diff --git a/lapack-netlib/SRC/cgbsvx.f b/lapack-netlib/SRC/cgbsvx.f index 7b6770d20..eaab5682c 100644 --- a/lapack-netlib/SRC/cgbsvx.f +++ b/lapack-netlib/SRC/cgbsvx.f @@ -322,7 +322,7 @@ *> *> \param[out] RWORK *> \verbatim -*> RWORK is REAL array, dimension (N) +*> RWORK is REAL array, dimension (MAX(1,N)) *> On exit, RWORK(1) contains the reciprocal pivot growth *> factor norm(A)/norm(U). The "max absolute element" norm is *> used. If RWORK(1) is much less than 1, then the stability diff --git a/lapack-netlib/SRC/cgesvx.f b/lapack-netlib/SRC/cgesvx.f index 66c714bb1..74a37e9a0 100644 --- a/lapack-netlib/SRC/cgesvx.f +++ b/lapack-netlib/SRC/cgesvx.f @@ -302,7 +302,7 @@ *> *> \param[out] RWORK *> \verbatim -*> RWORK is REAL array, dimension (2*N) +*> RWORK is REAL array, dimension (MAX(1,2*N)) *> On exit, RWORK(1) contains the reciprocal pivot growth *> factor norm(A)/norm(U). The "max absolute element" norm is *> used. If RWORK(1) is much less than 1, then the stability diff --git a/lapack-netlib/SRC/dgbsvx.f b/lapack-netlib/SRC/dgbsvx.f index 030f28f0a..0ee5eecb3 100644 --- a/lapack-netlib/SRC/dgbsvx.f +++ b/lapack-netlib/SRC/dgbsvx.f @@ -316,7 +316,7 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is DOUBLE PRECISION array, dimension (3*N) +*> WORK is DOUBLE PRECISION array, dimension (MAX(1,3*N)) *> On exit, WORK(1) contains the reciprocal pivot growth *> factor norm(A)/norm(U). The "max absolute element" norm is *> used. If WORK(1) is much less than 1, then the stability diff --git a/lapack-netlib/SRC/dgesvx.f b/lapack-netlib/SRC/dgesvx.f index 4dc1d83cf..f787488dc 100644 --- a/lapack-netlib/SRC/dgesvx.f +++ b/lapack-netlib/SRC/dgesvx.f @@ -296,7 +296,7 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is DOUBLE PRECISION array, dimension (4*N) +*> WORK is DOUBLE PRECISION array, dimension (MAX(1,4*N)) *> On exit, WORK(1) contains the reciprocal pivot growth *> factor norm(A)/norm(U). The "max absolute element" norm is *> used. If WORK(1) is much less than 1, then the stability diff --git a/lapack-netlib/SRC/sgbsvx.f b/lapack-netlib/SRC/sgbsvx.f index 40829a71b..df3a721d9 100644 --- a/lapack-netlib/SRC/sgbsvx.f +++ b/lapack-netlib/SRC/sgbsvx.f @@ -316,7 +316,7 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is REAL array, dimension (3*N) +*> WORK is REAL array, dimension (MAX(1,3*N)) *> On exit, WORK(1) contains the reciprocal pivot growth *> factor norm(A)/norm(U). The "max absolute element" norm is *> used. If WORK(1) is much less than 1, then the stability diff --git a/lapack-netlib/SRC/sgesvx.f b/lapack-netlib/SRC/sgesvx.f index 930b88c33..385e626cf 100644 --- a/lapack-netlib/SRC/sgesvx.f +++ b/lapack-netlib/SRC/sgesvx.f @@ -296,7 +296,7 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is REAL array, dimension (4*N) +*> WORK is REAL array, dimension (MAX(1,4*N)) *> On exit, WORK(1) contains the reciprocal pivot growth *> factor norm(A)/norm(U). The "max absolute element" norm is *> used. If WORK(1) is much less than 1, then the stability diff --git a/lapack-netlib/SRC/zgbsvx.f b/lapack-netlib/SRC/zgbsvx.f index b6be78663..871564a81 100644 --- a/lapack-netlib/SRC/zgbsvx.f +++ b/lapack-netlib/SRC/zgbsvx.f @@ -322,7 +322,7 @@ *> *> \param[out] RWORK *> \verbatim -*> RWORK is DOUBLE PRECISION array, dimension (N) +*> RWORK is DOUBLE PRECISION array, dimension (MAX(1,N)) *> On exit, RWORK(1) contains the reciprocal pivot growth *> factor norm(A)/norm(U). The "max absolute element" norm is *> used. If RWORK(1) is much less than 1, then the stability diff --git a/lapack-netlib/SRC/zgesvx.f b/lapack-netlib/SRC/zgesvx.f index 87f36bba6..3b193a1b2 100644 --- a/lapack-netlib/SRC/zgesvx.f +++ b/lapack-netlib/SRC/zgesvx.f @@ -302,7 +302,7 @@ *> *> \param[out] RWORK *> \verbatim -*> RWORK is DOUBLE PRECISION array, dimension (2*N) +*> RWORK is DOUBLE PRECISION array, dimension (MAX(1,2*N)) *> On exit, RWORK(1) contains the reciprocal pivot growth *> factor norm(A)/norm(U). The "max absolute element" norm is *> used. If RWORK(1) is much less than 1, then the stability diff --git a/lapack-netlib/cgbsvx.f b/lapack-netlib/cgbsvx.f deleted file mode 100644 index eaab5682c..000000000 --- a/lapack-netlib/cgbsvx.f +++ /dev/null @@ -1,644 +0,0 @@ -*> \brief CGBSVX computes the solution to system of linear equations A * X = B for GB matrices -* -* =========== DOCUMENTATION =========== -* -* Online html documentation available at -* http://www.netlib.org/lapack/explore-html/ -* -*> \htmlonly -*> Download CGBSVX + dependencies -*> -*> [TGZ] -*> -*> [ZIP] -*> -*> [TXT] -*> \endhtmlonly -* -* Definition: -* =========== -* -* SUBROUTINE CGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, -* LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX, -* RCOND, FERR, BERR, WORK, RWORK, INFO ) -* -* .. Scalar Arguments .. -* CHARACTER EQUED, FACT, TRANS -* INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS -* REAL RCOND -* .. -* .. Array Arguments .. -* INTEGER IPIV( * ) -* REAL BERR( * ), C( * ), FERR( * ), R( * ), -* $ RWORK( * ) -* COMPLEX AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ), -* $ WORK( * ), X( LDX, * ) -* .. -* -* -*> \par Purpose: -* ============= -*> -*> \verbatim -*> -*> CGBSVX uses the LU factorization to compute the solution to a complex -*> system of linear equations A * X = B, A**T * X = B, or A**H * X = B, -*> where A is a band matrix of order N with KL subdiagonals and KU -*> superdiagonals, and X and B are N-by-NRHS matrices. -*> -*> Error bounds on the solution and a condition estimate are also -*> provided. -*> \endverbatim -* -*> \par Description: -* ================= -*> -*> \verbatim -*> -*> The following steps are performed by this subroutine: -*> -*> 1. If FACT = 'E', real scaling factors are computed to equilibrate -*> the system: -*> TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B -*> TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B -*> TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B -*> Whether or not the system will be equilibrated depends on the -*> scaling of the matrix A, but if equilibration is used, A is -*> overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') -*> or diag(C)*B (if TRANS = 'T' or 'C'). -*> -*> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the -*> matrix A (after equilibration if FACT = 'E') as -*> A = L * U, -*> where L is a product of permutation and unit lower triangular -*> matrices with KL subdiagonals, and U is upper triangular with -*> KL+KU superdiagonals. -*> -*> 3. If some U(i,i)=0, so that U is exactly singular, then the routine -*> returns with INFO = i. Otherwise, the factored form of A is used -*> to estimate the condition number of the matrix A. If the -*> reciprocal of the condition number is less than machine precision, -*> INFO = N+1 is returned as a warning, but the routine still goes on -*> to solve for X and compute error bounds as described below. -*> -*> 4. The system of equations is solved for X using the factored form -*> of A. -*> -*> 5. Iterative refinement is applied to improve the computed solution -*> matrix and calculate error bounds and backward error estimates -*> for it. -*> -*> 6. If equilibration was used, the matrix X is premultiplied by -*> diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so -*> that it solves the original system before equilibration. -*> \endverbatim -* -* Arguments: -* ========== -* -*> \param[in] FACT -*> \verbatim -*> FACT is CHARACTER*1 -*> Specifies whether or not the factored form of the matrix A is -*> supplied on entry, and if not, whether the matrix A should be -*> equilibrated before it is factored. -*> = 'F': On entry, AFB and IPIV contain the factored form of -*> A. If EQUED is not 'N', the matrix A has been -*> equilibrated with scaling factors given by R and C. -*> AB, AFB, and IPIV are not modified. -*> = 'N': The matrix A will be copied to AFB and factored. -*> = 'E': The matrix A will be equilibrated if necessary, then -*> copied to AFB and factored. -*> \endverbatim -*> -*> \param[in] TRANS -*> \verbatim -*> TRANS is CHARACTER*1 -*> Specifies the form of the system of equations. -*> = 'N': A * X = B (No transpose) -*> = 'T': A**T * X = B (Transpose) -*> = 'C': A**H * X = B (Conjugate transpose) -*> \endverbatim -*> -*> \param[in] N -*> \verbatim -*> N is INTEGER -*> The number of linear equations, i.e., the order of the -*> matrix A. N >= 0. -*> \endverbatim -*> -*> \param[in] KL -*> \verbatim -*> KL is INTEGER -*> The number of subdiagonals within the band of A. KL >= 0. -*> \endverbatim -*> -*> \param[in] KU -*> \verbatim -*> KU is INTEGER -*> The number of superdiagonals within the band of A. KU >= 0. -*> \endverbatim -*> -*> \param[in] NRHS -*> \verbatim -*> NRHS is INTEGER -*> The number of right hand sides, i.e., the number of columns -*> of the matrices B and X. NRHS >= 0. -*> \endverbatim -*> -*> \param[in,out] AB -*> \verbatim -*> AB is COMPLEX array, dimension (LDAB,N) -*> On entry, the matrix A in band storage, in rows 1 to KL+KU+1. -*> The j-th column of A is stored in the j-th column of the -*> array AB as follows: -*> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) -*> -*> If FACT = 'F' and EQUED is not 'N', then A must have been -*> equilibrated by the scaling factors in R and/or C. AB is not -*> modified if FACT = 'F' or 'N', or if FACT = 'E' and -*> EQUED = 'N' on exit. -*> -*> On exit, if EQUED .ne. 'N', A is scaled as follows: -*> EQUED = 'R': A := diag(R) * A -*> EQUED = 'C': A := A * diag(C) -*> EQUED = 'B': A := diag(R) * A * diag(C). -*> \endverbatim -*> -*> \param[in] LDAB -*> \verbatim -*> LDAB is INTEGER -*> The leading dimension of the array AB. LDAB >= KL+KU+1. -*> \endverbatim -*> -*> \param[in,out] AFB -*> \verbatim -*> AFB is COMPLEX array, dimension (LDAFB,N) -*> If FACT = 'F', then AFB is an input argument and on entry -*> contains details of the LU factorization of the band matrix -*> A, as computed by CGBTRF. U is stored as an upper triangular -*> band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, -*> and the multipliers used during the factorization are stored -*> in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is -*> the factored form of the equilibrated matrix A. -*> -*> If FACT = 'N', then AFB is an output argument and on exit -*> returns details of the LU factorization of A. -*> -*> If FACT = 'E', then AFB is an output argument and on exit -*> returns details of the LU factorization of the equilibrated -*> matrix A (see the description of AB for the form of the -*> equilibrated matrix). -*> \endverbatim -*> -*> \param[in] LDAFB -*> \verbatim -*> LDAFB is INTEGER -*> The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1. -*> \endverbatim -*> -*> \param[in,out] IPIV -*> \verbatim -*> IPIV is INTEGER array, dimension (N) -*> If FACT = 'F', then IPIV is an input argument and on entry -*> contains the pivot indices from the factorization A = L*U -*> as computed by CGBTRF; row i of the matrix was interchanged -*> with row IPIV(i). -*> -*> If FACT = 'N', then IPIV is an output argument and on exit -*> contains the pivot indices from the factorization A = L*U -*> of the original matrix A. -*> -*> If FACT = 'E', then IPIV is an output argument and on exit -*> contains the pivot indices from the factorization A = L*U -*> of the equilibrated matrix A. -*> \endverbatim -*> -*> \param[in,out] EQUED -*> \verbatim -*> EQUED is CHARACTER*1 -*> Specifies the form of equilibration that was done. -*> = 'N': No equilibration (always true if FACT = 'N'). -*> = 'R': Row equilibration, i.e., A has been premultiplied by -*> diag(R). -*> = 'C': Column equilibration, i.e., A has been postmultiplied -*> by diag(C). -*> = 'B': Both row and column equilibration, i.e., A has been -*> replaced by diag(R) * A * diag(C). -*> EQUED is an input argument if FACT = 'F'; otherwise, it is an -*> output argument. -*> \endverbatim -*> -*> \param[in,out] R -*> \verbatim -*> R is REAL array, dimension (N) -*> The row scale factors for A. If EQUED = 'R' or 'B', A is -*> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R -*> is not accessed. R is an input argument if FACT = 'F'; -*> otherwise, R is an output argument. If FACT = 'F' and -*> EQUED = 'R' or 'B', each element of R must be positive. -*> \endverbatim -*> -*> \param[in,out] C -*> \verbatim -*> C is REAL array, dimension (N) -*> The column scale factors for A. If EQUED = 'C' or 'B', A is -*> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C -*> is not accessed. C is an input argument if FACT = 'F'; -*> otherwise, C is an output argument. If FACT = 'F' and -*> EQUED = 'C' or 'B', each element of C must be positive. -*> \endverbatim -*> -*> \param[in,out] B -*> \verbatim -*> B is COMPLEX array, dimension (LDB,NRHS) -*> On entry, the right hand side matrix B. -*> On exit, -*> if EQUED = 'N', B is not modified; -*> if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by -*> diag(R)*B; -*> if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is -*> overwritten by diag(C)*B. -*> \endverbatim -*> -*> \param[in] LDB -*> \verbatim -*> LDB is INTEGER -*> The leading dimension of the array B. LDB >= max(1,N). -*> \endverbatim -*> -*> \param[out] X -*> \verbatim -*> X is COMPLEX array, dimension (LDX,NRHS) -*> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X -*> to the original system of equations. Note that A and B are -*> modified on exit if EQUED .ne. 'N', and the solution to the -*> equilibrated system is inv(diag(C))*X if TRANS = 'N' and -*> EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C' -*> and EQUED = 'R' or 'B'. -*> \endverbatim -*> -*> \param[in] LDX -*> \verbatim -*> LDX is INTEGER -*> The leading dimension of the array X. LDX >= max(1,N). -*> \endverbatim -*> -*> \param[out] RCOND -*> \verbatim -*> RCOND is REAL -*> The estimate of the reciprocal condition number of the matrix -*> A after equilibration (if done). If RCOND is less than the -*> machine precision (in particular, if RCOND = 0), the matrix -*> is singular to working precision. This condition is -*> indicated by a return code of INFO > 0. -*> \endverbatim -*> -*> \param[out] FERR -*> \verbatim -*> FERR is REAL array, dimension (NRHS) -*> The estimated forward error bound for each solution vector -*> X(j) (the j-th column of the solution matrix X). -*> If XTRUE is the true solution corresponding to X(j), FERR(j) -*> is an estimated upper bound for the magnitude of the largest -*> element in (X(j) - XTRUE) divided by the magnitude of the -*> largest element in X(j). The estimate is as reliable as -*> the estimate for RCOND, and is almost always a slight -*> overestimate of the true error. -*> \endverbatim -*> -*> \param[out] BERR -*> \verbatim -*> BERR is REAL array, dimension (NRHS) -*> The componentwise relative backward error of each solution -*> vector X(j) (i.e., the smallest relative change in -*> any element of A or B that makes X(j) an exact solution). -*> \endverbatim -*> -*> \param[out] WORK -*> \verbatim -*> WORK is COMPLEX array, dimension (2*N) -*> \endverbatim -*> -*> \param[out] RWORK -*> \verbatim -*> RWORK is REAL array, dimension (MAX(1,N)) -*> On exit, RWORK(1) contains the reciprocal pivot growth -*> factor norm(A)/norm(U). The "max absolute element" norm is -*> used. If RWORK(1) is much less than 1, then the stability -*> of the LU factorization of the (equilibrated) matrix A -*> could be poor. This also means that the solution X, condition -*> estimator RCOND, and forward error bound FERR could be -*> unreliable. If factorization fails with 0 RWORK(1) contains the reciprocal pivot growth factor for the -*> leading INFO columns of A. -*> \endverbatim -*> -*> \param[out] INFO -*> \verbatim -*> INFO is INTEGER -*> = 0: successful exit -*> < 0: if INFO = -i, the i-th argument had an illegal value -*> > 0: if INFO = i, and i is -*> <= N: U(i,i) is exactly zero. The factorization -*> has been completed, but the factor U is exactly -*> singular, so the solution and error bounds -*> could not be computed. RCOND = 0 is returned. -*> = N+1: U is nonsingular, but RCOND is less than machine -*> precision, meaning that the matrix is singular -*> to working precision. Nevertheless, the -*> solution and error bounds are computed because -*> there are a number of situations where the -*> computed solution can be more accurate than the -*> value of RCOND would suggest. -*> \endverbatim -* -* Authors: -* ======== -* -*> \author Univ. of Tennessee -*> \author Univ. of California Berkeley -*> \author Univ. of Colorado Denver -*> \author NAG Ltd. -* -*> \ingroup complexGBsolve -* -* ===================================================================== - SUBROUTINE CGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, - $ LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX, - $ RCOND, FERR, BERR, WORK, RWORK, INFO ) -* -* -- LAPACK driver routine -- -* -- LAPACK is a software package provided by Univ. of Tennessee, -- -* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* -* .. Scalar Arguments .. - CHARACTER EQUED, FACT, TRANS - INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS - REAL RCOND -* .. -* .. Array Arguments .. - INTEGER IPIV( * ) - REAL BERR( * ), C( * ), FERR( * ), R( * ), - $ RWORK( * ) - COMPLEX AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ), - $ WORK( * ), X( LDX, * ) -* .. -* -* ===================================================================== -* Moved setting of INFO = N+1 so INFO does not subsequently get -* overwritten. Sven, 17 Mar 05. -* ===================================================================== -* -* .. Parameters .. - REAL ZERO, ONE - PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) -* .. -* .. Local Scalars .. - LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU - CHARACTER NORM - INTEGER I, INFEQU, J, J1, J2 - REAL AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN, - $ ROWCND, RPVGRW, SMLNUM -* .. -* .. External Functions .. - LOGICAL LSAME - REAL CLANGB, CLANTB, SLAMCH - EXTERNAL LSAME, CLANGB, CLANTB, SLAMCH -* .. -* .. External Subroutines .. - EXTERNAL CCOPY, CGBCON, CGBEQU, CGBRFS, CGBTRF, CGBTRS, - $ CLACPY, CLAQGB, XERBLA -* .. -* .. Intrinsic Functions .. - INTRINSIC ABS, MAX, MIN -* .. -* .. Executable Statements .. -* - INFO = 0 - NOFACT = LSAME( FACT, 'N' ) - EQUIL = LSAME( FACT, 'E' ) - NOTRAN = LSAME( TRANS, 'N' ) - IF( NOFACT .OR. EQUIL ) THEN - EQUED = 'N' - ROWEQU = .FALSE. - COLEQU = .FALSE. - ELSE - ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' ) - COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' ) - SMLNUM = SLAMCH( 'Safe minimum' ) - BIGNUM = ONE / SMLNUM - END IF -* -* Test the input parameters. -* - IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) ) - $ THEN - INFO = -1 - ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT. - $ LSAME( TRANS, 'C' ) ) THEN - INFO = -2 - ELSE IF( N.LT.0 ) THEN - INFO = -3 - ELSE IF( KL.LT.0 ) THEN - INFO = -4 - ELSE IF( KU.LT.0 ) THEN - INFO = -5 - ELSE IF( NRHS.LT.0 ) THEN - INFO = -6 - ELSE IF( LDAB.LT.KL+KU+1 ) THEN - INFO = -8 - ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN - INFO = -10 - ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT. - $ ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN - INFO = -12 - ELSE - IF( ROWEQU ) THEN - RCMIN = BIGNUM - RCMAX = ZERO - DO 10 J = 1, N - RCMIN = MIN( RCMIN, R( J ) ) - RCMAX = MAX( RCMAX, R( J ) ) - 10 CONTINUE - IF( RCMIN.LE.ZERO ) THEN - INFO = -13 - ELSE IF( N.GT.0 ) THEN - ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM ) - ELSE - ROWCND = ONE - END IF - END IF - IF( COLEQU .AND. INFO.EQ.0 ) THEN - RCMIN = BIGNUM - RCMAX = ZERO - DO 20 J = 1, N - RCMIN = MIN( RCMIN, C( J ) ) - RCMAX = MAX( RCMAX, C( J ) ) - 20 CONTINUE - IF( RCMIN.LE.ZERO ) THEN - INFO = -14 - ELSE IF( N.GT.0 ) THEN - COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM ) - ELSE - COLCND = ONE - END IF - END IF - IF( INFO.EQ.0 ) THEN - IF( LDB.LT.MAX( 1, N ) ) THEN - INFO = -16 - ELSE IF( LDX.LT.MAX( 1, N ) ) THEN - INFO = -18 - END IF - END IF - END IF -* - IF( INFO.NE.0 ) THEN - CALL XERBLA( 'CGBSVX', -INFO ) - RETURN - END IF -* - IF( EQUIL ) THEN -* -* Compute row and column scalings to equilibrate the matrix A. -* - CALL CGBEQU( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, - $ AMAX, INFEQU ) - IF( INFEQU.EQ.0 ) THEN -* -* Equilibrate the matrix. -* - CALL CLAQGB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, - $ AMAX, EQUED ) - ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' ) - COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' ) - END IF - END IF -* -* Scale the right hand side. -* - IF( NOTRAN ) THEN - IF( ROWEQU ) THEN - DO 40 J = 1, NRHS - DO 30 I = 1, N - B( I, J ) = R( I )*B( I, J ) - 30 CONTINUE - 40 CONTINUE - END IF - ELSE IF( COLEQU ) THEN - DO 60 J = 1, NRHS - DO 50 I = 1, N - B( I, J ) = C( I )*B( I, J ) - 50 CONTINUE - 60 CONTINUE - END IF -* - IF( NOFACT .OR. EQUIL ) THEN -* -* Compute the LU factorization of the band matrix A. -* - DO 70 J = 1, N - J1 = MAX( J-KU, 1 ) - J2 = MIN( J+KL, N ) - CALL CCOPY( J2-J1+1, AB( KU+1-J+J1, J ), 1, - $ AFB( KL+KU+1-J+J1, J ), 1 ) - 70 CONTINUE -* - CALL CGBTRF( N, N, KL, KU, AFB, LDAFB, IPIV, INFO ) -* -* Return if INFO is non-zero. -* - IF( INFO.GT.0 ) THEN -* -* Compute the reciprocal pivot growth factor of the -* leading rank-deficient INFO columns of A. -* - ANORM = ZERO - DO 90 J = 1, INFO - DO 80 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 ) - ANORM = MAX( ANORM, ABS( AB( I, J ) ) ) - 80 CONTINUE - 90 CONTINUE - RPVGRW = CLANTB( 'M', 'U', 'N', INFO, MIN( INFO-1, KL+KU ), - $ AFB( MAX( 1, KL+KU+2-INFO ), 1 ), LDAFB, - $ RWORK ) - IF( RPVGRW.EQ.ZERO ) THEN - RPVGRW = ONE - ELSE - RPVGRW = ANORM / RPVGRW - END IF - RWORK( 1 ) = RPVGRW - RCOND = ZERO - RETURN - END IF - END IF -* -* Compute the norm of the matrix A and the -* reciprocal pivot growth factor RPVGRW. -* - IF( NOTRAN ) THEN - NORM = '1' - ELSE - NORM = 'I' - END IF - ANORM = CLANGB( NORM, N, KL, KU, AB, LDAB, RWORK ) - RPVGRW = CLANTB( 'M', 'U', 'N', N, KL+KU, AFB, LDAFB, RWORK ) - IF( RPVGRW.EQ.ZERO ) THEN - RPVGRW = ONE - ELSE - RPVGRW = CLANGB( 'M', N, KL, KU, AB, LDAB, RWORK ) / RPVGRW - END IF -* -* Compute the reciprocal of the condition number of A. -* - CALL CGBCON( NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND, - $ WORK, RWORK, INFO ) -* -* Compute the solution matrix X. -* - CALL CLACPY( 'Full', N, NRHS, B, LDB, X, LDX ) - CALL CGBTRS( TRANS, N, KL, KU, NRHS, AFB, LDAFB, IPIV, X, LDX, - $ INFO ) -* -* Use iterative refinement to improve the computed solution and -* compute error bounds and backward error estimates for it. -* - CALL CGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV, - $ B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO ) -* -* Transform the solution matrix X to a solution of the original -* system. -* - IF( NOTRAN ) THEN - IF( COLEQU ) THEN - DO 110 J = 1, NRHS - DO 100 I = 1, N - X( I, J ) = C( I )*X( I, J ) - 100 CONTINUE - 110 CONTINUE - DO 120 J = 1, NRHS - FERR( J ) = FERR( J ) / COLCND - 120 CONTINUE - END IF - ELSE IF( ROWEQU ) THEN - DO 140 J = 1, NRHS - DO 130 I = 1, N - X( I, J ) = R( I )*X( I, J ) - 130 CONTINUE - 140 CONTINUE - DO 150 J = 1, NRHS - FERR( J ) = FERR( J ) / ROWCND - 150 CONTINUE - END IF -* -* Set INFO = N+1 if the matrix is singular to working precision. -* - IF( RCOND.LT.SLAMCH( 'Epsilon' ) ) - $ INFO = N + 1 -* - RWORK( 1 ) = RPVGRW - RETURN -* -* End of CGBSVX -* - END diff --git a/lapack-netlib/cgejsv.f b/lapack-netlib/cgejsv.f deleted file mode 100644 index 51a6cee4e..000000000 --- a/lapack-netlib/cgejsv.f +++ /dev/null @@ -1,2232 +0,0 @@ -*> \brief \b CGEJSV -* -* =========== DOCUMENTATION =========== -* -* Online html documentation available at -* http://www.netlib.org/lapack/explore-html/ -* -*> \htmlonly -*> Download CGEJSV + dependencies -*> -*> [TGZ] -*> -*> [ZIP] -*> -*> [TXT] -*> \endhtmlonly -* -* Definition: -* =========== -* -* SUBROUTINE CGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP, -* M, N, A, LDA, SVA, U, LDU, V, LDV, -* CWORK, LWORK, RWORK, LRWORK, IWORK, INFO ) -* -* .. Scalar Arguments .. -* IMPLICIT NONE -* INTEGER INFO, LDA, LDU, LDV, LWORK, M, N -* .. -* .. Array Arguments .. -* COMPLEX A( LDA, * ), U( LDU, * ), V( LDV, * ), CWORK( LWORK ) -* REAL SVA( N ), RWORK( LRWORK ) -* INTEGER IWORK( * ) -* CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV -* .. -* -* -*> \par Purpose: -* ============= -*> -*> \verbatim -*> -*> CGEJSV computes the singular value decomposition (SVD) of a complex M-by-N -*> matrix [A], where M >= N. The SVD of [A] is written as -*> -*> [A] = [U] * [SIGMA] * [V]^*, -*> -*> where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N -*> diagonal elements, [U] is an M-by-N (or M-by-M) unitary matrix, and -*> [V] is an N-by-N unitary matrix. The diagonal elements of [SIGMA] are -*> the singular values of [A]. The columns of [U] and [V] are the left and -*> the right singular vectors of [A], respectively. The matrices [U] and [V] -*> are computed and stored in the arrays U and V, respectively. The diagonal -*> of [SIGMA] is computed and stored in the array SVA. -*> \endverbatim -*> -*> Arguments: -*> ========== -*> -*> \param[in] JOBA -*> \verbatim -*> JOBA is CHARACTER*1 -*> Specifies the level of accuracy: -*> = 'C': This option works well (high relative accuracy) if A = B * D, -*> with well-conditioned B and arbitrary diagonal matrix D. -*> The accuracy cannot be spoiled by COLUMN scaling. The -*> accuracy of the computed output depends on the condition of -*> B, and the procedure aims at the best theoretical accuracy. -*> The relative error max_{i=1:N}|d sigma_i| / sigma_i is -*> bounded by f(M,N)*epsilon* cond(B), independent of D. -*> The input matrix is preprocessed with the QRF with column -*> pivoting. This initial preprocessing and preconditioning by -*> a rank revealing QR factorization is common for all values of -*> JOBA. Additional actions are specified as follows: -*> = 'E': Computation as with 'C' with an additional estimate of the -*> condition number of B. It provides a realistic error bound. -*> = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings -*> D1, D2, and well-conditioned matrix C, this option gives -*> higher accuracy than the 'C' option. If the structure of the -*> input matrix is not known, and relative accuracy is -*> desirable, then this option is advisable. The input matrix A -*> is preprocessed with QR factorization with FULL (row and -*> column) pivoting. -*> = 'G': Computation as with 'F' with an additional estimate of the -*> condition number of B, where A=B*D. If A has heavily weighted -*> rows, then using this condition number gives too pessimistic -*> error bound. -*> = 'A': Small singular values are not well determined by the data -*> and are considered as noisy; the matrix is treated as -*> numerically rank deficient. The error in the computed -*> singular values is bounded by f(m,n)*epsilon*||A||. -*> The computed SVD A = U * S * V^* restores A up to -*> f(m,n)*epsilon*||A||. -*> This gives the procedure the licence to discard (set to zero) -*> all singular values below N*epsilon*||A||. -*> = 'R': Similar as in 'A'. Rank revealing property of the initial -*> QR factorization is used do reveal (using triangular factor) -*> a gap sigma_{r+1} < epsilon * sigma_r in which case the -*> numerical RANK is declared to be r. The SVD is computed with -*> absolute error bounds, but more accurately than with 'A'. -*> \endverbatim -*> -*> \param[in] JOBU -*> \verbatim -*> JOBU is CHARACTER*1 -*> Specifies whether to compute the columns of U: -*> = 'U': N columns of U are returned in the array U. -*> = 'F': full set of M left sing. vectors is returned in the array U. -*> = 'W': U may be used as workspace of length M*N. See the description -*> of U. -*> = 'N': U is not computed. -*> \endverbatim -*> -*> \param[in] JOBV -*> \verbatim -*> JOBV is CHARACTER*1 -*> Specifies whether to compute the matrix V: -*> = 'V': N columns of V are returned in the array V; Jacobi rotations -*> are not explicitly accumulated. -*> = 'J': N columns of V are returned in the array V, but they are -*> computed as the product of Jacobi rotations, if JOBT = 'N'. -*> = 'W': V may be used as workspace of length N*N. See the description -*> of V. -*> = 'N': V is not computed. -*> \endverbatim -*> -*> \param[in] JOBR -*> \verbatim -*> JOBR is CHARACTER*1 -*> Specifies the RANGE for the singular values. Issues the licence to -*> set to zero small positive singular values if they are outside -*> specified range. If A .NE. 0 is scaled so that the largest singular -*> value of c*A is around SQRT(BIG), BIG=SLAMCH('O'), then JOBR issues -*> the licence to kill columns of A whose norm in c*A is less than -*> SQRT(SFMIN) (for JOBR = 'R'), or less than SMALL=SFMIN/EPSLN, -*> where SFMIN=SLAMCH('S'), EPSLN=SLAMCH('E'). -*> = 'N': Do not kill small columns of c*A. This option assumes that -*> BLAS and QR factorizations and triangular solvers are -*> implemented to work in that range. If the condition of A -*> is greater than BIG, use CGESVJ. -*> = 'R': RESTRICTED range for sigma(c*A) is [SQRT(SFMIN), SQRT(BIG)] -*> (roughly, as described above). This option is recommended. -*> =========================== -*> For computing the singular values in the FULL range [SFMIN,BIG] -*> use CGESVJ. -*> \endverbatim -*> -*> \param[in] JOBT -*> \verbatim -*> JOBT is CHARACTER*1 -*> If the matrix is square then the procedure may determine to use -*> transposed A if A^* seems to be better with respect to convergence. -*> If the matrix is not square, JOBT is ignored. -*> The decision is based on two values of entropy over the adjoint -*> orbit of A^* * A. See the descriptions of RWORK(6) and RWORK(7). -*> = 'T': transpose if entropy test indicates possibly faster -*> convergence of Jacobi process if A^* is taken as input. If A is -*> replaced with A^*, then the row pivoting is included automatically. -*> = 'N': do not speculate. -*> The option 'T' can be used to compute only the singular values, or -*> the full SVD (U, SIGMA and V). For only one set of singular vectors -*> (U or V), the caller should provide both U and V, as one of the -*> matrices is used as workspace if the matrix A is transposed. -*> The implementer can easily remove this constraint and make the -*> code more complicated. See the descriptions of U and V. -*> In general, this option is considered experimental, and 'N'; should -*> be preferred. This is subject to changes in the future. -*> \endverbatim -*> -*> \param[in] JOBP -*> \verbatim -*> JOBP is CHARACTER*1 -*> Issues the licence to introduce structured perturbations to drown -*> denormalized numbers. This licence should be active if the -*> denormals are poorly implemented, causing slow computation, -*> especially in cases of fast convergence (!). For details see [1,2]. -*> For the sake of simplicity, this perturbations are included only -*> when the full SVD or only the singular values are requested. The -*> implementer/user can easily add the perturbation for the cases of -*> computing one set of singular vectors. -*> = 'P': introduce perturbation -*> = 'N': do not perturb -*> \endverbatim -*> -*> \param[in] M -*> \verbatim -*> M is INTEGER -*> The number of rows of the input matrix A. M >= 0. -*> \endverbatim -*> -*> \param[in] N -*> \verbatim -*> N is INTEGER -*> The number of columns of the input matrix A. M >= N >= 0. -*> \endverbatim -*> -*> \param[in,out] A -*> \verbatim -*> A is COMPLEX array, dimension (LDA,N) -*> On entry, the M-by-N matrix A. -*> \endverbatim -*> -*> \param[in] LDA -*> \verbatim -*> LDA is INTEGER -*> The leading dimension of the array A. LDA >= max(1,M). -*> \endverbatim -*> -*> \param[out] SVA -*> \verbatim -*> SVA is REAL array, dimension (N) -*> On exit, -*> - For RWORK(1)/RWORK(2) = ONE: The singular values of A. During -*> the computation SVA contains Euclidean column norms of the -*> iterated matrices in the array A. -*> - For RWORK(1) .NE. RWORK(2): The singular values of A are -*> (RWORK(1)/RWORK(2)) * SVA(1:N). This factored form is used if -*> sigma_max(A) overflows or if small singular values have been -*> saved from underflow by scaling the input matrix A. -*> - If JOBR='R' then some of the singular values may be returned -*> as exact zeros obtained by "set to zero" because they are -*> below the numerical rank threshold or are denormalized numbers. -*> \endverbatim -*> -*> \param[out] U -*> \verbatim -*> U is COMPLEX array, dimension ( LDU, N ) or ( LDU, M ) -*> If JOBU = 'U', then U contains on exit the M-by-N matrix of -*> the left singular vectors. -*> If JOBU = 'F', then U contains on exit the M-by-M matrix of -*> the left singular vectors, including an ONB -*> of the orthogonal complement of the Range(A). -*> If JOBU = 'W' .AND. (JOBV = 'V' .AND. JOBT = 'T' .AND. M = N), -*> then U is used as workspace if the procedure -*> replaces A with A^*. In that case, [V] is computed -*> in U as left singular vectors of A^* and then -*> copied back to the V array. This 'W' option is just -*> a reminder to the caller that in this case U is -*> reserved as workspace of length N*N. -*> If JOBU = 'N' U is not referenced, unless JOBT='T'. -*> \endverbatim -*> -*> \param[in] LDU -*> \verbatim -*> LDU is INTEGER -*> The leading dimension of the array U, LDU >= 1. -*> IF JOBU = 'U' or 'F' or 'W', then LDU >= M. -*> \endverbatim -*> -*> \param[out] V -*> \verbatim -*> V is COMPLEX array, dimension ( LDV, N ) -*> If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of -*> the right singular vectors; -*> If JOBV = 'W', AND (JOBU = 'U' AND JOBT = 'T' AND M = N), -*> then V is used as workspace if the pprocedure -*> replaces A with A^*. In that case, [U] is computed -*> in V as right singular vectors of A^* and then -*> copied back to the U array. This 'W' option is just -*> a reminder to the caller that in this case V is -*> reserved as workspace of length N*N. -*> If JOBV = 'N' V is not referenced, unless JOBT='T'. -*> \endverbatim -*> -*> \param[in] LDV -*> \verbatim -*> LDV is INTEGER -*> The leading dimension of the array V, LDV >= 1. -*> If JOBV = 'V' or 'J' or 'W', then LDV >= N. -*> \endverbatim -*> -*> \param[out] CWORK -*> \verbatim -*> CWORK is COMPLEX array, dimension (MAX(2,LWORK)) -*> If the call to CGEJSV is a workspace query (indicated by LWORK=-1 or -*> LRWORK=-1), then on exit CWORK(1) contains the required length of -*> CWORK for the job parameters used in the call. -*> \endverbatim -*> -*> \param[in] LWORK -*> \verbatim -*> LWORK is INTEGER -*> Length of CWORK to confirm proper allocation of workspace. -*> LWORK depends on the job: -*> -*> 1. If only SIGMA is needed ( JOBU = 'N', JOBV = 'N' ) and -*> 1.1 .. no scaled condition estimate required (JOBA.NE.'E'.AND.JOBA.NE.'G'): -*> LWORK >= 2*N+1. This is the minimal requirement. -*> ->> For optimal performance (blocked code) the optimal value -*> is LWORK >= N + (N+1)*NB. Here NB is the optimal -*> block size for CGEQP3 and CGEQRF. -*> In general, optimal LWORK is computed as -*> LWORK >= max(N+LWORK(CGEQP3),N+LWORK(CGEQRF), LWORK(CGESVJ)). -*> 1.2. .. an estimate of the scaled condition number of A is -*> required (JOBA='E', or 'G'). In this case, LWORK the minimal -*> requirement is LWORK >= N*N + 2*N. -*> ->> For optimal performance (blocked code) the optimal value -*> is LWORK >= max(N+(N+1)*NB, N*N+2*N)=N**2+2*N. -*> In general, the optimal length LWORK is computed as -*> LWORK >= max(N+LWORK(CGEQP3),N+LWORK(CGEQRF), LWORK(CGESVJ), -*> N*N+LWORK(CPOCON)). -*> 2. If SIGMA and the right singular vectors are needed (JOBV = 'V'), -*> (JOBU = 'N') -*> 2.1 .. no scaled condition estimate requested (JOBE = 'N'): -*> -> the minimal requirement is LWORK >= 3*N. -*> -> For optimal performance, -*> LWORK >= max(N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB, -*> where NB is the optimal block size for CGEQP3, CGEQRF, CGELQF, -*> CUNMLQ. In general, the optimal length LWORK is computed as -*> LWORK >= max(N+LWORK(CGEQP3), N+LWORK(CGESVJ), -*> N+LWORK(CGELQF), 2*N+LWORK(CGEQRF), N+LWORK(CUNMLQ)). -*> 2.2 .. an estimate of the scaled condition number of A is -*> required (JOBA='E', or 'G'). -*> -> the minimal requirement is LWORK >= 3*N. -*> -> For optimal performance, -*> LWORK >= max(N+(N+1)*NB, 2*N,2*N+N*NB)=2*N+N*NB, -*> where NB is the optimal block size for CGEQP3, CGEQRF, CGELQF, -*> CUNMLQ. In general, the optimal length LWORK is computed as -*> LWORK >= max(N+LWORK(CGEQP3), LWORK(CPOCON), N+LWORK(CGESVJ), -*> N+LWORK(CGELQF), 2*N+LWORK(CGEQRF), N+LWORK(CUNMLQ)). -*> 3. If SIGMA and the left singular vectors are needed -*> 3.1 .. no scaled condition estimate requested (JOBE = 'N'): -*> -> the minimal requirement is LWORK >= 3*N. -*> -> For optimal performance: -*> if JOBU = 'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB, -*> where NB is the optimal block size for CGEQP3, CGEQRF, CUNMQR. -*> In general, the optimal length LWORK is computed as -*> LWORK >= max(N+LWORK(CGEQP3), 2*N+LWORK(CGEQRF), N+LWORK(CUNMQR)). -*> 3.2 .. an estimate of the scaled condition number of A is -*> required (JOBA='E', or 'G'). -*> -> the minimal requirement is LWORK >= 3*N. -*> -> For optimal performance: -*> if JOBU = 'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB, -*> where NB is the optimal block size for CGEQP3, CGEQRF, CUNMQR. -*> In general, the optimal length LWORK is computed as -*> LWORK >= max(N+LWORK(CGEQP3),N+LWORK(CPOCON), -*> 2*N+LWORK(CGEQRF), N+LWORK(CUNMQR)). -*> -*> 4. If the full SVD is needed: (JOBU = 'U' or JOBU = 'F') and -*> 4.1. if JOBV = 'V' -*> the minimal requirement is LWORK >= 5*N+2*N*N. -*> 4.2. if JOBV = 'J' the minimal requirement is -*> LWORK >= 4*N+N*N. -*> In both cases, the allocated CWORK can accommodate blocked runs -*> of CGEQP3, CGEQRF, CGELQF, CUNMQR, CUNMLQ. -*> -*> If the call to CGEJSV is a workspace query (indicated by LWORK=-1 or -*> LRWORK=-1), then on exit CWORK(1) contains the optimal and CWORK(2) contains the -*> minimal length of CWORK for the job parameters used in the call. -*> \endverbatim -*> -*> \param[out] RWORK -*> \verbatim -*> RWORK is REAL array, dimension (MAX(7,LRWORK)) -*> On exit, -*> RWORK(1) = Determines the scaling factor SCALE = RWORK(2) / RWORK(1) -*> such that SCALE*SVA(1:N) are the computed singular values -*> of A. (See the description of SVA().) -*> RWORK(2) = See the description of RWORK(1). -*> RWORK(3) = SCONDA is an estimate for the condition number of -*> column equilibrated A. (If JOBA = 'E' or 'G') -*> SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1). -*> It is computed using CPOCON. It holds -*> N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA -*> where R is the triangular factor from the QRF of A. -*> However, if R is truncated and the numerical rank is -*> determined to be strictly smaller than N, SCONDA is -*> returned as -1, thus indicating that the smallest -*> singular values might be lost. -*> -*> If full SVD is needed, the following two condition numbers are -*> useful for the analysis of the algorithm. They are provided for -*> a developer/implementer who is familiar with the details of -*> the method. -*> -*> RWORK(4) = an estimate of the scaled condition number of the -*> triangular factor in the first QR factorization. -*> RWORK(5) = an estimate of the scaled condition number of the -*> triangular factor in the second QR factorization. -*> The following two parameters are computed if JOBT = 'T'. -*> They are provided for a developer/implementer who is familiar -*> with the details of the method. -*> RWORK(6) = the entropy of A^* * A :: this is the Shannon entropy -*> of diag(A^* * A) / Trace(A^* * A) taken as point in the -*> probability simplex. -*> RWORK(7) = the entropy of A * A^*. (See the description of RWORK(6).) -*> If the call to CGEJSV is a workspace query (indicated by LWORK=-1 or -*> LRWORK=-1), then on exit RWORK(1) contains the required length of -*> RWORK for the job parameters used in the call. -*> \endverbatim -*> -*> \param[in] LRWORK -*> \verbatim -*> LRWORK is INTEGER -*> Length of RWORK to confirm proper allocation of workspace. -*> LRWORK depends on the job: -*> -*> 1. If only the singular values are requested i.e. if -*> LSAME(JOBU,'N') .AND. LSAME(JOBV,'N') -*> then: -*> 1.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'), -*> then: LRWORK = max( 7, 2 * M ). -*> 1.2. Otherwise, LRWORK = max( 7, N ). -*> 2. If singular values with the right singular vectors are requested -*> i.e. if -*> (LSAME(JOBV,'V').OR.LSAME(JOBV,'J')) .AND. -*> .NOT.(LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) -*> then: -*> 2.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'), -*> then LRWORK = max( 7, 2 * M ). -*> 2.2. Otherwise, LRWORK = max( 7, N ). -*> 3. If singular values with the left singular vectors are requested, i.e. if -*> (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND. -*> .NOT.(LSAME(JOBV,'V').OR.LSAME(JOBV,'J')) -*> then: -*> 3.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'), -*> then LRWORK = max( 7, 2 * M ). -*> 3.2. Otherwise, LRWORK = max( 7, N ). -*> 4. If singular values with both the left and the right singular vectors -*> are requested, i.e. if -*> (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND. -*> (LSAME(JOBV,'V').OR.LSAME(JOBV,'J')) -*> then: -*> 4.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'), -*> then LRWORK = max( 7, 2 * M ). -*> 4.2. Otherwise, LRWORK = max( 7, N ). -*> -*> If, on entry, LRWORK = -1 or LWORK=-1, a workspace query is assumed and -*> the length of RWORK is returned in RWORK(1). -*> \endverbatim -*> -*> \param[out] IWORK -*> \verbatim -*> IWORK is INTEGER array, of dimension at least 4, that further depends -*> on the job: -*> -*> 1. If only the singular values are requested then: -*> If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) -*> then the length of IWORK is N+M; otherwise the length of IWORK is N. -*> 2. If the singular values and the right singular vectors are requested then: -*> If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) -*> then the length of IWORK is N+M; otherwise the length of IWORK is N. -*> 3. If the singular values and the left singular vectors are requested then: -*> If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) -*> then the length of IWORK is N+M; otherwise the length of IWORK is N. -*> 4. If the singular values with both the left and the right singular vectors -*> are requested, then: -*> 4.1. If LSAME(JOBV,'J') the length of IWORK is determined as follows: -*> If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) -*> then the length of IWORK is N+M; otherwise the length of IWORK is N. -*> 4.2. If LSAME(JOBV,'V') the length of IWORK is determined as follows: -*> If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) -*> then the length of IWORK is 2*N+M; otherwise the length of IWORK is 2*N. -*> -*> On exit, -*> IWORK(1) = the numerical rank determined after the initial -*> QR factorization with pivoting. See the descriptions -*> of JOBA and JOBR. -*> IWORK(2) = the number of the computed nonzero singular values -*> IWORK(3) = if nonzero, a warning message: -*> If IWORK(3) = 1 then some of the column norms of A -*> were denormalized floats. The requested high accuracy -*> is not warranted by the data. -*> IWORK(4) = 1 or -1. If IWORK(4) = 1, then the procedure used A^* to -*> do the job as specified by the JOB parameters. -*> If the call to CGEJSV is a workspace query (indicated by LWORK = -1 and -*> LRWORK = -1), then on exit IWORK(1) contains the required length of -*> IWORK for the job parameters used in the call. -*> \endverbatim -*> -*> \param[out] INFO -*> \verbatim -*> INFO is INTEGER -*> < 0: if INFO = -i, then the i-th argument had an illegal value. -*> = 0: successful exit; -*> > 0: CGEJSV did not converge in the maximal allowed number -*> of sweeps. The computed values may be inaccurate. -*> \endverbatim -* -* Authors: -* ======== -* -*> \author Univ. of Tennessee -*> \author Univ. of California Berkeley -*> \author Univ. of Colorado Denver -*> \author NAG Ltd. -* -*> \ingroup complexGEsing -* -*> \par Further Details: -* ===================== -*> -*> \verbatim -*> CGEJSV implements a preconditioned Jacobi SVD algorithm. It uses CGEQP3, -*> CGEQRF, and CGELQF as preprocessors and preconditioners. Optionally, an -*> additional row pivoting can be used as a preprocessor, which in some -*> cases results in much higher accuracy. An example is matrix A with the -*> structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned -*> diagonal matrices and C is well-conditioned matrix. In that case, complete -*> pivoting in the first QR factorizations provides accuracy dependent on the -*> condition number of C, and independent of D1, D2. Such higher accuracy is -*> not completely understood theoretically, but it works well in practice. -*> Further, if A can be written as A = B*D, with well-conditioned B and some -*> diagonal D, then the high accuracy is guaranteed, both theoretically and -*> in software, independent of D. For more details see [1], [2]. -*> The computational range for the singular values can be the full range -*> ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS -*> & LAPACK routines called by CGEJSV are implemented to work in that range. -*> If that is not the case, then the restriction for safe computation with -*> the singular values in the range of normalized IEEE numbers is that the -*> spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not -*> overflow. This code (CGEJSV) is best used in this restricted range, -*> meaning that singular values of magnitude below ||A||_2 / SLAMCH('O') are -*> returned as zeros. See JOBR for details on this. -*> Further, this implementation is somewhat slower than the one described -*> in [1,2] due to replacement of some non-LAPACK components, and because -*> the choice of some tuning parameters in the iterative part (CGESVJ) is -*> left to the implementer on a particular machine. -*> The rank revealing QR factorization (in this code: CGEQP3) should be -*> implemented as in [3]. We have a new version of CGEQP3 under development -*> that is more robust than the current one in LAPACK, with a cleaner cut in -*> rank deficient cases. It will be available in the SIGMA library [4]. -*> If M is much larger than N, it is obvious that the initial QRF with -*> column pivoting can be preprocessed by the QRF without pivoting. That -*> well known trick is not used in CGEJSV because in some cases heavy row -*> weighting can be treated with complete pivoting. The overhead in cases -*> M much larger than N is then only due to pivoting, but the benefits in -*> terms of accuracy have prevailed. The implementer/user can incorporate -*> this extra QRF step easily. The implementer can also improve data movement -*> (matrix transpose, matrix copy, matrix transposed copy) - this -*> implementation of CGEJSV uses only the simplest, naive data movement. -*> \endverbatim -* -*> \par Contributor: -* ================== -*> -*> Zlatko Drmac (Zagreb, Croatia) -* -*> \par References: -* ================ -*> -*> \verbatim -*> -*> [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I. -*> SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342. -*> LAPACK Working note 169. -*> [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II. -*> SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362. -*> LAPACK Working note 170. -*> [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR -*> factorization software - a case study. -*> ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28. -*> LAPACK Working note 176. -*> [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV, -*> QSVD, (H,K)-SVD computations. -*> Department of Mathematics, University of Zagreb, 2008, 2016. -*> \endverbatim -* -*> \par Bugs, examples and comments: -* ================================= -*> -*> Please report all bugs and send interesting examples and/or comments to -*> drmac@math.hr. Thank you. -*> -* ===================================================================== - SUBROUTINE CGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP, - $ M, N, A, LDA, SVA, U, LDU, V, LDV, - $ CWORK, LWORK, RWORK, LRWORK, IWORK, INFO ) -* -* -- LAPACK computational routine -- -* -- LAPACK is a software package provided by Univ. of Tennessee, -- -* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* -* .. Scalar Arguments .. - IMPLICIT NONE - INTEGER INFO, LDA, LDU, LDV, LWORK, LRWORK, M, N -* .. -* .. Array Arguments .. - COMPLEX A( LDA, * ), U( LDU, * ), V( LDV, * ), CWORK( LWORK ) - REAL SVA( N ), RWORK( LRWORK ) - INTEGER IWORK( * ) - CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV -* .. -* -* =========================================================================== -* -* .. Local Parameters .. - REAL ZERO, ONE - PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) - COMPLEX CZERO, CONE - PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ), CONE = ( 1.0E0, 0.0E0 ) ) -* .. -* .. Local Scalars .. - COMPLEX CTEMP - REAL AAPP, AAQQ, AATMAX, AATMIN, BIG, BIG1, COND_OK, - $ CONDR1, CONDR2, ENTRA, ENTRAT, EPSLN, MAXPRJ, SCALEM, - $ SCONDA, SFMIN, SMALL, TEMP1, USCAL1, USCAL2, XSC - INTEGER IERR, N1, NR, NUMRANK, p, q, WARNING - LOGICAL ALMORT, DEFR, ERREST, GOSCAL, JRACC, KILL, LQUERY, - $ LSVEC, L2ABER, L2KILL, L2PERT, L2RANK, L2TRAN, NOSCAL, - $ ROWPIV, RSVEC, TRANSP -* - INTEGER OPTWRK, MINWRK, MINRWRK, MINIWRK - INTEGER LWCON, LWLQF, LWQP3, LWQRF, LWUNMLQ, LWUNMQR, LWUNMQRM, - $ LWSVDJ, LWSVDJV, LRWQP3, LRWCON, LRWSVDJ, IWOFF - INTEGER LWRK_CGELQF, LWRK_CGEQP3, LWRK_CGEQP3N, LWRK_CGEQRF, - $ LWRK_CGESVJ, LWRK_CGESVJV, LWRK_CGESVJU, LWRK_CUNMLQ, - $ LWRK_CUNMQR, LWRK_CUNMQRM -* .. -* .. Local Arrays - COMPLEX CDUMMY(1) - REAL RDUMMY(1) -* -* .. Intrinsic Functions .. - INTRINSIC ABS, CMPLX, CONJG, ALOG, MAX, MIN, REAL, NINT, SQRT -* .. -* .. External Functions .. - REAL SLAMCH, SCNRM2 - INTEGER ISAMAX, ICAMAX - LOGICAL LSAME - EXTERNAL ISAMAX, ICAMAX, LSAME, SLAMCH, SCNRM2 -* .. -* .. External Subroutines .. - EXTERNAL SLASSQ, CCOPY, CGELQF, CGEQP3, CGEQRF, CLACPY, CLAPMR, - $ CLASCL, SLASCL, CLASET, CLASSQ, CLASWP, CUNGQR, CUNMLQ, - $ CUNMQR, CPOCON, SSCAL, CSSCAL, CSWAP, CTRSM, CLACGV, - $ XERBLA -* - EXTERNAL CGESVJ -* .. -* -* Test the input arguments -* - LSVEC = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' ) - JRACC = LSAME( JOBV, 'J' ) - RSVEC = LSAME( JOBV, 'V' ) .OR. JRACC - ROWPIV = LSAME( JOBA, 'F' ) .OR. LSAME( JOBA, 'G' ) - L2RANK = LSAME( JOBA, 'R' ) - L2ABER = LSAME( JOBA, 'A' ) - ERREST = LSAME( JOBA, 'E' ) .OR. LSAME( JOBA, 'G' ) - L2TRAN = LSAME( JOBT, 'T' ) .AND. ( M .EQ. N ) - L2KILL = LSAME( JOBR, 'R' ) - DEFR = LSAME( JOBR, 'N' ) - L2PERT = LSAME( JOBP, 'P' ) -* - LQUERY = ( LWORK .EQ. -1 ) .OR. ( LRWORK .EQ. -1 ) -* - IF ( .NOT.(ROWPIV .OR. L2RANK .OR. L2ABER .OR. - $ ERREST .OR. LSAME( JOBA, 'C' ) )) THEN - INFO = - 1 - ELSE IF ( .NOT.( LSVEC .OR. LSAME( JOBU, 'N' ) .OR. - $ ( LSAME( JOBU, 'W' ) .AND. RSVEC .AND. L2TRAN ) ) ) THEN - INFO = - 2 - ELSE IF ( .NOT.( RSVEC .OR. LSAME( JOBV, 'N' ) .OR. - $ ( LSAME( JOBV, 'W' ) .AND. LSVEC .AND. L2TRAN ) ) ) THEN - INFO = - 3 - ELSE IF ( .NOT. ( L2KILL .OR. DEFR ) ) THEN - INFO = - 4 - ELSE IF ( .NOT. ( LSAME(JOBT,'T') .OR. LSAME(JOBT,'N') ) ) THEN - INFO = - 5 - ELSE IF ( .NOT. ( L2PERT .OR. LSAME( JOBP, 'N' ) ) ) THEN - INFO = - 6 - ELSE IF ( M .LT. 0 ) THEN - INFO = - 7 - ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M ) ) THEN - INFO = - 8 - ELSE IF ( LDA .LT. M ) THEN - INFO = - 10 - ELSE IF ( LSVEC .AND. ( LDU .LT. M ) ) THEN - INFO = - 13 - ELSE IF ( RSVEC .AND. ( LDV .LT. N ) ) THEN - INFO = - 15 - ELSE -* #:) - INFO = 0 - END IF -* - IF ( INFO .EQ. 0 ) THEN -* .. compute the minimal and the optimal workspace lengths -* [[The expressions for computing the minimal and the optimal -* values of LCWORK, LRWORK are written with a lot of redundancy and -* can be simplified. However, this verbose form is useful for -* maintenance and modifications of the code.]] -* -* .. minimal workspace length for CGEQP3 of an M x N matrix, -* CGEQRF of an N x N matrix, CGELQF of an N x N matrix, -* CUNMLQ for computing N x N matrix, CUNMQR for computing N x N -* matrix, CUNMQR for computing M x N matrix, respectively. - LWQP3 = N+1 - LWQRF = MAX( 1, N ) - LWLQF = MAX( 1, N ) - LWUNMLQ = MAX( 1, N ) - LWUNMQR = MAX( 1, N ) - LWUNMQRM = MAX( 1, M ) -* .. minimal workspace length for CPOCON of an N x N matrix - LWCON = 2 * N -* .. minimal workspace length for CGESVJ of an N x N matrix, -* without and with explicit accumulation of Jacobi rotations - LWSVDJ = MAX( 2 * N, 1 ) - LWSVDJV = MAX( 2 * N, 1 ) -* .. minimal REAL workspace length for CGEQP3, CPOCON, CGESVJ - LRWQP3 = 2 * N - LRWCON = N - LRWSVDJ = N - IF ( LQUERY ) THEN - CALL CGEQP3( M, N, A, LDA, IWORK, CDUMMY, CDUMMY, -1, - $ RDUMMY, IERR ) - LWRK_CGEQP3 = INT( CDUMMY(1) ) - CALL CGEQRF( N, N, A, LDA, CDUMMY, CDUMMY,-1, IERR ) - LWRK_CGEQRF = INT( CDUMMY(1) ) - CALL CGELQF( N, N, A, LDA, CDUMMY, CDUMMY,-1, IERR ) - LWRK_CGELQF = INT( CDUMMY(1) ) - END IF - MINWRK = 2 - OPTWRK = 2 - MINIWRK = N - IF ( .NOT. (LSVEC .OR. RSVEC ) ) THEN -* .. minimal and optimal sizes of the complex workspace if -* only the singular values are requested - IF ( ERREST ) THEN - MINWRK = MAX( N+LWQP3, N**2+LWCON, N+LWQRF, LWSVDJ ) - ELSE - MINWRK = MAX( N+LWQP3, N+LWQRF, LWSVDJ ) - END IF - IF ( LQUERY ) THEN - CALL CGESVJ( 'L', 'N', 'N', N, N, A, LDA, SVA, N, V, - $ LDV, CDUMMY, -1, RDUMMY, -1, IERR ) - LWRK_CGESVJ = INT( CDUMMY(1) ) - IF ( ERREST ) THEN - OPTWRK = MAX( N+LWRK_CGEQP3, N**2+LWCON, - $ N+LWRK_CGEQRF, LWRK_CGESVJ ) - ELSE - OPTWRK = MAX( N+LWRK_CGEQP3, N+LWRK_CGEQRF, - $ LWRK_CGESVJ ) - END IF - END IF - IF ( L2TRAN .OR. ROWPIV ) THEN - IF ( ERREST ) THEN - MINRWRK = MAX( 7, 2*M, LRWQP3, LRWCON, LRWSVDJ ) - ELSE - MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ ) - END IF - ELSE - IF ( ERREST ) THEN - MINRWRK = MAX( 7, LRWQP3, LRWCON, LRWSVDJ ) - ELSE - MINRWRK = MAX( 7, LRWQP3, LRWSVDJ ) - END IF - END IF - IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M - ELSE IF ( RSVEC .AND. (.NOT.LSVEC) ) THEN -* .. minimal and optimal sizes of the complex workspace if the -* singular values and the right singular vectors are requested - IF ( ERREST ) THEN - MINWRK = MAX( N+LWQP3, LWCON, LWSVDJ, N+LWLQF, - $ 2*N+LWQRF, N+LWSVDJ, N+LWUNMLQ ) - ELSE - MINWRK = MAX( N+LWQP3, LWSVDJ, N+LWLQF, 2*N+LWQRF, - $ N+LWSVDJ, N+LWUNMLQ ) - END IF - IF ( LQUERY ) THEN - CALL CGESVJ( 'L', 'U', 'N', N,N, U, LDU, SVA, N, A, - $ LDA, CDUMMY, -1, RDUMMY, -1, IERR ) - LWRK_CGESVJ = INT( CDUMMY(1) ) - CALL CUNMLQ( 'L', 'C', N, N, N, A, LDA, CDUMMY, - $ V, LDV, CDUMMY, -1, IERR ) - LWRK_CUNMLQ = INT( CDUMMY(1) ) - IF ( ERREST ) THEN - OPTWRK = MAX( N+LWRK_CGEQP3, LWCON, LWRK_CGESVJ, - $ N+LWRK_CGELQF, 2*N+LWRK_CGEQRF, - $ N+LWRK_CGESVJ, N+LWRK_CUNMLQ ) - ELSE - OPTWRK = MAX( N+LWRK_CGEQP3, LWRK_CGESVJ,N+LWRK_CGELQF, - $ 2*N+LWRK_CGEQRF, N+LWRK_CGESVJ, - $ N+LWRK_CUNMLQ ) - END IF - END IF - IF ( L2TRAN .OR. ROWPIV ) THEN - IF ( ERREST ) THEN - MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ, LRWCON ) - ELSE - MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ ) - END IF - ELSE - IF ( ERREST ) THEN - MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON ) - ELSE - MINRWRK = MAX( 7, LRWQP3, LRWSVDJ ) - END IF - END IF - IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M - ELSE IF ( LSVEC .AND. (.NOT.RSVEC) ) THEN -* .. minimal and optimal sizes of the complex workspace if the -* singular values and the left singular vectors are requested - IF ( ERREST ) THEN - MINWRK = N + MAX( LWQP3,LWCON,N+LWQRF,LWSVDJ,LWUNMQRM ) - ELSE - MINWRK = N + MAX( LWQP3, N+LWQRF, LWSVDJ, LWUNMQRM ) - END IF - IF ( LQUERY ) THEN - CALL CGESVJ( 'L', 'U', 'N', N,N, U, LDU, SVA, N, A, - $ LDA, CDUMMY, -1, RDUMMY, -1, IERR ) - LWRK_CGESVJ = INT( CDUMMY(1) ) - CALL CUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U, - $ LDU, CDUMMY, -1, IERR ) - LWRK_CUNMQRM = INT( CDUMMY(1) ) - IF ( ERREST ) THEN - OPTWRK = N + MAX( LWRK_CGEQP3, LWCON, N+LWRK_CGEQRF, - $ LWRK_CGESVJ, LWRK_CUNMQRM ) - ELSE - OPTWRK = N + MAX( LWRK_CGEQP3, N+LWRK_CGEQRF, - $ LWRK_CGESVJ, LWRK_CUNMQRM ) - END IF - END IF - IF ( L2TRAN .OR. ROWPIV ) THEN - IF ( ERREST ) THEN - MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ, LRWCON ) - ELSE - MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ ) - END IF - ELSE - IF ( ERREST ) THEN - MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON ) - ELSE - MINRWRK = MAX( 7, LRWQP3, LRWSVDJ ) - END IF - END IF - IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M - ELSE -* .. minimal and optimal sizes of the complex workspace if the -* full SVD is requested - IF ( .NOT. JRACC ) THEN - IF ( ERREST ) THEN - MINWRK = MAX( N+LWQP3, N+LWCON, 2*N+N**2+LWCON, - $ 2*N+LWQRF, 2*N+LWQP3, - $ 2*N+N**2+N+LWLQF, 2*N+N**2+N+N**2+LWCON, - $ 2*N+N**2+N+LWSVDJ, 2*N+N**2+N+LWSVDJV, - $ 2*N+N**2+N+LWUNMQR,2*N+N**2+N+LWUNMLQ, - $ N+N**2+LWSVDJ, N+LWUNMQRM ) - ELSE - MINWRK = MAX( N+LWQP3, 2*N+N**2+LWCON, - $ 2*N+LWQRF, 2*N+LWQP3, - $ 2*N+N**2+N+LWLQF, 2*N+N**2+N+N**2+LWCON, - $ 2*N+N**2+N+LWSVDJ, 2*N+N**2+N+LWSVDJV, - $ 2*N+N**2+N+LWUNMQR,2*N+N**2+N+LWUNMLQ, - $ N+N**2+LWSVDJ, N+LWUNMQRM ) - END IF - MINIWRK = MINIWRK + N - IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M - ELSE - IF ( ERREST ) THEN - MINWRK = MAX( N+LWQP3, N+LWCON, 2*N+LWQRF, - $ 2*N+N**2+LWSVDJV, 2*N+N**2+N+LWUNMQR, - $ N+LWUNMQRM ) - ELSE - MINWRK = MAX( N+LWQP3, 2*N+LWQRF, - $ 2*N+N**2+LWSVDJV, 2*N+N**2+N+LWUNMQR, - $ N+LWUNMQRM ) - END IF - IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M - END IF - IF ( LQUERY ) THEN - CALL CUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U, - $ LDU, CDUMMY, -1, IERR ) - LWRK_CUNMQRM = INT( CDUMMY(1) ) - CALL CUNMQR( 'L', 'N', N, N, N, A, LDA, CDUMMY, U, - $ LDU, CDUMMY, -1, IERR ) - LWRK_CUNMQR = INT( CDUMMY(1) ) - IF ( .NOT. JRACC ) THEN - CALL CGEQP3( N,N, A, LDA, IWORK, CDUMMY,CDUMMY, -1, - $ RDUMMY, IERR ) - LWRK_CGEQP3N = INT( CDUMMY(1) ) - CALL CGESVJ( 'L', 'U', 'N', N, N, U, LDU, SVA, - $ N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR ) - LWRK_CGESVJ = INT( CDUMMY(1) ) - CALL CGESVJ( 'U', 'U', 'N', N, N, U, LDU, SVA, - $ N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR ) - LWRK_CGESVJU = INT( CDUMMY(1) ) - CALL CGESVJ( 'L', 'U', 'V', N, N, U, LDU, SVA, - $ N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR ) - LWRK_CGESVJV = INT( CDUMMY(1) ) - CALL CUNMLQ( 'L', 'C', N, N, N, A, LDA, CDUMMY, - $ V, LDV, CDUMMY, -1, IERR ) - LWRK_CUNMLQ = INT( CDUMMY(1) ) - IF ( ERREST ) THEN - OPTWRK = MAX( N+LWRK_CGEQP3, N+LWCON, - $ 2*N+N**2+LWCON, 2*N+LWRK_CGEQRF, - $ 2*N+LWRK_CGEQP3N, - $ 2*N+N**2+N+LWRK_CGELQF, - $ 2*N+N**2+N+N**2+LWCON, - $ 2*N+N**2+N+LWRK_CGESVJ, - $ 2*N+N**2+N+LWRK_CGESVJV, - $ 2*N+N**2+N+LWRK_CUNMQR, - $ 2*N+N**2+N+LWRK_CUNMLQ, - $ N+N**2+LWRK_CGESVJU, - $ N+LWRK_CUNMQRM ) - ELSE - OPTWRK = MAX( N+LWRK_CGEQP3, - $ 2*N+N**2+LWCON, 2*N+LWRK_CGEQRF, - $ 2*N+LWRK_CGEQP3N, - $ 2*N+N**2+N+LWRK_CGELQF, - $ 2*N+N**2+N+N**2+LWCON, - $ 2*N+N**2+N+LWRK_CGESVJ, - $ 2*N+N**2+N+LWRK_CGESVJV, - $ 2*N+N**2+N+LWRK_CUNMQR, - $ 2*N+N**2+N+LWRK_CUNMLQ, - $ N+N**2+LWRK_CGESVJU, - $ N+LWRK_CUNMQRM ) - END IF - ELSE - CALL CGESVJ( 'L', 'U', 'V', N, N, U, LDU, SVA, - $ N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR ) - LWRK_CGESVJV = INT( CDUMMY(1) ) - CALL CUNMQR( 'L', 'N', N, N, N, CDUMMY, N, CDUMMY, - $ V, LDV, CDUMMY, -1, IERR ) - LWRK_CUNMQR = INT( CDUMMY(1) ) - CALL CUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U, - $ LDU, CDUMMY, -1, IERR ) - LWRK_CUNMQRM = INT( CDUMMY(1) ) - IF ( ERREST ) THEN - OPTWRK = MAX( N+LWRK_CGEQP3, N+LWCON, - $ 2*N+LWRK_CGEQRF, 2*N+N**2, - $ 2*N+N**2+LWRK_CGESVJV, - $ 2*N+N**2+N+LWRK_CUNMQR,N+LWRK_CUNMQRM ) - ELSE - OPTWRK = MAX( N+LWRK_CGEQP3, 2*N+LWRK_CGEQRF, - $ 2*N+N**2, 2*N+N**2+LWRK_CGESVJV, - $ 2*N+N**2+N+LWRK_CUNMQR, - $ N+LWRK_CUNMQRM ) - END IF - END IF - END IF - IF ( L2TRAN .OR. ROWPIV ) THEN - MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ, LRWCON ) - ELSE - MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON ) - END IF - END IF - MINWRK = MAX( 2, MINWRK ) - OPTWRK = MAX( OPTWRK, MINWRK ) - IF ( LWORK .LT. MINWRK .AND. (.NOT.LQUERY) ) INFO = - 17 - IF ( LRWORK .LT. MINRWRK .AND. (.NOT.LQUERY) ) INFO = - 19 - END IF -* - IF ( INFO .NE. 0 ) THEN -* #:( - CALL XERBLA( 'CGEJSV', - INFO ) - RETURN - ELSE IF ( LQUERY ) THEN - CWORK(1) = OPTWRK - CWORK(2) = MINWRK - RWORK(1) = MINRWRK - IWORK(1) = MAX( 4, MINIWRK ) - RETURN - END IF -* -* Quick return for void matrix (Y3K safe) -* #:) - IF ( ( M .EQ. 0 ) .OR. ( N .EQ. 0 ) ) THEN - IWORK(1:4) = 0 - RWORK(1:7) = 0 - RETURN - ENDIF -* -* Determine whether the matrix U should be M x N or M x M -* - IF ( LSVEC ) THEN - N1 = N - IF ( LSAME( JOBU, 'F' ) ) N1 = M - END IF -* -* Set numerical parameters -* -*! NOTE: Make sure SLAMCH() does not fail on the target architecture. -* - EPSLN = SLAMCH('Epsilon') - SFMIN = SLAMCH('SafeMinimum') - SMALL = SFMIN / EPSLN - BIG = SLAMCH('O') -* BIG = ONE / SFMIN -* -* Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N -* -*(!) If necessary, scale SVA() to protect the largest norm from -* overflow. It is possible that this scaling pushes the smallest -* column norm left from the underflow threshold (extreme case). -* - SCALEM = ONE / SQRT(REAL(M)*REAL(N)) - NOSCAL = .TRUE. - GOSCAL = .TRUE. - DO 1874 p = 1, N - AAPP = ZERO - AAQQ = ONE - CALL CLASSQ( M, A(1,p), 1, AAPP, AAQQ ) - IF ( AAPP .GT. BIG ) THEN - INFO = - 9 - CALL XERBLA( 'CGEJSV', -INFO ) - RETURN - END IF - AAQQ = SQRT(AAQQ) - IF ( ( AAPP .LT. (BIG / AAQQ) ) .AND. NOSCAL ) THEN - SVA(p) = AAPP * AAQQ - ELSE - NOSCAL = .FALSE. - SVA(p) = AAPP * ( AAQQ * SCALEM ) - IF ( GOSCAL ) THEN - GOSCAL = .FALSE. - CALL SSCAL( p-1, SCALEM, SVA, 1 ) - END IF - END IF - 1874 CONTINUE -* - IF ( NOSCAL ) SCALEM = ONE -* - AAPP = ZERO - AAQQ = BIG - DO 4781 p = 1, N - AAPP = MAX( AAPP, SVA(p) ) - IF ( SVA(p) .NE. ZERO ) AAQQ = MIN( AAQQ, SVA(p) ) - 4781 CONTINUE -* -* Quick return for zero M x N matrix -* #:) - IF ( AAPP .EQ. ZERO ) THEN - IF ( LSVEC ) CALL CLASET( 'G', M, N1, CZERO, CONE, U, LDU ) - IF ( RSVEC ) CALL CLASET( 'G', N, N, CZERO, CONE, V, LDV ) - RWORK(1) = ONE - RWORK(2) = ONE - IF ( ERREST ) RWORK(3) = ONE - IF ( LSVEC .AND. RSVEC ) THEN - RWORK(4) = ONE - RWORK(5) = ONE - END IF - IF ( L2TRAN ) THEN - RWORK(6) = ZERO - RWORK(7) = ZERO - END IF - IWORK(1) = 0 - IWORK(2) = 0 - IWORK(3) = 0 - IWORK(4) = -1 - RETURN - END IF -* -* Issue warning if denormalized column norms detected. Override the -* high relative accuracy request. Issue licence to kill nonzero columns -* (set them to zero) whose norm is less than sigma_max / BIG (roughly). -* #:( - WARNING = 0 - IF ( AAQQ .LE. SFMIN ) THEN - L2RANK = .TRUE. - L2KILL = .TRUE. - WARNING = 1 - END IF -* -* Quick return for one-column matrix -* #:) - IF ( N .EQ. 1 ) THEN -* - IF ( LSVEC ) THEN - CALL CLASCL( 'G',0,0,SVA(1),SCALEM, M,1,A(1,1),LDA,IERR ) - CALL CLACPY( 'A', M, 1, A, LDA, U, LDU ) -* computing all M left singular vectors of the M x 1 matrix - IF ( N1 .NE. N ) THEN - CALL CGEQRF( M, N, U,LDU, CWORK, CWORK(N+1),LWORK-N,IERR ) - CALL CUNGQR( M,N1,1, U,LDU,CWORK,CWORK(N+1),LWORK-N,IERR ) - CALL CCOPY( M, A(1,1), 1, U(1,1), 1 ) - END IF - END IF - IF ( RSVEC ) THEN - V(1,1) = CONE - END IF - IF ( SVA(1) .LT. (BIG*SCALEM) ) THEN - SVA(1) = SVA(1) / SCALEM - SCALEM = ONE - END IF - RWORK(1) = ONE / SCALEM - RWORK(2) = ONE - IF ( SVA(1) .NE. ZERO ) THEN - IWORK(1) = 1 - IF ( ( SVA(1) / SCALEM) .GE. SFMIN ) THEN - IWORK(2) = 1 - ELSE - IWORK(2) = 0 - END IF - ELSE - IWORK(1) = 0 - IWORK(2) = 0 - END IF - IWORK(3) = 0 - IWORK(4) = -1 - IF ( ERREST ) RWORK(3) = ONE - IF ( LSVEC .AND. RSVEC ) THEN - RWORK(4) = ONE - RWORK(5) = ONE - END IF - IF ( L2TRAN ) THEN - RWORK(6) = ZERO - RWORK(7) = ZERO - END IF - RETURN -* - END IF -* - TRANSP = .FALSE. -* - AATMAX = -ONE - AATMIN = BIG - IF ( ROWPIV .OR. L2TRAN ) THEN -* -* Compute the row norms, needed to determine row pivoting sequence -* (in the case of heavily row weighted A, row pivoting is strongly -* advised) and to collect information needed to compare the -* structures of A * A^* and A^* * A (in the case L2TRAN.EQ..TRUE.). -* - IF ( L2TRAN ) THEN - DO 1950 p = 1, M - XSC = ZERO - TEMP1 = ONE - CALL CLASSQ( N, A(p,1), LDA, XSC, TEMP1 ) -* CLASSQ gets both the ell_2 and the ell_infinity norm -* in one pass through the vector - RWORK(M+p) = XSC * SCALEM - RWORK(p) = XSC * (SCALEM*SQRT(TEMP1)) - AATMAX = MAX( AATMAX, RWORK(p) ) - IF (RWORK(p) .NE. ZERO) - $ AATMIN = MIN(AATMIN,RWORK(p)) - 1950 CONTINUE - ELSE - DO 1904 p = 1, M - RWORK(M+p) = SCALEM*ABS( A(p,ICAMAX(N,A(p,1),LDA)) ) - AATMAX = MAX( AATMAX, RWORK(M+p) ) - AATMIN = MIN( AATMIN, RWORK(M+p) ) - 1904 CONTINUE - END IF -* - END IF -* -* For square matrix A try to determine whether A^* would be better -* input for the preconditioned Jacobi SVD, with faster convergence. -* The decision is based on an O(N) function of the vector of column -* and row norms of A, based on the Shannon entropy. This should give -* the right choice in most cases when the difference actually matters. -* It may fail and pick the slower converging side. -* - ENTRA = ZERO - ENTRAT = ZERO - IF ( L2TRAN ) THEN -* - XSC = ZERO - TEMP1 = ONE - CALL SLASSQ( N, SVA, 1, XSC, TEMP1 ) - TEMP1 = ONE / TEMP1 -* - ENTRA = ZERO - DO 1113 p = 1, N - BIG1 = ( ( SVA(p) / XSC )**2 ) * TEMP1 - IF ( BIG1 .NE. ZERO ) ENTRA = ENTRA + BIG1 * ALOG(BIG1) - 1113 CONTINUE - ENTRA = - ENTRA / ALOG(REAL(N)) -* -* Now, SVA().^2/Trace(A^* * A) is a point in the probability simplex. -* It is derived from the diagonal of A^* * A. Do the same with the -* diagonal of A * A^*, compute the entropy of the corresponding -* probability distribution. Note that A * A^* and A^* * A have the -* same trace. -* - ENTRAT = ZERO - DO 1114 p = 1, M - BIG1 = ( ( RWORK(p) / XSC )**2 ) * TEMP1 - IF ( BIG1 .NE. ZERO ) ENTRAT = ENTRAT + BIG1 * ALOG(BIG1) - 1114 CONTINUE - ENTRAT = - ENTRAT / ALOG(REAL(M)) -* -* Analyze the entropies and decide A or A^*. Smaller entropy -* usually means better input for the algorithm. -* - TRANSP = ( ENTRAT .LT. ENTRA ) -* -* If A^* is better than A, take the adjoint of A. This is allowed -* only for square matrices, M=N. - IF ( TRANSP ) THEN -* In an optimal implementation, this trivial transpose -* should be replaced with faster transpose. - DO 1115 p = 1, N - 1 - A(p,p) = CONJG(A(p,p)) - DO 1116 q = p + 1, N - CTEMP = CONJG(A(q,p)) - A(q,p) = CONJG(A(p,q)) - A(p,q) = CTEMP - 1116 CONTINUE - 1115 CONTINUE - A(N,N) = CONJG(A(N,N)) - DO 1117 p = 1, N - RWORK(M+p) = SVA(p) - SVA(p) = RWORK(p) -* previously computed row 2-norms are now column 2-norms -* of the transposed matrix - 1117 CONTINUE - TEMP1 = AAPP - AAPP = AATMAX - AATMAX = TEMP1 - TEMP1 = AAQQ - AAQQ = AATMIN - AATMIN = TEMP1 - KILL = LSVEC - LSVEC = RSVEC - RSVEC = KILL - IF ( LSVEC ) N1 = N -* - ROWPIV = .TRUE. - END IF -* - END IF -* END IF L2TRAN -* -* Scale the matrix so that its maximal singular value remains less -* than SQRT(BIG) -- the matrix is scaled so that its maximal column -* has Euclidean norm equal to SQRT(BIG/N). The only reason to keep -* SQRT(BIG) instead of BIG is the fact that CGEJSV uses LAPACK and -* BLAS routines that, in some implementations, are not capable of -* working in the full interval [SFMIN,BIG] and that they may provoke -* overflows in the intermediate results. If the singular values spread -* from SFMIN to BIG, then CGESVJ will compute them. So, in that case, -* one should use CGESVJ instead of CGEJSV. - BIG1 = SQRT( BIG ) - TEMP1 = SQRT( BIG / REAL(N) ) -* >> for future updates: allow bigger range, i.e. the largest column -* will be allowed up to BIG/N and CGESVJ will do the rest. However, for -* this all other (LAPACK) components must allow such a range. -* TEMP1 = BIG/REAL(N) -* TEMP1 = BIG * EPSLN this should 'almost' work with current LAPACK components - CALL SLASCL( 'G', 0, 0, AAPP, TEMP1, N, 1, SVA, N, IERR ) - IF ( AAQQ .GT. (AAPP * SFMIN) ) THEN - AAQQ = ( AAQQ / AAPP ) * TEMP1 - ELSE - AAQQ = ( AAQQ * TEMP1 ) / AAPP - END IF - TEMP1 = TEMP1 * SCALEM - CALL CLASCL( 'G', 0, 0, AAPP, TEMP1, M, N, A, LDA, IERR ) -* -* To undo scaling at the end of this procedure, multiply the -* computed singular values with USCAL2 / USCAL1. -* - USCAL1 = TEMP1 - USCAL2 = AAPP -* - IF ( L2KILL ) THEN -* L2KILL enforces computation of nonzero singular values in -* the restricted range of condition number of the initial A, -* sigma_max(A) / sigma_min(A) approx. SQRT(BIG)/SQRT(SFMIN). - XSC = SQRT( SFMIN ) - ELSE - XSC = SMALL -* -* Now, if the condition number of A is too big, -* sigma_max(A) / sigma_min(A) .GT. SQRT(BIG/N) * EPSLN / SFMIN, -* as a precaution measure, the full SVD is computed using CGESVJ -* with accumulated Jacobi rotations. This provides numerically -* more robust computation, at the cost of slightly increased run -* time. Depending on the concrete implementation of BLAS and LAPACK -* (i.e. how they behave in presence of extreme ill-conditioning) the -* implementor may decide to remove this switch. - IF ( ( AAQQ.LT.SQRT(SFMIN) ) .AND. LSVEC .AND. RSVEC ) THEN - JRACC = .TRUE. - END IF -* - END IF - IF ( AAQQ .LT. XSC ) THEN - DO 700 p = 1, N - IF ( SVA(p) .LT. XSC ) THEN - CALL CLASET( 'A', M, 1, CZERO, CZERO, A(1,p), LDA ) - SVA(p) = ZERO - END IF - 700 CONTINUE - END IF -* -* Preconditioning using QR factorization with pivoting -* - IF ( ROWPIV ) THEN -* Optional row permutation (Bjoerck row pivoting): -* A result by Cox and Higham shows that the Bjoerck's -* row pivoting combined with standard column pivoting -* has similar effect as Powell-Reid complete pivoting. -* The ell-infinity norms of A are made nonincreasing. - IF ( ( LSVEC .AND. RSVEC ) .AND. .NOT.( JRACC ) ) THEN - IWOFF = 2*N - ELSE - IWOFF = N - END IF - DO 1952 p = 1, M - 1 - q = ISAMAX( M-p+1, RWORK(M+p), 1 ) + p - 1 - IWORK(IWOFF+p) = q - IF ( p .NE. q ) THEN - TEMP1 = RWORK(M+p) - RWORK(M+p) = RWORK(M+q) - RWORK(M+q) = TEMP1 - END IF - 1952 CONTINUE - CALL CLASWP( N, A, LDA, 1, M-1, IWORK(IWOFF+1), 1 ) - END IF -* -* End of the preparation phase (scaling, optional sorting and -* transposing, optional flushing of small columns). -* -* Preconditioning -* -* If the full SVD is needed, the right singular vectors are computed -* from a matrix equation, and for that we need theoretical analysis -* of the Businger-Golub pivoting. So we use CGEQP3 as the first RR QRF. -* In all other cases the first RR QRF can be chosen by other criteria -* (eg speed by replacing global with restricted window pivoting, such -* as in xGEQPX from TOMS # 782). Good results will be obtained using -* xGEQPX with properly (!) chosen numerical parameters. -* Any improvement of CGEQP3 improves overall performance of CGEJSV. -* -* A * P1 = Q1 * [ R1^* 0]^*: - DO 1963 p = 1, N -* .. all columns are free columns - IWORK(p) = 0 - 1963 CONTINUE - CALL CGEQP3( M, N, A, LDA, IWORK, CWORK, CWORK(N+1), LWORK-N, - $ RWORK, IERR ) -* -* The upper triangular matrix R1 from the first QRF is inspected for -* rank deficiency and possibilities for deflation, or possible -* ill-conditioning. Depending on the user specified flag L2RANK, -* the procedure explores possibilities to reduce the numerical -* rank by inspecting the computed upper triangular factor. If -* L2RANK or L2ABER are up, then CGEJSV will compute the SVD of -* A + dA, where ||dA|| <= f(M,N)*EPSLN. -* - NR = 1 - IF ( L2ABER ) THEN -* Standard absolute error bound suffices. All sigma_i with -* sigma_i < N*EPSLN*||A|| are flushed to zero. This is an -* aggressive enforcement of lower numerical rank by introducing a -* backward error of the order of N*EPSLN*||A||. - TEMP1 = SQRT(REAL(N))*EPSLN - DO 3001 p = 2, N - IF ( ABS(A(p,p)) .GE. (TEMP1*ABS(A(1,1))) ) THEN - NR = NR + 1 - ELSE - GO TO 3002 - END IF - 3001 CONTINUE - 3002 CONTINUE - ELSE IF ( L2RANK ) THEN -* .. similarly as above, only slightly more gentle (less aggressive). -* Sudden drop on the diagonal of R1 is used as the criterion for -* close-to-rank-deficient. - TEMP1 = SQRT(SFMIN) - DO 3401 p = 2, N - IF ( ( ABS(A(p,p)) .LT. (EPSLN*ABS(A(p-1,p-1))) ) .OR. - $ ( ABS(A(p,p)) .LT. SMALL ) .OR. - $ ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3402 - NR = NR + 1 - 3401 CONTINUE - 3402 CONTINUE -* - ELSE -* The goal is high relative accuracy. However, if the matrix -* has high scaled condition number the relative accuracy is in -* general not feasible. Later on, a condition number estimator -* will be deployed to estimate the scaled condition number. -* Here we just remove the underflowed part of the triangular -* factor. This prevents the situation in which the code is -* working hard to get the accuracy not warranted by the data. - TEMP1 = SQRT(SFMIN) - DO 3301 p = 2, N - IF ( ( ABS(A(p,p)) .LT. SMALL ) .OR. - $ ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3302 - NR = NR + 1 - 3301 CONTINUE - 3302 CONTINUE -* - END IF -* - ALMORT = .FALSE. - IF ( NR .EQ. N ) THEN - MAXPRJ = ONE - DO 3051 p = 2, N - TEMP1 = ABS(A(p,p)) / SVA(IWORK(p)) - MAXPRJ = MIN( MAXPRJ, TEMP1 ) - 3051 CONTINUE - IF ( MAXPRJ**2 .GE. ONE - REAL(N)*EPSLN ) ALMORT = .TRUE. - END IF -* -* - SCONDA = - ONE - CONDR1 = - ONE - CONDR2 = - ONE -* - IF ( ERREST ) THEN - IF ( N .EQ. NR ) THEN - IF ( RSVEC ) THEN -* .. V is available as workspace - CALL CLACPY( 'U', N, N, A, LDA, V, LDV ) - DO 3053 p = 1, N - TEMP1 = SVA(IWORK(p)) - CALL CSSCAL( p, ONE/TEMP1, V(1,p), 1 ) - 3053 CONTINUE - IF ( LSVEC )THEN - CALL CPOCON( 'U', N, V, LDV, ONE, TEMP1, - $ CWORK(N+1), RWORK, IERR ) - ELSE - CALL CPOCON( 'U', N, V, LDV, ONE, TEMP1, - $ CWORK, RWORK, IERR ) - END IF -* - ELSE IF ( LSVEC ) THEN -* .. U is available as workspace - CALL CLACPY( 'U', N, N, A, LDA, U, LDU ) - DO 3054 p = 1, N - TEMP1 = SVA(IWORK(p)) - CALL CSSCAL( p, ONE/TEMP1, U(1,p), 1 ) - 3054 CONTINUE - CALL CPOCON( 'U', N, U, LDU, ONE, TEMP1, - $ CWORK(N+1), RWORK, IERR ) - ELSE - CALL CLACPY( 'U', N, N, A, LDA, CWORK, N ) -*[] CALL CLACPY( 'U', N, N, A, LDA, CWORK(N+1), N ) -* Change: here index shifted by N to the left, CWORK(1:N) -* not needed for SIGMA only computation - DO 3052 p = 1, N - TEMP1 = SVA(IWORK(p)) -*[] CALL CSSCAL( p, ONE/TEMP1, CWORK(N+(p-1)*N+1), 1 ) - CALL CSSCAL( p, ONE/TEMP1, CWORK((p-1)*N+1), 1 ) - 3052 CONTINUE -* .. the columns of R are scaled to have unit Euclidean lengths. -*[] CALL CPOCON( 'U', N, CWORK(N+1), N, ONE, TEMP1, -*[] $ CWORK(N+N*N+1), RWORK, IERR ) - CALL CPOCON( 'U', N, CWORK, N, ONE, TEMP1, - $ CWORK(N*N+1), RWORK, IERR ) -* - END IF - IF ( TEMP1 .NE. ZERO ) THEN - SCONDA = ONE / SQRT(TEMP1) - ELSE - SCONDA = - ONE - END IF -* SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1). -* N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA - ELSE - SCONDA = - ONE - END IF - END IF -* - L2PERT = L2PERT .AND. ( ABS( A(1,1)/A(NR,NR) ) .GT. SQRT(BIG1) ) -* If there is no violent scaling, artificial perturbation is not needed. -* -* Phase 3: -* - IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN -* -* Singular Values only -* -* .. transpose A(1:NR,1:N) - DO 1946 p = 1, MIN( N-1, NR ) - CALL CCOPY( N-p, A(p,p+1), LDA, A(p+1,p), 1 ) - CALL CLACGV( N-p+1, A(p,p), 1 ) - 1946 CONTINUE - IF ( NR .EQ. N ) A(N,N) = CONJG(A(N,N)) -* -* The following two DO-loops introduce small relative perturbation -* into the strict upper triangle of the lower triangular matrix. -* Small entries below the main diagonal are also changed. -* This modification is useful if the computing environment does not -* provide/allow FLUSH TO ZERO underflow, for it prevents many -* annoying denormalized numbers in case of strongly scaled matrices. -* The perturbation is structured so that it does not introduce any -* new perturbation of the singular values, and it does not destroy -* the job done by the preconditioner. -* The licence for this perturbation is in the variable L2PERT, which -* should be .FALSE. if FLUSH TO ZERO underflow is active. -* - IF ( .NOT. ALMORT ) THEN -* - IF ( L2PERT ) THEN -* XSC = SQRT(SMALL) - XSC = EPSLN / REAL(N) - DO 4947 q = 1, NR - CTEMP = CMPLX(XSC*ABS(A(q,q)),ZERO) - DO 4949 p = 1, N - IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) ) - $ .OR. ( p .LT. q ) ) -* $ A(p,q) = TEMP1 * ( A(p,q) / ABS(A(p,q)) ) - $ A(p,q) = CTEMP - 4949 CONTINUE - 4947 CONTINUE - ELSE - CALL CLASET( 'U', NR-1,NR-1, CZERO,CZERO, A(1,2),LDA ) - END IF -* -* .. second preconditioning using the QR factorization -* - CALL CGEQRF( N,NR, A,LDA, CWORK, CWORK(N+1),LWORK-N, IERR ) -* -* .. and transpose upper to lower triangular - DO 1948 p = 1, NR - 1 - CALL CCOPY( NR-p, A(p,p+1), LDA, A(p+1,p), 1 ) - CALL CLACGV( NR-p+1, A(p,p), 1 ) - 1948 CONTINUE -* - END IF -* -* Row-cyclic Jacobi SVD algorithm with column pivoting -* -* .. again some perturbation (a "background noise") is added -* to drown denormals - IF ( L2PERT ) THEN -* XSC = SQRT(SMALL) - XSC = EPSLN / REAL(N) - DO 1947 q = 1, NR - CTEMP = CMPLX(XSC*ABS(A(q,q)),ZERO) - DO 1949 p = 1, NR - IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) ) - $ .OR. ( p .LT. q ) ) -* $ A(p,q) = TEMP1 * ( A(p,q) / ABS(A(p,q)) ) - $ A(p,q) = CTEMP - 1949 CONTINUE - 1947 CONTINUE - ELSE - CALL CLASET( 'U', NR-1, NR-1, CZERO, CZERO, A(1,2), LDA ) - END IF -* -* .. and one-sided Jacobi rotations are started on a lower -* triangular matrix (plus perturbation which is ignored in -* the part which destroys triangular form (confusing?!)) -* - CALL CGESVJ( 'L', 'N', 'N', NR, NR, A, LDA, SVA, - $ N, V, LDV, CWORK, LWORK, RWORK, LRWORK, INFO ) -* - SCALEM = RWORK(1) - NUMRANK = NINT(RWORK(2)) -* -* - ELSE IF ( ( RSVEC .AND. ( .NOT. LSVEC ) .AND. ( .NOT. JRACC ) ) - $ .OR. - $ ( JRACC .AND. ( .NOT. LSVEC ) .AND. ( NR .NE. N ) ) ) THEN -* -* -> Singular Values and Right Singular Vectors <- -* - IF ( ALMORT ) THEN -* -* .. in this case NR equals N - DO 1998 p = 1, NR - CALL CCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 ) - CALL CLACGV( N-p+1, V(p,p), 1 ) - 1998 CONTINUE - CALL CLASET( 'U', NR-1,NR-1, CZERO, CZERO, V(1,2), LDV ) -* - CALL CGESVJ( 'L','U','N', N, NR, V, LDV, SVA, NR, A, LDA, - $ CWORK, LWORK, RWORK, LRWORK, INFO ) - SCALEM = RWORK(1) - NUMRANK = NINT(RWORK(2)) - - ELSE -* -* .. two more QR factorizations ( one QRF is not enough, two require -* accumulated product of Jacobi rotations, three are perfect ) -* - CALL CLASET( 'L', NR-1,NR-1, CZERO, CZERO, A(2,1), LDA ) - CALL CGELQF( NR,N, A, LDA, CWORK, CWORK(N+1), LWORK-N, IERR) - CALL CLACPY( 'L', NR, NR, A, LDA, V, LDV ) - CALL CLASET( 'U', NR-1,NR-1, CZERO, CZERO, V(1,2), LDV ) - CALL CGEQRF( NR, NR, V, LDV, CWORK(N+1), CWORK(2*N+1), - $ LWORK-2*N, IERR ) - DO 8998 p = 1, NR - CALL CCOPY( NR-p+1, V(p,p), LDV, V(p,p), 1 ) - CALL CLACGV( NR-p+1, V(p,p), 1 ) - 8998 CONTINUE - CALL CLASET('U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV) -* - CALL CGESVJ( 'L', 'U','N', NR, NR, V,LDV, SVA, NR, U, - $ LDU, CWORK(N+1), LWORK-N, RWORK, LRWORK, INFO ) - SCALEM = RWORK(1) - NUMRANK = NINT(RWORK(2)) - IF ( NR .LT. N ) THEN - CALL CLASET( 'A',N-NR, NR, CZERO,CZERO, V(NR+1,1), LDV ) - CALL CLASET( 'A',NR, N-NR, CZERO,CZERO, V(1,NR+1), LDV ) - CALL CLASET( 'A',N-NR,N-NR,CZERO,CONE, V(NR+1,NR+1),LDV ) - END IF -* - CALL CUNMLQ( 'L', 'C', N, N, NR, A, LDA, CWORK, - $ V, LDV, CWORK(N+1), LWORK-N, IERR ) -* - END IF -* .. permute the rows of V -* DO 8991 p = 1, N -* CALL CCOPY( N, V(p,1), LDV, A(IWORK(p),1), LDA ) -* 8991 CONTINUE -* CALL CLACPY( 'All', N, N, A, LDA, V, LDV ) - CALL CLAPMR( .FALSE., N, N, V, LDV, IWORK ) -* - IF ( TRANSP ) THEN - CALL CLACPY( 'A', N, N, V, LDV, U, LDU ) - END IF -* - ELSE IF ( JRACC .AND. (.NOT. LSVEC) .AND. ( NR.EQ. N ) ) THEN -* - CALL CLASET( 'L', N-1,N-1, CZERO, CZERO, A(2,1), LDA ) -* - CALL CGESVJ( 'U','N','V', N, N, A, LDA, SVA, N, V, LDV, - $ CWORK, LWORK, RWORK, LRWORK, INFO ) - SCALEM = RWORK(1) - NUMRANK = NINT(RWORK(2)) - CALL CLAPMR( .FALSE., N, N, V, LDV, IWORK ) -* - ELSE IF ( LSVEC .AND. ( .NOT. RSVEC ) ) THEN -* -* .. Singular Values and Left Singular Vectors .. -* -* .. second preconditioning step to avoid need to accumulate -* Jacobi rotations in the Jacobi iterations. - DO 1965 p = 1, NR - CALL CCOPY( N-p+1, A(p,p), LDA, U(p,p), 1 ) - CALL CLACGV( N-p+1, U(p,p), 1 ) - 1965 CONTINUE - CALL CLASET( 'U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU ) -* - CALL CGEQRF( N, NR, U, LDU, CWORK(N+1), CWORK(2*N+1), - $ LWORK-2*N, IERR ) -* - DO 1967 p = 1, NR - 1 - CALL CCOPY( NR-p, U(p,p+1), LDU, U(p+1,p), 1 ) - CALL CLACGV( N-p+1, U(p,p), 1 ) - 1967 CONTINUE - CALL CLASET( 'U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU ) -* - CALL CGESVJ( 'L', 'U', 'N', NR,NR, U, LDU, SVA, NR, A, - $ LDA, CWORK(N+1), LWORK-N, RWORK, LRWORK, INFO ) - SCALEM = RWORK(1) - NUMRANK = NINT(RWORK(2)) -* - IF ( NR .LT. M ) THEN - CALL CLASET( 'A', M-NR, NR,CZERO, CZERO, U(NR+1,1), LDU ) - IF ( NR .LT. N1 ) THEN - CALL CLASET( 'A',NR, N1-NR, CZERO, CZERO, U(1,NR+1),LDU ) - CALL CLASET( 'A',M-NR,N1-NR,CZERO,CONE,U(NR+1,NR+1),LDU ) - END IF - END IF -* - CALL CUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U, - $ LDU, CWORK(N+1), LWORK-N, IERR ) -* - IF ( ROWPIV ) - $ CALL CLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 ) -* - DO 1974 p = 1, N1 - XSC = ONE / SCNRM2( M, U(1,p), 1 ) - CALL CSSCAL( M, XSC, U(1,p), 1 ) - 1974 CONTINUE -* - IF ( TRANSP ) THEN - CALL CLACPY( 'A', N, N, U, LDU, V, LDV ) - END IF -* - ELSE -* -* .. Full SVD .. -* - IF ( .NOT. JRACC ) THEN -* - IF ( .NOT. ALMORT ) THEN -* -* Second Preconditioning Step (QRF [with pivoting]) -* Note that the composition of TRANSPOSE, QRF and TRANSPOSE is -* equivalent to an LQF CALL. Since in many libraries the QRF -* seems to be better optimized than the LQF, we do explicit -* transpose and use the QRF. This is subject to changes in an -* optimized implementation of CGEJSV. -* - DO 1968 p = 1, NR - CALL CCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 ) - CALL CLACGV( N-p+1, V(p,p), 1 ) - 1968 CONTINUE -* -* .. the following two loops perturb small entries to avoid -* denormals in the second QR factorization, where they are -* as good as zeros. This is done to avoid painfully slow -* computation with denormals. The relative size of the perturbation -* is a parameter that can be changed by the implementer. -* This perturbation device will be obsolete on machines with -* properly implemented arithmetic. -* To switch it off, set L2PERT=.FALSE. To remove it from the -* code, remove the action under L2PERT=.TRUE., leave the ELSE part. -* The following two loops should be blocked and fused with the -* transposed copy above. -* - IF ( L2PERT ) THEN - XSC = SQRT(SMALL) - DO 2969 q = 1, NR - CTEMP = CMPLX(XSC*ABS( V(q,q) ),ZERO) - DO 2968 p = 1, N - IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 ) - $ .OR. ( p .LT. q ) ) -* $ V(p,q) = TEMP1 * ( V(p,q) / ABS(V(p,q)) ) - $ V(p,q) = CTEMP - IF ( p .LT. q ) V(p,q) = - V(p,q) - 2968 CONTINUE - 2969 CONTINUE - ELSE - CALL CLASET( 'U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV ) - END IF -* -* Estimate the row scaled condition number of R1 -* (If R1 is rectangular, N > NR, then the condition number -* of the leading NR x NR submatrix is estimated.) -* - CALL CLACPY( 'L', NR, NR, V, LDV, CWORK(2*N+1), NR ) - DO 3950 p = 1, NR - TEMP1 = SCNRM2(NR-p+1,CWORK(2*N+(p-1)*NR+p),1) - CALL CSSCAL(NR-p+1,ONE/TEMP1,CWORK(2*N+(p-1)*NR+p),1) - 3950 CONTINUE - CALL CPOCON('L',NR,CWORK(2*N+1),NR,ONE,TEMP1, - $ CWORK(2*N+NR*NR+1),RWORK,IERR) - CONDR1 = ONE / SQRT(TEMP1) -* .. here need a second opinion on the condition number -* .. then assume worst case scenario -* R1 is OK for inverse <=> CONDR1 .LT. REAL(N) -* more conservative <=> CONDR1 .LT. SQRT(REAL(N)) -* - COND_OK = SQRT(SQRT(REAL(NR))) -*[TP] COND_OK is a tuning parameter. -* - IF ( CONDR1 .LT. COND_OK ) THEN -* .. the second QRF without pivoting. Note: in an optimized -* implementation, this QRF should be implemented as the QRF -* of a lower triangular matrix. -* R1^* = Q2 * R2 - CALL CGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1), - $ LWORK-2*N, IERR ) -* - IF ( L2PERT ) THEN - XSC = SQRT(SMALL)/EPSLN - DO 3959 p = 2, NR - DO 3958 q = 1, p - 1 - CTEMP=CMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))), - $ ZERO) - IF ( ABS(V(q,p)) .LE. TEMP1 ) -* $ V(q,p) = TEMP1 * ( V(q,p) / ABS(V(q,p)) ) - $ V(q,p) = CTEMP - 3958 CONTINUE - 3959 CONTINUE - END IF -* - IF ( NR .NE. N ) - $ CALL CLACPY( 'A', N, NR, V, LDV, CWORK(2*N+1), N ) -* .. save ... -* -* .. this transposed copy should be better than naive - DO 1969 p = 1, NR - 1 - CALL CCOPY( NR-p, V(p,p+1), LDV, V(p+1,p), 1 ) - CALL CLACGV(NR-p+1, V(p,p), 1 ) - 1969 CONTINUE - V(NR,NR)=CONJG(V(NR,NR)) -* - CONDR2 = CONDR1 -* - ELSE -* -* .. ill-conditioned case: second QRF with pivoting -* Note that windowed pivoting would be equally good -* numerically, and more run-time efficient. So, in -* an optimal implementation, the next call to CGEQP3 -* should be replaced with eg. CALL CGEQPX (ACM TOMS #782) -* with properly (carefully) chosen parameters. -* -* R1^* * P2 = Q2 * R2 - DO 3003 p = 1, NR - IWORK(N+p) = 0 - 3003 CONTINUE - CALL CGEQP3( N, NR, V, LDV, IWORK(N+1), CWORK(N+1), - $ CWORK(2*N+1), LWORK-2*N, RWORK, IERR ) -** CALL CGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1), -** $ LWORK-2*N, IERR ) - IF ( L2PERT ) THEN - XSC = SQRT(SMALL) - DO 3969 p = 2, NR - DO 3968 q = 1, p - 1 - CTEMP=CMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))), - $ ZERO) - IF ( ABS(V(q,p)) .LE. TEMP1 ) -* $ V(q,p) = TEMP1 * ( V(q,p) / ABS(V(q,p)) ) - $ V(q,p) = CTEMP - 3968 CONTINUE - 3969 CONTINUE - END IF -* - CALL CLACPY( 'A', N, NR, V, LDV, CWORK(2*N+1), N ) -* - IF ( L2PERT ) THEN - XSC = SQRT(SMALL) - DO 8970 p = 2, NR - DO 8971 q = 1, p - 1 - CTEMP=CMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))), - $ ZERO) -* V(p,q) = - TEMP1*( V(q,p) / ABS(V(q,p)) ) - V(p,q) = - CTEMP - 8971 CONTINUE - 8970 CONTINUE - ELSE - CALL CLASET( 'L',NR-1,NR-1,CZERO,CZERO,V(2,1),LDV ) - END IF -* Now, compute R2 = L3 * Q3, the LQ factorization. - CALL CGELQF( NR, NR, V, LDV, CWORK(2*N+N*NR+1), - $ CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, IERR ) -* .. and estimate the condition number - CALL CLACPY( 'L',NR,NR,V,LDV,CWORK(2*N+N*NR+NR+1),NR ) - DO 4950 p = 1, NR - TEMP1 = SCNRM2( p, CWORK(2*N+N*NR+NR+p), NR ) - CALL CSSCAL( p, ONE/TEMP1, CWORK(2*N+N*NR+NR+p), NR ) - 4950 CONTINUE - CALL CPOCON( 'L',NR,CWORK(2*N+N*NR+NR+1),NR,ONE,TEMP1, - $ CWORK(2*N+N*NR+NR+NR*NR+1),RWORK,IERR ) - CONDR2 = ONE / SQRT(TEMP1) -* -* - IF ( CONDR2 .GE. COND_OK ) THEN -* .. save the Householder vectors used for Q3 -* (this overwrites the copy of R2, as it will not be -* needed in this branch, but it does not overwritte the -* Huseholder vectors of Q2.). - CALL CLACPY( 'U', NR, NR, V, LDV, CWORK(2*N+1), N ) -* .. and the rest of the information on Q3 is in -* WORK(2*N+N*NR+1:2*N+N*NR+N) - END IF -* - END IF -* - IF ( L2PERT ) THEN - XSC = SQRT(SMALL) - DO 4968 q = 2, NR - CTEMP = XSC * V(q,q) - DO 4969 p = 1, q - 1 -* V(p,q) = - TEMP1*( V(p,q) / ABS(V(p,q)) ) - V(p,q) = - CTEMP - 4969 CONTINUE - 4968 CONTINUE - ELSE - CALL CLASET( 'U', NR-1,NR-1, CZERO,CZERO, V(1,2), LDV ) - END IF -* -* Second preconditioning finished; continue with Jacobi SVD -* The input matrix is lower trinagular. -* -* Recover the right singular vectors as solution of a well -* conditioned triangular matrix equation. -* - IF ( CONDR1 .LT. COND_OK ) THEN -* - CALL CGESVJ( 'L','U','N',NR,NR,V,LDV,SVA,NR,U, LDU, - $ CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,RWORK, - $ LRWORK, INFO ) - SCALEM = RWORK(1) - NUMRANK = NINT(RWORK(2)) - DO 3970 p = 1, NR - CALL CCOPY( NR, V(1,p), 1, U(1,p), 1 ) - CALL CSSCAL( NR, SVA(p), V(1,p), 1 ) - 3970 CONTINUE - -* .. pick the right matrix equation and solve it -* - IF ( NR .EQ. N ) THEN -* :)) .. best case, R1 is inverted. The solution of this matrix -* equation is Q2*V2 = the product of the Jacobi rotations -* used in CGESVJ, premultiplied with the orthogonal matrix -* from the second QR factorization. - CALL CTRSM('L','U','N','N', NR,NR,CONE, A,LDA, V,LDV) - ELSE -* .. R1 is well conditioned, but non-square. Adjoint of R2 -* is inverted to get the product of the Jacobi rotations -* used in CGESVJ. The Q-factor from the second QR -* factorization is then built in explicitly. - CALL CTRSM('L','U','C','N',NR,NR,CONE,CWORK(2*N+1), - $ N,V,LDV) - IF ( NR .LT. N ) THEN - CALL CLASET('A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV) - CALL CLASET('A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV) - CALL CLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV) - END IF - CALL CUNMQR('L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1), - $ V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR) - END IF -* - ELSE IF ( CONDR2 .LT. COND_OK ) THEN -* -* The matrix R2 is inverted. The solution of the matrix equation -* is Q3^* * V3 = the product of the Jacobi rotations (appplied to -* the lower triangular L3 from the LQ factorization of -* R2=L3*Q3), pre-multiplied with the transposed Q3. - CALL CGESVJ( 'L', 'U', 'N', NR, NR, V, LDV, SVA, NR, U, - $ LDU, CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, - $ RWORK, LRWORK, INFO ) - SCALEM = RWORK(1) - NUMRANK = NINT(RWORK(2)) - DO 3870 p = 1, NR - CALL CCOPY( NR, V(1,p), 1, U(1,p), 1 ) - CALL CSSCAL( NR, SVA(p), U(1,p), 1 ) - 3870 CONTINUE - CALL CTRSM('L','U','N','N',NR,NR,CONE,CWORK(2*N+1),N, - $ U,LDU) -* .. apply the permutation from the second QR factorization - DO 873 q = 1, NR - DO 872 p = 1, NR - CWORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q) - 872 CONTINUE - DO 874 p = 1, NR - U(p,q) = CWORK(2*N+N*NR+NR+p) - 874 CONTINUE - 873 CONTINUE - IF ( NR .LT. N ) THEN - CALL CLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV ) - CALL CLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV ) - CALL CLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV) - END IF - CALL CUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1), - $ V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR ) - ELSE -* Last line of defense. -* #:( This is a rather pathological case: no scaled condition -* improvement after two pivoted QR factorizations. Other -* possibility is that the rank revealing QR factorization -* or the condition estimator has failed, or the COND_OK -* is set very close to ONE (which is unnecessary). Normally, -* this branch should never be executed, but in rare cases of -* failure of the RRQR or condition estimator, the last line of -* defense ensures that CGEJSV completes the task. -* Compute the full SVD of L3 using CGESVJ with explicit -* accumulation of Jacobi rotations. - CALL CGESVJ( 'L', 'U', 'V', NR, NR, V, LDV, SVA, NR, U, - $ LDU, CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, - $ RWORK, LRWORK, INFO ) - SCALEM = RWORK(1) - NUMRANK = NINT(RWORK(2)) - IF ( NR .LT. N ) THEN - CALL CLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV ) - CALL CLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV ) - CALL CLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV) - END IF - CALL CUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1), - $ V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR ) -* - CALL CUNMLQ( 'L', 'C', NR, NR, NR, CWORK(2*N+1), N, - $ CWORK(2*N+N*NR+1), U, LDU, CWORK(2*N+N*NR+NR+1), - $ LWORK-2*N-N*NR-NR, IERR ) - DO 773 q = 1, NR - DO 772 p = 1, NR - CWORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q) - 772 CONTINUE - DO 774 p = 1, NR - U(p,q) = CWORK(2*N+N*NR+NR+p) - 774 CONTINUE - 773 CONTINUE -* - END IF -* -* Permute the rows of V using the (column) permutation from the -* first QRF. Also, scale the columns to make them unit in -* Euclidean norm. This applies to all cases. -* - TEMP1 = SQRT(REAL(N)) * EPSLN - DO 1972 q = 1, N - DO 972 p = 1, N - CWORK(2*N+N*NR+NR+IWORK(p)) = V(p,q) - 972 CONTINUE - DO 973 p = 1, N - V(p,q) = CWORK(2*N+N*NR+NR+p) - 973 CONTINUE - XSC = ONE / SCNRM2( N, V(1,q), 1 ) - IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) ) - $ CALL CSSCAL( N, XSC, V(1,q), 1 ) - 1972 CONTINUE -* At this moment, V contains the right singular vectors of A. -* Next, assemble the left singular vector matrix U (M x N). - IF ( NR .LT. M ) THEN - CALL CLASET('A', M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU) - IF ( NR .LT. N1 ) THEN - CALL CLASET('A',NR,N1-NR,CZERO,CZERO,U(1,NR+1),LDU) - CALL CLASET('A',M-NR,N1-NR,CZERO,CONE, - $ U(NR+1,NR+1),LDU) - END IF - END IF -* -* The Q matrix from the first QRF is built into the left singular -* matrix U. This applies to all cases. -* - CALL CUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U, - $ LDU, CWORK(N+1), LWORK-N, IERR ) - -* The columns of U are normalized. The cost is O(M*N) flops. - TEMP1 = SQRT(REAL(M)) * EPSLN - DO 1973 p = 1, NR - XSC = ONE / SCNRM2( M, U(1,p), 1 ) - IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) ) - $ CALL CSSCAL( M, XSC, U(1,p), 1 ) - 1973 CONTINUE -* -* If the initial QRF is computed with row pivoting, the left -* singular vectors must be adjusted. -* - IF ( ROWPIV ) - $ CALL CLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 ) -* - ELSE -* -* .. the initial matrix A has almost orthogonal columns and -* the second QRF is not needed -* - CALL CLACPY( 'U', N, N, A, LDA, CWORK(N+1), N ) - IF ( L2PERT ) THEN - XSC = SQRT(SMALL) - DO 5970 p = 2, N - CTEMP = XSC * CWORK( N + (p-1)*N + p ) - DO 5971 q = 1, p - 1 -* CWORK(N+(q-1)*N+p)=-TEMP1 * ( CWORK(N+(p-1)*N+q) / -* $ ABS(CWORK(N+(p-1)*N+q)) ) - CWORK(N+(q-1)*N+p)=-CTEMP - 5971 CONTINUE - 5970 CONTINUE - ELSE - CALL CLASET( 'L',N-1,N-1,CZERO,CZERO,CWORK(N+2),N ) - END IF -* - CALL CGESVJ( 'U', 'U', 'N', N, N, CWORK(N+1), N, SVA, - $ N, U, LDU, CWORK(N+N*N+1), LWORK-N-N*N, RWORK, LRWORK, - $ INFO ) -* - SCALEM = RWORK(1) - NUMRANK = NINT(RWORK(2)) - DO 6970 p = 1, N - CALL CCOPY( N, CWORK(N+(p-1)*N+1), 1, U(1,p), 1 ) - CALL CSSCAL( N, SVA(p), CWORK(N+(p-1)*N+1), 1 ) - 6970 CONTINUE -* - CALL CTRSM( 'L', 'U', 'N', 'N', N, N, - $ CONE, A, LDA, CWORK(N+1), N ) - DO 6972 p = 1, N - CALL CCOPY( N, CWORK(N+p), N, V(IWORK(p),1), LDV ) - 6972 CONTINUE - TEMP1 = SQRT(REAL(N))*EPSLN - DO 6971 p = 1, N - XSC = ONE / SCNRM2( N, V(1,p), 1 ) - IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) ) - $ CALL CSSCAL( N, XSC, V(1,p), 1 ) - 6971 CONTINUE -* -* Assemble the left singular vector matrix U (M x N). -* - IF ( N .LT. M ) THEN - CALL CLASET( 'A', M-N, N, CZERO, CZERO, U(N+1,1), LDU ) - IF ( N .LT. N1 ) THEN - CALL CLASET('A',N, N1-N, CZERO, CZERO, U(1,N+1),LDU) - CALL CLASET( 'A',M-N,N1-N, CZERO, CONE,U(N+1,N+1),LDU) - END IF - END IF - CALL CUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U, - $ LDU, CWORK(N+1), LWORK-N, IERR ) - TEMP1 = SQRT(REAL(M))*EPSLN - DO 6973 p = 1, N1 - XSC = ONE / SCNRM2( M, U(1,p), 1 ) - IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) ) - $ CALL CSSCAL( M, XSC, U(1,p), 1 ) - 6973 CONTINUE -* - IF ( ROWPIV ) - $ CALL CLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 ) -* - END IF -* -* end of the >> almost orthogonal case << in the full SVD -* - ELSE -* -* This branch deploys a preconditioned Jacobi SVD with explicitly -* accumulated rotations. It is included as optional, mainly for -* experimental purposes. It does perform well, and can also be used. -* In this implementation, this branch will be automatically activated -* if the condition number sigma_max(A) / sigma_min(A) is predicted -* to be greater than the overflow threshold. This is because the -* a posteriori computation of the singular vectors assumes robust -* implementation of BLAS and some LAPACK procedures, capable of working -* in presence of extreme values, e.g. when the singular values spread from -* the underflow to the overflow threshold. -* - DO 7968 p = 1, NR - CALL CCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 ) - CALL CLACGV( N-p+1, V(p,p), 1 ) - 7968 CONTINUE -* - IF ( L2PERT ) THEN - XSC = SQRT(SMALL/EPSLN) - DO 5969 q = 1, NR - CTEMP = CMPLX(XSC*ABS( V(q,q) ),ZERO) - DO 5968 p = 1, N - IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 ) - $ .OR. ( p .LT. q ) ) -* $ V(p,q) = TEMP1 * ( V(p,q) / ABS(V(p,q)) ) - $ V(p,q) = CTEMP - IF ( p .LT. q ) V(p,q) = - V(p,q) - 5968 CONTINUE - 5969 CONTINUE - ELSE - CALL CLASET( 'U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV ) - END IF - - CALL CGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1), - $ LWORK-2*N, IERR ) - CALL CLACPY( 'L', N, NR, V, LDV, CWORK(2*N+1), N ) -* - DO 7969 p = 1, NR - CALL CCOPY( NR-p+1, V(p,p), LDV, U(p,p), 1 ) - CALL CLACGV( NR-p+1, U(p,p), 1 ) - 7969 CONTINUE - - IF ( L2PERT ) THEN - XSC = SQRT(SMALL/EPSLN) - DO 9970 q = 2, NR - DO 9971 p = 1, q - 1 - CTEMP = CMPLX(XSC * MIN(ABS(U(p,p)),ABS(U(q,q))), - $ ZERO) -* U(p,q) = - TEMP1 * ( U(q,p) / ABS(U(q,p)) ) - U(p,q) = - CTEMP - 9971 CONTINUE - 9970 CONTINUE - ELSE - CALL CLASET('U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU ) - END IF - - CALL CGESVJ( 'L', 'U', 'V', NR, NR, U, LDU, SVA, - $ N, V, LDV, CWORK(2*N+N*NR+1), LWORK-2*N-N*NR, - $ RWORK, LRWORK, INFO ) - SCALEM = RWORK(1) - NUMRANK = NINT(RWORK(2)) - - IF ( NR .LT. N ) THEN - CALL CLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV ) - CALL CLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV ) - CALL CLASET( 'A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV ) - END IF - - CALL CUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1), - $ V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR ) -* -* Permute the rows of V using the (column) permutation from the -* first QRF. Also, scale the columns to make them unit in -* Euclidean norm. This applies to all cases. -* - TEMP1 = SQRT(REAL(N)) * EPSLN - DO 7972 q = 1, N - DO 8972 p = 1, N - CWORK(2*N+N*NR+NR+IWORK(p)) = V(p,q) - 8972 CONTINUE - DO 8973 p = 1, N - V(p,q) = CWORK(2*N+N*NR+NR+p) - 8973 CONTINUE - XSC = ONE / SCNRM2( N, V(1,q), 1 ) - IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) ) - $ CALL CSSCAL( N, XSC, V(1,q), 1 ) - 7972 CONTINUE -* -* At this moment, V contains the right singular vectors of A. -* Next, assemble the left singular vector matrix U (M x N). -* - IF ( NR .LT. M ) THEN - CALL CLASET( 'A', M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU ) - IF ( NR .LT. N1 ) THEN - CALL CLASET('A',NR, N1-NR, CZERO, CZERO, U(1,NR+1),LDU) - CALL CLASET('A',M-NR,N1-NR, CZERO, CONE,U(NR+1,NR+1),LDU) - END IF - END IF -* - CALL CUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U, - $ LDU, CWORK(N+1), LWORK-N, IERR ) -* - IF ( ROWPIV ) - $ CALL CLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 ) -* -* - END IF - IF ( TRANSP ) THEN -* .. swap U and V because the procedure worked on A^* - DO 6974 p = 1, N - CALL CSWAP( N, U(1,p), 1, V(1,p), 1 ) - 6974 CONTINUE - END IF -* - END IF -* end of the full SVD -* -* Undo scaling, if necessary (and possible) -* - IF ( USCAL2 .LE. (BIG/SVA(1))*USCAL1 ) THEN - CALL SLASCL( 'G', 0, 0, USCAL1, USCAL2, NR, 1, SVA, N, IERR ) - USCAL1 = ONE - USCAL2 = ONE - END IF -* - IF ( NR .LT. N ) THEN - DO 3004 p = NR+1, N - SVA(p) = ZERO - 3004 CONTINUE - END IF -* - RWORK(1) = USCAL2 * SCALEM - RWORK(2) = USCAL1 - IF ( ERREST ) RWORK(3) = SCONDA - IF ( LSVEC .AND. RSVEC ) THEN - RWORK(4) = CONDR1 - RWORK(5) = CONDR2 - END IF - IF ( L2TRAN ) THEN - RWORK(6) = ENTRA - RWORK(7) = ENTRAT - END IF -* - IWORK(1) = NR - IWORK(2) = NUMRANK - IWORK(3) = WARNING - IF ( TRANSP ) THEN - IWORK(4) = 1 - ELSE - IWORK(4) = -1 - END IF - -* - RETURN -* .. -* .. END OF CGEJSV -* .. - END -* diff --git a/lapack-netlib/cgesvx.f b/lapack-netlib/cgesvx.f deleted file mode 100644 index 74a37e9a0..000000000 --- a/lapack-netlib/cgesvx.f +++ /dev/null @@ -1,602 +0,0 @@ -*> \brief CGESVX computes the solution to system of linear equations A * X = B for GE matrices -* -* =========== DOCUMENTATION =========== -* -* Online html documentation available at -* http://www.netlib.org/lapack/explore-html/ -* -*> \htmlonly -*> Download CGESVX + dependencies -*> -*> [TGZ] -*> -*> [ZIP] -*> -*> [TXT] -*> \endhtmlonly -* -* Definition: -* =========== -* -* SUBROUTINE CGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, -* EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR, -* WORK, RWORK, INFO ) -* -* .. Scalar Arguments .. -* CHARACTER EQUED, FACT, TRANS -* INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS -* REAL RCOND -* .. -* .. Array Arguments .. -* INTEGER IPIV( * ) -* REAL BERR( * ), C( * ), FERR( * ), R( * ), -* $ RWORK( * ) -* COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ), -* $ WORK( * ), X( LDX, * ) -* .. -* -* -*> \par Purpose: -* ============= -*> -*> \verbatim -*> -*> CGESVX uses the LU factorization to compute the solution to a complex -*> system of linear equations -*> A * X = B, -*> where A is an N-by-N matrix and X and B are N-by-NRHS matrices. -*> -*> Error bounds on the solution and a condition estimate are also -*> provided. -*> \endverbatim -* -*> \par Description: -* ================= -*> -*> \verbatim -*> -*> The following steps are performed: -*> -*> 1. If FACT = 'E', real scaling factors are computed to equilibrate -*> the system: -*> TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B -*> TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B -*> TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B -*> Whether or not the system will be equilibrated depends on the -*> scaling of the matrix A, but if equilibration is used, A is -*> overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') -*> or diag(C)*B (if TRANS = 'T' or 'C'). -*> -*> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the -*> matrix A (after equilibration if FACT = 'E') as -*> A = P * L * U, -*> where P is a permutation matrix, L is a unit lower triangular -*> matrix, and U is upper triangular. -*> -*> 3. If some U(i,i)=0, so that U is exactly singular, then the routine -*> returns with INFO = i. Otherwise, the factored form of A is used -*> to estimate the condition number of the matrix A. If the -*> reciprocal of the condition number is less than machine precision, -*> INFO = N+1 is returned as a warning, but the routine still goes on -*> to solve for X and compute error bounds as described below. -*> -*> 4. The system of equations is solved for X using the factored form -*> of A. -*> -*> 5. Iterative refinement is applied to improve the computed solution -*> matrix and calculate error bounds and backward error estimates -*> for it. -*> -*> 6. If equilibration was used, the matrix X is premultiplied by -*> diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so -*> that it solves the original system before equilibration. -*> \endverbatim -* -* Arguments: -* ========== -* -*> \param[in] FACT -*> \verbatim -*> FACT is CHARACTER*1 -*> Specifies whether or not the factored form of the matrix A is -*> supplied on entry, and if not, whether the matrix A should be -*> equilibrated before it is factored. -*> = 'F': On entry, AF and IPIV contain the factored form of A. -*> If EQUED is not 'N', the matrix A has been -*> equilibrated with scaling factors given by R and C. -*> A, AF, and IPIV are not modified. -*> = 'N': The matrix A will be copied to AF and factored. -*> = 'E': The matrix A will be equilibrated if necessary, then -*> copied to AF and factored. -*> \endverbatim -*> -*> \param[in] TRANS -*> \verbatim -*> TRANS is CHARACTER*1 -*> Specifies the form of the system of equations: -*> = 'N': A * X = B (No transpose) -*> = 'T': A**T * X = B (Transpose) -*> = 'C': A**H * X = B (Conjugate transpose) -*> \endverbatim -*> -*> \param[in] N -*> \verbatim -*> N is INTEGER -*> The number of linear equations, i.e., the order of the -*> matrix A. N >= 0. -*> \endverbatim -*> -*> \param[in] NRHS -*> \verbatim -*> NRHS is INTEGER -*> The number of right hand sides, i.e., the number of columns -*> of the matrices B and X. NRHS >= 0. -*> \endverbatim -*> -*> \param[in,out] A -*> \verbatim -*> A is COMPLEX array, dimension (LDA,N) -*> On entry, the N-by-N matrix A. If FACT = 'F' and EQUED is -*> not 'N', then A must have been equilibrated by the scaling -*> factors in R and/or C. A is not modified if FACT = 'F' or -*> 'N', or if FACT = 'E' and EQUED = 'N' on exit. -*> -*> On exit, if EQUED .ne. 'N', A is scaled as follows: -*> EQUED = 'R': A := diag(R) * A -*> EQUED = 'C': A := A * diag(C) -*> EQUED = 'B': A := diag(R) * A * diag(C). -*> \endverbatim -*> -*> \param[in] LDA -*> \verbatim -*> LDA is INTEGER -*> The leading dimension of the array A. LDA >= max(1,N). -*> \endverbatim -*> -*> \param[in,out] AF -*> \verbatim -*> AF is COMPLEX array, dimension (LDAF,N) -*> If FACT = 'F', then AF is an input argument and on entry -*> contains the factors L and U from the factorization -*> A = P*L*U as computed by CGETRF. If EQUED .ne. 'N', then -*> AF is the factored form of the equilibrated matrix A. -*> -*> If FACT = 'N', then AF is an output argument and on exit -*> returns the factors L and U from the factorization A = P*L*U -*> of the original matrix A. -*> -*> If FACT = 'E', then AF is an output argument and on exit -*> returns the factors L and U from the factorization A = P*L*U -*> of the equilibrated matrix A (see the description of A for -*> the form of the equilibrated matrix). -*> \endverbatim -*> -*> \param[in] LDAF -*> \verbatim -*> LDAF is INTEGER -*> The leading dimension of the array AF. LDAF >= max(1,N). -*> \endverbatim -*> -*> \param[in,out] IPIV -*> \verbatim -*> IPIV is INTEGER array, dimension (N) -*> If FACT = 'F', then IPIV is an input argument and on entry -*> contains the pivot indices from the factorization A = P*L*U -*> as computed by CGETRF; row i of the matrix was interchanged -*> with row IPIV(i). -*> -*> If FACT = 'N', then IPIV is an output argument and on exit -*> contains the pivot indices from the factorization A = P*L*U -*> of the original matrix A. -*> -*> If FACT = 'E', then IPIV is an output argument and on exit -*> contains the pivot indices from the factorization A = P*L*U -*> of the equilibrated matrix A. -*> \endverbatim -*> -*> \param[in,out] EQUED -*> \verbatim -*> EQUED is CHARACTER*1 -*> Specifies the form of equilibration that was done. -*> = 'N': No equilibration (always true if FACT = 'N'). -*> = 'R': Row equilibration, i.e., A has been premultiplied by -*> diag(R). -*> = 'C': Column equilibration, i.e., A has been postmultiplied -*> by diag(C). -*> = 'B': Both row and column equilibration, i.e., A has been -*> replaced by diag(R) * A * diag(C). -*> EQUED is an input argument if FACT = 'F'; otherwise, it is an -*> output argument. -*> \endverbatim -*> -*> \param[in,out] R -*> \verbatim -*> R is REAL array, dimension (N) -*> The row scale factors for A. If EQUED = 'R' or 'B', A is -*> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R -*> is not accessed. R is an input argument if FACT = 'F'; -*> otherwise, R is an output argument. If FACT = 'F' and -*> EQUED = 'R' or 'B', each element of R must be positive. -*> \endverbatim -*> -*> \param[in,out] C -*> \verbatim -*> C is REAL array, dimension (N) -*> The column scale factors for A. If EQUED = 'C' or 'B', A is -*> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C -*> is not accessed. C is an input argument if FACT = 'F'; -*> otherwise, C is an output argument. If FACT = 'F' and -*> EQUED = 'C' or 'B', each element of C must be positive. -*> \endverbatim -*> -*> \param[in,out] B -*> \verbatim -*> B is COMPLEX array, dimension (LDB,NRHS) -*> On entry, the N-by-NRHS right hand side matrix B. -*> On exit, -*> if EQUED = 'N', B is not modified; -*> if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by -*> diag(R)*B; -*> if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is -*> overwritten by diag(C)*B. -*> \endverbatim -*> -*> \param[in] LDB -*> \verbatim -*> LDB is INTEGER -*> The leading dimension of the array B. LDB >= max(1,N). -*> \endverbatim -*> -*> \param[out] X -*> \verbatim -*> X is COMPLEX array, dimension (LDX,NRHS) -*> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X -*> to the original system of equations. Note that A and B are -*> modified on exit if EQUED .ne. 'N', and the solution to the -*> equilibrated system is inv(diag(C))*X if TRANS = 'N' and -*> EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C' -*> and EQUED = 'R' or 'B'. -*> \endverbatim -*> -*> \param[in] LDX -*> \verbatim -*> LDX is INTEGER -*> The leading dimension of the array X. LDX >= max(1,N). -*> \endverbatim -*> -*> \param[out] RCOND -*> \verbatim -*> RCOND is REAL -*> The estimate of the reciprocal condition number of the matrix -*> A after equilibration (if done). If RCOND is less than the -*> machine precision (in particular, if RCOND = 0), the matrix -*> is singular to working precision. This condition is -*> indicated by a return code of INFO > 0. -*> \endverbatim -*> -*> \param[out] FERR -*> \verbatim -*> FERR is REAL array, dimension (NRHS) -*> The estimated forward error bound for each solution vector -*> X(j) (the j-th column of the solution matrix X). -*> If XTRUE is the true solution corresponding to X(j), FERR(j) -*> is an estimated upper bound for the magnitude of the largest -*> element in (X(j) - XTRUE) divided by the magnitude of the -*> largest element in X(j). The estimate is as reliable as -*> the estimate for RCOND, and is almost always a slight -*> overestimate of the true error. -*> \endverbatim -*> -*> \param[out] BERR -*> \verbatim -*> BERR is REAL array, dimension (NRHS) -*> The componentwise relative backward error of each solution -*> vector X(j) (i.e., the smallest relative change in -*> any element of A or B that makes X(j) an exact solution). -*> \endverbatim -*> -*> \param[out] WORK -*> \verbatim -*> WORK is COMPLEX array, dimension (2*N) -*> \endverbatim -*> -*> \param[out] RWORK -*> \verbatim -*> RWORK is REAL array, dimension (MAX(1,2*N)) -*> On exit, RWORK(1) contains the reciprocal pivot growth -*> factor norm(A)/norm(U). The "max absolute element" norm is -*> used. If RWORK(1) is much less than 1, then the stability -*> of the LU factorization of the (equilibrated) matrix A -*> could be poor. This also means that the solution X, condition -*> estimator RCOND, and forward error bound FERR could be -*> unreliable. If factorization fails with 0 RWORK(1) contains the reciprocal pivot growth factor for the -*> leading INFO columns of A. -*> \endverbatim -*> -*> \param[out] INFO -*> \verbatim -*> INFO is INTEGER -*> = 0: successful exit -*> < 0: if INFO = -i, the i-th argument had an illegal value -*> > 0: if INFO = i, and i is -*> <= N: U(i,i) is exactly zero. The factorization has -*> been completed, but the factor U is exactly -*> singular, so the solution and error bounds -*> could not be computed. RCOND = 0 is returned. -*> = N+1: U is nonsingular, but RCOND is less than machine -*> precision, meaning that the matrix is singular -*> to working precision. Nevertheless, the -*> solution and error bounds are computed because -*> there are a number of situations where the -*> computed solution can be more accurate than the -*> value of RCOND would suggest. -*> \endverbatim -* -* Authors: -* ======== -* -*> \author Univ. of Tennessee -*> \author Univ. of California Berkeley -*> \author Univ. of Colorado Denver -*> \author NAG Ltd. -* -*> \ingroup complexGEsolve -* -* ===================================================================== - SUBROUTINE CGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, - $ EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR, - $ WORK, RWORK, INFO ) -* -* -- LAPACK driver routine -- -* -- LAPACK is a software package provided by Univ. of Tennessee, -- -* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* -* .. Scalar Arguments .. - CHARACTER EQUED, FACT, TRANS - INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS - REAL RCOND -* .. -* .. Array Arguments .. - INTEGER IPIV( * ) - REAL BERR( * ), C( * ), FERR( * ), R( * ), - $ RWORK( * ) - COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ), - $ WORK( * ), X( LDX, * ) -* .. -* -* ===================================================================== -* -* .. Parameters .. - REAL ZERO, ONE - PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) -* .. -* .. Local Scalars .. - LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU - CHARACTER NORM - INTEGER I, INFEQU, J - REAL AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN, - $ ROWCND, RPVGRW, SMLNUM -* .. -* .. External Functions .. - LOGICAL LSAME - REAL CLANGE, CLANTR, SLAMCH - EXTERNAL LSAME, CLANGE, CLANTR, SLAMCH -* .. -* .. External Subroutines .. - EXTERNAL CGECON, CGEEQU, CGERFS, CGETRF, CGETRS, CLACPY, - $ CLAQGE, XERBLA -* .. -* .. Intrinsic Functions .. - INTRINSIC MAX, MIN -* .. -* .. Executable Statements .. -* - INFO = 0 - NOFACT = LSAME( FACT, 'N' ) - EQUIL = LSAME( FACT, 'E' ) - NOTRAN = LSAME( TRANS, 'N' ) - IF( NOFACT .OR. EQUIL ) THEN - EQUED = 'N' - ROWEQU = .FALSE. - COLEQU = .FALSE. - ELSE - ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' ) - COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' ) - SMLNUM = SLAMCH( 'Safe minimum' ) - BIGNUM = ONE / SMLNUM - END IF -* -* Test the input parameters. -* - IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) ) - $ THEN - INFO = -1 - ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT. - $ LSAME( TRANS, 'C' ) ) THEN - INFO = -2 - ELSE IF( N.LT.0 ) THEN - INFO = -3 - ELSE IF( NRHS.LT.0 ) THEN - INFO = -4 - ELSE IF( LDA.LT.MAX( 1, N ) ) THEN - INFO = -6 - ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN - INFO = -8 - ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT. - $ ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN - INFO = -10 - ELSE - IF( ROWEQU ) THEN - RCMIN = BIGNUM - RCMAX = ZERO - DO 10 J = 1, N - RCMIN = MIN( RCMIN, R( J ) ) - RCMAX = MAX( RCMAX, R( J ) ) - 10 CONTINUE - IF( RCMIN.LE.ZERO ) THEN - INFO = -11 - ELSE IF( N.GT.0 ) THEN - ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM ) - ELSE - ROWCND = ONE - END IF - END IF - IF( COLEQU .AND. INFO.EQ.0 ) THEN - RCMIN = BIGNUM - RCMAX = ZERO - DO 20 J = 1, N - RCMIN = MIN( RCMIN, C( J ) ) - RCMAX = MAX( RCMAX, C( J ) ) - 20 CONTINUE - IF( RCMIN.LE.ZERO ) THEN - INFO = -12 - ELSE IF( N.GT.0 ) THEN - COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM ) - ELSE - COLCND = ONE - END IF - END IF - IF( INFO.EQ.0 ) THEN - IF( LDB.LT.MAX( 1, N ) ) THEN - INFO = -14 - ELSE IF( LDX.LT.MAX( 1, N ) ) THEN - INFO = -16 - END IF - END IF - END IF -* - IF( INFO.NE.0 ) THEN - CALL XERBLA( 'CGESVX', -INFO ) - RETURN - END IF -* - IF( EQUIL ) THEN -* -* Compute row and column scalings to equilibrate the matrix A. -* - CALL CGEEQU( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFEQU ) - IF( INFEQU.EQ.0 ) THEN -* -* Equilibrate the matrix. -* - CALL CLAQGE( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, - $ EQUED ) - ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' ) - COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' ) - END IF - END IF -* -* Scale the right hand side. -* - IF( NOTRAN ) THEN - IF( ROWEQU ) THEN - DO 40 J = 1, NRHS - DO 30 I = 1, N - B( I, J ) = R( I )*B( I, J ) - 30 CONTINUE - 40 CONTINUE - END IF - ELSE IF( COLEQU ) THEN - DO 60 J = 1, NRHS - DO 50 I = 1, N - B( I, J ) = C( I )*B( I, J ) - 50 CONTINUE - 60 CONTINUE - END IF -* - IF( NOFACT .OR. EQUIL ) THEN -* -* Compute the LU factorization of A. -* - CALL CLACPY( 'Full', N, N, A, LDA, AF, LDAF ) - CALL CGETRF( N, N, AF, LDAF, IPIV, INFO ) -* -* Return if INFO is non-zero. -* - IF( INFO.GT.0 ) THEN -* -* Compute the reciprocal pivot growth factor of the -* leading rank-deficient INFO columns of A. -* - RPVGRW = CLANTR( 'M', 'U', 'N', INFO, INFO, AF, LDAF, - $ RWORK ) - IF( RPVGRW.EQ.ZERO ) THEN - RPVGRW = ONE - ELSE - RPVGRW = CLANGE( 'M', N, INFO, A, LDA, RWORK ) / - $ RPVGRW - END IF - RWORK( 1 ) = RPVGRW - RCOND = ZERO - RETURN - END IF - END IF -* -* Compute the norm of the matrix A and the -* reciprocal pivot growth factor RPVGRW. -* - IF( NOTRAN ) THEN - NORM = '1' - ELSE - NORM = 'I' - END IF - ANORM = CLANGE( NORM, N, N, A, LDA, RWORK ) - RPVGRW = CLANTR( 'M', 'U', 'N', N, N, AF, LDAF, RWORK ) - IF( RPVGRW.EQ.ZERO ) THEN - RPVGRW = ONE - ELSE - RPVGRW = CLANGE( 'M', N, N, A, LDA, RWORK ) / RPVGRW - END IF -* -* Compute the reciprocal of the condition number of A. -* - CALL CGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, RWORK, INFO ) -* -* Compute the solution matrix X. -* - CALL CLACPY( 'Full', N, NRHS, B, LDB, X, LDX ) - CALL CGETRS( TRANS, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO ) -* -* Use iterative refinement to improve the computed solution and -* compute error bounds and backward error estimates for it. -* - CALL CGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, - $ LDX, FERR, BERR, WORK, RWORK, INFO ) -* -* Transform the solution matrix X to a solution of the original -* system. -* - IF( NOTRAN ) THEN - IF( COLEQU ) THEN - DO 80 J = 1, NRHS - DO 70 I = 1, N - X( I, J ) = C( I )*X( I, J ) - 70 CONTINUE - 80 CONTINUE - DO 90 J = 1, NRHS - FERR( J ) = FERR( J ) / COLCND - 90 CONTINUE - END IF - ELSE IF( ROWEQU ) THEN - DO 110 J = 1, NRHS - DO 100 I = 1, N - X( I, J ) = R( I )*X( I, J ) - 100 CONTINUE - 110 CONTINUE - DO 120 J = 1, NRHS - FERR( J ) = FERR( J ) / ROWCND - 120 CONTINUE - END IF -* -* Set INFO = N+1 if the matrix is singular to working precision. -* - IF( RCOND.LT.SLAMCH( 'Epsilon' ) ) - $ INFO = N + 1 -* - RWORK( 1 ) = RPVGRW - RETURN -* -* End of CGESVX -* - END diff --git a/lapack-netlib/dgbsvx.f b/lapack-netlib/dgbsvx.f deleted file mode 100644 index 0ee5eecb3..000000000 --- a/lapack-netlib/dgbsvx.f +++ /dev/null @@ -1,639 +0,0 @@ -*> \brief DGBSVX computes the solution to system of linear equations A * X = B for GB matrices -* -* =========== DOCUMENTATION =========== -* -* Online html documentation available at -* http://www.netlib.org/lapack/explore-html/ -* -*> \htmlonly -*> Download DGBSVX + dependencies -*> -*> [TGZ] -*> -*> [ZIP] -*> -*> [TXT] -*> \endhtmlonly -* -* Definition: -* =========== -* -* SUBROUTINE DGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, -* LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX, -* RCOND, FERR, BERR, WORK, IWORK, INFO ) -* -* .. Scalar Arguments .. -* CHARACTER EQUED, FACT, TRANS -* INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS -* DOUBLE PRECISION RCOND -* .. -* .. Array Arguments .. -* INTEGER IPIV( * ), IWORK( * ) -* DOUBLE PRECISION AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ), -* $ BERR( * ), C( * ), FERR( * ), R( * ), -* $ WORK( * ), X( LDX, * ) -* .. -* -* -*> \par Purpose: -* ============= -*> -*> \verbatim -*> -*> DGBSVX uses the LU factorization to compute the solution to a real -*> system of linear equations A * X = B, A**T * X = B, or A**H * X = B, -*> where A is a band matrix of order N with KL subdiagonals and KU -*> superdiagonals, and X and B are N-by-NRHS matrices. -*> -*> Error bounds on the solution and a condition estimate are also -*> provided. -*> \endverbatim -* -*> \par Description: -* ================= -*> -*> \verbatim -*> -*> The following steps are performed by this subroutine: -*> -*> 1. If FACT = 'E', real scaling factors are computed to equilibrate -*> the system: -*> TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B -*> TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B -*> TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B -*> Whether or not the system will be equilibrated depends on the -*> scaling of the matrix A, but if equilibration is used, A is -*> overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') -*> or diag(C)*B (if TRANS = 'T' or 'C'). -*> -*> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the -*> matrix A (after equilibration if FACT = 'E') as -*> A = L * U, -*> where L is a product of permutation and unit lower triangular -*> matrices with KL subdiagonals, and U is upper triangular with -*> KL+KU superdiagonals. -*> -*> 3. If some U(i,i)=0, so that U is exactly singular, then the routine -*> returns with INFO = i. Otherwise, the factored form of A is used -*> to estimate the condition number of the matrix A. If the -*> reciprocal of the condition number is less than machine precision, -*> INFO = N+1 is returned as a warning, but the routine still goes on -*> to solve for X and compute error bounds as described below. -*> -*> 4. The system of equations is solved for X using the factored form -*> of A. -*> -*> 5. Iterative refinement is applied to improve the computed solution -*> matrix and calculate error bounds and backward error estimates -*> for it. -*> -*> 6. If equilibration was used, the matrix X is premultiplied by -*> diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so -*> that it solves the original system before equilibration. -*> \endverbatim -* -* Arguments: -* ========== -* -*> \param[in] FACT -*> \verbatim -*> FACT is CHARACTER*1 -*> Specifies whether or not the factored form of the matrix A is -*> supplied on entry, and if not, whether the matrix A should be -*> equilibrated before it is factored. -*> = 'F': On entry, AFB and IPIV contain the factored form of -*> A. If EQUED is not 'N', the matrix A has been -*> equilibrated with scaling factors given by R and C. -*> AB, AFB, and IPIV are not modified. -*> = 'N': The matrix A will be copied to AFB and factored. -*> = 'E': The matrix A will be equilibrated if necessary, then -*> copied to AFB and factored. -*> \endverbatim -*> -*> \param[in] TRANS -*> \verbatim -*> TRANS is CHARACTER*1 -*> Specifies the form of the system of equations. -*> = 'N': A * X = B (No transpose) -*> = 'T': A**T * X = B (Transpose) -*> = 'C': A**H * X = B (Transpose) -*> \endverbatim -*> -*> \param[in] N -*> \verbatim -*> N is INTEGER -*> The number of linear equations, i.e., the order of the -*> matrix A. N >= 0. -*> \endverbatim -*> -*> \param[in] KL -*> \verbatim -*> KL is INTEGER -*> The number of subdiagonals within the band of A. KL >= 0. -*> \endverbatim -*> -*> \param[in] KU -*> \verbatim -*> KU is INTEGER -*> The number of superdiagonals within the band of A. KU >= 0. -*> \endverbatim -*> -*> \param[in] NRHS -*> \verbatim -*> NRHS is INTEGER -*> The number of right hand sides, i.e., the number of columns -*> of the matrices B and X. NRHS >= 0. -*> \endverbatim -*> -*> \param[in,out] AB -*> \verbatim -*> AB is DOUBLE PRECISION array, dimension (LDAB,N) -*> On entry, the matrix A in band storage, in rows 1 to KL+KU+1. -*> The j-th column of A is stored in the j-th column of the -*> array AB as follows: -*> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) -*> -*> If FACT = 'F' and EQUED is not 'N', then A must have been -*> equilibrated by the scaling factors in R and/or C. AB is not -*> modified if FACT = 'F' or 'N', or if FACT = 'E' and -*> EQUED = 'N' on exit. -*> -*> On exit, if EQUED .ne. 'N', A is scaled as follows: -*> EQUED = 'R': A := diag(R) * A -*> EQUED = 'C': A := A * diag(C) -*> EQUED = 'B': A := diag(R) * A * diag(C). -*> \endverbatim -*> -*> \param[in] LDAB -*> \verbatim -*> LDAB is INTEGER -*> The leading dimension of the array AB. LDAB >= KL+KU+1. -*> \endverbatim -*> -*> \param[in,out] AFB -*> \verbatim -*> AFB is DOUBLE PRECISION array, dimension (LDAFB,N) -*> If FACT = 'F', then AFB is an input argument and on entry -*> contains details of the LU factorization of the band matrix -*> A, as computed by DGBTRF. U is stored as an upper triangular -*> band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, -*> and the multipliers used during the factorization are stored -*> in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is -*> the factored form of the equilibrated matrix A. -*> -*> If FACT = 'N', then AFB is an output argument and on exit -*> returns details of the LU factorization of A. -*> -*> If FACT = 'E', then AFB is an output argument and on exit -*> returns details of the LU factorization of the equilibrated -*> matrix A (see the description of AB for the form of the -*> equilibrated matrix). -*> \endverbatim -*> -*> \param[in] LDAFB -*> \verbatim -*> LDAFB is INTEGER -*> The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1. -*> \endverbatim -*> -*> \param[in,out] IPIV -*> \verbatim -*> IPIV is INTEGER array, dimension (N) -*> If FACT = 'F', then IPIV is an input argument and on entry -*> contains the pivot indices from the factorization A = L*U -*> as computed by DGBTRF; row i of the matrix was interchanged -*> with row IPIV(i). -*> -*> If FACT = 'N', then IPIV is an output argument and on exit -*> contains the pivot indices from the factorization A = L*U -*> of the original matrix A. -*> -*> If FACT = 'E', then IPIV is an output argument and on exit -*> contains the pivot indices from the factorization A = L*U -*> of the equilibrated matrix A. -*> \endverbatim -*> -*> \param[in,out] EQUED -*> \verbatim -*> EQUED is CHARACTER*1 -*> Specifies the form of equilibration that was done. -*> = 'N': No equilibration (always true if FACT = 'N'). -*> = 'R': Row equilibration, i.e., A has been premultiplied by -*> diag(R). -*> = 'C': Column equilibration, i.e., A has been postmultiplied -*> by diag(C). -*> = 'B': Both row and column equilibration, i.e., A has been -*> replaced by diag(R) * A * diag(C). -*> EQUED is an input argument if FACT = 'F'; otherwise, it is an -*> output argument. -*> \endverbatim -*> -*> \param[in,out] R -*> \verbatim -*> R is DOUBLE PRECISION array, dimension (N) -*> The row scale factors for A. If EQUED = 'R' or 'B', A is -*> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R -*> is not accessed. R is an input argument if FACT = 'F'; -*> otherwise, R is an output argument. If FACT = 'F' and -*> EQUED = 'R' or 'B', each element of R must be positive. -*> \endverbatim -*> -*> \param[in,out] C -*> \verbatim -*> C is DOUBLE PRECISION array, dimension (N) -*> The column scale factors for A. If EQUED = 'C' or 'B', A is -*> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C -*> is not accessed. C is an input argument if FACT = 'F'; -*> otherwise, C is an output argument. If FACT = 'F' and -*> EQUED = 'C' or 'B', each element of C must be positive. -*> \endverbatim -*> -*> \param[in,out] B -*> \verbatim -*> B is DOUBLE PRECISION array, dimension (LDB,NRHS) -*> On entry, the right hand side matrix B. -*> On exit, -*> if EQUED = 'N', B is not modified; -*> if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by -*> diag(R)*B; -*> if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is -*> overwritten by diag(C)*B. -*> \endverbatim -*> -*> \param[in] LDB -*> \verbatim -*> LDB is INTEGER -*> The leading dimension of the array B. LDB >= max(1,N). -*> \endverbatim -*> -*> \param[out] X -*> \verbatim -*> X is DOUBLE PRECISION array, dimension (LDX,NRHS) -*> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X -*> to the original system of equations. Note that A and B are -*> modified on exit if EQUED .ne. 'N', and the solution to the -*> equilibrated system is inv(diag(C))*X if TRANS = 'N' and -*> EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C' -*> and EQUED = 'R' or 'B'. -*> \endverbatim -*> -*> \param[in] LDX -*> \verbatim -*> LDX is INTEGER -*> The leading dimension of the array X. LDX >= max(1,N). -*> \endverbatim -*> -*> \param[out] RCOND -*> \verbatim -*> RCOND is DOUBLE PRECISION -*> The estimate of the reciprocal condition number of the matrix -*> A after equilibration (if done). If RCOND is less than the -*> machine precision (in particular, if RCOND = 0), the matrix -*> is singular to working precision. This condition is -*> indicated by a return code of INFO > 0. -*> \endverbatim -*> -*> \param[out] FERR -*> \verbatim -*> FERR is DOUBLE PRECISION array, dimension (NRHS) -*> The estimated forward error bound for each solution vector -*> X(j) (the j-th column of the solution matrix X). -*> If XTRUE is the true solution corresponding to X(j), FERR(j) -*> is an estimated upper bound for the magnitude of the largest -*> element in (X(j) - XTRUE) divided by the magnitude of the -*> largest element in X(j). The estimate is as reliable as -*> the estimate for RCOND, and is almost always a slight -*> overestimate of the true error. -*> \endverbatim -*> -*> \param[out] BERR -*> \verbatim -*> BERR is DOUBLE PRECISION array, dimension (NRHS) -*> The componentwise relative backward error of each solution -*> vector X(j) (i.e., the smallest relative change in -*> any element of A or B that makes X(j) an exact solution). -*> \endverbatim -*> -*> \param[out] WORK -*> \verbatim -*> WORK is DOUBLE PRECISION array, dimension (MAX(1,3*N)) -*> On exit, WORK(1) contains the reciprocal pivot growth -*> factor norm(A)/norm(U). The "max absolute element" norm is -*> used. If WORK(1) is much less than 1, then the stability -*> of the LU factorization of the (equilibrated) matrix A -*> could be poor. This also means that the solution X, condition -*> estimator RCOND, and forward error bound FERR could be -*> unreliable. If factorization fails with 0 WORK(1) contains the reciprocal pivot growth factor for the -*> leading INFO columns of A. -*> \endverbatim -*> -*> \param[out] IWORK -*> \verbatim -*> IWORK is INTEGER array, dimension (N) -*> \endverbatim -*> -*> \param[out] INFO -*> \verbatim -*> INFO is INTEGER -*> = 0: successful exit -*> < 0: if INFO = -i, the i-th argument had an illegal value -*> > 0: if INFO = i, and i is -*> <= N: U(i,i) is exactly zero. The factorization -*> has been completed, but the factor U is exactly -*> singular, so the solution and error bounds -*> could not be computed. RCOND = 0 is returned. -*> = N+1: U is nonsingular, but RCOND is less than machine -*> precision, meaning that the matrix is singular -*> to working precision. Nevertheless, the -*> solution and error bounds are computed because -*> there are a number of situations where the -*> computed solution can be more accurate than the -*> value of RCOND would suggest. -*> \endverbatim -* -* Authors: -* ======== -* -*> \author Univ. of Tennessee -*> \author Univ. of California Berkeley -*> \author Univ. of Colorado Denver -*> \author NAG Ltd. -* -*> \ingroup doubleGBsolve -* -* ===================================================================== - SUBROUTINE DGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, - $ LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX, - $ RCOND, FERR, BERR, WORK, IWORK, INFO ) -* -* -- LAPACK driver routine -- -* -- LAPACK is a software package provided by Univ. of Tennessee, -- -* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* -* .. Scalar Arguments .. - CHARACTER EQUED, FACT, TRANS - INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS - DOUBLE PRECISION RCOND -* .. -* .. Array Arguments .. - INTEGER IPIV( * ), IWORK( * ) - DOUBLE PRECISION AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ), - $ BERR( * ), C( * ), FERR( * ), R( * ), - $ WORK( * ), X( LDX, * ) -* .. -* -* ===================================================================== -* -* .. Parameters .. - DOUBLE PRECISION ZERO, ONE - PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) -* .. -* .. Local Scalars .. - LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU - CHARACTER NORM - INTEGER I, INFEQU, J, J1, J2 - DOUBLE PRECISION AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN, - $ ROWCND, RPVGRW, SMLNUM -* .. -* .. External Functions .. - LOGICAL LSAME - DOUBLE PRECISION DLAMCH, DLANGB, DLANTB - EXTERNAL LSAME, DLAMCH, DLANGB, DLANTB -* .. -* .. External Subroutines .. - EXTERNAL DCOPY, DGBCON, DGBEQU, DGBRFS, DGBTRF, DGBTRS, - $ DLACPY, DLAQGB, XERBLA -* .. -* .. Intrinsic Functions .. - INTRINSIC ABS, MAX, MIN -* .. -* .. Executable Statements .. -* - INFO = 0 - NOFACT = LSAME( FACT, 'N' ) - EQUIL = LSAME( FACT, 'E' ) - NOTRAN = LSAME( TRANS, 'N' ) - IF( NOFACT .OR. EQUIL ) THEN - EQUED = 'N' - ROWEQU = .FALSE. - COLEQU = .FALSE. - ELSE - ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' ) - COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' ) - SMLNUM = DLAMCH( 'Safe minimum' ) - BIGNUM = ONE / SMLNUM - END IF -* -* Test the input parameters. -* - IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) ) - $ THEN - INFO = -1 - ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT. - $ LSAME( TRANS, 'C' ) ) THEN - INFO = -2 - ELSE IF( N.LT.0 ) THEN - INFO = -3 - ELSE IF( KL.LT.0 ) THEN - INFO = -4 - ELSE IF( KU.LT.0 ) THEN - INFO = -5 - ELSE IF( NRHS.LT.0 ) THEN - INFO = -6 - ELSE IF( LDAB.LT.KL+KU+1 ) THEN - INFO = -8 - ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN - INFO = -10 - ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT. - $ ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN - INFO = -12 - ELSE - IF( ROWEQU ) THEN - RCMIN = BIGNUM - RCMAX = ZERO - DO 10 J = 1, N - RCMIN = MIN( RCMIN, R( J ) ) - RCMAX = MAX( RCMAX, R( J ) ) - 10 CONTINUE - IF( RCMIN.LE.ZERO ) THEN - INFO = -13 - ELSE IF( N.GT.0 ) THEN - ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM ) - ELSE - ROWCND = ONE - END IF - END IF - IF( COLEQU .AND. INFO.EQ.0 ) THEN - RCMIN = BIGNUM - RCMAX = ZERO - DO 20 J = 1, N - RCMIN = MIN( RCMIN, C( J ) ) - RCMAX = MAX( RCMAX, C( J ) ) - 20 CONTINUE - IF( RCMIN.LE.ZERO ) THEN - INFO = -14 - ELSE IF( N.GT.0 ) THEN - COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM ) - ELSE - COLCND = ONE - END IF - END IF - IF( INFO.EQ.0 ) THEN - IF( LDB.LT.MAX( 1, N ) ) THEN - INFO = -16 - ELSE IF( LDX.LT.MAX( 1, N ) ) THEN - INFO = -18 - END IF - END IF - END IF -* - IF( INFO.NE.0 ) THEN - CALL XERBLA( 'DGBSVX', -INFO ) - RETURN - END IF -* - IF( EQUIL ) THEN -* -* Compute row and column scalings to equilibrate the matrix A. -* - CALL DGBEQU( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, - $ AMAX, INFEQU ) - IF( INFEQU.EQ.0 ) THEN -* -* Equilibrate the matrix. -* - CALL DLAQGB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, - $ AMAX, EQUED ) - ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' ) - COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' ) - END IF - END IF -* -* Scale the right hand side. -* - IF( NOTRAN ) THEN - IF( ROWEQU ) THEN - DO 40 J = 1, NRHS - DO 30 I = 1, N - B( I, J ) = R( I )*B( I, J ) - 30 CONTINUE - 40 CONTINUE - END IF - ELSE IF( COLEQU ) THEN - DO 60 J = 1, NRHS - DO 50 I = 1, N - B( I, J ) = C( I )*B( I, J ) - 50 CONTINUE - 60 CONTINUE - END IF -* - IF( NOFACT .OR. EQUIL ) THEN -* -* Compute the LU factorization of the band matrix A. -* - DO 70 J = 1, N - J1 = MAX( J-KU, 1 ) - J2 = MIN( J+KL, N ) - CALL DCOPY( J2-J1+1, AB( KU+1-J+J1, J ), 1, - $ AFB( KL+KU+1-J+J1, J ), 1 ) - 70 CONTINUE -* - CALL DGBTRF( N, N, KL, KU, AFB, LDAFB, IPIV, INFO ) -* -* Return if INFO is non-zero. -* - IF( INFO.GT.0 ) THEN -* -* Compute the reciprocal pivot growth factor of the -* leading rank-deficient INFO columns of A. -* - ANORM = ZERO - DO 90 J = 1, INFO - DO 80 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 ) - ANORM = MAX( ANORM, ABS( AB( I, J ) ) ) - 80 CONTINUE - 90 CONTINUE - RPVGRW = DLANTB( 'M', 'U', 'N', INFO, MIN( INFO-1, KL+KU ), - $ AFB( MAX( 1, KL+KU+2-INFO ), 1 ), LDAFB, - $ WORK ) - IF( RPVGRW.EQ.ZERO ) THEN - RPVGRW = ONE - ELSE - RPVGRW = ANORM / RPVGRW - END IF - WORK( 1 ) = RPVGRW - RCOND = ZERO - RETURN - END IF - END IF -* -* Compute the norm of the matrix A and the -* reciprocal pivot growth factor RPVGRW. -* - IF( NOTRAN ) THEN - NORM = '1' - ELSE - NORM = 'I' - END IF - ANORM = DLANGB( NORM, N, KL, KU, AB, LDAB, WORK ) - RPVGRW = DLANTB( 'M', 'U', 'N', N, KL+KU, AFB, LDAFB, WORK ) - IF( RPVGRW.EQ.ZERO ) THEN - RPVGRW = ONE - ELSE - RPVGRW = DLANGB( 'M', N, KL, KU, AB, LDAB, WORK ) / RPVGRW - END IF -* -* Compute the reciprocal of the condition number of A. -* - CALL DGBCON( NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND, - $ WORK, IWORK, INFO ) -* -* Compute the solution matrix X. -* - CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX ) - CALL DGBTRS( TRANS, N, KL, KU, NRHS, AFB, LDAFB, IPIV, X, LDX, - $ INFO ) -* -* Use iterative refinement to improve the computed solution and -* compute error bounds and backward error estimates for it. -* - CALL DGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV, - $ B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO ) -* -* Transform the solution matrix X to a solution of the original -* system. -* - IF( NOTRAN ) THEN - IF( COLEQU ) THEN - DO 110 J = 1, NRHS - DO 100 I = 1, N - X( I, J ) = C( I )*X( I, J ) - 100 CONTINUE - 110 CONTINUE - DO 120 J = 1, NRHS - FERR( J ) = FERR( J ) / COLCND - 120 CONTINUE - END IF - ELSE IF( ROWEQU ) THEN - DO 140 J = 1, NRHS - DO 130 I = 1, N - X( I, J ) = R( I )*X( I, J ) - 130 CONTINUE - 140 CONTINUE - DO 150 J = 1, NRHS - FERR( J ) = FERR( J ) / ROWCND - 150 CONTINUE - END IF -* -* Set INFO = N+1 if the matrix is singular to working precision. -* - IF( RCOND.LT.DLAMCH( 'Epsilon' ) ) - $ INFO = N + 1 -* - WORK( 1 ) = RPVGRW - RETURN -* -* End of DGBSVX -* - END diff --git a/lapack-netlib/dgejsv.f b/lapack-netlib/dgejsv.f deleted file mode 100644 index ee769bb38..000000000 --- a/lapack-netlib/dgejsv.f +++ /dev/null @@ -1,1780 +0,0 @@ -*> \brief \b DGEJSV -* -* =========== DOCUMENTATION =========== -* -* Online html documentation available at -* http://www.netlib.org/lapack/explore-html/ -* -*> \htmlonly -*> Download DGEJSV + dependencies -*> -*> [TGZ] -*> -*> [ZIP] -*> -*> [TXT] -*> \endhtmlonly -* -* Definition: -* =========== -* -* SUBROUTINE DGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP, -* M, N, A, LDA, SVA, U, LDU, V, LDV, -* WORK, LWORK, IWORK, INFO ) -* -* .. Scalar Arguments .. -* IMPLICIT NONE -* INTEGER INFO, LDA, LDU, LDV, LWORK, M, N -* .. -* .. Array Arguments .. -* DOUBLE PRECISION A( LDA, * ), SVA( N ), U( LDU, * ), V( LDV, * ), -* $ WORK( LWORK ) -* INTEGER IWORK( * ) -* CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV -* .. -* -* -*> \par Purpose: -* ============= -*> -*> \verbatim -*> -*> DGEJSV computes the singular value decomposition (SVD) of a real M-by-N -*> matrix [A], where M >= N. The SVD of [A] is written as -*> -*> [A] = [U] * [SIGMA] * [V]^t, -*> -*> where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N -*> diagonal elements, [U] is an M-by-N (or M-by-M) orthonormal matrix, and -*> [V] is an N-by-N orthogonal matrix. The diagonal elements of [SIGMA] are -*> the singular values of [A]. The columns of [U] and [V] are the left and -*> the right singular vectors of [A], respectively. The matrices [U] and [V] -*> are computed and stored in the arrays U and V, respectively. The diagonal -*> of [SIGMA] is computed and stored in the array SVA. -*> DGEJSV can sometimes compute tiny singular values and their singular vectors much -*> more accurately than other SVD routines, see below under Further Details. -*> \endverbatim -* -* Arguments: -* ========== -* -*> \param[in] JOBA -*> \verbatim -*> JOBA is CHARACTER*1 -*> Specifies the level of accuracy: -*> = 'C': This option works well (high relative accuracy) if A = B * D, -*> with well-conditioned B and arbitrary diagonal matrix D. -*> The accuracy cannot be spoiled by COLUMN scaling. The -*> accuracy of the computed output depends on the condition of -*> B, and the procedure aims at the best theoretical accuracy. -*> The relative error max_{i=1:N}|d sigma_i| / sigma_i is -*> bounded by f(M,N)*epsilon* cond(B), independent of D. -*> The input matrix is preprocessed with the QRF with column -*> pivoting. This initial preprocessing and preconditioning by -*> a rank revealing QR factorization is common for all values of -*> JOBA. Additional actions are specified as follows: -*> = 'E': Computation as with 'C' with an additional estimate of the -*> condition number of B. It provides a realistic error bound. -*> = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings -*> D1, D2, and well-conditioned matrix C, this option gives -*> higher accuracy than the 'C' option. If the structure of the -*> input matrix is not known, and relative accuracy is -*> desirable, then this option is advisable. The input matrix A -*> is preprocessed with QR factorization with FULL (row and -*> column) pivoting. -*> = 'G': Computation as with 'F' with an additional estimate of the -*> condition number of B, where A=D*B. If A has heavily weighted -*> rows, then using this condition number gives too pessimistic -*> error bound. -*> = 'A': Small singular values are the noise and the matrix is treated -*> as numerically rank deficient. The error in the computed -*> singular values is bounded by f(m,n)*epsilon*||A||. -*> The computed SVD A = U * S * V^t restores A up to -*> f(m,n)*epsilon*||A||. -*> This gives the procedure the licence to discard (set to zero) -*> all singular values below N*epsilon*||A||. -*> = 'R': Similar as in 'A'. Rank revealing property of the initial -*> QR factorization is used do reveal (using triangular factor) -*> a gap sigma_{r+1} < epsilon * sigma_r in which case the -*> numerical RANK is declared to be r. The SVD is computed with -*> absolute error bounds, but more accurately than with 'A'. -*> \endverbatim -*> -*> \param[in] JOBU -*> \verbatim -*> JOBU is CHARACTER*1 -*> Specifies whether to compute the columns of U: -*> = 'U': N columns of U are returned in the array U. -*> = 'F': full set of M left sing. vectors is returned in the array U. -*> = 'W': U may be used as workspace of length M*N. See the description -*> of U. -*> = 'N': U is not computed. -*> \endverbatim -*> -*> \param[in] JOBV -*> \verbatim -*> JOBV is CHARACTER*1 -*> Specifies whether to compute the matrix V: -*> = 'V': N columns of V are returned in the array V; Jacobi rotations -*> are not explicitly accumulated. -*> = 'J': N columns of V are returned in the array V, but they are -*> computed as the product of Jacobi rotations. This option is -*> allowed only if JOBU .NE. 'N', i.e. in computing the full SVD. -*> = 'W': V may be used as workspace of length N*N. See the description -*> of V. -*> = 'N': V is not computed. -*> \endverbatim -*> -*> \param[in] JOBR -*> \verbatim -*> JOBR is CHARACTER*1 -*> Specifies the RANGE for the singular values. Issues the licence to -*> set to zero small positive singular values if they are outside -*> specified range. If A .NE. 0 is scaled so that the largest singular -*> value of c*A is around DSQRT(BIG), BIG=SLAMCH('O'), then JOBR issues -*> the licence to kill columns of A whose norm in c*A is less than -*> DSQRT(SFMIN) (for JOBR = 'R'), or less than SMALL=SFMIN/EPSLN, -*> where SFMIN=SLAMCH('S'), EPSLN=SLAMCH('E'). -*> = 'N': Do not kill small columns of c*A. This option assumes that -*> BLAS and QR factorizations and triangular solvers are -*> implemented to work in that range. If the condition of A -*> is greater than BIG, use DGESVJ. -*> = 'R': RESTRICTED range for sigma(c*A) is [DSQRT(SFMIN), DSQRT(BIG)] -*> (roughly, as described above). This option is recommended. -*> ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -*> For computing the singular values in the FULL range [SFMIN,BIG] -*> use DGESVJ. -*> \endverbatim -*> -*> \param[in] JOBT -*> \verbatim -*> JOBT is CHARACTER*1 -*> If the matrix is square then the procedure may determine to use -*> transposed A if A^t seems to be better with respect to convergence. -*> If the matrix is not square, JOBT is ignored. This is subject to -*> changes in the future. -*> The decision is based on two values of entropy over the adjoint -*> orbit of A^t * A. See the descriptions of WORK(6) and WORK(7). -*> = 'T': transpose if entropy test indicates possibly faster -*> convergence of Jacobi process if A^t is taken as input. If A is -*> replaced with A^t, then the row pivoting is included automatically. -*> = 'N': do not speculate. -*> This option can be used to compute only the singular values, or the -*> full SVD (U, SIGMA and V). For only one set of singular vectors -*> (U or V), the caller should provide both U and V, as one of the -*> matrices is used as workspace if the matrix A is transposed. -*> The implementer can easily remove this constraint and make the -*> code more complicated. See the descriptions of U and V. -*> \endverbatim -*> -*> \param[in] JOBP -*> \verbatim -*> JOBP is CHARACTER*1 -*> Issues the licence to introduce structured perturbations to drown -*> denormalized numbers. This licence should be active if the -*> denormals are poorly implemented, causing slow computation, -*> especially in cases of fast convergence (!). For details see [1,2]. -*> For the sake of simplicity, this perturbations are included only -*> when the full SVD or only the singular values are requested. The -*> implementer/user can easily add the perturbation for the cases of -*> computing one set of singular vectors. -*> = 'P': introduce perturbation -*> = 'N': do not perturb -*> \endverbatim -*> -*> \param[in] M -*> \verbatim -*> M is INTEGER -*> The number of rows of the input matrix A. M >= 0. -*> \endverbatim -*> -*> \param[in] N -*> \verbatim -*> N is INTEGER -*> The number of columns of the input matrix A. M >= N >= 0. -*> \endverbatim -*> -*> \param[in,out] A -*> \verbatim -*> A is DOUBLE PRECISION array, dimension (LDA,N) -*> On entry, the M-by-N matrix A. -*> \endverbatim -*> -*> \param[in] LDA -*> \verbatim -*> LDA is INTEGER -*> The leading dimension of the array A. LDA >= max(1,M). -*> \endverbatim -*> -*> \param[out] SVA -*> \verbatim -*> SVA is DOUBLE PRECISION array, dimension (N) -*> On exit, -*> - For WORK(1)/WORK(2) = ONE: The singular values of A. During the -*> computation SVA contains Euclidean column norms of the -*> iterated matrices in the array A. -*> - For WORK(1) .NE. WORK(2): The singular values of A are -*> (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if -*> sigma_max(A) overflows or if small singular values have been -*> saved from underflow by scaling the input matrix A. -*> - If JOBR='R' then some of the singular values may be returned -*> as exact zeros obtained by "set to zero" because they are -*> below the numerical rank threshold or are denormalized numbers. -*> \endverbatim -*> -*> \param[out] U -*> \verbatim -*> U is DOUBLE PRECISION array, dimension ( LDU, N ) or ( LDU, M ) -*> If JOBU = 'U', then U contains on exit the M-by-N matrix of -*> the left singular vectors. -*> If JOBU = 'F', then U contains on exit the M-by-M matrix of -*> the left singular vectors, including an ONB -*> of the orthogonal complement of the Range(A). -*> If JOBU = 'W' .AND. (JOBV = 'V' .AND. JOBT = 'T' .AND. M = N), -*> then U is used as workspace if the procedure -*> replaces A with A^t. In that case, [V] is computed -*> in U as left singular vectors of A^t and then -*> copied back to the V array. This 'W' option is just -*> a reminder to the caller that in this case U is -*> reserved as workspace of length N*N. -*> If JOBU = 'N' U is not referenced, unless JOBT='T'. -*> \endverbatim -*> -*> \param[in] LDU -*> \verbatim -*> LDU is INTEGER -*> The leading dimension of the array U, LDU >= 1. -*> IF JOBU = 'U' or 'F' or 'W', then LDU >= M. -*> \endverbatim -*> -*> \param[out] V -*> \verbatim -*> V is DOUBLE PRECISION array, dimension ( LDV, N ) -*> If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of -*> the right singular vectors; -*> If JOBV = 'W', AND (JOBU = 'U' AND JOBT = 'T' AND M = N), -*> then V is used as workspace if the pprocedure -*> replaces A with A^t. In that case, [U] is computed -*> in V as right singular vectors of A^t and then -*> copied back to the U array. This 'W' option is just -*> a reminder to the caller that in this case V is -*> reserved as workspace of length N*N. -*> If JOBV = 'N' V is not referenced, unless JOBT='T'. -*> \endverbatim -*> -*> \param[in] LDV -*> \verbatim -*> LDV is INTEGER -*> The leading dimension of the array V, LDV >= 1. -*> If JOBV = 'V' or 'J' or 'W', then LDV >= N. -*> \endverbatim -*> -*> \param[out] WORK -*> \verbatim -*> WORK is DOUBLE PRECISION array, dimension (MAX(7,LWORK)) -*> On exit, if N > 0 .AND. M > 0 (else not referenced), -*> WORK(1) = SCALE = WORK(2) / WORK(1) is the scaling factor such -*> that SCALE*SVA(1:N) are the computed singular values -*> of A. (See the description of SVA().) -*> WORK(2) = See the description of WORK(1). -*> WORK(3) = SCONDA is an estimate for the condition number of -*> column equilibrated A. (If JOBA = 'E' or 'G') -*> SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1). -*> It is computed using DPOCON. It holds -*> N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA -*> where R is the triangular factor from the QRF of A. -*> However, if R is truncated and the numerical rank is -*> determined to be strictly smaller than N, SCONDA is -*> returned as -1, thus indicating that the smallest -*> singular values might be lost. -*> -*> If full SVD is needed, the following two condition numbers are -*> useful for the analysis of the algorithm. They are provided for -*> a developer/implementer who is familiar with the details of -*> the method. -*> -*> WORK(4) = an estimate of the scaled condition number of the -*> triangular factor in the first QR factorization. -*> WORK(5) = an estimate of the scaled condition number of the -*> triangular factor in the second QR factorization. -*> The following two parameters are computed if JOBT = 'T'. -*> They are provided for a developer/implementer who is familiar -*> with the details of the method. -*> -*> WORK(6) = the entropy of A^t*A :: this is the Shannon entropy -*> of diag(A^t*A) / Trace(A^t*A) taken as point in the -*> probability simplex. -*> WORK(7) = the entropy of A*A^t. -*> \endverbatim -*> -*> \param[in] LWORK -*> \verbatim -*> LWORK is INTEGER -*> Length of WORK to confirm proper allocation of work space. -*> LWORK depends on the job: -*> -*> If only SIGMA is needed (JOBU = 'N', JOBV = 'N') and -*> -> .. no scaled condition estimate required (JOBE = 'N'): -*> LWORK >= max(2*M+N,4*N+1,7). This is the minimal requirement. -*> ->> For optimal performance (blocked code) the optimal value -*> is LWORK >= max(2*M+N,3*N+(N+1)*NB,7). Here NB is the optimal -*> block size for DGEQP3 and DGEQRF. -*> In general, optimal LWORK is computed as -*> LWORK >= max(2*M+N,N+LWORK(DGEQP3),N+LWORK(DGEQRF), 7). -*> -> .. an estimate of the scaled condition number of A is -*> required (JOBA='E', 'G'). In this case, LWORK is the maximum -*> of the above and N*N+4*N, i.e. LWORK >= max(2*M+N,N*N+4*N,7). -*> ->> For optimal performance (blocked code) the optimal value -*> is LWORK >= max(2*M+N,3*N+(N+1)*NB, N*N+4*N, 7). -*> In general, the optimal length LWORK is computed as -*> LWORK >= max(2*M+N,N+LWORK(DGEQP3),N+LWORK(DGEQRF), -*> N+N*N+LWORK(DPOCON),7). -*> -*> If SIGMA and the right singular vectors are needed (JOBV = 'V'), -*> -> the minimal requirement is LWORK >= max(2*M+N,4*N+1,7). -*> -> For optimal performance, LWORK >= max(2*M+N,3*N+(N+1)*NB,7), -*> where NB is the optimal block size for DGEQP3, DGEQRF, DGELQF, -*> DORMLQ. In general, the optimal length LWORK is computed as -*> LWORK >= max(2*M+N,N+LWORK(DGEQP3), N+LWORK(DPOCON), -*> N+LWORK(DGELQF), 2*N+LWORK(DGEQRF), N+LWORK(DORMLQ)). -*> -*> If SIGMA and the left singular vectors are needed -*> -> the minimal requirement is LWORK >= max(2*M+N,4*N+1,7). -*> -> For optimal performance: -*> if JOBU = 'U' :: LWORK >= max(2*M+N,3*N+(N+1)*NB,7), -*> if JOBU = 'F' :: LWORK >= max(2*M+N,3*N+(N+1)*NB,N+M*NB,7), -*> where NB is the optimal block size for DGEQP3, DGEQRF, DORMQR. -*> In general, the optimal length LWORK is computed as -*> LWORK >= max(2*M+N,N+LWORK(DGEQP3),N+LWORK(DPOCON), -*> 2*N+LWORK(DGEQRF), N+LWORK(DORMQR)). -*> Here LWORK(DORMQR) equals N*NB (for JOBU = 'U') or -*> M*NB (for JOBU = 'F'). -*> -*> If the full SVD is needed: (JOBU = 'U' or JOBU = 'F') and -*> -> if JOBV = 'V' -*> the minimal requirement is LWORK >= max(2*M+N,6*N+2*N*N). -*> -> if JOBV = 'J' the minimal requirement is -*> LWORK >= max(2*M+N, 4*N+N*N,2*N+N*N+6). -*> -> For optimal performance, LWORK should be additionally -*> larger than N+M*NB, where NB is the optimal block size -*> for DORMQR. -*> \endverbatim -*> -*> \param[out] IWORK -*> \verbatim -*> IWORK is INTEGER array, dimension (MAX(3,M+3*N)). -*> On exit, -*> IWORK(1) = the numerical rank determined after the initial -*> QR factorization with pivoting. See the descriptions -*> of JOBA and JOBR. -*> IWORK(2) = the number of the computed nonzero singular values -*> IWORK(3) = if nonzero, a warning message: -*> If IWORK(3) = 1 then some of the column norms of A -*> were denormalized floats. The requested high accuracy -*> is not warranted by the data. -*> \endverbatim -*> -*> \param[out] INFO -*> \verbatim -*> INFO is INTEGER -*> < 0: if INFO = -i, then the i-th argument had an illegal value. -*> = 0: successful exit; -*> > 0: DGEJSV did not converge in the maximal allowed number -*> of sweeps. The computed values may be inaccurate. -*> \endverbatim -* -* Authors: -* ======== -* -*> \author Univ. of Tennessee -*> \author Univ. of California Berkeley -*> \author Univ. of Colorado Denver -*> \author NAG Ltd. -* -*> \ingroup doubleGEsing -* -*> \par Further Details: -* ===================== -*> -*> \verbatim -*> -*> DGEJSV implements a preconditioned Jacobi SVD algorithm. It uses DGEQP3, -*> DGEQRF, and DGELQF as preprocessors and preconditioners. Optionally, an -*> additional row pivoting can be used as a preprocessor, which in some -*> cases results in much higher accuracy. An example is matrix A with the -*> structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned -*> diagonal matrices and C is well-conditioned matrix. In that case, complete -*> pivoting in the first QR factorizations provides accuracy dependent on the -*> condition number of C, and independent of D1, D2. Such higher accuracy is -*> not completely understood theoretically, but it works well in practice. -*> Further, if A can be written as A = B*D, with well-conditioned B and some -*> diagonal D, then the high accuracy is guaranteed, both theoretically and -*> in software, independent of D. For more details see [1], [2]. -*> The computational range for the singular values can be the full range -*> ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS -*> & LAPACK routines called by DGEJSV are implemented to work in that range. -*> If that is not the case, then the restriction for safe computation with -*> the singular values in the range of normalized IEEE numbers is that the -*> spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not -*> overflow. This code (DGEJSV) is best used in this restricted range, -*> meaning that singular values of magnitude below ||A||_2 / DLAMCH('O') are -*> returned as zeros. See JOBR for details on this. -*> Further, this implementation is somewhat slower than the one described -*> in [1,2] due to replacement of some non-LAPACK components, and because -*> the choice of some tuning parameters in the iterative part (DGESVJ) is -*> left to the implementer on a particular machine. -*> The rank revealing QR factorization (in this code: DGEQP3) should be -*> implemented as in [3]. We have a new version of DGEQP3 under development -*> that is more robust than the current one in LAPACK, with a cleaner cut in -*> rank deficient cases. It will be available in the SIGMA library [4]. -*> If M is much larger than N, it is obvious that the initial QRF with -*> column pivoting can be preprocessed by the QRF without pivoting. That -*> well known trick is not used in DGEJSV because in some cases heavy row -*> weighting can be treated with complete pivoting. The overhead in cases -*> M much larger than N is then only due to pivoting, but the benefits in -*> terms of accuracy have prevailed. The implementer/user can incorporate -*> this extra QRF step easily. The implementer can also improve data movement -*> (matrix transpose, matrix copy, matrix transposed copy) - this -*> implementation of DGEJSV uses only the simplest, naive data movement. -*> \endverbatim -* -*> \par Contributors: -* ================== -*> -*> Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany) -* -*> \par References: -* ================ -*> -*> \verbatim -*> -*> [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I. -*> SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342. -*> LAPACK Working note 169. -*> [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II. -*> SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362. -*> LAPACK Working note 170. -*> [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR -*> factorization software - a case study. -*> ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28. -*> LAPACK Working note 176. -*> [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV, -*> QSVD, (H,K)-SVD computations. -*> Department of Mathematics, University of Zagreb, 2008. -*> \endverbatim -* -*> \par Bugs, examples and comments: -* ================================= -*> -*> Please report all bugs and send interesting examples and/or comments to -*> drmac@math.hr. Thank you. -*> -* ===================================================================== - SUBROUTINE DGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP, - $ M, N, A, LDA, SVA, U, LDU, V, LDV, - $ WORK, LWORK, IWORK, INFO ) -* -* -- LAPACK computational routine -- -* -- LAPACK is a software package provided by Univ. of Tennessee, -- -* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* -* .. Scalar Arguments .. - IMPLICIT NONE - INTEGER INFO, LDA, LDU, LDV, LWORK, M, N -* .. -* .. Array Arguments .. - DOUBLE PRECISION A( LDA, * ), SVA( N ), U( LDU, * ), V( LDV, * ), - $ WORK( LWORK ) - INTEGER IWORK( * ) - CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV -* .. -* -* =========================================================================== -* -* .. Local Parameters .. - DOUBLE PRECISION ZERO, ONE - PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) -* .. -* .. Local Scalars .. - DOUBLE PRECISION AAPP, AAQQ, AATMAX, AATMIN, BIG, BIG1, COND_OK, - $ CONDR1, CONDR2, ENTRA, ENTRAT, EPSLN, MAXPRJ, SCALEM, - $ SCONDA, SFMIN, SMALL, TEMP1, USCAL1, USCAL2, XSC - INTEGER IERR, N1, NR, NUMRANK, p, q, WARNING - LOGICAL ALMORT, DEFR, ERREST, GOSCAL, JRACC, KILL, LSVEC, - $ L2ABER, L2KILL, L2PERT, L2RANK, L2TRAN, - $ NOSCAL, ROWPIV, RSVEC, TRANSP -* .. -* .. Intrinsic Functions .. - INTRINSIC DABS, DLOG, MAX, MIN, DBLE, IDNINT, DSIGN, DSQRT -* .. -* .. External Functions .. - DOUBLE PRECISION DLAMCH, DNRM2 - INTEGER IDAMAX - LOGICAL LSAME - EXTERNAL IDAMAX, LSAME, DLAMCH, DNRM2 -* .. -* .. External Subroutines .. - EXTERNAL DCOPY, DGELQF, DGEQP3, DGEQRF, DLACPY, DLASCL, - $ DLASET, DLASSQ, DLASWP, DORGQR, DORMLQ, - $ DORMQR, DPOCON, DSCAL, DSWAP, DTRSM, XERBLA -* - EXTERNAL DGESVJ -* .. -* -* Test the input arguments -* - LSVEC = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' ) - JRACC = LSAME( JOBV, 'J' ) - RSVEC = LSAME( JOBV, 'V' ) .OR. JRACC - ROWPIV = LSAME( JOBA, 'F' ) .OR. LSAME( JOBA, 'G' ) - L2RANK = LSAME( JOBA, 'R' ) - L2ABER = LSAME( JOBA, 'A' ) - ERREST = LSAME( JOBA, 'E' ) .OR. LSAME( JOBA, 'G' ) - L2TRAN = LSAME( JOBT, 'T' ) - L2KILL = LSAME( JOBR, 'R' ) - DEFR = LSAME( JOBR, 'N' ) - L2PERT = LSAME( JOBP, 'P' ) -* - IF ( .NOT.(ROWPIV .OR. L2RANK .OR. L2ABER .OR. - $ ERREST .OR. LSAME( JOBA, 'C' ) )) THEN - INFO = - 1 - ELSE IF ( .NOT.( LSVEC .OR. LSAME( JOBU, 'N' ) .OR. - $ LSAME( JOBU, 'W' )) ) THEN - INFO = - 2 - ELSE IF ( .NOT.( RSVEC .OR. LSAME( JOBV, 'N' ) .OR. - $ LSAME( JOBV, 'W' )) .OR. ( JRACC .AND. (.NOT.LSVEC) ) ) THEN - INFO = - 3 - ELSE IF ( .NOT. ( L2KILL .OR. DEFR ) ) THEN - INFO = - 4 - ELSE IF ( .NOT. ( L2TRAN .OR. LSAME( JOBT, 'N' ) ) ) THEN - INFO = - 5 - ELSE IF ( .NOT. ( L2PERT .OR. LSAME( JOBP, 'N' ) ) ) THEN - INFO = - 6 - ELSE IF ( M .LT. 0 ) THEN - INFO = - 7 - ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M ) ) THEN - INFO = - 8 - ELSE IF ( LDA .LT. M ) THEN - INFO = - 10 - ELSE IF ( LSVEC .AND. ( LDU .LT. M ) ) THEN - INFO = - 13 - ELSE IF ( RSVEC .AND. ( LDV .LT. N ) ) THEN - INFO = - 15 - ELSE IF ( (.NOT.(LSVEC .OR. RSVEC .OR. ERREST).AND. - & (LWORK .LT. MAX(7,4*N+1,2*M+N))) .OR. - & (.NOT.(LSVEC .OR. RSVEC) .AND. ERREST .AND. - & (LWORK .LT. MAX(7,4*N+N*N,2*M+N))) .OR. - & (LSVEC .AND. (.NOT.RSVEC) .AND. (LWORK .LT. MAX(7,2*M+N,4*N+1))) - & .OR. - & (RSVEC .AND. (.NOT.LSVEC) .AND. (LWORK .LT. MAX(7,2*M+N,4*N+1))) - & .OR. - & (LSVEC .AND. RSVEC .AND. (.NOT.JRACC) .AND. - & (LWORK.LT.MAX(2*M+N,6*N+2*N*N))) - & .OR. (LSVEC .AND. RSVEC .AND. JRACC .AND. - & LWORK.LT.MAX(2*M+N,4*N+N*N,2*N+N*N+6))) - & THEN - INFO = - 17 - ELSE -* #:) - INFO = 0 - END IF -* - IF ( INFO .NE. 0 ) THEN -* #:( - CALL XERBLA( 'DGEJSV', - INFO ) - RETURN - END IF -* -* Quick return for void matrix (Y3K safe) -* #:) - IF ( ( M .EQ. 0 ) .OR. ( N .EQ. 0 ) ) THEN - IWORK(1:3) = 0 - WORK(1:7) = 0 - RETURN - ENDIF -* -* Determine whether the matrix U should be M x N or M x M -* - IF ( LSVEC ) THEN - N1 = N - IF ( LSAME( JOBU, 'F' ) ) N1 = M - END IF -* -* Set numerical parameters -* -*! NOTE: Make sure DLAMCH() does not fail on the target architecture. -* - EPSLN = DLAMCH('Epsilon') - SFMIN = DLAMCH('SafeMinimum') - SMALL = SFMIN / EPSLN - BIG = DLAMCH('O') -* BIG = ONE / SFMIN -* -* Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N -* -*(!) If necessary, scale SVA() to protect the largest norm from -* overflow. It is possible that this scaling pushes the smallest -* column norm left from the underflow threshold (extreme case). -* - SCALEM = ONE / DSQRT(DBLE(M)*DBLE(N)) - NOSCAL = .TRUE. - GOSCAL = .TRUE. - DO 1874 p = 1, N - AAPP = ZERO - AAQQ = ONE - CALL DLASSQ( M, A(1,p), 1, AAPP, AAQQ ) - IF ( AAPP .GT. BIG ) THEN - INFO = - 9 - CALL XERBLA( 'DGEJSV', -INFO ) - RETURN - END IF - AAQQ = DSQRT(AAQQ) - IF ( ( AAPP .LT. (BIG / AAQQ) ) .AND. NOSCAL ) THEN - SVA(p) = AAPP * AAQQ - ELSE - NOSCAL = .FALSE. - SVA(p) = AAPP * ( AAQQ * SCALEM ) - IF ( GOSCAL ) THEN - GOSCAL = .FALSE. - CALL DSCAL( p-1, SCALEM, SVA, 1 ) - END IF - END IF - 1874 CONTINUE -* - IF ( NOSCAL ) SCALEM = ONE -* - AAPP = ZERO - AAQQ = BIG - DO 4781 p = 1, N - AAPP = MAX( AAPP, SVA(p) ) - IF ( SVA(p) .NE. ZERO ) AAQQ = MIN( AAQQ, SVA(p) ) - 4781 CONTINUE -* -* Quick return for zero M x N matrix -* #:) - IF ( AAPP .EQ. ZERO ) THEN - IF ( LSVEC ) CALL DLASET( 'G', M, N1, ZERO, ONE, U, LDU ) - IF ( RSVEC ) CALL DLASET( 'G', N, N, ZERO, ONE, V, LDV ) - WORK(1) = ONE - WORK(2) = ONE - IF ( ERREST ) WORK(3) = ONE - IF ( LSVEC .AND. RSVEC ) THEN - WORK(4) = ONE - WORK(5) = ONE - END IF - IF ( L2TRAN ) THEN - WORK(6) = ZERO - WORK(7) = ZERO - END IF - IWORK(1) = 0 - IWORK(2) = 0 - IWORK(3) = 0 - RETURN - END IF -* -* Issue warning if denormalized column norms detected. Override the -* high relative accuracy request. Issue licence to kill columns -* (set them to zero) whose norm is less than sigma_max / BIG (roughly). -* #:( - WARNING = 0 - IF ( AAQQ .LE. SFMIN ) THEN - L2RANK = .TRUE. - L2KILL = .TRUE. - WARNING = 1 - END IF -* -* Quick return for one-column matrix -* #:) - IF ( N .EQ. 1 ) THEN -* - IF ( LSVEC ) THEN - CALL DLASCL( 'G',0,0,SVA(1),SCALEM, M,1,A(1,1),LDA,IERR ) - CALL DLACPY( 'A', M, 1, A, LDA, U, LDU ) -* computing all M left singular vectors of the M x 1 matrix - IF ( N1 .NE. N ) THEN - CALL DGEQRF( M, N, U,LDU, WORK, WORK(N+1),LWORK-N,IERR ) - CALL DORGQR( M,N1,1, U,LDU,WORK,WORK(N+1),LWORK-N,IERR ) - CALL DCOPY( M, A(1,1), 1, U(1,1), 1 ) - END IF - END IF - IF ( RSVEC ) THEN - V(1,1) = ONE - END IF - IF ( SVA(1) .LT. (BIG*SCALEM) ) THEN - SVA(1) = SVA(1) / SCALEM - SCALEM = ONE - END IF - WORK(1) = ONE / SCALEM - WORK(2) = ONE - IF ( SVA(1) .NE. ZERO ) THEN - IWORK(1) = 1 - IF ( ( SVA(1) / SCALEM) .GE. SFMIN ) THEN - IWORK(2) = 1 - ELSE - IWORK(2) = 0 - END IF - ELSE - IWORK(1) = 0 - IWORK(2) = 0 - END IF - IWORK(3) = 0 - IF ( ERREST ) WORK(3) = ONE - IF ( LSVEC .AND. RSVEC ) THEN - WORK(4) = ONE - WORK(5) = ONE - END IF - IF ( L2TRAN ) THEN - WORK(6) = ZERO - WORK(7) = ZERO - END IF - RETURN -* - END IF -* - TRANSP = .FALSE. - L2TRAN = L2TRAN .AND. ( M .EQ. N ) -* - AATMAX = -ONE - AATMIN = BIG - IF ( ROWPIV .OR. L2TRAN ) THEN -* -* Compute the row norms, needed to determine row pivoting sequence -* (in the case of heavily row weighted A, row pivoting is strongly -* advised) and to collect information needed to compare the -* structures of A * A^t and A^t * A (in the case L2TRAN.EQ..TRUE.). -* - IF ( L2TRAN ) THEN - DO 1950 p = 1, M - XSC = ZERO - TEMP1 = ONE - CALL DLASSQ( N, A(p,1), LDA, XSC, TEMP1 ) -* DLASSQ gets both the ell_2 and the ell_infinity norm -* in one pass through the vector - WORK(M+N+p) = XSC * SCALEM - WORK(N+p) = XSC * (SCALEM*DSQRT(TEMP1)) - AATMAX = MAX( AATMAX, WORK(N+p) ) - IF (WORK(N+p) .NE. ZERO) AATMIN = MIN(AATMIN,WORK(N+p)) - 1950 CONTINUE - ELSE - DO 1904 p = 1, M - WORK(M+N+p) = SCALEM*DABS( A(p,IDAMAX(N,A(p,1),LDA)) ) - AATMAX = MAX( AATMAX, WORK(M+N+p) ) - AATMIN = MIN( AATMIN, WORK(M+N+p) ) - 1904 CONTINUE - END IF -* - END IF -* -* For square matrix A try to determine whether A^t would be better -* input for the preconditioned Jacobi SVD, with faster convergence. -* The decision is based on an O(N) function of the vector of column -* and row norms of A, based on the Shannon entropy. This should give -* the right choice in most cases when the difference actually matters. -* It may fail and pick the slower converging side. -* - ENTRA = ZERO - ENTRAT = ZERO - IF ( L2TRAN ) THEN -* - XSC = ZERO - TEMP1 = ONE - CALL DLASSQ( N, SVA, 1, XSC, TEMP1 ) - TEMP1 = ONE / TEMP1 -* - ENTRA = ZERO - DO 1113 p = 1, N - BIG1 = ( ( SVA(p) / XSC )**2 ) * TEMP1 - IF ( BIG1 .NE. ZERO ) ENTRA = ENTRA + BIG1 * DLOG(BIG1) - 1113 CONTINUE - ENTRA = - ENTRA / DLOG(DBLE(N)) -* -* Now, SVA().^2/Trace(A^t * A) is a point in the probability simplex. -* It is derived from the diagonal of A^t * A. Do the same with the -* diagonal of A * A^t, compute the entropy of the corresponding -* probability distribution. Note that A * A^t and A^t * A have the -* same trace. -* - ENTRAT = ZERO - DO 1114 p = N+1, N+M - BIG1 = ( ( WORK(p) / XSC )**2 ) * TEMP1 - IF ( BIG1 .NE. ZERO ) ENTRAT = ENTRAT + BIG1 * DLOG(BIG1) - 1114 CONTINUE - ENTRAT = - ENTRAT / DLOG(DBLE(M)) -* -* Analyze the entropies and decide A or A^t. Smaller entropy -* usually means better input for the algorithm. -* - TRANSP = ( ENTRAT .LT. ENTRA ) -* -* If A^t is better than A, transpose A. -* - IF ( TRANSP ) THEN -* In an optimal implementation, this trivial transpose -* should be replaced with faster transpose. - DO 1115 p = 1, N - 1 - DO 1116 q = p + 1, N - TEMP1 = A(q,p) - A(q,p) = A(p,q) - A(p,q) = TEMP1 - 1116 CONTINUE - 1115 CONTINUE - DO 1117 p = 1, N - WORK(M+N+p) = SVA(p) - SVA(p) = WORK(N+p) - 1117 CONTINUE - TEMP1 = AAPP - AAPP = AATMAX - AATMAX = TEMP1 - TEMP1 = AAQQ - AAQQ = AATMIN - AATMIN = TEMP1 - KILL = LSVEC - LSVEC = RSVEC - RSVEC = KILL - IF ( LSVEC ) N1 = N -* - ROWPIV = .TRUE. - END IF -* - END IF -* END IF L2TRAN -* -* Scale the matrix so that its maximal singular value remains less -* than DSQRT(BIG) -- the matrix is scaled so that its maximal column -* has Euclidean norm equal to DSQRT(BIG/N). The only reason to keep -* DSQRT(BIG) instead of BIG is the fact that DGEJSV uses LAPACK and -* BLAS routines that, in some implementations, are not capable of -* working in the full interval [SFMIN,BIG] and that they may provoke -* overflows in the intermediate results. If the singular values spread -* from SFMIN to BIG, then DGESVJ will compute them. So, in that case, -* one should use DGESVJ instead of DGEJSV. -* - BIG1 = DSQRT( BIG ) - TEMP1 = DSQRT( BIG / DBLE(N) ) -* - CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, N, 1, SVA, N, IERR ) - IF ( AAQQ .GT. (AAPP * SFMIN) ) THEN - AAQQ = ( AAQQ / AAPP ) * TEMP1 - ELSE - AAQQ = ( AAQQ * TEMP1 ) / AAPP - END IF - TEMP1 = TEMP1 * SCALEM - CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, M, N, A, LDA, IERR ) -* -* To undo scaling at the end of this procedure, multiply the -* computed singular values with USCAL2 / USCAL1. -* - USCAL1 = TEMP1 - USCAL2 = AAPP -* - IF ( L2KILL ) THEN -* L2KILL enforces computation of nonzero singular values in -* the restricted range of condition number of the initial A, -* sigma_max(A) / sigma_min(A) approx. DSQRT(BIG)/DSQRT(SFMIN). - XSC = DSQRT( SFMIN ) - ELSE - XSC = SMALL -* -* Now, if the condition number of A is too big, -* sigma_max(A) / sigma_min(A) .GT. DSQRT(BIG/N) * EPSLN / SFMIN, -* as a precaution measure, the full SVD is computed using DGESVJ -* with accumulated Jacobi rotations. This provides numerically -* more robust computation, at the cost of slightly increased run -* time. Depending on the concrete implementation of BLAS and LAPACK -* (i.e. how they behave in presence of extreme ill-conditioning) the -* implementor may decide to remove this switch. - IF ( ( AAQQ.LT.DSQRT(SFMIN) ) .AND. LSVEC .AND. RSVEC ) THEN - JRACC = .TRUE. - END IF -* - END IF - IF ( AAQQ .LT. XSC ) THEN - DO 700 p = 1, N - IF ( SVA(p) .LT. XSC ) THEN - CALL DLASET( 'A', M, 1, ZERO, ZERO, A(1,p), LDA ) - SVA(p) = ZERO - END IF - 700 CONTINUE - END IF -* -* Preconditioning using QR factorization with pivoting -* - IF ( ROWPIV ) THEN -* Optional row permutation (Bjoerck row pivoting): -* A result by Cox and Higham shows that the Bjoerck's -* row pivoting combined with standard column pivoting -* has similar effect as Powell-Reid complete pivoting. -* The ell-infinity norms of A are made nonincreasing. - DO 1952 p = 1, M - 1 - q = IDAMAX( M-p+1, WORK(M+N+p), 1 ) + p - 1 - IWORK(2*N+p) = q - IF ( p .NE. q ) THEN - TEMP1 = WORK(M+N+p) - WORK(M+N+p) = WORK(M+N+q) - WORK(M+N+q) = TEMP1 - END IF - 1952 CONTINUE - CALL DLASWP( N, A, LDA, 1, M-1, IWORK(2*N+1), 1 ) - END IF -* -* End of the preparation phase (scaling, optional sorting and -* transposing, optional flushing of small columns). -* -* Preconditioning -* -* If the full SVD is needed, the right singular vectors are computed -* from a matrix equation, and for that we need theoretical analysis -* of the Businger-Golub pivoting. So we use DGEQP3 as the first RR QRF. -* In all other cases the first RR QRF can be chosen by other criteria -* (eg speed by replacing global with restricted window pivoting, such -* as in SGEQPX from TOMS # 782). Good results will be obtained using -* SGEQPX with properly (!) chosen numerical parameters. -* Any improvement of DGEQP3 improves overall performance of DGEJSV. -* -* A * P1 = Q1 * [ R1^t 0]^t: - DO 1963 p = 1, N -* .. all columns are free columns - IWORK(p) = 0 - 1963 CONTINUE - CALL DGEQP3( M,N,A,LDA, IWORK,WORK, WORK(N+1),LWORK-N, IERR ) -* -* The upper triangular matrix R1 from the first QRF is inspected for -* rank deficiency and possibilities for deflation, or possible -* ill-conditioning. Depending on the user specified flag L2RANK, -* the procedure explores possibilities to reduce the numerical -* rank by inspecting the computed upper triangular factor. If -* L2RANK or L2ABER are up, then DGEJSV will compute the SVD of -* A + dA, where ||dA|| <= f(M,N)*EPSLN. -* - NR = 1 - IF ( L2ABER ) THEN -* Standard absolute error bound suffices. All sigma_i with -* sigma_i < N*EPSLN*||A|| are flushed to zero. This is an -* aggressive enforcement of lower numerical rank by introducing a -* backward error of the order of N*EPSLN*||A||. - TEMP1 = DSQRT(DBLE(N))*EPSLN - DO 3001 p = 2, N - IF ( DABS(A(p,p)) .GE. (TEMP1*DABS(A(1,1))) ) THEN - NR = NR + 1 - ELSE - GO TO 3002 - END IF - 3001 CONTINUE - 3002 CONTINUE - ELSE IF ( L2RANK ) THEN -* .. similarly as above, only slightly more gentle (less aggressive). -* Sudden drop on the diagonal of R1 is used as the criterion for -* close-to-rank-deficient. - TEMP1 = DSQRT(SFMIN) - DO 3401 p = 2, N - IF ( ( DABS(A(p,p)) .LT. (EPSLN*DABS(A(p-1,p-1))) ) .OR. - $ ( DABS(A(p,p)) .LT. SMALL ) .OR. - $ ( L2KILL .AND. (DABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3402 - NR = NR + 1 - 3401 CONTINUE - 3402 CONTINUE -* - ELSE -* The goal is high relative accuracy. However, if the matrix -* has high scaled condition number the relative accuracy is in -* general not feasible. Later on, a condition number estimator -* will be deployed to estimate the scaled condition number. -* Here we just remove the underflowed part of the triangular -* factor. This prevents the situation in which the code is -* working hard to get the accuracy not warranted by the data. - TEMP1 = DSQRT(SFMIN) - DO 3301 p = 2, N - IF ( ( DABS(A(p,p)) .LT. SMALL ) .OR. - $ ( L2KILL .AND. (DABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3302 - NR = NR + 1 - 3301 CONTINUE - 3302 CONTINUE -* - END IF -* - ALMORT = .FALSE. - IF ( NR .EQ. N ) THEN - MAXPRJ = ONE - DO 3051 p = 2, N - TEMP1 = DABS(A(p,p)) / SVA(IWORK(p)) - MAXPRJ = MIN( MAXPRJ, TEMP1 ) - 3051 CONTINUE - IF ( MAXPRJ**2 .GE. ONE - DBLE(N)*EPSLN ) ALMORT = .TRUE. - END IF -* -* - SCONDA = - ONE - CONDR1 = - ONE - CONDR2 = - ONE -* - IF ( ERREST ) THEN - IF ( N .EQ. NR ) THEN - IF ( RSVEC ) THEN -* .. V is available as workspace - CALL DLACPY( 'U', N, N, A, LDA, V, LDV ) - DO 3053 p = 1, N - TEMP1 = SVA(IWORK(p)) - CALL DSCAL( p, ONE/TEMP1, V(1,p), 1 ) - 3053 CONTINUE - CALL DPOCON( 'U', N, V, LDV, ONE, TEMP1, - $ WORK(N+1), IWORK(2*N+M+1), IERR ) - ELSE IF ( LSVEC ) THEN -* .. U is available as workspace - CALL DLACPY( 'U', N, N, A, LDA, U, LDU ) - DO 3054 p = 1, N - TEMP1 = SVA(IWORK(p)) - CALL DSCAL( p, ONE/TEMP1, U(1,p), 1 ) - 3054 CONTINUE - CALL DPOCON( 'U', N, U, LDU, ONE, TEMP1, - $ WORK(N+1), IWORK(2*N+M+1), IERR ) - ELSE - CALL DLACPY( 'U', N, N, A, LDA, WORK(N+1), N ) - DO 3052 p = 1, N - TEMP1 = SVA(IWORK(p)) - CALL DSCAL( p, ONE/TEMP1, WORK(N+(p-1)*N+1), 1 ) - 3052 CONTINUE -* .. the columns of R are scaled to have unit Euclidean lengths. - CALL DPOCON( 'U', N, WORK(N+1), N, ONE, TEMP1, - $ WORK(N+N*N+1), IWORK(2*N+M+1), IERR ) - END IF - SCONDA = ONE / DSQRT(TEMP1) -* SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1). -* N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA - ELSE - SCONDA = - ONE - END IF - END IF -* - L2PERT = L2PERT .AND. ( DABS( A(1,1)/A(NR,NR) ) .GT. DSQRT(BIG1) ) -* If there is no violent scaling, artificial perturbation is not needed. -* -* Phase 3: -* - IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN -* -* Singular Values only -* -* .. transpose A(1:NR,1:N) - DO 1946 p = 1, MIN( N-1, NR ) - CALL DCOPY( N-p, A(p,p+1), LDA, A(p+1,p), 1 ) - 1946 CONTINUE -* -* The following two DO-loops introduce small relative perturbation -* into the strict upper triangle of the lower triangular matrix. -* Small entries below the main diagonal are also changed. -* This modification is useful if the computing environment does not -* provide/allow FLUSH TO ZERO underflow, for it prevents many -* annoying denormalized numbers in case of strongly scaled matrices. -* The perturbation is structured so that it does not introduce any -* new perturbation of the singular values, and it does not destroy -* the job done by the preconditioner. -* The licence for this perturbation is in the variable L2PERT, which -* should be .FALSE. if FLUSH TO ZERO underflow is active. -* - IF ( .NOT. ALMORT ) THEN -* - IF ( L2PERT ) THEN -* XSC = DSQRT(SMALL) - XSC = EPSLN / DBLE(N) - DO 4947 q = 1, NR - TEMP1 = XSC*DABS(A(q,q)) - DO 4949 p = 1, N - IF ( ( (p.GT.q) .AND. (DABS(A(p,q)).LE.TEMP1) ) - $ .OR. ( p .LT. q ) ) - $ A(p,q) = DSIGN( TEMP1, A(p,q) ) - 4949 CONTINUE - 4947 CONTINUE - ELSE - CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, A(1,2),LDA ) - END IF -* -* .. second preconditioning using the QR factorization -* - CALL DGEQRF( N,NR, A,LDA, WORK, WORK(N+1),LWORK-N, IERR ) -* -* .. and transpose upper to lower triangular - DO 1948 p = 1, NR - 1 - CALL DCOPY( NR-p, A(p,p+1), LDA, A(p+1,p), 1 ) - 1948 CONTINUE -* - END IF -* -* Row-cyclic Jacobi SVD algorithm with column pivoting -* -* .. again some perturbation (a "background noise") is added -* to drown denormals - IF ( L2PERT ) THEN -* XSC = DSQRT(SMALL) - XSC = EPSLN / DBLE(N) - DO 1947 q = 1, NR - TEMP1 = XSC*DABS(A(q,q)) - DO 1949 p = 1, NR - IF ( ( (p.GT.q) .AND. (DABS(A(p,q)).LE.TEMP1) ) - $ .OR. ( p .LT. q ) ) - $ A(p,q) = DSIGN( TEMP1, A(p,q) ) - 1949 CONTINUE - 1947 CONTINUE - ELSE - CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, A(1,2), LDA ) - END IF -* -* .. and one-sided Jacobi rotations are started on a lower -* triangular matrix (plus perturbation which is ignored in -* the part which destroys triangular form (confusing?!)) -* - CALL DGESVJ( 'L', 'NoU', 'NoV', NR, NR, A, LDA, SVA, - $ N, V, LDV, WORK, LWORK, INFO ) -* - SCALEM = WORK(1) - NUMRANK = IDNINT(WORK(2)) -* -* - ELSE IF ( RSVEC .AND. ( .NOT. LSVEC ) ) THEN -* -* -> Singular Values and Right Singular Vectors <- -* - IF ( ALMORT ) THEN -* -* .. in this case NR equals N - DO 1998 p = 1, NR - CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 ) - 1998 CONTINUE - CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV ) -* - CALL DGESVJ( 'L','U','N', N, NR, V,LDV, SVA, NR, A,LDA, - $ WORK, LWORK, INFO ) - SCALEM = WORK(1) - NUMRANK = IDNINT(WORK(2)) - - ELSE -* -* .. two more QR factorizations ( one QRF is not enough, two require -* accumulated product of Jacobi rotations, three are perfect ) -* - CALL DLASET( 'Lower', NR-1, NR-1, ZERO, ZERO, A(2,1), LDA ) - CALL DGELQF( NR, N, A, LDA, WORK, WORK(N+1), LWORK-N, IERR) - CALL DLACPY( 'Lower', NR, NR, A, LDA, V, LDV ) - CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV ) - CALL DGEQRF( NR, NR, V, LDV, WORK(N+1), WORK(2*N+1), - $ LWORK-2*N, IERR ) - DO 8998 p = 1, NR - CALL DCOPY( NR-p+1, V(p,p), LDV, V(p,p), 1 ) - 8998 CONTINUE - CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV ) -* - CALL DGESVJ( 'Lower', 'U','N', NR, NR, V,LDV, SVA, NR, U, - $ LDU, WORK(N+1), LWORK, INFO ) - SCALEM = WORK(N+1) - NUMRANK = IDNINT(WORK(N+2)) - IF ( NR .LT. N ) THEN - CALL DLASET( 'A',N-NR, NR, ZERO,ZERO, V(NR+1,1), LDV ) - CALL DLASET( 'A',NR, N-NR, ZERO,ZERO, V(1,NR+1), LDV ) - CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE, V(NR+1,NR+1), LDV ) - END IF -* - CALL DORMLQ( 'Left', 'Transpose', N, N, NR, A, LDA, WORK, - $ V, LDV, WORK(N+1), LWORK-N, IERR ) -* - END IF -* - DO 8991 p = 1, N - CALL DCOPY( N, V(p,1), LDV, A(IWORK(p),1), LDA ) - 8991 CONTINUE - CALL DLACPY( 'All', N, N, A, LDA, V, LDV ) -* - IF ( TRANSP ) THEN - CALL DLACPY( 'All', N, N, V, LDV, U, LDU ) - END IF -* - ELSE IF ( LSVEC .AND. ( .NOT. RSVEC ) ) THEN -* -* .. Singular Values and Left Singular Vectors .. -* -* .. second preconditioning step to avoid need to accumulate -* Jacobi rotations in the Jacobi iterations. - DO 1965 p = 1, NR - CALL DCOPY( N-p+1, A(p,p), LDA, U(p,p), 1 ) - 1965 CONTINUE - CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU ) -* - CALL DGEQRF( N, NR, U, LDU, WORK(N+1), WORK(2*N+1), - $ LWORK-2*N, IERR ) -* - DO 1967 p = 1, NR - 1 - CALL DCOPY( NR-p, U(p,p+1), LDU, U(p+1,p), 1 ) - 1967 CONTINUE - CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU ) -* - CALL DGESVJ( 'Lower', 'U', 'N', NR,NR, U, LDU, SVA, NR, A, - $ LDA, WORK(N+1), LWORK-N, INFO ) - SCALEM = WORK(N+1) - NUMRANK = IDNINT(WORK(N+2)) -* - IF ( NR .LT. M ) THEN - CALL DLASET( 'A', M-NR, NR,ZERO, ZERO, U(NR+1,1), LDU ) - IF ( NR .LT. N1 ) THEN - CALL DLASET( 'A',NR, N1-NR, ZERO, ZERO, U(1,NR+1), LDU ) - CALL DLASET( 'A',M-NR,N1-NR,ZERO,ONE,U(NR+1,NR+1), LDU ) - END IF - END IF -* - CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U, - $ LDU, WORK(N+1), LWORK-N, IERR ) -* - IF ( ROWPIV ) - $ CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 ) -* - DO 1974 p = 1, N1 - XSC = ONE / DNRM2( M, U(1,p), 1 ) - CALL DSCAL( M, XSC, U(1,p), 1 ) - 1974 CONTINUE -* - IF ( TRANSP ) THEN - CALL DLACPY( 'All', N, N, U, LDU, V, LDV ) - END IF -* - ELSE -* -* .. Full SVD .. -* - IF ( .NOT. JRACC ) THEN -* - IF ( .NOT. ALMORT ) THEN -* -* Second Preconditioning Step (QRF [with pivoting]) -* Note that the composition of TRANSPOSE, QRF and TRANSPOSE is -* equivalent to an LQF CALL. Since in many libraries the QRF -* seems to be better optimized than the LQF, we do explicit -* transpose and use the QRF. This is subject to changes in an -* optimized implementation of DGEJSV. -* - DO 1968 p = 1, NR - CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 ) - 1968 CONTINUE -* -* .. the following two loops perturb small entries to avoid -* denormals in the second QR factorization, where they are -* as good as zeros. This is done to avoid painfully slow -* computation with denormals. The relative size of the perturbation -* is a parameter that can be changed by the implementer. -* This perturbation device will be obsolete on machines with -* properly implemented arithmetic. -* To switch it off, set L2PERT=.FALSE. To remove it from the -* code, remove the action under L2PERT=.TRUE., leave the ELSE part. -* The following two loops should be blocked and fused with the -* transposed copy above. -* - IF ( L2PERT ) THEN - XSC = DSQRT(SMALL) - DO 2969 q = 1, NR - TEMP1 = XSC*DABS( V(q,q) ) - DO 2968 p = 1, N - IF ( ( p .GT. q ) .AND. ( DABS(V(p,q)) .LE. TEMP1 ) - $ .OR. ( p .LT. q ) ) - $ V(p,q) = DSIGN( TEMP1, V(p,q) ) - IF ( p .LT. q ) V(p,q) = - V(p,q) - 2968 CONTINUE - 2969 CONTINUE - ELSE - CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV ) - END IF -* -* Estimate the row scaled condition number of R1 -* (If R1 is rectangular, N > NR, then the condition number -* of the leading NR x NR submatrix is estimated.) -* - CALL DLACPY( 'L', NR, NR, V, LDV, WORK(2*N+1), NR ) - DO 3950 p = 1, NR - TEMP1 = DNRM2(NR-p+1,WORK(2*N+(p-1)*NR+p),1) - CALL DSCAL(NR-p+1,ONE/TEMP1,WORK(2*N+(p-1)*NR+p),1) - 3950 CONTINUE - CALL DPOCON('Lower',NR,WORK(2*N+1),NR,ONE,TEMP1, - $ WORK(2*N+NR*NR+1),IWORK(M+2*N+1),IERR) - CONDR1 = ONE / DSQRT(TEMP1) -* .. here need a second opinion on the condition number -* .. then assume worst case scenario -* R1 is OK for inverse <=> CONDR1 .LT. DBLE(N) -* more conservative <=> CONDR1 .LT. DSQRT(DBLE(N)) -* - COND_OK = DSQRT(DBLE(NR)) -*[TP] COND_OK is a tuning parameter. - - IF ( CONDR1 .LT. COND_OK ) THEN -* .. the second QRF without pivoting. Note: in an optimized -* implementation, this QRF should be implemented as the QRF -* of a lower triangular matrix. -* R1^t = Q2 * R2 - CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1), - $ LWORK-2*N, IERR ) -* - IF ( L2PERT ) THEN - XSC = DSQRT(SMALL)/EPSLN - DO 3959 p = 2, NR - DO 3958 q = 1, p - 1 - TEMP1 = XSC * MIN(DABS(V(p,p)),DABS(V(q,q))) - IF ( DABS(V(q,p)) .LE. TEMP1 ) - $ V(q,p) = DSIGN( TEMP1, V(q,p) ) - 3958 CONTINUE - 3959 CONTINUE - END IF -* - IF ( NR .NE. N ) - $ CALL DLACPY( 'A', N, NR, V, LDV, WORK(2*N+1), N ) -* .. save ... -* -* .. this transposed copy should be better than naive - DO 1969 p = 1, NR - 1 - CALL DCOPY( NR-p, V(p,p+1), LDV, V(p+1,p), 1 ) - 1969 CONTINUE -* - CONDR2 = CONDR1 -* - ELSE -* -* .. ill-conditioned case: second QRF with pivoting -* Note that windowed pivoting would be equally good -* numerically, and more run-time efficient. So, in -* an optimal implementation, the next call to DGEQP3 -* should be replaced with eg. CALL SGEQPX (ACM TOMS #782) -* with properly (carefully) chosen parameters. -* -* R1^t * P2 = Q2 * R2 - DO 3003 p = 1, NR - IWORK(N+p) = 0 - 3003 CONTINUE - CALL DGEQP3( N, NR, V, LDV, IWORK(N+1), WORK(N+1), - $ WORK(2*N+1), LWORK-2*N, IERR ) -** CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1), -** $ LWORK-2*N, IERR ) - IF ( L2PERT ) THEN - XSC = DSQRT(SMALL) - DO 3969 p = 2, NR - DO 3968 q = 1, p - 1 - TEMP1 = XSC * MIN(DABS(V(p,p)),DABS(V(q,q))) - IF ( DABS(V(q,p)) .LE. TEMP1 ) - $ V(q,p) = DSIGN( TEMP1, V(q,p) ) - 3968 CONTINUE - 3969 CONTINUE - END IF -* - CALL DLACPY( 'A', N, NR, V, LDV, WORK(2*N+1), N ) -* - IF ( L2PERT ) THEN - XSC = DSQRT(SMALL) - DO 8970 p = 2, NR - DO 8971 q = 1, p - 1 - TEMP1 = XSC * MIN(DABS(V(p,p)),DABS(V(q,q))) - V(p,q) = - DSIGN( TEMP1, V(q,p) ) - 8971 CONTINUE - 8970 CONTINUE - ELSE - CALL DLASET( 'L',NR-1,NR-1,ZERO,ZERO,V(2,1),LDV ) - END IF -* Now, compute R2 = L3 * Q3, the LQ factorization. - CALL DGELQF( NR, NR, V, LDV, WORK(2*N+N*NR+1), - $ WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, IERR ) -* .. and estimate the condition number - CALL DLACPY( 'L',NR,NR,V,LDV,WORK(2*N+N*NR+NR+1),NR ) - DO 4950 p = 1, NR - TEMP1 = DNRM2( p, WORK(2*N+N*NR+NR+p), NR ) - CALL DSCAL( p, ONE/TEMP1, WORK(2*N+N*NR+NR+p), NR ) - 4950 CONTINUE - CALL DPOCON( 'L',NR,WORK(2*N+N*NR+NR+1),NR,ONE,TEMP1, - $ WORK(2*N+N*NR+NR+NR*NR+1),IWORK(M+2*N+1),IERR ) - CONDR2 = ONE / DSQRT(TEMP1) -* - IF ( CONDR2 .GE. COND_OK ) THEN -* .. save the Householder vectors used for Q3 -* (this overwrites the copy of R2, as it will not be -* needed in this branch, but it does not overwritte the -* Huseholder vectors of Q2.). - CALL DLACPY( 'U', NR, NR, V, LDV, WORK(2*N+1), N ) -* .. and the rest of the information on Q3 is in -* WORK(2*N+N*NR+1:2*N+N*NR+N) - END IF -* - END IF -* - IF ( L2PERT ) THEN - XSC = DSQRT(SMALL) - DO 4968 q = 2, NR - TEMP1 = XSC * V(q,q) - DO 4969 p = 1, q - 1 -* V(p,q) = - DSIGN( TEMP1, V(q,p) ) - V(p,q) = - DSIGN( TEMP1, V(p,q) ) - 4969 CONTINUE - 4968 CONTINUE - ELSE - CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, V(1,2), LDV ) - END IF -* -* Second preconditioning finished; continue with Jacobi SVD -* The input matrix is lower trinagular. -* -* Recover the right singular vectors as solution of a well -* conditioned triangular matrix equation. -* - IF ( CONDR1 .LT. COND_OK ) THEN -* - CALL DGESVJ( 'L','U','N',NR,NR,V,LDV,SVA,NR,U, - $ LDU,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,INFO ) - SCALEM = WORK(2*N+N*NR+NR+1) - NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2)) - DO 3970 p = 1, NR - CALL DCOPY( NR, V(1,p), 1, U(1,p), 1 ) - CALL DSCAL( NR, SVA(p), V(1,p), 1 ) - 3970 CONTINUE - -* .. pick the right matrix equation and solve it -* - IF ( NR .EQ. N ) THEN -* :)) .. best case, R1 is inverted. The solution of this matrix -* equation is Q2*V2 = the product of the Jacobi rotations -* used in DGESVJ, premultiplied with the orthogonal matrix -* from the second QR factorization. - CALL DTRSM( 'L','U','N','N', NR,NR,ONE, A,LDA, V,LDV ) - ELSE -* .. R1 is well conditioned, but non-square. Transpose(R2) -* is inverted to get the product of the Jacobi rotations -* used in DGESVJ. The Q-factor from the second QR -* factorization is then built in explicitly. - CALL DTRSM('L','U','T','N',NR,NR,ONE,WORK(2*N+1), - $ N,V,LDV) - IF ( NR .LT. N ) THEN - CALL DLASET('A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV) - CALL DLASET('A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV) - CALL DLASET('A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV) - END IF - CALL DORMQR('L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1), - $ V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR) - END IF -* - ELSE IF ( CONDR2 .LT. COND_OK ) THEN -* -* :) .. the input matrix A is very likely a relative of -* the Kahan matrix :) -* The matrix R2 is inverted. The solution of the matrix equation -* is Q3^T*V3 = the product of the Jacobi rotations (appplied to -* the lower triangular L3 from the LQ factorization of -* R2=L3*Q3), pre-multiplied with the transposed Q3. - CALL DGESVJ( 'L', 'U', 'N', NR, NR, V, LDV, SVA, NR, U, - $ LDU, WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, INFO ) - SCALEM = WORK(2*N+N*NR+NR+1) - NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2)) - DO 3870 p = 1, NR - CALL DCOPY( NR, V(1,p), 1, U(1,p), 1 ) - CALL DSCAL( NR, SVA(p), U(1,p), 1 ) - 3870 CONTINUE - CALL DTRSM('L','U','N','N',NR,NR,ONE,WORK(2*N+1),N,U,LDU) -* .. apply the permutation from the second QR factorization - DO 873 q = 1, NR - DO 872 p = 1, NR - WORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q) - 872 CONTINUE - DO 874 p = 1, NR - U(p,q) = WORK(2*N+N*NR+NR+p) - 874 CONTINUE - 873 CONTINUE - IF ( NR .LT. N ) THEN - CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV ) - CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV ) - CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV ) - END IF - CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1), - $ V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR ) - ELSE -* Last line of defense. -* #:( This is a rather pathological case: no scaled condition -* improvement after two pivoted QR factorizations. Other -* possibility is that the rank revealing QR factorization -* or the condition estimator has failed, or the COND_OK -* is set very close to ONE (which is unnecessary). Normally, -* this branch should never be executed, but in rare cases of -* failure of the RRQR or condition estimator, the last line of -* defense ensures that DGEJSV completes the task. -* Compute the full SVD of L3 using DGESVJ with explicit -* accumulation of Jacobi rotations. - CALL DGESVJ( 'L', 'U', 'V', NR, NR, V, LDV, SVA, NR, U, - $ LDU, WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, INFO ) - SCALEM = WORK(2*N+N*NR+NR+1) - NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2)) - IF ( NR .LT. N ) THEN - CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV ) - CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV ) - CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV ) - END IF - CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1), - $ V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR ) -* - CALL DORMLQ( 'L', 'T', NR, NR, NR, WORK(2*N+1), N, - $ WORK(2*N+N*NR+1), U, LDU, WORK(2*N+N*NR+NR+1), - $ LWORK-2*N-N*NR-NR, IERR ) - DO 773 q = 1, NR - DO 772 p = 1, NR - WORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q) - 772 CONTINUE - DO 774 p = 1, NR - U(p,q) = WORK(2*N+N*NR+NR+p) - 774 CONTINUE - 773 CONTINUE -* - END IF -* -* Permute the rows of V using the (column) permutation from the -* first QRF. Also, scale the columns to make them unit in -* Euclidean norm. This applies to all cases. -* - TEMP1 = DSQRT(DBLE(N)) * EPSLN - DO 1972 q = 1, N - DO 972 p = 1, N - WORK(2*N+N*NR+NR+IWORK(p)) = V(p,q) - 972 CONTINUE - DO 973 p = 1, N - V(p,q) = WORK(2*N+N*NR+NR+p) - 973 CONTINUE - XSC = ONE / DNRM2( N, V(1,q), 1 ) - IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) ) - $ CALL DSCAL( N, XSC, V(1,q), 1 ) - 1972 CONTINUE -* At this moment, V contains the right singular vectors of A. -* Next, assemble the left singular vector matrix U (M x N). - IF ( NR .LT. M ) THEN - CALL DLASET( 'A', M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU ) - IF ( NR .LT. N1 ) THEN - CALL DLASET('A',NR,N1-NR,ZERO,ZERO,U(1,NR+1),LDU) - CALL DLASET('A',M-NR,N1-NR,ZERO,ONE,U(NR+1,NR+1),LDU) - END IF - END IF -* -* The Q matrix from the first QRF is built into the left singular -* matrix U. This applies to all cases. -* - CALL DORMQR( 'Left', 'No_Tr', M, N1, N, A, LDA, WORK, U, - $ LDU, WORK(N+1), LWORK-N, IERR ) - -* The columns of U are normalized. The cost is O(M*N) flops. - TEMP1 = DSQRT(DBLE(M)) * EPSLN - DO 1973 p = 1, NR - XSC = ONE / DNRM2( M, U(1,p), 1 ) - IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) ) - $ CALL DSCAL( M, XSC, U(1,p), 1 ) - 1973 CONTINUE -* -* If the initial QRF is computed with row pivoting, the left -* singular vectors must be adjusted. -* - IF ( ROWPIV ) - $ CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 ) -* - ELSE -* -* .. the initial matrix A has almost orthogonal columns and -* the second QRF is not needed -* - CALL DLACPY( 'Upper', N, N, A, LDA, WORK(N+1), N ) - IF ( L2PERT ) THEN - XSC = DSQRT(SMALL) - DO 5970 p = 2, N - TEMP1 = XSC * WORK( N + (p-1)*N + p ) - DO 5971 q = 1, p - 1 - WORK(N+(q-1)*N+p)=-DSIGN(TEMP1,WORK(N+(p-1)*N+q)) - 5971 CONTINUE - 5970 CONTINUE - ELSE - CALL DLASET( 'Lower',N-1,N-1,ZERO,ZERO,WORK(N+2),N ) - END IF -* - CALL DGESVJ( 'Upper', 'U', 'N', N, N, WORK(N+1), N, SVA, - $ N, U, LDU, WORK(N+N*N+1), LWORK-N-N*N, INFO ) -* - SCALEM = WORK(N+N*N+1) - NUMRANK = IDNINT(WORK(N+N*N+2)) - DO 6970 p = 1, N - CALL DCOPY( N, WORK(N+(p-1)*N+1), 1, U(1,p), 1 ) - CALL DSCAL( N, SVA(p), WORK(N+(p-1)*N+1), 1 ) - 6970 CONTINUE -* - CALL DTRSM( 'Left', 'Upper', 'NoTrans', 'No UD', N, N, - $ ONE, A, LDA, WORK(N+1), N ) - DO 6972 p = 1, N - CALL DCOPY( N, WORK(N+p), N, V(IWORK(p),1), LDV ) - 6972 CONTINUE - TEMP1 = DSQRT(DBLE(N))*EPSLN - DO 6971 p = 1, N - XSC = ONE / DNRM2( N, V(1,p), 1 ) - IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) ) - $ CALL DSCAL( N, XSC, V(1,p), 1 ) - 6971 CONTINUE -* -* Assemble the left singular vector matrix U (M x N). -* - IF ( N .LT. M ) THEN - CALL DLASET( 'A', M-N, N, ZERO, ZERO, U(N+1,1), LDU ) - IF ( N .LT. N1 ) THEN - CALL DLASET( 'A',N, N1-N, ZERO, ZERO, U(1,N+1),LDU ) - CALL DLASET( 'A',M-N,N1-N, ZERO, ONE,U(N+1,N+1),LDU ) - END IF - END IF - CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U, - $ LDU, WORK(N+1), LWORK-N, IERR ) - TEMP1 = DSQRT(DBLE(M))*EPSLN - DO 6973 p = 1, N1 - XSC = ONE / DNRM2( M, U(1,p), 1 ) - IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) ) - $ CALL DSCAL( M, XSC, U(1,p), 1 ) - 6973 CONTINUE -* - IF ( ROWPIV ) - $ CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 ) -* - END IF -* -* end of the >> almost orthogonal case << in the full SVD -* - ELSE -* -* This branch deploys a preconditioned Jacobi SVD with explicitly -* accumulated rotations. It is included as optional, mainly for -* experimental purposes. It does perform well, and can also be used. -* In this implementation, this branch will be automatically activated -* if the condition number sigma_max(A) / sigma_min(A) is predicted -* to be greater than the overflow threshold. This is because the -* a posteriori computation of the singular vectors assumes robust -* implementation of BLAS and some LAPACK procedures, capable of working -* in presence of extreme values. Since that is not always the case, ... -* - DO 7968 p = 1, NR - CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 ) - 7968 CONTINUE -* - IF ( L2PERT ) THEN - XSC = DSQRT(SMALL/EPSLN) - DO 5969 q = 1, NR - TEMP1 = XSC*DABS( V(q,q) ) - DO 5968 p = 1, N - IF ( ( p .GT. q ) .AND. ( DABS(V(p,q)) .LE. TEMP1 ) - $ .OR. ( p .LT. q ) ) - $ V(p,q) = DSIGN( TEMP1, V(p,q) ) - IF ( p .LT. q ) V(p,q) = - V(p,q) - 5968 CONTINUE - 5969 CONTINUE - ELSE - CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV ) - END IF - - CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1), - $ LWORK-2*N, IERR ) - CALL DLACPY( 'L', N, NR, V, LDV, WORK(2*N+1), N ) -* - DO 7969 p = 1, NR - CALL DCOPY( NR-p+1, V(p,p), LDV, U(p,p), 1 ) - 7969 CONTINUE - - IF ( L2PERT ) THEN - XSC = DSQRT(SMALL/EPSLN) - DO 9970 q = 2, NR - DO 9971 p = 1, q - 1 - TEMP1 = XSC * MIN(DABS(U(p,p)),DABS(U(q,q))) - U(p,q) = - DSIGN( TEMP1, U(q,p) ) - 9971 CONTINUE - 9970 CONTINUE - ELSE - CALL DLASET('U', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU ) - END IF - - CALL DGESVJ( 'G', 'U', 'V', NR, NR, U, LDU, SVA, - $ N, V, LDV, WORK(2*N+N*NR+1), LWORK-2*N-N*NR, INFO ) - SCALEM = WORK(2*N+N*NR+1) - NUMRANK = IDNINT(WORK(2*N+N*NR+2)) - - IF ( NR .LT. N ) THEN - CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV ) - CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV ) - CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV ) - END IF - - CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1), - $ V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR ) -* -* Permute the rows of V using the (column) permutation from the -* first QRF. Also, scale the columns to make them unit in -* Euclidean norm. This applies to all cases. -* - TEMP1 = DSQRT(DBLE(N)) * EPSLN - DO 7972 q = 1, N - DO 8972 p = 1, N - WORK(2*N+N*NR+NR+IWORK(p)) = V(p,q) - 8972 CONTINUE - DO 8973 p = 1, N - V(p,q) = WORK(2*N+N*NR+NR+p) - 8973 CONTINUE - XSC = ONE / DNRM2( N, V(1,q), 1 ) - IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) ) - $ CALL DSCAL( N, XSC, V(1,q), 1 ) - 7972 CONTINUE -* -* At this moment, V contains the right singular vectors of A. -* Next, assemble the left singular vector matrix U (M x N). -* - IF ( NR .LT. M ) THEN - CALL DLASET( 'A', M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU ) - IF ( NR .LT. N1 ) THEN - CALL DLASET( 'A',NR, N1-NR, ZERO, ZERO, U(1,NR+1),LDU ) - CALL DLASET( 'A',M-NR,N1-NR, ZERO, ONE,U(NR+1,NR+1),LDU ) - END IF - END IF -* - CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U, - $ LDU, WORK(N+1), LWORK-N, IERR ) -* - IF ( ROWPIV ) - $ CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 ) -* -* - END IF - IF ( TRANSP ) THEN -* .. swap U and V because the procedure worked on A^t - DO 6974 p = 1, N - CALL DSWAP( N, U(1,p), 1, V(1,p), 1 ) - 6974 CONTINUE - END IF -* - END IF -* end of the full SVD -* -* Undo scaling, if necessary (and possible) -* - IF ( USCAL2 .LE. (BIG/SVA(1))*USCAL1 ) THEN - CALL DLASCL( 'G', 0, 0, USCAL1, USCAL2, NR, 1, SVA, N, IERR ) - USCAL1 = ONE - USCAL2 = ONE - END IF -* - IF ( NR .LT. N ) THEN - DO 3004 p = NR+1, N - SVA(p) = ZERO - 3004 CONTINUE - END IF -* - WORK(1) = USCAL2 * SCALEM - WORK(2) = USCAL1 - IF ( ERREST ) WORK(3) = SCONDA - IF ( LSVEC .AND. RSVEC ) THEN - WORK(4) = CONDR1 - WORK(5) = CONDR2 - END IF - IF ( L2TRAN ) THEN - WORK(6) = ENTRA - WORK(7) = ENTRAT - END IF -* - IWORK(1) = NR - IWORK(2) = NUMRANK - IWORK(3) = WARNING -* - RETURN -* .. -* .. END OF DGEJSV -* .. - END -* diff --git a/lapack-netlib/dgesvx.f b/lapack-netlib/dgesvx.f deleted file mode 100644 index f787488dc..000000000 --- a/lapack-netlib/dgesvx.f +++ /dev/null @@ -1,599 +0,0 @@ -*> \brief DGESVX computes the solution to system of linear equations A * X = B for GE matrices -* -* =========== DOCUMENTATION =========== -* -* Online html documentation available at -* http://www.netlib.org/lapack/explore-html/ -* -*> \htmlonly -*> Download DGESVX + dependencies -*> -*> [TGZ] -*> -*> [ZIP] -*> -*> [TXT] -*> \endhtmlonly -* -* Definition: -* =========== -* -* SUBROUTINE DGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, -* EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR, -* WORK, IWORK, INFO ) -* -* .. Scalar Arguments .. -* CHARACTER EQUED, FACT, TRANS -* INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS -* DOUBLE PRECISION RCOND -* .. -* .. Array Arguments .. -* INTEGER IPIV( * ), IWORK( * ) -* DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ), -* $ BERR( * ), C( * ), FERR( * ), R( * ), -* $ WORK( * ), X( LDX, * ) -* .. -* -* -*> \par Purpose: -* ============= -*> -*> \verbatim -*> -*> DGESVX uses the LU factorization to compute the solution to a real -*> system of linear equations -*> A * X = B, -*> where A is an N-by-N matrix and X and B are N-by-NRHS matrices. -*> -*> Error bounds on the solution and a condition estimate are also -*> provided. -*> \endverbatim -* -*> \par Description: -* ================= -*> -*> \verbatim -*> -*> The following steps are performed: -*> -*> 1. If FACT = 'E', real scaling factors are computed to equilibrate -*> the system: -*> TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B -*> TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B -*> TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B -*> Whether or not the system will be equilibrated depends on the -*> scaling of the matrix A, but if equilibration is used, A is -*> overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') -*> or diag(C)*B (if TRANS = 'T' or 'C'). -*> -*> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the -*> matrix A (after equilibration if FACT = 'E') as -*> A = P * L * U, -*> where P is a permutation matrix, L is a unit lower triangular -*> matrix, and U is upper triangular. -*> -*> 3. If some U(i,i)=0, so that U is exactly singular, then the routine -*> returns with INFO = i. Otherwise, the factored form of A is used -*> to estimate the condition number of the matrix A. If the -*> reciprocal of the condition number is less than machine precision, -*> INFO = N+1 is returned as a warning, but the routine still goes on -*> to solve for X and compute error bounds as described below. -*> -*> 4. The system of equations is solved for X using the factored form -*> of A. -*> -*> 5. Iterative refinement is applied to improve the computed solution -*> matrix and calculate error bounds and backward error estimates -*> for it. -*> -*> 6. If equilibration was used, the matrix X is premultiplied by -*> diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so -*> that it solves the original system before equilibration. -*> \endverbatim -* -* Arguments: -* ========== -* -*> \param[in] FACT -*> \verbatim -*> FACT is CHARACTER*1 -*> Specifies whether or not the factored form of the matrix A is -*> supplied on entry, and if not, whether the matrix A should be -*> equilibrated before it is factored. -*> = 'F': On entry, AF and IPIV contain the factored form of A. -*> If EQUED is not 'N', the matrix A has been -*> equilibrated with scaling factors given by R and C. -*> A, AF, and IPIV are not modified. -*> = 'N': The matrix A will be copied to AF and factored. -*> = 'E': The matrix A will be equilibrated if necessary, then -*> copied to AF and factored. -*> \endverbatim -*> -*> \param[in] TRANS -*> \verbatim -*> TRANS is CHARACTER*1 -*> Specifies the form of the system of equations: -*> = 'N': A * X = B (No transpose) -*> = 'T': A**T * X = B (Transpose) -*> = 'C': A**H * X = B (Transpose) -*> \endverbatim -*> -*> \param[in] N -*> \verbatim -*> N is INTEGER -*> The number of linear equations, i.e., the order of the -*> matrix A. N >= 0. -*> \endverbatim -*> -*> \param[in] NRHS -*> \verbatim -*> NRHS is INTEGER -*> The number of right hand sides, i.e., the number of columns -*> of the matrices B and X. NRHS >= 0. -*> \endverbatim -*> -*> \param[in,out] A -*> \verbatim -*> A is DOUBLE PRECISION array, dimension (LDA,N) -*> On entry, the N-by-N matrix A. If FACT = 'F' and EQUED is -*> not 'N', then A must have been equilibrated by the scaling -*> factors in R and/or C. A is not modified if FACT = 'F' or -*> 'N', or if FACT = 'E' and EQUED = 'N' on exit. -*> -*> On exit, if EQUED .ne. 'N', A is scaled as follows: -*> EQUED = 'R': A := diag(R) * A -*> EQUED = 'C': A := A * diag(C) -*> EQUED = 'B': A := diag(R) * A * diag(C). -*> \endverbatim -*> -*> \param[in] LDA -*> \verbatim -*> LDA is INTEGER -*> The leading dimension of the array A. LDA >= max(1,N). -*> \endverbatim -*> -*> \param[in,out] AF -*> \verbatim -*> AF is DOUBLE PRECISION array, dimension (LDAF,N) -*> If FACT = 'F', then AF is an input argument and on entry -*> contains the factors L and U from the factorization -*> A = P*L*U as computed by DGETRF. If EQUED .ne. 'N', then -*> AF is the factored form of the equilibrated matrix A. -*> -*> If FACT = 'N', then AF is an output argument and on exit -*> returns the factors L and U from the factorization A = P*L*U -*> of the original matrix A. -*> -*> If FACT = 'E', then AF is an output argument and on exit -*> returns the factors L and U from the factorization A = P*L*U -*> of the equilibrated matrix A (see the description of A for -*> the form of the equilibrated matrix). -*> \endverbatim -*> -*> \param[in] LDAF -*> \verbatim -*> LDAF is INTEGER -*> The leading dimension of the array AF. LDAF >= max(1,N). -*> \endverbatim -*> -*> \param[in,out] IPIV -*> \verbatim -*> IPIV is INTEGER array, dimension (N) -*> If FACT = 'F', then IPIV is an input argument and on entry -*> contains the pivot indices from the factorization A = P*L*U -*> as computed by DGETRF; row i of the matrix was interchanged -*> with row IPIV(i). -*> -*> If FACT = 'N', then IPIV is an output argument and on exit -*> contains the pivot indices from the factorization A = P*L*U -*> of the original matrix A. -*> -*> If FACT = 'E', then IPIV is an output argument and on exit -*> contains the pivot indices from the factorization A = P*L*U -*> of the equilibrated matrix A. -*> \endverbatim -*> -*> \param[in,out] EQUED -*> \verbatim -*> EQUED is CHARACTER*1 -*> Specifies the form of equilibration that was done. -*> = 'N': No equilibration (always true if FACT = 'N'). -*> = 'R': Row equilibration, i.e., A has been premultiplied by -*> diag(R). -*> = 'C': Column equilibration, i.e., A has been postmultiplied -*> by diag(C). -*> = 'B': Both row and column equilibration, i.e., A has been -*> replaced by diag(R) * A * diag(C). -*> EQUED is an input argument if FACT = 'F'; otherwise, it is an -*> output argument. -*> \endverbatim -*> -*> \param[in,out] R -*> \verbatim -*> R is DOUBLE PRECISION array, dimension (N) -*> The row scale factors for A. If EQUED = 'R' or 'B', A is -*> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R -*> is not accessed. R is an input argument if FACT = 'F'; -*> otherwise, R is an output argument. If FACT = 'F' and -*> EQUED = 'R' or 'B', each element of R must be positive. -*> \endverbatim -*> -*> \param[in,out] C -*> \verbatim -*> C is DOUBLE PRECISION array, dimension (N) -*> The column scale factors for A. If EQUED = 'C' or 'B', A is -*> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C -*> is not accessed. C is an input argument if FACT = 'F'; -*> otherwise, C is an output argument. If FACT = 'F' and -*> EQUED = 'C' or 'B', each element of C must be positive. -*> \endverbatim -*> -*> \param[in,out] B -*> \verbatim -*> B is DOUBLE PRECISION array, dimension (LDB,NRHS) -*> On entry, the N-by-NRHS right hand side matrix B. -*> On exit, -*> if EQUED = 'N', B is not modified; -*> if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by -*> diag(R)*B; -*> if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is -*> overwritten by diag(C)*B. -*> \endverbatim -*> -*> \param[in] LDB -*> \verbatim -*> LDB is INTEGER -*> The leading dimension of the array B. LDB >= max(1,N). -*> \endverbatim -*> -*> \param[out] X -*> \verbatim -*> X is DOUBLE PRECISION array, dimension (LDX,NRHS) -*> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X -*> to the original system of equations. Note that A and B are -*> modified on exit if EQUED .ne. 'N', and the solution to the -*> equilibrated system is inv(diag(C))*X if TRANS = 'N' and -*> EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C' -*> and EQUED = 'R' or 'B'. -*> \endverbatim -*> -*> \param[in] LDX -*> \verbatim -*> LDX is INTEGER -*> The leading dimension of the array X. LDX >= max(1,N). -*> \endverbatim -*> -*> \param[out] RCOND -*> \verbatim -*> RCOND is DOUBLE PRECISION -*> The estimate of the reciprocal condition number of the matrix -*> A after equilibration (if done). If RCOND is less than the -*> machine precision (in particular, if RCOND = 0), the matrix -*> is singular to working precision. This condition is -*> indicated by a return code of INFO > 0. -*> \endverbatim -*> -*> \param[out] FERR -*> \verbatim -*> FERR is DOUBLE PRECISION array, dimension (NRHS) -*> The estimated forward error bound for each solution vector -*> X(j) (the j-th column of the solution matrix X). -*> If XTRUE is the true solution corresponding to X(j), FERR(j) -*> is an estimated upper bound for the magnitude of the largest -*> element in (X(j) - XTRUE) divided by the magnitude of the -*> largest element in X(j). The estimate is as reliable as -*> the estimate for RCOND, and is almost always a slight -*> overestimate of the true error. -*> \endverbatim -*> -*> \param[out] BERR -*> \verbatim -*> BERR is DOUBLE PRECISION array, dimension (NRHS) -*> The componentwise relative backward error of each solution -*> vector X(j) (i.e., the smallest relative change in -*> any element of A or B that makes X(j) an exact solution). -*> \endverbatim -*> -*> \param[out] WORK -*> \verbatim -*> WORK is DOUBLE PRECISION array, dimension (MAX(1,4*N)) -*> On exit, WORK(1) contains the reciprocal pivot growth -*> factor norm(A)/norm(U). The "max absolute element" norm is -*> used. If WORK(1) is much less than 1, then the stability -*> of the LU factorization of the (equilibrated) matrix A -*> could be poor. This also means that the solution X, condition -*> estimator RCOND, and forward error bound FERR could be -*> unreliable. If factorization fails with 0 WORK(1) contains the reciprocal pivot growth factor for the -*> leading INFO columns of A. -*> \endverbatim -*> -*> \param[out] IWORK -*> \verbatim -*> IWORK is INTEGER array, dimension (N) -*> \endverbatim -*> -*> \param[out] INFO -*> \verbatim -*> INFO is INTEGER -*> = 0: successful exit -*> < 0: if INFO = -i, the i-th argument had an illegal value -*> > 0: if INFO = i, and i is -*> <= N: U(i,i) is exactly zero. The factorization has -*> been completed, but the factor U is exactly -*> singular, so the solution and error bounds -*> could not be computed. RCOND = 0 is returned. -*> = N+1: U is nonsingular, but RCOND is less than machine -*> precision, meaning that the matrix is singular -*> to working precision. Nevertheless, the -*> solution and error bounds are computed because -*> there are a number of situations where the -*> computed solution can be more accurate than the -*> value of RCOND would suggest. -*> \endverbatim -* -* Authors: -* ======== -* -*> \author Univ. of Tennessee -*> \author Univ. of California Berkeley -*> \author Univ. of Colorado Denver -*> \author NAG Ltd. -* -*> \ingroup doubleGEsolve -* -* ===================================================================== - SUBROUTINE DGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, - $ EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR, - $ WORK, IWORK, INFO ) -* -* -- LAPACK driver routine -- -* -- LAPACK is a software package provided by Univ. of Tennessee, -- -* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* -* .. Scalar Arguments .. - CHARACTER EQUED, FACT, TRANS - INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS - DOUBLE PRECISION RCOND -* .. -* .. Array Arguments .. - INTEGER IPIV( * ), IWORK( * ) - DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ), - $ BERR( * ), C( * ), FERR( * ), R( * ), - $ WORK( * ), X( LDX, * ) -* .. -* -* ===================================================================== -* -* .. Parameters .. - DOUBLE PRECISION ZERO, ONE - PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) -* .. -* .. Local Scalars .. - LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU - CHARACTER NORM - INTEGER I, INFEQU, J - DOUBLE PRECISION AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN, - $ ROWCND, RPVGRW, SMLNUM -* .. -* .. External Functions .. - LOGICAL LSAME - DOUBLE PRECISION DLAMCH, DLANGE, DLANTR - EXTERNAL LSAME, DLAMCH, DLANGE, DLANTR -* .. -* .. External Subroutines .. - EXTERNAL DGECON, DGEEQU, DGERFS, DGETRF, DGETRS, DLACPY, - $ DLAQGE, XERBLA -* .. -* .. Intrinsic Functions .. - INTRINSIC MAX, MIN -* .. -* .. Executable Statements .. -* - INFO = 0 - NOFACT = LSAME( FACT, 'N' ) - EQUIL = LSAME( FACT, 'E' ) - NOTRAN = LSAME( TRANS, 'N' ) - IF( NOFACT .OR. EQUIL ) THEN - EQUED = 'N' - ROWEQU = .FALSE. - COLEQU = .FALSE. - ELSE - ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' ) - COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' ) - SMLNUM = DLAMCH( 'Safe minimum' ) - BIGNUM = ONE / SMLNUM - END IF -* -* Test the input parameters. -* - IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) ) - $ THEN - INFO = -1 - ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT. - $ LSAME( TRANS, 'C' ) ) THEN - INFO = -2 - ELSE IF( N.LT.0 ) THEN - INFO = -3 - ELSE IF( NRHS.LT.0 ) THEN - INFO = -4 - ELSE IF( LDA.LT.MAX( 1, N ) ) THEN - INFO = -6 - ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN - INFO = -8 - ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT. - $ ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN - INFO = -10 - ELSE - IF( ROWEQU ) THEN - RCMIN = BIGNUM - RCMAX = ZERO - DO 10 J = 1, N - RCMIN = MIN( RCMIN, R( J ) ) - RCMAX = MAX( RCMAX, R( J ) ) - 10 CONTINUE - IF( RCMIN.LE.ZERO ) THEN - INFO = -11 - ELSE IF( N.GT.0 ) THEN - ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM ) - ELSE - ROWCND = ONE - END IF - END IF - IF( COLEQU .AND. INFO.EQ.0 ) THEN - RCMIN = BIGNUM - RCMAX = ZERO - DO 20 J = 1, N - RCMIN = MIN( RCMIN, C( J ) ) - RCMAX = MAX( RCMAX, C( J ) ) - 20 CONTINUE - IF( RCMIN.LE.ZERO ) THEN - INFO = -12 - ELSE IF( N.GT.0 ) THEN - COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM ) - ELSE - COLCND = ONE - END IF - END IF - IF( INFO.EQ.0 ) THEN - IF( LDB.LT.MAX( 1, N ) ) THEN - INFO = -14 - ELSE IF( LDX.LT.MAX( 1, N ) ) THEN - INFO = -16 - END IF - END IF - END IF -* - IF( INFO.NE.0 ) THEN - CALL XERBLA( 'DGESVX', -INFO ) - RETURN - END IF -* - IF( EQUIL ) THEN -* -* Compute row and column scalings to equilibrate the matrix A. -* - CALL DGEEQU( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFEQU ) - IF( INFEQU.EQ.0 ) THEN -* -* Equilibrate the matrix. -* - CALL DLAQGE( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, - $ EQUED ) - ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' ) - COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' ) - END IF - END IF -* -* Scale the right hand side. -* - IF( NOTRAN ) THEN - IF( ROWEQU ) THEN - DO 40 J = 1, NRHS - DO 30 I = 1, N - B( I, J ) = R( I )*B( I, J ) - 30 CONTINUE - 40 CONTINUE - END IF - ELSE IF( COLEQU ) THEN - DO 60 J = 1, NRHS - DO 50 I = 1, N - B( I, J ) = C( I )*B( I, J ) - 50 CONTINUE - 60 CONTINUE - END IF -* - IF( NOFACT .OR. EQUIL ) THEN -* -* Compute the LU factorization of A. -* - CALL DLACPY( 'Full', N, N, A, LDA, AF, LDAF ) - CALL DGETRF( N, N, AF, LDAF, IPIV, INFO ) -* -* Return if INFO is non-zero. -* - IF( INFO.GT.0 ) THEN -* -* Compute the reciprocal pivot growth factor of the -* leading rank-deficient INFO columns of A. -* - RPVGRW = DLANTR( 'M', 'U', 'N', INFO, INFO, AF, LDAF, - $ WORK ) - IF( RPVGRW.EQ.ZERO ) THEN - RPVGRW = ONE - ELSE - RPVGRW = DLANGE( 'M', N, INFO, A, LDA, WORK ) / RPVGRW - END IF - WORK( 1 ) = RPVGRW - RCOND = ZERO - RETURN - END IF - END IF -* -* Compute the norm of the matrix A and the -* reciprocal pivot growth factor RPVGRW. -* - IF( NOTRAN ) THEN - NORM = '1' - ELSE - NORM = 'I' - END IF - ANORM = DLANGE( NORM, N, N, A, LDA, WORK ) - RPVGRW = DLANTR( 'M', 'U', 'N', N, N, AF, LDAF, WORK ) - IF( RPVGRW.EQ.ZERO ) THEN - RPVGRW = ONE - ELSE - RPVGRW = DLANGE( 'M', N, N, A, LDA, WORK ) / RPVGRW - END IF -* -* Compute the reciprocal of the condition number of A. -* - CALL DGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, IWORK, INFO ) -* -* Compute the solution matrix X. -* - CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX ) - CALL DGETRS( TRANS, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO ) -* -* Use iterative refinement to improve the computed solution and -* compute error bounds and backward error estimates for it. -* - CALL DGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, - $ LDX, FERR, BERR, WORK, IWORK, INFO ) -* -* Transform the solution matrix X to a solution of the original -* system. -* - IF( NOTRAN ) THEN - IF( COLEQU ) THEN - DO 80 J = 1, NRHS - DO 70 I = 1, N - X( I, J ) = C( I )*X( I, J ) - 70 CONTINUE - 80 CONTINUE - DO 90 J = 1, NRHS - FERR( J ) = FERR( J ) / COLCND - 90 CONTINUE - END IF - ELSE IF( ROWEQU ) THEN - DO 110 J = 1, NRHS - DO 100 I = 1, N - X( I, J ) = R( I )*X( I, J ) - 100 CONTINUE - 110 CONTINUE - DO 120 J = 1, NRHS - FERR( J ) = FERR( J ) / ROWCND - 120 CONTINUE - END IF -* - WORK( 1 ) = RPVGRW -* -* Set INFO = N+1 if the matrix is singular to working precision. -* - IF( RCOND.LT.DLAMCH( 'Epsilon' ) ) - $ INFO = N + 1 - RETURN -* -* End of DGESVX -* - END diff --git a/lapack-netlib/sgbsvx.f b/lapack-netlib/sgbsvx.f deleted file mode 100644 index df3a721d9..000000000 --- a/lapack-netlib/sgbsvx.f +++ /dev/null @@ -1,641 +0,0 @@ -*> \brief SGBSVX computes the solution to system of linear equations A * X = B for GB matrices -* -* =========== DOCUMENTATION =========== -* -* Online html documentation available at -* http://www.netlib.org/lapack/explore-html/ -* -*> \htmlonly -*> Download SGBSVX + dependencies -*> -*> [TGZ] -*> -*> [ZIP] -*> -*> [TXT] -*> \endhtmlonly -* -* Definition: -* =========== -* -* SUBROUTINE SGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, -* LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX, -* RCOND, FERR, BERR, WORK, IWORK, INFO ) -* -* .. Scalar Arguments .. -* CHARACTER EQUED, FACT, TRANS -* INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS -* REAL RCOND -* .. -* .. Array Arguments .. -* INTEGER IPIV( * ), IWORK( * ) -* REAL AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ), -* $ BERR( * ), C( * ), FERR( * ), R( * ), -* $ WORK( * ), X( LDX, * ) -* .. -* -* -*> \par Purpose: -* ============= -*> -*> \verbatim -*> -*> SGBSVX uses the LU factorization to compute the solution to a real -*> system of linear equations A * X = B, A**T * X = B, or A**H * X = B, -*> where A is a band matrix of order N with KL subdiagonals and KU -*> superdiagonals, and X and B are N-by-NRHS matrices. -*> -*> Error bounds on the solution and a condition estimate are also -*> provided. -*> \endverbatim -* -*> \par Description: -* ================= -*> -*> \verbatim -*> -*> The following steps are performed by this subroutine: -*> -*> 1. If FACT = 'E', real scaling factors are computed to equilibrate -*> the system: -*> TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B -*> TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B -*> TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B -*> Whether or not the system will be equilibrated depends on the -*> scaling of the matrix A, but if equilibration is used, A is -*> overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') -*> or diag(C)*B (if TRANS = 'T' or 'C'). -*> -*> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the -*> matrix A (after equilibration if FACT = 'E') as -*> A = L * U, -*> where L is a product of permutation and unit lower triangular -*> matrices with KL subdiagonals, and U is upper triangular with -*> KL+KU superdiagonals. -*> -*> 3. If some U(i,i)=0, so that U is exactly singular, then the routine -*> returns with INFO = i. Otherwise, the factored form of A is used -*> to estimate the condition number of the matrix A. If the -*> reciprocal of the condition number is less than machine precision, -*> INFO = N+1 is returned as a warning, but the routine still goes on -*> to solve for X and compute error bounds as described below. -*> -*> 4. The system of equations is solved for X using the factored form -*> of A. -*> -*> 5. Iterative refinement is applied to improve the computed solution -*> matrix and calculate error bounds and backward error estimates -*> for it. -*> -*> 6. If equilibration was used, the matrix X is premultiplied by -*> diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so -*> that it solves the original system before equilibration. -*> \endverbatim -* -* Arguments: -* ========== -* -*> \param[in] FACT -*> \verbatim -*> FACT is CHARACTER*1 -*> Specifies whether or not the factored form of the matrix A is -*> supplied on entry, and if not, whether the matrix A should be -*> equilibrated before it is factored. -*> = 'F': On entry, AFB and IPIV contain the factored form of -*> A. If EQUED is not 'N', the matrix A has been -*> equilibrated with scaling factors given by R and C. -*> AB, AFB, and IPIV are not modified. -*> = 'N': The matrix A will be copied to AFB and factored. -*> = 'E': The matrix A will be equilibrated if necessary, then -*> copied to AFB and factored. -*> \endverbatim -*> -*> \param[in] TRANS -*> \verbatim -*> TRANS is CHARACTER*1 -*> Specifies the form of the system of equations. -*> = 'N': A * X = B (No transpose) -*> = 'T': A**T * X = B (Transpose) -*> = 'C': A**H * X = B (Transpose) -*> \endverbatim -*> -*> \param[in] N -*> \verbatim -*> N is INTEGER -*> The number of linear equations, i.e., the order of the -*> matrix A. N >= 0. -*> \endverbatim -*> -*> \param[in] KL -*> \verbatim -*> KL is INTEGER -*> The number of subdiagonals within the band of A. KL >= 0. -*> \endverbatim -*> -*> \param[in] KU -*> \verbatim -*> KU is INTEGER -*> The number of superdiagonals within the band of A. KU >= 0. -*> \endverbatim -*> -*> \param[in] NRHS -*> \verbatim -*> NRHS is INTEGER -*> The number of right hand sides, i.e., the number of columns -*> of the matrices B and X. NRHS >= 0. -*> \endverbatim -*> -*> \param[in,out] AB -*> \verbatim -*> AB is REAL array, dimension (LDAB,N) -*> On entry, the matrix A in band storage, in rows 1 to KL+KU+1. -*> The j-th column of A is stored in the j-th column of the -*> array AB as follows: -*> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) -*> -*> If FACT = 'F' and EQUED is not 'N', then A must have been -*> equilibrated by the scaling factors in R and/or C. AB is not -*> modified if FACT = 'F' or 'N', or if FACT = 'E' and -*> EQUED = 'N' on exit. -*> -*> On exit, if EQUED .ne. 'N', A is scaled as follows: -*> EQUED = 'R': A := diag(R) * A -*> EQUED = 'C': A := A * diag(C) -*> EQUED = 'B': A := diag(R) * A * diag(C). -*> \endverbatim -*> -*> \param[in] LDAB -*> \verbatim -*> LDAB is INTEGER -*> The leading dimension of the array AB. LDAB >= KL+KU+1. -*> \endverbatim -*> -*> \param[in,out] AFB -*> \verbatim -*> AFB is REAL array, dimension (LDAFB,N) -*> If FACT = 'F', then AFB is an input argument and on entry -*> contains details of the LU factorization of the band matrix -*> A, as computed by SGBTRF. U is stored as an upper triangular -*> band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, -*> and the multipliers used during the factorization are stored -*> in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is -*> the factored form of the equilibrated matrix A. -*> -*> If FACT = 'N', then AFB is an output argument and on exit -*> returns details of the LU factorization of A. -*> -*> If FACT = 'E', then AFB is an output argument and on exit -*> returns details of the LU factorization of the equilibrated -*> matrix A (see the description of AB for the form of the -*> equilibrated matrix). -*> \endverbatim -*> -*> \param[in] LDAFB -*> \verbatim -*> LDAFB is INTEGER -*> The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1. -*> \endverbatim -*> -*> \param[in,out] IPIV -*> \verbatim -*> IPIV is INTEGER array, dimension (N) -*> If FACT = 'F', then IPIV is an input argument and on entry -*> contains the pivot indices from the factorization A = L*U -*> as computed by SGBTRF; row i of the matrix was interchanged -*> with row IPIV(i). -*> -*> If FACT = 'N', then IPIV is an output argument and on exit -*> contains the pivot indices from the factorization A = L*U -*> of the original matrix A. -*> -*> If FACT = 'E', then IPIV is an output argument and on exit -*> contains the pivot indices from the factorization A = L*U -*> of the equilibrated matrix A. -*> \endverbatim -*> -*> \param[in,out] EQUED -*> \verbatim -*> EQUED is CHARACTER*1 -*> Specifies the form of equilibration that was done. -*> = 'N': No equilibration (always true if FACT = 'N'). -*> = 'R': Row equilibration, i.e., A has been premultiplied by -*> diag(R). -*> = 'C': Column equilibration, i.e., A has been postmultiplied -*> by diag(C). -*> = 'B': Both row and column equilibration, i.e., A has been -*> replaced by diag(R) * A * diag(C). -*> EQUED is an input argument if FACT = 'F'; otherwise, it is an -*> output argument. -*> \endverbatim -*> -*> \param[in,out] R -*> \verbatim -*> R is REAL array, dimension (N) -*> The row scale factors for A. If EQUED = 'R' or 'B', A is -*> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R -*> is not accessed. R is an input argument if FACT = 'F'; -*> otherwise, R is an output argument. If FACT = 'F' and -*> EQUED = 'R' or 'B', each element of R must be positive. -*> \endverbatim -*> -*> \param[in,out] C -*> \verbatim -*> C is REAL array, dimension (N) -*> The column scale factors for A. If EQUED = 'C' or 'B', A is -*> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C -*> is not accessed. C is an input argument if FACT = 'F'; -*> otherwise, C is an output argument. If FACT = 'F' and -*> EQUED = 'C' or 'B', each element of C must be positive. -*> \endverbatim -*> -*> \param[in,out] B -*> \verbatim -*> B is REAL array, dimension (LDB,NRHS) -*> On entry, the right hand side matrix B. -*> On exit, -*> if EQUED = 'N', B is not modified; -*> if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by -*> diag(R)*B; -*> if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is -*> overwritten by diag(C)*B. -*> \endverbatim -*> -*> \param[in] LDB -*> \verbatim -*> LDB is INTEGER -*> The leading dimension of the array B. LDB >= max(1,N). -*> \endverbatim -*> -*> \param[out] X -*> \verbatim -*> X is REAL array, dimension (LDX,NRHS) -*> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X -*> to the original system of equations. Note that A and B are -*> modified on exit if EQUED .ne. 'N', and the solution to the -*> equilibrated system is inv(diag(C))*X if TRANS = 'N' and -*> EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C' -*> and EQUED = 'R' or 'B'. -*> \endverbatim -*> -*> \param[in] LDX -*> \verbatim -*> LDX is INTEGER -*> The leading dimension of the array X. LDX >= max(1,N). -*> \endverbatim -*> -*> \param[out] RCOND -*> \verbatim -*> RCOND is REAL -*> The estimate of the reciprocal condition number of the matrix -*> A after equilibration (if done). If RCOND is less than the -*> machine precision (in particular, if RCOND = 0), the matrix -*> is singular to working precision. This condition is -*> indicated by a return code of INFO > 0. -*> \endverbatim -*> -*> \param[out] FERR -*> \verbatim -*> FERR is REAL array, dimension (NRHS) -*> The estimated forward error bound for each solution vector -*> X(j) (the j-th column of the solution matrix X). -*> If XTRUE is the true solution corresponding to X(j), FERR(j) -*> is an estimated upper bound for the magnitude of the largest -*> element in (X(j) - XTRUE) divided by the magnitude of the -*> largest element in X(j). The estimate is as reliable as -*> the estimate for RCOND, and is almost always a slight -*> overestimate of the true error. -*> \endverbatim -*> -*> \param[out] BERR -*> \verbatim -*> BERR is REAL array, dimension (NRHS) -*> The componentwise relative backward error of each solution -*> vector X(j) (i.e., the smallest relative change in -*> any element of A or B that makes X(j) an exact solution). -*> \endverbatim -*> -*> \param[out] WORK -*> \verbatim -*> WORK is REAL array, dimension (MAX(1,3*N)) -*> On exit, WORK(1) contains the reciprocal pivot growth -*> factor norm(A)/norm(U). The "max absolute element" norm is -*> used. If WORK(1) is much less than 1, then the stability -*> of the LU factorization of the (equilibrated) matrix A -*> could be poor. This also means that the solution X, condition -*> estimator RCOND, and forward error bound FERR could be -*> unreliable. If factorization fails with 0 WORK(1) contains the reciprocal pivot growth factor for the -*> leading INFO columns of A. -*> \endverbatim -*> -*> \param[out] IWORK -*> \verbatim -*> IWORK is INTEGER array, dimension (N) -*> \endverbatim -*> -*> \param[out] INFO -*> \verbatim -*> INFO is INTEGER -*> = 0: successful exit -*> < 0: if INFO = -i, the i-th argument had an illegal value -*> > 0: if INFO = i, and i is -*> <= N: U(i,i) is exactly zero. The factorization -*> has been completed, but the factor U is exactly -*> singular, so the solution and error bounds -*> could not be computed. RCOND = 0 is returned. -*> = N+1: U is nonsingular, but RCOND is less than machine -*> precision, meaning that the matrix is singular -*> to working precision. Nevertheless, the -*> solution and error bounds are computed because -*> there are a number of situations where the -*> computed solution can be more accurate than the -*> \endverbatim -* -* Authors: -* ======== -* -*> \author Univ. of Tennessee -*> \author Univ. of California Berkeley -*> \author Univ. of Colorado Denver -*> \author NAG Ltd. -* -*> \ingroup realGBsolve -* -* ===================================================================== - SUBROUTINE SGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, - $ LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX, - $ RCOND, FERR, BERR, WORK, IWORK, INFO ) -* -* -- LAPACK driver routine -- -* -- LAPACK is a software package provided by Univ. of Tennessee, -- -* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* -* .. Scalar Arguments .. - CHARACTER EQUED, FACT, TRANS - INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS - REAL RCOND -* .. -* .. Array Arguments .. - INTEGER IPIV( * ), IWORK( * ) - REAL AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ), - $ BERR( * ), C( * ), FERR( * ), R( * ), - $ WORK( * ), X( LDX, * ) -* .. -* -* ===================================================================== -* Moved setting of INFO = N+1 so INFO does not subsequently get -* overwritten. Sven, 17 Mar 05. -* ===================================================================== -* -* .. Parameters .. - REAL ZERO, ONE - PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) -* .. -* .. Local Scalars .. - LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU - CHARACTER NORM - INTEGER I, INFEQU, J, J1, J2 - REAL AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN, - $ ROWCND, RPVGRW, SMLNUM -* .. -* .. External Functions .. - LOGICAL LSAME - REAL SLAMCH, SLANGB, SLANTB - EXTERNAL LSAME, SLAMCH, SLANGB, SLANTB -* .. -* .. External Subroutines .. - EXTERNAL SCOPY, SGBCON, SGBEQU, SGBRFS, SGBTRF, SGBTRS, - $ SLACPY, SLAQGB, XERBLA -* .. -* .. Intrinsic Functions .. - INTRINSIC ABS, MAX, MIN -* .. -* .. Executable Statements .. -* - INFO = 0 - NOFACT = LSAME( FACT, 'N' ) - EQUIL = LSAME( FACT, 'E' ) - NOTRAN = LSAME( TRANS, 'N' ) - IF( NOFACT .OR. EQUIL ) THEN - EQUED = 'N' - ROWEQU = .FALSE. - COLEQU = .FALSE. - ELSE - ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' ) - COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' ) - SMLNUM = SLAMCH( 'Safe minimum' ) - BIGNUM = ONE / SMLNUM - END IF -* -* Test the input parameters. -* - IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) ) - $ THEN - INFO = -1 - ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT. - $ LSAME( TRANS, 'C' ) ) THEN - INFO = -2 - ELSE IF( N.LT.0 ) THEN - INFO = -3 - ELSE IF( KL.LT.0 ) THEN - INFO = -4 - ELSE IF( KU.LT.0 ) THEN - INFO = -5 - ELSE IF( NRHS.LT.0 ) THEN - INFO = -6 - ELSE IF( LDAB.LT.KL+KU+1 ) THEN - INFO = -8 - ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN - INFO = -10 - ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT. - $ ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN - INFO = -12 - ELSE - IF( ROWEQU ) THEN - RCMIN = BIGNUM - RCMAX = ZERO - DO 10 J = 1, N - RCMIN = MIN( RCMIN, R( J ) ) - RCMAX = MAX( RCMAX, R( J ) ) - 10 CONTINUE - IF( RCMIN.LE.ZERO ) THEN - INFO = -13 - ELSE IF( N.GT.0 ) THEN - ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM ) - ELSE - ROWCND = ONE - END IF - END IF - IF( COLEQU .AND. INFO.EQ.0 ) THEN - RCMIN = BIGNUM - RCMAX = ZERO - DO 20 J = 1, N - RCMIN = MIN( RCMIN, C( J ) ) - RCMAX = MAX( RCMAX, C( J ) ) - 20 CONTINUE - IF( RCMIN.LE.ZERO ) THEN - INFO = -14 - ELSE IF( N.GT.0 ) THEN - COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM ) - ELSE - COLCND = ONE - END IF - END IF - IF( INFO.EQ.0 ) THEN - IF( LDB.LT.MAX( 1, N ) ) THEN - INFO = -16 - ELSE IF( LDX.LT.MAX( 1, N ) ) THEN - INFO = -18 - END IF - END IF - END IF -* - IF( INFO.NE.0 ) THEN - CALL XERBLA( 'SGBSVX', -INFO ) - RETURN - END IF -* - IF( EQUIL ) THEN -* -* Compute row and column scalings to equilibrate the matrix A. -* - CALL SGBEQU( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, - $ AMAX, INFEQU ) - IF( INFEQU.EQ.0 ) THEN -* -* Equilibrate the matrix. -* - CALL SLAQGB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, - $ AMAX, EQUED ) - ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' ) - COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' ) - END IF - END IF -* -* Scale the right hand side. -* - IF( NOTRAN ) THEN - IF( ROWEQU ) THEN - DO 40 J = 1, NRHS - DO 30 I = 1, N - B( I, J ) = R( I )*B( I, J ) - 30 CONTINUE - 40 CONTINUE - END IF - ELSE IF( COLEQU ) THEN - DO 60 J = 1, NRHS - DO 50 I = 1, N - B( I, J ) = C( I )*B( I, J ) - 50 CONTINUE - 60 CONTINUE - END IF -* - IF( NOFACT .OR. EQUIL ) THEN -* -* Compute the LU factorization of the band matrix A. -* - DO 70 J = 1, N - J1 = MAX( J-KU, 1 ) - J2 = MIN( J+KL, N ) - CALL SCOPY( J2-J1+1, AB( KU+1-J+J1, J ), 1, - $ AFB( KL+KU+1-J+J1, J ), 1 ) - 70 CONTINUE -* - CALL SGBTRF( N, N, KL, KU, AFB, LDAFB, IPIV, INFO ) -* -* Return if INFO is non-zero. -* - IF( INFO.GT.0 ) THEN -* -* Compute the reciprocal pivot growth factor of the -* leading rank-deficient INFO columns of A. -* - ANORM = ZERO - DO 90 J = 1, INFO - DO 80 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 ) - ANORM = MAX( ANORM, ABS( AB( I, J ) ) ) - 80 CONTINUE - 90 CONTINUE - RPVGRW = SLANTB( 'M', 'U', 'N', INFO, MIN( INFO-1, KL+KU ), - $ AFB( MAX( 1, KL+KU+2-INFO ), 1 ), LDAFB, - $ WORK ) - IF( RPVGRW.EQ.ZERO ) THEN - RPVGRW = ONE - ELSE - RPVGRW = ANORM / RPVGRW - END IF - WORK( 1 ) = RPVGRW - RCOND = ZERO - RETURN - END IF - END IF -* -* Compute the norm of the matrix A and the -* reciprocal pivot growth factor RPVGRW. -* - IF( NOTRAN ) THEN - NORM = '1' - ELSE - NORM = 'I' - END IF - ANORM = SLANGB( NORM, N, KL, KU, AB, LDAB, WORK ) - RPVGRW = SLANTB( 'M', 'U', 'N', N, KL+KU, AFB, LDAFB, WORK ) - IF( RPVGRW.EQ.ZERO ) THEN - RPVGRW = ONE - ELSE - RPVGRW = SLANGB( 'M', N, KL, KU, AB, LDAB, WORK ) / RPVGRW - END IF -* -* Compute the reciprocal of the condition number of A. -* - CALL SGBCON( NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND, - $ WORK, IWORK, INFO ) -* -* Compute the solution matrix X. -* - CALL SLACPY( 'Full', N, NRHS, B, LDB, X, LDX ) - CALL SGBTRS( TRANS, N, KL, KU, NRHS, AFB, LDAFB, IPIV, X, LDX, - $ INFO ) -* -* Use iterative refinement to improve the computed solution and -* compute error bounds and backward error estimates for it. -* - CALL SGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV, - $ B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO ) -* -* Transform the solution matrix X to a solution of the original -* system. -* - IF( NOTRAN ) THEN - IF( COLEQU ) THEN - DO 110 J = 1, NRHS - DO 100 I = 1, N - X( I, J ) = C( I )*X( I, J ) - 100 CONTINUE - 110 CONTINUE - DO 120 J = 1, NRHS - FERR( J ) = FERR( J ) / COLCND - 120 CONTINUE - END IF - ELSE IF( ROWEQU ) THEN - DO 140 J = 1, NRHS - DO 130 I = 1, N - X( I, J ) = R( I )*X( I, J ) - 130 CONTINUE - 140 CONTINUE - DO 150 J = 1, NRHS - FERR( J ) = FERR( J ) / ROWCND - 150 CONTINUE - END IF -* -* Set INFO = N+1 if the matrix is singular to working precision. -* - IF( RCOND.LT.SLAMCH( 'Epsilon' ) ) - $ INFO = N + 1 -* - WORK( 1 ) = RPVGRW - RETURN -* -* End of SGBSVX -* - END diff --git a/lapack-netlib/sgesvx.f b/lapack-netlib/sgesvx.f deleted file mode 100644 index 385e626cf..000000000 --- a/lapack-netlib/sgesvx.f +++ /dev/null @@ -1,599 +0,0 @@ -*> \brief SGESVX computes the solution to system of linear equations A * X = B for GE matrices -* -* =========== DOCUMENTATION =========== -* -* Online html documentation available at -* http://www.netlib.org/lapack/explore-html/ -* -*> \htmlonly -*> Download SGESVX + dependencies -*> -*> [TGZ] -*> -*> [ZIP] -*> -*> [TXT] -*> \endhtmlonly -* -* Definition: -* =========== -* -* SUBROUTINE SGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, -* EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR, -* WORK, IWORK, INFO ) -* -* .. Scalar Arguments .. -* CHARACTER EQUED, FACT, TRANS -* INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS -* REAL RCOND -* .. -* .. Array Arguments .. -* INTEGER IPIV( * ), IWORK( * ) -* REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ), -* $ BERR( * ), C( * ), FERR( * ), R( * ), -* $ WORK( * ), X( LDX, * ) -* .. -* -* -*> \par Purpose: -* ============= -*> -*> \verbatim -*> -*> SGESVX uses the LU factorization to compute the solution to a real -*> system of linear equations -*> A * X = B, -*> where A is an N-by-N matrix and X and B are N-by-NRHS matrices. -*> -*> Error bounds on the solution and a condition estimate are also -*> provided. -*> \endverbatim -* -*> \par Description: -* ================= -*> -*> \verbatim -*> -*> The following steps are performed: -*> -*> 1. If FACT = 'E', real scaling factors are computed to equilibrate -*> the system: -*> TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B -*> TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B -*> TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B -*> Whether or not the system will be equilibrated depends on the -*> scaling of the matrix A, but if equilibration is used, A is -*> overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') -*> or diag(C)*B (if TRANS = 'T' or 'C'). -*> -*> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the -*> matrix A (after equilibration if FACT = 'E') as -*> A = P * L * U, -*> where P is a permutation matrix, L is a unit lower triangular -*> matrix, and U is upper triangular. -*> -*> 3. If some U(i,i)=0, so that U is exactly singular, then the routine -*> returns with INFO = i. Otherwise, the factored form of A is used -*> to estimate the condition number of the matrix A. If the -*> reciprocal of the condition number is less than machine precision, -*> INFO = N+1 is returned as a warning, but the routine still goes on -*> to solve for X and compute error bounds as described below. -*> -*> 4. The system of equations is solved for X using the factored form -*> of A. -*> -*> 5. Iterative refinement is applied to improve the computed solution -*> matrix and calculate error bounds and backward error estimates -*> for it. -*> -*> 6. If equilibration was used, the matrix X is premultiplied by -*> diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so -*> that it solves the original system before equilibration. -*> \endverbatim -* -* Arguments: -* ========== -* -*> \param[in] FACT -*> \verbatim -*> FACT is CHARACTER*1 -*> Specifies whether or not the factored form of the matrix A is -*> supplied on entry, and if not, whether the matrix A should be -*> equilibrated before it is factored. -*> = 'F': On entry, AF and IPIV contain the factored form of A. -*> If EQUED is not 'N', the matrix A has been -*> equilibrated with scaling factors given by R and C. -*> A, AF, and IPIV are not modified. -*> = 'N': The matrix A will be copied to AF and factored. -*> = 'E': The matrix A will be equilibrated if necessary, then -*> copied to AF and factored. -*> \endverbatim -*> -*> \param[in] TRANS -*> \verbatim -*> TRANS is CHARACTER*1 -*> Specifies the form of the system of equations: -*> = 'N': A * X = B (No transpose) -*> = 'T': A**T * X = B (Transpose) -*> = 'C': A**H * X = B (Transpose) -*> \endverbatim -*> -*> \param[in] N -*> \verbatim -*> N is INTEGER -*> The number of linear equations, i.e., the order of the -*> matrix A. N >= 0. -*> \endverbatim -*> -*> \param[in] NRHS -*> \verbatim -*> NRHS is INTEGER -*> The number of right hand sides, i.e., the number of columns -*> of the matrices B and X. NRHS >= 0. -*> \endverbatim -*> -*> \param[in,out] A -*> \verbatim -*> A is REAL array, dimension (LDA,N) -*> On entry, the N-by-N matrix A. If FACT = 'F' and EQUED is -*> not 'N', then A must have been equilibrated by the scaling -*> factors in R and/or C. A is not modified if FACT = 'F' or -*> 'N', or if FACT = 'E' and EQUED = 'N' on exit. -*> -*> On exit, if EQUED .ne. 'N', A is scaled as follows: -*> EQUED = 'R': A := diag(R) * A -*> EQUED = 'C': A := A * diag(C) -*> EQUED = 'B': A := diag(R) * A * diag(C). -*> \endverbatim -*> -*> \param[in] LDA -*> \verbatim -*> LDA is INTEGER -*> The leading dimension of the array A. LDA >= max(1,N). -*> \endverbatim -*> -*> \param[in,out] AF -*> \verbatim -*> AF is REAL array, dimension (LDAF,N) -*> If FACT = 'F', then AF is an input argument and on entry -*> contains the factors L and U from the factorization -*> A = P*L*U as computed by SGETRF. If EQUED .ne. 'N', then -*> AF is the factored form of the equilibrated matrix A. -*> -*> If FACT = 'N', then AF is an output argument and on exit -*> returns the factors L and U from the factorization A = P*L*U -*> of the original matrix A. -*> -*> If FACT = 'E', then AF is an output argument and on exit -*> returns the factors L and U from the factorization A = P*L*U -*> of the equilibrated matrix A (see the description of A for -*> the form of the equilibrated matrix). -*> \endverbatim -*> -*> \param[in] LDAF -*> \verbatim -*> LDAF is INTEGER -*> The leading dimension of the array AF. LDAF >= max(1,N). -*> \endverbatim -*> -*> \param[in,out] IPIV -*> \verbatim -*> IPIV is INTEGER array, dimension (N) -*> If FACT = 'F', then IPIV is an input argument and on entry -*> contains the pivot indices from the factorization A = P*L*U -*> as computed by SGETRF; row i of the matrix was interchanged -*> with row IPIV(i). -*> -*> If FACT = 'N', then IPIV is an output argument and on exit -*> contains the pivot indices from the factorization A = P*L*U -*> of the original matrix A. -*> -*> If FACT = 'E', then IPIV is an output argument and on exit -*> contains the pivot indices from the factorization A = P*L*U -*> of the equilibrated matrix A. -*> \endverbatim -*> -*> \param[in,out] EQUED -*> \verbatim -*> EQUED is CHARACTER*1 -*> Specifies the form of equilibration that was done. -*> = 'N': No equilibration (always true if FACT = 'N'). -*> = 'R': Row equilibration, i.e., A has been premultiplied by -*> diag(R). -*> = 'C': Column equilibration, i.e., A has been postmultiplied -*> by diag(C). -*> = 'B': Both row and column equilibration, i.e., A has been -*> replaced by diag(R) * A * diag(C). -*> EQUED is an input argument if FACT = 'F'; otherwise, it is an -*> output argument. -*> \endverbatim -*> -*> \param[in,out] R -*> \verbatim -*> R is REAL array, dimension (N) -*> The row scale factors for A. If EQUED = 'R' or 'B', A is -*> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R -*> is not accessed. R is an input argument if FACT = 'F'; -*> otherwise, R is an output argument. If FACT = 'F' and -*> EQUED = 'R' or 'B', each element of R must be positive. -*> \endverbatim -*> -*> \param[in,out] C -*> \verbatim -*> C is REAL array, dimension (N) -*> The column scale factors for A. If EQUED = 'C' or 'B', A is -*> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C -*> is not accessed. C is an input argument if FACT = 'F'; -*> otherwise, C is an output argument. If FACT = 'F' and -*> EQUED = 'C' or 'B', each element of C must be positive. -*> \endverbatim -*> -*> \param[in,out] B -*> \verbatim -*> B is REAL array, dimension (LDB,NRHS) -*> On entry, the N-by-NRHS right hand side matrix B. -*> On exit, -*> if EQUED = 'N', B is not modified; -*> if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by -*> diag(R)*B; -*> if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is -*> overwritten by diag(C)*B. -*> \endverbatim -*> -*> \param[in] LDB -*> \verbatim -*> LDB is INTEGER -*> The leading dimension of the array B. LDB >= max(1,N). -*> \endverbatim -*> -*> \param[out] X -*> \verbatim -*> X is REAL array, dimension (LDX,NRHS) -*> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X -*> to the original system of equations. Note that A and B are -*> modified on exit if EQUED .ne. 'N', and the solution to the -*> equilibrated system is inv(diag(C))*X if TRANS = 'N' and -*> EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C' -*> and EQUED = 'R' or 'B'. -*> \endverbatim -*> -*> \param[in] LDX -*> \verbatim -*> LDX is INTEGER -*> The leading dimension of the array X. LDX >= max(1,N). -*> \endverbatim -*> -*> \param[out] RCOND -*> \verbatim -*> RCOND is REAL -*> The estimate of the reciprocal condition number of the matrix -*> A after equilibration (if done). If RCOND is less than the -*> machine precision (in particular, if RCOND = 0), the matrix -*> is singular to working precision. This condition is -*> indicated by a return code of INFO > 0. -*> \endverbatim -*> -*> \param[out] FERR -*> \verbatim -*> FERR is REAL array, dimension (NRHS) -*> The estimated forward error bound for each solution vector -*> X(j) (the j-th column of the solution matrix X). -*> If XTRUE is the true solution corresponding to X(j), FERR(j) -*> is an estimated upper bound for the magnitude of the largest -*> element in (X(j) - XTRUE) divided by the magnitude of the -*> largest element in X(j). The estimate is as reliable as -*> the estimate for RCOND, and is almost always a slight -*> overestimate of the true error. -*> \endverbatim -*> -*> \param[out] BERR -*> \verbatim -*> BERR is REAL array, dimension (NRHS) -*> The componentwise relative backward error of each solution -*> vector X(j) (i.e., the smallest relative change in -*> any element of A or B that makes X(j) an exact solution). -*> \endverbatim -*> -*> \param[out] WORK -*> \verbatim -*> WORK is REAL array, dimension (MAX(1,4*N)) -*> On exit, WORK(1) contains the reciprocal pivot growth -*> factor norm(A)/norm(U). The "max absolute element" norm is -*> used. If WORK(1) is much less than 1, then the stability -*> of the LU factorization of the (equilibrated) matrix A -*> could be poor. This also means that the solution X, condition -*> estimator RCOND, and forward error bound FERR could be -*> unreliable. If factorization fails with 0 WORK(1) contains the reciprocal pivot growth factor for the -*> leading INFO columns of A. -*> \endverbatim -*> -*> \param[out] IWORK -*> \verbatim -*> IWORK is INTEGER array, dimension (N) -*> \endverbatim -*> -*> \param[out] INFO -*> \verbatim -*> INFO is INTEGER -*> = 0: successful exit -*> < 0: if INFO = -i, the i-th argument had an illegal value -*> > 0: if INFO = i, and i is -*> <= N: U(i,i) is exactly zero. The factorization has -*> been completed, but the factor U is exactly -*> singular, so the solution and error bounds -*> could not be computed. RCOND = 0 is returned. -*> = N+1: U is nonsingular, but RCOND is less than machine -*> precision, meaning that the matrix is singular -*> to working precision. Nevertheless, the -*> solution and error bounds are computed because -*> there are a number of situations where the -*> computed solution can be more accurate than the -*> value of RCOND would suggest. -*> \endverbatim -* -* Authors: -* ======== -* -*> \author Univ. of Tennessee -*> \author Univ. of California Berkeley -*> \author Univ. of Colorado Denver -*> \author NAG Ltd. -* -*> \ingroup realGEsolve -* -* ===================================================================== - SUBROUTINE SGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, - $ EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR, - $ WORK, IWORK, INFO ) -* -* -- LAPACK driver routine -- -* -- LAPACK is a software package provided by Univ. of Tennessee, -- -* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* -* .. Scalar Arguments .. - CHARACTER EQUED, FACT, TRANS - INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS - REAL RCOND -* .. -* .. Array Arguments .. - INTEGER IPIV( * ), IWORK( * ) - REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ), - $ BERR( * ), C( * ), FERR( * ), R( * ), - $ WORK( * ), X( LDX, * ) -* .. -* -* ===================================================================== -* -* .. Parameters .. - REAL ZERO, ONE - PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) -* .. -* .. Local Scalars .. - LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU - CHARACTER NORM - INTEGER I, INFEQU, J - REAL AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN, - $ ROWCND, RPVGRW, SMLNUM -* .. -* .. External Functions .. - LOGICAL LSAME - REAL SLAMCH, SLANGE, SLANTR - EXTERNAL LSAME, SLAMCH, SLANGE, SLANTR -* .. -* .. External Subroutines .. - EXTERNAL SGECON, SGEEQU, SGERFS, SGETRF, SGETRS, SLACPY, - $ SLAQGE, XERBLA -* .. -* .. Intrinsic Functions .. - INTRINSIC MAX, MIN -* .. -* .. Executable Statements .. -* - INFO = 0 - NOFACT = LSAME( FACT, 'N' ) - EQUIL = LSAME( FACT, 'E' ) - NOTRAN = LSAME( TRANS, 'N' ) - IF( NOFACT .OR. EQUIL ) THEN - EQUED = 'N' - ROWEQU = .FALSE. - COLEQU = .FALSE. - ELSE - ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' ) - COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' ) - SMLNUM = SLAMCH( 'Safe minimum' ) - BIGNUM = ONE / SMLNUM - END IF -* -* Test the input parameters. -* - IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) ) - $ THEN - INFO = -1 - ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT. - $ LSAME( TRANS, 'C' ) ) THEN - INFO = -2 - ELSE IF( N.LT.0 ) THEN - INFO = -3 - ELSE IF( NRHS.LT.0 ) THEN - INFO = -4 - ELSE IF( LDA.LT.MAX( 1, N ) ) THEN - INFO = -6 - ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN - INFO = -8 - ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT. - $ ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN - INFO = -10 - ELSE - IF( ROWEQU ) THEN - RCMIN = BIGNUM - RCMAX = ZERO - DO 10 J = 1, N - RCMIN = MIN( RCMIN, R( J ) ) - RCMAX = MAX( RCMAX, R( J ) ) - 10 CONTINUE - IF( RCMIN.LE.ZERO ) THEN - INFO = -11 - ELSE IF( N.GT.0 ) THEN - ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM ) - ELSE - ROWCND = ONE - END IF - END IF - IF( COLEQU .AND. INFO.EQ.0 ) THEN - RCMIN = BIGNUM - RCMAX = ZERO - DO 20 J = 1, N - RCMIN = MIN( RCMIN, C( J ) ) - RCMAX = MAX( RCMAX, C( J ) ) - 20 CONTINUE - IF( RCMIN.LE.ZERO ) THEN - INFO = -12 - ELSE IF( N.GT.0 ) THEN - COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM ) - ELSE - COLCND = ONE - END IF - END IF - IF( INFO.EQ.0 ) THEN - IF( LDB.LT.MAX( 1, N ) ) THEN - INFO = -14 - ELSE IF( LDX.LT.MAX( 1, N ) ) THEN - INFO = -16 - END IF - END IF - END IF -* - IF( INFO.NE.0 ) THEN - CALL XERBLA( 'SGESVX', -INFO ) - RETURN - END IF -* - IF( EQUIL ) THEN -* -* Compute row and column scalings to equilibrate the matrix A. -* - CALL SGEEQU( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFEQU ) - IF( INFEQU.EQ.0 ) THEN -* -* Equilibrate the matrix. -* - CALL SLAQGE( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, - $ EQUED ) - ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' ) - COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' ) - END IF - END IF -* -* Scale the right hand side. -* - IF( NOTRAN ) THEN - IF( ROWEQU ) THEN - DO 40 J = 1, NRHS - DO 30 I = 1, N - B( I, J ) = R( I )*B( I, J ) - 30 CONTINUE - 40 CONTINUE - END IF - ELSE IF( COLEQU ) THEN - DO 60 J = 1, NRHS - DO 50 I = 1, N - B( I, J ) = C( I )*B( I, J ) - 50 CONTINUE - 60 CONTINUE - END IF -* - IF( NOFACT .OR. EQUIL ) THEN -* -* Compute the LU factorization of A. -* - CALL SLACPY( 'Full', N, N, A, LDA, AF, LDAF ) - CALL SGETRF( N, N, AF, LDAF, IPIV, INFO ) -* -* Return if INFO is non-zero. -* - IF( INFO.GT.0 ) THEN -* -* Compute the reciprocal pivot growth factor of the -* leading rank-deficient INFO columns of A. -* - RPVGRW = SLANTR( 'M', 'U', 'N', INFO, INFO, AF, LDAF, - $ WORK ) - IF( RPVGRW.EQ.ZERO ) THEN - RPVGRW = ONE - ELSE - RPVGRW = SLANGE( 'M', N, INFO, A, LDA, WORK ) / RPVGRW - END IF - WORK( 1 ) = RPVGRW - RCOND = ZERO - RETURN - END IF - END IF -* -* Compute the norm of the matrix A and the -* reciprocal pivot growth factor RPVGRW. -* - IF( NOTRAN ) THEN - NORM = '1' - ELSE - NORM = 'I' - END IF - ANORM = SLANGE( NORM, N, N, A, LDA, WORK ) - RPVGRW = SLANTR( 'M', 'U', 'N', N, N, AF, LDAF, WORK ) - IF( RPVGRW.EQ.ZERO ) THEN - RPVGRW = ONE - ELSE - RPVGRW = SLANGE( 'M', N, N, A, LDA, WORK ) / RPVGRW - END IF -* -* Compute the reciprocal of the condition number of A. -* - CALL SGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, IWORK, INFO ) -* -* Compute the solution matrix X. -* - CALL SLACPY( 'Full', N, NRHS, B, LDB, X, LDX ) - CALL SGETRS( TRANS, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO ) -* -* Use iterative refinement to improve the computed solution and -* compute error bounds and backward error estimates for it. -* - CALL SGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, - $ LDX, FERR, BERR, WORK, IWORK, INFO ) -* -* Transform the solution matrix X to a solution of the original -* system. -* - IF( NOTRAN ) THEN - IF( COLEQU ) THEN - DO 80 J = 1, NRHS - DO 70 I = 1, N - X( I, J ) = C( I )*X( I, J ) - 70 CONTINUE - 80 CONTINUE - DO 90 J = 1, NRHS - FERR( J ) = FERR( J ) / COLCND - 90 CONTINUE - END IF - ELSE IF( ROWEQU ) THEN - DO 110 J = 1, NRHS - DO 100 I = 1, N - X( I, J ) = R( I )*X( I, J ) - 100 CONTINUE - 110 CONTINUE - DO 120 J = 1, NRHS - FERR( J ) = FERR( J ) / ROWCND - 120 CONTINUE - END IF -* -* Set INFO = N+1 if the matrix is singular to working precision. -* - IF( RCOND.LT.SLAMCH( 'Epsilon' ) ) - $ INFO = N + 1 -* - WORK( 1 ) = RPVGRW - RETURN -* -* End of SGESVX -* - END diff --git a/lapack-netlib/zgbsvx.f b/lapack-netlib/zgbsvx.f deleted file mode 100644 index 871564a81..000000000 --- a/lapack-netlib/zgbsvx.f +++ /dev/null @@ -1,644 +0,0 @@ -*> \brief ZGBSVX computes the solution to system of linear equations A * X = B for GB matrices -* -* =========== DOCUMENTATION =========== -* -* Online html documentation available at -* http://www.netlib.org/lapack/explore-html/ -* -*> \htmlonly -*> Download ZGBSVX + dependencies -*> -*> [TGZ] -*> -*> [ZIP] -*> -*> [TXT] -*> \endhtmlonly -* -* Definition: -* =========== -* -* SUBROUTINE ZGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, -* LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX, -* RCOND, FERR, BERR, WORK, RWORK, INFO ) -* -* .. Scalar Arguments .. -* CHARACTER EQUED, FACT, TRANS -* INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS -* DOUBLE PRECISION RCOND -* .. -* .. Array Arguments .. -* INTEGER IPIV( * ) -* DOUBLE PRECISION BERR( * ), C( * ), FERR( * ), R( * ), -* $ RWORK( * ) -* COMPLEX*16 AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ), -* $ WORK( * ), X( LDX, * ) -* .. -* -* -*> \par Purpose: -* ============= -*> -*> \verbatim -*> -*> ZGBSVX uses the LU factorization to compute the solution to a complex -*> system of linear equations A * X = B, A**T * X = B, or A**H * X = B, -*> where A is a band matrix of order N with KL subdiagonals and KU -*> superdiagonals, and X and B are N-by-NRHS matrices. -*> -*> Error bounds on the solution and a condition estimate are also -*> provided. -*> \endverbatim -* -*> \par Description: -* ================= -*> -*> \verbatim -*> -*> The following steps are performed by this subroutine: -*> -*> 1. If FACT = 'E', real scaling factors are computed to equilibrate -*> the system: -*> TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B -*> TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B -*> TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B -*> Whether or not the system will be equilibrated depends on the -*> scaling of the matrix A, but if equilibration is used, A is -*> overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') -*> or diag(C)*B (if TRANS = 'T' or 'C'). -*> -*> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the -*> matrix A (after equilibration if FACT = 'E') as -*> A = L * U, -*> where L is a product of permutation and unit lower triangular -*> matrices with KL subdiagonals, and U is upper triangular with -*> KL+KU superdiagonals. -*> -*> 3. If some U(i,i)=0, so that U is exactly singular, then the routine -*> returns with INFO = i. Otherwise, the factored form of A is used -*> to estimate the condition number of the matrix A. If the -*> reciprocal of the condition number is less than machine precision, -*> INFO = N+1 is returned as a warning, but the routine still goes on -*> to solve for X and compute error bounds as described below. -*> -*> 4. The system of equations is solved for X using the factored form -*> of A. -*> -*> 5. Iterative refinement is applied to improve the computed solution -*> matrix and calculate error bounds and backward error estimates -*> for it. -*> -*> 6. If equilibration was used, the matrix X is premultiplied by -*> diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so -*> that it solves the original system before equilibration. -*> \endverbatim -* -* Arguments: -* ========== -* -*> \param[in] FACT -*> \verbatim -*> FACT is CHARACTER*1 -*> Specifies whether or not the factored form of the matrix A is -*> supplied on entry, and if not, whether the matrix A should be -*> equilibrated before it is factored. -*> = 'F': On entry, AFB and IPIV contain the factored form of -*> A. If EQUED is not 'N', the matrix A has been -*> equilibrated with scaling factors given by R and C. -*> AB, AFB, and IPIV are not modified. -*> = 'N': The matrix A will be copied to AFB and factored. -*> = 'E': The matrix A will be equilibrated if necessary, then -*> copied to AFB and factored. -*> \endverbatim -*> -*> \param[in] TRANS -*> \verbatim -*> TRANS is CHARACTER*1 -*> Specifies the form of the system of equations. -*> = 'N': A * X = B (No transpose) -*> = 'T': A**T * X = B (Transpose) -*> = 'C': A**H * X = B (Conjugate transpose) -*> \endverbatim -*> -*> \param[in] N -*> \verbatim -*> N is INTEGER -*> The number of linear equations, i.e., the order of the -*> matrix A. N >= 0. -*> \endverbatim -*> -*> \param[in] KL -*> \verbatim -*> KL is INTEGER -*> The number of subdiagonals within the band of A. KL >= 0. -*> \endverbatim -*> -*> \param[in] KU -*> \verbatim -*> KU is INTEGER -*> The number of superdiagonals within the band of A. KU >= 0. -*> \endverbatim -*> -*> \param[in] NRHS -*> \verbatim -*> NRHS is INTEGER -*> The number of right hand sides, i.e., the number of columns -*> of the matrices B and X. NRHS >= 0. -*> \endverbatim -*> -*> \param[in,out] AB -*> \verbatim -*> AB is COMPLEX*16 array, dimension (LDAB,N) -*> On entry, the matrix A in band storage, in rows 1 to KL+KU+1. -*> The j-th column of A is stored in the j-th column of the -*> array AB as follows: -*> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) -*> -*> If FACT = 'F' and EQUED is not 'N', then A must have been -*> equilibrated by the scaling factors in R and/or C. AB is not -*> modified if FACT = 'F' or 'N', or if FACT = 'E' and -*> EQUED = 'N' on exit. -*> -*> On exit, if EQUED .ne. 'N', A is scaled as follows: -*> EQUED = 'R': A := diag(R) * A -*> EQUED = 'C': A := A * diag(C) -*> EQUED = 'B': A := diag(R) * A * diag(C). -*> \endverbatim -*> -*> \param[in] LDAB -*> \verbatim -*> LDAB is INTEGER -*> The leading dimension of the array AB. LDAB >= KL+KU+1. -*> \endverbatim -*> -*> \param[in,out] AFB -*> \verbatim -*> AFB is COMPLEX*16 array, dimension (LDAFB,N) -*> If FACT = 'F', then AFB is an input argument and on entry -*> contains details of the LU factorization of the band matrix -*> A, as computed by ZGBTRF. U is stored as an upper triangular -*> band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, -*> and the multipliers used during the factorization are stored -*> in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is -*> the factored form of the equilibrated matrix A. -*> -*> If FACT = 'N', then AFB is an output argument and on exit -*> returns details of the LU factorization of A. -*> -*> If FACT = 'E', then AFB is an output argument and on exit -*> returns details of the LU factorization of the equilibrated -*> matrix A (see the description of AB for the form of the -*> equilibrated matrix). -*> \endverbatim -*> -*> \param[in] LDAFB -*> \verbatim -*> LDAFB is INTEGER -*> The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1. -*> \endverbatim -*> -*> \param[in,out] IPIV -*> \verbatim -*> IPIV is INTEGER array, dimension (N) -*> If FACT = 'F', then IPIV is an input argument and on entry -*> contains the pivot indices from the factorization A = L*U -*> as computed by ZGBTRF; row i of the matrix was interchanged -*> with row IPIV(i). -*> -*> If FACT = 'N', then IPIV is an output argument and on exit -*> contains the pivot indices from the factorization A = L*U -*> of the original matrix A. -*> -*> If FACT = 'E', then IPIV is an output argument and on exit -*> contains the pivot indices from the factorization A = L*U -*> of the equilibrated matrix A. -*> \endverbatim -*> -*> \param[in,out] EQUED -*> \verbatim -*> EQUED is CHARACTER*1 -*> Specifies the form of equilibration that was done. -*> = 'N': No equilibration (always true if FACT = 'N'). -*> = 'R': Row equilibration, i.e., A has been premultiplied by -*> diag(R). -*> = 'C': Column equilibration, i.e., A has been postmultiplied -*> by diag(C). -*> = 'B': Both row and column equilibration, i.e., A has been -*> replaced by diag(R) * A * diag(C). -*> EQUED is an input argument if FACT = 'F'; otherwise, it is an -*> output argument. -*> \endverbatim -*> -*> \param[in,out] R -*> \verbatim -*> R is DOUBLE PRECISION array, dimension (N) -*> The row scale factors for A. If EQUED = 'R' or 'B', A is -*> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R -*> is not accessed. R is an input argument if FACT = 'F'; -*> otherwise, R is an output argument. If FACT = 'F' and -*> EQUED = 'R' or 'B', each element of R must be positive. -*> \endverbatim -*> -*> \param[in,out] C -*> \verbatim -*> C is DOUBLE PRECISION array, dimension (N) -*> The column scale factors for A. If EQUED = 'C' or 'B', A is -*> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C -*> is not accessed. C is an input argument if FACT = 'F'; -*> otherwise, C is an output argument. If FACT = 'F' and -*> EQUED = 'C' or 'B', each element of C must be positive. -*> \endverbatim -*> -*> \param[in,out] B -*> \verbatim -*> B is COMPLEX*16 array, dimension (LDB,NRHS) -*> On entry, the right hand side matrix B. -*> On exit, -*> if EQUED = 'N', B is not modified; -*> if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by -*> diag(R)*B; -*> if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is -*> overwritten by diag(C)*B. -*> \endverbatim -*> -*> \param[in] LDB -*> \verbatim -*> LDB is INTEGER -*> The leading dimension of the array B. LDB >= max(1,N). -*> \endverbatim -*> -*> \param[out] X -*> \verbatim -*> X is COMPLEX*16 array, dimension (LDX,NRHS) -*> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X -*> to the original system of equations. Note that A and B are -*> modified on exit if EQUED .ne. 'N', and the solution to the -*> equilibrated system is inv(diag(C))*X if TRANS = 'N' and -*> EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C' -*> and EQUED = 'R' or 'B'. -*> \endverbatim -*> -*> \param[in] LDX -*> \verbatim -*> LDX is INTEGER -*> The leading dimension of the array X. LDX >= max(1,N). -*> \endverbatim -*> -*> \param[out] RCOND -*> \verbatim -*> RCOND is DOUBLE PRECISION -*> The estimate of the reciprocal condition number of the matrix -*> A after equilibration (if done). If RCOND is less than the -*> machine precision (in particular, if RCOND = 0), the matrix -*> is singular to working precision. This condition is -*> indicated by a return code of INFO > 0. -*> \endverbatim -*> -*> \param[out] FERR -*> \verbatim -*> FERR is DOUBLE PRECISION array, dimension (NRHS) -*> The estimated forward error bound for each solution vector -*> X(j) (the j-th column of the solution matrix X). -*> If XTRUE is the true solution corresponding to X(j), FERR(j) -*> is an estimated upper bound for the magnitude of the largest -*> element in (X(j) - XTRUE) divided by the magnitude of the -*> largest element in X(j). The estimate is as reliable as -*> the estimate for RCOND, and is almost always a slight -*> overestimate of the true error. -*> \endverbatim -*> -*> \param[out] BERR -*> \verbatim -*> BERR is DOUBLE PRECISION array, dimension (NRHS) -*> The componentwise relative backward error of each solution -*> vector X(j) (i.e., the smallest relative change in -*> any element of A or B that makes X(j) an exact solution). -*> \endverbatim -*> -*> \param[out] WORK -*> \verbatim -*> WORK is COMPLEX*16 array, dimension (2*N) -*> \endverbatim -*> -*> \param[out] RWORK -*> \verbatim -*> RWORK is DOUBLE PRECISION array, dimension (MAX(1,N)) -*> On exit, RWORK(1) contains the reciprocal pivot growth -*> factor norm(A)/norm(U). The "max absolute element" norm is -*> used. If RWORK(1) is much less than 1, then the stability -*> of the LU factorization of the (equilibrated) matrix A -*> could be poor. This also means that the solution X, condition -*> estimator RCOND, and forward error bound FERR could be -*> unreliable. If factorization fails with 0 RWORK(1) contains the reciprocal pivot growth factor for the -*> leading INFO columns of A. -*> \endverbatim -*> -*> \param[out] INFO -*> \verbatim -*> INFO is INTEGER -*> = 0: successful exit -*> < 0: if INFO = -i, the i-th argument had an illegal value -*> > 0: if INFO = i, and i is -*> <= N: U(i,i) is exactly zero. The factorization -*> has been completed, but the factor U is exactly -*> singular, so the solution and error bounds -*> could not be computed. RCOND = 0 is returned. -*> = N+1: U is nonsingular, but RCOND is less than machine -*> precision, meaning that the matrix is singular -*> to working precision. Nevertheless, the -*> solution and error bounds are computed because -*> there are a number of situations where the -*> computed solution can be more accurate than the -*> value of RCOND would suggest. -*> \endverbatim -* -* Authors: -* ======== -* -*> \author Univ. of Tennessee -*> \author Univ. of California Berkeley -*> \author Univ. of Colorado Denver -*> \author NAG Ltd. -* -*> \ingroup complex16GBsolve -* -* ===================================================================== - SUBROUTINE ZGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, - $ LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX, - $ RCOND, FERR, BERR, WORK, RWORK, INFO ) -* -* -- LAPACK driver routine -- -* -- LAPACK is a software package provided by Univ. of Tennessee, -- -* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* -* .. Scalar Arguments .. - CHARACTER EQUED, FACT, TRANS - INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS - DOUBLE PRECISION RCOND -* .. -* .. Array Arguments .. - INTEGER IPIV( * ) - DOUBLE PRECISION BERR( * ), C( * ), FERR( * ), R( * ), - $ RWORK( * ) - COMPLEX*16 AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ), - $ WORK( * ), X( LDX, * ) -* .. -* -* ===================================================================== -* Moved setting of INFO = N+1 so INFO does not subsequently get -* overwritten. Sven, 17 Mar 05. -* ===================================================================== -* -* .. Parameters .. - DOUBLE PRECISION ZERO, ONE - PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) -* .. -* .. Local Scalars .. - LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU - CHARACTER NORM - INTEGER I, INFEQU, J, J1, J2 - DOUBLE PRECISION AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN, - $ ROWCND, RPVGRW, SMLNUM -* .. -* .. External Functions .. - LOGICAL LSAME - DOUBLE PRECISION DLAMCH, ZLANGB, ZLANTB - EXTERNAL LSAME, DLAMCH, ZLANGB, ZLANTB -* .. -* .. External Subroutines .. - EXTERNAL XERBLA, ZCOPY, ZGBCON, ZGBEQU, ZGBRFS, ZGBTRF, - $ ZGBTRS, ZLACPY, ZLAQGB -* .. -* .. Intrinsic Functions .. - INTRINSIC ABS, MAX, MIN -* .. -* .. Executable Statements .. -* - INFO = 0 - NOFACT = LSAME( FACT, 'N' ) - EQUIL = LSAME( FACT, 'E' ) - NOTRAN = LSAME( TRANS, 'N' ) - IF( NOFACT .OR. EQUIL ) THEN - EQUED = 'N' - ROWEQU = .FALSE. - COLEQU = .FALSE. - ELSE - ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' ) - COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' ) - SMLNUM = DLAMCH( 'Safe minimum' ) - BIGNUM = ONE / SMLNUM - END IF -* -* Test the input parameters. -* - IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) ) - $ THEN - INFO = -1 - ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT. - $ LSAME( TRANS, 'C' ) ) THEN - INFO = -2 - ELSE IF( N.LT.0 ) THEN - INFO = -3 - ELSE IF( KL.LT.0 ) THEN - INFO = -4 - ELSE IF( KU.LT.0 ) THEN - INFO = -5 - ELSE IF( NRHS.LT.0 ) THEN - INFO = -6 - ELSE IF( LDAB.LT.KL+KU+1 ) THEN - INFO = -8 - ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN - INFO = -10 - ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT. - $ ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN - INFO = -12 - ELSE - IF( ROWEQU ) THEN - RCMIN = BIGNUM - RCMAX = ZERO - DO 10 J = 1, N - RCMIN = MIN( RCMIN, R( J ) ) - RCMAX = MAX( RCMAX, R( J ) ) - 10 CONTINUE - IF( RCMIN.LE.ZERO ) THEN - INFO = -13 - ELSE IF( N.GT.0 ) THEN - ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM ) - ELSE - ROWCND = ONE - END IF - END IF - IF( COLEQU .AND. INFO.EQ.0 ) THEN - RCMIN = BIGNUM - RCMAX = ZERO - DO 20 J = 1, N - RCMIN = MIN( RCMIN, C( J ) ) - RCMAX = MAX( RCMAX, C( J ) ) - 20 CONTINUE - IF( RCMIN.LE.ZERO ) THEN - INFO = -14 - ELSE IF( N.GT.0 ) THEN - COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM ) - ELSE - COLCND = ONE - END IF - END IF - IF( INFO.EQ.0 ) THEN - IF( LDB.LT.MAX( 1, N ) ) THEN - INFO = -16 - ELSE IF( LDX.LT.MAX( 1, N ) ) THEN - INFO = -18 - END IF - END IF - END IF -* - IF( INFO.NE.0 ) THEN - CALL XERBLA( 'ZGBSVX', -INFO ) - RETURN - END IF -* - IF( EQUIL ) THEN -* -* Compute row and column scalings to equilibrate the matrix A. -* - CALL ZGBEQU( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, - $ AMAX, INFEQU ) - IF( INFEQU.EQ.0 ) THEN -* -* Equilibrate the matrix. -* - CALL ZLAQGB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, - $ AMAX, EQUED ) - ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' ) - COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' ) - END IF - END IF -* -* Scale the right hand side. -* - IF( NOTRAN ) THEN - IF( ROWEQU ) THEN - DO 40 J = 1, NRHS - DO 30 I = 1, N - B( I, J ) = R( I )*B( I, J ) - 30 CONTINUE - 40 CONTINUE - END IF - ELSE IF( COLEQU ) THEN - DO 60 J = 1, NRHS - DO 50 I = 1, N - B( I, J ) = C( I )*B( I, J ) - 50 CONTINUE - 60 CONTINUE - END IF -* - IF( NOFACT .OR. EQUIL ) THEN -* -* Compute the LU factorization of the band matrix A. -* - DO 70 J = 1, N - J1 = MAX( J-KU, 1 ) - J2 = MIN( J+KL, N ) - CALL ZCOPY( J2-J1+1, AB( KU+1-J+J1, J ), 1, - $ AFB( KL+KU+1-J+J1, J ), 1 ) - 70 CONTINUE -* - CALL ZGBTRF( N, N, KL, KU, AFB, LDAFB, IPIV, INFO ) -* -* Return if INFO is non-zero. -* - IF( INFO.GT.0 ) THEN -* -* Compute the reciprocal pivot growth factor of the -* leading rank-deficient INFO columns of A. -* - ANORM = ZERO - DO 90 J = 1, INFO - DO 80 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 ) - ANORM = MAX( ANORM, ABS( AB( I, J ) ) ) - 80 CONTINUE - 90 CONTINUE - RPVGRW = ZLANTB( 'M', 'U', 'N', INFO, MIN( INFO-1, KL+KU ), - $ AFB( MAX( 1, KL+KU+2-INFO ), 1 ), LDAFB, - $ RWORK ) - IF( RPVGRW.EQ.ZERO ) THEN - RPVGRW = ONE - ELSE - RPVGRW = ANORM / RPVGRW - END IF - RWORK( 1 ) = RPVGRW - RCOND = ZERO - RETURN - END IF - END IF -* -* Compute the norm of the matrix A and the -* reciprocal pivot growth factor RPVGRW. -* - IF( NOTRAN ) THEN - NORM = '1' - ELSE - NORM = 'I' - END IF - ANORM = ZLANGB( NORM, N, KL, KU, AB, LDAB, RWORK ) - RPVGRW = ZLANTB( 'M', 'U', 'N', N, KL+KU, AFB, LDAFB, RWORK ) - IF( RPVGRW.EQ.ZERO ) THEN - RPVGRW = ONE - ELSE - RPVGRW = ZLANGB( 'M', N, KL, KU, AB, LDAB, RWORK ) / RPVGRW - END IF -* -* Compute the reciprocal of the condition number of A. -* - CALL ZGBCON( NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND, - $ WORK, RWORK, INFO ) -* -* Compute the solution matrix X. -* - CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX ) - CALL ZGBTRS( TRANS, N, KL, KU, NRHS, AFB, LDAFB, IPIV, X, LDX, - $ INFO ) -* -* Use iterative refinement to improve the computed solution and -* compute error bounds and backward error estimates for it. -* - CALL ZGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV, - $ B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO ) -* -* Transform the solution matrix X to a solution of the original -* system. -* - IF( NOTRAN ) THEN - IF( COLEQU ) THEN - DO 110 J = 1, NRHS - DO 100 I = 1, N - X( I, J ) = C( I )*X( I, J ) - 100 CONTINUE - 110 CONTINUE - DO 120 J = 1, NRHS - FERR( J ) = FERR( J ) / COLCND - 120 CONTINUE - END IF - ELSE IF( ROWEQU ) THEN - DO 140 J = 1, NRHS - DO 130 I = 1, N - X( I, J ) = R( I )*X( I, J ) - 130 CONTINUE - 140 CONTINUE - DO 150 J = 1, NRHS - FERR( J ) = FERR( J ) / ROWCND - 150 CONTINUE - END IF -* -* Set INFO = N+1 if the matrix is singular to working precision. -* - IF( RCOND.LT.DLAMCH( 'Epsilon' ) ) - $ INFO = N + 1 -* - RWORK( 1 ) = RPVGRW - RETURN -* -* End of ZGBSVX -* - END diff --git a/lapack-netlib/zgejsv.f b/lapack-netlib/zgejsv.f deleted file mode 100644 index 5fe899e50..000000000 --- a/lapack-netlib/zgejsv.f +++ /dev/null @@ -1,2234 +0,0 @@ -*> \brief \b ZGEJSV -* -* =========== DOCUMENTATION =========== -* -* Online html documentation available at -* http://www.netlib.org/lapack/explore-html/ -* -*> \htmlonly -*> Download ZGEJSV + dependencies -*> -*> [TGZ] -*> -*> [ZIP] -*> -*> [TXT] -*> \endhtmlonly -* -* Definition: -* =========== -* -* SUBROUTINE ZGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP, -* M, N, A, LDA, SVA, U, LDU, V, LDV, -* CWORK, LWORK, RWORK, LRWORK, IWORK, INFO ) -* -* .. Scalar Arguments .. -* IMPLICIT NONE -* INTEGER INFO, LDA, LDU, LDV, LWORK, M, N -* .. -* .. Array Arguments .. -* COMPLEX*16 A( LDA, * ), U( LDU, * ), V( LDV, * ), CWORK( LWORK ) -* DOUBLE PRECISION SVA( N ), RWORK( LRWORK ) -* INTEGER IWORK( * ) -* CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV -* .. -* -* -*> \par Purpose: -* ============= -*> -*> \verbatim -*> -*> ZGEJSV computes the singular value decomposition (SVD) of a complex M-by-N -*> matrix [A], where M >= N. The SVD of [A] is written as -*> -*> [A] = [U] * [SIGMA] * [V]^*, -*> -*> where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N -*> diagonal elements, [U] is an M-by-N (or M-by-M) unitary matrix, and -*> [V] is an N-by-N unitary matrix. The diagonal elements of [SIGMA] are -*> the singular values of [A]. The columns of [U] and [V] are the left and -*> the right singular vectors of [A], respectively. The matrices [U] and [V] -*> are computed and stored in the arrays U and V, respectively. The diagonal -*> of [SIGMA] is computed and stored in the array SVA. -*> \endverbatim -*> -*> Arguments: -*> ========== -*> -*> \param[in] JOBA -*> \verbatim -*> JOBA is CHARACTER*1 -*> Specifies the level of accuracy: -*> = 'C': This option works well (high relative accuracy) if A = B * D, -*> with well-conditioned B and arbitrary diagonal matrix D. -*> The accuracy cannot be spoiled by COLUMN scaling. The -*> accuracy of the computed output depends on the condition of -*> B, and the procedure aims at the best theoretical accuracy. -*> The relative error max_{i=1:N}|d sigma_i| / sigma_i is -*> bounded by f(M,N)*epsilon* cond(B), independent of D. -*> The input matrix is preprocessed with the QRF with column -*> pivoting. This initial preprocessing and preconditioning by -*> a rank revealing QR factorization is common for all values of -*> JOBA. Additional actions are specified as follows: -*> = 'E': Computation as with 'C' with an additional estimate of the -*> condition number of B. It provides a realistic error bound. -*> = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings -*> D1, D2, and well-conditioned matrix C, this option gives -*> higher accuracy than the 'C' option. If the structure of the -*> input matrix is not known, and relative accuracy is -*> desirable, then this option is advisable. The input matrix A -*> is preprocessed with QR factorization with FULL (row and -*> column) pivoting. -*> = 'G': Computation as with 'F' with an additional estimate of the -*> condition number of B, where A=B*D. If A has heavily weighted -*> rows, then using this condition number gives too pessimistic -*> error bound. -*> = 'A': Small singular values are not well determined by the data -*> and are considered as noisy; the matrix is treated as -*> numerically rank deficient. The error in the computed -*> singular values is bounded by f(m,n)*epsilon*||A||. -*> The computed SVD A = U * S * V^* restores A up to -*> f(m,n)*epsilon*||A||. -*> This gives the procedure the licence to discard (set to zero) -*> all singular values below N*epsilon*||A||. -*> = 'R': Similar as in 'A'. Rank revealing property of the initial -*> QR factorization is used do reveal (using triangular factor) -*> a gap sigma_{r+1} < epsilon * sigma_r in which case the -*> numerical RANK is declared to be r. The SVD is computed with -*> absolute error bounds, but more accurately than with 'A'. -*> \endverbatim -*> -*> \param[in] JOBU -*> \verbatim -*> JOBU is CHARACTER*1 -*> Specifies whether to compute the columns of U: -*> = 'U': N columns of U are returned in the array U. -*> = 'F': full set of M left sing. vectors is returned in the array U. -*> = 'W': U may be used as workspace of length M*N. See the description -*> of U. -*> = 'N': U is not computed. -*> \endverbatim -*> -*> \param[in] JOBV -*> \verbatim -*> JOBV is CHARACTER*1 -*> Specifies whether to compute the matrix V: -*> = 'V': N columns of V are returned in the array V; Jacobi rotations -*> are not explicitly accumulated. -*> = 'J': N columns of V are returned in the array V, but they are -*> computed as the product of Jacobi rotations, if JOBT = 'N'. -*> = 'W': V may be used as workspace of length N*N. See the description -*> of V. -*> = 'N': V is not computed. -*> \endverbatim -*> -*> \param[in] JOBR -*> \verbatim -*> JOBR is CHARACTER*1 -*> Specifies the RANGE for the singular values. Issues the licence to -*> set to zero small positive singular values if they are outside -*> specified range. If A .NE. 0 is scaled so that the largest singular -*> value of c*A is around SQRT(BIG), BIG=DLAMCH('O'), then JOBR issues -*> the licence to kill columns of A whose norm in c*A is less than -*> SQRT(SFMIN) (for JOBR = 'R'), or less than SMALL=SFMIN/EPSLN, -*> where SFMIN=DLAMCH('S'), EPSLN=DLAMCH('E'). -*> = 'N': Do not kill small columns of c*A. This option assumes that -*> BLAS and QR factorizations and triangular solvers are -*> implemented to work in that range. If the condition of A -*> is greater than BIG, use ZGESVJ. -*> = 'R': RESTRICTED range for sigma(c*A) is [SQRT(SFMIN), SQRT(BIG)] -*> (roughly, as described above). This option is recommended. -*> =========================== -*> For computing the singular values in the FULL range [SFMIN,BIG] -*> use ZGESVJ. -*> \endverbatim -*> -*> \param[in] JOBT -*> \verbatim -*> JOBT is CHARACTER*1 -*> If the matrix is square then the procedure may determine to use -*> transposed A if A^* seems to be better with respect to convergence. -*> If the matrix is not square, JOBT is ignored. -*> The decision is based on two values of entropy over the adjoint -*> orbit of A^* * A. See the descriptions of RWORK(6) and RWORK(7). -*> = 'T': transpose if entropy test indicates possibly faster -*> convergence of Jacobi process if A^* is taken as input. If A is -*> replaced with A^*, then the row pivoting is included automatically. -*> = 'N': do not speculate. -*> The option 'T' can be used to compute only the singular values, or -*> the full SVD (U, SIGMA and V). For only one set of singular vectors -*> (U or V), the caller should provide both U and V, as one of the -*> matrices is used as workspace if the matrix A is transposed. -*> The implementer can easily remove this constraint and make the -*> code more complicated. See the descriptions of U and V. -*> In general, this option is considered experimental, and 'N'; should -*> be preferred. This is subject to changes in the future. -*> \endverbatim -*> -*> \param[in] JOBP -*> \verbatim -*> JOBP is CHARACTER*1 -*> Issues the licence to introduce structured perturbations to drown -*> denormalized numbers. This licence should be active if the -*> denormals are poorly implemented, causing slow computation, -*> especially in cases of fast convergence (!). For details see [1,2]. -*> For the sake of simplicity, this perturbations are included only -*> when the full SVD or only the singular values are requested. The -*> implementer/user can easily add the perturbation for the cases of -*> computing one set of singular vectors. -*> = 'P': introduce perturbation -*> = 'N': do not perturb -*> \endverbatim -*> -*> \param[in] M -*> \verbatim -*> M is INTEGER -*> The number of rows of the input matrix A. M >= 0. -*> \endverbatim -*> -*> \param[in] N -*> \verbatim -*> N is INTEGER -*> The number of columns of the input matrix A. M >= N >= 0. -*> \endverbatim -*> -*> \param[in,out] A -*> \verbatim -*> A is COMPLEX*16 array, dimension (LDA,N) -*> On entry, the M-by-N matrix A. -*> \endverbatim -*> -*> \param[in] LDA -*> \verbatim -*> LDA is INTEGER -*> The leading dimension of the array A. LDA >= max(1,M). -*> \endverbatim -*> -*> \param[out] SVA -*> \verbatim -*> SVA is DOUBLE PRECISION array, dimension (N) -*> On exit, -*> - For RWORK(1)/RWORK(2) = ONE: The singular values of A. During -*> the computation SVA contains Euclidean column norms of the -*> iterated matrices in the array A. -*> - For RWORK(1) .NE. RWORK(2): The singular values of A are -*> (RWORK(1)/RWORK(2)) * SVA(1:N). This factored form is used if -*> sigma_max(A) overflows or if small singular values have been -*> saved from underflow by scaling the input matrix A. -*> - If JOBR='R' then some of the singular values may be returned -*> as exact zeros obtained by "set to zero" because they are -*> below the numerical rank threshold or are denormalized numbers. -*> \endverbatim -*> -*> \param[out] U -*> \verbatim -*> U is COMPLEX*16 array, dimension ( LDU, N ) -*> If JOBU = 'U', then U contains on exit the M-by-N matrix of -*> the left singular vectors. -*> If JOBU = 'F', then U contains on exit the M-by-M matrix of -*> the left singular vectors, including an ONB -*> of the orthogonal complement of the Range(A). -*> If JOBU = 'W' .AND. (JOBV = 'V' .AND. JOBT = 'T' .AND. M = N), -*> then U is used as workspace if the procedure -*> replaces A with A^*. In that case, [V] is computed -*> in U as left singular vectors of A^* and then -*> copied back to the V array. This 'W' option is just -*> a reminder to the caller that in this case U is -*> reserved as workspace of length N*N. -*> If JOBU = 'N' U is not referenced, unless JOBT='T'. -*> \endverbatim -*> -*> \param[in] LDU -*> \verbatim -*> LDU is INTEGER -*> The leading dimension of the array U, LDU >= 1. -*> IF JOBU = 'U' or 'F' or 'W', then LDU >= M. -*> \endverbatim -*> -*> \param[out] V -*> \verbatim -*> V is COMPLEX*16 array, dimension ( LDV, N ) -*> If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of -*> the right singular vectors; -*> If JOBV = 'W', AND (JOBU = 'U' AND JOBT = 'T' AND M = N), -*> then V is used as workspace if the pprocedure -*> replaces A with A^*. In that case, [U] is computed -*> in V as right singular vectors of A^* and then -*> copied back to the U array. This 'W' option is just -*> a reminder to the caller that in this case V is -*> reserved as workspace of length N*N. -*> If JOBV = 'N' V is not referenced, unless JOBT='T'. -*> \endverbatim -*> -*> \param[in] LDV -*> \verbatim -*> LDV is INTEGER -*> The leading dimension of the array V, LDV >= 1. -*> If JOBV = 'V' or 'J' or 'W', then LDV >= N. -*> \endverbatim -*> -*> \param[out] CWORK -*> \verbatim -*> CWORK is COMPLEX*16 array, dimension (MAX(2,LWORK)) -*> If the call to ZGEJSV is a workspace query (indicated by LWORK=-1 or -*> LRWORK=-1), then on exit CWORK(1) contains the required length of -*> CWORK for the job parameters used in the call. -*> \endverbatim -*> -*> \param[in] LWORK -*> \verbatim -*> LWORK is INTEGER -*> Length of CWORK to confirm proper allocation of workspace. -*> LWORK depends on the job: -*> -*> 1. If only SIGMA is needed ( JOBU = 'N', JOBV = 'N' ) and -*> 1.1 .. no scaled condition estimate required (JOBA.NE.'E'.AND.JOBA.NE.'G'): -*> LWORK >= 2*N+1. This is the minimal requirement. -*> ->> For optimal performance (blocked code) the optimal value -*> is LWORK >= N + (N+1)*NB. Here NB is the optimal -*> block size for ZGEQP3 and ZGEQRF. -*> In general, optimal LWORK is computed as -*> LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZGEQRF), LWORK(ZGESVJ)). -*> 1.2. .. an estimate of the scaled condition number of A is -*> required (JOBA='E', or 'G'). In this case, LWORK the minimal -*> requirement is LWORK >= N*N + 2*N. -*> ->> For optimal performance (blocked code) the optimal value -*> is LWORK >= max(N+(N+1)*NB, N*N+2*N)=N**2+2*N. -*> In general, the optimal length LWORK is computed as -*> LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZGEQRF), LWORK(ZGESVJ), -*> N*N+LWORK(ZPOCON)). -*> 2. If SIGMA and the right singular vectors are needed (JOBV = 'V'), -*> (JOBU = 'N') -*> 2.1 .. no scaled condition estimate requested (JOBE = 'N'): -*> -> the minimal requirement is LWORK >= 3*N. -*> -> For optimal performance, -*> LWORK >= max(N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB, -*> where NB is the optimal block size for ZGEQP3, ZGEQRF, ZGELQF, -*> ZUNMLQ. In general, the optimal length LWORK is computed as -*> LWORK >= max(N+LWORK(ZGEQP3), N+LWORK(ZGESVJ), -*> N+LWORK(ZGELQF), 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMLQ)). -*> 2.2 .. an estimate of the scaled condition number of A is -*> required (JOBA='E', or 'G'). -*> -> the minimal requirement is LWORK >= 3*N. -*> -> For optimal performance, -*> LWORK >= max(N+(N+1)*NB, 2*N,2*N+N*NB)=2*N+N*NB, -*> where NB is the optimal block size for ZGEQP3, ZGEQRF, ZGELQF, -*> ZUNMLQ. In general, the optimal length LWORK is computed as -*> LWORK >= max(N+LWORK(ZGEQP3), LWORK(ZPOCON), N+LWORK(ZGESVJ), -*> N+LWORK(ZGELQF), 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMLQ)). -*> 3. If SIGMA and the left singular vectors are needed -*> 3.1 .. no scaled condition estimate requested (JOBE = 'N'): -*> -> the minimal requirement is LWORK >= 3*N. -*> -> For optimal performance: -*> if JOBU = 'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB, -*> where NB is the optimal block size for ZGEQP3, ZGEQRF, ZUNMQR. -*> In general, the optimal length LWORK is computed as -*> LWORK >= max(N+LWORK(ZGEQP3), 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMQR)). -*> 3.2 .. an estimate of the scaled condition number of A is -*> required (JOBA='E', or 'G'). -*> -> the minimal requirement is LWORK >= 3*N. -*> -> For optimal performance: -*> if JOBU = 'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB, -*> where NB is the optimal block size for ZGEQP3, ZGEQRF, ZUNMQR. -*> In general, the optimal length LWORK is computed as -*> LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZPOCON), -*> 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMQR)). -*> 4. If the full SVD is needed: (JOBU = 'U' or JOBU = 'F') and -*> 4.1. if JOBV = 'V' -*> the minimal requirement is LWORK >= 5*N+2*N*N. -*> 4.2. if JOBV = 'J' the minimal requirement is -*> LWORK >= 4*N+N*N. -*> In both cases, the allocated CWORK can accommodate blocked runs -*> of ZGEQP3, ZGEQRF, ZGELQF, SUNMQR, ZUNMLQ. -*> -*> If the call to ZGEJSV is a workspace query (indicated by LWORK=-1 or -*> LRWORK=-1), then on exit CWORK(1) contains the optimal and CWORK(2) contains the -*> minimal length of CWORK for the job parameters used in the call. -*> \endverbatim -*> -*> \param[out] RWORK -*> \verbatim -*> RWORK is DOUBLE PRECISION array, dimension (MAX(7,LRWORK)) -*> On exit, -*> RWORK(1) = Determines the scaling factor SCALE = RWORK(2) / RWORK(1) -*> such that SCALE*SVA(1:N) are the computed singular values -*> of A. (See the description of SVA().) -*> RWORK(2) = See the description of RWORK(1). -*> RWORK(3) = SCONDA is an estimate for the condition number of -*> column equilibrated A. (If JOBA = 'E' or 'G') -*> SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1). -*> It is computed using ZPOCON. It holds -*> N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA -*> where R is the triangular factor from the QRF of A. -*> However, if R is truncated and the numerical rank is -*> determined to be strictly smaller than N, SCONDA is -*> returned as -1, thus indicating that the smallest -*> singular values might be lost. -*> -*> If full SVD is needed, the following two condition numbers are -*> useful for the analysis of the algorithm. They are provided for -*> a developer/implementer who is familiar with the details of -*> the method. -*> -*> RWORK(4) = an estimate of the scaled condition number of the -*> triangular factor in the first QR factorization. -*> RWORK(5) = an estimate of the scaled condition number of the -*> triangular factor in the second QR factorization. -*> The following two parameters are computed if JOBT = 'T'. -*> They are provided for a developer/implementer who is familiar -*> with the details of the method. -*> RWORK(6) = the entropy of A^* * A :: this is the Shannon entropy -*> of diag(A^* * A) / Trace(A^* * A) taken as point in the -*> probability simplex. -*> RWORK(7) = the entropy of A * A^*. (See the description of RWORK(6).) -*> If the call to ZGEJSV is a workspace query (indicated by LWORK=-1 or -*> LRWORK=-1), then on exit RWORK(1) contains the required length of -*> RWORK for the job parameters used in the call. -*> \endverbatim -*> -*> \param[in] LRWORK -*> \verbatim -*> LRWORK is INTEGER -*> Length of RWORK to confirm proper allocation of workspace. -*> LRWORK depends on the job: -*> -*> 1. If only the singular values are requested i.e. if -*> LSAME(JOBU,'N') .AND. LSAME(JOBV,'N') -*> then: -*> 1.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'), -*> then: LRWORK = max( 7, 2 * M ). -*> 1.2. Otherwise, LRWORK = max( 7, N ). -*> 2. If singular values with the right singular vectors are requested -*> i.e. if -*> (LSAME(JOBV,'V').OR.LSAME(JOBV,'J')) .AND. -*> .NOT.(LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) -*> then: -*> 2.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'), -*> then LRWORK = max( 7, 2 * M ). -*> 2.2. Otherwise, LRWORK = max( 7, N ). -*> 3. If singular values with the left singular vectors are requested, i.e. if -*> (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND. -*> .NOT.(LSAME(JOBV,'V').OR.LSAME(JOBV,'J')) -*> then: -*> 3.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'), -*> then LRWORK = max( 7, 2 * M ). -*> 3.2. Otherwise, LRWORK = max( 7, N ). -*> 4. If singular values with both the left and the right singular vectors -*> are requested, i.e. if -*> (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND. -*> (LSAME(JOBV,'V').OR.LSAME(JOBV,'J')) -*> then: -*> 4.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'), -*> then LRWORK = max( 7, 2 * M ). -*> 4.2. Otherwise, LRWORK = max( 7, N ). -*> -*> If, on entry, LRWORK = -1 or LWORK=-1, a workspace query is assumed and -*> the length of RWORK is returned in RWORK(1). -*> \endverbatim -*> -*> \param[out] IWORK -*> \verbatim -*> IWORK is INTEGER array, of dimension at least 4, that further depends -*> on the job: -*> -*> 1. If only the singular values are requested then: -*> If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) -*> then the length of IWORK is N+M; otherwise the length of IWORK is N. -*> 2. If the singular values and the right singular vectors are requested then: -*> If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) -*> then the length of IWORK is N+M; otherwise the length of IWORK is N. -*> 3. If the singular values and the left singular vectors are requested then: -*> If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) -*> then the length of IWORK is N+M; otherwise the length of IWORK is N. -*> 4. If the singular values with both the left and the right singular vectors -*> are requested, then: -*> 4.1. If LSAME(JOBV,'J') the length of IWORK is determined as follows: -*> If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) -*> then the length of IWORK is N+M; otherwise the length of IWORK is N. -*> 4.2. If LSAME(JOBV,'V') the length of IWORK is determined as follows: -*> If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) -*> then the length of IWORK is 2*N+M; otherwise the length of IWORK is 2*N. -*> -*> On exit, -*> IWORK(1) = the numerical rank determined after the initial -*> QR factorization with pivoting. See the descriptions -*> of JOBA and JOBR. -*> IWORK(2) = the number of the computed nonzero singular values -*> IWORK(3) = if nonzero, a warning message: -*> If IWORK(3) = 1 then some of the column norms of A -*> were denormalized floats. The requested high accuracy -*> is not warranted by the data. -*> IWORK(4) = 1 or -1. If IWORK(4) = 1, then the procedure used A^* to -*> do the job as specified by the JOB parameters. -*> If the call to ZGEJSV is a workspace query (indicated by LWORK = -1 or -*> LRWORK = -1), then on exit IWORK(1) contains the required length of -*> IWORK for the job parameters used in the call. -*> \endverbatim -*> -*> \param[out] INFO -*> \verbatim -*> INFO is INTEGER -*> < 0: if INFO = -i, then the i-th argument had an illegal value. -*> = 0: successful exit; -*> > 0: ZGEJSV did not converge in the maximal allowed number -*> of sweeps. The computed values may be inaccurate. -*> \endverbatim -* -* Authors: -* ======== -* -*> \author Univ. of Tennessee -*> \author Univ. of California Berkeley -*> \author Univ. of Colorado Denver -*> \author NAG Ltd. -* -*> \ingroup complex16GEsing -* -*> \par Further Details: -* ===================== -*> -*> \verbatim -*> -*> ZGEJSV implements a preconditioned Jacobi SVD algorithm. It uses ZGEQP3, -*> ZGEQRF, and ZGELQF as preprocessors and preconditioners. Optionally, an -*> additional row pivoting can be used as a preprocessor, which in some -*> cases results in much higher accuracy. An example is matrix A with the -*> structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned -*> diagonal matrices and C is well-conditioned matrix. In that case, complete -*> pivoting in the first QR factorizations provides accuracy dependent on the -*> condition number of C, and independent of D1, D2. Such higher accuracy is -*> not completely understood theoretically, but it works well in practice. -*> Further, if A can be written as A = B*D, with well-conditioned B and some -*> diagonal D, then the high accuracy is guaranteed, both theoretically and -*> in software, independent of D. For more details see [1], [2]. -*> The computational range for the singular values can be the full range -*> ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS -*> & LAPACK routines called by ZGEJSV are implemented to work in that range. -*> If that is not the case, then the restriction for safe computation with -*> the singular values in the range of normalized IEEE numbers is that the -*> spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not -*> overflow. This code (ZGEJSV) is best used in this restricted range, -*> meaning that singular values of magnitude below ||A||_2 / DLAMCH('O') are -*> returned as zeros. See JOBR for details on this. -*> Further, this implementation is somewhat slower than the one described -*> in [1,2] due to replacement of some non-LAPACK components, and because -*> the choice of some tuning parameters in the iterative part (ZGESVJ) is -*> left to the implementer on a particular machine. -*> The rank revealing QR factorization (in this code: ZGEQP3) should be -*> implemented as in [3]. We have a new version of ZGEQP3 under development -*> that is more robust than the current one in LAPACK, with a cleaner cut in -*> rank deficient cases. It will be available in the SIGMA library [4]. -*> If M is much larger than N, it is obvious that the initial QRF with -*> column pivoting can be preprocessed by the QRF without pivoting. That -*> well known trick is not used in ZGEJSV because in some cases heavy row -*> weighting can be treated with complete pivoting. The overhead in cases -*> M much larger than N is then only due to pivoting, but the benefits in -*> terms of accuracy have prevailed. The implementer/user can incorporate -*> this extra QRF step easily. The implementer can also improve data movement -*> (matrix transpose, matrix copy, matrix transposed copy) - this -*> implementation of ZGEJSV uses only the simplest, naive data movement. -*> \endverbatim -* -*> \par Contributor: -* ================== -*> -*> Zlatko Drmac, Department of Mathematics, Faculty of Science, -*> University of Zagreb (Zagreb, Croatia); drmac@math.hr -* -*> \par References: -* ================ -*> -*> \verbatim -*> -*> [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I. -*> SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342. -*> LAPACK Working note 169. -*> [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II. -*> SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362. -*> LAPACK Working note 170. -*> [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR -*> factorization software - a case study. -*> ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28. -*> LAPACK Working note 176. -*> [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV, -*> QSVD, (H,K)-SVD computations. -*> Department of Mathematics, University of Zagreb, 2008, 2016. -*> \endverbatim -* -*> \par Bugs, examples and comments: -* ================================= -*> -*> Please report all bugs and send interesting examples and/or comments to -*> drmac@math.hr. Thank you. -*> -* ===================================================================== - SUBROUTINE ZGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP, - $ M, N, A, LDA, SVA, U, LDU, V, LDV, - $ CWORK, LWORK, RWORK, LRWORK, IWORK, INFO ) -* -* -- LAPACK computational routine -- -* -- LAPACK is a software package provided by Univ. of Tennessee, -- -* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* -* .. Scalar Arguments .. - IMPLICIT NONE - INTEGER INFO, LDA, LDU, LDV, LWORK, LRWORK, M, N -* .. -* .. Array Arguments .. - COMPLEX*16 A( LDA, * ), U( LDU, * ), V( LDV, * ), - $ CWORK( LWORK ) - DOUBLE PRECISION SVA( N ), RWORK( LRWORK ) - INTEGER IWORK( * ) - CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV -* .. -* -* =========================================================================== -* -* .. Local Parameters .. - DOUBLE PRECISION ZERO, ONE - PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) - COMPLEX*16 CZERO, CONE - PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ), CONE = ( 1.0D0, 0.0D0 ) ) -* .. -* .. Local Scalars .. - COMPLEX*16 CTEMP - DOUBLE PRECISION AAPP, AAQQ, AATMAX, AATMIN, BIG, BIG1, - $ COND_OK, CONDR1, CONDR2, ENTRA, ENTRAT, EPSLN, - $ MAXPRJ, SCALEM, SCONDA, SFMIN, SMALL, TEMP1, - $ USCAL1, USCAL2, XSC - INTEGER IERR, N1, NR, NUMRANK, p, q, WARNING - LOGICAL ALMORT, DEFR, ERREST, GOSCAL, JRACC, KILL, LQUERY, - $ LSVEC, L2ABER, L2KILL, L2PERT, L2RANK, L2TRAN, NOSCAL, - $ ROWPIV, RSVEC, TRANSP -* - INTEGER OPTWRK, MINWRK, MINRWRK, MINIWRK - INTEGER LWCON, LWLQF, LWQP3, LWQRF, LWUNMLQ, LWUNMQR, LWUNMQRM, - $ LWSVDJ, LWSVDJV, LRWQP3, LRWCON, LRWSVDJ, IWOFF - INTEGER LWRK_ZGELQF, LWRK_ZGEQP3, LWRK_ZGEQP3N, LWRK_ZGEQRF, - $ LWRK_ZGESVJ, LWRK_ZGESVJV, LWRK_ZGESVJU, LWRK_ZUNMLQ, - $ LWRK_ZUNMQR, LWRK_ZUNMQRM -* .. -* .. Local Arrays - COMPLEX*16 CDUMMY(1) - DOUBLE PRECISION RDUMMY(1) -* -* .. Intrinsic Functions .. - INTRINSIC ABS, DCMPLX, CONJG, DLOG, MAX, MIN, DBLE, NINT, SQRT -* .. -* .. External Functions .. - DOUBLE PRECISION DLAMCH, DZNRM2 - INTEGER IDAMAX, IZAMAX - LOGICAL LSAME - EXTERNAL IDAMAX, IZAMAX, LSAME, DLAMCH, DZNRM2 -* .. -* .. External Subroutines .. - EXTERNAL DLASSQ, ZCOPY, ZGELQF, ZGEQP3, ZGEQRF, ZLACPY, ZLAPMR, - $ ZLASCL, DLASCL, ZLASET, ZLASSQ, ZLASWP, ZUNGQR, ZUNMLQ, - $ ZUNMQR, ZPOCON, DSCAL, ZDSCAL, ZSWAP, ZTRSM, ZLACGV, - $ XERBLA -* - EXTERNAL ZGESVJ -* .. -* -* Test the input arguments -* - LSVEC = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' ) - JRACC = LSAME( JOBV, 'J' ) - RSVEC = LSAME( JOBV, 'V' ) .OR. JRACC - ROWPIV = LSAME( JOBA, 'F' ) .OR. LSAME( JOBA, 'G' ) - L2RANK = LSAME( JOBA, 'R' ) - L2ABER = LSAME( JOBA, 'A' ) - ERREST = LSAME( JOBA, 'E' ) .OR. LSAME( JOBA, 'G' ) - L2TRAN = LSAME( JOBT, 'T' ) .AND. ( M .EQ. N ) - L2KILL = LSAME( JOBR, 'R' ) - DEFR = LSAME( JOBR, 'N' ) - L2PERT = LSAME( JOBP, 'P' ) -* - LQUERY = ( LWORK .EQ. -1 ) .OR. ( LRWORK .EQ. -1 ) -* - IF ( .NOT.(ROWPIV .OR. L2RANK .OR. L2ABER .OR. - $ ERREST .OR. LSAME( JOBA, 'C' ) )) THEN - INFO = - 1 - ELSE IF ( .NOT.( LSVEC .OR. LSAME( JOBU, 'N' ) .OR. - $ ( LSAME( JOBU, 'W' ) .AND. RSVEC .AND. L2TRAN ) ) ) THEN - INFO = - 2 - ELSE IF ( .NOT.( RSVEC .OR. LSAME( JOBV, 'N' ) .OR. - $ ( LSAME( JOBV, 'W' ) .AND. LSVEC .AND. L2TRAN ) ) ) THEN - INFO = - 3 - ELSE IF ( .NOT. ( L2KILL .OR. DEFR ) ) THEN - INFO = - 4 - ELSE IF ( .NOT. ( LSAME(JOBT,'T') .OR. LSAME(JOBT,'N') ) ) THEN - INFO = - 5 - ELSE IF ( .NOT. ( L2PERT .OR. LSAME( JOBP, 'N' ) ) ) THEN - INFO = - 6 - ELSE IF ( M .LT. 0 ) THEN - INFO = - 7 - ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M ) ) THEN - INFO = - 8 - ELSE IF ( LDA .LT. M ) THEN - INFO = - 10 - ELSE IF ( LSVEC .AND. ( LDU .LT. M ) ) THEN - INFO = - 13 - ELSE IF ( RSVEC .AND. ( LDV .LT. N ) ) THEN - INFO = - 15 - ELSE -* #:) - INFO = 0 - END IF -* - IF ( INFO .EQ. 0 ) THEN -* .. compute the minimal and the optimal workspace lengths -* [[The expressions for computing the minimal and the optimal -* values of LCWORK, LRWORK are written with a lot of redundancy and -* can be simplified. However, this verbose form is useful for -* maintenance and modifications of the code.]] -* -* .. minimal workspace length for ZGEQP3 of an M x N matrix, -* ZGEQRF of an N x N matrix, ZGELQF of an N x N matrix, -* ZUNMLQ for computing N x N matrix, ZUNMQR for computing N x N -* matrix, ZUNMQR for computing M x N matrix, respectively. - LWQP3 = N+1 - LWQRF = MAX( 1, N ) - LWLQF = MAX( 1, N ) - LWUNMLQ = MAX( 1, N ) - LWUNMQR = MAX( 1, N ) - LWUNMQRM = MAX( 1, M ) -* .. minimal workspace length for ZPOCON of an N x N matrix - LWCON = 2 * N -* .. minimal workspace length for ZGESVJ of an N x N matrix, -* without and with explicit accumulation of Jacobi rotations - LWSVDJ = MAX( 2 * N, 1 ) - LWSVDJV = MAX( 2 * N, 1 ) -* .. minimal REAL workspace length for ZGEQP3, ZPOCON, ZGESVJ - LRWQP3 = 2 * N - LRWCON = N - LRWSVDJ = N - IF ( LQUERY ) THEN - CALL ZGEQP3( M, N, A, LDA, IWORK, CDUMMY, CDUMMY, -1, - $ RDUMMY, IERR ) - LWRK_ZGEQP3 = INT( CDUMMY(1) ) - CALL ZGEQRF( N, N, A, LDA, CDUMMY, CDUMMY,-1, IERR ) - LWRK_ZGEQRF = INT( CDUMMY(1) ) - CALL ZGELQF( N, N, A, LDA, CDUMMY, CDUMMY,-1, IERR ) - LWRK_ZGELQF = INT( CDUMMY(1) ) - END IF - MINWRK = 2 - OPTWRK = 2 - MINIWRK = N - IF ( .NOT. (LSVEC .OR. RSVEC ) ) THEN -* .. minimal and optimal sizes of the complex workspace if -* only the singular values are requested - IF ( ERREST ) THEN - MINWRK = MAX( N+LWQP3, N**2+LWCON, N+LWQRF, LWSVDJ ) - ELSE - MINWRK = MAX( N+LWQP3, N+LWQRF, LWSVDJ ) - END IF - IF ( LQUERY ) THEN - CALL ZGESVJ( 'L', 'N', 'N', N, N, A, LDA, SVA, N, V, - $ LDV, CDUMMY, -1, RDUMMY, -1, IERR ) - LWRK_ZGESVJ = INT( CDUMMY(1) ) - IF ( ERREST ) THEN - OPTWRK = MAX( N+LWRK_ZGEQP3, N**2+LWCON, - $ N+LWRK_ZGEQRF, LWRK_ZGESVJ ) - ELSE - OPTWRK = MAX( N+LWRK_ZGEQP3, N+LWRK_ZGEQRF, - $ LWRK_ZGESVJ ) - END IF - END IF - IF ( L2TRAN .OR. ROWPIV ) THEN - IF ( ERREST ) THEN - MINRWRK = MAX( 7, 2*M, LRWQP3, LRWCON, LRWSVDJ ) - ELSE - MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ ) - END IF - ELSE - IF ( ERREST ) THEN - MINRWRK = MAX( 7, LRWQP3, LRWCON, LRWSVDJ ) - ELSE - MINRWRK = MAX( 7, LRWQP3, LRWSVDJ ) - END IF - END IF - IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M - ELSE IF ( RSVEC .AND. (.NOT.LSVEC) ) THEN -* .. minimal and optimal sizes of the complex workspace if the -* singular values and the right singular vectors are requested - IF ( ERREST ) THEN - MINWRK = MAX( N+LWQP3, LWCON, LWSVDJ, N+LWLQF, - $ 2*N+LWQRF, N+LWSVDJ, N+LWUNMLQ ) - ELSE - MINWRK = MAX( N+LWQP3, LWSVDJ, N+LWLQF, 2*N+LWQRF, - $ N+LWSVDJ, N+LWUNMLQ ) - END IF - IF ( LQUERY ) THEN - CALL ZGESVJ( 'L', 'U', 'N', N,N, U, LDU, SVA, N, A, - $ LDA, CDUMMY, -1, RDUMMY, -1, IERR ) - LWRK_ZGESVJ = INT( CDUMMY(1) ) - CALL ZUNMLQ( 'L', 'C', N, N, N, A, LDA, CDUMMY, - $ V, LDV, CDUMMY, -1, IERR ) - LWRK_ZUNMLQ = INT( CDUMMY(1) ) - IF ( ERREST ) THEN - OPTWRK = MAX( N+LWRK_ZGEQP3, LWCON, LWRK_ZGESVJ, - $ N+LWRK_ZGELQF, 2*N+LWRK_ZGEQRF, - $ N+LWRK_ZGESVJ, N+LWRK_ZUNMLQ ) - ELSE - OPTWRK = MAX( N+LWRK_ZGEQP3, LWRK_ZGESVJ,N+LWRK_ZGELQF, - $ 2*N+LWRK_ZGEQRF, N+LWRK_ZGESVJ, - $ N+LWRK_ZUNMLQ ) - END IF - END IF - IF ( L2TRAN .OR. ROWPIV ) THEN - IF ( ERREST ) THEN - MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ, LRWCON ) - ELSE - MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ ) - END IF - ELSE - IF ( ERREST ) THEN - MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON ) - ELSE - MINRWRK = MAX( 7, LRWQP3, LRWSVDJ ) - END IF - END IF - IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M - ELSE IF ( LSVEC .AND. (.NOT.RSVEC) ) THEN -* .. minimal and optimal sizes of the complex workspace if the -* singular values and the left singular vectors are requested - IF ( ERREST ) THEN - MINWRK = N + MAX( LWQP3,LWCON,N+LWQRF,LWSVDJ,LWUNMQRM ) - ELSE - MINWRK = N + MAX( LWQP3, N+LWQRF, LWSVDJ, LWUNMQRM ) - END IF - IF ( LQUERY ) THEN - CALL ZGESVJ( 'L', 'U', 'N', N,N, U, LDU, SVA, N, A, - $ LDA, CDUMMY, -1, RDUMMY, -1, IERR ) - LWRK_ZGESVJ = INT( CDUMMY(1) ) - CALL ZUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U, - $ LDU, CDUMMY, -1, IERR ) - LWRK_ZUNMQRM = INT( CDUMMY(1) ) - IF ( ERREST ) THEN - OPTWRK = N + MAX( LWRK_ZGEQP3, LWCON, N+LWRK_ZGEQRF, - $ LWRK_ZGESVJ, LWRK_ZUNMQRM ) - ELSE - OPTWRK = N + MAX( LWRK_ZGEQP3, N+LWRK_ZGEQRF, - $ LWRK_ZGESVJ, LWRK_ZUNMQRM ) - END IF - END IF - IF ( L2TRAN .OR. ROWPIV ) THEN - IF ( ERREST ) THEN - MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ, LRWCON ) - ELSE - MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ ) - END IF - ELSE - IF ( ERREST ) THEN - MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON ) - ELSE - MINRWRK = MAX( 7, LRWQP3, LRWSVDJ ) - END IF - END IF - IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M - ELSE -* .. minimal and optimal sizes of the complex workspace if the -* full SVD is requested - IF ( .NOT. JRACC ) THEN - IF ( ERREST ) THEN - MINWRK = MAX( N+LWQP3, N+LWCON, 2*N+N**2+LWCON, - $ 2*N+LWQRF, 2*N+LWQP3, - $ 2*N+N**2+N+LWLQF, 2*N+N**2+N+N**2+LWCON, - $ 2*N+N**2+N+LWSVDJ, 2*N+N**2+N+LWSVDJV, - $ 2*N+N**2+N+LWUNMQR,2*N+N**2+N+LWUNMLQ, - $ N+N**2+LWSVDJ, N+LWUNMQRM ) - ELSE - MINWRK = MAX( N+LWQP3, 2*N+N**2+LWCON, - $ 2*N+LWQRF, 2*N+LWQP3, - $ 2*N+N**2+N+LWLQF, 2*N+N**2+N+N**2+LWCON, - $ 2*N+N**2+N+LWSVDJ, 2*N+N**2+N+LWSVDJV, - $ 2*N+N**2+N+LWUNMQR,2*N+N**2+N+LWUNMLQ, - $ N+N**2+LWSVDJ, N+LWUNMQRM ) - END IF - MINIWRK = MINIWRK + N - IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M - ELSE - IF ( ERREST ) THEN - MINWRK = MAX( N+LWQP3, N+LWCON, 2*N+LWQRF, - $ 2*N+N**2+LWSVDJV, 2*N+N**2+N+LWUNMQR, - $ N+LWUNMQRM ) - ELSE - MINWRK = MAX( N+LWQP3, 2*N+LWQRF, - $ 2*N+N**2+LWSVDJV, 2*N+N**2+N+LWUNMQR, - $ N+LWUNMQRM ) - END IF - IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M - END IF - IF ( LQUERY ) THEN - CALL ZUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U, - $ LDU, CDUMMY, -1, IERR ) - LWRK_ZUNMQRM = INT( CDUMMY(1) ) - CALL ZUNMQR( 'L', 'N', N, N, N, A, LDA, CDUMMY, U, - $ LDU, CDUMMY, -1, IERR ) - LWRK_ZUNMQR = INT( CDUMMY(1) ) - IF ( .NOT. JRACC ) THEN - CALL ZGEQP3( N,N, A, LDA, IWORK, CDUMMY,CDUMMY, -1, - $ RDUMMY, IERR ) - LWRK_ZGEQP3N = INT( CDUMMY(1) ) - CALL ZGESVJ( 'L', 'U', 'N', N, N, U, LDU, SVA, - $ N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR ) - LWRK_ZGESVJ = INT( CDUMMY(1) ) - CALL ZGESVJ( 'U', 'U', 'N', N, N, U, LDU, SVA, - $ N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR ) - LWRK_ZGESVJU = INT( CDUMMY(1) ) - CALL ZGESVJ( 'L', 'U', 'V', N, N, U, LDU, SVA, - $ N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR ) - LWRK_ZGESVJV = INT( CDUMMY(1) ) - CALL ZUNMLQ( 'L', 'C', N, N, N, A, LDA, CDUMMY, - $ V, LDV, CDUMMY, -1, IERR ) - LWRK_ZUNMLQ = INT( CDUMMY(1) ) - IF ( ERREST ) THEN - OPTWRK = MAX( N+LWRK_ZGEQP3, N+LWCON, - $ 2*N+N**2+LWCON, 2*N+LWRK_ZGEQRF, - $ 2*N+LWRK_ZGEQP3N, - $ 2*N+N**2+N+LWRK_ZGELQF, - $ 2*N+N**2+N+N**2+LWCON, - $ 2*N+N**2+N+LWRK_ZGESVJ, - $ 2*N+N**2+N+LWRK_ZGESVJV, - $ 2*N+N**2+N+LWRK_ZUNMQR, - $ 2*N+N**2+N+LWRK_ZUNMLQ, - $ N+N**2+LWRK_ZGESVJU, - $ N+LWRK_ZUNMQRM ) - ELSE - OPTWRK = MAX( N+LWRK_ZGEQP3, - $ 2*N+N**2+LWCON, 2*N+LWRK_ZGEQRF, - $ 2*N+LWRK_ZGEQP3N, - $ 2*N+N**2+N+LWRK_ZGELQF, - $ 2*N+N**2+N+N**2+LWCON, - $ 2*N+N**2+N+LWRK_ZGESVJ, - $ 2*N+N**2+N+LWRK_ZGESVJV, - $ 2*N+N**2+N+LWRK_ZUNMQR, - $ 2*N+N**2+N+LWRK_ZUNMLQ, - $ N+N**2+LWRK_ZGESVJU, - $ N+LWRK_ZUNMQRM ) - END IF - ELSE - CALL ZGESVJ( 'L', 'U', 'V', N, N, U, LDU, SVA, - $ N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR ) - LWRK_ZGESVJV = INT( CDUMMY(1) ) - CALL ZUNMQR( 'L', 'N', N, N, N, CDUMMY, N, CDUMMY, - $ V, LDV, CDUMMY, -1, IERR ) - LWRK_ZUNMQR = INT( CDUMMY(1) ) - CALL ZUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U, - $ LDU, CDUMMY, -1, IERR ) - LWRK_ZUNMQRM = INT( CDUMMY(1) ) - IF ( ERREST ) THEN - OPTWRK = MAX( N+LWRK_ZGEQP3, N+LWCON, - $ 2*N+LWRK_ZGEQRF, 2*N+N**2, - $ 2*N+N**2+LWRK_ZGESVJV, - $ 2*N+N**2+N+LWRK_ZUNMQR,N+LWRK_ZUNMQRM ) - ELSE - OPTWRK = MAX( N+LWRK_ZGEQP3, 2*N+LWRK_ZGEQRF, - $ 2*N+N**2, 2*N+N**2+LWRK_ZGESVJV, - $ 2*N+N**2+N+LWRK_ZUNMQR, - $ N+LWRK_ZUNMQRM ) - END IF - END IF - END IF - IF ( L2TRAN .OR. ROWPIV ) THEN - MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ, LRWCON ) - ELSE - MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON ) - END IF - END IF - MINWRK = MAX( 2, MINWRK ) - OPTWRK = MAX( MINWRK, OPTWRK ) - IF ( LWORK .LT. MINWRK .AND. (.NOT.LQUERY) ) INFO = - 17 - IF ( LRWORK .LT. MINRWRK .AND. (.NOT.LQUERY) ) INFO = - 19 - END IF -* - IF ( INFO .NE. 0 ) THEN -* #:( - CALL XERBLA( 'ZGEJSV', - INFO ) - RETURN - ELSE IF ( LQUERY ) THEN - CWORK(1) = OPTWRK - CWORK(2) = MINWRK - RWORK(1) = MINRWRK - IWORK(1) = MAX( 4, MINIWRK ) - RETURN - END IF -* -* Quick return for void matrix (Y3K safe) -* #:) - IF ( ( M .EQ. 0 ) .OR. ( N .EQ. 0 ) ) THEN - IWORK(1:4) = 0 - RWORK(1:7) = 0 - RETURN - ENDIF -* -* Determine whether the matrix U should be M x N or M x M -* - IF ( LSVEC ) THEN - N1 = N - IF ( LSAME( JOBU, 'F' ) ) N1 = M - END IF -* -* Set numerical parameters -* -*! NOTE: Make sure DLAMCH() does not fail on the target architecture. -* - EPSLN = DLAMCH('Epsilon') - SFMIN = DLAMCH('SafeMinimum') - SMALL = SFMIN / EPSLN - BIG = DLAMCH('O') -* BIG = ONE / SFMIN -* -* Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N -* -*(!) If necessary, scale SVA() to protect the largest norm from -* overflow. It is possible that this scaling pushes the smallest -* column norm left from the underflow threshold (extreme case). -* - SCALEM = ONE / SQRT(DBLE(M)*DBLE(N)) - NOSCAL = .TRUE. - GOSCAL = .TRUE. - DO 1874 p = 1, N - AAPP = ZERO - AAQQ = ONE - CALL ZLASSQ( M, A(1,p), 1, AAPP, AAQQ ) - IF ( AAPP .GT. BIG ) THEN - INFO = - 9 - CALL XERBLA( 'ZGEJSV', -INFO ) - RETURN - END IF - AAQQ = SQRT(AAQQ) - IF ( ( AAPP .LT. (BIG / AAQQ) ) .AND. NOSCAL ) THEN - SVA(p) = AAPP * AAQQ - ELSE - NOSCAL = .FALSE. - SVA(p) = AAPP * ( AAQQ * SCALEM ) - IF ( GOSCAL ) THEN - GOSCAL = .FALSE. - CALL DSCAL( p-1, SCALEM, SVA, 1 ) - END IF - END IF - 1874 CONTINUE -* - IF ( NOSCAL ) SCALEM = ONE -* - AAPP = ZERO - AAQQ = BIG - DO 4781 p = 1, N - AAPP = MAX( AAPP, SVA(p) ) - IF ( SVA(p) .NE. ZERO ) AAQQ = MIN( AAQQ, SVA(p) ) - 4781 CONTINUE -* -* Quick return for zero M x N matrix -* #:) - IF ( AAPP .EQ. ZERO ) THEN - IF ( LSVEC ) CALL ZLASET( 'G', M, N1, CZERO, CONE, U, LDU ) - IF ( RSVEC ) CALL ZLASET( 'G', N, N, CZERO, CONE, V, LDV ) - RWORK(1) = ONE - RWORK(2) = ONE - IF ( ERREST ) RWORK(3) = ONE - IF ( LSVEC .AND. RSVEC ) THEN - RWORK(4) = ONE - RWORK(5) = ONE - END IF - IF ( L2TRAN ) THEN - RWORK(6) = ZERO - RWORK(7) = ZERO - END IF - IWORK(1) = 0 - IWORK(2) = 0 - IWORK(3) = 0 - IWORK(4) = -1 - RETURN - END IF -* -* Issue warning if denormalized column norms detected. Override the -* high relative accuracy request. Issue licence to kill nonzero columns -* (set them to zero) whose norm is less than sigma_max / BIG (roughly). -* #:( - WARNING = 0 - IF ( AAQQ .LE. SFMIN ) THEN - L2RANK = .TRUE. - L2KILL = .TRUE. - WARNING = 1 - END IF -* -* Quick return for one-column matrix -* #:) - IF ( N .EQ. 1 ) THEN -* - IF ( LSVEC ) THEN - CALL ZLASCL( 'G',0,0,SVA(1),SCALEM, M,1,A(1,1),LDA,IERR ) - CALL ZLACPY( 'A', M, 1, A, LDA, U, LDU ) -* computing all M left singular vectors of the M x 1 matrix - IF ( N1 .NE. N ) THEN - CALL ZGEQRF( M, N, U,LDU, CWORK, CWORK(N+1),LWORK-N,IERR ) - CALL ZUNGQR( M,N1,1, U,LDU,CWORK,CWORK(N+1),LWORK-N,IERR ) - CALL ZCOPY( M, A(1,1), 1, U(1,1), 1 ) - END IF - END IF - IF ( RSVEC ) THEN - V(1,1) = CONE - END IF - IF ( SVA(1) .LT. (BIG*SCALEM) ) THEN - SVA(1) = SVA(1) / SCALEM - SCALEM = ONE - END IF - RWORK(1) = ONE / SCALEM - RWORK(2) = ONE - IF ( SVA(1) .NE. ZERO ) THEN - IWORK(1) = 1 - IF ( ( SVA(1) / SCALEM) .GE. SFMIN ) THEN - IWORK(2) = 1 - ELSE - IWORK(2) = 0 - END IF - ELSE - IWORK(1) = 0 - IWORK(2) = 0 - END IF - IWORK(3) = 0 - IWORK(4) = -1 - IF ( ERREST ) RWORK(3) = ONE - IF ( LSVEC .AND. RSVEC ) THEN - RWORK(4) = ONE - RWORK(5) = ONE - END IF - IF ( L2TRAN ) THEN - RWORK(6) = ZERO - RWORK(7) = ZERO - END IF - RETURN -* - END IF -* - TRANSP = .FALSE. -* - AATMAX = -ONE - AATMIN = BIG - IF ( ROWPIV .OR. L2TRAN ) THEN -* -* Compute the row norms, needed to determine row pivoting sequence -* (in the case of heavily row weighted A, row pivoting is strongly -* advised) and to collect information needed to compare the -* structures of A * A^* and A^* * A (in the case L2TRAN.EQ..TRUE.). -* - IF ( L2TRAN ) THEN - DO 1950 p = 1, M - XSC = ZERO - TEMP1 = ONE - CALL ZLASSQ( N, A(p,1), LDA, XSC, TEMP1 ) -* ZLASSQ gets both the ell_2 and the ell_infinity norm -* in one pass through the vector - RWORK(M+p) = XSC * SCALEM - RWORK(p) = XSC * (SCALEM*SQRT(TEMP1)) - AATMAX = MAX( AATMAX, RWORK(p) ) - IF (RWORK(p) .NE. ZERO) - $ AATMIN = MIN(AATMIN,RWORK(p)) - 1950 CONTINUE - ELSE - DO 1904 p = 1, M - RWORK(M+p) = SCALEM*ABS( A(p,IZAMAX(N,A(p,1),LDA)) ) - AATMAX = MAX( AATMAX, RWORK(M+p) ) - AATMIN = MIN( AATMIN, RWORK(M+p) ) - 1904 CONTINUE - END IF -* - END IF -* -* For square matrix A try to determine whether A^* would be better -* input for the preconditioned Jacobi SVD, with faster convergence. -* The decision is based on an O(N) function of the vector of column -* and row norms of A, based on the Shannon entropy. This should give -* the right choice in most cases when the difference actually matters. -* It may fail and pick the slower converging side. -* - ENTRA = ZERO - ENTRAT = ZERO - IF ( L2TRAN ) THEN -* - XSC = ZERO - TEMP1 = ONE - CALL DLASSQ( N, SVA, 1, XSC, TEMP1 ) - TEMP1 = ONE / TEMP1 -* - ENTRA = ZERO - DO 1113 p = 1, N - BIG1 = ( ( SVA(p) / XSC )**2 ) * TEMP1 - IF ( BIG1 .NE. ZERO ) ENTRA = ENTRA + BIG1 * DLOG(BIG1) - 1113 CONTINUE - ENTRA = - ENTRA / DLOG(DBLE(N)) -* -* Now, SVA().^2/Trace(A^* * A) is a point in the probability simplex. -* It is derived from the diagonal of A^* * A. Do the same with the -* diagonal of A * A^*, compute the entropy of the corresponding -* probability distribution. Note that A * A^* and A^* * A have the -* same trace. -* - ENTRAT = ZERO - DO 1114 p = 1, M - BIG1 = ( ( RWORK(p) / XSC )**2 ) * TEMP1 - IF ( BIG1 .NE. ZERO ) ENTRAT = ENTRAT + BIG1 * DLOG(BIG1) - 1114 CONTINUE - ENTRAT = - ENTRAT / DLOG(DBLE(M)) -* -* Analyze the entropies and decide A or A^*. Smaller entropy -* usually means better input for the algorithm. -* - TRANSP = ( ENTRAT .LT. ENTRA ) -* -* If A^* is better than A, take the adjoint of A. This is allowed -* only for square matrices, M=N. - IF ( TRANSP ) THEN -* In an optimal implementation, this trivial transpose -* should be replaced with faster transpose. - DO 1115 p = 1, N - 1 - A(p,p) = CONJG(A(p,p)) - DO 1116 q = p + 1, N - CTEMP = CONJG(A(q,p)) - A(q,p) = CONJG(A(p,q)) - A(p,q) = CTEMP - 1116 CONTINUE - 1115 CONTINUE - A(N,N) = CONJG(A(N,N)) - DO 1117 p = 1, N - RWORK(M+p) = SVA(p) - SVA(p) = RWORK(p) -* previously computed row 2-norms are now column 2-norms -* of the transposed matrix - 1117 CONTINUE - TEMP1 = AAPP - AAPP = AATMAX - AATMAX = TEMP1 - TEMP1 = AAQQ - AAQQ = AATMIN - AATMIN = TEMP1 - KILL = LSVEC - LSVEC = RSVEC - RSVEC = KILL - IF ( LSVEC ) N1 = N -* - ROWPIV = .TRUE. - END IF -* - END IF -* END IF L2TRAN -* -* Scale the matrix so that its maximal singular value remains less -* than SQRT(BIG) -- the matrix is scaled so that its maximal column -* has Euclidean norm equal to SQRT(BIG/N). The only reason to keep -* SQRT(BIG) instead of BIG is the fact that ZGEJSV uses LAPACK and -* BLAS routines that, in some implementations, are not capable of -* working in the full interval [SFMIN,BIG] and that they may provoke -* overflows in the intermediate results. If the singular values spread -* from SFMIN to BIG, then ZGESVJ will compute them. So, in that case, -* one should use ZGESVJ instead of ZGEJSV. -* >> change in the April 2016 update: allow bigger range, i.e. the -* largest column is allowed up to BIG/N and ZGESVJ will do the rest. - BIG1 = SQRT( BIG ) - TEMP1 = SQRT( BIG / DBLE(N) ) -* TEMP1 = BIG/DBLE(N) -* - CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, N, 1, SVA, N, IERR ) - IF ( AAQQ .GT. (AAPP * SFMIN) ) THEN - AAQQ = ( AAQQ / AAPP ) * TEMP1 - ELSE - AAQQ = ( AAQQ * TEMP1 ) / AAPP - END IF - TEMP1 = TEMP1 * SCALEM - CALL ZLASCL( 'G', 0, 0, AAPP, TEMP1, M, N, A, LDA, IERR ) -* -* To undo scaling at the end of this procedure, multiply the -* computed singular values with USCAL2 / USCAL1. -* - USCAL1 = TEMP1 - USCAL2 = AAPP -* - IF ( L2KILL ) THEN -* L2KILL enforces computation of nonzero singular values in -* the restricted range of condition number of the initial A, -* sigma_max(A) / sigma_min(A) approx. SQRT(BIG)/SQRT(SFMIN). - XSC = SQRT( SFMIN ) - ELSE - XSC = SMALL -* -* Now, if the condition number of A is too big, -* sigma_max(A) / sigma_min(A) .GT. SQRT(BIG/N) * EPSLN / SFMIN, -* as a precaution measure, the full SVD is computed using ZGESVJ -* with accumulated Jacobi rotations. This provides numerically -* more robust computation, at the cost of slightly increased run -* time. Depending on the concrete implementation of BLAS and LAPACK -* (i.e. how they behave in presence of extreme ill-conditioning) the -* implementor may decide to remove this switch. - IF ( ( AAQQ.LT.SQRT(SFMIN) ) .AND. LSVEC .AND. RSVEC ) THEN - JRACC = .TRUE. - END IF -* - END IF - IF ( AAQQ .LT. XSC ) THEN - DO 700 p = 1, N - IF ( SVA(p) .LT. XSC ) THEN - CALL ZLASET( 'A', M, 1, CZERO, CZERO, A(1,p), LDA ) - SVA(p) = ZERO - END IF - 700 CONTINUE - END IF -* -* Preconditioning using QR factorization with pivoting -* - IF ( ROWPIV ) THEN -* Optional row permutation (Bjoerck row pivoting): -* A result by Cox and Higham shows that the Bjoerck's -* row pivoting combined with standard column pivoting -* has similar effect as Powell-Reid complete pivoting. -* The ell-infinity norms of A are made nonincreasing. - IF ( ( LSVEC .AND. RSVEC ) .AND. .NOT.( JRACC ) ) THEN - IWOFF = 2*N - ELSE - IWOFF = N - END IF - DO 1952 p = 1, M - 1 - q = IDAMAX( M-p+1, RWORK(M+p), 1 ) + p - 1 - IWORK(IWOFF+p) = q - IF ( p .NE. q ) THEN - TEMP1 = RWORK(M+p) - RWORK(M+p) = RWORK(M+q) - RWORK(M+q) = TEMP1 - END IF - 1952 CONTINUE - CALL ZLASWP( N, A, LDA, 1, M-1, IWORK(IWOFF+1), 1 ) - END IF -* -* End of the preparation phase (scaling, optional sorting and -* transposing, optional flushing of small columns). -* -* Preconditioning -* -* If the full SVD is needed, the right singular vectors are computed -* from a matrix equation, and for that we need theoretical analysis -* of the Businger-Golub pivoting. So we use ZGEQP3 as the first RR QRF. -* In all other cases the first RR QRF can be chosen by other criteria -* (eg speed by replacing global with restricted window pivoting, such -* as in xGEQPX from TOMS # 782). Good results will be obtained using -* xGEQPX with properly (!) chosen numerical parameters. -* Any improvement of ZGEQP3 improves overall performance of ZGEJSV. -* -* A * P1 = Q1 * [ R1^* 0]^*: - DO 1963 p = 1, N -* .. all columns are free columns - IWORK(p) = 0 - 1963 CONTINUE - CALL ZGEQP3( M, N, A, LDA, IWORK, CWORK, CWORK(N+1), LWORK-N, - $ RWORK, IERR ) -* -* The upper triangular matrix R1 from the first QRF is inspected for -* rank deficiency and possibilities for deflation, or possible -* ill-conditioning. Depending on the user specified flag L2RANK, -* the procedure explores possibilities to reduce the numerical -* rank by inspecting the computed upper triangular factor. If -* L2RANK or L2ABER are up, then ZGEJSV will compute the SVD of -* A + dA, where ||dA|| <= f(M,N)*EPSLN. -* - NR = 1 - IF ( L2ABER ) THEN -* Standard absolute error bound suffices. All sigma_i with -* sigma_i < N*EPSLN*||A|| are flushed to zero. This is an -* aggressive enforcement of lower numerical rank by introducing a -* backward error of the order of N*EPSLN*||A||. - TEMP1 = SQRT(DBLE(N))*EPSLN - DO 3001 p = 2, N - IF ( ABS(A(p,p)) .GE. (TEMP1*ABS(A(1,1))) ) THEN - NR = NR + 1 - ELSE - GO TO 3002 - END IF - 3001 CONTINUE - 3002 CONTINUE - ELSE IF ( L2RANK ) THEN -* .. similarly as above, only slightly more gentle (less aggressive). -* Sudden drop on the diagonal of R1 is used as the criterion for -* close-to-rank-deficient. - TEMP1 = SQRT(SFMIN) - DO 3401 p = 2, N - IF ( ( ABS(A(p,p)) .LT. (EPSLN*ABS(A(p-1,p-1))) ) .OR. - $ ( ABS(A(p,p)) .LT. SMALL ) .OR. - $ ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3402 - NR = NR + 1 - 3401 CONTINUE - 3402 CONTINUE -* - ELSE -* The goal is high relative accuracy. However, if the matrix -* has high scaled condition number the relative accuracy is in -* general not feasible. Later on, a condition number estimator -* will be deployed to estimate the scaled condition number. -* Here we just remove the underflowed part of the triangular -* factor. This prevents the situation in which the code is -* working hard to get the accuracy not warranted by the data. - TEMP1 = SQRT(SFMIN) - DO 3301 p = 2, N - IF ( ( ABS(A(p,p)) .LT. SMALL ) .OR. - $ ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3302 - NR = NR + 1 - 3301 CONTINUE - 3302 CONTINUE -* - END IF -* - ALMORT = .FALSE. - IF ( NR .EQ. N ) THEN - MAXPRJ = ONE - DO 3051 p = 2, N - TEMP1 = ABS(A(p,p)) / SVA(IWORK(p)) - MAXPRJ = MIN( MAXPRJ, TEMP1 ) - 3051 CONTINUE - IF ( MAXPRJ**2 .GE. ONE - DBLE(N)*EPSLN ) ALMORT = .TRUE. - END IF -* -* - SCONDA = - ONE - CONDR1 = - ONE - CONDR2 = - ONE -* - IF ( ERREST ) THEN - IF ( N .EQ. NR ) THEN - IF ( RSVEC ) THEN -* .. V is available as workspace - CALL ZLACPY( 'U', N, N, A, LDA, V, LDV ) - DO 3053 p = 1, N - TEMP1 = SVA(IWORK(p)) - CALL ZDSCAL( p, ONE/TEMP1, V(1,p), 1 ) - 3053 CONTINUE - IF ( LSVEC )THEN - CALL ZPOCON( 'U', N, V, LDV, ONE, TEMP1, - $ CWORK(N+1), RWORK, IERR ) - ELSE - CALL ZPOCON( 'U', N, V, LDV, ONE, TEMP1, - $ CWORK, RWORK, IERR ) - END IF -* - ELSE IF ( LSVEC ) THEN -* .. U is available as workspace - CALL ZLACPY( 'U', N, N, A, LDA, U, LDU ) - DO 3054 p = 1, N - TEMP1 = SVA(IWORK(p)) - CALL ZDSCAL( p, ONE/TEMP1, U(1,p), 1 ) - 3054 CONTINUE - CALL ZPOCON( 'U', N, U, LDU, ONE, TEMP1, - $ CWORK(N+1), RWORK, IERR ) - ELSE - CALL ZLACPY( 'U', N, N, A, LDA, CWORK, N ) -*[] CALL ZLACPY( 'U', N, N, A, LDA, CWORK(N+1), N ) -* Change: here index shifted by N to the left, CWORK(1:N) -* not needed for SIGMA only computation - DO 3052 p = 1, N - TEMP1 = SVA(IWORK(p)) -*[] CALL ZDSCAL( p, ONE/TEMP1, CWORK(N+(p-1)*N+1), 1 ) - CALL ZDSCAL( p, ONE/TEMP1, CWORK((p-1)*N+1), 1 ) - 3052 CONTINUE -* .. the columns of R are scaled to have unit Euclidean lengths. -*[] CALL ZPOCON( 'U', N, CWORK(N+1), N, ONE, TEMP1, -*[] $ CWORK(N+N*N+1), RWORK, IERR ) - CALL ZPOCON( 'U', N, CWORK, N, ONE, TEMP1, - $ CWORK(N*N+1), RWORK, IERR ) -* - END IF - IF ( TEMP1 .NE. ZERO ) THEN - SCONDA = ONE / SQRT(TEMP1) - ELSE - SCONDA = - ONE - END IF -* SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1). -* N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA - ELSE - SCONDA = - ONE - END IF - END IF -* - L2PERT = L2PERT .AND. ( ABS( A(1,1)/A(NR,NR) ) .GT. SQRT(BIG1) ) -* If there is no violent scaling, artificial perturbation is not needed. -* -* Phase 3: -* - IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN -* -* Singular Values only -* -* .. transpose A(1:NR,1:N) - DO 1946 p = 1, MIN( N-1, NR ) - CALL ZCOPY( N-p, A(p,p+1), LDA, A(p+1,p), 1 ) - CALL ZLACGV( N-p+1, A(p,p), 1 ) - 1946 CONTINUE - IF ( NR .EQ. N ) A(N,N) = CONJG(A(N,N)) -* -* The following two DO-loops introduce small relative perturbation -* into the strict upper triangle of the lower triangular matrix. -* Small entries below the main diagonal are also changed. -* This modification is useful if the computing environment does not -* provide/allow FLUSH TO ZERO underflow, for it prevents many -* annoying denormalized numbers in case of strongly scaled matrices. -* The perturbation is structured so that it does not introduce any -* new perturbation of the singular values, and it does not destroy -* the job done by the preconditioner. -* The licence for this perturbation is in the variable L2PERT, which -* should be .FALSE. if FLUSH TO ZERO underflow is active. -* - IF ( .NOT. ALMORT ) THEN -* - IF ( L2PERT ) THEN -* XSC = SQRT(SMALL) - XSC = EPSLN / DBLE(N) - DO 4947 q = 1, NR - CTEMP = DCMPLX(XSC*ABS(A(q,q)),ZERO) - DO 4949 p = 1, N - IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) ) - $ .OR. ( p .LT. q ) ) -* $ A(p,q) = TEMP1 * ( A(p,q) / ABS(A(p,q)) ) - $ A(p,q) = CTEMP - 4949 CONTINUE - 4947 CONTINUE - ELSE - CALL ZLASET( 'U', NR-1,NR-1, CZERO,CZERO, A(1,2),LDA ) - END IF -* -* .. second preconditioning using the QR factorization -* - CALL ZGEQRF( N,NR, A,LDA, CWORK, CWORK(N+1),LWORK-N, IERR ) -* -* .. and transpose upper to lower triangular - DO 1948 p = 1, NR - 1 - CALL ZCOPY( NR-p, A(p,p+1), LDA, A(p+1,p), 1 ) - CALL ZLACGV( NR-p+1, A(p,p), 1 ) - 1948 CONTINUE -* - END IF -* -* Row-cyclic Jacobi SVD algorithm with column pivoting -* -* .. again some perturbation (a "background noise") is added -* to drown denormals - IF ( L2PERT ) THEN -* XSC = SQRT(SMALL) - XSC = EPSLN / DBLE(N) - DO 1947 q = 1, NR - CTEMP = DCMPLX(XSC*ABS(A(q,q)),ZERO) - DO 1949 p = 1, NR - IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) ) - $ .OR. ( p .LT. q ) ) -* $ A(p,q) = TEMP1 * ( A(p,q) / ABS(A(p,q)) ) - $ A(p,q) = CTEMP - 1949 CONTINUE - 1947 CONTINUE - ELSE - CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, A(1,2), LDA ) - END IF -* -* .. and one-sided Jacobi rotations are started on a lower -* triangular matrix (plus perturbation which is ignored in -* the part which destroys triangular form (confusing?!)) -* - CALL ZGESVJ( 'L', 'N', 'N', NR, NR, A, LDA, SVA, - $ N, V, LDV, CWORK, LWORK, RWORK, LRWORK, INFO ) -* - SCALEM = RWORK(1) - NUMRANK = NINT(RWORK(2)) -* -* - ELSE IF ( ( RSVEC .AND. ( .NOT. LSVEC ) .AND. ( .NOT. JRACC ) ) - $ .OR. - $ ( JRACC .AND. ( .NOT. LSVEC ) .AND. ( NR .NE. N ) ) ) THEN -* -* -> Singular Values and Right Singular Vectors <- -* - IF ( ALMORT ) THEN -* -* .. in this case NR equals N - DO 1998 p = 1, NR - CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 ) - CALL ZLACGV( N-p+1, V(p,p), 1 ) - 1998 CONTINUE - CALL ZLASET( 'U', NR-1,NR-1, CZERO, CZERO, V(1,2), LDV ) -* - CALL ZGESVJ( 'L','U','N', N, NR, V, LDV, SVA, NR, A, LDA, - $ CWORK, LWORK, RWORK, LRWORK, INFO ) - SCALEM = RWORK(1) - NUMRANK = NINT(RWORK(2)) - - ELSE -* -* .. two more QR factorizations ( one QRF is not enough, two require -* accumulated product of Jacobi rotations, three are perfect ) -* - CALL ZLASET( 'L', NR-1,NR-1, CZERO, CZERO, A(2,1), LDA ) - CALL ZGELQF( NR,N, A, LDA, CWORK, CWORK(N+1), LWORK-N, IERR) - CALL ZLACPY( 'L', NR, NR, A, LDA, V, LDV ) - CALL ZLASET( 'U', NR-1,NR-1, CZERO, CZERO, V(1,2), LDV ) - CALL ZGEQRF( NR, NR, V, LDV, CWORK(N+1), CWORK(2*N+1), - $ LWORK-2*N, IERR ) - DO 8998 p = 1, NR - CALL ZCOPY( NR-p+1, V(p,p), LDV, V(p,p), 1 ) - CALL ZLACGV( NR-p+1, V(p,p), 1 ) - 8998 CONTINUE - CALL ZLASET('U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV) -* - CALL ZGESVJ( 'L', 'U','N', NR, NR, V,LDV, SVA, NR, U, - $ LDU, CWORK(N+1), LWORK-N, RWORK, LRWORK, INFO ) - SCALEM = RWORK(1) - NUMRANK = NINT(RWORK(2)) - IF ( NR .LT. N ) THEN - CALL ZLASET( 'A',N-NR, NR, CZERO,CZERO, V(NR+1,1), LDV ) - CALL ZLASET( 'A',NR, N-NR, CZERO,CZERO, V(1,NR+1), LDV ) - CALL ZLASET( 'A',N-NR,N-NR,CZERO,CONE, V(NR+1,NR+1),LDV ) - END IF -* - CALL ZUNMLQ( 'L', 'C', N, N, NR, A, LDA, CWORK, - $ V, LDV, CWORK(N+1), LWORK-N, IERR ) -* - END IF -* .. permute the rows of V -* DO 8991 p = 1, N -* CALL ZCOPY( N, V(p,1), LDV, A(IWORK(p),1), LDA ) -* 8991 CONTINUE -* CALL ZLACPY( 'All', N, N, A, LDA, V, LDV ) - CALL ZLAPMR( .FALSE., N, N, V, LDV, IWORK ) -* - IF ( TRANSP ) THEN - CALL ZLACPY( 'A', N, N, V, LDV, U, LDU ) - END IF -* - ELSE IF ( JRACC .AND. (.NOT. LSVEC) .AND. ( NR.EQ. N ) ) THEN -* - CALL ZLASET( 'L', N-1,N-1, CZERO, CZERO, A(2,1), LDA ) -* - CALL ZGESVJ( 'U','N','V', N, N, A, LDA, SVA, N, V, LDV, - $ CWORK, LWORK, RWORK, LRWORK, INFO ) - SCALEM = RWORK(1) - NUMRANK = NINT(RWORK(2)) - CALL ZLAPMR( .FALSE., N, N, V, LDV, IWORK ) -* - ELSE IF ( LSVEC .AND. ( .NOT. RSVEC ) ) THEN -* -* .. Singular Values and Left Singular Vectors .. -* -* .. second preconditioning step to avoid need to accumulate -* Jacobi rotations in the Jacobi iterations. - DO 1965 p = 1, NR - CALL ZCOPY( N-p+1, A(p,p), LDA, U(p,p), 1 ) - CALL ZLACGV( N-p+1, U(p,p), 1 ) - 1965 CONTINUE - CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU ) -* - CALL ZGEQRF( N, NR, U, LDU, CWORK(N+1), CWORK(2*N+1), - $ LWORK-2*N, IERR ) -* - DO 1967 p = 1, NR - 1 - CALL ZCOPY( NR-p, U(p,p+1), LDU, U(p+1,p), 1 ) - CALL ZLACGV( N-p+1, U(p,p), 1 ) - 1967 CONTINUE - CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU ) -* - CALL ZGESVJ( 'L', 'U', 'N', NR,NR, U, LDU, SVA, NR, A, - $ LDA, CWORK(N+1), LWORK-N, RWORK, LRWORK, INFO ) - SCALEM = RWORK(1) - NUMRANK = NINT(RWORK(2)) -* - IF ( NR .LT. M ) THEN - CALL ZLASET( 'A', M-NR, NR,CZERO, CZERO, U(NR+1,1), LDU ) - IF ( NR .LT. N1 ) THEN - CALL ZLASET( 'A',NR, N1-NR, CZERO, CZERO, U(1,NR+1),LDU ) - CALL ZLASET( 'A',M-NR,N1-NR,CZERO,CONE,U(NR+1,NR+1),LDU ) - END IF - END IF -* - CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U, - $ LDU, CWORK(N+1), LWORK-N, IERR ) -* - IF ( ROWPIV ) - $ CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 ) -* - DO 1974 p = 1, N1 - XSC = ONE / DZNRM2( M, U(1,p), 1 ) - CALL ZDSCAL( M, XSC, U(1,p), 1 ) - 1974 CONTINUE -* - IF ( TRANSP ) THEN - CALL ZLACPY( 'A', N, N, U, LDU, V, LDV ) - END IF -* - ELSE -* -* .. Full SVD .. -* - IF ( .NOT. JRACC ) THEN -* - IF ( .NOT. ALMORT ) THEN -* -* Second Preconditioning Step (QRF [with pivoting]) -* Note that the composition of TRANSPOSE, QRF and TRANSPOSE is -* equivalent to an LQF CALL. Since in many libraries the QRF -* seems to be better optimized than the LQF, we do explicit -* transpose and use the QRF. This is subject to changes in an -* optimized implementation of ZGEJSV. -* - DO 1968 p = 1, NR - CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 ) - CALL ZLACGV( N-p+1, V(p,p), 1 ) - 1968 CONTINUE -* -* .. the following two loops perturb small entries to avoid -* denormals in the second QR factorization, where they are -* as good as zeros. This is done to avoid painfully slow -* computation with denormals. The relative size of the perturbation -* is a parameter that can be changed by the implementer. -* This perturbation device will be obsolete on machines with -* properly implemented arithmetic. -* To switch it off, set L2PERT=.FALSE. To remove it from the -* code, remove the action under L2PERT=.TRUE., leave the ELSE part. -* The following two loops should be blocked and fused with the -* transposed copy above. -* - IF ( L2PERT ) THEN - XSC = SQRT(SMALL) - DO 2969 q = 1, NR - CTEMP = DCMPLX(XSC*ABS( V(q,q) ),ZERO) - DO 2968 p = 1, N - IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 ) - $ .OR. ( p .LT. q ) ) -* $ V(p,q) = TEMP1 * ( V(p,q) / ABS(V(p,q)) ) - $ V(p,q) = CTEMP - IF ( p .LT. q ) V(p,q) = - V(p,q) - 2968 CONTINUE - 2969 CONTINUE - ELSE - CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV ) - END IF -* -* Estimate the row scaled condition number of R1 -* (If R1 is rectangular, N > NR, then the condition number -* of the leading NR x NR submatrix is estimated.) -* - CALL ZLACPY( 'L', NR, NR, V, LDV, CWORK(2*N+1), NR ) - DO 3950 p = 1, NR - TEMP1 = DZNRM2(NR-p+1,CWORK(2*N+(p-1)*NR+p),1) - CALL ZDSCAL(NR-p+1,ONE/TEMP1,CWORK(2*N+(p-1)*NR+p),1) - 3950 CONTINUE - CALL ZPOCON('L',NR,CWORK(2*N+1),NR,ONE,TEMP1, - $ CWORK(2*N+NR*NR+1),RWORK,IERR) - CONDR1 = ONE / SQRT(TEMP1) -* .. here need a second opinion on the condition number -* .. then assume worst case scenario -* R1 is OK for inverse <=> CONDR1 .LT. DBLE(N) -* more conservative <=> CONDR1 .LT. SQRT(DBLE(N)) -* - COND_OK = SQRT(SQRT(DBLE(NR))) -*[TP] COND_OK is a tuning parameter. -* - IF ( CONDR1 .LT. COND_OK ) THEN -* .. the second QRF without pivoting. Note: in an optimized -* implementation, this QRF should be implemented as the QRF -* of a lower triangular matrix. -* R1^* = Q2 * R2 - CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1), - $ LWORK-2*N, IERR ) -* - IF ( L2PERT ) THEN - XSC = SQRT(SMALL)/EPSLN - DO 3959 p = 2, NR - DO 3958 q = 1, p - 1 - CTEMP=DCMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))), - $ ZERO) - IF ( ABS(V(q,p)) .LE. TEMP1 ) -* $ V(q,p) = TEMP1 * ( V(q,p) / ABS(V(q,p)) ) - $ V(q,p) = CTEMP - 3958 CONTINUE - 3959 CONTINUE - END IF -* - IF ( NR .NE. N ) - $ CALL ZLACPY( 'A', N, NR, V, LDV, CWORK(2*N+1), N ) -* .. save ... -* -* .. this transposed copy should be better than naive - DO 1969 p = 1, NR - 1 - CALL ZCOPY( NR-p, V(p,p+1), LDV, V(p+1,p), 1 ) - CALL ZLACGV(NR-p+1, V(p,p), 1 ) - 1969 CONTINUE - V(NR,NR)=CONJG(V(NR,NR)) -* - CONDR2 = CONDR1 -* - ELSE -* -* .. ill-conditioned case: second QRF with pivoting -* Note that windowed pivoting would be equally good -* numerically, and more run-time efficient. So, in -* an optimal implementation, the next call to ZGEQP3 -* should be replaced with eg. CALL ZGEQPX (ACM TOMS #782) -* with properly (carefully) chosen parameters. -* -* R1^* * P2 = Q2 * R2 - DO 3003 p = 1, NR - IWORK(N+p) = 0 - 3003 CONTINUE - CALL ZGEQP3( N, NR, V, LDV, IWORK(N+1), CWORK(N+1), - $ CWORK(2*N+1), LWORK-2*N, RWORK, IERR ) -** CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1), -** $ LWORK-2*N, IERR ) - IF ( L2PERT ) THEN - XSC = SQRT(SMALL) - DO 3969 p = 2, NR - DO 3968 q = 1, p - 1 - CTEMP=DCMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))), - $ ZERO) - IF ( ABS(V(q,p)) .LE. TEMP1 ) -* $ V(q,p) = TEMP1 * ( V(q,p) / ABS(V(q,p)) ) - $ V(q,p) = CTEMP - 3968 CONTINUE - 3969 CONTINUE - END IF -* - CALL ZLACPY( 'A', N, NR, V, LDV, CWORK(2*N+1), N ) -* - IF ( L2PERT ) THEN - XSC = SQRT(SMALL) - DO 8970 p = 2, NR - DO 8971 q = 1, p - 1 - CTEMP=DCMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))), - $ ZERO) -* V(p,q) = - TEMP1*( V(q,p) / ABS(V(q,p)) ) - V(p,q) = - CTEMP - 8971 CONTINUE - 8970 CONTINUE - ELSE - CALL ZLASET( 'L',NR-1,NR-1,CZERO,CZERO,V(2,1),LDV ) - END IF -* Now, compute R2 = L3 * Q3, the LQ factorization. - CALL ZGELQF( NR, NR, V, LDV, CWORK(2*N+N*NR+1), - $ CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, IERR ) -* .. and estimate the condition number - CALL ZLACPY( 'L',NR,NR,V,LDV,CWORK(2*N+N*NR+NR+1),NR ) - DO 4950 p = 1, NR - TEMP1 = DZNRM2( p, CWORK(2*N+N*NR+NR+p), NR ) - CALL ZDSCAL( p, ONE/TEMP1, CWORK(2*N+N*NR+NR+p), NR ) - 4950 CONTINUE - CALL ZPOCON( 'L',NR,CWORK(2*N+N*NR+NR+1),NR,ONE,TEMP1, - $ CWORK(2*N+N*NR+NR+NR*NR+1),RWORK,IERR ) - CONDR2 = ONE / SQRT(TEMP1) -* -* - IF ( CONDR2 .GE. COND_OK ) THEN -* .. save the Householder vectors used for Q3 -* (this overwrites the copy of R2, as it will not be -* needed in this branch, but it does not overwritte the -* Huseholder vectors of Q2.). - CALL ZLACPY( 'U', NR, NR, V, LDV, CWORK(2*N+1), N ) -* .. and the rest of the information on Q3 is in -* WORK(2*N+N*NR+1:2*N+N*NR+N) - END IF -* - END IF -* - IF ( L2PERT ) THEN - XSC = SQRT(SMALL) - DO 4968 q = 2, NR - CTEMP = XSC * V(q,q) - DO 4969 p = 1, q - 1 -* V(p,q) = - TEMP1*( V(p,q) / ABS(V(p,q)) ) - V(p,q) = - CTEMP - 4969 CONTINUE - 4968 CONTINUE - ELSE - CALL ZLASET( 'U', NR-1,NR-1, CZERO,CZERO, V(1,2), LDV ) - END IF -* -* Second preconditioning finished; continue with Jacobi SVD -* The input matrix is lower trinagular. -* -* Recover the right singular vectors as solution of a well -* conditioned triangular matrix equation. -* - IF ( CONDR1 .LT. COND_OK ) THEN -* - CALL ZGESVJ( 'L','U','N',NR,NR,V,LDV,SVA,NR,U, LDU, - $ CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,RWORK, - $ LRWORK, INFO ) - SCALEM = RWORK(1) - NUMRANK = NINT(RWORK(2)) - DO 3970 p = 1, NR - CALL ZCOPY( NR, V(1,p), 1, U(1,p), 1 ) - CALL ZDSCAL( NR, SVA(p), V(1,p), 1 ) - 3970 CONTINUE - -* .. pick the right matrix equation and solve it -* - IF ( NR .EQ. N ) THEN -* :)) .. best case, R1 is inverted. The solution of this matrix -* equation is Q2*V2 = the product of the Jacobi rotations -* used in ZGESVJ, premultiplied with the orthogonal matrix -* from the second QR factorization. - CALL ZTRSM('L','U','N','N', NR,NR,CONE, A,LDA, V,LDV) - ELSE -* .. R1 is well conditioned, but non-square. Adjoint of R2 -* is inverted to get the product of the Jacobi rotations -* used in ZGESVJ. The Q-factor from the second QR -* factorization is then built in explicitly. - CALL ZTRSM('L','U','C','N',NR,NR,CONE,CWORK(2*N+1), - $ N,V,LDV) - IF ( NR .LT. N ) THEN - CALL ZLASET('A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV) - CALL ZLASET('A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV) - CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV) - END IF - CALL ZUNMQR('L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1), - $ V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR) - END IF -* - ELSE IF ( CONDR2 .LT. COND_OK ) THEN -* -* The matrix R2 is inverted. The solution of the matrix equation -* is Q3^* * V3 = the product of the Jacobi rotations (appplied to -* the lower triangular L3 from the LQ factorization of -* R2=L3*Q3), pre-multiplied with the transposed Q3. - CALL ZGESVJ( 'L', 'U', 'N', NR, NR, V, LDV, SVA, NR, U, - $ LDU, CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, - $ RWORK, LRWORK, INFO ) - SCALEM = RWORK(1) - NUMRANK = NINT(RWORK(2)) - DO 3870 p = 1, NR - CALL ZCOPY( NR, V(1,p), 1, U(1,p), 1 ) - CALL ZDSCAL( NR, SVA(p), U(1,p), 1 ) - 3870 CONTINUE - CALL ZTRSM('L','U','N','N',NR,NR,CONE,CWORK(2*N+1),N, - $ U,LDU) -* .. apply the permutation from the second QR factorization - DO 873 q = 1, NR - DO 872 p = 1, NR - CWORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q) - 872 CONTINUE - DO 874 p = 1, NR - U(p,q) = CWORK(2*N+N*NR+NR+p) - 874 CONTINUE - 873 CONTINUE - IF ( NR .LT. N ) THEN - CALL ZLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV ) - CALL ZLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV ) - CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV) - END IF - CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1), - $ V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR ) - ELSE -* Last line of defense. -* #:( This is a rather pathological case: no scaled condition -* improvement after two pivoted QR factorizations. Other -* possibility is that the rank revealing QR factorization -* or the condition estimator has failed, or the COND_OK -* is set very close to ONE (which is unnecessary). Normally, -* this branch should never be executed, but in rare cases of -* failure of the RRQR or condition estimator, the last line of -* defense ensures that ZGEJSV completes the task. -* Compute the full SVD of L3 using ZGESVJ with explicit -* accumulation of Jacobi rotations. - CALL ZGESVJ( 'L', 'U', 'V', NR, NR, V, LDV, SVA, NR, U, - $ LDU, CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, - $ RWORK, LRWORK, INFO ) - SCALEM = RWORK(1) - NUMRANK = NINT(RWORK(2)) - IF ( NR .LT. N ) THEN - CALL ZLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV ) - CALL ZLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV ) - CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV) - END IF - CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1), - $ V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR ) -* - CALL ZUNMLQ( 'L', 'C', NR, NR, NR, CWORK(2*N+1), N, - $ CWORK(2*N+N*NR+1), U, LDU, CWORK(2*N+N*NR+NR+1), - $ LWORK-2*N-N*NR-NR, IERR ) - DO 773 q = 1, NR - DO 772 p = 1, NR - CWORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q) - 772 CONTINUE - DO 774 p = 1, NR - U(p,q) = CWORK(2*N+N*NR+NR+p) - 774 CONTINUE - 773 CONTINUE -* - END IF -* -* Permute the rows of V using the (column) permutation from the -* first QRF. Also, scale the columns to make them unit in -* Euclidean norm. This applies to all cases. -* - TEMP1 = SQRT(DBLE(N)) * EPSLN - DO 1972 q = 1, N - DO 972 p = 1, N - CWORK(2*N+N*NR+NR+IWORK(p)) = V(p,q) - 972 CONTINUE - DO 973 p = 1, N - V(p,q) = CWORK(2*N+N*NR+NR+p) - 973 CONTINUE - XSC = ONE / DZNRM2( N, V(1,q), 1 ) - IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) ) - $ CALL ZDSCAL( N, XSC, V(1,q), 1 ) - 1972 CONTINUE -* At this moment, V contains the right singular vectors of A. -* Next, assemble the left singular vector matrix U (M x N). - IF ( NR .LT. M ) THEN - CALL ZLASET('A', M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU) - IF ( NR .LT. N1 ) THEN - CALL ZLASET('A',NR,N1-NR,CZERO,CZERO,U(1,NR+1),LDU) - CALL ZLASET('A',M-NR,N1-NR,CZERO,CONE, - $ U(NR+1,NR+1),LDU) - END IF - END IF -* -* The Q matrix from the first QRF is built into the left singular -* matrix U. This applies to all cases. -* - CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U, - $ LDU, CWORK(N+1), LWORK-N, IERR ) - -* The columns of U are normalized. The cost is O(M*N) flops. - TEMP1 = SQRT(DBLE(M)) * EPSLN - DO 1973 p = 1, NR - XSC = ONE / DZNRM2( M, U(1,p), 1 ) - IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) ) - $ CALL ZDSCAL( M, XSC, U(1,p), 1 ) - 1973 CONTINUE -* -* If the initial QRF is computed with row pivoting, the left -* singular vectors must be adjusted. -* - IF ( ROWPIV ) - $ CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 ) -* - ELSE -* -* .. the initial matrix A has almost orthogonal columns and -* the second QRF is not needed -* - CALL ZLACPY( 'U', N, N, A, LDA, CWORK(N+1), N ) - IF ( L2PERT ) THEN - XSC = SQRT(SMALL) - DO 5970 p = 2, N - CTEMP = XSC * CWORK( N + (p-1)*N + p ) - DO 5971 q = 1, p - 1 -* CWORK(N+(q-1)*N+p)=-TEMP1 * ( CWORK(N+(p-1)*N+q) / -* $ ABS(CWORK(N+(p-1)*N+q)) ) - CWORK(N+(q-1)*N+p)=-CTEMP - 5971 CONTINUE - 5970 CONTINUE - ELSE - CALL ZLASET( 'L',N-1,N-1,CZERO,CZERO,CWORK(N+2),N ) - END IF -* - CALL ZGESVJ( 'U', 'U', 'N', N, N, CWORK(N+1), N, SVA, - $ N, U, LDU, CWORK(N+N*N+1), LWORK-N-N*N, RWORK, LRWORK, - $ INFO ) -* - SCALEM = RWORK(1) - NUMRANK = NINT(RWORK(2)) - DO 6970 p = 1, N - CALL ZCOPY( N, CWORK(N+(p-1)*N+1), 1, U(1,p), 1 ) - CALL ZDSCAL( N, SVA(p), CWORK(N+(p-1)*N+1), 1 ) - 6970 CONTINUE -* - CALL ZTRSM( 'L', 'U', 'N', 'N', N, N, - $ CONE, A, LDA, CWORK(N+1), N ) - DO 6972 p = 1, N - CALL ZCOPY( N, CWORK(N+p), N, V(IWORK(p),1), LDV ) - 6972 CONTINUE - TEMP1 = SQRT(DBLE(N))*EPSLN - DO 6971 p = 1, N - XSC = ONE / DZNRM2( N, V(1,p), 1 ) - IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) ) - $ CALL ZDSCAL( N, XSC, V(1,p), 1 ) - 6971 CONTINUE -* -* Assemble the left singular vector matrix U (M x N). -* - IF ( N .LT. M ) THEN - CALL ZLASET( 'A', M-N, N, CZERO, CZERO, U(N+1,1), LDU ) - IF ( N .LT. N1 ) THEN - CALL ZLASET('A',N, N1-N, CZERO, CZERO, U(1,N+1),LDU) - CALL ZLASET( 'A',M-N,N1-N, CZERO, CONE,U(N+1,N+1),LDU) - END IF - END IF - CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U, - $ LDU, CWORK(N+1), LWORK-N, IERR ) - TEMP1 = SQRT(DBLE(M))*EPSLN - DO 6973 p = 1, N1 - XSC = ONE / DZNRM2( M, U(1,p), 1 ) - IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) ) - $ CALL ZDSCAL( M, XSC, U(1,p), 1 ) - 6973 CONTINUE -* - IF ( ROWPIV ) - $ CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 ) -* - END IF -* -* end of the >> almost orthogonal case << in the full SVD -* - ELSE -* -* This branch deploys a preconditioned Jacobi SVD with explicitly -* accumulated rotations. It is included as optional, mainly for -* experimental purposes. It does perform well, and can also be used. -* In this implementation, this branch will be automatically activated -* if the condition number sigma_max(A) / sigma_min(A) is predicted -* to be greater than the overflow threshold. This is because the -* a posteriori computation of the singular vectors assumes robust -* implementation of BLAS and some LAPACK procedures, capable of working -* in presence of extreme values, e.g. when the singular values spread from -* the underflow to the overflow threshold. -* - DO 7968 p = 1, NR - CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 ) - CALL ZLACGV( N-p+1, V(p,p), 1 ) - 7968 CONTINUE -* - IF ( L2PERT ) THEN - XSC = SQRT(SMALL/EPSLN) - DO 5969 q = 1, NR - CTEMP = DCMPLX(XSC*ABS( V(q,q) ),ZERO) - DO 5968 p = 1, N - IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 ) - $ .OR. ( p .LT. q ) ) -* $ V(p,q) = TEMP1 * ( V(p,q) / ABS(V(p,q)) ) - $ V(p,q) = CTEMP - IF ( p .LT. q ) V(p,q) = - V(p,q) - 5968 CONTINUE - 5969 CONTINUE - ELSE - CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV ) - END IF - - CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1), - $ LWORK-2*N, IERR ) - CALL ZLACPY( 'L', N, NR, V, LDV, CWORK(2*N+1), N ) -* - DO 7969 p = 1, NR - CALL ZCOPY( NR-p+1, V(p,p), LDV, U(p,p), 1 ) - CALL ZLACGV( NR-p+1, U(p,p), 1 ) - 7969 CONTINUE - - IF ( L2PERT ) THEN - XSC = SQRT(SMALL/EPSLN) - DO 9970 q = 2, NR - DO 9971 p = 1, q - 1 - CTEMP = DCMPLX(XSC * MIN(ABS(U(p,p)),ABS(U(q,q))), - $ ZERO) -* U(p,q) = - TEMP1 * ( U(q,p) / ABS(U(q,p)) ) - U(p,q) = - CTEMP - 9971 CONTINUE - 9970 CONTINUE - ELSE - CALL ZLASET('U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU ) - END IF - - CALL ZGESVJ( 'L', 'U', 'V', NR, NR, U, LDU, SVA, - $ N, V, LDV, CWORK(2*N+N*NR+1), LWORK-2*N-N*NR, - $ RWORK, LRWORK, INFO ) - SCALEM = RWORK(1) - NUMRANK = NINT(RWORK(2)) - - IF ( NR .LT. N ) THEN - CALL ZLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV ) - CALL ZLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV ) - CALL ZLASET( 'A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV ) - END IF - - CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1), - $ V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR ) -* -* Permute the rows of V using the (column) permutation from the -* first QRF. Also, scale the columns to make them unit in -* Euclidean norm. This applies to all cases. -* - TEMP1 = SQRT(DBLE(N)) * EPSLN - DO 7972 q = 1, N - DO 8972 p = 1, N - CWORK(2*N+N*NR+NR+IWORK(p)) = V(p,q) - 8972 CONTINUE - DO 8973 p = 1, N - V(p,q) = CWORK(2*N+N*NR+NR+p) - 8973 CONTINUE - XSC = ONE / DZNRM2( N, V(1,q), 1 ) - IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) ) - $ CALL ZDSCAL( N, XSC, V(1,q), 1 ) - 7972 CONTINUE -* -* At this moment, V contains the right singular vectors of A. -* Next, assemble the left singular vector matrix U (M x N). -* - IF ( NR .LT. M ) THEN - CALL ZLASET( 'A', M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU ) - IF ( NR .LT. N1 ) THEN - CALL ZLASET('A',NR, N1-NR, CZERO, CZERO, U(1,NR+1),LDU) - CALL ZLASET('A',M-NR,N1-NR, CZERO, CONE,U(NR+1,NR+1),LDU) - END IF - END IF -* - CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U, - $ LDU, CWORK(N+1), LWORK-N, IERR ) -* - IF ( ROWPIV ) - $ CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 ) -* -* - END IF - IF ( TRANSP ) THEN -* .. swap U and V because the procedure worked on A^* - DO 6974 p = 1, N - CALL ZSWAP( N, U(1,p), 1, V(1,p), 1 ) - 6974 CONTINUE - END IF -* - END IF -* end of the full SVD -* -* Undo scaling, if necessary (and possible) -* - IF ( USCAL2 .LE. (BIG/SVA(1))*USCAL1 ) THEN - CALL DLASCL( 'G', 0, 0, USCAL1, USCAL2, NR, 1, SVA, N, IERR ) - USCAL1 = ONE - USCAL2 = ONE - END IF -* - IF ( NR .LT. N ) THEN - DO 3004 p = NR+1, N - SVA(p) = ZERO - 3004 CONTINUE - END IF -* - RWORK(1) = USCAL2 * SCALEM - RWORK(2) = USCAL1 - IF ( ERREST ) RWORK(3) = SCONDA - IF ( LSVEC .AND. RSVEC ) THEN - RWORK(4) = CONDR1 - RWORK(5) = CONDR2 - END IF - IF ( L2TRAN ) THEN - RWORK(6) = ENTRA - RWORK(7) = ENTRAT - END IF -* - IWORK(1) = NR - IWORK(2) = NUMRANK - IWORK(3) = WARNING - IF ( TRANSP ) THEN - IWORK(4) = 1 - ELSE - IWORK(4) = -1 - END IF - -* - RETURN -* .. -* .. END OF ZGEJSV -* .. - END -* diff --git a/lapack-netlib/zgesvx.f b/lapack-netlib/zgesvx.f deleted file mode 100644 index 3b193a1b2..000000000 --- a/lapack-netlib/zgesvx.f +++ /dev/null @@ -1,602 +0,0 @@ -*> \brief ZGESVX computes the solution to system of linear equations A * X = B for GE matrices -* -* =========== DOCUMENTATION =========== -* -* Online html documentation available at -* http://www.netlib.org/lapack/explore-html/ -* -*> \htmlonly -*> Download ZGESVX + dependencies -*> -*> [TGZ] -*> -*> [ZIP] -*> -*> [TXT] -*> \endhtmlonly -* -* Definition: -* =========== -* -* SUBROUTINE ZGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, -* EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR, -* WORK, RWORK, INFO ) -* -* .. Scalar Arguments .. -* CHARACTER EQUED, FACT, TRANS -* INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS -* DOUBLE PRECISION RCOND -* .. -* .. Array Arguments .. -* INTEGER IPIV( * ) -* DOUBLE PRECISION BERR( * ), C( * ), FERR( * ), R( * ), -* $ RWORK( * ) -* COMPLEX*16 A( LDA, * ), AF( LDAF, * ), B( LDB, * ), -* $ WORK( * ), X( LDX, * ) -* .. -* -* -*> \par Purpose: -* ============= -*> -*> \verbatim -*> -*> ZGESVX uses the LU factorization to compute the solution to a complex -*> system of linear equations -*> A * X = B, -*> where A is an N-by-N matrix and X and B are N-by-NRHS matrices. -*> -*> Error bounds on the solution and a condition estimate are also -*> provided. -*> \endverbatim -* -*> \par Description: -* ================= -*> -*> \verbatim -*> -*> The following steps are performed: -*> -*> 1. If FACT = 'E', real scaling factors are computed to equilibrate -*> the system: -*> TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B -*> TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B -*> TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B -*> Whether or not the system will be equilibrated depends on the -*> scaling of the matrix A, but if equilibration is used, A is -*> overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') -*> or diag(C)*B (if TRANS = 'T' or 'C'). -*> -*> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the -*> matrix A (after equilibration if FACT = 'E') as -*> A = P * L * U, -*> where P is a permutation matrix, L is a unit lower triangular -*> matrix, and U is upper triangular. -*> -*> 3. If some U(i,i)=0, so that U is exactly singular, then the routine -*> returns with INFO = i. Otherwise, the factored form of A is used -*> to estimate the condition number of the matrix A. If the -*> reciprocal of the condition number is less than machine precision, -*> INFO = N+1 is returned as a warning, but the routine still goes on -*> to solve for X and compute error bounds as described below. -*> -*> 4. The system of equations is solved for X using the factored form -*> of A. -*> -*> 5. Iterative refinement is applied to improve the computed solution -*> matrix and calculate error bounds and backward error estimates -*> for it. -*> -*> 6. If equilibration was used, the matrix X is premultiplied by -*> diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so -*> that it solves the original system before equilibration. -*> \endverbatim -* -* Arguments: -* ========== -* -*> \param[in] FACT -*> \verbatim -*> FACT is CHARACTER*1 -*> Specifies whether or not the factored form of the matrix A is -*> supplied on entry, and if not, whether the matrix A should be -*> equilibrated before it is factored. -*> = 'F': On entry, AF and IPIV contain the factored form of A. -*> If EQUED is not 'N', the matrix A has been -*> equilibrated with scaling factors given by R and C. -*> A, AF, and IPIV are not modified. -*> = 'N': The matrix A will be copied to AF and factored. -*> = 'E': The matrix A will be equilibrated if necessary, then -*> copied to AF and factored. -*> \endverbatim -*> -*> \param[in] TRANS -*> \verbatim -*> TRANS is CHARACTER*1 -*> Specifies the form of the system of equations: -*> = 'N': A * X = B (No transpose) -*> = 'T': A**T * X = B (Transpose) -*> = 'C': A**H * X = B (Conjugate transpose) -*> \endverbatim -*> -*> \param[in] N -*> \verbatim -*> N is INTEGER -*> The number of linear equations, i.e., the order of the -*> matrix A. N >= 0. -*> \endverbatim -*> -*> \param[in] NRHS -*> \verbatim -*> NRHS is INTEGER -*> The number of right hand sides, i.e., the number of columns -*> of the matrices B and X. NRHS >= 0. -*> \endverbatim -*> -*> \param[in,out] A -*> \verbatim -*> A is COMPLEX*16 array, dimension (LDA,N) -*> On entry, the N-by-N matrix A. If FACT = 'F' and EQUED is -*> not 'N', then A must have been equilibrated by the scaling -*> factors in R and/or C. A is not modified if FACT = 'F' or -*> 'N', or if FACT = 'E' and EQUED = 'N' on exit. -*> -*> On exit, if EQUED .ne. 'N', A is scaled as follows: -*> EQUED = 'R': A := diag(R) * A -*> EQUED = 'C': A := A * diag(C) -*> EQUED = 'B': A := diag(R) * A * diag(C). -*> \endverbatim -*> -*> \param[in] LDA -*> \verbatim -*> LDA is INTEGER -*> The leading dimension of the array A. LDA >= max(1,N). -*> \endverbatim -*> -*> \param[in,out] AF -*> \verbatim -*> AF is COMPLEX*16 array, dimension (LDAF,N) -*> If FACT = 'F', then AF is an input argument and on entry -*> contains the factors L and U from the factorization -*> A = P*L*U as computed by ZGETRF. If EQUED .ne. 'N', then -*> AF is the factored form of the equilibrated matrix A. -*> -*> If FACT = 'N', then AF is an output argument and on exit -*> returns the factors L and U from the factorization A = P*L*U -*> of the original matrix A. -*> -*> If FACT = 'E', then AF is an output argument and on exit -*> returns the factors L and U from the factorization A = P*L*U -*> of the equilibrated matrix A (see the description of A for -*> the form of the equilibrated matrix). -*> \endverbatim -*> -*> \param[in] LDAF -*> \verbatim -*> LDAF is INTEGER -*> The leading dimension of the array AF. LDAF >= max(1,N). -*> \endverbatim -*> -*> \param[in,out] IPIV -*> \verbatim -*> IPIV is INTEGER array, dimension (N) -*> If FACT = 'F', then IPIV is an input argument and on entry -*> contains the pivot indices from the factorization A = P*L*U -*> as computed by ZGETRF; row i of the matrix was interchanged -*> with row IPIV(i). -*> -*> If FACT = 'N', then IPIV is an output argument and on exit -*> contains the pivot indices from the factorization A = P*L*U -*> of the original matrix A. -*> -*> If FACT = 'E', then IPIV is an output argument and on exit -*> contains the pivot indices from the factorization A = P*L*U -*> of the equilibrated matrix A. -*> \endverbatim -*> -*> \param[in,out] EQUED -*> \verbatim -*> EQUED is CHARACTER*1 -*> Specifies the form of equilibration that was done. -*> = 'N': No equilibration (always true if FACT = 'N'). -*> = 'R': Row equilibration, i.e., A has been premultiplied by -*> diag(R). -*> = 'C': Column equilibration, i.e., A has been postmultiplied -*> by diag(C). -*> = 'B': Both row and column equilibration, i.e., A has been -*> replaced by diag(R) * A * diag(C). -*> EQUED is an input argument if FACT = 'F'; otherwise, it is an -*> output argument. -*> \endverbatim -*> -*> \param[in,out] R -*> \verbatim -*> R is DOUBLE PRECISION array, dimension (N) -*> The row scale factors for A. If EQUED = 'R' or 'B', A is -*> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R -*> is not accessed. R is an input argument if FACT = 'F'; -*> otherwise, R is an output argument. If FACT = 'F' and -*> EQUED = 'R' or 'B', each element of R must be positive. -*> \endverbatim -*> -*> \param[in,out] C -*> \verbatim -*> C is DOUBLE PRECISION array, dimension (N) -*> The column scale factors for A. If EQUED = 'C' or 'B', A is -*> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C -*> is not accessed. C is an input argument if FACT = 'F'; -*> otherwise, C is an output argument. If FACT = 'F' and -*> EQUED = 'C' or 'B', each element of C must be positive. -*> \endverbatim -*> -*> \param[in,out] B -*> \verbatim -*> B is COMPLEX*16 array, dimension (LDB,NRHS) -*> On entry, the N-by-NRHS right hand side matrix B. -*> On exit, -*> if EQUED = 'N', B is not modified; -*> if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by -*> diag(R)*B; -*> if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is -*> overwritten by diag(C)*B. -*> \endverbatim -*> -*> \param[in] LDB -*> \verbatim -*> LDB is INTEGER -*> The leading dimension of the array B. LDB >= max(1,N). -*> \endverbatim -*> -*> \param[out] X -*> \verbatim -*> X is COMPLEX*16 array, dimension (LDX,NRHS) -*> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X -*> to the original system of equations. Note that A and B are -*> modified on exit if EQUED .ne. 'N', and the solution to the -*> equilibrated system is inv(diag(C))*X if TRANS = 'N' and -*> EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C' -*> and EQUED = 'R' or 'B'. -*> \endverbatim -*> -*> \param[in] LDX -*> \verbatim -*> LDX is INTEGER -*> The leading dimension of the array X. LDX >= max(1,N). -*> \endverbatim -*> -*> \param[out] RCOND -*> \verbatim -*> RCOND is DOUBLE PRECISION -*> The estimate of the reciprocal condition number of the matrix -*> A after equilibration (if done). If RCOND is less than the -*> machine precision (in particular, if RCOND = 0), the matrix -*> is singular to working precision. This condition is -*> indicated by a return code of INFO > 0. -*> \endverbatim -*> -*> \param[out] FERR -*> \verbatim -*> FERR is DOUBLE PRECISION array, dimension (NRHS) -*> The estimated forward error bound for each solution vector -*> X(j) (the j-th column of the solution matrix X). -*> If XTRUE is the true solution corresponding to X(j), FERR(j) -*> is an estimated upper bound for the magnitude of the largest -*> element in (X(j) - XTRUE) divided by the magnitude of the -*> largest element in X(j). The estimate is as reliable as -*> the estimate for RCOND, and is almost always a slight -*> overestimate of the true error. -*> \endverbatim -*> -*> \param[out] BERR -*> \verbatim -*> BERR is DOUBLE PRECISION array, dimension (NRHS) -*> The componentwise relative backward error of each solution -*> vector X(j) (i.e., the smallest relative change in -*> any element of A or B that makes X(j) an exact solution). -*> \endverbatim -*> -*> \param[out] WORK -*> \verbatim -*> WORK is COMPLEX*16 array, dimension (2*N) -*> \endverbatim -*> -*> \param[out] RWORK -*> \verbatim -*> RWORK is DOUBLE PRECISION array, dimension (MAX(1,2*N)) -*> On exit, RWORK(1) contains the reciprocal pivot growth -*> factor norm(A)/norm(U). The "max absolute element" norm is -*> used. If RWORK(1) is much less than 1, then the stability -*> of the LU factorization of the (equilibrated) matrix A -*> could be poor. This also means that the solution X, condition -*> estimator RCOND, and forward error bound FERR could be -*> unreliable. If factorization fails with 0 RWORK(1) contains the reciprocal pivot growth factor for the -*> leading INFO columns of A. -*> \endverbatim -*> -*> \param[out] INFO -*> \verbatim -*> INFO is INTEGER -*> = 0: successful exit -*> < 0: if INFO = -i, the i-th argument had an illegal value -*> > 0: if INFO = i, and i is -*> <= N: U(i,i) is exactly zero. The factorization has -*> been completed, but the factor U is exactly -*> singular, so the solution and error bounds -*> could not be computed. RCOND = 0 is returned. -*> = N+1: U is nonsingular, but RCOND is less than machine -*> precision, meaning that the matrix is singular -*> to working precision. Nevertheless, the -*> solution and error bounds are computed because -*> there are a number of situations where the -*> computed solution can be more accurate than the -*> value of RCOND would suggest. -*> \endverbatim -* -* Authors: -* ======== -* -*> \author Univ. of Tennessee -*> \author Univ. of California Berkeley -*> \author Univ. of Colorado Denver -*> \author NAG Ltd. -* -*> \ingroup complex16GEsolve -* -* ===================================================================== - SUBROUTINE ZGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, - $ EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR, - $ WORK, RWORK, INFO ) -* -* -- LAPACK driver routine -- -* -- LAPACK is a software package provided by Univ. of Tennessee, -- -* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* -* .. Scalar Arguments .. - CHARACTER EQUED, FACT, TRANS - INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS - DOUBLE PRECISION RCOND -* .. -* .. Array Arguments .. - INTEGER IPIV( * ) - DOUBLE PRECISION BERR( * ), C( * ), FERR( * ), R( * ), - $ RWORK( * ) - COMPLEX*16 A( LDA, * ), AF( LDAF, * ), B( LDB, * ), - $ WORK( * ), X( LDX, * ) -* .. -* -* ===================================================================== -* -* .. Parameters .. - DOUBLE PRECISION ZERO, ONE - PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) -* .. -* .. Local Scalars .. - LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU - CHARACTER NORM - INTEGER I, INFEQU, J - DOUBLE PRECISION AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN, - $ ROWCND, RPVGRW, SMLNUM -* .. -* .. External Functions .. - LOGICAL LSAME - DOUBLE PRECISION DLAMCH, ZLANGE, ZLANTR - EXTERNAL LSAME, DLAMCH, ZLANGE, ZLANTR -* .. -* .. External Subroutines .. - EXTERNAL XERBLA, ZGECON, ZGEEQU, ZGERFS, ZGETRF, ZGETRS, - $ ZLACPY, ZLAQGE -* .. -* .. Intrinsic Functions .. - INTRINSIC MAX, MIN -* .. -* .. Executable Statements .. -* - INFO = 0 - NOFACT = LSAME( FACT, 'N' ) - EQUIL = LSAME( FACT, 'E' ) - NOTRAN = LSAME( TRANS, 'N' ) - IF( NOFACT .OR. EQUIL ) THEN - EQUED = 'N' - ROWEQU = .FALSE. - COLEQU = .FALSE. - ELSE - ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' ) - COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' ) - SMLNUM = DLAMCH( 'Safe minimum' ) - BIGNUM = ONE / SMLNUM - END IF -* -* Test the input parameters. -* - IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) ) - $ THEN - INFO = -1 - ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT. - $ LSAME( TRANS, 'C' ) ) THEN - INFO = -2 - ELSE IF( N.LT.0 ) THEN - INFO = -3 - ELSE IF( NRHS.LT.0 ) THEN - INFO = -4 - ELSE IF( LDA.LT.MAX( 1, N ) ) THEN - INFO = -6 - ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN - INFO = -8 - ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT. - $ ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN - INFO = -10 - ELSE - IF( ROWEQU ) THEN - RCMIN = BIGNUM - RCMAX = ZERO - DO 10 J = 1, N - RCMIN = MIN( RCMIN, R( J ) ) - RCMAX = MAX( RCMAX, R( J ) ) - 10 CONTINUE - IF( RCMIN.LE.ZERO ) THEN - INFO = -11 - ELSE IF( N.GT.0 ) THEN - ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM ) - ELSE - ROWCND = ONE - END IF - END IF - IF( COLEQU .AND. INFO.EQ.0 ) THEN - RCMIN = BIGNUM - RCMAX = ZERO - DO 20 J = 1, N - RCMIN = MIN( RCMIN, C( J ) ) - RCMAX = MAX( RCMAX, C( J ) ) - 20 CONTINUE - IF( RCMIN.LE.ZERO ) THEN - INFO = -12 - ELSE IF( N.GT.0 ) THEN - COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM ) - ELSE - COLCND = ONE - END IF - END IF - IF( INFO.EQ.0 ) THEN - IF( LDB.LT.MAX( 1, N ) ) THEN - INFO = -14 - ELSE IF( LDX.LT.MAX( 1, N ) ) THEN - INFO = -16 - END IF - END IF - END IF -* - IF( INFO.NE.0 ) THEN - CALL XERBLA( 'ZGESVX', -INFO ) - RETURN - END IF -* - IF( EQUIL ) THEN -* -* Compute row and column scalings to equilibrate the matrix A. -* - CALL ZGEEQU( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFEQU ) - IF( INFEQU.EQ.0 ) THEN -* -* Equilibrate the matrix. -* - CALL ZLAQGE( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, - $ EQUED ) - ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' ) - COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' ) - END IF - END IF -* -* Scale the right hand side. -* - IF( NOTRAN ) THEN - IF( ROWEQU ) THEN - DO 40 J = 1, NRHS - DO 30 I = 1, N - B( I, J ) = R( I )*B( I, J ) - 30 CONTINUE - 40 CONTINUE - END IF - ELSE IF( COLEQU ) THEN - DO 60 J = 1, NRHS - DO 50 I = 1, N - B( I, J ) = C( I )*B( I, J ) - 50 CONTINUE - 60 CONTINUE - END IF -* - IF( NOFACT .OR. EQUIL ) THEN -* -* Compute the LU factorization of A. -* - CALL ZLACPY( 'Full', N, N, A, LDA, AF, LDAF ) - CALL ZGETRF( N, N, AF, LDAF, IPIV, INFO ) -* -* Return if INFO is non-zero. -* - IF( INFO.GT.0 ) THEN -* -* Compute the reciprocal pivot growth factor of the -* leading rank-deficient INFO columns of A. -* - RPVGRW = ZLANTR( 'M', 'U', 'N', INFO, INFO, AF, LDAF, - $ RWORK ) - IF( RPVGRW.EQ.ZERO ) THEN - RPVGRW = ONE - ELSE - RPVGRW = ZLANGE( 'M', N, INFO, A, LDA, RWORK ) / - $ RPVGRW - END IF - RWORK( 1 ) = RPVGRW - RCOND = ZERO - RETURN - END IF - END IF -* -* Compute the norm of the matrix A and the -* reciprocal pivot growth factor RPVGRW. -* - IF( NOTRAN ) THEN - NORM = '1' - ELSE - NORM = 'I' - END IF - ANORM = ZLANGE( NORM, N, N, A, LDA, RWORK ) - RPVGRW = ZLANTR( 'M', 'U', 'N', N, N, AF, LDAF, RWORK ) - IF( RPVGRW.EQ.ZERO ) THEN - RPVGRW = ONE - ELSE - RPVGRW = ZLANGE( 'M', N, N, A, LDA, RWORK ) / RPVGRW - END IF -* -* Compute the reciprocal of the condition number of A. -* - CALL ZGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, RWORK, INFO ) -* -* Compute the solution matrix X. -* - CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX ) - CALL ZGETRS( TRANS, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO ) -* -* Use iterative refinement to improve the computed solution and -* compute error bounds and backward error estimates for it. -* - CALL ZGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, - $ LDX, FERR, BERR, WORK, RWORK, INFO ) -* -* Transform the solution matrix X to a solution of the original -* system. -* - IF( NOTRAN ) THEN - IF( COLEQU ) THEN - DO 80 J = 1, NRHS - DO 70 I = 1, N - X( I, J ) = C( I )*X( I, J ) - 70 CONTINUE - 80 CONTINUE - DO 90 J = 1, NRHS - FERR( J ) = FERR( J ) / COLCND - 90 CONTINUE - END IF - ELSE IF( ROWEQU ) THEN - DO 110 J = 1, NRHS - DO 100 I = 1, N - X( I, J ) = R( I )*X( I, J ) - 100 CONTINUE - 110 CONTINUE - DO 120 J = 1, NRHS - FERR( J ) = FERR( J ) / ROWCND - 120 CONTINUE - END IF -* -* Set INFO = N+1 if the matrix is singular to working precision. -* - IF( RCOND.LT.DLAMCH( 'Epsilon' ) ) - $ INFO = N + 1 -* - RWORK( 1 ) = RPVGRW - RETURN -* -* End of ZGESVX -* - END