (ilimit) {
|
|
salfar = scale * alphar[jc] * anrm;
|
|
salfai = scale * alphai[jc] * anrm;
|
|
sbeta = scale * beta[jc] * bnrm;
|
|
}
|
|
alphar[jc] = salfar;
|
|
alphai[jc] = salfai;
|
|
beta[jc] = sbeta;
|
|
/* L110: */
|
|
}
|
|
|
|
L120:
|
|
work[1] = (doublereal) lwkopt;
|
|
|
|
return;
|
|
|
|
/* End of DGEGV */
|
|
|
|
} /* dgegv_ */
|
|
|