289 lines
9.0 KiB
C
289 lines
9.0 KiB
C
/***************************************************************************
|
|
Copyright (c) 2013-2019, The OpenBLAS Project
|
|
All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in
|
|
the documentation and/or other materials provided with the
|
|
distribution.
|
|
3. Neither the name of the OpenBLAS project nor the names of
|
|
its contributors may be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*****************************************************************************/
|
|
#include "common.h"
|
|
#include <math.h>
|
|
#include <altivec.h>
|
|
|
|
|
|
#if defined(DOUBLE)
|
|
#define ABS fabs
|
|
#else
|
|
#define ABS fabsf
|
|
#endif
|
|
|
|
/**
|
|
* Find maximum index
|
|
* Warning: requirements n>0 and n % 64 == 0
|
|
* @param n
|
|
* @param x pointer to the vector
|
|
* @param maxf (out) maximum absolute value .( only for output )
|
|
* @return index
|
|
*/
|
|
static BLASLONG siamax_kernel_64(BLASLONG n, FLOAT *x, FLOAT *maxf) {
|
|
BLASLONG index;
|
|
BLASLONG i=0;
|
|
register __vector unsigned int static_index0 = {0,1,2,3};
|
|
register __vector unsigned int temp0 = {4,4,4, 4}; //temporary vector register
|
|
register __vector unsigned int temp1= temp0<<1; //{8,8,8,8}
|
|
register __vector unsigned int static_index1=static_index0 +temp0;//{4,5,6,7};
|
|
register __vector unsigned int static_index2=static_index0 +temp1;//{8,9,10,11};
|
|
register __vector unsigned int static_index3=static_index1 +temp1; //{12,13,14,15};
|
|
temp0=vec_xor(temp0,temp0);
|
|
temp1=temp1 <<1 ; //{16,16,16,16}
|
|
register __vector unsigned int quadruple_indices=temp0;//{0,0,0,0}
|
|
register __vector float quadruple_values={0,0,0,0};
|
|
register __vector float * v_ptrx=(__vector float *)x;
|
|
for(; i<n; i+=64){
|
|
//absolute temporary vectors
|
|
register __vector float v0=vec_abs(v_ptrx[0]);
|
|
register __vector float v1=vec_abs(v_ptrx[1]);
|
|
register __vector float v2=vec_abs(v_ptrx[2]);
|
|
register __vector float v3=vec_abs(v_ptrx[3]);
|
|
register __vector float v4=vec_abs(v_ptrx[4]);
|
|
register __vector float v5=vec_abs(v_ptrx[5]);
|
|
register __vector float v6=vec_abs(v_ptrx[6]);
|
|
register __vector float v7=vec_abs(v_ptrx[7]);
|
|
//cmp quadruple pairs
|
|
register __vector bool int r1=vec_cmpgt(v1,v0);
|
|
register __vector bool int r2=vec_cmpgt(v3,v2);
|
|
register __vector bool int r3=vec_cmpgt(v5,v4);
|
|
register __vector bool int r4=vec_cmpgt(v7,v6);
|
|
|
|
//select
|
|
register __vector unsigned int ind0_first= vec_sel(static_index0,static_index1,r1);
|
|
register __vector float vf0= vec_sel(v0,v1,r1);
|
|
|
|
register __vector unsigned int ind1= vec_sel(static_index2,static_index3,r2);
|
|
register __vector float vf1= vec_sel(v2,v3,r2);
|
|
|
|
register __vector unsigned int ind2= vec_sel(static_index0,static_index1,r3);
|
|
v0=vec_sel(v4,v5,r3);
|
|
|
|
register __vector unsigned int ind3= vec_sel(static_index2,static_index3,r4);
|
|
v1=vec_sel(v6,v7,r4);
|
|
|
|
// cmp selected
|
|
r1=vec_cmpgt(vf1,vf0);
|
|
r2=vec_cmpgt(v1,v0);
|
|
|
|
v_ptrx+=8;
|
|
//select from above
|
|
ind0_first= vec_sel(ind0_first,ind1,r1);
|
|
vf0= vec_sel(vf0,vf1,r1) ;
|
|
|
|
ind2= vec_sel(ind2,ind3,r2);
|
|
vf1= vec_sel(v0,v1,r2);
|
|
|
|
//second indices actually should be within [16,31] so ind2+16
|
|
ind2 +=temp1;
|
|
|
|
//final cmp and select index and value for the first 32 values
|
|
r1=vec_cmpgt(vf1,vf0);
|
|
ind0_first = vec_sel(ind0_first,ind2,r1);
|
|
vf0= vec_sel(vf0,vf1,r1);
|
|
|
|
ind0_first+=temp0; //get absolute index
|
|
|
|
temp0+=temp1;
|
|
temp0+=temp1; //temp0+32
|
|
//second part of 32
|
|
// absolute temporary vectors
|
|
v0=vec_abs(v_ptrx[0]);
|
|
v1=vec_abs(v_ptrx[1]);
|
|
v2=vec_abs(v_ptrx[2]);
|
|
v3=vec_abs(v_ptrx[3]);
|
|
v4=vec_abs(v_ptrx[4]);
|
|
v5=vec_abs(v_ptrx[5]);
|
|
v6=vec_abs(v_ptrx[6]);
|
|
v7=vec_abs(v_ptrx[7]);
|
|
//cmp quadruple pairs
|
|
r1=vec_cmpgt(v1,v0);
|
|
r2=vec_cmpgt(v3,v2);
|
|
r3=vec_cmpgt(v5,v4);
|
|
r4=vec_cmpgt(v7,v6);
|
|
//select
|
|
register __vector unsigned int ind0_second= vec_sel(static_index0,static_index1,r1);
|
|
register __vector float vv0= vec_sel(v0,v1,r1);
|
|
|
|
ind1= vec_sel(static_index2,static_index3,r2);
|
|
register __vector float vv1= vec_sel(v2,v3,r2);
|
|
|
|
ind2= vec_sel(static_index0,static_index1,r3);
|
|
v0=vec_sel(v4,v5,r3);
|
|
|
|
ind3= vec_sel(static_index2,static_index3,r4);
|
|
v1=vec_sel(v6,v7,r4);
|
|
|
|
// cmp selected
|
|
r1=vec_cmpgt(vv1,vv0);
|
|
r2=vec_cmpgt(v1,v0);
|
|
|
|
v_ptrx+=8;
|
|
//select from above
|
|
ind0_second= vec_sel(ind0_second,ind1,r1);
|
|
vv0= vec_sel(vv0,vv1,r1) ;
|
|
|
|
ind2= vec_sel(ind2,ind3,r2);
|
|
vv1= vec_sel(v0,v1,r2) ;
|
|
|
|
//second indices actually should be within [16,31] so ind2+16
|
|
ind2 +=temp1;
|
|
|
|
//final cmp and select index and value for the second 32 values
|
|
r1=vec_cmpgt(vv1,vv0);
|
|
ind0_second = vec_sel(ind0_second,ind2,r1);
|
|
vv0= vec_sel(vv0,vv1,r1);
|
|
|
|
ind0_second+=temp0; //get absolute index
|
|
|
|
//find final quadruple from 64 elements
|
|
r2=vec_cmpgt(vv0,vf0);
|
|
ind2 = vec_sel( ind0_first,ind0_second,r2);
|
|
vv0= vec_sel(vf0,vv0,r2);
|
|
|
|
//compare with old quadruple and update
|
|
r3=vec_cmpgt(vv0,quadruple_values);
|
|
quadruple_indices = vec_sel( quadruple_indices,ind2,r3);
|
|
quadruple_values= vec_sel(quadruple_values,vv0,r3);
|
|
|
|
temp0+=temp1;
|
|
temp0+=temp1; //temp0+32
|
|
|
|
}
|
|
|
|
//now we have to chose from 4 values and 4 different indices
|
|
// we will compare pairwise if pairs are exactly the same we will choose minimum between index
|
|
// otherwise we will assign index of the maximum value
|
|
float a1,a2,a3,a4;
|
|
unsigned int i1,i2,i3,i4;
|
|
a1=vec_extract(quadruple_values,0);
|
|
a2=vec_extract(quadruple_values,1);
|
|
a3=vec_extract(quadruple_values,2);
|
|
a4=vec_extract(quadruple_values,3);
|
|
i1=vec_extract(quadruple_indices,0);
|
|
i2=vec_extract(quadruple_indices,1);
|
|
i3=vec_extract(quadruple_indices,2);
|
|
i4=vec_extract(quadruple_indices,3);
|
|
if(a1==a2){
|
|
index=i1>i2?i2:i1;
|
|
}else if(a2>a1){
|
|
index=i2;
|
|
a1=a2;
|
|
}else{
|
|
index= i1;
|
|
}
|
|
|
|
if(a4==a3){
|
|
i1=i3>i4?i4:i3;
|
|
}else if(a4>a3){
|
|
i1=i4;
|
|
a3=a4;
|
|
}else{
|
|
i1= i3;
|
|
}
|
|
|
|
if(a1==a3){
|
|
index=i1>index?index:i1;
|
|
*maxf=a1;
|
|
}else if(a3>a1){
|
|
index=i1;
|
|
*maxf=a3;
|
|
}else{
|
|
*maxf=a1;
|
|
}
|
|
return index;
|
|
|
|
}
|
|
|
|
BLASLONG CNAME(BLASLONG n, FLOAT *x, BLASLONG inc_x) {
|
|
BLASLONG i = 0;
|
|
BLASLONG j = 0;
|
|
FLOAT maxf = 0.0;
|
|
BLASLONG max = 0;
|
|
|
|
if (n <= 0 || inc_x <= 0) return (max);
|
|
|
|
if (inc_x == 1) {
|
|
|
|
BLASLONG n1 = n & -64;
|
|
if (n1 > 0) {
|
|
|
|
max = siamax_kernel_64(n1, x, &maxf);
|
|
|
|
i = n1;
|
|
}
|
|
|
|
while (i < n) {
|
|
if (ABS(x[i]) > maxf) {
|
|
max = i;
|
|
maxf = ABS(x[i]);
|
|
}
|
|
i++;
|
|
}
|
|
return (max + 1);
|
|
|
|
} else {
|
|
|
|
BLASLONG n1 = n & -4;
|
|
while (j < n1) {
|
|
|
|
if (ABS(x[i]) > maxf) {
|
|
max = j;
|
|
maxf = ABS(x[i]);
|
|
}
|
|
if (ABS(x[i + inc_x]) > maxf) {
|
|
max = j + 1;
|
|
maxf = ABS(x[i + inc_x]);
|
|
}
|
|
if (ABS(x[i + 2 * inc_x]) > maxf) {
|
|
max = j + 2;
|
|
maxf = ABS(x[i + 2 * inc_x]);
|
|
}
|
|
if (ABS(x[i + 3 * inc_x]) > maxf) {
|
|
max = j + 3;
|
|
maxf = ABS(x[i + 3 * inc_x]);
|
|
}
|
|
|
|
i += inc_x * 4;
|
|
|
|
j += 4;
|
|
|
|
}
|
|
|
|
|
|
while (j < n) {
|
|
if (ABS(x[i]) > maxf) {
|
|
max = j;
|
|
maxf = ABS(x[i]);
|
|
}
|
|
i += inc_x;
|
|
j++;
|
|
}
|
|
return (max + 1);
|
|
}
|
|
}
|