1274 lines
33 KiB
C
1274 lines
33 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef int logical;
|
|
typedef short int shortlogical;
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
#define F2C_proc_par_types 1
|
|
|
|
static float spow_ui(float x, integer n) {
|
|
float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static real c_b32 = 0.f;
|
|
|
|
/* > \brief \b SLAMCHF77 deprecated */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* REAL FUNCTION SLAMCH( CMACH ) */
|
|
|
|
/* CHARACTER CMACH */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > SLAMCH determines single precision machine parameters. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] CMACH */
|
|
/* > \verbatim */
|
|
/* > Specifies the value to be returned by SLAMCH: */
|
|
/* > = 'E' or 'e', SLAMCH := eps */
|
|
/* > = 'S' or 's , SLAMCH := sfmin */
|
|
/* > = 'B' or 'b', SLAMCH := base */
|
|
/* > = 'P' or 'p', SLAMCH := eps*base */
|
|
/* > = 'N' or 'n', SLAMCH := t */
|
|
/* > = 'R' or 'r', SLAMCH := rnd */
|
|
/* > = 'M' or 'm', SLAMCH := emin */
|
|
/* > = 'U' or 'u', SLAMCH := rmin */
|
|
/* > = 'L' or 'l', SLAMCH := emax */
|
|
/* > = 'O' or 'o', SLAMCH := rmax */
|
|
/* > where */
|
|
/* > eps = relative machine precision */
|
|
/* > sfmin = safe minimum, such that 1/sfmin does not overflow */
|
|
/* > base = base of the machine */
|
|
/* > prec = eps*base */
|
|
/* > t = number of (base) digits in the mantissa */
|
|
/* > rnd = 1.0 when rounding occurs in addition, 0.0 otherwise */
|
|
/* > emin = minimum exponent before (gradual) underflow */
|
|
/* > rmin = underflow threshold - base**(emin-1) */
|
|
/* > emax = largest exponent before overflow */
|
|
/* > rmax = overflow threshold - (base**emax)*(1-eps) */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date April 2012 */
|
|
|
|
/* > \ingroup auxOTHERauxiliary */
|
|
|
|
/* ===================================================================== */
|
|
real slamch_(char *cmach)
|
|
{
|
|
/* Initialized data */
|
|
|
|
static logical first = TRUE_;
|
|
|
|
/* System generated locals */
|
|
integer i__1;
|
|
real ret_val;
|
|
|
|
/* Local variables */
|
|
static real base;
|
|
integer beta;
|
|
static real emin, prec, emax;
|
|
integer imin, imax;
|
|
logical lrnd;
|
|
static real rmin, rmax, t;
|
|
real rmach;
|
|
extern logical lsame_(char *, char *);
|
|
real small;
|
|
static real sfmin;
|
|
extern /* Subroutine */ int slamc2_(integer *, integer *, logical *, real
|
|
*, integer *, real *, integer *, real *);
|
|
integer it;
|
|
static real rnd, eps;
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.7.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* April 2012 */
|
|
|
|
|
|
if (first) {
|
|
slamc2_(&beta, &it, &lrnd, &eps, &imin, &rmin, &imax, &rmax);
|
|
base = (real) beta;
|
|
t = (real) it;
|
|
if (lrnd) {
|
|
rnd = 1.f;
|
|
i__1 = 1 - it;
|
|
eps = pow_ri(&base, &i__1) / 2;
|
|
} else {
|
|
rnd = 0.f;
|
|
i__1 = 1 - it;
|
|
eps = pow_ri(&base, &i__1);
|
|
}
|
|
prec = eps * base;
|
|
emin = (real) imin;
|
|
emax = (real) imax;
|
|
sfmin = rmin;
|
|
small = 1.f / rmax;
|
|
if (small >= sfmin) {
|
|
|
|
/* Use SMALL plus a bit, to avoid the possibility of rounding */
|
|
/* causing overflow when computing 1/sfmin. */
|
|
|
|
sfmin = small * (eps + 1.f);
|
|
}
|
|
}
|
|
|
|
if (lsame_(cmach, "E")) {
|
|
rmach = eps;
|
|
} else if (lsame_(cmach, "S")) {
|
|
rmach = sfmin;
|
|
} else if (lsame_(cmach, "B")) {
|
|
rmach = base;
|
|
} else if (lsame_(cmach, "P")) {
|
|
rmach = prec;
|
|
} else if (lsame_(cmach, "N")) {
|
|
rmach = t;
|
|
} else if (lsame_(cmach, "R")) {
|
|
rmach = rnd;
|
|
} else if (lsame_(cmach, "M")) {
|
|
rmach = emin;
|
|
} else if (lsame_(cmach, "U")) {
|
|
rmach = rmin;
|
|
} else if (lsame_(cmach, "L")) {
|
|
rmach = emax;
|
|
} else if (lsame_(cmach, "O")) {
|
|
rmach = rmax;
|
|
}
|
|
|
|
ret_val = rmach;
|
|
first = FALSE_;
|
|
return ret_val;
|
|
|
|
/* End of SLAMCH */
|
|
|
|
} /* slamch_ */
|
|
|
|
|
|
/* *********************************************************************** */
|
|
|
|
/* > \brief \b SLAMC1 */
|
|
/* > \details */
|
|
/* > \b Purpose: */
|
|
/* > \verbatim */
|
|
/* > SLAMC1 determines the machine parameters given by BETA, T, RND, and */
|
|
/* > IEEE1. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] BETA */
|
|
/* > \verbatim */
|
|
/* > The base of the machine. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] T */
|
|
/* > \verbatim */
|
|
/* > The number of ( BETA ) digits in the mantissa. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] RND */
|
|
/* > \verbatim */
|
|
/* > Specifies whether proper rounding ( RND = .TRUE. ) or */
|
|
/* > chopping ( RND = .FALSE. ) occurs in addition. This may not */
|
|
/* > be a reliable guide to the way in which the machine performs */
|
|
/* > its arithmetic. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] IEEE1 */
|
|
/* > \verbatim */
|
|
/* > Specifies whether rounding appears to be done in the IEEE */
|
|
/* > 'round to nearest' style. */
|
|
/* > \endverbatim */
|
|
/* > \author LAPACK is a software package provided by Univ. of Tennessee, Univ. of California Berkeley, Univ.
|
|
of Colorado Denver and NAG Ltd.. */
|
|
/* > \date April 2012 */
|
|
/* > \ingroup auxOTHERauxiliary */
|
|
/* > */
|
|
/* > \details \b Further \b Details */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > The routine is based on the routine ENVRON by Malcolm and */
|
|
/* > incorporates suggestions by Gentleman and Marovich. See */
|
|
/* > */
|
|
/* > Malcolm M. A. (1972) Algorithms to reveal properties of */
|
|
/* > floating-point arithmetic. Comms. of the ACM, 15, 949-951. */
|
|
/* > */
|
|
/* > Gentleman W. M. and Marovich S. B. (1974) More on algorithms */
|
|
/* > that reveal properties of floating point arithmetic units. */
|
|
/* > Comms. of the ACM, 17, 276-277. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* Subroutine */ int slamc1_(integer *beta, integer *t, logical *rnd, logical
|
|
*ieee1)
|
|
{
|
|
/* Initialized data */
|
|
|
|
static logical first = TRUE_;
|
|
|
|
/* System generated locals */
|
|
real r__1, r__2;
|
|
|
|
/* Local variables */
|
|
static logical lrnd;
|
|
real a, b, c__, f;
|
|
static integer lbeta;
|
|
real savec;
|
|
static logical lieee1;
|
|
real t1, t2;
|
|
extern real slamc3_(real *, real *);
|
|
static integer lt;
|
|
real one, qtr;
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.7.0) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2010 */
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
if (first) {
|
|
one = 1.f;
|
|
|
|
/* LBETA, LIEEE1, LT and LRND are the local values of BETA, */
|
|
/* IEEE1, T and RND. */
|
|
|
|
/* Throughout this routine we use the function SLAMC3 to ensure */
|
|
/* that relevant values are stored and not held in registers, or */
|
|
/* are not affected by optimizers. */
|
|
|
|
/* Compute a = 2.0**m with the smallest positive integer m such */
|
|
/* that */
|
|
|
|
/* fl( a + 1.0 ) = a. */
|
|
|
|
a = 1.f;
|
|
c__ = 1.f;
|
|
|
|
/* + WHILE( C.EQ.ONE )LOOP */
|
|
L10:
|
|
if (c__ == one) {
|
|
a *= 2;
|
|
c__ = slamc3_(&a, &one);
|
|
r__1 = -a;
|
|
c__ = slamc3_(&c__, &r__1);
|
|
goto L10;
|
|
}
|
|
/* + END WHILE */
|
|
|
|
/* Now compute b = 2.0**m with the smallest positive integer m */
|
|
/* such that */
|
|
|
|
/* fl( a + b ) .gt. a. */
|
|
|
|
b = 1.f;
|
|
c__ = slamc3_(&a, &b);
|
|
|
|
/* + WHILE( C.EQ.A )LOOP */
|
|
L20:
|
|
if (c__ == a) {
|
|
b *= 2;
|
|
c__ = slamc3_(&a, &b);
|
|
goto L20;
|
|
}
|
|
/* + END WHILE */
|
|
|
|
/* Now compute the base. a and c are neighbouring floating point */
|
|
/* numbers in the interval ( beta**t, beta**( t + 1 ) ) and so */
|
|
/* their difference is beta. Adding 0.25 to c is to ensure that it */
|
|
/* is truncated to beta and not ( beta - 1 ). */
|
|
|
|
qtr = one / 4;
|
|
savec = c__;
|
|
r__1 = -a;
|
|
c__ = slamc3_(&c__, &r__1);
|
|
lbeta = c__ + qtr;
|
|
|
|
/* Now determine whether rounding or chopping occurs, by adding a */
|
|
/* bit less than beta/2 and a bit more than beta/2 to a. */
|
|
|
|
b = (real) lbeta;
|
|
r__1 = b / 2;
|
|
r__2 = -b / 100;
|
|
f = slamc3_(&r__1, &r__2);
|
|
c__ = slamc3_(&f, &a);
|
|
if (c__ == a) {
|
|
lrnd = TRUE_;
|
|
} else {
|
|
lrnd = FALSE_;
|
|
}
|
|
r__1 = b / 2;
|
|
r__2 = b / 100;
|
|
f = slamc3_(&r__1, &r__2);
|
|
c__ = slamc3_(&f, &a);
|
|
if (lrnd && c__ == a) {
|
|
lrnd = FALSE_;
|
|
}
|
|
|
|
/* Try and decide whether rounding is done in the IEEE 'round to */
|
|
/* nearest' style. B/2 is half a unit in the last place of the two */
|
|
/* numbers A and SAVEC. Furthermore, A is even, i.e. has last bit */
|
|
/* zero, and SAVEC is odd. Thus adding B/2 to A should not change */
|
|
/* A, but adding B/2 to SAVEC should change SAVEC. */
|
|
|
|
r__1 = b / 2;
|
|
t1 = slamc3_(&r__1, &a);
|
|
r__1 = b / 2;
|
|
t2 = slamc3_(&r__1, &savec);
|
|
lieee1 = t1 == a && t2 > savec && lrnd;
|
|
|
|
/* Now find the mantissa, t. It should be the integer part of */
|
|
/* log to the base beta of a, however it is safer to determine t */
|
|
/* by powering. So we find t as the smallest positive integer for */
|
|
/* which */
|
|
|
|
/* fl( beta**t + 1.0 ) = 1.0. */
|
|
|
|
lt = 0;
|
|
a = 1.f;
|
|
c__ = 1.f;
|
|
|
|
/* + WHILE( C.EQ.ONE )LOOP */
|
|
L30:
|
|
if (c__ == one) {
|
|
++lt;
|
|
a *= lbeta;
|
|
c__ = slamc3_(&a, &one);
|
|
r__1 = -a;
|
|
c__ = slamc3_(&c__, &r__1);
|
|
goto L30;
|
|
}
|
|
/* + END WHILE */
|
|
|
|
}
|
|
|
|
*beta = lbeta;
|
|
*t = lt;
|
|
*rnd = lrnd;
|
|
*ieee1 = lieee1;
|
|
first = FALSE_;
|
|
return 0;
|
|
|
|
/* End of SLAMC1 */
|
|
|
|
} /* slamc1_ */
|
|
|
|
|
|
/* *********************************************************************** */
|
|
|
|
/* > \brief \b SLAMC2 */
|
|
/* > \details */
|
|
/* > \b Purpose: */
|
|
/* > \verbatim */
|
|
/* > SLAMC2 determines the machine parameters specified in its argument */
|
|
/* > list. */
|
|
/* > \endverbatim */
|
|
/* > \author LAPACK is a software package provided by Univ. of Tennessee, Univ. of California Berkeley, Univ.
|
|
of Colorado Denver and NAG Ltd.. */
|
|
/* > \date April 2012 */
|
|
/* > \ingroup auxOTHERauxiliary */
|
|
/* > */
|
|
/* > \param[out] BETA */
|
|
/* > \verbatim */
|
|
/* > The base of the machine. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] T */
|
|
/* > \verbatim */
|
|
/* > The number of ( BETA ) digits in the mantissa. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] RND */
|
|
/* > \verbatim */
|
|
/* > Specifies whether proper rounding ( RND = .TRUE. ) or */
|
|
/* > chopping ( RND = .FALSE. ) occurs in addition. This may not */
|
|
/* > be a reliable guide to the way in which the machine performs */
|
|
/* > its arithmetic. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] EPS */
|
|
/* > \verbatim */
|
|
/* > The smallest positive number such that */
|
|
/* > fl( 1.0 - EPS ) .LT. 1.0, */
|
|
/* > where fl denotes the computed value. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] EMIN */
|
|
/* > \verbatim */
|
|
/* > The minimum exponent before (gradual) underflow occurs. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] RMIN */
|
|
/* > \verbatim */
|
|
/* > The smallest normalized number for the machine, given by */
|
|
/* > BASE**( EMIN - 1 ), where BASE is the floating point value */
|
|
/* > of BETA. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] EMAX */
|
|
/* > \verbatim */
|
|
/* > The maximum exponent before overflow occurs. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] RMAX */
|
|
/* > \verbatim */
|
|
/* > The largest positive number for the machine, given by */
|
|
/* > BASE**EMAX * ( 1 - EPS ), where BASE is the floating point */
|
|
/* > value of BETA. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \details \b Further \b Details */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > The computation of EPS is based on a routine PARANOIA by */
|
|
/* > W. Kahan of the University of California at Berkeley. */
|
|
/* > \endverbatim */
|
|
/* Subroutine */ int slamc2_(integer *beta, integer *t, logical *rnd, real *
|
|
eps, integer *emin, real *rmin, integer *emax, real *rmax)
|
|
{
|
|
/* Initialized data */
|
|
|
|
static logical first = TRUE_;
|
|
static logical iwarn = FALSE_;
|
|
|
|
/* Format strings */
|
|
static char fmt_9999[] = "(//\002 WARNING. The value EMIN may be incorre"
|
|
"ct:-\002,\002 EMIN = \002,i8,/\002 If, after inspection, the va"
|
|
"lue EMIN looks\002,\002 acceptable please comment out \002,/\002"
|
|
" the IF block as marked within the code of routine\002,\002 SLAM"
|
|
"C2,\002,/\002 otherwise supply EMIN explicitly.\002,/)";
|
|
|
|
/* System generated locals */
|
|
integer i__1;
|
|
real r__1, r__2, r__3, r__4, r__5;
|
|
|
|
/* Local variables */
|
|
logical ieee;
|
|
real half;
|
|
logical lrnd;
|
|
static real leps;
|
|
real zero, a, b, c__;
|
|
integer i__;
|
|
static integer lbeta;
|
|
real rbase;
|
|
static integer lemin, lemax;
|
|
integer gnmin;
|
|
real small;
|
|
integer gpmin;
|
|
real third;
|
|
static real lrmin, lrmax;
|
|
real sixth;
|
|
logical lieee1;
|
|
extern /* Subroutine */ int slamc1_(integer *, integer *, logical *,
|
|
logical *);
|
|
extern real slamc3_(real *, real *);
|
|
extern /* Subroutine */ int slamc4_(integer *, real *, integer *),
|
|
slamc5_(integer *, integer *, integer *, logical *, integer *,
|
|
real *);
|
|
static integer lt;
|
|
integer ngnmin, ngpmin;
|
|
real one, two;
|
|
|
|
/* Fortran I/O blocks */
|
|
static cilist io___58 = { 0, 6, 0, fmt_9999, 0 };
|
|
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.7.0) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2010 */
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
if (first) {
|
|
zero = 0.f;
|
|
one = 1.f;
|
|
two = 2.f;
|
|
|
|
/* LBETA, LT, LRND, LEPS, LEMIN and LRMIN are the local values of */
|
|
/* BETA, T, RND, EPS, EMIN and RMIN. */
|
|
|
|
/* Throughout this routine we use the function SLAMC3 to ensure */
|
|
/* that relevant values are stored and not held in registers, or */
|
|
/* are not affected by optimizers. */
|
|
|
|
/* SLAMC1 returns the parameters LBETA, LT, LRND and LIEEE1. */
|
|
|
|
slamc1_(&lbeta, <, &lrnd, &lieee1);
|
|
|
|
/* Start to find EPS. */
|
|
|
|
b = (real) lbeta;
|
|
i__1 = -lt;
|
|
a = pow_ri(&b, &i__1);
|
|
leps = a;
|
|
|
|
/* Try some tricks to see whether or not this is the correct EPS. */
|
|
|
|
b = two / 3;
|
|
half = one / 2;
|
|
r__1 = -half;
|
|
sixth = slamc3_(&b, &r__1);
|
|
third = slamc3_(&sixth, &sixth);
|
|
r__1 = -half;
|
|
b = slamc3_(&third, &r__1);
|
|
b = slamc3_(&b, &sixth);
|
|
b = abs(b);
|
|
if (b < leps) {
|
|
b = leps;
|
|
}
|
|
|
|
leps = 1.f;
|
|
|
|
/* + WHILE( ( LEPS.GT.B ).AND.( B.GT.ZERO ) )LOOP */
|
|
L10:
|
|
if (leps > b && b > zero) {
|
|
leps = b;
|
|
r__1 = half * leps;
|
|
/* Computing 5th power */
|
|
r__3 = two, r__4 = r__3, r__3 *= r__3;
|
|
/* Computing 2nd power */
|
|
r__5 = leps;
|
|
r__2 = r__4 * (r__3 * r__3) * (r__5 * r__5);
|
|
c__ = slamc3_(&r__1, &r__2);
|
|
r__1 = -c__;
|
|
c__ = slamc3_(&half, &r__1);
|
|
b = slamc3_(&half, &c__);
|
|
r__1 = -b;
|
|
c__ = slamc3_(&half, &r__1);
|
|
b = slamc3_(&half, &c__);
|
|
goto L10;
|
|
}
|
|
/* + END WHILE */
|
|
|
|
if (a < leps) {
|
|
leps = a;
|
|
}
|
|
|
|
/* Computation of EPS complete. */
|
|
|
|
/* Now find EMIN. Let A = + or - 1, and + or - (1 + BASE**(-3)). */
|
|
/* Keep dividing A by BETA until (gradual) underflow occurs. This */
|
|
/* is detected when we cannot recover the previous A. */
|
|
|
|
rbase = one / lbeta;
|
|
small = one;
|
|
for (i__ = 1; i__ <= 3; ++i__) {
|
|
r__1 = small * rbase;
|
|
small = slamc3_(&r__1, &zero);
|
|
/* L20: */
|
|
}
|
|
a = slamc3_(&one, &small);
|
|
slamc4_(&ngpmin, &one, &lbeta);
|
|
r__1 = -one;
|
|
slamc4_(&ngnmin, &r__1, &lbeta);
|
|
slamc4_(&gpmin, &a, &lbeta);
|
|
r__1 = -a;
|
|
slamc4_(&gnmin, &r__1, &lbeta);
|
|
ieee = FALSE_;
|
|
|
|
if (ngpmin == ngnmin && gpmin == gnmin) {
|
|
if (ngpmin == gpmin) {
|
|
lemin = ngpmin;
|
|
/* ( Non twos-complement machines, no gradual underflow; */
|
|
/* e.g., VAX ) */
|
|
} else if (gpmin - ngpmin == 3) {
|
|
lemin = ngpmin - 1 + lt;
|
|
ieee = TRUE_;
|
|
/* ( Non twos-complement machines, with gradual underflow; */
|
|
/* e.g., IEEE standard followers ) */
|
|
} else {
|
|
lemin = f2cmin(ngpmin,gpmin);
|
|
/* ( A guess; no known machine ) */
|
|
iwarn = TRUE_;
|
|
}
|
|
|
|
} else if (ngpmin == gpmin && ngnmin == gnmin) {
|
|
if ((i__1 = ngpmin - ngnmin, abs(i__1)) == 1) {
|
|
lemin = f2cmax(ngpmin,ngnmin);
|
|
/* ( Twos-complement machines, no gradual underflow; */
|
|
/* e.g., CYBER 205 ) */
|
|
} else {
|
|
lemin = f2cmin(ngpmin,ngnmin);
|
|
/* ( A guess; no known machine ) */
|
|
iwarn = TRUE_;
|
|
}
|
|
|
|
} else if ((i__1 = ngpmin - ngnmin, abs(i__1)) == 1 && gpmin == gnmin)
|
|
{
|
|
if (gpmin - f2cmin(ngpmin,ngnmin) == 3) {
|
|
lemin = f2cmax(ngpmin,ngnmin) - 1 + lt;
|
|
/* ( Twos-complement machines with gradual underflow; */
|
|
/* no known machine ) */
|
|
} else {
|
|
lemin = f2cmin(ngpmin,ngnmin);
|
|
/* ( A guess; no known machine ) */
|
|
iwarn = TRUE_;
|
|
}
|
|
|
|
} else {
|
|
/* Computing MIN */
|
|
i__1 = f2cmin(ngpmin,ngnmin), i__1 = f2cmin(i__1,gpmin);
|
|
lemin = f2cmin(i__1,gnmin);
|
|
/* ( A guess; no known machine ) */
|
|
iwarn = TRUE_;
|
|
}
|
|
first = FALSE_;
|
|
/* ** */
|
|
/* Comment out this if block if EMIN is ok */
|
|
/*
|
|
if (iwarn) {
|
|
first = TRUE_;
|
|
s_wsfe(&io___58);
|
|
do_fio(&c__1, (char *)&lemin, (ftnlen)sizeof(integer));
|
|
e_wsfe();
|
|
}
|
|
*/
|
|
/* ** */
|
|
|
|
/* Assume IEEE arithmetic if we found denormalised numbers above, */
|
|
/* or if arithmetic seems to round in the IEEE style, determined */
|
|
/* in routine SLAMC1. A true IEEE machine should have both things */
|
|
/* true; however, faulty machines may have one or the other. */
|
|
|
|
ieee = ieee || lieee1;
|
|
|
|
/* Compute RMIN by successive division by BETA. We could compute */
|
|
/* RMIN as BASE**( EMIN - 1 ), but some machines underflow during */
|
|
/* this computation. */
|
|
|
|
lrmin = 1.f;
|
|
i__1 = 1 - lemin;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
r__1 = lrmin * rbase;
|
|
lrmin = slamc3_(&r__1, &zero);
|
|
/* L30: */
|
|
}
|
|
|
|
/* Finally, call SLAMC5 to compute EMAX and RMAX. */
|
|
|
|
slamc5_(&lbeta, <, &lemin, &ieee, &lemax, &lrmax);
|
|
}
|
|
|
|
*beta = lbeta;
|
|
*t = lt;
|
|
*rnd = lrnd;
|
|
*eps = leps;
|
|
*emin = lemin;
|
|
*rmin = lrmin;
|
|
*emax = lemax;
|
|
*rmax = lrmax;
|
|
|
|
return 0;
|
|
|
|
|
|
/* End of SLAMC2 */
|
|
|
|
} /* slamc2_ */
|
|
|
|
|
|
/* *********************************************************************** */
|
|
|
|
/* > \brief \b SLAMC3 */
|
|
/* > \details */
|
|
/* > \b Purpose: */
|
|
/* > \verbatim */
|
|
/* > SLAMC3 is intended to force A and B to be stored prior to doing */
|
|
/* > the addition of A and B , for use in situations where optimizers */
|
|
/* > might hold one of these in a register. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] A */
|
|
/* > */
|
|
/* > \param[in] B */
|
|
/* > \verbatim */
|
|
/* > The values A and B. */
|
|
/* > \endverbatim */
|
|
real slamc3_(real *a, real *b)
|
|
{
|
|
/* System generated locals */
|
|
real ret_val;
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.7.0) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2010 */
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
ret_val = *a + *b;
|
|
|
|
return ret_val;
|
|
|
|
/* End of SLAMC3 */
|
|
|
|
} /* slamc3_ */
|
|
|
|
|
|
/* *********************************************************************** */
|
|
|
|
/* > \brief \b SLAMC4 */
|
|
/* > \details */
|
|
/* > \b Purpose: */
|
|
/* > \verbatim */
|
|
/* > SLAMC4 is a service routine for SLAMC2. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] EMIN */
|
|
/* > \verbatim */
|
|
/* > The minimum exponent before (gradual) underflow, computed by */
|
|
/* > setting A = START and dividing by BASE until the previous A */
|
|
/* > can not be recovered. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] START */
|
|
/* > \verbatim */
|
|
/* > The starting point for determining EMIN. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] BASE */
|
|
/* > \verbatim */
|
|
/* > The base of the machine. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* Subroutine */ int slamc4_(integer *emin, real *start, integer *base)
|
|
{
|
|
/* System generated locals */
|
|
integer i__1;
|
|
real r__1;
|
|
|
|
/* Local variables */
|
|
real zero, a;
|
|
integer i__;
|
|
real rbase, b1, b2, c1, c2, d1, d2;
|
|
extern real slamc3_(real *, real *);
|
|
real one;
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.7.0) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2010 */
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
a = *start;
|
|
one = 1.f;
|
|
rbase = one / *base;
|
|
zero = 0.f;
|
|
*emin = 1;
|
|
r__1 = a * rbase;
|
|
b1 = slamc3_(&r__1, &zero);
|
|
c1 = a;
|
|
c2 = a;
|
|
d1 = a;
|
|
d2 = a;
|
|
/* + WHILE( ( C1.EQ.A ).AND.( C2.EQ.A ).AND. */
|
|
/* $ ( D1.EQ.A ).AND.( D2.EQ.A ) )LOOP */
|
|
L10:
|
|
if (c1 == a && c2 == a && d1 == a && d2 == a) {
|
|
--(*emin);
|
|
a = b1;
|
|
r__1 = a / *base;
|
|
b1 = slamc3_(&r__1, &zero);
|
|
r__1 = b1 * *base;
|
|
c1 = slamc3_(&r__1, &zero);
|
|
d1 = zero;
|
|
i__1 = *base;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
d1 += b1;
|
|
/* L20: */
|
|
}
|
|
r__1 = a * rbase;
|
|
b2 = slamc3_(&r__1, &zero);
|
|
r__1 = b2 / rbase;
|
|
c2 = slamc3_(&r__1, &zero);
|
|
d2 = zero;
|
|
i__1 = *base;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
d2 += b2;
|
|
/* L30: */
|
|
}
|
|
goto L10;
|
|
}
|
|
/* + END WHILE */
|
|
|
|
return 0;
|
|
|
|
/* End of SLAMC4 */
|
|
|
|
} /* slamc4_ */
|
|
|
|
|
|
/* *********************************************************************** */
|
|
|
|
/* > \brief \b SLAMC5 */
|
|
/* > \details */
|
|
/* > \b Purpose: */
|
|
/* > \verbatim */
|
|
/* > SLAMC5 attempts to compute RMAX, the largest machine floating-point */
|
|
/* > number, without overflow. It assumes that EMAX + abs(EMIN) sum */
|
|
/* > approximately to a power of 2. It will fail on machines where this */
|
|
/* > assumption does not hold, for example, the Cyber 205 (EMIN = -28625, */
|
|
/* > EMAX = 28718). It will also fail if the value supplied for EMIN is */
|
|
/* > too large (i.e. too close to zero), probably with overflow. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] BETA */
|
|
/* > \verbatim */
|
|
/* > The base of floating-point arithmetic. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] P */
|
|
/* > \verbatim */
|
|
/* > The number of base BETA digits in the mantissa of a */
|
|
/* > floating-point value. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] EMIN */
|
|
/* > \verbatim */
|
|
/* > The minimum exponent before (gradual) underflow. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] IEEE */
|
|
/* > \verbatim */
|
|
/* > A logical flag specifying whether or not the arithmetic */
|
|
/* > system is thought to comply with the IEEE standard. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] EMAX */
|
|
/* > \verbatim */
|
|
/* > The largest exponent before overflow */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] RMAX */
|
|
/* > \verbatim */
|
|
/* > The largest machine floating-point number. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* Subroutine */ int slamc5_(integer *beta, integer *p, integer *emin,
|
|
logical *ieee, integer *emax, real *rmax)
|
|
{
|
|
/* System generated locals */
|
|
integer i__1;
|
|
real r__1;
|
|
|
|
/* Local variables */
|
|
integer lexp;
|
|
real oldy;
|
|
integer uexp, i__;
|
|
real y, z__;
|
|
integer nbits;
|
|
extern real slamc3_(real *, real *);
|
|
real recbas;
|
|
integer exbits, expsum, try__;
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.7.0) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2010 */
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
/* First compute LEXP and UEXP, two powers of 2 that bound */
|
|
/* abs(EMIN). We then assume that EMAX + abs(EMIN) will sum */
|
|
/* approximately to the bound that is closest to abs(EMIN). */
|
|
/* (EMAX is the exponent of the required number RMAX). */
|
|
|
|
lexp = 1;
|
|
exbits = 1;
|
|
L10:
|
|
try__ = lexp << 1;
|
|
if (try__ <= -(*emin)) {
|
|
lexp = try__;
|
|
++exbits;
|
|
goto L10;
|
|
}
|
|
if (lexp == -(*emin)) {
|
|
uexp = lexp;
|
|
} else {
|
|
uexp = try__;
|
|
++exbits;
|
|
}
|
|
|
|
/* Now -LEXP is less than or equal to EMIN, and -UEXP is greater */
|
|
/* than or equal to EMIN. EXBITS is the number of bits needed to */
|
|
/* store the exponent. */
|
|
|
|
if (uexp + *emin > -lexp - *emin) {
|
|
expsum = lexp << 1;
|
|
} else {
|
|
expsum = uexp << 1;
|
|
}
|
|
|
|
/* EXPSUM is the exponent range, approximately equal to */
|
|
/* EMAX - EMIN + 1 . */
|
|
|
|
*emax = expsum + *emin - 1;
|
|
nbits = exbits + 1 + *p;
|
|
|
|
/* NBITS is the total number of bits needed to store a */
|
|
/* floating-point number. */
|
|
|
|
if (nbits % 2 == 1 && *beta == 2) {
|
|
|
|
/* Either there are an odd number of bits used to store a */
|
|
/* floating-point number, which is unlikely, or some bits are */
|
|
/* not used in the representation of numbers, which is possible, */
|
|
/* (e.g. Cray machines) or the mantissa has an implicit bit, */
|
|
/* (e.g. IEEE machines, Dec Vax machines), which is perhaps the */
|
|
/* most likely. We have to assume the last alternative. */
|
|
/* If this is true, then we need to reduce EMAX by one because */
|
|
/* there must be some way of representing zero in an implicit-bit */
|
|
/* system. On machines like Cray, we are reducing EMAX by one */
|
|
/* unnecessarily. */
|
|
|
|
--(*emax);
|
|
}
|
|
|
|
if (*ieee) {
|
|
|
|
/* Assume we are on an IEEE machine which reserves one exponent */
|
|
/* for infinity and NaN. */
|
|
|
|
--(*emax);
|
|
}
|
|
|
|
/* Now create RMAX, the largest machine number, which should */
|
|
/* be equal to (1.0 - BETA**(-P)) * BETA**EMAX . */
|
|
|
|
/* First compute 1.0 - BETA**(-P), being careful that the */
|
|
/* result is less than 1.0 . */
|
|
|
|
recbas = 1.f / *beta;
|
|
z__ = *beta - 1.f;
|
|
y = 0.f;
|
|
i__1 = *p;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
z__ *= recbas;
|
|
if (y < 1.f) {
|
|
oldy = y;
|
|
}
|
|
y = slamc3_(&y, &z__);
|
|
/* L20: */
|
|
}
|
|
if (y >= 1.f) {
|
|
y = oldy;
|
|
}
|
|
|
|
/* Now multiply by BETA**EMAX to get RMAX. */
|
|
|
|
i__1 = *emax;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
r__1 = y * *beta;
|
|
y = slamc3_(&r__1, &c_b32);
|
|
/* L30: */
|
|
}
|
|
|
|
*rmax = y;
|
|
return 0;
|
|
|
|
/* End of SLAMC5 */
|
|
|
|
} /* slamc5_ */
|
|
|