183 lines
4.5 KiB
C
183 lines
4.5 KiB
C
#include <math.h>
|
|
#include <float.h>
|
|
#include "common.h"
|
|
#ifdef FUNCTION_PROFILE
|
|
#include "functable.h"
|
|
#endif
|
|
|
|
|
|
#ifndef CBLAS
|
|
void NAME(FLOAT *DA, FLOAT *DB, FLOAT *C, FLOAT *S){
|
|
|
|
#else
|
|
void CNAME(void *VDA, void *VDB, FLOAT *C, void *VS) {
|
|
FLOAT *DA = (FLOAT*) VDA;
|
|
FLOAT *DB = (FLOAT*) VDB;
|
|
FLOAT *S = (FLOAT*) VS;
|
|
#endif /* CBLAS */
|
|
|
|
#ifdef DOUBLE
|
|
long double safmin = DBL_MIN;
|
|
long double rtmin = sqrt(DBL_MIN/DBL_EPSILON);
|
|
#else
|
|
long double safmin = FLT_MIN;
|
|
long double rtmin = sqrt(FLT_MIN/FLT_EPSILON);
|
|
#endif
|
|
|
|
|
|
FLOAT da_r = *(DA+0);
|
|
FLOAT da_i = *(DA+1);
|
|
FLOAT db_r = *(DB+0);
|
|
FLOAT db_i = *(DB+1);
|
|
//long double r;
|
|
FLOAT S1[2];
|
|
FLOAT R[2];
|
|
long double d;
|
|
|
|
FLOAT ada = da_r * da_r + da_i * da_i;
|
|
FLOAT adb = db_r * db_r + db_i * db_i;
|
|
|
|
PRINT_DEBUG_NAME;
|
|
|
|
IDEBUG_START;
|
|
|
|
FUNCTION_PROFILE_START();
|
|
|
|
if (db_r == ZERO && db_i == ZERO) {
|
|
*C = ONE;
|
|
*(S + 0) = ZERO;
|
|
*(S + 1) = ZERO;
|
|
return;
|
|
}
|
|
|
|
long double safmax = 1./safmin;
|
|
#if defined DOUBLE
|
|
long double rtmax = safmax /DBL_EPSILON;
|
|
#else
|
|
long double rtmax = safmax /FLT_EPSILON;
|
|
#endif
|
|
*(S1 + 0) = *(DB + 0);
|
|
*(S1 + 1) = *(DB + 1) *-1;
|
|
if (da_r == ZERO && da_i == ZERO) {
|
|
*C = ZERO;
|
|
if (db_r == ZERO) {
|
|
(*DA) = fabsl(db_i);
|
|
*S = *S1 /(*DA);
|
|
*(S+1) = *(S1+1) /(*DA);
|
|
return;
|
|
} else if ( db_i == ZERO) {
|
|
*DA = fabsl(db_r);
|
|
*S = *S1 /(*DA);
|
|
*(S+1) = *(S1+1) /(*DA);
|
|
return;
|
|
} else {
|
|
long double g1 = MAX( fabsl(db_r), fabsl(db_i));
|
|
rtmax =sqrt(safmax/2.);
|
|
if (g1 > rtmin && g1 < rtmax) { // unscaled
|
|
d = sqrt(adb);
|
|
*S = *S1 /d;
|
|
*(S+1) = *(S1+1) /d;
|
|
*DA = d ;
|
|
*(DA+1) = ZERO;
|
|
return;
|
|
} else { // scaled algorithm
|
|
long double u = MIN ( safmax, MAX ( safmin, g1));
|
|
FLOAT gs_r = db_r/u;
|
|
FLOAT gs_i = db_i/u;
|
|
d = sqrt ( gs_r*gs_r + gs_i*gs_i);
|
|
*S = gs_r / d;
|
|
*(S + 1) = (gs_i * -1) / d;
|
|
*DA = d * u;
|
|
*(DA+1) = ZERO;
|
|
return;
|
|
}
|
|
}
|
|
} else {
|
|
FLOAT f1 = MAX ( fabsl(da_r), fabsl(da_i));
|
|
FLOAT g1 = MAX ( fabsl(db_r), fabsl(db_i));
|
|
rtmax = sqrt(safmax / 4.);
|
|
if ( f1 > rtmin && f1 < rtmax && g1 > rtmin && g1 < rtmax) { //unscaled
|
|
long double h = ada + adb;
|
|
double adahsq = sqrt(ada * h);
|
|
if (ada >= h *safmin) {
|
|
*C = sqrt(ada/h);
|
|
*R = *DA / *C;
|
|
*(R+1) = *(DA+1) / *C;
|
|
rtmax *= 2.;
|
|
if ( ada > rtmin && h < rtmax) { // no risk of intermediate overflow
|
|
*S = *S1 * (*DA / adahsq) - *(S1+1)* (*(DA+1)/adahsq);
|
|
*(S+1) = *S1 * (*(DA+1) / adahsq) + *(S1+1) * (*DA/adahsq);
|
|
} else {
|
|
*S = *S1 * (*R/h) - *(S1+1) * (*(R+1)/h);
|
|
*(S+1) = *S1 * (*(R+1)/h) + *(S1+1) * (*(R)/h);
|
|
}
|
|
} else {
|
|
*C = ada / adahsq;
|
|
if (*C >= safmin) {
|
|
*R = *DA / *C;
|
|
*(R+1) = *(DA+1) / *C;
|
|
} else {
|
|
*R = *DA * (h / adahsq);
|
|
*(R+1) = *(DA+1) * (h / adahsq);
|
|
}
|
|
*S = *S1 * ada / adahsq;
|
|
*(S+1) = *(S1+1) * ada / adahsq;
|
|
}
|
|
*DA=*R;
|
|
*(DA+1)=*(R+1);
|
|
return;
|
|
} else { // scaled
|
|
FLOAT fs_r, fs_i, gs_r, gs_i;
|
|
long double v,w,f2,g2,h;
|
|
long double u = MIN ( safmax, MAX ( safmin, MAX(f1,g1)));
|
|
gs_r = db_r/u;
|
|
gs_i = db_i/u;
|
|
g2 = sqrt ( gs_r*gs_r + gs_i*gs_i);
|
|
if (f1 /u < rtmin) {
|
|
v = MIN (safmax, MAX (safmin, f1));
|
|
w = v / u;
|
|
fs_r = *DA/ v;
|
|
fs_i = *(DA+1) / v;
|
|
f2 = sqrt ( fs_r*fs_r + fs_i*fs_i);
|
|
h = f2 * w * w + g2;
|
|
} else { // use same scaling for both
|
|
w = 1.;
|
|
fs_r = *DA/ u;
|
|
fs_i = *(DA+1) / u;
|
|
f2 = sqrt ( fs_r*fs_r + fs_i*fs_i);
|
|
h = f2 + g2;
|
|
}
|
|
if ( f2 >= h * safmin) {
|
|
*C = sqrt ( f2 / h );
|
|
*DA = fs_r / *C;
|
|
*(DA+1) = fs_i / *C;
|
|
rtmax *= 2;
|
|
if ( f2 > rtmin && h < rtmax) {
|
|
*S = gs_r * (fs_r /sqrt(f2*h)) - gs_i * (fs_i / sqrt(f2*h));
|
|
*(S+1) = gs_r * (fs_i /sqrt(f2*h)) + gs_i * -1. * (fs_r / sqrt(f2*h));
|
|
} else {
|
|
*S = gs_r * (*DA/h) - gs_i * (*(DA+1) / h);
|
|
*(S+1) = gs_r * (*(DA+1) /h) + gs_i * -1. * (*DA / h);
|
|
}
|
|
} else { // intermediates might overflow
|
|
d = sqrt ( f2 * h);
|
|
*C = f2 /d;
|
|
if (*C >= safmin) {
|
|
*DA = fs_r / *C;
|
|
*(DA+1) = fs_i / *C;
|
|
} else {
|
|
*DA = fs_r * (h / d);
|
|
*(DA+1) = fs_i / (h / d);
|
|
}
|
|
*S = gs_r * (fs_r /d) - gs_i * (fs_i / d);
|
|
*(S+1) = gs_r * (fs_i /d) + gs_i * -1. * (fs_r / d);
|
|
}
|
|
*C *= w;
|
|
*DA *= u;
|
|
*(DA+1) *= u;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|