OpenBLAS/driver/level2/gemv_thread.c

322 lines
8.8 KiB
C

/*********************************************************************/
/* Copyright 2009, 2010 The University of Texas at Austin. */
/* All rights reserved. */
/* */
/* Redistribution and use in source and binary forms, with or */
/* without modification, are permitted provided that the following */
/* conditions are met: */
/* */
/* 1. Redistributions of source code must retain the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer. */
/* */
/* 2. Redistributions in binary form must reproduce the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer in the documentation and/or other materials */
/* provided with the distribution. */
/* */
/* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
/* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
/* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
/* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
/* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
/* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
/* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
/* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
/* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
/* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
/* POSSIBILITY OF SUCH DAMAGE. */
/* */
/* The views and conclusions contained in the software and */
/* documentation are those of the authors and should not be */
/* interpreted as representing official policies, either expressed */
/* or implied, of The University of Texas at Austin. */
/*********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include "common.h"
#ifndef TRANSA
#if !defined(CONJ) && !defined(XCONJ)
#define GEMV GEMV_N
#elif defined(CONJ) && !defined(XCONJ)
#define GEMV GEMV_R
#elif !defined(CONJ) && defined(XCONJ)
#define GEMV GEMV_O
#else
#define GEMV GEMV_S
#endif
#else
#if !defined(CONJ) && !defined(XCONJ)
#define GEMV GEMV_T
#elif defined(CONJ) && !defined(XCONJ)
#define GEMV GEMV_C
#elif !defined(CONJ) && defined(XCONJ)
#define GEMV GEMV_U
#else
#define GEMV GEMV_D
#endif
#endif
#ifndef thread_local
# if __STDC_VERSION__ >= 201112 && !defined __STDC_NO_THREADS__
# define thread_local _Thread_local
# elif defined _WIN32 && ( \
defined _MSC_VER || \
defined __ICL || \
defined __DMC__ || \
defined __BORLANDC__ )
# define thread_local __declspec(thread)
/* note that ICC (linux) and Clang are covered by __GNUC__ */
# elif (defined __GNUC__ || \
defined __SUNPRO_C || \
defined __xlC__) && !defined(__APPLE__)
# define thread_local __thread
# else
# define UNSAFE
#endif
#endif
#if defined USE_OPENMP
#undef UNSAFE
#endif
#if !defined(TRANSA) && !defined(UNSAFE)
#define Y_DUMMY_NUM 1024
#if defined(USE_OPENMP)
static FLOAT y_dummy[Y_DUMMY_NUM];
#pragma omp threadprivate(y_dummy)
# else
static thread_local FLOAT y_dummy[Y_DUMMY_NUM];
# endif
#endif
static int gemv_kernel(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *dummy1, FLOAT *buffer, BLASLONG pos){
FLOAT *a, *x, *y;
BLASLONG lda, incx, incy;
BLASLONG m_from, m_to, n_from, n_to;
a = (FLOAT *)args -> a;
x = (FLOAT *)args -> b;
y = (FLOAT *)args -> c;
lda = args -> lda;
incx = args -> ldb;
incy = args -> ldc;
m_from = 0;
m_to = args -> m;
if (range_m) {
m_from = *(range_m + 0);
m_to = *(range_m + 1);
a += m_from * COMPSIZE;
#ifndef TRANSA
y += m_from * incy * COMPSIZE;
#endif
}
n_from = 0;
n_to = args -> n;
if (range_n) {
n_from = *(range_n + 0);
n_to = *(range_n + 1);
a += n_from * lda * COMPSIZE;
#ifdef TRANSA
y += n_from * incy * COMPSIZE;
#else
# ifndef UNSAFE
//for split matrix row (n) direction and vector x of gemv_n
x += n_from * incx * COMPSIZE;
//store partial result for every thread
y += (m_to - m_from) * 1 * COMPSIZE * pos;
# endif
#endif
}
//fprintf(stderr, "M_From = %d M_To = %d N_From = %d N_To = %d POS=%d\n", m_from, m_to, n_from, n_to, pos);
GEMV(m_to - m_from, n_to - n_from, 0,
*((FLOAT *)args -> alpha + 0),
#ifdef COMPLEX
*((FLOAT *)args -> alpha + 1),
#endif
a, lda, x, incx, y, incy, buffer);
return 0;
}
#ifndef COMPLEX
int CNAME(BLASLONG m, BLASLONG n, FLOAT alpha, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *buffer, int nthreads){
#else
int CNAME(BLASLONG m, BLASLONG n, FLOAT *alpha, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *buffer, int nthreads){
#endif
blas_arg_t args;
blas_queue_t queue[MAX_CPU_NUMBER];
BLASLONG range[MAX_CPU_NUMBER + 1];
BLASLONG width, i, num_cpu;
#if !defined(TRANSA) && !defined(UNSAFE)
int split_x=0;
#endif
#ifdef SMP
#ifndef COMPLEX
#ifdef XDOUBLE
int mode = BLAS_XDOUBLE | BLAS_REAL;
#elif defined(DOUBLE)
int mode = BLAS_DOUBLE | BLAS_REAL;
#else
int mode = BLAS_SINGLE | BLAS_REAL;
#endif
#else
#ifdef XDOUBLE
int mode = BLAS_XDOUBLE | BLAS_COMPLEX;
#elif defined(DOUBLE)
int mode = BLAS_DOUBLE | BLAS_COMPLEX;
#else
int mode = BLAS_SINGLE | BLAS_COMPLEX;
#endif
#endif
#endif
args.m = m;
args.n = n;
args.a = (void *)a;
args.b = (void *)x;
args.c = (void *)y;
args.lda = lda;
args.ldb = incx;
args.ldc = incy;
#ifndef COMPLEX
args.alpha = (void *)&alpha;
#else
args.alpha = (void *) alpha;
#endif
num_cpu = 0;
range[0] = 0;
#ifndef TRANSA
i = m;
#else
i = n;
#endif
while (i > 0){
width = blas_quickdivide(i + nthreads - num_cpu - 1, nthreads - num_cpu);
if (width < 4) width = 4;
if (i < width) width = i;
range[num_cpu + 1] = range[num_cpu] + width;
queue[num_cpu].mode = mode;
queue[num_cpu].routine = gemv_kernel;
queue[num_cpu].args = &args;
#ifndef TRANSA
queue[num_cpu].range_m = &range[num_cpu];
queue[num_cpu].range_n = NULL;
#else
queue[num_cpu].range_m = NULL;
queue[num_cpu].range_n = &range[num_cpu];
#endif
queue[num_cpu].sa = NULL;
queue[num_cpu].sb = NULL;
queue[num_cpu].next = &queue[num_cpu + 1];
num_cpu ++;
i -= width;
}
#if !defined(TRANSA) && !defined(UNSAFE)
//try to split matrix on row direction and x.
//Then, reduction.
if (num_cpu < nthreads) {
//too small to split or bigger than the y_dummy buffer.
double MN = (double) m * (double) n;
if ( MN <= (24.0 * 24.0 * (double) (GEMM_MULTITHREAD_THRESHOLD*GEMM_MULTITHREAD_THRESHOLD))
|| m*COMPSIZE*nthreads > Y_DUMMY_NUM)
goto Outer;
num_cpu = 0;
range[0] = 0;
memset(y_dummy, 0, sizeof(FLOAT) * m * COMPSIZE * nthreads);
args.ldc = 1;
args.c = (void *)y_dummy;
//split on row (n) and x
i=n;
split_x=1;
while (i > 0){
width = blas_quickdivide(i + nthreads - num_cpu - 1, nthreads - num_cpu);
if (width < 4) width = 4;
if (i < width) width = i;
range[num_cpu + 1] = range[num_cpu] + width;
queue[num_cpu].mode = mode;
queue[num_cpu].routine = gemv_kernel;
queue[num_cpu].args = &args;
queue[num_cpu].position = num_cpu;
queue[num_cpu].range_m = NULL;
queue[num_cpu].range_n = &range[num_cpu];
queue[num_cpu].sa = NULL;
queue[num_cpu].sb = NULL;
queue[num_cpu].next = &queue[num_cpu + 1];
num_cpu ++;
i -= width;
}
}
Outer:
#endif
if (num_cpu) {
queue[0].sa = NULL;
queue[0].sb = buffer;
queue[num_cpu - 1].next = NULL;
exec_blas(num_cpu, queue);
}
#if !defined(TRANSA) && !defined(UNSAFE)
if(split_x==1){
//reduction
for(i=0; i<num_cpu; i++){
int j;
for(j=0; j<m; j++){
y[j*incy*COMPSIZE] +=y_dummy[i*m*COMPSIZE + j*COMPSIZE];
#ifdef COMPLEX
y[j*incy*COMPSIZE+1] +=y_dummy[i*m*COMPSIZE + j*COMPSIZE+1];
#endif
}
}
}
#endif
return 0;
}