diff --git a/lapack-netlib/SRC/slaqps.f b/lapack-netlib/SRC/slaqps.f
index 9c62ec8b6..3f8af304f 100644
--- a/lapack-netlib/SRC/slaqps.f
+++ b/lapack-netlib/SRC/slaqps.f
@@ -127,7 +127,7 @@
*> \param[in,out] AUXV
*> \verbatim
*> AUXV is REAL array, dimension (NB)
-*> Auxiliar vector.
+*> Auxiliary vector.
*> \endverbatim
*>
*> \param[in,out] F
diff --git a/lapack-netlib/SRC/slaqr0.f b/lapack-netlib/SRC/slaqr0.f
index 1dcd3d176..318b46943 100644
--- a/lapack-netlib/SRC/slaqr0.f
+++ b/lapack-netlib/SRC/slaqr0.f
@@ -67,7 +67,7 @@
*> \param[in] N
*> \verbatim
*> N is INTEGER
-*> The order of the matrix H. N .GE. 0.
+*> The order of the matrix H. N >= 0.
*> \endverbatim
*>
*> \param[in] ILO
@@ -79,12 +79,12 @@
*> \verbatim
*> IHI is INTEGER
*> It is assumed that H is already upper triangular in rows
-*> and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
+*> and columns 1:ILO-1 and IHI+1:N and, if ILO > 1,
*> H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
*> previous call to SGEBAL, and then passed to SGEHRD when the
*> matrix output by SGEBAL is reduced to Hessenberg form.
*> Otherwise, ILO and IHI should be set to 1 and N,
-*> respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
+*> respectively. If N > 0, then 1 <= ILO <= IHI <= N.
*> If N = 0, then ILO = 1 and IHI = 0.
*> \endverbatim
*>
@@ -97,19 +97,19 @@
*> decomposition (the Schur form); 2-by-2 diagonal blocks
*> (corresponding to complex conjugate pairs of eigenvalues)
*> are returned in standard form, with H(i,i) = H(i+1,i+1)
-*> and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is
+*> and H(i+1,i)*H(i,i+1) < 0. If INFO = 0 and WANTT is
*> .FALSE., then the contents of H are unspecified on exit.
-*> (The output value of H when INFO.GT.0 is given under the
+*> (The output value of H when INFO > 0 is given under the
*> description of INFO below.)
*>
-*> This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
+*> This subroutine may explicitly set H(i,j) = 0 for i > j and
*> j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
*> \endverbatim
*>
*> \param[in] LDH
*> \verbatim
*> LDH is INTEGER
-*> The leading dimension of the array H. LDH .GE. max(1,N).
+*> The leading dimension of the array H. LDH >= max(1,N).
*> \endverbatim
*>
*> \param[out] WR
@@ -125,7 +125,7 @@
*> and WI(ILO:IHI). If two eigenvalues are computed as a
*> complex conjugate pair, they are stored in consecutive
*> elements of WR and WI, say the i-th and (i+1)th, with
-*> WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then
+*> WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., then
*> the eigenvalues are stored in the same order as on the
*> diagonal of the Schur form returned in H, with
*> WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
@@ -143,7 +143,7 @@
*> IHIZ is INTEGER
*> Specify the rows of Z to which transformations must be
*> applied if WANTZ is .TRUE..
-*> 1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
+*> 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
*> \endverbatim
*>
*> \param[in,out] Z
@@ -153,7 +153,7 @@
*> If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
*> replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
*> orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
-*> (The output value of Z when INFO.GT.0 is given under
+*> (The output value of Z when INFO > 0 is given under
*> the description of INFO below.)
*> \endverbatim
*>
@@ -161,7 +161,7 @@
*> \verbatim
*> LDZ is INTEGER
*> The leading dimension of the array Z. if WANTZ is .TRUE.
-*> then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1.
+*> then LDZ >= MAX(1,IHIZ). Otherwise, LDZ >= 1.
*> \endverbatim
*>
*> \param[out] WORK
@@ -174,7 +174,7 @@
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
-*> The dimension of the array WORK. LWORK .GE. max(1,N)
+*> The dimension of the array WORK. LWORK >= max(1,N)
*> is sufficient, but LWORK typically as large as 6*N may
*> be required for optimal performance. A workspace query
*> to determine the optimal workspace size is recommended.
@@ -190,19 +190,19 @@
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
-*> = 0: successful exit
-*> .GT. 0: if INFO = i, SLAQR0 failed to compute all of
+*> = 0: successful exit
+*> > 0: if INFO = i, SLAQR0 failed to compute all of
*> the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
*> and WI contain those eigenvalues which have been
*> successfully computed. (Failures are rare.)
*>
-*> If INFO .GT. 0 and WANT is .FALSE., then on exit,
+*> If INFO > 0 and WANT is .FALSE., then on exit,
*> the remaining unconverged eigenvalues are the eigen-
*> values of the upper Hessenberg matrix rows and
*> columns ILO through INFO of the final, output
*> value of H.
*>
-*> If INFO .GT. 0 and WANTT is .TRUE., then on exit
+*> If INFO > 0 and WANTT is .TRUE., then on exit
*>
*> (*) (initial value of H)*U = U*(final value of H)
*>
@@ -210,7 +210,7 @@
*> value of H is upper Hessenberg and quasi-triangular
*> in rows and columns INFO+1 through IHI.
*>
-*> If INFO .GT. 0 and WANTZ is .TRUE., then on exit
+*> If INFO > 0 and WANTZ is .TRUE., then on exit
*>
*> (final value of Z(ILO:IHI,ILOZ:IHIZ)
*> = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
@@ -218,7 +218,7 @@
*> where U is the orthogonal matrix in (*) (regard-
*> less of the value of WANTT.)
*>
-*> If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
+*> If INFO > 0 and WANTZ is .FALSE., then Z is not
*> accessed.
*> \endverbatim
*
@@ -677,7 +677,7 @@
END IF
END IF
*
-* ==== Use up to NS of the the smallest magnatiude
+* ==== Use up to NS of the the smallest magnitude
* . shifts. If there aren't NS shifts available,
* . then use them all, possibly dropping one to
* . make the number of shifts even. ====
diff --git a/lapack-netlib/SRC/slaqr1.f b/lapack-netlib/SRC/slaqr1.f
index 2de33849d..6bb88c794 100644
--- a/lapack-netlib/SRC/slaqr1.f
+++ b/lapack-netlib/SRC/slaqr1.f
@@ -69,7 +69,7 @@
*> \verbatim
*> LDH is INTEGER
*> The leading dimension of H as declared in
-*> the calling procedure. LDH.GE.N
+*> the calling procedure. LDH >= N
*> \endverbatim
*>
*> \param[in] SR1
diff --git a/lapack-netlib/SRC/slaqr2.f b/lapack-netlib/SRC/slaqr2.f
index 8e1f34910..f4f8ca7f2 100644
--- a/lapack-netlib/SRC/slaqr2.f
+++ b/lapack-netlib/SRC/slaqr2.f
@@ -103,7 +103,7 @@
*> \param[in] NW
*> \verbatim
*> NW is INTEGER
-*> Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1).
+*> Deflation window size. 1 <= NW <= (KBOT-KTOP+1).
*> \endverbatim
*>
*> \param[in,out] H
@@ -121,7 +121,7 @@
*> \verbatim
*> LDH is INTEGER
*> Leading dimension of H just as declared in the calling
-*> subroutine. N .LE. LDH
+*> subroutine. N <= LDH
*> \endverbatim
*>
*> \param[in] ILOZ
@@ -133,7 +133,7 @@
*> \verbatim
*> IHIZ is INTEGER
*> Specify the rows of Z to which transformations must be
-*> applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
+*> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N.
*> \endverbatim
*>
*> \param[in,out] Z
@@ -149,7 +149,7 @@
*> \verbatim
*> LDZ is INTEGER
*> The leading dimension of Z just as declared in the
-*> calling subroutine. 1 .LE. LDZ.
+*> calling subroutine. 1 <= LDZ.
*> \endverbatim
*>
*> \param[out] NS
@@ -194,13 +194,13 @@
*> \verbatim
*> LDV is INTEGER
*> The leading dimension of V just as declared in the
-*> calling subroutine. NW .LE. LDV
+*> calling subroutine. NW <= LDV
*> \endverbatim
*>
*> \param[in] NH
*> \verbatim
*> NH is INTEGER
-*> The number of columns of T. NH.GE.NW.
+*> The number of columns of T. NH >= NW.
*> \endverbatim
*>
*> \param[out] T
@@ -212,14 +212,14 @@
*> \verbatim
*> LDT is INTEGER
*> The leading dimension of T just as declared in the
-*> calling subroutine. NW .LE. LDT
+*> calling subroutine. NW <= LDT
*> \endverbatim
*>
*> \param[in] NV
*> \verbatim
*> NV is INTEGER
*> The number of rows of work array WV available for
-*> workspace. NV.GE.NW.
+*> workspace. NV >= NW.
*> \endverbatim
*>
*> \param[out] WV
@@ -231,7 +231,7 @@
*> \verbatim
*> LDWV is INTEGER
*> The leading dimension of W just as declared in the
-*> calling subroutine. NW .LE. LDV
+*> calling subroutine. NW <= LDV
*> \endverbatim
*>
*> \param[out] WORK
diff --git a/lapack-netlib/SRC/slaqr3.f b/lapack-netlib/SRC/slaqr3.f
index 534e2c489..ccad338b9 100644
--- a/lapack-netlib/SRC/slaqr3.f
+++ b/lapack-netlib/SRC/slaqr3.f
@@ -100,7 +100,7 @@
*> \param[in] NW
*> \verbatim
*> NW is INTEGER
-*> Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1).
+*> Deflation window size. 1 <= NW <= (KBOT-KTOP+1).
*> \endverbatim
*>
*> \param[in,out] H
@@ -118,7 +118,7 @@
*> \verbatim
*> LDH is INTEGER
*> Leading dimension of H just as declared in the calling
-*> subroutine. N .LE. LDH
+*> subroutine. N <= LDH
*> \endverbatim
*>
*> \param[in] ILOZ
@@ -130,7 +130,7 @@
*> \verbatim
*> IHIZ is INTEGER
*> Specify the rows of Z to which transformations must be
-*> applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
+*> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N.
*> \endverbatim
*>
*> \param[in,out] Z
@@ -146,7 +146,7 @@
*> \verbatim
*> LDZ is INTEGER
*> The leading dimension of Z just as declared in the
-*> calling subroutine. 1 .LE. LDZ.
+*> calling subroutine. 1 <= LDZ.
*> \endverbatim
*>
*> \param[out] NS
@@ -191,13 +191,13 @@
*> \verbatim
*> LDV is INTEGER
*> The leading dimension of V just as declared in the
-*> calling subroutine. NW .LE. LDV
+*> calling subroutine. NW <= LDV
*> \endverbatim
*>
*> \param[in] NH
*> \verbatim
*> NH is INTEGER
-*> The number of columns of T. NH.GE.NW.
+*> The number of columns of T. NH >= NW.
*> \endverbatim
*>
*> \param[out] T
@@ -209,14 +209,14 @@
*> \verbatim
*> LDT is INTEGER
*> The leading dimension of T just as declared in the
-*> calling subroutine. NW .LE. LDT
+*> calling subroutine. NW <= LDT
*> \endverbatim
*>
*> \param[in] NV
*> \verbatim
*> NV is INTEGER
*> The number of rows of work array WV available for
-*> workspace. NV.GE.NW.
+*> workspace. NV >= NW.
*> \endverbatim
*>
*> \param[out] WV
@@ -228,7 +228,7 @@
*> \verbatim
*> LDWV is INTEGER
*> The leading dimension of W just as declared in the
-*> calling subroutine. NW .LE. LDV
+*> calling subroutine. NW <= LDV
*> \endverbatim
*>
*> \param[out] WORK
diff --git a/lapack-netlib/SRC/slaqr4.f b/lapack-netlib/SRC/slaqr4.f
index 12b6b2fb1..cd642e07f 100644
--- a/lapack-netlib/SRC/slaqr4.f
+++ b/lapack-netlib/SRC/slaqr4.f
@@ -74,7 +74,7 @@
*> \param[in] N
*> \verbatim
*> N is INTEGER
-*> The order of the matrix H. N .GE. 0.
+*> The order of the matrix H. N >= 0.
*> \endverbatim
*>
*> \param[in] ILO
@@ -86,12 +86,12 @@
*> \verbatim
*> IHI is INTEGER
*> It is assumed that H is already upper triangular in rows
-*> and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
+*> and columns 1:ILO-1 and IHI+1:N and, if ILO > 1,
*> H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
*> previous call to SGEBAL, and then passed to SGEHRD when the
*> matrix output by SGEBAL is reduced to Hessenberg form.
*> Otherwise, ILO and IHI should be set to 1 and N,
-*> respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
+*> respectively. If N > 0, then 1 <= ILO <= IHI <= N.
*> If N = 0, then ILO = 1 and IHI = 0.
*> \endverbatim
*>
@@ -104,19 +104,19 @@
*> decomposition (the Schur form); 2-by-2 diagonal blocks
*> (corresponding to complex conjugate pairs of eigenvalues)
*> are returned in standard form, with H(i,i) = H(i+1,i+1)
-*> and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is
+*> and H(i+1,i)*H(i,i+1) < 0. If INFO = 0 and WANTT is
*> .FALSE., then the contents of H are unspecified on exit.
-*> (The output value of H when INFO.GT.0 is given under the
+*> (The output value of H when INFO > 0 is given under the
*> description of INFO below.)
*>
-*> This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
+*> This subroutine may explicitly set H(i,j) = 0 for i > j and
*> j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
*> \endverbatim
*>
*> \param[in] LDH
*> \verbatim
*> LDH is INTEGER
-*> The leading dimension of the array H. LDH .GE. max(1,N).
+*> The leading dimension of the array H. LDH >= max(1,N).
*> \endverbatim
*>
*> \param[out] WR
@@ -132,7 +132,7 @@
*> and WI(ILO:IHI). If two eigenvalues are computed as a
*> complex conjugate pair, they are stored in consecutive
*> elements of WR and WI, say the i-th and (i+1)th, with
-*> WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then
+*> WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., then
*> the eigenvalues are stored in the same order as on the
*> diagonal of the Schur form returned in H, with
*> WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
@@ -150,7 +150,7 @@
*> IHIZ is INTEGER
*> Specify the rows of Z to which transformations must be
*> applied if WANTZ is .TRUE..
-*> 1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
+*> 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
*> \endverbatim
*>
*> \param[in,out] Z
@@ -160,7 +160,7 @@
*> If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
*> replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
*> orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
-*> (The output value of Z when INFO.GT.0 is given under
+*> (The output value of Z when INFO > 0 is given under
*> the description of INFO below.)
*> \endverbatim
*>
@@ -168,7 +168,7 @@
*> \verbatim
*> LDZ is INTEGER
*> The leading dimension of the array Z. if WANTZ is .TRUE.
-*> then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1.
+*> then LDZ >= MAX(1,IHIZ). Otherwise, LDZ >= 1.
*> \endverbatim
*>
*> \param[out] WORK
@@ -181,7 +181,7 @@
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
-*> The dimension of the array WORK. LWORK .GE. max(1,N)
+*> The dimension of the array WORK. LWORK >= max(1,N)
*> is sufficient, but LWORK typically as large as 6*N may
*> be required for optimal performance. A workspace query
*> to determine the optimal workspace size is recommended.
@@ -199,19 +199,19 @@
*> INFO is INTEGER
*> \verbatim
*> INFO is INTEGER
-*> = 0: successful exit
-*> .GT. 0: if INFO = i, SLAQR4 failed to compute all of
+*> = 0: successful exit
+*> > 0: if INFO = i, SLAQR4 failed to compute all of
*> the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
*> and WI contain those eigenvalues which have been
*> successfully computed. (Failures are rare.)
*>
-*> If INFO .GT. 0 and WANT is .FALSE., then on exit,
+*> If INFO > 0 and WANT is .FALSE., then on exit,
*> the remaining unconverged eigenvalues are the eigen-
*> values of the upper Hessenberg matrix rows and
*> columns ILO through INFO of the final, output
*> value of H.
*>
-*> If INFO .GT. 0 and WANTT is .TRUE., then on exit
+*> If INFO > 0 and WANTT is .TRUE., then on exit
*>
*> (*) (initial value of H)*U = U*(final value of H)
*>
@@ -219,7 +219,7 @@
*> value of H is upper Hessenberg and triangular in
*> rows and columns INFO+1 through IHI.
*>
-*> If INFO .GT. 0 and WANTZ is .TRUE., then on exit
+*> If INFO > 0 and WANTZ is .TRUE., then on exit
*>
*> (final value of Z(ILO:IHI,ILOZ:IHIZ)
*> = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
@@ -227,7 +227,7 @@
*> where U is the orthogonal matrix in (*) (regard-
*> less of the value of WANTT.)
*>
-*> If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
+*> If INFO > 0 and WANTZ is .FALSE., then Z is not
*> accessed.
*> \endverbatim
*
@@ -680,7 +680,7 @@
END IF
END IF
*
-* ==== Use up to NS of the the smallest magnatiude
+* ==== Use up to NS of the the smallest magnitude
* . shifts. If there aren't NS shifts available,
* . then use them all, possibly dropping one to
* . make the number of shifts even. ====
diff --git a/lapack-netlib/SRC/slaqr5.f b/lapack-netlib/SRC/slaqr5.f
index 65278e355..f04ee577e 100644
--- a/lapack-netlib/SRC/slaqr5.f
+++ b/lapack-netlib/SRC/slaqr5.f
@@ -133,7 +133,7 @@
*> \verbatim
*> LDH is INTEGER
*> LDH is the leading dimension of H just as declared in the
-*> calling procedure. LDH.GE.MAX(1,N).
+*> calling procedure. LDH >= MAX(1,N).
*> \endverbatim
*>
*> \param[in] ILOZ
@@ -145,7 +145,7 @@
*> \verbatim
*> IHIZ is INTEGER
*> Specify the rows of Z to which transformations must be
-*> applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N
+*> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N
*> \endverbatim
*>
*> \param[in,out] Z
@@ -161,7 +161,7 @@
*> \verbatim
*> LDZ is INTEGER
*> LDA is the leading dimension of Z just as declared in
-*> the calling procedure. LDZ.GE.N.
+*> the calling procedure. LDZ >= N.
*> \endverbatim
*>
*> \param[out] V
@@ -173,7 +173,7 @@
*> \verbatim
*> LDV is INTEGER
*> LDV is the leading dimension of V as declared in the
-*> calling procedure. LDV.GE.3.
+*> calling procedure. LDV >= 3.
*> \endverbatim
*>
*> \param[out] U
@@ -185,33 +185,14 @@
*> \verbatim
*> LDU is INTEGER
*> LDU is the leading dimension of U just as declared in the
-*> in the calling subroutine. LDU.GE.3*NSHFTS-3.
-*> \endverbatim
-*>
-*> \param[in] NH
-*> \verbatim
-*> NH is INTEGER
-*> NH is the number of columns in array WH available for
-*> workspace. NH.GE.1.
-*> \endverbatim
-*>
-*> \param[out] WH
-*> \verbatim
-*> WH is REAL array, dimension (LDWH,NH)
-*> \endverbatim
-*>
-*> \param[in] LDWH
-*> \verbatim
-*> LDWH is INTEGER
-*> Leading dimension of WH just as declared in the
-*> calling procedure. LDWH.GE.3*NSHFTS-3.
+*> in the calling subroutine. LDU >= 3*NSHFTS-3.
*> \endverbatim
*>
*> \param[in] NV
*> \verbatim
*> NV is INTEGER
*> NV is the number of rows in WV agailable for workspace.
-*> NV.GE.1.
+*> NV >= 1.
*> \endverbatim
*>
*> \param[out] WV
@@ -223,9 +204,28 @@
*> \verbatim
*> LDWV is INTEGER
*> LDWV is the leading dimension of WV as declared in the
-*> in the calling subroutine. LDWV.GE.NV.
+*> in the calling subroutine. LDWV >= NV.
*> \endverbatim
*
+*> \param[in] NH
+*> \verbatim
+*> NH is INTEGER
+*> NH is the number of columns in array WH available for
+*> workspace. NH >= 1.
+*> \endverbatim
+*>
+*> \param[out] WH
+*> \verbatim
+*> WH is REAL array, dimension (LDWH,NH)
+*> \endverbatim
+*>
+*> \param[in] LDWH
+*> \verbatim
+*> LDWH is INTEGER
+*> Leading dimension of WH just as declared in the
+*> calling procedure. LDWH >= 3*NSHFTS-3.
+*> \endverbatim
+*>
* Authors:
* ========
*
diff --git a/lapack-netlib/SRC/slarfb.f b/lapack-netlib/SRC/slarfb.f
index c51f69534..d853a54ec 100644
--- a/lapack-netlib/SRC/slarfb.f
+++ b/lapack-netlib/SRC/slarfb.f
@@ -92,6 +92,8 @@
*> K is INTEGER
*> The order of the matrix T (= the number of elementary
*> reflectors whose product defines the block reflector).
+*> If SIDE = 'L', M >= K >= 0;
+*> if SIDE = 'R', N >= K >= 0.
*> \endverbatim
*>
*> \param[in] V
diff --git a/lapack-netlib/SRC/slarfx.f b/lapack-netlib/SRC/slarfx.f
index 590e99e70..3175068b8 100644
--- a/lapack-netlib/SRC/slarfx.f
+++ b/lapack-netlib/SRC/slarfx.f
@@ -94,7 +94,7 @@
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
-*> The leading dimension of the array C. LDA >= (1,M).
+*> The leading dimension of the array C. LDC >= (1,M).
*> \endverbatim
*>
*> \param[out] WORK
diff --git a/lapack-netlib/SRC/slarfy.f b/lapack-netlib/SRC/slarfy.f
index 340c54413..f9ba011a2 100644
--- a/lapack-netlib/SRC/slarfy.f
+++ b/lapack-netlib/SRC/slarfy.f
@@ -103,7 +103,7 @@
*
*> \date December 2016
*
-*> \ingroup single_eig
+*> \ingroup realOTHERauxiliary
*
* =====================================================================
SUBROUTINE SLARFY( UPLO, N, V, INCV, TAU, C, LDC, WORK )
diff --git a/lapack-netlib/SRC/slarrb.f b/lapack-netlib/SRC/slarrb.f
index 988e25ff0..ac9d7bc8c 100644
--- a/lapack-netlib/SRC/slarrb.f
+++ b/lapack-netlib/SRC/slarrb.f
@@ -91,7 +91,7 @@
*> RTOL2 is REAL
*> Tolerance for the convergence of the bisection intervals.
*> An interval [LEFT,RIGHT] has converged if
-*> RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
+*> RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
*> where GAP is the (estimated) distance to the nearest
*> eigenvalue.
*> \endverbatim
@@ -117,7 +117,7 @@
*> WGAP is REAL array, dimension (N-1)
*> On input, the (estimated) gaps between consecutive
*> eigenvalues of L D L^T, i.e., WGAP(I-OFFSET) is the gap between
-*> eigenvalues I and I+1. Note that if IFIRST.EQ.ILAST
+*> eigenvalues I and I+1. Note that if IFIRST = ILAST
*> then WGAP(IFIRST-OFFSET) must be set to ZERO.
*> On output, these gaps are refined.
*> \endverbatim
diff --git a/lapack-netlib/SRC/slarre.f b/lapack-netlib/SRC/slarre.f
index ea9b8fcbc..6636235d0 100644
--- a/lapack-netlib/SRC/slarre.f
+++ b/lapack-netlib/SRC/slarre.f
@@ -150,7 +150,7 @@
*> RTOL2 is REAL
*> Parameters for bisection.
*> An interval [LEFT,RIGHT] has converged if
-*> RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
+*> RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
*> \endverbatim
*>
*> \param[in] SPLTOL
diff --git a/lapack-netlib/SRC/slarrj.f b/lapack-netlib/SRC/slarrj.f
index a721d0751..fb867595c 100644
--- a/lapack-netlib/SRC/slarrj.f
+++ b/lapack-netlib/SRC/slarrj.f
@@ -85,7 +85,7 @@
*> RTOL is REAL
*> Tolerance for the convergence of the bisection intervals.
*> An interval [LEFT,RIGHT] has converged if
-*> RIGHT-LEFT.LT.RTOL*MAX(|LEFT|,|RIGHT|).
+*> RIGHT-LEFT < RTOL*MAX(|LEFT|,|RIGHT|).
*> \endverbatim
*>
*> \param[in] OFFSET
diff --git a/lapack-netlib/SRC/slarrv.f b/lapack-netlib/SRC/slarrv.f
index f9e3cf2b9..04519fde8 100644
--- a/lapack-netlib/SRC/slarrv.f
+++ b/lapack-netlib/SRC/slarrv.f
@@ -149,7 +149,7 @@
*> RTOL2 is REAL
*> Parameters for bisection.
*> An interval [LEFT,RIGHT] has converged if
-*> RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
+*> RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
*> \endverbatim
*>
*> \param[in,out] W
diff --git a/lapack-netlib/SRC/slasd7.f b/lapack-netlib/SRC/slasd7.f
index 2adaa5ee7..d8775b6c6 100644
--- a/lapack-netlib/SRC/slasd7.f
+++ b/lapack-netlib/SRC/slasd7.f
@@ -400,7 +400,7 @@
VL( I ) = VLW( IDXI )
50 CONTINUE
*
-* Calculate the allowable deflation tolerence
+* Calculate the allowable deflation tolerance
*
EPS = SLAMCH( 'Epsilon' )
TOL = MAX( ABS( ALPHA ), ABS( BETA ) )
diff --git a/lapack-netlib/SRC/slassq.f b/lapack-netlib/SRC/slassq.f
index 35b40f07f..d9930a597 100644
--- a/lapack-netlib/SRC/slassq.f
+++ b/lapack-netlib/SRC/slassq.f
@@ -60,7 +60,7 @@
*>
*> \param[in] X
*> \verbatim
-*> X is REAL array, dimension (N)
+*> X is REAL array, dimension (1+(N-1)*INCX)
*> The vector for which a scaled sum of squares is computed.
*> x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
*> \endverbatim
diff --git a/lapack-netlib/SRC/slaswlq.f b/lapack-netlib/SRC/slaswlq.f
index 27b5b8067..5eb9cc5f9 100644
--- a/lapack-netlib/SRC/slaswlq.f
+++ b/lapack-netlib/SRC/slaswlq.f
@@ -1,3 +1,4 @@
+*> \brief \b SLASWLQ
*
* Definition:
* ===========
@@ -18,9 +19,20 @@
*>
*> \verbatim
*>
-*> SLASWLQ computes a blocked Short-Wide LQ factorization of a
-*> M-by-N matrix A, where N >= M:
-*> A = L * Q
+*> SLASWLQ computes a blocked Tall-Skinny LQ factorization of
+*> a real M-by-N matrix A for M <= N:
+*>
+*> A = ( L 0 ) * Q,
+*>
+*> where:
+*>
+*> Q is a n-by-N orthogonal matrix, stored on exit in an implicit
+*> form in the elements above the digonal of the array A and in
+*> the elemenst of the array T;
+*> L is an lower-triangular M-by-M matrix stored on exit in
+*> the elements on and below the diagonal of the array A.
+*> 0 is a M-by-(N-M) zero matrix, if M < N, and is not stored.
+*>
*> \endverbatim
*
* Arguments:
@@ -150,10 +162,10 @@
SUBROUTINE SLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
$ INFO)
*
-* -- LAPACK computational routine (version 3.8.0) --
+* -- LAPACK computational routine (version 3.9.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
-* November 2017
+* November 2019
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, M, N, MB, NB, LWORK, LDT
diff --git a/lapack-netlib/SRC/slasyf_aa.f b/lapack-netlib/SRC/slasyf_aa.f
index ed4ef6291..76f632602 100644
--- a/lapack-netlib/SRC/slasyf_aa.f
+++ b/lapack-netlib/SRC/slasyf_aa.f
@@ -284,8 +284,9 @@
*
* Swap A(I1, I2+1:M) with A(I2, I2+1:M)
*
- CALL SSWAP( M-I2, A( J1+I1-1, I2+1 ), LDA,
- $ A( J1+I2-1, I2+1 ), LDA )
+ IF( I2.LT.M )
+ $ CALL SSWAP( M-I2, A( J1+I1-1, I2+1 ), LDA,
+ $ A( J1+I2-1, I2+1 ), LDA )
*
* Swap A(I1, I1) with A(I2,I2)
*
@@ -325,13 +326,15 @@
* Compute L(J+2, J+1) = WORK( 3:M ) / T(J, J+1),
* where A(J, J+1) = T(J, J+1) and A(J+2:M, J) = L(J+2:M, J+1)
*
- IF( A( K, J+1 ).NE.ZERO ) THEN
- ALPHA = ONE / A( K, J+1 )
- CALL SCOPY( M-J-1, WORK( 3 ), 1, A( K, J+2 ), LDA )
- CALL SSCAL( M-J-1, ALPHA, A( K, J+2 ), LDA )
- ELSE
- CALL SLASET( 'Full', 1, M-J-1, ZERO, ZERO,
- $ A( K, J+2 ), LDA)
+ IF( J.LT.(M-1) ) THEN
+ IF( A( K, J+1 ).NE.ZERO ) THEN
+ ALPHA = ONE / A( K, J+1 )
+ CALL SCOPY( M-J-1, WORK( 3 ), 1, A( K, J+2 ), LDA )
+ CALL SSCAL( M-J-1, ALPHA, A( K, J+2 ), LDA )
+ ELSE
+ CALL SLASET( 'Full', 1, M-J-1, ZERO, ZERO,
+ $ A( K, J+2 ), LDA)
+ END IF
END IF
END IF
J = J + 1
@@ -432,8 +435,9 @@
*
* Swap A(I2+1:M, I1) with A(I2+1:M, I2)
*
- CALL SSWAP( M-I2, A( I2+1, J1+I1-1 ), 1,
- $ A( I2+1, J1+I2-1 ), 1 )
+ IF( I2.LT.M )
+ $ CALL SSWAP( M-I2, A( I2+1, J1+I1-1 ), 1,
+ $ A( I2+1, J1+I2-1 ), 1 )
*
* Swap A(I1, I1) with A(I2, I2)
*
@@ -473,13 +477,15 @@
* Compute L(J+2, J+1) = WORK( 3:M ) / T(J, J+1),
* where A(J, J+1) = T(J, J+1) and A(J+2:M, J) = L(J+2:M, J+1)
*
- IF( A( J+1, K ).NE.ZERO ) THEN
- ALPHA = ONE / A( J+1, K )
- CALL SCOPY( M-J-1, WORK( 3 ), 1, A( J+2, K ), 1 )
- CALL SSCAL( M-J-1, ALPHA, A( J+2, K ), 1 )
- ELSE
- CALL SLASET( 'Full', M-J-1, 1, ZERO, ZERO,
- $ A( J+2, K ), LDA )
+ IF( J.LT.(M-1) ) THEN
+ IF( A( J+1, K ).NE.ZERO ) THEN
+ ALPHA = ONE / A( J+1, K )
+ CALL SCOPY( M-J-1, WORK( 3 ), 1, A( J+2, K ), 1 )
+ CALL SSCAL( M-J-1, ALPHA, A( J+2, K ), 1 )
+ ELSE
+ CALL SLASET( 'Full', M-J-1, 1, ZERO, ZERO,
+ $ A( J+2, K ), LDA )
+ END IF
END IF
END IF
J = J + 1
diff --git a/lapack-netlib/SRC/slasyf_rk.f b/lapack-netlib/SRC/slasyf_rk.f
index b1b37177f..c16708365 100644
--- a/lapack-netlib/SRC/slasyf_rk.f
+++ b/lapack-netlib/SRC/slasyf_rk.f
@@ -321,7 +321,7 @@
* of A and working backwards, and compute the matrix W = U12*D
* for use in updating A11
*
-* Initilize the first entry of array E, where superdiagonal
+* Initialize the first entry of array E, where superdiagonal
* elements of D are stored
*
E( 1 ) = ZERO
@@ -649,7 +649,7 @@
* of A and working forwards, and compute the matrix W = L21*D
* for use in updating A22
*
-* Initilize the unused last entry of the subdiagonal array E.
+* Initialize the unused last entry of the subdiagonal array E.
*
E( N ) = ZERO
*
diff --git a/lapack-netlib/SRC/slatdf.f b/lapack-netlib/SRC/slatdf.f
index 5496f9db4..495d32502 100644
--- a/lapack-netlib/SRC/slatdf.f
+++ b/lapack-netlib/SRC/slatdf.f
@@ -85,7 +85,7 @@
*> RHS is REAL array, dimension N.
*> On entry, RHS contains contributions from other subsystems.
*> On exit, RHS contains the solution of the subsystem with
-*> entries acoording to the value of IJOB (see above).
+*> entries according to the value of IJOB (see above).
*> \endverbatim
*>
*> \param[in,out] RDSUM
@@ -260,7 +260,7 @@
*
* Solve for U-part, look-ahead for RHS(N) = +-1. This is not done
* in BSOLVE and will hopefully give us a better estimate because
-* any ill-conditioning of the original matrix is transfered to U
+* any ill-conditioning of the original matrix is transferred to U
* and not to L. U(N, N) is an approximation to sigma_min(LU).
*
CALL SCOPY( N-1, RHS, 1, XP, 1 )
diff --git a/lapack-netlib/SRC/slatsqr.f b/lapack-netlib/SRC/slatsqr.f
index d6d682799..b56b0d41e 100644
--- a/lapack-netlib/SRC/slatsqr.f
+++ b/lapack-netlib/SRC/slatsqr.f
@@ -1,3 +1,4 @@
+*> \brief \b SLATSQR
*
* Definition:
* ===========
@@ -19,8 +20,22 @@
*> \verbatim
*>
*> SLATSQR computes a blocked Tall-Skinny QR factorization of
-*> an M-by-N matrix A, where M >= N:
-*> A = Q * R .
+*> a real M-by-N matrix A for M >= N:
+*>
+*> A = Q * ( R ),
+*> ( 0 )
+*>
+*> where:
+*>
+*> Q is a M-by-M orthogonal matrix, stored on exit in an implicit
+*> form in the elements below the digonal of the array A and in
+*> the elemenst of the array T;
+*>
+*> R is an upper-triangular N-by-N matrix, stored on exit in
+*> the elements on and above the diagonal of the array A.
+*>
+*> 0 is a (M-N)-by-N zero matrix, and is not stored.
+*>
*> \endverbatim
*
* Arguments:
@@ -149,10 +164,10 @@
SUBROUTINE SLATSQR( M, N, MB, NB, A, LDA, T, LDT, WORK,
$ LWORK, INFO)
*
-* -- LAPACK computational routine (version 3.7.0) --
+* -- LAPACK computational routine (version 3.9.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
-* December 2016
+* November 2019
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, M, N, MB, NB, LDT, LWORK
diff --git a/lapack-netlib/SRC/sorgtsqr.f b/lapack-netlib/SRC/sorgtsqr.f
new file mode 100644
index 000000000..748760d63
--- /dev/null
+++ b/lapack-netlib/SRC/sorgtsqr.f
@@ -0,0 +1,306 @@
+*> \brief \b SORGTSQR
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download SORGTSQR + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*>
+* Definition:
+* ===========
+*
+* SUBROUTINE SORGTSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
+* $ INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
+* ..
+* .. Array Arguments ..
+* REAL A( LDA, * ), T( LDT, * ), WORK( * )
+* ..
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> SORGTSQR generates an M-by-N real matrix Q_out with orthonormal columns,
+*> which are the first N columns of a product of real orthogonal
+*> matrices of order M which are returned by SLATSQR
+*>
+*> Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).
+*>
+*> See the documentation for SLATSQR.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. M >= N >= 0.
+*> \endverbatim
+*>
+*> \param[in] MB
+*> \verbatim
+*> MB is INTEGER
+*> The row block size used by SLATSQR to return
+*> arrays A and T. MB > N.
+*> (Note that if MB > M, then M is used instead of MB
+*> as the row block size).
+*> \endverbatim
+*>
+*> \param[in] NB
+*> \verbatim
+*> NB is INTEGER
+*> The column block size used by SLATSQR to return
+*> arrays A and T. NB >= 1.
+*> (Note that if NB > N, then N is used instead of NB
+*> as the column block size).
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is REAL array, dimension (LDA,N)
+*>
+*> On entry:
+*>
+*> The elements on and above the diagonal are not accessed.
+*> The elements below the diagonal represent the unit
+*> lower-trapezoidal blocked matrix V computed by SLATSQR
+*> that defines the input matrices Q_in(k) (ones on the
+*> diagonal are not stored) (same format as the output A
+*> below the diagonal in SLATSQR).
+*>
+*> On exit:
+*>
+*> The array A contains an M-by-N orthonormal matrix Q_out,
+*> i.e the columns of A are orthogonal unit vectors.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in] T
+*> \verbatim
+*> T is REAL array,
+*> dimension (LDT, N * NIRB)
+*> where NIRB = Number_of_input_row_blocks
+*> = MAX( 1, CEIL((M-N)/(MB-N)) )
+*> Let NICB = Number_of_input_col_blocks
+*> = CEIL(N/NB)
+*>
+*> The upper-triangular block reflectors used to define the
+*> input matrices Q_in(k), k=(1:NIRB*NICB). The block
+*> reflectors are stored in compact form in NIRB block
+*> reflector sequences. Each of NIRB block reflector sequences
+*> is stored in a larger NB-by-N column block of T and consists
+*> of NICB smaller NB-by-NB upper-triangular column blocks.
+*> (same format as the output T in SLATSQR).
+*> \endverbatim
+*>
+*> \param[in] LDT
+*> \verbatim
+*> LDT is INTEGER
+*> The leading dimension of the array T.
+*> LDT >= max(1,min(NB1,N)).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> (workspace) REAL array, dimension (MAX(2,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> The dimension of the array WORK. LWORK >= (M+NB)*N.
+*> If LWORK = -1, then a workspace query is assumed.
+*> The routine only calculates the optimal size of the WORK
+*> array, returns this value as the first entry of the WORK
+*> array, and no error message related to LWORK is issued
+*> by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> \endverbatim
+*>
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2019
+*
+*> \ingroup singleOTHERcomputational
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2019, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> \endverbatim
+*
+* =====================================================================
+ SUBROUTINE SORGTSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
+ $ INFO )
+ IMPLICIT NONE
+*
+* -- LAPACK computational routine (version 3.9.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2019
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
+* ..
+* .. Array Arguments ..
+ REAL A( LDA, * ), T( LDT, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ONE, ZERO
+ PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY
+ INTEGER IINFO, LDC, LWORKOPT, LC, LW, NBLOCAL, J
+* ..
+* .. External Subroutines ..
+ EXTERNAL SCOPY, SLAMTSQR, SLASET, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC REAL, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters
+*
+ LQUERY = LWORK.EQ.-1
+ INFO = 0
+ IF( M.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
+ INFO = -2
+ ELSE IF( MB.LE.N ) THEN
+ INFO = -3
+ ELSE IF( NB.LT.1 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -6
+ ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
+ INFO = -8
+ ELSE
+*
+* Test the input LWORK for the dimension of the array WORK.
+* This workspace is used to store array C(LDC, N) and WORK(LWORK)
+* in the call to DLAMTSQR. See the documentation for DLAMTSQR.
+*
+ IF( LWORK.LT.2 .AND. (.NOT.LQUERY) ) THEN
+ INFO = -10
+ ELSE
+*
+* Set block size for column blocks
+*
+ NBLOCAL = MIN( NB, N )
+*
+* LWORK = -1, then set the size for the array C(LDC,N)
+* in DLAMTSQR call and set the optimal size of the work array
+* WORK(LWORK) in DLAMTSQR call.
+*
+ LDC = M
+ LC = LDC*N
+ LW = N * NBLOCAL
+*
+ LWORKOPT = LC+LW
+*
+ IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN
+ INFO = -10
+ END IF
+ END IF
+*
+ END IF
+*
+* Handle error in the input parameters and return workspace query.
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'SORGTSQR', -INFO )
+ RETURN
+ ELSE IF ( LQUERY ) THEN
+ WORK( 1 ) = REAL( LWORKOPT )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( MIN( M, N ).EQ.0 ) THEN
+ WORK( 1 ) = REAL( LWORKOPT )
+ RETURN
+ END IF
+*
+* (1) Form explicitly the tall-skinny M-by-N left submatrix Q1_in
+* of M-by-M orthogonal matrix Q_in, which is implicitly stored in
+* the subdiagonal part of input array A and in the input array T.
+* Perform by the following operation using the routine DLAMTSQR.
+*
+* Q1_in = Q_in * ( I ), where I is a N-by-N identity matrix,
+* ( 0 ) 0 is a (M-N)-by-N zero matrix.
+*
+* (1a) Form M-by-N matrix in the array WORK(1:LDC*N) with ones
+* on the diagonal and zeros elsewhere.
+*
+ CALL SLASET( 'F', M, N, ZERO, ONE, WORK, LDC )
+*
+* (1b) On input, WORK(1:LDC*N) stores ( I );
+* ( 0 )
+*
+* On output, WORK(1:LDC*N) stores Q1_in.
+*
+ CALL SLAMTSQR( 'L', 'N', M, N, N, MB, NBLOCAL, A, LDA, T, LDT,
+ $ WORK, LDC, WORK( LC+1 ), LW, IINFO )
+*
+* (2) Copy the result from the part of the work array (1:M,1:N)
+* with the leading dimension LDC that starts at WORK(1) into
+* the output array A(1:M,1:N) column-by-column.
+*
+ DO J = 1, N
+ CALL SCOPY( M, WORK( (J-1)*LDC + 1 ), 1, A( 1, J ), 1 )
+ END DO
+*
+ WORK( 1 ) = REAL( LWORKOPT )
+ RETURN
+*
+* End of SORGTSQR
+*
+ END
\ No newline at end of file
diff --git a/lapack-netlib/SRC/sorhr_col.f b/lapack-netlib/SRC/sorhr_col.f
new file mode 100644
index 000000000..38976245c
--- /dev/null
+++ b/lapack-netlib/SRC/sorhr_col.f
@@ -0,0 +1,439 @@
+*> \brief \b SORHR_COL
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download SORHR_COL + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*>
+* Definition:
+* ===========
+*
+* SUBROUTINE SORHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDT, M, N, NB
+* ..
+* .. Array Arguments ..
+* REAL A( LDA, * ), D( * ), T( LDT, * )
+* ..
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> SORHR_COL takes an M-by-N real matrix Q_in with orthonormal columns
+*> as input, stored in A, and performs Householder Reconstruction (HR),
+*> i.e. reconstructs Householder vectors V(i) implicitly representing
+*> another M-by-N matrix Q_out, with the property that Q_in = Q_out*S,
+*> where S is an N-by-N diagonal matrix with diagonal entries
+*> equal to +1 or -1. The Householder vectors (columns V(i) of V) are
+*> stored in A on output, and the diagonal entries of S are stored in D.
+*> Block reflectors are also returned in T
+*> (same output format as SGEQRT).
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. M >= N >= 0.
+*> \endverbatim
+*>
+*> \param[in] NB
+*> \verbatim
+*> NB is INTEGER
+*> The column block size to be used in the reconstruction
+*> of Householder column vector blocks in the array A and
+*> corresponding block reflectors in the array T. NB >= 1.
+*> (Note that if NB > N, then N is used instead of NB
+*> as the column block size.)
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is REAL array, dimension (LDA,N)
+*>
+*> On entry:
+*>
+*> The array A contains an M-by-N orthonormal matrix Q_in,
+*> i.e the columns of A are orthogonal unit vectors.
+*>
+*> On exit:
+*>
+*> The elements below the diagonal of A represent the unit
+*> lower-trapezoidal matrix V of Householder column vectors
+*> V(i). The unit diagonal entries of V are not stored
+*> (same format as the output below the diagonal in A from
+*> SGEQRT). The matrix T and the matrix V stored on output
+*> in A implicitly define Q_out.
+*>
+*> The elements above the diagonal contain the factor U
+*> of the "modified" LU-decomposition:
+*> Q_in - ( S ) = V * U
+*> ( 0 )
+*> where 0 is a (M-N)-by-(M-N) zero matrix.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[out] T
+*> \verbatim
+*> T is REAL array,
+*> dimension (LDT, N)
+*>
+*> Let NOCB = Number_of_output_col_blocks
+*> = CEIL(N/NB)
+*>
+*> On exit, T(1:NB, 1:N) contains NOCB upper-triangular
+*> block reflectors used to define Q_out stored in compact
+*> form as a sequence of upper-triangular NB-by-NB column
+*> blocks (same format as the output T in SGEQRT).
+*> The matrix T and the matrix V stored on output in A
+*> implicitly define Q_out. NOTE: The lower triangles
+*> below the upper-triangular blcoks will be filled with
+*> zeros. See Further Details.
+*> \endverbatim
+*>
+*> \param[in] LDT
+*> \verbatim
+*> LDT is INTEGER
+*> The leading dimension of the array T.
+*> LDT >= max(1,min(NB,N)).
+*> \endverbatim
+*>
+*> \param[out] D
+*> \verbatim
+*> D is REAL array, dimension min(M,N).
+*> The elements can be only plus or minus one.
+*>
+*> D(i) is constructed as D(i) = -SIGN(Q_in_i(i,i)), where
+*> 1 <= i <= min(M,N), and Q_in_i is Q_in after performing
+*> i-1 steps of “modified” Gaussian elimination.
+*> See Further Details.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> \endverbatim
+*>
+*> \par Further Details:
+* =====================
+*>
+*> \verbatim
+*>
+*> The computed M-by-M orthogonal factor Q_out is defined implicitly as
+*> a product of orthogonal matrices Q_out(i). Each Q_out(i) is stored in
+*> the compact WY-representation format in the corresponding blocks of
+*> matrices V (stored in A) and T.
+*>
+*> The M-by-N unit lower-trapezoidal matrix V stored in the M-by-N
+*> matrix A contains the column vectors V(i) in NB-size column
+*> blocks VB(j). For example, VB(1) contains the columns
+*> V(1), V(2), ... V(NB). NOTE: The unit entries on
+*> the diagonal of Y are not stored in A.
+*>
+*> The number of column blocks is
+*>
+*> NOCB = Number_of_output_col_blocks = CEIL(N/NB)
+*>
+*> where each block is of order NB except for the last block, which
+*> is of order LAST_NB = N - (NOCB-1)*NB.
+*>
+*> For example, if M=6, N=5 and NB=2, the matrix V is
+*>
+*>
+*> V = ( VB(1), VB(2), VB(3) ) =
+*>
+*> = ( 1 )
+*> ( v21 1 )
+*> ( v31 v32 1 )
+*> ( v41 v42 v43 1 )
+*> ( v51 v52 v53 v54 1 )
+*> ( v61 v62 v63 v54 v65 )
+*>
+*>
+*> For each of the column blocks VB(i), an upper-triangular block
+*> reflector TB(i) is computed. These blocks are stored as
+*> a sequence of upper-triangular column blocks in the NB-by-N
+*> matrix T. The size of each TB(i) block is NB-by-NB, except
+*> for the last block, whose size is LAST_NB-by-LAST_NB.
+*>
+*> For example, if M=6, N=5 and NB=2, the matrix T is
+*>
+*> T = ( TB(1), TB(2), TB(3) ) =
+*>
+*> = ( t11 t12 t13 t14 t15 )
+*> ( t22 t24 )
+*>
+*>
+*> The M-by-M factor Q_out is given as a product of NOCB
+*> orthogonal M-by-M matrices Q_out(i).
+*>
+*> Q_out = Q_out(1) * Q_out(2) * ... * Q_out(NOCB),
+*>
+*> where each matrix Q_out(i) is given by the WY-representation
+*> using corresponding blocks from the matrices V and T:
+*>
+*> Q_out(i) = I - VB(i) * TB(i) * (VB(i))**T,
+*>
+*> where I is the identity matrix. Here is the formula with matrix
+*> dimensions:
+*>
+*> Q(i){M-by-M} = I{M-by-M} -
+*> VB(i){M-by-INB} * TB(i){INB-by-INB} * (VB(i))**T {INB-by-M},
+*>
+*> where INB = NB, except for the last block NOCB
+*> for which INB=LAST_NB.
+*>
+*> =====
+*> NOTE:
+*> =====
+*>
+*> If Q_in is the result of doing a QR factorization
+*> B = Q_in * R_in, then:
+*>
+*> B = (Q_out*S) * R_in = Q_out * (S * R_in) = O_out * R_out.
+*>
+*> So if one wants to interpret Q_out as the result
+*> of the QR factorization of B, then corresponding R_out
+*> should be obtained by R_out = S * R_in, i.e. some rows of R_in
+*> should be multiplied by -1.
+*>
+*> For the details of the algorithm, see [1].
+*>
+*> [1] "Reconstructing Householder vectors from tall-skinny QR",
+*> G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
+*> E. Solomonik, J. Parallel Distrib. Comput.,
+*> vol. 85, pp. 3-31, 2015.
+*> \endverbatim
+*>
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2019
+*
+*> \ingroup singleOTHERcomputational
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2019, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> \endverbatim
+*
+* =====================================================================
+ SUBROUTINE SORHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO )
+ IMPLICIT NONE
+*
+* -- LAPACK computational routine (version 3.9.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2019
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDT, M, N, NB
+* ..
+* .. Array Arguments ..
+ REAL A( LDA, * ), D( * ), T( LDT, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ONE, ZERO
+ PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
+* ..
+* .. Local Scalars ..
+ INTEGER I, IINFO, J, JB, JBTEMP1, JBTEMP2, JNB,
+ $ NPLUSONE
+* ..
+* .. External Subroutines ..
+ EXTERNAL SCOPY, SLAORHR_COL_GETRFNP, SSCAL, STRSM, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters
+*
+ INFO = 0
+ IF( M.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
+ INFO = -2
+ ELSE IF( NB.LT.1 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -5
+ ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
+ INFO = -7
+ END IF
+*
+* Handle error in the input parameters.
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'SORHR_COL', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( MIN( M, N ).EQ.0 ) THEN
+ RETURN
+ END IF
+*
+* On input, the M-by-N matrix A contains the orthogonal
+* M-by-N matrix Q_in.
+*
+* (1) Compute the unit lower-trapezoidal V (ones on the diagonal
+* are not stored) by performing the "modified" LU-decomposition.
+*
+* Q_in - ( S ) = V * U = ( V1 ) * U,
+* ( 0 ) ( V2 )
+*
+* where 0 is an (M-N)-by-N zero matrix.
+*
+* (1-1) Factor V1 and U.
+
+ CALL SLAORHR_COL_GETRFNP( N, N, A, LDA, D, IINFO )
+*
+* (1-2) Solve for V2.
+*
+ IF( M.GT.N ) THEN
+ CALL STRSM( 'R', 'U', 'N', 'N', M-N, N, ONE, A, LDA,
+ $ A( N+1, 1 ), LDA )
+ END IF
+*
+* (2) Reconstruct the block reflector T stored in T(1:NB, 1:N)
+* as a sequence of upper-triangular blocks with NB-size column
+* blocking.
+*
+* Loop over the column blocks of size NB of the array A(1:M,1:N)
+* and the array T(1:NB,1:N), JB is the column index of a column
+* block, JNB is the column block size at each step JB.
+*
+ NPLUSONE = N + 1
+ DO JB = 1, N, NB
+*
+* (2-0) Determine the column block size JNB.
+*
+ JNB = MIN( NPLUSONE-JB, NB )
+*
+* (2-1) Copy the upper-triangular part of the current JNB-by-JNB
+* diagonal block U(JB) (of the N-by-N matrix U) stored
+* in A(JB:JB+JNB-1,JB:JB+JNB-1) into the upper-triangular part
+* of the current JNB-by-JNB block T(1:JNB,JB:JB+JNB-1)
+* column-by-column, total JNB*(JNB+1)/2 elements.
+*
+ JBTEMP1 = JB - 1
+ DO J = JB, JB+JNB-1
+ CALL SCOPY( J-JBTEMP1, A( JB, J ), 1, T( 1, J ), 1 )
+ END DO
+*
+* (2-2) Perform on the upper-triangular part of the current
+* JNB-by-JNB diagonal block U(JB) (of the N-by-N matrix U) stored
+* in T(1:JNB,JB:JB+JNB-1) the following operation in place:
+* (-1)*U(JB)*S(JB), i.e the result will be stored in the upper-
+* triangular part of T(1:JNB,JB:JB+JNB-1). This multiplication
+* of the JNB-by-JNB diagonal block U(JB) by the JNB-by-JNB
+* diagonal block S(JB) of the N-by-N sign matrix S from the
+* right means changing the sign of each J-th column of the block
+* U(JB) according to the sign of the diagonal element of the block
+* S(JB), i.e. S(J,J) that is stored in the array element D(J).
+*
+ DO J = JB, JB+JNB-1
+ IF( D( J ).EQ.ONE ) THEN
+ CALL SSCAL( J-JBTEMP1, -ONE, T( 1, J ), 1 )
+ END IF
+ END DO
+*
+* (2-3) Perform the triangular solve for the current block
+* matrix X(JB):
+*
+* X(JB) * (A(JB)**T) = B(JB), where:
+*
+* A(JB)**T is a JNB-by-JNB unit upper-triangular
+* coefficient block, and A(JB)=V1(JB), which
+* is a JNB-by-JNB unit lower-triangular block
+* stored in A(JB:JB+JNB-1,JB:JB+JNB-1).
+* The N-by-N matrix V1 is the upper part
+* of the M-by-N lower-trapezoidal matrix V
+* stored in A(1:M,1:N);
+*
+* B(JB) is a JNB-by-JNB upper-triangular right-hand
+* side block, B(JB) = (-1)*U(JB)*S(JB), and
+* B(JB) is stored in T(1:JNB,JB:JB+JNB-1);
+*
+* X(JB) is a JNB-by-JNB upper-triangular solution
+* block, X(JB) is the upper-triangular block
+* reflector T(JB), and X(JB) is stored
+* in T(1:JNB,JB:JB+JNB-1).
+*
+* In other words, we perform the triangular solve for the
+* upper-triangular block T(JB):
+*
+* T(JB) * (V1(JB)**T) = (-1)*U(JB)*S(JB).
+*
+* Even though the blocks X(JB) and B(JB) are upper-
+* triangular, the routine STRSM will access all JNB**2
+* elements of the square T(1:JNB,JB:JB+JNB-1). Therefore,
+* we need to set to zero the elements of the block
+* T(1:JNB,JB:JB+JNB-1) below the diagonal before the call
+* to STRSM.
+*
+* (2-3a) Set the elements to zero.
+*
+ JBTEMP2 = JB - 2
+ DO J = JB, JB+JNB-2
+ DO I = J-JBTEMP2, NB
+ T( I, J ) = ZERO
+ END DO
+ END DO
+*
+* (2-3b) Perform the triangular solve.
+*
+ CALL STRSM( 'R', 'L', 'T', 'U', JNB, JNB, ONE,
+ $ A( JB, JB ), LDA, T( 1, JB ), LDT )
+*
+ END DO
+*
+ RETURN
+*
+* End of SORHR_COL
+*
+ END
\ No newline at end of file
diff --git a/lapack-netlib/SRC/sporfsx.f b/lapack-netlib/SRC/sporfsx.f
index 52fab6976..ce8c26569 100644
--- a/lapack-netlib/SRC/sporfsx.f
+++ b/lapack-netlib/SRC/sporfsx.f
@@ -135,7 +135,7 @@
*> \param[in,out] S
*> \verbatim
*> S is REAL array, dimension (N)
-*> The row scale factors for A. If EQUED = 'Y', A is multiplied on
+*> The scale factors for A. If EQUED = 'Y', A is multiplied on
*> the left and right by diag(S). S is an input argument if FACT =
*> 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED
*> = 'Y', each element of S must be positive. If S is output, each
@@ -263,7 +263,7 @@
*> information as described below. There currently are up to three
*> pieces of information returned for each right-hand side. If
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
-*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
+*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
@@ -299,14 +299,14 @@
*> \param[in] NPARAMS
*> \verbatim
*> NPARAMS is INTEGER
-*> Specifies the number of parameters set in PARAMS. If .LE. 0, the
+*> Specifies the number of parameters set in PARAMS. If <= 0, the
*> PARAMS array is never referenced and default values are used.
*> \endverbatim
*>
*> \param[in,out] PARAMS
*> \verbatim
*> PARAMS is REAL array, dimension NPARAMS
-*> Specifies algorithm parameters. If an entry is .LT. 0.0, then
+*> Specifies algorithm parameters. If an entry is < 0.0, then
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
@@ -314,9 +314,9 @@
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
-*> = 0.0 : No refinement is performed, and no error bounds are
+*> = 0.0: No refinement is performed, and no error bounds are
*> computed.
-*> = 1.0 : Use the double-precision refinement algorithm,
+*> = 1.0: Use the double-precision refinement algorithm,
*> possibly with doubled-single computations if the
*> compilation environment does not support DOUBLE
*> PRECISION.
diff --git a/lapack-netlib/SRC/sposvxx.f b/lapack-netlib/SRC/sposvxx.f
index 3cdfa749c..fa2c0d3f3 100644
--- a/lapack-netlib/SRC/sposvxx.f
+++ b/lapack-netlib/SRC/sposvxx.f
@@ -366,7 +366,7 @@
*> information as described below. There currently are up to three
*> pieces of information returned for each right-hand side. If
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
-*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
+*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
@@ -402,14 +402,14 @@
*> \param[in] NPARAMS
*> \verbatim
*> NPARAMS is INTEGER
-*> Specifies the number of parameters set in PARAMS. If .LE. 0, the
+*> Specifies the number of parameters set in PARAMS. If <= 0, the
*> PARAMS array is never referenced and default values are used.
*> \endverbatim
*>
*> \param[in,out] PARAMS
*> \verbatim
*> PARAMS is REAL array, dimension NPARAMS
-*> Specifies algorithm parameters. If an entry is .LT. 0.0, then
+*> Specifies algorithm parameters. If an entry is < 0.0, then
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
@@ -417,9 +417,9 @@
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
-*> = 0.0 : No refinement is performed, and no error bounds are
+*> = 0.0: No refinement is performed, and no error bounds are
*> computed.
-*> = 1.0 : Use the double-precision refinement algorithm,
+*> = 1.0: Use the double-precision refinement algorithm,
*> possibly with doubled-single computations if the
*> compilation environment does not support DOUBLE
*> PRECISION.
diff --git a/lapack-netlib/SRC/ssb2st_kernels.f b/lapack-netlib/SRC/ssb2st_kernels.f
index 54479f89e..08859169b 100644
--- a/lapack-netlib/SRC/ssb2st_kernels.f
+++ b/lapack-netlib/SRC/ssb2st_kernels.f
@@ -1,26 +1,26 @@
*> \brief \b SSB2ST_KERNELS
*
* @generated from zhb2st_kernels.f, fortran z -> s, Wed Dec 7 08:22:40 2016
-*
+*
* =========== DOCUMENTATION ===========
*
-* Online html documentation available at
-* http://www.netlib.org/lapack/explore-html/
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
-*> Download SSB2ST_KERNELS + dependencies
-*>
-*> [TGZ]
-*>
-*> [ZIP]
-*>
+*> Download SSB2ST_KERNELS + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
*> [TXT]
-*> \endhtmlonly
+*> \endhtmlonly
*
* Definition:
* ===========
*
-* SUBROUTINE SSB2ST_KERNELS( UPLO, WANTZ, TTYPE,
+* SUBROUTINE SSB2ST_KERNELS( UPLO, WANTZ, TTYPE,
* ST, ED, SWEEP, N, NB, IB,
* A, LDA, V, TAU, LDVT, WORK)
*
@@ -32,9 +32,9 @@
* INTEGER TTYPE, ST, ED, SWEEP, N, NB, IB, LDA, LDVT
* ..
* .. Array Arguments ..
-* REAL A( LDA, * ), V( * ),
+* REAL A( LDA, * ), V( * ),
* TAU( * ), WORK( * )
-*
+*
*> \par Purpose:
* =============
*>
@@ -124,7 +124,7 @@
*> LDVT is INTEGER.
*> \endverbatim
*>
-*> \param[in] WORK
+*> \param[out] WORK
*> \verbatim
*> WORK is REAL array. Workspace of size nb.
*> \endverbatim
@@ -150,7 +150,7 @@
*> http://doi.acm.org/10.1145/2063384.2063394
*>
*> A. Haidar, J. Kurzak, P. Luszczek, 2013.
-*> An improved parallel singular value algorithm and its implementation
+*> An improved parallel singular value algorithm and its implementation
*> for multicore hardware, In Proceedings of 2013 International Conference
*> for High Performance Computing, Networking, Storage and Analysis (SC '13).
*> Denver, Colorado, USA, 2013.
@@ -158,16 +158,16 @@
*> http://doi.acm.org/10.1145/2503210.2503292
*>
*> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
-*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure
+*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure
*> calculations based on fine-grained memory aware tasks.
*> International Journal of High Performance Computing Applications.
*> Volume 28 Issue 2, Pages 196-209, May 2014.
-*> http://hpc.sagepub.com/content/28/2/196
+*> http://hpc.sagepub.com/content/28/2/196
*>
*> \endverbatim
*>
* =====================================================================
- SUBROUTINE SSB2ST_KERNELS( UPLO, WANTZ, TTYPE,
+ SUBROUTINE SSB2ST_KERNELS( UPLO, WANTZ, TTYPE,
$ ST, ED, SWEEP, N, NB, IB,
$ A, LDA, V, TAU, LDVT, WORK)
*
@@ -184,7 +184,7 @@
INTEGER TTYPE, ST, ED, SWEEP, N, NB, IB, LDA, LDVT
* ..
* .. Array Arguments ..
- REAL A( LDA, * ), V( * ),
+ REAL A( LDA, * ), V( * ),
$ TAU( * ), WORK( * )
* ..
*
@@ -198,8 +198,8 @@
* .. Local Scalars ..
LOGICAL UPPER
INTEGER I, J1, J2, LM, LN, VPOS, TAUPOS,
- $ DPOS, OFDPOS, AJETER
- REAL CTMP
+ $ DPOS, OFDPOS, AJETER
+ REAL CTMP
* ..
* .. External Subroutines ..
EXTERNAL SLARFG, SLARFX, SLARFY
@@ -212,7 +212,7 @@
* ..
* ..
* .. Executable Statements ..
-*
+*
AJETER = IB + LDVT
UPPER = LSAME( UPLO, 'U' )
@@ -243,10 +243,10 @@
V( VPOS ) = ONE
DO 10 I = 1, LM-1
V( VPOS+I ) = ( A( OFDPOS-I, ST+I ) )
- A( OFDPOS-I, ST+I ) = ZERO
+ A( OFDPOS-I, ST+I ) = ZERO
10 CONTINUE
CTMP = ( A( OFDPOS, ST ) )
- CALL SLARFG( LM, CTMP, V( VPOS+1 ), 1,
+ CALL SLARFG( LM, CTMP, V( VPOS+1 ), 1,
$ TAU( TAUPOS ) )
A( OFDPOS, ST ) = CTMP
*
@@ -284,14 +284,14 @@
*
V( VPOS ) = ONE
DO 30 I = 1, LM-1
- V( VPOS+I ) =
+ V( VPOS+I ) =
$ ( A( DPOS-NB-I, J1+I ) )
A( DPOS-NB-I, J1+I ) = ZERO
30 CONTINUE
CTMP = ( A( DPOS-NB, J1 ) )
CALL SLARFG( LM, CTMP, V( VPOS+1 ), 1, TAU( TAUPOS ) )
A( DPOS-NB, J1 ) = CTMP
-*
+*
CALL SLARFX( 'Right', LN-1, LM, V( VPOS ),
$ TAU( TAUPOS ),
$ A( DPOS-NB+1, J1 ), LDA-1, WORK)
@@ -299,9 +299,9 @@
ENDIF
*
* Lower case
-*
+*
ELSE
-*
+*
IF( WANTZ ) THEN
VPOS = MOD( SWEEP-1, 2 ) * N + ST
TAUPOS = MOD( SWEEP-1, 2 ) * N + ST
@@ -316,9 +316,9 @@
V( VPOS ) = ONE
DO 20 I = 1, LM-1
V( VPOS+I ) = A( OFDPOS+I, ST-1 )
- A( OFDPOS+I, ST-1 ) = ZERO
+ A( OFDPOS+I, ST-1 ) = ZERO
20 CONTINUE
- CALL SLARFG( LM, A( OFDPOS, ST-1 ), V( VPOS+1 ), 1,
+ CALL SLARFG( LM, A( OFDPOS, ST-1 ), V( VPOS+1 ), 1,
$ TAU( TAUPOS ) )
*
LM = ED - ST + 1
@@ -345,7 +345,7 @@
LM = J2-J1+1
*
IF( LM.GT.0) THEN
- CALL SLARFX( 'Right', LM, LN, V( VPOS ),
+ CALL SLARFX( 'Right', LM, LN, V( VPOS ),
$ TAU( TAUPOS ), A( DPOS+NB, ST ),
$ LDA-1, WORK)
*
@@ -362,13 +362,13 @@
V( VPOS+I ) = A( DPOS+NB+I, ST )
A( DPOS+NB+I, ST ) = ZERO
40 CONTINUE
- CALL SLARFG( LM, A( DPOS+NB, ST ), V( VPOS+1 ), 1,
+ CALL SLARFG( LM, A( DPOS+NB, ST ), V( VPOS+1 ), 1,
$ TAU( TAUPOS ) )
*
- CALL SLARFX( 'Left', LM, LN-1, V( VPOS ),
+ CALL SLARFX( 'Left', LM, LN-1, V( VPOS ),
$ ( TAU( TAUPOS ) ),
$ A( DPOS+NB-1, ST+1 ), LDA-1, WORK)
-
+
ENDIF
ENDIF
ENDIF
@@ -377,4 +377,4 @@
*
* END OF SSB2ST_KERNELS
*
- END
+ END
diff --git a/lapack-netlib/SRC/ssbgvx.f b/lapack-netlib/SRC/ssbgvx.f
index 3408810bd..22f96729e 100644
--- a/lapack-netlib/SRC/ssbgvx.f
+++ b/lapack-netlib/SRC/ssbgvx.f
@@ -261,11 +261,11 @@
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
-*> = 0 : successful exit
-*> < 0 : if INFO = -i, the i-th argument had an illegal value
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
*> <= N: if INFO = i, then i eigenvectors failed to converge.
*> Their indices are stored in IFAIL.
-*> > N : SPBSTF returned an error code; i.e.,
+*> > N: SPBSTF returned an error code; i.e.,
*> if INFO = N + i, for 1 <= i <= N, then the leading
*> minor of order i of B is not positive definite.
*> The factorization of B could not be completed and
diff --git a/lapack-netlib/SRC/sstemr.f b/lapack-netlib/SRC/sstemr.f
index 228538161..d550f87e0 100644
--- a/lapack-netlib/SRC/sstemr.f
+++ b/lapack-netlib/SRC/sstemr.f
@@ -233,13 +233,13 @@
*> \param[in,out] TRYRAC
*> \verbatim
*> TRYRAC is LOGICAL
-*> If TRYRAC.EQ..TRUE., indicates that the code should check whether
+*> If TRYRAC = .TRUE., indicates that the code should check whether
*> the tridiagonal matrix defines its eigenvalues to high relative
*> accuracy. If so, the code uses relative-accuracy preserving
*> algorithms that might be (a bit) slower depending on the matrix.
*> If the matrix does not define its eigenvalues to high relative
*> accuracy, the code can uses possibly faster algorithms.
-*> If TRYRAC.EQ..FALSE., the code is not required to guarantee
+*> If TRYRAC = .FALSE., the code is not required to guarantee
*> relatively accurate eigenvalues and can use the fastest possible
*> techniques.
*> On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix
diff --git a/lapack-netlib/SRC/ssyconvf.f b/lapack-netlib/SRC/ssyconvf.f
index d43b9473f..c6f08428f 100644
--- a/lapack-netlib/SRC/ssyconvf.f
+++ b/lapack-netlib/SRC/ssyconvf.f
@@ -291,7 +291,7 @@
*
* Convert PERMUTATIONS and IPIV
*
-* Apply permutaions to submatrices of upper part of A
+* Apply permutations to submatrices of upper part of A
* in factorization order where i decreases from N to 1
*
I = N
@@ -344,7 +344,7 @@
*
* Revert PERMUTATIONS and IPIV
*
-* Apply permutaions to submatrices of upper part of A
+* Apply permutations to submatrices of upper part of A
* in reverse factorization order where i increases from 1 to N
*
I = 1
@@ -435,7 +435,7 @@
*
* Convert PERMUTATIONS and IPIV
*
-* Apply permutaions to submatrices of lower part of A
+* Apply permutations to submatrices of lower part of A
* in factorization order where k increases from 1 to N
*
I = 1
@@ -488,7 +488,7 @@
*
* Revert PERMUTATIONS and IPIV
*
-* Apply permutaions to submatrices of lower part of A
+* Apply permutations to submatrices of lower part of A
* in reverse factorization order where i decreases from N to 1
*
I = N
diff --git a/lapack-netlib/SRC/ssyconvf_rook.f b/lapack-netlib/SRC/ssyconvf_rook.f
index 833b9c632..a7e0d5258 100644
--- a/lapack-netlib/SRC/ssyconvf_rook.f
+++ b/lapack-netlib/SRC/ssyconvf_rook.f
@@ -282,7 +282,7 @@
*
* Convert PERMUTATIONS
*
-* Apply permutaions to submatrices of upper part of A
+* Apply permutations to submatrices of upper part of A
* in factorization order where i decreases from N to 1
*
I = N
@@ -333,7 +333,7 @@
*
* Revert PERMUTATIONS
*
-* Apply permutaions to submatrices of upper part of A
+* Apply permutations to submatrices of upper part of A
* in reverse factorization order where i increases from 1 to N
*
I = 1
@@ -423,7 +423,7 @@
*
* Convert PERMUTATIONS
*
-* Apply permutaions to submatrices of lower part of A
+* Apply permutations to submatrices of lower part of A
* in factorization order where i increases from 1 to N
*
I = 1
@@ -474,7 +474,7 @@
*
* Revert PERMUTATIONS
*
-* Apply permutaions to submatrices of lower part of A
+* Apply permutations to submatrices of lower part of A
* in reverse factorization order where i decreases from N to 1
*
I = N
diff --git a/lapack-netlib/SRC/ssyev_2stage.f b/lapack-netlib/SRC/ssyev_2stage.f
index 166766919..5d354c1b3 100644
--- a/lapack-netlib/SRC/ssyev_2stage.f
+++ b/lapack-netlib/SRC/ssyev_2stage.f
@@ -317,7 +317,7 @@
IF( .NOT.WANTZ ) THEN
CALL SSTERF( N, W, WORK( INDE ), INFO )
ELSE
-* Not available in this release, and agrument checking should not
+* Not available in this release, and argument checking should not
* let it getting here
RETURN
CALL SORGTR( UPLO, N, A, LDA, WORK( INDTAU ), WORK( INDWRK ),
diff --git a/lapack-netlib/SRC/ssyevd_2stage.f b/lapack-netlib/SRC/ssyevd_2stage.f
index 8ab90b641..625713b85 100644
--- a/lapack-netlib/SRC/ssyevd_2stage.f
+++ b/lapack-netlib/SRC/ssyevd_2stage.f
@@ -385,7 +385,7 @@
IF( .NOT.WANTZ ) THEN
CALL SSTERF( N, W, WORK( INDE ), INFO )
ELSE
-* Not available in this release, and agrument checking should not
+* Not available in this release, and argument checking should not
* let it getting here
RETURN
CALL SSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
diff --git a/lapack-netlib/SRC/ssyrfsx.f b/lapack-netlib/SRC/ssyrfsx.f
index b5dd0b2df..bfb7b6005 100644
--- a/lapack-netlib/SRC/ssyrfsx.f
+++ b/lapack-netlib/SRC/ssyrfsx.f
@@ -271,7 +271,7 @@
*> information as described below. There currently are up to three
*> pieces of information returned for each right-hand side. If
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
-*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
+*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
@@ -307,14 +307,14 @@
*> \param[in] NPARAMS
*> \verbatim
*> NPARAMS is INTEGER
-*> Specifies the number of parameters set in PARAMS. If .LE. 0, the
+*> Specifies the number of parameters set in PARAMS. If <= 0, the
*> PARAMS array is never referenced and default values are used.
*> \endverbatim
*>
*> \param[in,out] PARAMS
*> \verbatim
*> PARAMS is REAL array, dimension NPARAMS
-*> Specifies algorithm parameters. If an entry is .LT. 0.0, then
+*> Specifies algorithm parameters. If an entry is < 0.0, then
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
@@ -322,9 +322,9 @@
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
-*> = 0.0 : No refinement is performed, and no error bounds are
+*> = 0.0: No refinement is performed, and no error bounds are
*> computed.
-*> = 1.0 : Use the double-precision refinement algorithm,
+*> = 1.0: Use the double-precision refinement algorithm,
*> possibly with doubled-single computations if the
*> compilation environment does not support DOUBLE
*> PRECISION.
diff --git a/lapack-netlib/SRC/ssysv_aa.f b/lapack-netlib/SRC/ssysv_aa.f
index e470f5883..7e58d1e75 100644
--- a/lapack-netlib/SRC/ssysv_aa.f
+++ b/lapack-netlib/SRC/ssysv_aa.f
@@ -42,7 +42,7 @@
*> matrices.
*>
*> Aasen's algorithm is used to factor A as
-*> A = U * T * U**T, if UPLO = 'U', or
+*> A = U**T * T * U, if UPLO = 'U', or
*> A = L * T * L**T, if UPLO = 'L',
*> where U (or L) is a product of permutation and unit upper (lower)
*> triangular matrices, and T is symmetric tridiagonal. The factored
@@ -86,7 +86,7 @@
*>
*> On exit, if INFO = 0, the tridiagonal matrix T and the
*> multipliers used to obtain the factor U or L from the
-*> factorization A = U*T*U**T or A = L*T*L**T as computed by
+*> factorization A = U**T*T*U or A = L*T*L**T as computed by
*> SSYTRF.
*> \endverbatim
*>
@@ -229,7 +229,7 @@
RETURN
END IF
*
-* Compute the factorization A = U*T*U**T or A = L*T*L**T.
+* Compute the factorization A = U**T*T*U or A = L*T*L**T.
*
CALL SSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
IF( INFO.EQ.0 ) THEN
diff --git a/lapack-netlib/SRC/ssysv_aa_2stage.f b/lapack-netlib/SRC/ssysv_aa_2stage.f
index 43d937141..5e2e0e340 100644
--- a/lapack-netlib/SRC/ssysv_aa_2stage.f
+++ b/lapack-netlib/SRC/ssysv_aa_2stage.f
@@ -44,7 +44,7 @@
*> matrices.
*>
*> Aasen's 2-stage algorithm is used to factor A as
-*> A = U * T * U**T, if UPLO = 'U', or
+*> A = U**T * T * U, if UPLO = 'U', or
*> A = L * T * L**T, if UPLO = 'L',
*> where U (or L) is a product of permutation and unit upper (lower)
*> triangular matrices, and T is symmetric and band. The matrix T is
@@ -258,7 +258,7 @@
END IF
*
*
-* Compute the factorization A = U*T*U**T or A = L*T*L**T.
+* Compute the factorization A = U**T*T*U or A = L*T*L**T.
*
CALL SSYTRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, IPIV2,
$ WORK, LWORK, INFO )
diff --git a/lapack-netlib/SRC/ssysvxx.f b/lapack-netlib/SRC/ssysvxx.f
index 4762748c0..e2be0128b 100644
--- a/lapack-netlib/SRC/ssysvxx.f
+++ b/lapack-netlib/SRC/ssysvxx.f
@@ -377,7 +377,7 @@
*> information as described below. There currently are up to three
*> pieces of information returned for each right-hand side. If
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
-*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
+*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
@@ -413,14 +413,14 @@
*> \param[in] NPARAMS
*> \verbatim
*> NPARAMS is INTEGER
-*> Specifies the number of parameters set in PARAMS. If .LE. 0, the
+*> Specifies the number of parameters set in PARAMS. If <= 0, the
*> PARAMS array is never referenced and default values are used.
*> \endverbatim
*>
*> \param[in,out] PARAMS
*> \verbatim
*> PARAMS is REAL array, dimension NPARAMS
-*> Specifies algorithm parameters. If an entry is .LT. 0.0, then
+*> Specifies algorithm parameters. If an entry is < 0.0, then
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
@@ -428,9 +428,9 @@
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
-*> = 0.0 : No refinement is performed, and no error bounds are
+*> = 0.0: No refinement is performed, and no error bounds are
*> computed.
-*> = 1.0 : Use the double-precision refinement algorithm,
+*> = 1.0: Use the double-precision refinement algorithm,
*> possibly with doubled-single computations if the
*> compilation environment does not support DOUBLE
*> PRECISION.
diff --git a/lapack-netlib/SRC/ssytf2_rk.f b/lapack-netlib/SRC/ssytf2_rk.f
index bf113d1bd..400e48353 100644
--- a/lapack-netlib/SRC/ssytf2_rk.f
+++ b/lapack-netlib/SRC/ssytf2_rk.f
@@ -312,7 +312,7 @@
*
* Factorize A as U*D*U**T using the upper triangle of A
*
-* Initilize the first entry of array E, where superdiagonal
+* Initialize the first entry of array E, where superdiagonal
* elements of D are stored
*
E( 1 ) = ZERO
@@ -623,7 +623,7 @@
*
* Factorize A as L*D*L**T using the lower triangle of A
*
-* Initilize the unused last entry of the subdiagonal array E.
+* Initialize the unused last entry of the subdiagonal array E.
*
E( N ) = ZERO
*
diff --git a/lapack-netlib/SRC/ssytrd_2stage.f b/lapack-netlib/SRC/ssytrd_2stage.f
index 7ddc0224e..d2502f483 100644
--- a/lapack-netlib/SRC/ssytrd_2stage.f
+++ b/lapack-netlib/SRC/ssytrd_2stage.f
@@ -123,23 +123,22 @@
*>
*> \param[out] HOUS2
*> \verbatim
-*> HOUS2 is REAL array, dimension LHOUS2, that
-*> store the Householder representation of the stage2
+*> HOUS2 is REAL array, dimension (LHOUS2)
+*> Stores the Householder representation of the stage2
*> band to tridiagonal.
*> \endverbatim
*>
*> \param[in] LHOUS2
*> \verbatim
*> LHOUS2 is INTEGER
-*> The dimension of the array HOUS2. LHOUS2 = MAX(1, dimension)
-*> If LWORK = -1, or LHOUS2=-1,
+*> The dimension of the array HOUS2.
+*> If LWORK = -1, or LHOUS2 = -1,
*> then a query is assumed; the routine
*> only calculates the optimal size of the HOUS2 array, returns
*> this value as the first entry of the HOUS2 array, and no error
*> message related to LHOUS2 is issued by XERBLA.
-*> LHOUS2 = MAX(1, dimension) where
-*> dimension = 4*N if VECT='N'
-*> not available now if VECT='H'
+*> If VECT='N', LHOUS2 = max(1, 4*n);
+*> if VECT='V', option not yet available.
*> \endverbatim
*>
*> \param[out] WORK
diff --git a/lapack-netlib/SRC/ssytrd_sb2st.F b/lapack-netlib/SRC/ssytrd_sb2st.F
index 0df1173e4..9893181cf 100644
--- a/lapack-netlib/SRC/ssytrd_sb2st.F
+++ b/lapack-netlib/SRC/ssytrd_sb2st.F
@@ -50,9 +50,9 @@
* Arguments:
* ==========
*
-*> \param[in] STAGE
+*> \param[in] STAGE1
*> \verbatim
-*> STAGE is CHARACTER*1
+*> STAGE1 is CHARACTER*1
*> = 'N': "No": to mention that the stage 1 of the reduction
*> from dense to band using the ssytrd_sy2sb routine
*> was not called before this routine to reproduce AB.
@@ -481,7 +481,7 @@
*
* Call the kernel
*
-#if defined(_OPENMP) && _OPENMP >= 201307
+#if defined(_OPENMP)
IF( TTYPE.NE.1 ) THEN
!$OMP TASK DEPEND(in:WORK(MYID+SHIFT-1))
!$OMP$ DEPEND(in:WORK(MYID-1))
diff --git a/lapack-netlib/SRC/ssytrd_sy2sb.f b/lapack-netlib/SRC/ssytrd_sy2sb.f
index 272876700..98169dc00 100644
--- a/lapack-netlib/SRC/ssytrd_sy2sb.f
+++ b/lapack-netlib/SRC/ssytrd_sy2sb.f
@@ -363,7 +363,7 @@
*
*
* Set the workspace of the triangular matrix T to zero once such a
-* way everytime T is generated the upper/lower portion will be always zero
+* way every time T is generated the upper/lower portion will be always zero
*
CALL SLASET( "A", LDT, KD, ZERO, ZERO, WORK( TPOS ), LDT )
*
diff --git a/lapack-netlib/SRC/ssytrf.f b/lapack-netlib/SRC/ssytrf.f
index 2c29475df..ae4550f28 100644
--- a/lapack-netlib/SRC/ssytrf.f
+++ b/lapack-netlib/SRC/ssytrf.f
@@ -39,7 +39,7 @@
*> the Bunch-Kaufman diagonal pivoting method. The form of the
*> factorization is
*>
-*> A = U*D*U**T or A = L*D*L**T
+*> A = U**T*D*U or A = L*D*L**T
*>
*> where U (or L) is a product of permutation and unit upper (lower)
*> triangular matrices, and D is symmetric and block diagonal with
@@ -144,7 +144,7 @@
*>
*> \verbatim
*>
-*> If UPLO = 'U', then A = U*D*U**T, where
+*> If UPLO = 'U', then A = U**T*D*U, where
*> U = P(n)*U(n)* ... *P(k)U(k)* ...,
*> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
*> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
@@ -262,7 +262,7 @@
*
IF( UPPER ) THEN
*
-* Factorize A as U*D*U**T using the upper triangle of A
+* Factorize A as U**T*D*U using the upper triangle of A
*
* K is the main loop index, decreasing from N to 1 in steps of
* KB, where KB is the number of columns factorized by SLASYF;
diff --git a/lapack-netlib/SRC/ssytrf_aa.f b/lapack-netlib/SRC/ssytrf_aa.f
index 4aaa978ad..7f428561c 100644
--- a/lapack-netlib/SRC/ssytrf_aa.f
+++ b/lapack-netlib/SRC/ssytrf_aa.f
@@ -37,7 +37,7 @@
*> SSYTRF_AA computes the factorization of a real symmetric matrix A
*> using the Aasen's algorithm. The form of the factorization is
*>
-*> A = U*T*U**T or A = L*T*L**T
+*> A = U**T*T*U or A = L*T*L**T
*>
*> where U (or L) is a product of permutation and unit upper (lower)
*> triangular matrices, and T is a symmetric tridiagonal matrix.
@@ -223,7 +223,7 @@
IF( UPPER ) THEN
*
* .....................................................
-* Factorize A as L*D*L**T using the upper triangle of A
+* Factorize A as U**T*D*U using the upper triangle of A
* .....................................................
*
* Copy first row A(1, 1:N) into H(1:n) (stored in WORK(1:N))
@@ -256,7 +256,7 @@
$ A( MAX(1, J), J+1 ), LDA,
$ IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
*
-* Ajust IPIV and apply it back (J-th step picks (J+1)-th pivot)
+* Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot)
*
DO J2 = J+2, MIN(N, J+JB+1)
IPIV( J2 ) = IPIV( J2 ) + J
@@ -375,7 +375,7 @@
$ A( J+1, MAX(1, J) ), LDA,
$ IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
*
-* Ajust IPIV and apply it back (J-th step picks (J+1)-th pivot)
+* Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot)
*
DO J2 = J+2, MIN(N, J+JB+1)
IPIV( J2 ) = IPIV( J2 ) + J
diff --git a/lapack-netlib/SRC/ssytrf_aa_2stage.f b/lapack-netlib/SRC/ssytrf_aa_2stage.f
index 0e0f6edb7..03690815b 100644
--- a/lapack-netlib/SRC/ssytrf_aa_2stage.f
+++ b/lapack-netlib/SRC/ssytrf_aa_2stage.f
@@ -38,7 +38,7 @@
*> SSYTRF_AA_2STAGE computes the factorization of a real symmetric matrix A
*> using the Aasen's algorithm. The form of the factorization is
*>
-*> A = U*T*U**T or A = L*T*L**T
+*> A = U**T*T*U or A = L*T*L**T
*>
*> where U (or L) is a product of permutation and unit upper (lower)
*> triangular matrices, and T is a symmetric band matrix with the
@@ -275,7 +275,7 @@
IF( UPPER ) THEN
*
* .....................................................
-* Factorize A as L*D*L**T using the upper triangle of A
+* Factorize A as U**T*D*U using the upper triangle of A
* .....................................................
*
DO J = 0, NT-1
@@ -442,12 +442,14 @@ c END IF
* > Apply pivots to previous columns of L
CALL SSWAP( K-1, A( (J+1)*NB+1, I1 ), 1,
$ A( (J+1)*NB+1, I2 ), 1 )
-* > Swap A(I1+1:M, I1) with A(I2, I1+1:M)
- CALL SSWAP( I2-I1-1, A( I1, I1+1 ), LDA,
- $ A( I1+1, I2 ), 1 )
+* > Swap A(I1+1:M, I1) with A(I2, I1+1:M)
+ IF( I2.GT.(I1+1) )
+ $ CALL SSWAP( I2-I1-1, A( I1, I1+1 ), LDA,
+ $ A( I1+1, I2 ), 1 )
* > Swap A(I2+1:M, I1) with A(I2+1:M, I2)
- CALL SSWAP( N-I2, A( I1, I2+1 ), LDA,
- $ A( I2, I2+1 ), LDA )
+ IF( I2.LT.N )
+ $ CALL SSWAP( N-I2, A( I1, I2+1 ), LDA,
+ $ A( I2, I2+1 ), LDA )
* > Swap A(I1, I1) with A(I2, I2)
PIV = A( I1, I1 )
A( I1, I1 ) = A( I2, I2 )
@@ -616,11 +618,13 @@ c END IF
CALL SSWAP( K-1, A( I1, (J+1)*NB+1 ), LDA,
$ A( I2, (J+1)*NB+1 ), LDA )
* > Swap A(I1+1:M, I1) with A(I2, I1+1:M)
- CALL SSWAP( I2-I1-1, A( I1+1, I1 ), 1,
- $ A( I2, I1+1 ), LDA )
+ IF( I2.GT.(I1+1) )
+ $ CALL SSWAP( I2-I1-1, A( I1+1, I1 ), 1,
+ $ A( I2, I1+1 ), LDA )
* > Swap A(I2+1:M, I1) with A(I2+1:M, I2)
- CALL SSWAP( N-I2, A( I2+1, I1 ), 1,
- $ A( I2+1, I2 ), 1 )
+ IF( I2.LT.N )
+ $ CALL SSWAP( N-I2, A( I2+1, I1 ), 1,
+ $ A( I2+1, I2 ), 1 )
* > Swap A(I1, I1) with A(I2, I2)
PIV = A( I1, I1 )
A( I1, I1 ) = A( I2, I2 )
diff --git a/lapack-netlib/SRC/ssytri2.f b/lapack-netlib/SRC/ssytri2.f
index 4b9ea4e7b..897116c23 100644
--- a/lapack-netlib/SRC/ssytri2.f
+++ b/lapack-netlib/SRC/ssytri2.f
@@ -62,7 +62,7 @@
*> \param[in,out] A
*> \verbatim
*> A is REAL array, dimension (LDA,N)
-*> On entry, the NB diagonal matrix D and the multipliers
+*> On entry, the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by SSYTRF.
*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
@@ -82,7 +82,7 @@
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
-*> Details of the interchanges and the NB structure of D
+*> Details of the interchanges and the block structure of D
*> as determined by SSYTRF.
*> \endverbatim
*>
diff --git a/lapack-netlib/SRC/ssytrs_aa.f b/lapack-netlib/SRC/ssytrs_aa.f
index b05c9f7e6..ed4377ae7 100644
--- a/lapack-netlib/SRC/ssytrs_aa.f
+++ b/lapack-netlib/SRC/ssytrs_aa.f
@@ -37,7 +37,7 @@
*> \verbatim
*>
*> SSYTRS_AA solves a system of linear equations A*X = B with a real
-*> symmetric matrix A using the factorization A = U*T*U**T or
+*> symmetric matrix A using the factorization A = U**T*T*U or
*> A = L*T*L**T computed by SSYTRF_AA.
*> \endverbatim
*
@@ -49,7 +49,7 @@
*> UPLO is CHARACTER*1
*> Specifies whether the details of the factorization are stored
*> as an upper or lower triangular matrix.
-*> = 'U': Upper triangular, form is A = U*T*U**T;
+*> = 'U': Upper triangular, form is A = U**T*T*U;
*> = 'L': Lower triangular, form is A = L*T*L**T.
*> \endverbatim
*>
@@ -97,14 +97,16 @@
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
-*> \param[in] WORK
+*> \param[out] WORK
*> \verbatim
-*> WORK is DOUBLE array, dimension (MAX(1,LWORK))
+*> WORK is REAL array, dimension (MAX(1,LWORK))
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
-*> LWORK is INTEGER, LWORK >= MAX(1,3*N-2).
+*> LWORK is INTEGER
+*> The dimension of the array WORK. LWORK >= max(1,3*N-2).
+*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
@@ -198,24 +200,31 @@
*
IF( UPPER ) THEN
*
-* Solve A*X = B, where A = U*T*U**T.
+* Solve A*X = B, where A = U**T*T*U.
*
-* Pivot, P**T * B
+* 1) Forward substitution with U**T
*
- K = 1
- DO WHILE ( K.LE.N )
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- K = K + 1
- END DO
+ IF( N.GT.1 ) THEN
*
-* Compute (U \P**T * B) -> B [ (U \P**T * B) ]
+* Pivot, P**T * B -> B
*
- CALL STRSM('L', 'U', 'T', 'U', N-1, NRHS, ONE, A( 1, 2 ), LDA,
- $ B( 2, 1 ), LDB)
+ K = 1
+ DO WHILE ( K.LE.N )
+ KP = IPIV( K )
+ IF( KP.NE.K )
+ $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
+ K = K + 1
+ END DO
*
-* Compute T \ B -> B [ T \ (U \P**T * B) ]
+* Compute U**T \ B -> B [ (U**T \P**T * B) ]
+*
+ CALL STRSM( 'L', 'U', 'T', 'U', N-1, NRHS, ONE, A( 1, 2 ),
+ $ LDA, B( 2, 1 ), LDB)
+ END IF
+*
+* 2) Solve with triangular matrix T
+*
+* Compute T \ B -> B [ T \ (U**T \P**T * B) ]
*
CALL SLACPY( 'F', 1, N, A(1, 1), LDA+1, WORK(N), 1)
IF( N.GT.1 ) THEN
@@ -224,41 +233,53 @@
END IF
CALL SGTSV(N, NRHS, WORK(1), WORK(N), WORK(2*N), B, LDB,
$ INFO)
+*
+* 3) Backward substitution with U
+*
+ IF( N.GT.1 ) THEN
*
*
-* Compute (U**T \ B) -> B [ U**T \ (T \ (U \P**T * B) ) ]
+* Compute U \ B -> B [ U \ (T \ (U**T \P**T * B) ) ]
*
- CALL STRSM( 'L', 'U', 'N', 'U', N-1, NRHS, ONE, A( 1, 2 ), LDA,
- $ B(2, 1), LDB)
+ CALL STRSM( 'L', 'U', 'N', 'U', N-1, NRHS, ONE, A( 1, 2 ),
+ $ LDA, B(2, 1), LDB)
*
-* Pivot, P * B [ P * (U**T \ (T \ (U \P**T * B) )) ]
+* Pivot, P * B -> B [ P * (U \ (T \ (U**T \P**T * B) )) ]
*
- K = N
- DO WHILE ( K.GE.1 )
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- K = K - 1
- END DO
+ K = N
+ DO WHILE ( K.GE.1 )
+ KP = IPIV( K )
+ IF( KP.NE.K )
+ $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
+ K = K - 1
+ END DO
+ END IF
*
ELSE
*
* Solve A*X = B, where A = L*T*L**T.
*
-* Pivot, P**T * B
+* 1) Forward substitution with L
*
- K = 1
- DO WHILE ( K.LE.N )
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- K = K + 1
- END DO
+ IF( N.GT.1 ) THEN
*
-* Compute (L \P**T * B) -> B [ (L \P**T * B) ]
+* Pivot, P**T * B -> B
*
- CALL STRSM( 'L', 'L', 'N', 'U', N-1, NRHS, ONE, A( 2, 1), LDA,
- $ B(2, 1), LDB)
+ K = 1
+ DO WHILE ( K.LE.N )
+ KP = IPIV( K )
+ IF( KP.NE.K )
+ $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
+ K = K + 1
+ END DO
+*
+* Compute L \ B -> B [ (L \P**T * B) ]
+*
+ CALL STRSM( 'L', 'L', 'N', 'U', N-1, NRHS, ONE, A( 2, 1),
+ $ LDA, B(2, 1), LDB)
+ END IF
+*
+* 2) Solve with triangular matrix T
*
* Compute T \ B -> B [ T \ (L \P**T * B) ]
*
@@ -270,20 +291,25 @@
CALL SGTSV(N, NRHS, WORK(1), WORK(N), WORK(2*N), B, LDB,
$ INFO)
*
-* Compute (L**T \ B) -> B [ L**T \ (T \ (L \P**T * B) ) ]
+* 3) Backward substitution with L**T
*
- CALL STRSM( 'L', 'L', 'T', 'U', N-1, NRHS, ONE, A( 2, 1 ), LDA,
- $ B( 2, 1 ), LDB)
+ IF( N.GT.1 ) THEN
*
-* Pivot, P * B [ P * (L**T \ (T \ (L \P**T * B) )) ]
+* Compute L**T \ B -> B [ L**T \ (T \ (L \P**T * B) ) ]
*
- K = N
- DO WHILE ( K.GE.1 )
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- K = K - 1
- END DO
+ CALL STRSM( 'L', 'L', 'T', 'U', N-1, NRHS, ONE, A( 2, 1 ),
+ $ LDA, B( 2, 1 ), LDB)
+*
+* Pivot, P * B -> B [ P * (L**T \ (T \ (L \P**T * B) )) ]
+*
+ K = N
+ DO WHILE ( K.GE.1 )
+ KP = IPIV( K )
+ IF( KP.NE.K )
+ $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
+ K = K - 1
+ END DO
+ END IF
*
END IF
*
diff --git a/lapack-netlib/SRC/ssytrs_aa_2stage.f b/lapack-netlib/SRC/ssytrs_aa_2stage.f
index d271b9481..cf2da529d 100644
--- a/lapack-netlib/SRC/ssytrs_aa_2stage.f
+++ b/lapack-netlib/SRC/ssytrs_aa_2stage.f
@@ -36,7 +36,7 @@
*> \verbatim
*>
*> SSYTRS_AA_2STAGE solves a system of linear equations A*X = B with a real
-*> symmetric matrix A using the factorization A = U*T*U**T or
+*> symmetric matrix A using the factorization A = U**T*T*U or
*> A = L*T*L**T computed by SSYTRF_AA_2STAGE.
*> \endverbatim
*
@@ -48,7 +48,7 @@
*> UPLO is CHARACTER*1
*> Specifies whether the details of the factorization are stored
*> as an upper or lower triangular matrix.
-*> = 'U': Upper triangular, form is A = U*T*U**T;
+*> = 'U': Upper triangular, form is A = U**T*T*U;
*> = 'L': Lower triangular, form is A = L*T*L**T.
*> \endverbatim
*>
@@ -208,15 +208,15 @@
*
IF( UPPER ) THEN
*
-* Solve A*X = B, where A = U*T*U**T.
+* Solve A*X = B, where A = U**T*T*U.
*
IF( N.GT.NB ) THEN
*
-* Pivot, P**T * B
+* Pivot, P**T * B -> B
*
CALL SLASWP( NRHS, B, LDB, NB+1, N, IPIV, 1 )
*
-* Compute (U**T \P**T * B) -> B [ (U**T \P**T * B) ]
+* Compute (U**T \ B) -> B [ (U**T \P**T * B) ]
*
CALL STRSM( 'L', 'U', 'T', 'U', N-NB, NRHS, ONE, A(1, NB+1),
$ LDA, B(NB+1, 1), LDB)
@@ -234,7 +234,7 @@
CALL STRSM( 'L', 'U', 'N', 'U', N-NB, NRHS, ONE, A(1, NB+1),
$ LDA, B(NB+1, 1), LDB)
*
-* Pivot, P * B [ P * (U \ (T \ (U**T \P**T * B) )) ]
+* Pivot, P * B -> B [ P * (U \ (T \ (U**T \P**T * B) )) ]
*
CALL SLASWP( NRHS, B, LDB, NB+1, N, IPIV, -1 )
*
@@ -246,11 +246,11 @@
*
IF( N.GT.NB ) THEN
*
-* Pivot, P**T * B
+* Pivot, P**T * B -> B
*
CALL SLASWP( NRHS, B, LDB, NB+1, N, IPIV, 1 )
*
-* Compute (L \P**T * B) -> B [ (L \P**T * B) ]
+* Compute (L \ B) -> B [ (L \P**T * B) ]
*
CALL STRSM( 'L', 'L', 'N', 'U', N-NB, NRHS, ONE, A(NB+1, 1),
$ LDA, B(NB+1, 1), LDB)
@@ -268,7 +268,7 @@
CALL STRSM( 'L', 'L', 'T', 'U', N-NB, NRHS, ONE, A(NB+1, 1),
$ LDA, B(NB+1, 1), LDB)
*
-* Pivot, P * B [ P * (L**T \ (T \ (L \P**T * B) )) ]
+* Pivot, P * B -> B [ P * (L**T \ (T \ (L \P**T * B) )) ]
*
CALL SLASWP( NRHS, B, LDB, NB+1, N, IPIV, -1 )
*
diff --git a/lapack-netlib/SRC/stgsy2.f b/lapack-netlib/SRC/stgsy2.f
index ca9946a7e..2814889fc 100644
--- a/lapack-netlib/SRC/stgsy2.f
+++ b/lapack-netlib/SRC/stgsy2.f
@@ -71,7 +71,7 @@
*> R * B**T + L * E**T = scale * -F
*>
*> This case is used to compute an estimate of Dif[(A, D), (B, E)] =
-*> sigma_min(Z) using reverse communicaton with SLACON.
+*> sigma_min(Z) using reverse communication with SLACON.
*>
*> STGSY2 also (IJOB >= 1) contributes to the computation in STGSYL
*> of an upper bound on the separation between to matrix pairs. Then
@@ -85,7 +85,7 @@
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
-*> = 'N', solve the generalized Sylvester equation (1).
+*> = 'N': solve the generalized Sylvester equation (1).
*> = 'T': solve the 'transposed' system (3).
*> \endverbatim
*>
diff --git a/lapack-netlib/SRC/stgsyl.f b/lapack-netlib/SRC/stgsyl.f
index cd597f37d..ff634b1de 100644
--- a/lapack-netlib/SRC/stgsyl.f
+++ b/lapack-netlib/SRC/stgsyl.f
@@ -88,20 +88,20 @@
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
-*> = 'N', solve the generalized Sylvester equation (1).
-*> = 'T', solve the 'transposed' system (3).
+*> = 'N': solve the generalized Sylvester equation (1).
+*> = 'T': solve the 'transposed' system (3).
*> \endverbatim
*>
*> \param[in] IJOB
*> \verbatim
*> IJOB is INTEGER
*> Specifies what kind of functionality to be performed.
-*> =0: solve (1) only.
-*> =1: The functionality of 0 and 3.
-*> =2: The functionality of 0 and 4.
-*> =3: Only an estimate of Dif[(A,D), (B,E)] is computed.
+*> = 0: solve (1) only.
+*> = 1: The functionality of 0 and 3.
+*> = 2: The functionality of 0 and 4.
+*> = 3: Only an estimate of Dif[(A,D), (B,E)] is computed.
*> (look ahead strategy IJOB = 1 is used).
-*> =4: Only an estimate of Dif[(A,D), (B,E)] is computed.
+*> = 4: Only an estimate of Dif[(A,D), (B,E)] is computed.
*> ( SGECON on sub-systems is used ).
*> Not referenced if TRANS = 'T'.
*> \endverbatim
diff --git a/lapack-netlib/SRC/stpmlqt.f b/lapack-netlib/SRC/stpmlqt.f
index 565dadd0c..8fc7823c2 100644
--- a/lapack-netlib/SRC/stpmlqt.f
+++ b/lapack-netlib/SRC/stpmlqt.f
@@ -94,7 +94,7 @@
*>
*> \param[in] V
*> \verbatim
-*> V is REAL array, dimension (LDA,K)
+*> V is REAL array, dimension (LDV,K)
*> The i-th row must contain the vector which defines the
*> elementary reflector H(i), for i = 1,2,...,k, as returned by
*> DTPLQT in B. See Further Details.
diff --git a/lapack-netlib/SRC/stpmqrt.f b/lapack-netlib/SRC/stpmqrt.f
index b1813b7dd..6a5cbb981 100644
--- a/lapack-netlib/SRC/stpmqrt.f
+++ b/lapack-netlib/SRC/stpmqrt.f
@@ -94,7 +94,7 @@
*>
*> \param[in] V
*> \verbatim
-*> V is REAL array, dimension (LDA,K)
+*> V is REAL array, dimension (LDV,K)
*> The i-th column must contain the vector which defines the
*> elementary reflector H(i), for i = 1,2,...,k, as returned by
*> CTPQRT in B. See Further Details.
diff --git a/lapack-netlib/SRC/stprfb.f b/lapack-netlib/SRC/stprfb.f
index 66e67252f..fcd164183 100644
--- a/lapack-netlib/SRC/stprfb.f
+++ b/lapack-netlib/SRC/stprfb.f
@@ -152,8 +152,8 @@
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A.
-*> If SIDE = 'L', LDC >= max(1,K);
-*> If SIDE = 'R', LDC >= max(1,M).
+*> If SIDE = 'L', LDA >= max(1,K);
+*> If SIDE = 'R', LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in,out] B