Previous design put GCC version detection inside of OSNAME 'WINNT'.
However, such detections are required for 'Linux' and possibly other
OS'es as well. For example, there is usage of the GCC versions
in Makefile.arm64. When compiling on Linux machine, in the previous
design, Markfile.arm64 will not know the correct GCC version.
The fix is to move GCC version detection into common part, not
wrapped by anything.
Signed-off-by: Guodong Xu <guodong.xu@linaro.com>
Apply our new GEMM kernel implementation, written in C with vector intrinsics,
also for DGEMM and DTRMM on Z14 and newer (i.e., architectures with FP32 SIMD
instructions). As a result, we gain around 10% in performance on z15, in
addition to improving maintainability.
Signed-off-by: Marius Hillenbrand <mhillen@linux.ibm.com>
... since it gains another ~2% of SGEMM and DGEMM performance on z15;
also, the code just called for that cleanup.
Signed-off-by: Marius Hillenbrand <mhillen@linux.ibm.com>
Introduce inline assembly so that we can employ vector loads with
alignment hints on older compilers (pre gcc-9), since these are still
used in distributions such as RHEL 8 and Ubuntu 18.04 LTS.
Informing the hardware about alignment can speed up vector loads. For
that purpose, we can encode hints about 8-byte or 16-byte alignment of
the memory operand into the opcodes. gcc-9 and newer automatically emit
such hints, where applicable. Add a bit of inline assembly that achieves
the same for older compilers. Since an older binutils may not know about
the additional operand for the hints, we explicitly encode the opcode in
hex.
Signed-off-by: Marius Hillenbrand <mhillen@linux.ibm.com>
Change register blocking for SGEMM (and STRMM) on z14 from 8x4 to 16x4
by adjusting SGEMM_DEFAULT_UNROLL_M and choosing the appropriate copy
implementations. Actually make KERNEL.Z14 more flexible, so that the
change in param.h suffices. As a result, performance for SGEMM improves
by around 30% on z15.
On z14, FP SIMD instructions can operate on float-sized scalars in
vector registers, while z13 could do that for double-sized scalars only.
Thus, we can double the amount of elements of C that are held in
registers in an SGEMM kernel.
Signed-off-by: Marius Hillenbrand <mhillen@linux.ibm.com>