863 lines
27 KiB
C
863 lines
27 KiB
C
/*********************************************************************/
|
|
/* Copyright 2009, 2010 The University of Texas at Austin. */
|
|
/* Copyright 2023 The OpenBLAS Project. */
|
|
/* All rights reserved. */
|
|
/* */
|
|
/* Redistribution and use in source and binary forms, with or */
|
|
/* without modification, are permitted provided that the following */
|
|
/* conditions are met: */
|
|
/* */
|
|
/* 1. Redistributions of source code must retain the above */
|
|
/* copyright notice, this list of conditions and the following */
|
|
/* disclaimer. */
|
|
/* */
|
|
/* 2. Redistributions in binary form must reproduce the above */
|
|
/* copyright notice, this list of conditions and the following */
|
|
/* disclaimer in the documentation and/or other materials */
|
|
/* provided with the distribution. */
|
|
/* */
|
|
/* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
|
|
/* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
|
|
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
|
|
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
|
|
/* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
|
|
/* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
|
|
/* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
|
|
/* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
|
|
/* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
|
|
/* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
|
|
/* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
|
|
/* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
|
|
/* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
|
|
/* POSSIBILITY OF SUCH DAMAGE. */
|
|
/* */
|
|
/* The views and conclusions contained in the software and */
|
|
/* documentation are those of the authors and should not be */
|
|
/* interpreted as representing official policies, either expressed */
|
|
/* or implied, of The University of Texas at Austin. */
|
|
/*********************************************************************/
|
|
|
|
#ifndef CACHE_LINE_SIZE
|
|
#define CACHE_LINE_SIZE 8
|
|
#endif
|
|
|
|
#ifndef DIVIDE_RATE
|
|
#define DIVIDE_RATE 2
|
|
#endif
|
|
|
|
#ifndef GEMM_PREFERED_SIZE
|
|
#define GEMM_PREFERED_SIZE 1
|
|
#endif
|
|
|
|
//The array of job_t may overflow the stack.
|
|
//Instead, use malloc to alloc job_t.
|
|
#if MAX_CPU_NUMBER > BLAS3_MEM_ALLOC_THRESHOLD
|
|
#define USE_ALLOC_HEAP
|
|
#endif
|
|
|
|
#ifndef GEMM_LOCAL
|
|
#if defined(NN)
|
|
#define GEMM_LOCAL GEMM_NN
|
|
#elif defined(NT)
|
|
#define GEMM_LOCAL GEMM_NT
|
|
#elif defined(NR)
|
|
#define GEMM_LOCAL GEMM_NR
|
|
#elif defined(NC)
|
|
#define GEMM_LOCAL GEMM_NC
|
|
#elif defined(TN)
|
|
#define GEMM_LOCAL GEMM_TN
|
|
#elif defined(TT)
|
|
#define GEMM_LOCAL GEMM_TT
|
|
#elif defined(TR)
|
|
#define GEMM_LOCAL GEMM_TR
|
|
#elif defined(TC)
|
|
#define GEMM_LOCAL GEMM_TC
|
|
#elif defined(RN)
|
|
#define GEMM_LOCAL GEMM_RN
|
|
#elif defined(RT)
|
|
#define GEMM_LOCAL GEMM_RT
|
|
#elif defined(RR)
|
|
#define GEMM_LOCAL GEMM_RR
|
|
#elif defined(RC)
|
|
#define GEMM_LOCAL GEMM_RC
|
|
#elif defined(CN)
|
|
#define GEMM_LOCAL GEMM_CN
|
|
#elif defined(CT)
|
|
#define GEMM_LOCAL GEMM_CT
|
|
#elif defined(CR)
|
|
#define GEMM_LOCAL GEMM_CR
|
|
#elif defined(CC)
|
|
#define GEMM_LOCAL GEMM_CC
|
|
#endif
|
|
#endif
|
|
|
|
typedef struct {
|
|
volatile
|
|
BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE];
|
|
} job_t;
|
|
|
|
|
|
#ifndef BETA_OPERATION
|
|
#ifndef COMPLEX
|
|
#define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
|
|
GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
|
|
BETA[0], NULL, 0, NULL, 0, \
|
|
(FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
|
|
#else
|
|
#define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
|
|
GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
|
|
BETA[0], BETA[1], NULL, 0, NULL, 0, \
|
|
(FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef ICOPY_OPERATION
|
|
#if defined(NN) || defined(NT) || defined(NC) || defined(NR) || \
|
|
defined(RN) || defined(RT) || defined(RC) || defined(RR)
|
|
#define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (IFLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
|
|
#else
|
|
#define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (IFLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef OCOPY_OPERATION
|
|
#if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
|
|
defined(NR) || defined(TR) || defined(CR) || defined(RR)
|
|
#define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (IFLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
|
|
#else
|
|
#define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (IFLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef KERNEL_FUNC
|
|
#if defined(NN) || defined(NT) || defined(TN) || defined(TT)
|
|
#define KERNEL_FUNC GEMM_KERNEL_N
|
|
#endif
|
|
#if defined(CN) || defined(CT) || defined(RN) || defined(RT)
|
|
#define KERNEL_FUNC GEMM_KERNEL_L
|
|
#endif
|
|
#if defined(NC) || defined(TC) || defined(NR) || defined(TR)
|
|
#define KERNEL_FUNC GEMM_KERNEL_R
|
|
#endif
|
|
#if defined(CC) || defined(CR) || defined(RC) || defined(RR)
|
|
#define KERNEL_FUNC GEMM_KERNEL_B
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef KERNEL_OPERATION
|
|
#ifndef COMPLEX
|
|
#define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
|
|
KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
|
|
#else
|
|
#define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
|
|
KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef FUSED_KERNEL_OPERATION
|
|
#if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
|
|
defined(NR) || defined(TR) || defined(CR) || defined(RR)
|
|
#ifndef COMPLEX
|
|
#define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
|
|
FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], SA, SB, \
|
|
(FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
|
|
#else
|
|
#define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
|
|
FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \
|
|
(FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
|
|
|
|
#endif
|
|
#else
|
|
#ifndef COMPLEX
|
|
#define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
|
|
FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], SA, SB, \
|
|
(FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
|
|
#else
|
|
#define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
|
|
FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \
|
|
(FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef A
|
|
#define A args -> a
|
|
#endif
|
|
#ifndef LDA
|
|
#define LDA args -> lda
|
|
#endif
|
|
#ifndef B
|
|
#define B args -> b
|
|
#endif
|
|
#ifndef LDB
|
|
#define LDB args -> ldb
|
|
#endif
|
|
#ifndef C
|
|
#define C args -> c
|
|
#endif
|
|
#ifndef LDC
|
|
#define LDC args -> ldc
|
|
#endif
|
|
#ifndef M
|
|
#define M args -> m
|
|
#endif
|
|
#ifndef N
|
|
#define N args -> n
|
|
#endif
|
|
#ifndef K
|
|
#define K args -> k
|
|
#endif
|
|
|
|
#ifdef TIMING
|
|
#define START_RPCC() rpcc_counter = rpcc()
|
|
#define STOP_RPCC(COUNTER) COUNTER += rpcc() - rpcc_counter
|
|
#else
|
|
#define START_RPCC()
|
|
#define STOP_RPCC(COUNTER)
|
|
#endif
|
|
|
|
static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, IFLOAT *sa, IFLOAT *sb, BLASLONG mypos){
|
|
|
|
IFLOAT *buffer[DIVIDE_RATE];
|
|
|
|
BLASLONG k, lda, ldb, ldc;
|
|
BLASLONG m_from, m_to, n_from, n_to;
|
|
|
|
FLOAT *alpha, *beta;
|
|
IFLOAT *a, *b;
|
|
FLOAT *c;
|
|
job_t *job = (job_t *)args -> common;
|
|
|
|
BLASLONG nthreads_m;
|
|
BLASLONG mypos_m, mypos_n;
|
|
|
|
BLASLONG is, js, ls, bufferside, jjs;
|
|
BLASLONG min_i, min_l, div_n, min_jj;
|
|
|
|
BLASLONG i, current;
|
|
BLASLONG l1stride;
|
|
|
|
#ifdef TIMING
|
|
BLASULONG rpcc_counter;
|
|
BLASULONG copy_A = 0;
|
|
BLASULONG copy_B = 0;
|
|
BLASULONG kernel = 0;
|
|
BLASULONG waiting1 = 0;
|
|
BLASULONG waiting2 = 0;
|
|
BLASULONG waiting3 = 0;
|
|
BLASULONG waiting6[MAX_CPU_NUMBER];
|
|
BLASULONG ops = 0;
|
|
|
|
for (i = 0; i < args -> nthreads; i++) waiting6[i] = 0;
|
|
#endif
|
|
|
|
k = K;
|
|
|
|
a = (IFLOAT *)A;
|
|
b = (IFLOAT *)B;
|
|
c = (FLOAT *)C;
|
|
|
|
lda = LDA;
|
|
ldb = LDB;
|
|
ldc = LDC;
|
|
|
|
alpha = (FLOAT *)args -> alpha;
|
|
beta = (FLOAT *)args -> beta;
|
|
|
|
/* Initialize 2D CPU distribution */
|
|
nthreads_m = args -> nthreads;
|
|
if (range_m) {
|
|
nthreads_m = range_m[-1];
|
|
}
|
|
mypos_n = blas_quickdivide(mypos, nthreads_m); /* mypos_n = mypos / nthreads_m */
|
|
mypos_m = mypos - mypos_n * nthreads_m; /* mypos_m = mypos % nthreads_m */
|
|
|
|
/* Initialize m and n */
|
|
m_from = 0;
|
|
m_to = M;
|
|
if (range_m) {
|
|
m_from = range_m[mypos_m + 0];
|
|
m_to = range_m[mypos_m + 1];
|
|
}
|
|
n_from = 0;
|
|
n_to = N;
|
|
if (range_n) {
|
|
n_from = range_n[mypos + 0];
|
|
n_to = range_n[mypos + 1];
|
|
}
|
|
|
|
/* Multiply C by beta if needed */
|
|
if (beta) {
|
|
#ifndef COMPLEX
|
|
if (beta[0] != ONE)
|
|
#else
|
|
if ((beta[0] != ONE) || (beta[1] != ZERO))
|
|
#endif
|
|
BETA_OPERATION(m_from, m_to, range_n[mypos_n * nthreads_m], range_n[(mypos_n + 1) * nthreads_m], beta, c, ldc);
|
|
}
|
|
|
|
/* Return early if no more computation is needed */
|
|
if ((k == 0) || (alpha == NULL)) return 0;
|
|
if (alpha[0] == ZERO
|
|
#ifdef COMPLEX
|
|
&& alpha[1] == ZERO
|
|
#endif
|
|
) return 0;
|
|
|
|
/* Initialize workspace for local region of B */
|
|
div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE;
|
|
buffer[0] = sb;
|
|
for (i = 1; i < DIVIDE_RATE; i++) {
|
|
buffer[i] = buffer[i - 1] + GEMM_Q * ((div_n + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N * COMPSIZE;
|
|
}
|
|
|
|
/* Iterate through steps of k */
|
|
for(ls = 0; ls < k; ls += min_l){
|
|
|
|
/* Determine step size in k */
|
|
min_l = k - ls;
|
|
if (min_l >= GEMM_Q * 2) {
|
|
min_l = GEMM_Q;
|
|
} else {
|
|
if (min_l > GEMM_Q) min_l = (min_l + 1) / 2;
|
|
}
|
|
|
|
BLASLONG pad_min_l = min_l;
|
|
|
|
#if defined(HALF)
|
|
#if defined(DYNAMIC_ARCH)
|
|
pad_min_l = (min_l + gotoblas->sbgemm_align_k - 1) & ~(gotoblas->sbgemm_align_k-1);
|
|
#else
|
|
pad_min_l = (min_l + SBGEMM_ALIGN_K - 1) & ~(SBGEMM_ALIGN_K - 1);;
|
|
#endif
|
|
#endif
|
|
|
|
/* Determine step size in m
|
|
* Note: We are currently on the first step in m
|
|
*/
|
|
l1stride = 1;
|
|
min_i = m_to - m_from;
|
|
if (min_i >= GEMM_P * 2) {
|
|
min_i = GEMM_P;
|
|
} else {
|
|
if (min_i > GEMM_P) {
|
|
min_i = ((min_i / 2 + GEMM_UNROLL_M - 1)/GEMM_UNROLL_M) * GEMM_UNROLL_M;
|
|
} else {
|
|
if (args -> nthreads == 1) l1stride = 0;
|
|
}
|
|
}
|
|
|
|
/* Copy local region of A into workspace */
|
|
START_RPCC();
|
|
ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_from, sa);
|
|
STOP_RPCC(copy_A);
|
|
|
|
/* Copy local region of B into workspace and apply kernel */
|
|
div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE;
|
|
for (js = n_from, bufferside = 0; js < n_to; js += div_n, bufferside ++) {
|
|
|
|
/* Make sure if no one is using workspace */
|
|
START_RPCC();
|
|
for (i = 0; i < args -> nthreads; i++)
|
|
while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {YIELDING;};
|
|
STOP_RPCC(waiting1);
|
|
MB;
|
|
|
|
#if defined(FUSED_GEMM) && !defined(TIMING)
|
|
|
|
/* Fused operation to copy region of B into workspace and apply kernel */
|
|
FUSED_KERNEL_OPERATION(min_i, MIN(n_to, js + div_n) - js, min_l, alpha,
|
|
sa, buffer[bufferside], b, ldb, c, ldc, m_from, js, ls);
|
|
|
|
#else
|
|
|
|
/* Split local region of B into parts */
|
|
for(jjs = js; jjs < MIN(n_to, js + div_n); jjs += min_jj){
|
|
min_jj = MIN(n_to, js + div_n) - jjs;
|
|
#if defined(SKYLAKEX) || defined(COOPERLAKE) || defined(SAPPHIRERAPIDS)
|
|
/* the current AVX512 s/d/c/z GEMM kernel requires n>=6*GEMM_UNROLL_N to achieve the best performance */
|
|
if (min_jj >= 6*GEMM_UNROLL_N) min_jj = 6*GEMM_UNROLL_N;
|
|
#else
|
|
if (min_jj >= 3*GEMM_UNROLL_N) min_jj = 3*GEMM_UNROLL_N;
|
|
else
|
|
/*
|
|
if (min_jj >= 2*GEMM_UNROLL_N) min_jj = 2*GEMM_UNROLL_N;
|
|
else
|
|
*/
|
|
if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
|
|
#endif
|
|
/* Copy part of local region of B into workspace */
|
|
START_RPCC();
|
|
OCOPY_OPERATION(min_l, min_jj, b, ldb, ls, jjs,
|
|
buffer[bufferside] + pad_min_l * (jjs - js) * COMPSIZE * l1stride);
|
|
STOP_RPCC(copy_B);
|
|
|
|
/* Apply kernel with local region of A and part of local region of B */
|
|
START_RPCC();
|
|
KERNEL_OPERATION(min_i, min_jj, min_l, alpha,
|
|
sa, buffer[bufferside] + pad_min_l * (jjs - js) * COMPSIZE * l1stride,
|
|
c, ldc, m_from, jjs);
|
|
STOP_RPCC(kernel);
|
|
|
|
#ifdef TIMING
|
|
ops += 2 * min_i * min_jj * min_l;
|
|
#endif
|
|
|
|
}
|
|
#endif
|
|
|
|
WMB;
|
|
/* Set flag so other threads can access local region of B */
|
|
for (i = mypos_n * nthreads_m; i < (mypos_n + 1) * nthreads_m; i++)
|
|
job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
|
|
}
|
|
|
|
/* Get regions of B from other threads and apply kernel */
|
|
current = mypos;
|
|
do {
|
|
|
|
/* This thread accesses regions of B from threads in the range
|
|
* [ mypos_n * nthreads_m, (mypos_n+1) * nthreads_m ) */
|
|
current ++;
|
|
if (current >= (mypos_n + 1) * nthreads_m) current = mypos_n * nthreads_m;
|
|
|
|
/* Split other region of B into parts */
|
|
div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE;
|
|
for (js = range_n[current], bufferside = 0; js < range_n[current + 1]; js += div_n, bufferside ++) {
|
|
if (current != mypos) {
|
|
|
|
/* Wait until other region of B is initialized */
|
|
START_RPCC();
|
|
while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {YIELDING;};
|
|
STOP_RPCC(waiting2);
|
|
MB;
|
|
|
|
/* Apply kernel with local region of A and part of other region of B */
|
|
START_RPCC();
|
|
KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - js, div_n), min_l, alpha,
|
|
sa, (IFLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
|
|
c, ldc, m_from, js);
|
|
STOP_RPCC(kernel);
|
|
|
|
#ifdef TIMING
|
|
ops += 2 * min_i * MIN(range_n[current + 1] - js, div_n) * min_l;
|
|
#endif
|
|
}
|
|
|
|
/* Clear synchronization flag if this thread is done with other region of B */
|
|
if (m_to - m_from == min_i) {
|
|
WMB;
|
|
job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
|
|
}
|
|
}
|
|
} while (current != mypos);
|
|
|
|
/* Iterate through steps of m
|
|
* Note: First step has already been finished */
|
|
for(is = m_from + min_i; is < m_to; is += min_i){
|
|
min_i = m_to - is;
|
|
if (min_i >= GEMM_P * 2) {
|
|
min_i = GEMM_P;
|
|
} else
|
|
if (min_i > GEMM_P) {
|
|
min_i = (((min_i + 1) / 2 + GEMM_UNROLL_M - 1)/GEMM_UNROLL_M) * GEMM_UNROLL_M;
|
|
}
|
|
|
|
/* Copy local region of A into workspace */
|
|
START_RPCC();
|
|
ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa);
|
|
STOP_RPCC(copy_A);
|
|
|
|
/* Get regions of B and apply kernel */
|
|
current = mypos;
|
|
do {
|
|
|
|
/* Split region of B into parts and apply kernel */
|
|
div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE;
|
|
for (js = range_n[current], bufferside = 0; js < range_n[current + 1]; js += div_n, bufferside ++) {
|
|
|
|
/* Apply kernel with local region of A and part of region of B */
|
|
START_RPCC();
|
|
KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - js, div_n), min_l, alpha,
|
|
sa, (IFLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
|
|
c, ldc, is, js);
|
|
STOP_RPCC(kernel);
|
|
|
|
#ifdef TIMING
|
|
ops += 2 * min_i * MIN(range_n[current + 1] - js, div_n) * min_l;
|
|
#endif
|
|
|
|
/* Clear synchronization flag if this thread is done with region of B */
|
|
if (is + min_i >= m_to) {
|
|
WMB;
|
|
job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
|
|
}
|
|
}
|
|
|
|
/* This thread accesses regions of B from threads in the range
|
|
* [ mypos_n * nthreads_m, (mypos_n+1) * nthreads_m ) */
|
|
current ++;
|
|
if (current >= (mypos_n + 1) * nthreads_m) current = mypos_n * nthreads_m;
|
|
|
|
} while (current != mypos);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* Wait until all other threads are done with local region of B */
|
|
START_RPCC();
|
|
for (i = 0; i < args -> nthreads; i++) {
|
|
for (js = 0; js < DIVIDE_RATE; js++) {
|
|
while (job[mypos].working[i][CACHE_LINE_SIZE * js] ) {YIELDING;};
|
|
}
|
|
}
|
|
STOP_RPCC(waiting3);
|
|
MB;
|
|
|
|
#ifdef TIMING
|
|
BLASLONG waiting = waiting1 + waiting2 + waiting3;
|
|
BLASLONG total = copy_A + copy_B + kernel + waiting;
|
|
|
|
fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2f Copy_B : %6.2f Wait1 : %6.2f Wait2 : %6.2f Wait3 : %6.2f Kernel : %6.2f",
|
|
mypos, (double)copy_A /(double)total * 100., (double)copy_B /(double)total * 100.,
|
|
(double)waiting1 /(double)total * 100.,
|
|
(double)waiting2 /(double)total * 100.,
|
|
(double)waiting3 /(double)total * 100.,
|
|
(double)ops/(double)kernel / 4. * 100.);
|
|
fprintf(stderr, "\n");
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int round_up(int remainder, int width, int multiple)
|
|
{
|
|
if (multiple > remainder || width <= multiple)
|
|
return width;
|
|
width = (width + multiple - 1) / multiple;
|
|
width = width * multiple;
|
|
return width;
|
|
}
|
|
|
|
|
|
static int gemm_driver(blas_arg_t *args, BLASLONG *range_m, BLASLONG
|
|
*range_n, IFLOAT *sa, IFLOAT *sb,
|
|
BLASLONG nthreads_m, BLASLONG nthreads_n) {
|
|
|
|
#ifdef USE_OPENMP
|
|
static omp_lock_t level3_lock, critical_section_lock;
|
|
static volatile BLASLONG init_lock = 0, omp_lock_initialized = 0,
|
|
parallel_section_left = MAX_PARALLEL_NUMBER;
|
|
|
|
// Lock initialization; Todo : Maybe this part can be moved to blas_init() in blas_server_omp.c
|
|
while(omp_lock_initialized == 0)
|
|
{
|
|
blas_lock(&init_lock);
|
|
{
|
|
if(omp_lock_initialized == 0)
|
|
{
|
|
omp_init_lock(&level3_lock);
|
|
omp_init_lock(&critical_section_lock);
|
|
omp_lock_initialized = 1;
|
|
WMB;
|
|
}
|
|
blas_unlock(&init_lock);
|
|
}
|
|
}
|
|
#elif defined(OS_WINDOWS)
|
|
CRITICAL_SECTION level3_lock;
|
|
InitializeCriticalSection((PCRITICAL_SECTION)&level3_lock);
|
|
#else
|
|
static pthread_mutex_t level3_lock = PTHREAD_MUTEX_INITIALIZER;
|
|
static pthread_cond_t level3_wakeup = PTHREAD_COND_INITIALIZER;
|
|
volatile static BLASLONG CPU_AVAILABLE = MAX_CPU_NUMBER;
|
|
#endif
|
|
|
|
blas_arg_t newarg;
|
|
|
|
#ifndef USE_ALLOC_HEAP
|
|
job_t job[MAX_CPU_NUMBER];
|
|
#else
|
|
job_t * job = NULL;
|
|
#endif
|
|
|
|
blas_queue_t queue[MAX_CPU_NUMBER];
|
|
|
|
BLASLONG range_M_buffer[MAX_CPU_NUMBER + 2];
|
|
BLASLONG range_N_buffer[MAX_CPU_NUMBER + 2];
|
|
BLASLONG *range_M, *range_N;
|
|
BLASLONG num_parts;
|
|
|
|
BLASLONG nthreads = args -> nthreads;
|
|
|
|
BLASLONG width, i, j, k, js;
|
|
BLASLONG m, n, n_from, n_to;
|
|
int mode;
|
|
#if defined(DYNAMIC_ARCH)
|
|
int switch_ratio = gotoblas->switch_ratio;
|
|
#else
|
|
int switch_ratio = SWITCH_RATIO;
|
|
#endif
|
|
|
|
/* Get execution mode */
|
|
#ifndef COMPLEX
|
|
#ifdef XDOUBLE
|
|
mode = BLAS_XDOUBLE | BLAS_REAL | BLAS_NODE;
|
|
#elif defined(DOUBLE)
|
|
mode = BLAS_DOUBLE | BLAS_REAL | BLAS_NODE;
|
|
#else
|
|
mode = BLAS_SINGLE | BLAS_REAL | BLAS_NODE;
|
|
#endif
|
|
#else
|
|
#ifdef XDOUBLE
|
|
mode = BLAS_XDOUBLE | BLAS_COMPLEX | BLAS_NODE;
|
|
#elif defined(DOUBLE)
|
|
mode = BLAS_DOUBLE | BLAS_COMPLEX | BLAS_NODE;
|
|
#else
|
|
mode = BLAS_SINGLE | BLAS_COMPLEX | BLAS_NODE;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef USE_OPENMP
|
|
omp_set_lock(&level3_lock);
|
|
omp_set_lock(&critical_section_lock);
|
|
|
|
parallel_section_left--;
|
|
|
|
/*
|
|
How OpenMP locks works with NUM_PARALLEL
|
|
1) parallel_section_left = Number of available concurrent executions of OpenBLAS - Number of currently executing OpenBLAS executions
|
|
2) level3_lock is acting like a master lock or barrier which stops OpenBLAS calls when all the parallel_section are currently busy executing other OpenBLAS calls
|
|
3) critical_section_lock is used for updating variables shared between threads executing OpenBLAS calls concurrently and for unlocking of master lock whenever required
|
|
4) Unlock master lock only when we have not already exhausted all the parallel_sections and allow another thread with a OpenBLAS call to enter
|
|
*/
|
|
if(parallel_section_left != 0)
|
|
omp_unset_lock(&level3_lock);
|
|
|
|
omp_unset_lock(&critical_section_lock);
|
|
|
|
#elif defined(OS_WINDOWS)
|
|
EnterCriticalSection((PCRITICAL_SECTION)&level3_lock);
|
|
#else
|
|
pthread_mutex_lock(&level3_lock);
|
|
while(CPU_AVAILABLE < nthreads) {
|
|
pthread_cond_wait(&level3_wakeup, &level3_lock);
|
|
}
|
|
CPU_AVAILABLE -= nthreads;
|
|
WMB;
|
|
pthread_mutex_unlock(&level3_lock);
|
|
#endif
|
|
|
|
#ifdef USE_ALLOC_HEAP
|
|
/* Dynamically allocate workspace */
|
|
job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t));
|
|
if(job==NULL){
|
|
fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__);
|
|
exit(1);
|
|
}
|
|
#endif
|
|
|
|
/* Initialize struct for arguments */
|
|
newarg.m = args -> m;
|
|
newarg.n = args -> n;
|
|
newarg.k = args -> k;
|
|
newarg.a = args -> a;
|
|
newarg.b = args -> b;
|
|
newarg.c = args -> c;
|
|
newarg.lda = args -> lda;
|
|
newarg.ldb = args -> ldb;
|
|
newarg.ldc = args -> ldc;
|
|
newarg.alpha = args -> alpha;
|
|
newarg.beta = args -> beta;
|
|
newarg.nthreads = args -> nthreads;
|
|
newarg.common = (void *)job;
|
|
#ifdef PARAMTEST
|
|
newarg.gemm_p = args -> gemm_p;
|
|
newarg.gemm_q = args -> gemm_q;
|
|
newarg.gemm_r = args -> gemm_r;
|
|
#endif
|
|
|
|
/* Initialize partitions in m and n
|
|
* Note: The number of CPU partitions is stored in the -1 entry */
|
|
range_M = &range_M_buffer[1];
|
|
range_N = &range_N_buffer[1];
|
|
range_M[-1] = nthreads_m;
|
|
range_N[-1] = nthreads_n;
|
|
if (!range_m) {
|
|
range_M[0] = 0;
|
|
m = args -> m;
|
|
} else {
|
|
range_M[0] = range_m[0];
|
|
m = range_m[1] - range_m[0];
|
|
}
|
|
|
|
/* Partition m into nthreads_m regions */
|
|
num_parts = 0;
|
|
while (m > 0){
|
|
width = blas_quickdivide(m + nthreads_m - num_parts - 1, nthreads_m - num_parts);
|
|
|
|
width = round_up(m, width, GEMM_PREFERED_SIZE);
|
|
|
|
m -= width;
|
|
|
|
if (m < 0) width = width + m;
|
|
range_M[num_parts + 1] = range_M[num_parts] + width;
|
|
|
|
num_parts ++;
|
|
}
|
|
for (i = num_parts; i < MAX_CPU_NUMBER; i++) {
|
|
range_M[i + 1] = range_M[num_parts];
|
|
}
|
|
|
|
/* Initialize parameters for parallel execution */
|
|
for (i = 0; i < nthreads; i++) {
|
|
queue[i].mode = mode;
|
|
queue[i].routine = inner_thread;
|
|
queue[i].args = &newarg;
|
|
queue[i].range_m = range_M;
|
|
queue[i].range_n = range_N;
|
|
queue[i].sa = NULL;
|
|
queue[i].sb = NULL;
|
|
queue[i].next = &queue[i + 1];
|
|
}
|
|
queue[0].sa = sa;
|
|
queue[0].sb = sb;
|
|
queue[nthreads - 1].next = NULL;
|
|
|
|
/* Iterate through steps of n */
|
|
if (!range_n) {
|
|
n_from = 0;
|
|
n_to = args -> n;
|
|
} else {
|
|
n_from = range_n[0];
|
|
n_to = range_n[1];
|
|
}
|
|
for(js = n_from; js < n_to; js += GEMM_R * nthreads){
|
|
n = n_to - js;
|
|
if (n > GEMM_R * nthreads) n = GEMM_R * nthreads;
|
|
|
|
/* Partition (a step of) n into nthreads regions */
|
|
range_N[0] = js;
|
|
num_parts = 0;
|
|
while (n > 0){
|
|
width = blas_quickdivide(n + nthreads - num_parts - 1, nthreads - num_parts);
|
|
if (width < switch_ratio && width > 1) {
|
|
width = switch_ratio;
|
|
}
|
|
width = round_up(n, width, GEMM_PREFERED_SIZE);
|
|
|
|
n -= width;
|
|
if (n < 0) width = width + n;
|
|
range_N[num_parts + 1] = range_N[num_parts] + width;
|
|
|
|
num_parts ++;
|
|
}
|
|
for (j = num_parts; j < MAX_CPU_NUMBER; j++) {
|
|
range_N[j + 1] = range_N[num_parts];
|
|
}
|
|
|
|
/* Clear synchronization flags */
|
|
for (i = 0; i < nthreads; i++) {
|
|
for (j = 0; j < nthreads; j++) {
|
|
for (k = 0; k < DIVIDE_RATE; k++) {
|
|
job[i].working[j][CACHE_LINE_SIZE * k] = 0;
|
|
}
|
|
}
|
|
}
|
|
WMB;
|
|
/* Execute parallel computation */
|
|
exec_blas(nthreads, queue);
|
|
}
|
|
|
|
#ifdef USE_ALLOC_HEAP
|
|
free(job);
|
|
#endif
|
|
|
|
#ifdef USE_OPENMP
|
|
omp_set_lock(&critical_section_lock);
|
|
parallel_section_left++;
|
|
|
|
/*
|
|
Unlock master lock only when all the parallel_sections are already exhausted and one of the thread has completed its OpenBLAS call
|
|
otherwise just increment the parallel_section_left
|
|
The master lock is only locked when we have exhausted all the parallel_sections, So only unlock it then and otherwise just increment the count
|
|
*/
|
|
if(parallel_section_left == 1)
|
|
omp_unset_lock(&level3_lock);
|
|
|
|
omp_unset_lock(&critical_section_lock);
|
|
|
|
#elif defined(OS_WINDOWS)
|
|
LeaveCriticalSection((PCRITICAL_SECTION)&level3_lock);
|
|
#else
|
|
pthread_mutex_lock(&level3_lock);
|
|
CPU_AVAILABLE += nthreads;
|
|
WMB;
|
|
pthread_cond_signal(&level3_wakeup);
|
|
pthread_mutex_unlock(&level3_lock);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
int CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, IFLOAT *sa, IFLOAT *sb, BLASLONG mypos){
|
|
|
|
BLASLONG m = args -> m;
|
|
BLASLONG n = args -> n;
|
|
BLASLONG nthreads_m, nthreads_n;
|
|
#if defined(DYNAMIC_ARCH)
|
|
int switch_ratio = gotoblas->switch_ratio;
|
|
#else
|
|
int switch_ratio = SWITCH_RATIO;
|
|
#endif
|
|
|
|
/* Get dimensions from index ranges if available */
|
|
if (range_m) {
|
|
m = range_m[1] - range_m[0];
|
|
}
|
|
if (range_n) {
|
|
n = range_n[1] - range_n[0];
|
|
}
|
|
|
|
/* Partitions in m should have at least switch_ratio rows */
|
|
if (m < 2 * switch_ratio) {
|
|
nthreads_m = 1;
|
|
} else {
|
|
nthreads_m = args -> nthreads;
|
|
while (m < nthreads_m * switch_ratio) {
|
|
nthreads_m = nthreads_m / 2;
|
|
}
|
|
}
|
|
|
|
/* Partitions in n should have at most switch_ratio * nthreads_m columns */
|
|
if (n < switch_ratio * nthreads_m) {
|
|
nthreads_n = 1;
|
|
} else {
|
|
nthreads_n = (n + switch_ratio * nthreads_m - 1) / (switch_ratio * nthreads_m);
|
|
if (nthreads_m * nthreads_n > args -> nthreads) {
|
|
nthreads_n = blas_quickdivide(args -> nthreads, nthreads_m);
|
|
}
|
|
/* The nthreads_m and nthreads_n are adjusted so that the submatrix */
|
|
/* to be handled by each thread preferably becomes a square matrix */
|
|
/* by minimizing an objective function 'n * nthreads_m + m * nthreads_n'. */
|
|
/* Objective function come from sum of partitions in m and n. */
|
|
/* (n / nthreads_n) + (m / nthreads_m) */
|
|
/* = (n * nthreads_m + m * nthreads_n) / (nthreads_n * nthreads_m) */
|
|
while (nthreads_m % 2 == 0 && n * nthreads_m + m * nthreads_n > n * (nthreads_m / 2) + m * (nthreads_n * 2)) {
|
|
nthreads_m /= 2;
|
|
nthreads_n *= 2;
|
|
}
|
|
}
|
|
|
|
/* Execute serial or parallel computation */
|
|
if (nthreads_m * nthreads_n <= 1) {
|
|
GEMM_LOCAL(args, range_m, range_n, sa, sb, 0);
|
|
} else {
|
|
args -> nthreads = nthreads_m * nthreads_n;
|
|
gemm_driver(args, range_m, range_n, sa, sb, nthreads_m, nthreads_n);
|
|
}
|
|
|
|
return 0;
|
|
}
|