diff --git a/lapack-netlib/SRC/zcgesv.f b/lapack-netlib/SRC/zcgesv.f
index bb12d4f3a..b71018638 100644
--- a/lapack-netlib/SRC/zcgesv.f
+++ b/lapack-netlib/SRC/zcgesv.f
@@ -93,9 +93,9 @@
*> dimension (LDA,N)
*> On entry, the N-by-N coefficient matrix A.
*> On exit, if iterative refinement has been successfully used
-*> (INFO.EQ.0 and ITER.GE.0, see description below), then A is
+*> (INFO = 0 and ITER >= 0, see description below), then A is
*> unchanged, if double precision factorization has been used
-*> (INFO.EQ.0 and ITER.LT.0, see description below), then the
+*> (INFO = 0 and ITER < 0, see description below), then the
*> array A contains the factors L and U from the factorization
*> A = P*L*U; the unit diagonal elements of L are not stored.
*> \endverbatim
@@ -112,8 +112,8 @@
*> The pivot indices that define the permutation matrix P;
*> row i of the matrix was interchanged with row IPIV(i).
*> Corresponds either to the single precision factorization
-*> (if INFO.EQ.0 and ITER.GE.0) or the double precision
-*> factorization (if INFO.EQ.0 and ITER.LT.0).
+*> (if INFO = 0 and ITER >= 0) or the double precision
+*> factorization (if INFO = 0 and ITER < 0).
*> \endverbatim
*>
*> \param[in] B
@@ -421,7 +421,7 @@
30 CONTINUE
*
* If we are at this place of the code, this is because we have
-* performed ITER=ITERMAX iterations and never satisified the stopping
+* performed ITER=ITERMAX iterations and never satisfied the stopping
* criterion, set up the ITER flag accordingly and follow up on double
* precision routine.
*
diff --git a/lapack-netlib/SRC/zcposv.f b/lapack-netlib/SRC/zcposv.f
index eafcce623..101d25f5d 100644
--- a/lapack-netlib/SRC/zcposv.f
+++ b/lapack-netlib/SRC/zcposv.f
@@ -111,9 +111,9 @@
*> elements need not be set and are assumed to be zero.
*>
*> On exit, if iterative refinement has been successfully used
-*> (INFO.EQ.0 and ITER.GE.0, see description below), then A is
+*> (INFO = 0 and ITER >= 0, see description below), then A is
*> unchanged, if double precision factorization has been used
-*> (INFO.EQ.0 and ITER.LT.0, see description below), then the
+*> (INFO = 0 and ITER < 0, see description below), then the
*> array A contains the factor U or L from the Cholesky
*> factorization A = U**H*U or A = L*L**H.
*> \endverbatim
@@ -431,7 +431,7 @@
30 CONTINUE
*
* If we are at this place of the code, this is because we have
-* performed ITER=ITERMAX iterations and never satisified the
+* performed ITER=ITERMAX iterations and never satisfied the
* stopping criterion, set up the ITER flag accordingly and follow
* up on double precision routine.
*
diff --git a/lapack-netlib/SRC/zgbrfsx.f b/lapack-netlib/SRC/zgbrfsx.f
index e40d7d23e..872709899 100644
--- a/lapack-netlib/SRC/zgbrfsx.f
+++ b/lapack-netlib/SRC/zgbrfsx.f
@@ -75,7 +75,7 @@
*> Specifies the form of the system of equations:
*> = 'N': A * X = B (No transpose)
*> = 'T': A**T * X = B (Transpose)
-*> = 'C': A**H * X = B (Conjugate transpose = Transpose)
+*> = 'C': A**H * X = B (Conjugate transpose)
*> \endverbatim
*>
*> \param[in] EQUED
@@ -308,7 +308,7 @@
*> information as described below. There currently are up to three
*> pieces of information returned for each right-hand side. If
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
-*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
+*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
@@ -344,14 +344,14 @@
*> \param[in] NPARAMS
*> \verbatim
*> NPARAMS is INTEGER
-*> Specifies the number of parameters set in PARAMS. If .LE. 0, the
+*> Specifies the number of parameters set in PARAMS. If <= 0, the
*> PARAMS array is never referenced and default values are used.
*> \endverbatim
*>
*> \param[in,out] PARAMS
*> \verbatim
*> PARAMS is DOUBLE PRECISION array, dimension NPARAMS
-*> Specifies algorithm parameters. If an entry is .LT. 0.0, then
+*> Specifies algorithm parameters. If an entry is < 0.0, then
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
@@ -359,9 +359,9 @@
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
-*> = 0.0 : No refinement is performed, and no error bounds are
+*> = 0.0: No refinement is performed, and no error bounds are
*> computed.
-*> = 1.0 : Use the double-precision refinement algorithm,
+*> = 1.0: Use the double-precision refinement algorithm,
*> possibly with doubled-single computations if the
*> compilation environment does not support DOUBLE
*> PRECISION.
diff --git a/lapack-netlib/SRC/zgbsvxx.f b/lapack-netlib/SRC/zgbsvxx.f
index 9ba9c2ee3..0d916fd62 100644
--- a/lapack-netlib/SRC/zgbsvxx.f
+++ b/lapack-netlib/SRC/zgbsvxx.f
@@ -431,7 +431,7 @@
*> information as described below. There currently are up to three
*> pieces of information returned for each right-hand side. If
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
-*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
+*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
@@ -467,14 +467,14 @@
*> \param[in] NPARAMS
*> \verbatim
*> NPARAMS is INTEGER
-*> Specifies the number of parameters set in PARAMS. If .LE. 0, the
+*> Specifies the number of parameters set in PARAMS. If <= 0, the
*> PARAMS array is never referenced and default values are used.
*> \endverbatim
*>
*> \param[in,out] PARAMS
*> \verbatim
*> PARAMS is DOUBLE PRECISION array, dimension NPARAMS
-*> Specifies algorithm parameters. If an entry is .LT. 0.0, then
+*> Specifies algorithm parameters. If an entry is < 0.0, then
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
@@ -482,9 +482,9 @@
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
-*> = 0.0 : No refinement is performed, and no error bounds are
+*> = 0.0: No refinement is performed, and no error bounds are
*> computed.
-*> = 1.0 : Use the extra-precise refinement algorithm.
+*> = 1.0: Use the extra-precise refinement algorithm.
*> (other values are reserved for future use)
*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
diff --git a/lapack-netlib/SRC/zgebak.f b/lapack-netlib/SRC/zgebak.f
index a9761fde2..70c265e05 100644
--- a/lapack-netlib/SRC/zgebak.f
+++ b/lapack-netlib/SRC/zgebak.f
@@ -48,10 +48,10 @@
*> \verbatim
*> JOB is CHARACTER*1
*> Specifies the type of backward transformation required:
-*> = 'N', do nothing, return immediately;
-*> = 'P', do backward transformation for permutation only;
-*> = 'S', do backward transformation for scaling only;
-*> = 'B', do backward transformations for both permutation and
+*> = 'N': do nothing, return immediately;
+*> = 'P': do backward transformation for permutation only;
+*> = 'S': do backward transformation for scaling only;
+*> = 'B': do backward transformations for both permutation and
*> scaling.
*> JOB must be the same as the argument JOB supplied to ZGEBAL.
*> \endverbatim
diff --git a/lapack-netlib/SRC/zgeev.f b/lapack-netlib/SRC/zgeev.f
index 22b04469f..1ba542587 100644
--- a/lapack-netlib/SRC/zgeev.f
+++ b/lapack-netlib/SRC/zgeev.f
@@ -157,7 +157,7 @@
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: if INFO = i, the QR algorithm failed to compute all the
*> eigenvalues, and no eigenvectors have been computed;
-*> elements and i+1:N of W contain eigenvalues which have
+*> elements i+1:N of W contain eigenvalues which have
*> converged.
*> \endverbatim
*
diff --git a/lapack-netlib/SRC/zgejsv.f b/lapack-netlib/SRC/zgejsv.f
index d553da90b..91a20416e 100644
--- a/lapack-netlib/SRC/zgejsv.f
+++ b/lapack-netlib/SRC/zgejsv.f
@@ -80,13 +80,13 @@
*> desirable, then this option is advisable. The input matrix A
*> is preprocessed with QR factorization with FULL (row and
*> column) pivoting.
-*> = 'G' Computation as with 'F' with an additional estimate of the
+*> = 'G': Computation as with 'F' with an additional estimate of the
*> condition number of B, where A=B*D. If A has heavily weighted
*> rows, then using this condition number gives too pessimistic
*> error bound.
*> = 'A': Small singular values are not well determined by the data
*> and are considered as noisy; the matrix is treated as
-*> numerically rank defficient. The error in the computed
+*> numerically rank deficient. The error in the computed
*> singular values is bounded by f(m,n)*epsilon*||A||.
*> The computed SVD A = U * S * V^* restores A up to
*> f(m,n)*epsilon*||A||.
@@ -117,7 +117,7 @@
*> = 'V': N columns of V are returned in the array V; Jacobi rotations
*> are not explicitly accumulated.
*> = 'J': N columns of V are returned in the array V, but they are
-*> computed as the product of Jacobi rotations, if JOBT .EQ. 'N'.
+*> computed as the product of Jacobi rotations, if JOBT = 'N'.
*> = 'W': V may be used as workspace of length N*N. See the description
*> of V.
*> = 'N': V is not computed.
@@ -131,7 +131,7 @@
*> specified range. If A .NE. 0 is scaled so that the largest singular
*> value of c*A is around SQRT(BIG), BIG=DLAMCH('O'), then JOBR issues
*> the licence to kill columns of A whose norm in c*A is less than
-*> SQRT(SFMIN) (for JOBR.EQ.'R'), or less than SMALL=SFMIN/EPSLN,
+*> SQRT(SFMIN) (for JOBR = 'R'), or less than SMALL=SFMIN/EPSLN,
*> where SFMIN=DLAMCH('S'), EPSLN=DLAMCH('E').
*> = 'N': Do not kill small columns of c*A. This option assumes that
*> BLAS and QR factorizations and triangular solvers are
@@ -229,7 +229,7 @@
*> If JOBU = 'F', then U contains on exit the M-by-M matrix of
*> the left singular vectors, including an ONB
*> of the orthogonal complement of the Range(A).
-*> If JOBU = 'W' .AND. (JOBV.EQ.'V' .AND. JOBT.EQ.'T' .AND. M.EQ.N),
+*> If JOBU = 'W' .AND. (JOBV = 'V' .AND. JOBT = 'T' .AND. M = N),
*> then U is used as workspace if the procedure
*> replaces A with A^*. In that case, [V] is computed
*> in U as left singular vectors of A^* and then
@@ -251,7 +251,7 @@
*> V is COMPLEX*16 array, dimension ( LDV, N )
*> If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of
*> the right singular vectors;
-*> If JOBV = 'W', AND (JOBU.EQ.'U' AND JOBT.EQ.'T' AND M.EQ.N),
+*> If JOBV = 'W', AND (JOBU = 'U' AND JOBT = 'T' AND M = N),
*> then V is used as workspace if the pprocedure
*> replaces A with A^*. In that case, [U] is computed
*> in V as right singular vectors of A^* and then
@@ -282,7 +282,7 @@
*> Length of CWORK to confirm proper allocation of workspace.
*> LWORK depends on the job:
*>
-*> 1. If only SIGMA is needed ( JOBU.EQ.'N', JOBV.EQ.'N' ) and
+*> 1. If only SIGMA is needed ( JOBU = 'N', JOBV = 'N' ) and
*> 1.1 .. no scaled condition estimate required (JOBA.NE.'E'.AND.JOBA.NE.'G'):
*> LWORK >= 2*N+1. This is the minimal requirement.
*> ->> For optimal performance (blocked code) the optimal value
@@ -298,9 +298,9 @@
*> In general, the optimal length LWORK is computed as
*> LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZGEQRF), LWORK(ZGESVJ),
*> N*N+LWORK(ZPOCON)).
-*> 2. If SIGMA and the right singular vectors are needed (JOBV.EQ.'V'),
-*> (JOBU.EQ.'N')
-*> 2.1 .. no scaled condition estimate requested (JOBE.EQ.'N'):
+*> 2. If SIGMA and the right singular vectors are needed (JOBV = 'V'),
+*> (JOBU = 'N')
+*> 2.1 .. no scaled condition estimate requested (JOBE = 'N'):
*> -> the minimal requirement is LWORK >= 3*N.
*> -> For optimal performance,
*> LWORK >= max(N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
@@ -318,10 +318,10 @@
*> LWORK >= max(N+LWORK(ZGEQP3), LWORK(ZPOCON), N+LWORK(ZGESVJ),
*> N+LWORK(ZGELQF), 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMLQ)).
*> 3. If SIGMA and the left singular vectors are needed
-*> 3.1 .. no scaled condition estimate requested (JOBE.EQ.'N'):
+*> 3.1 .. no scaled condition estimate requested (JOBE = 'N'):
*> -> the minimal requirement is LWORK >= 3*N.
*> -> For optimal performance:
-*> if JOBU.EQ.'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
+*> if JOBU = 'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
*> where NB is the optimal block size for ZGEQP3, ZGEQRF, ZUNMQR.
*> In general, the optimal length LWORK is computed as
*> LWORK >= max(N+LWORK(ZGEQP3), 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMQR)).
@@ -329,15 +329,15 @@
*> required (JOBA='E', or 'G').
*> -> the minimal requirement is LWORK >= 3*N.
*> -> For optimal performance:
-*> if JOBU.EQ.'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
+*> if JOBU = 'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
*> where NB is the optimal block size for ZGEQP3, ZGEQRF, ZUNMQR.
*> In general, the optimal length LWORK is computed as
*> LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZPOCON),
*> 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMQR)).
-*> 4. If the full SVD is needed: (JOBU.EQ.'U' or JOBU.EQ.'F') and
-*> 4.1. if JOBV.EQ.'V'
+*> 4. If the full SVD is needed: (JOBU = 'U' or JOBU = 'F') and
+*> 4.1. if JOBV = 'V'
*> the minimal requirement is LWORK >= 5*N+2*N*N.
-*> 4.2. if JOBV.EQ.'J' the minimal requirement is
+*> 4.2. if JOBV = 'J' the minimal requirement is
*> LWORK >= 4*N+N*N.
*> In both cases, the allocated CWORK can accommodate blocked runs
*> of ZGEQP3, ZGEQRF, ZGELQF, SUNMQR, ZUNMLQ.
@@ -356,7 +356,7 @@
*> of A. (See the description of SVA().)
*> RWORK(2) = See the description of RWORK(1).
*> RWORK(3) = SCONDA is an estimate for the condition number of
-*> column equilibrated A. (If JOBA .EQ. 'E' or 'G')
+*> column equilibrated A. (If JOBA = 'E' or 'G')
*> SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1).
*> It is computed using SPOCON. It holds
*> N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
@@ -375,7 +375,7 @@
*> triangular factor in the first QR factorization.
*> RWORK(5) = an estimate of the scaled condition number of the
*> triangular factor in the second QR factorization.
-*> The following two parameters are computed if JOBT .EQ. 'T'.
+*> The following two parameters are computed if JOBT = 'T'.
*> They are provided for a developer/implementer who is familiar
*> with the details of the method.
*> RWORK(6) = the entropy of A^* * A :: this is the Shannon entropy
@@ -456,23 +456,23 @@
*> of JOBA and JOBR.
*> IWORK(2) = the number of the computed nonzero singular values
*> IWORK(3) = if nonzero, a warning message:
-*> If IWORK(3).EQ.1 then some of the column norms of A
+*> If IWORK(3) = 1 then some of the column norms of A
*> were denormalized floats. The requested high accuracy
*> is not warranted by the data.
-*> IWORK(4) = 1 or -1. If IWORK(4) .EQ. 1, then the procedure used A^* to
+*> IWORK(4) = 1 or -1. If IWORK(4) = 1, then the procedure used A^* to
*> do the job as specified by the JOB parameters.
-*> If the call to ZGEJSV is a workspace query (indicated by LWORK .EQ. -1 or
-*> LRWORK .EQ. -1), then on exit IWORK(1) contains the required length of
+*> If the call to ZGEJSV is a workspace query (indicated by LWORK = -1 or
+*> LRWORK = -1), then on exit IWORK(1) contains the required length of
*> IWORK for the job parameters used in the call.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
-*> < 0 : if INFO = -i, then the i-th argument had an illegal value.
-*> = 0 : successful exit;
-*> > 0 : ZGEJSV did not converge in the maximal allowed number
-*> of sweeps. The computed values may be inaccurate.
+*> < 0: if INFO = -i, then the i-th argument had an illegal value.
+*> = 0: successful exit;
+*> > 0: ZGEJSV did not converge in the maximal allowed number
+*> of sweeps. The computed values may be inaccurate.
*> \endverbatim
*
* Authors:
@@ -1338,7 +1338,7 @@
IF ( L2ABER ) THEN
* Standard absolute error bound suffices. All sigma_i with
* sigma_i < N*EPSLN*||A|| are flushed to zero. This is an
-* agressive enforcement of lower numerical rank by introducing a
+* aggressive enforcement of lower numerical rank by introducing a
* backward error of the order of N*EPSLN*||A||.
TEMP1 = SQRT(DBLE(N))*EPSLN
DO 3001 p = 2, N
@@ -1350,7 +1350,7 @@
3001 CONTINUE
3002 CONTINUE
ELSE IF ( L2RANK ) THEN
-* .. similarly as above, only slightly more gentle (less agressive).
+* .. similarly as above, only slightly more gentle (less aggressive).
* Sudden drop on the diagonal of R1 is used as the criterion for
* close-to-rank-deficient.
TEMP1 = SQRT(SFMIN)
@@ -1720,7 +1720,7 @@
CALL ZPOCON('L',NR,CWORK(2*N+1),NR,ONE,TEMP1,
$ CWORK(2*N+NR*NR+1),RWORK,IERR)
CONDR1 = ONE / SQRT(TEMP1)
-* .. here need a second oppinion on the condition number
+* .. here need a second opinion on the condition number
* .. then assume worst case scenario
* R1 is OK for inverse <=> CONDR1 .LT. DBLE(N)
* more conservative <=> CONDR1 .LT. SQRT(DBLE(N))
@@ -1765,7 +1765,7 @@
ELSE
*
* .. ill-conditioned case: second QRF with pivoting
-* Note that windowed pivoting would be equaly good
+* Note that windowed pivoting would be equally good
* numerically, and more run-time efficient. So, in
* an optimal implementation, the next call to ZGEQP3
* should be replaced with eg. CALL ZGEQPX (ACM TOMS #782)
@@ -1823,7 +1823,7 @@
*
IF ( CONDR2 .GE. COND_OK ) THEN
* .. save the Householder vectors used for Q3
-* (this overwrittes the copy of R2, as it will not be
+* (this overwrites the copy of R2, as it will not be
* needed in this branch, but it does not overwritte the
* Huseholder vectors of Q2.).
CALL ZLACPY( 'U', NR, NR, V, LDV, CWORK(2*N+1), N )
@@ -2079,7 +2079,7 @@
*
* This branch deploys a preconditioned Jacobi SVD with explicitly
* accumulated rotations. It is included as optional, mainly for
-* experimental purposes. It does perfom well, and can also be used.
+* experimental purposes. It does perform well, and can also be used.
* In this implementation, this branch will be automatically activated
* if the condition number sigma_max(A) / sigma_min(A) is predicted
* to be greater than the overflow threshold. This is because the
diff --git a/lapack-netlib/SRC/zgelq.f b/lapack-netlib/SRC/zgelq.f
index 656396536..4e7e7e38e 100644
--- a/lapack-netlib/SRC/zgelq.f
+++ b/lapack-netlib/SRC/zgelq.f
@@ -1,3 +1,4 @@
+*> \brief \b ZGELQ
*
* Definition:
* ===========
@@ -17,7 +18,17 @@
* =============
*>
*> \verbatim
-*> ZGELQ computes a LQ factorization of an M-by-N matrix A.
+*>
+*> ZGELQ computes an LQ factorization of a complex M-by-N matrix A:
+*>
+*> A = ( L 0 ) * Q
+*>
+*> where:
+*>
+*> Q is a N-by-N orthogonal matrix;
+*> L is an lower-triangular M-by-M matrix;
+*> 0 is a M-by-(N-M) zero matrix, if M < N.
+*>
*> \endverbatim
*
* Arguments:
@@ -138,7 +149,7 @@
*> \verbatim
*>
*> These details are particular for this LAPACK implementation. Users should not
-*> take them for granted. These details may change in the future, and are unlikely not
+*> take them for granted. These details may change in the future, and are not likely
*> true for another LAPACK implementation. These details are relevant if one wants
*> to try to understand the code. They are not part of the interface.
*>
@@ -159,10 +170,10 @@
SUBROUTINE ZGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK,
$ INFO )
*
-* -- LAPACK computational routine (version 3.7.0) --
+* -- LAPACK computational routine (version 3.9.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
-* December 2016
+* November 2019
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, M, N, TSIZE, LWORK
diff --git a/lapack-netlib/SRC/zgelq2.f b/lapack-netlib/SRC/zgelq2.f
index 188c8f8c8..a825ac17b 100644
--- a/lapack-netlib/SRC/zgelq2.f
+++ b/lapack-netlib/SRC/zgelq2.f
@@ -33,8 +33,16 @@
*>
*> \verbatim
*>
-*> ZGELQ2 computes an LQ factorization of a complex m by n matrix A:
-*> A = L * Q.
+*> ZGELQ2 computes an LQ factorization of a complex m-by-n matrix A:
+*>
+*> A = ( L 0 ) * Q
+*>
+*> where:
+*>
+*> Q is a n-by-n orthogonal matrix;
+*> L is an lower-triangular m-by-m matrix;
+*> 0 is a m-by-(n-m) zero matrix, if m < n.
+*>
*> \endverbatim
*
* Arguments:
@@ -96,7 +104,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
-*> \date December 2016
+*> \date November 2019
*
*> \ingroup complex16GEcomputational
*
@@ -121,10 +129,10 @@
* =====================================================================
SUBROUTINE ZGELQ2( M, N, A, LDA, TAU, WORK, INFO )
*
-* -- LAPACK computational routine (version 3.7.0) --
+* -- LAPACK computational routine (version 3.9.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-* December 2016
+* November 2019
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, M, N
diff --git a/lapack-netlib/SRC/zgelqf.f b/lapack-netlib/SRC/zgelqf.f
index 8d9341a61..3a5e5fd4a 100644
--- a/lapack-netlib/SRC/zgelqf.f
+++ b/lapack-netlib/SRC/zgelqf.f
@@ -34,7 +34,15 @@
*> \verbatim
*>
*> ZGELQF computes an LQ factorization of a complex M-by-N matrix A:
-*> A = L * Q.
+*>
+*> A = ( L 0 ) * Q
+*>
+*> where:
+*>
+*> Q is a N-by-N orthogonal matrix;
+*> L is an lower-triangular M-by-M matrix;
+*> 0 is a M-by-(N-M) zero matrix, if M < N.
+*>
*> \endverbatim
*
* Arguments:
@@ -110,7 +118,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
-*> \date December 2016
+*> \date November 2019
*
*> \ingroup complex16GEcomputational
*
@@ -135,10 +143,10 @@
* =====================================================================
SUBROUTINE ZGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
*
-* -- LAPACK computational routine (version 3.7.0) --
+* -- LAPACK computational routine (version 3.9.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-* December 2016
+* November 2019
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LWORK, M, N
diff --git a/lapack-netlib/SRC/zgemlq.f b/lapack-netlib/SRC/zgemlq.f
index aa07e0feb..6fb2be3d8 100644
--- a/lapack-netlib/SRC/zgemlq.f
+++ b/lapack-netlib/SRC/zgemlq.f
@@ -1,3 +1,4 @@
+*> \brief \b ZGEMLQ
*
* Definition:
* ===========
@@ -142,7 +143,7 @@
*> \verbatim
*>
*> These details are particular for this LAPACK implementation. Users should not
-*> take them for granted. These details may change in the future, and are unlikely not
+*> take them for granted. These details may change in the future, and are not likely
*> true for another LAPACK implementation. These details are relevant if one wants
*> to try to understand the code. They are not part of the interface.
*>
diff --git a/lapack-netlib/SRC/zgemqr.f b/lapack-netlib/SRC/zgemqr.f
index 32f1bf4d5..aec9321bb 100644
--- a/lapack-netlib/SRC/zgemqr.f
+++ b/lapack-netlib/SRC/zgemqr.f
@@ -1,3 +1,4 @@
+*> \brief \b ZGEMQR
*
* Definition:
* ===========
@@ -144,7 +145,7 @@
*> \verbatim
*>
*> These details are particular for this LAPACK implementation. Users should not
-*> take them for granted. These details may change in the future, and are unlikely not
+*> take them for granted. These details may change in the future, and are not likely
*> true for another LAPACK implementation. These details are relevant if one wants
*> to try to understand the code. They are not part of the interface.
*>
diff --git a/lapack-netlib/SRC/zgeqr.f b/lapack-netlib/SRC/zgeqr.f
index 1aa457f56..cea686b98 100644
--- a/lapack-netlib/SRC/zgeqr.f
+++ b/lapack-netlib/SRC/zgeqr.f
@@ -1,3 +1,4 @@
+*> \brief \b ZGEQR
*
* Definition:
* ===========
@@ -17,7 +18,18 @@
* =============
*>
*> \verbatim
-*> ZGEQR computes a QR factorization of an M-by-N matrix A.
+*>
+*> ZGEQR computes a QR factorization of a complex M-by-N matrix A:
+*>
+*> A = Q * ( R ),
+*> ( 0 )
+*>
+*> where:
+*>
+*> Q is a M-by-M orthogonal matrix;
+*> R is an upper-triangular N-by-N matrix;
+*> 0 is a (M-N)-by-N zero matrix, if M > N.
+*>
*> \endverbatim
*
* Arguments:
@@ -138,7 +150,7 @@
*> \verbatim
*>
*> These details are particular for this LAPACK implementation. Users should not
-*> take them for granted. These details may change in the future, and are unlikely not
+*> take them for granted. These details may change in the future, and are not likely
*> true for another LAPACK implementation. These details are relevant if one wants
*> to try to understand the code. They are not part of the interface.
*>
@@ -160,10 +172,10 @@
SUBROUTINE ZGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK,
$ INFO )
*
-* -- LAPACK computational routine (version 3.7.0) --
+* -- LAPACK computational routine (version 3.9.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
-* December 2016
+* November 2019
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, M, N, TSIZE, LWORK
diff --git a/lapack-netlib/SRC/zgeqr2.f b/lapack-netlib/SRC/zgeqr2.f
index d2774d788..0384c1d42 100644
--- a/lapack-netlib/SRC/zgeqr2.f
+++ b/lapack-netlib/SRC/zgeqr2.f
@@ -33,8 +33,17 @@
*>
*> \verbatim
*>
-*> ZGEQR2 computes a QR factorization of a complex m by n matrix A:
-*> A = Q * R.
+*> ZGEQR2 computes a QR factorization of a complex m-by-n matrix A:
+*>
+*> A = Q * ( R ),
+*> ( 0 )
+*>
+*> where:
+*>
+*> Q is a m-by-m orthogonal matrix;
+*> R is an upper-triangular n-by-n matrix;
+*> 0 is a (m-n)-by-n zero matrix, if m > n.
+*>
*> \endverbatim
*
* Arguments:
@@ -96,7 +105,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
-*> \date December 2016
+*> \date November 2019
*
*> \ingroup complex16GEcomputational
*
@@ -121,10 +130,10 @@
* =====================================================================
SUBROUTINE ZGEQR2( M, N, A, LDA, TAU, WORK, INFO )
*
-* -- LAPACK computational routine (version 3.7.0) --
+* -- LAPACK computational routine (version 3.9.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-* December 2016
+* November 2019
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, M, N
diff --git a/lapack-netlib/SRC/zgeqr2p.f b/lapack-netlib/SRC/zgeqr2p.f
index 0e5e55486..7bbd81da9 100644
--- a/lapack-netlib/SRC/zgeqr2p.f
+++ b/lapack-netlib/SRC/zgeqr2p.f
@@ -33,8 +33,18 @@
*>
*> \verbatim
*>
-*> ZGEQR2P computes a QR factorization of a complex m by n matrix A:
-*> A = Q * R. The diagonal entries of R are real and nonnegative.
+*> ZGEQR2P computes a QR factorization of a complex m-by-n matrix A:
+*>
+*> A = Q * ( R ),
+*> ( 0 )
+*>
+*> where:
+*>
+*> Q is a m-by-m orthogonal matrix;
+*> R is an upper-triangular n-by-n matrix with nonnegative diagonal
+*> entries;
+*> 0 is a (m-n)-by-n zero matrix, if m > n.
+*>
*> \endverbatim
*
* Arguments:
@@ -97,7 +107,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
-*> \date December 2016
+*> \date November 2019
*
*> \ingroup complex16GEcomputational
*
@@ -124,10 +134,10 @@
* =====================================================================
SUBROUTINE ZGEQR2P( M, N, A, LDA, TAU, WORK, INFO )
*
-* -- LAPACK computational routine (version 3.7.0) --
+* -- LAPACK computational routine (version 3.9.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-* December 2016
+* November 2019
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, M, N
diff --git a/lapack-netlib/SRC/zgeqrf.f b/lapack-netlib/SRC/zgeqrf.f
index 3ea1e71e1..2c03ebe73 100644
--- a/lapack-netlib/SRC/zgeqrf.f
+++ b/lapack-netlib/SRC/zgeqrf.f
@@ -34,7 +34,16 @@
*> \verbatim
*>
*> ZGEQRF computes a QR factorization of a complex M-by-N matrix A:
-*> A = Q * R.
+*>
+*> A = Q * ( R ),
+*> ( 0 )
+*>
+*> where:
+*>
+*> Q is a M-by-M orthogonal matrix;
+*> R is an upper-triangular N-by-N matrix;
+*> 0 is a (M-N)-by-N zero matrix, if M > N.
+*>
*> \endverbatim
*
* Arguments:
@@ -111,7 +120,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
-*> \date December 2016
+*> \date November 2019
*
*> \ingroup complex16GEcomputational
*
@@ -136,10 +145,10 @@
* =====================================================================
SUBROUTINE ZGEQRF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
*
-* -- LAPACK computational routine (version 3.7.0) --
+* -- LAPACK computational routine (version 3.9.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-* December 2016
+* November 2019
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LWORK, M, N
diff --git a/lapack-netlib/SRC/zgeqrfp.f b/lapack-netlib/SRC/zgeqrfp.f
index cdc4bfa94..80ead21ca 100644
--- a/lapack-netlib/SRC/zgeqrfp.f
+++ b/lapack-netlib/SRC/zgeqrfp.f
@@ -33,8 +33,18 @@
*>
*> \verbatim
*>
-*> ZGEQRFP computes a QR factorization of a complex M-by-N matrix A:
-*> A = Q * R. The diagonal entries of R are real and nonnegative.
+*> ZGEQR2P computes a QR factorization of a complex M-by-N matrix A:
+*>
+*> A = Q * ( R ),
+*> ( 0 )
+*>
+*> where:
+*>
+*> Q is a M-by-M orthogonal matrix;
+*> R is an upper-triangular N-by-N matrix with nonnegative diagonal
+*> entries;
+*> 0 is a (M-N)-by-N zero matrix, if M > N.
+*>
*> \endverbatim
*
* Arguments:
@@ -112,7 +122,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
-*> \date December 2016
+*> \date November 2019
*
*> \ingroup complex16GEcomputational
*
@@ -139,10 +149,10 @@
* =====================================================================
SUBROUTINE ZGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO )
*
-* -- LAPACK computational routine (version 3.7.0) --
+* -- LAPACK computational routine (version 3.9.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-* December 2016
+* November 2019
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LWORK, M, N
diff --git a/lapack-netlib/SRC/zgerfsx.f b/lapack-netlib/SRC/zgerfsx.f
index 5aabe50ed..3af7f8b6b 100644
--- a/lapack-netlib/SRC/zgerfsx.f
+++ b/lapack-netlib/SRC/zgerfsx.f
@@ -74,7 +74,7 @@
*> Specifies the form of the system of equations:
*> = 'N': A * X = B (No transpose)
*> = 'T': A**T * X = B (Transpose)
-*> = 'C': A**H * X = B (Conjugate transpose = Transpose)
+*> = 'C': A**H * X = B (Conjugate transpose)
*> \endverbatim
*>
*> \param[in] EQUED
@@ -283,7 +283,7 @@
*> information as described below. There currently are up to three
*> pieces of information returned for each right-hand side. If
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
-*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
+*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
@@ -319,14 +319,14 @@
*> \param[in] NPARAMS
*> \verbatim
*> NPARAMS is INTEGER
-*> Specifies the number of parameters set in PARAMS. If .LE. 0, the
+*> Specifies the number of parameters set in PARAMS. If <= 0, the
*> PARAMS array is never referenced and default values are used.
*> \endverbatim
*>
*> \param[in,out] PARAMS
*> \verbatim
*> PARAMS is DOUBLE PRECISION array, dimension NPARAMS
-*> Specifies algorithm parameters. If an entry is .LT. 0.0, then
+*> Specifies algorithm parameters. If an entry is < 0.0, then
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
@@ -334,9 +334,9 @@
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
-*> = 0.0 : No refinement is performed, and no error bounds are
+*> = 0.0: No refinement is performed, and no error bounds are
*> computed.
-*> = 1.0 : Use the double-precision refinement algorithm,
+*> = 1.0: Use the double-precision refinement algorithm,
*> possibly with doubled-single computations if the
*> compilation environment does not support DOUBLE
*> PRECISION.
diff --git a/lapack-netlib/SRC/zgesc2.f b/lapack-netlib/SRC/zgesc2.f
index 72ef99dba..cdf15e4f4 100644
--- a/lapack-netlib/SRC/zgesc2.f
+++ b/lapack-netlib/SRC/zgesc2.f
@@ -91,7 +91,7 @@
*> \verbatim
*> SCALE is DOUBLE PRECISION
*> On exit, SCALE contains the scale factor. SCALE is chosen
-*> 0 <= SCALE <= 1 to prevent owerflow in the solution.
+*> 0 <= SCALE <= 1 to prevent overflow in the solution.
*> \endverbatim
*
* Authors:
diff --git a/lapack-netlib/SRC/zgesvdq.f b/lapack-netlib/SRC/zgesvdq.f
new file mode 100644
index 000000000..e0fb920bb
--- /dev/null
+++ b/lapack-netlib/SRC/zgesvdq.f
@@ -0,0 +1,1389 @@
+*> \brief ZGESVDQ computes the singular value decomposition (SVD) with a QR-Preconditioned QR SVD Method for GE matrices
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download ZGESVDQ + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZGESVDQ( JOBA, JOBP, JOBR, JOBU, JOBV, M, N, A, LDA,
+* S, U, LDU, V, LDV, NUMRANK, IWORK, LIWORK,
+* CWORK, LCWORK, RWORK, LRWORK, INFO )
+*
+* .. Scalar Arguments ..
+* IMPLICIT NONE
+* CHARACTER JOBA, JOBP, JOBR, JOBU, JOBV
+* INTEGER M, N, LDA, LDU, LDV, NUMRANK, LIWORK, LCWORK, LRWORK,
+* INFO
+* ..
+* .. Array Arguments ..
+* COMPLEX*16 A( LDA, * ), U( LDU, * ), V( LDV, * ), CWORK( * )
+* DOUBLE PRECISION S( * ), RWORK( * )
+* INTEGER IWORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+* ZCGESVDQ computes the singular value decomposition (SVD) of a complex
+*> M-by-N matrix A, where M >= N. The SVD of A is written as
+*> [++] [xx] [x0] [xx]
+*> A = U * SIGMA * V^*, [++] = [xx] * [ox] * [xx]
+*> [++] [xx]
+*> where SIGMA is an N-by-N diagonal matrix, U is an M-by-N orthonormal
+*> matrix, and V is an N-by-N unitary matrix. The diagonal elements
+*> of SIGMA are the singular values of A. The columns of U and V are the
+*> left and the right singular vectors of A, respectively.
+*> \endverbatim
+*
+* Arguments
+* =========
+*
+*> \param[in] JOBA
+*> \verbatim
+*> JOBA is CHARACTER*1
+*> Specifies the level of accuracy in the computed SVD
+*> = 'A' The requested accuracy corresponds to having the backward
+*> error bounded by || delta A ||_F <= f(m,n) * EPS * || A ||_F,
+*> where EPS = DLAMCH('Epsilon'). This authorises ZGESVDQ to
+*> truncate the computed triangular factor in a rank revealing
+*> QR factorization whenever the truncated part is below the
+*> threshold of the order of EPS * ||A||_F. This is aggressive
+*> truncation level.
+*> = 'M' Similarly as with 'A', but the truncation is more gentle: it
+*> is allowed only when there is a drop on the diagonal of the
+*> triangular factor in the QR factorization. This is medium
+*> truncation level.
+*> = 'H' High accuracy requested. No numerical rank determination based
+*> on the rank revealing QR factorization is attempted.
+*> = 'E' Same as 'H', and in addition the condition number of column
+*> scaled A is estimated and returned in RWORK(1).
+*> N^(-1/4)*RWORK(1) <= ||pinv(A_scaled)||_2 <= N^(1/4)*RWORK(1)
+*> \endverbatim
+*>
+*> \param[in] JOBP
+*> \verbatim
+*> JOBP is CHARACTER*1
+*> = 'P' The rows of A are ordered in decreasing order with respect to
+*> ||A(i,:)||_\infty. This enhances numerical accuracy at the cost
+*> of extra data movement. Recommended for numerical robustness.
+*> = 'N' No row pivoting.
+*> \endverbatim
+*>
+*> \param[in] JOBR
+*> \verbatim
+*> JOBR is CHARACTER*1
+*> = 'T' After the initial pivoted QR factorization, ZGESVD is applied to
+*> the adjoint R**H of the computed triangular factor R. This involves
+*> some extra data movement (matrix transpositions). Useful for
+*> experiments, research and development.
+*> = 'N' The triangular factor R is given as input to CGESVD. This may be
+*> preferred as it involves less data movement.
+*> \endverbatim
+*>
+*> \param[in] JOBU
+*> \verbatim
+*> JOBU is CHARACTER*1
+*> = 'A' All M left singular vectors are computed and returned in the
+*> matrix U. See the description of U.
+*> = 'S' or 'U' N = min(M,N) left singular vectors are computed and returned
+*> in the matrix U. See the description of U.
+*> = 'R' Numerical rank NUMRANK is determined and only NUMRANK left singular
+*> vectors are computed and returned in the matrix U.
+*> = 'F' The N left singular vectors are returned in factored form as the
+*> product of the Q factor from the initial QR factorization and the
+*> N left singular vectors of (R**H , 0)**H. If row pivoting is used,
+*> then the necessary information on the row pivoting is stored in
+*> IWORK(N+1:N+M-1).
+*> = 'N' The left singular vectors are not computed.
+*> \endverbatim
+*>
+*> \param[in] JOBV
+*> \verbatim
+*> JOBV is CHARACTER*1
+*> = 'A', 'V' All N right singular vectors are computed and returned in
+*> the matrix V.
+*> = 'R' Numerical rank NUMRANK is determined and only NUMRANK right singular
+*> vectors are computed and returned in the matrix V. This option is
+*> allowed only if JOBU = 'R' or JOBU = 'N'; otherwise it is illegal.
+*> = 'N' The right singular vectors are not computed.
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the input matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the input matrix A. M >= N >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX*16 array of dimensions LDA x N
+*> On entry, the input matrix A.
+*> On exit, if JOBU .NE. 'N' or JOBV .NE. 'N', the lower triangle of A contains
+*> the Householder vectors as stored by ZGEQP3. If JOBU = 'F', these Householder
+*> vectors together with CWORK(1:N) can be used to restore the Q factors from
+*> the initial pivoted QR factorization of A. See the description of U.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER.
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[out] S
+*> \verbatim
+*> S is DOUBLE PRECISION array of dimension N.
+*> The singular values of A, ordered so that S(i) >= S(i+1).
+*> \endverbatim
+*>
+*> \param[out] U
+*> \verbatim
+*> U is COMPLEX*16 array, dimension
+*> LDU x M if JOBU = 'A'; see the description of LDU. In this case,
+*> on exit, U contains the M left singular vectors.
+*> LDU x N if JOBU = 'S', 'U', 'R' ; see the description of LDU. In this
+*> case, U contains the leading N or the leading NUMRANK left singular vectors.
+*> LDU x N if JOBU = 'F' ; see the description of LDU. In this case U
+*> contains N x N unitary matrix that can be used to form the left
+*> singular vectors.
+*> If JOBU = 'N', U is not referenced.
+*> \endverbatim
+*>
+*> \param[in] LDU
+*> \verbatim
+*> LDU is INTEGER.
+*> The leading dimension of the array U.
+*> If JOBU = 'A', 'S', 'U', 'R', LDU >= max(1,M).
+*> If JOBU = 'F', LDU >= max(1,N).
+*> Otherwise, LDU >= 1.
+*> \endverbatim
+*>
+*> \param[out] V
+*> \verbatim
+*> V is COMPLEX*16 array, dimension
+*> LDV x N if JOBV = 'A', 'V', 'R' or if JOBA = 'E' .
+*> If JOBV = 'A', or 'V', V contains the N-by-N unitary matrix V**H;
+*> If JOBV = 'R', V contains the first NUMRANK rows of V**H (the right
+*> singular vectors, stored rowwise, of the NUMRANK largest singular values).
+*> If JOBV = 'N' and JOBA = 'E', V is used as a workspace.
+*> If JOBV = 'N', and JOBA.NE.'E', V is not referenced.
+*> \endverbatim
+*>
+*> \param[in] LDV
+*> \verbatim
+*> LDV is INTEGER
+*> The leading dimension of the array V.
+*> If JOBV = 'A', 'V', 'R', or JOBA = 'E', LDV >= max(1,N).
+*> Otherwise, LDV >= 1.
+*> \endverbatim
+*>
+*> \param[out] NUMRANK
+*> \verbatim
+*> NUMRANK is INTEGER
+*> NUMRANK is the numerical rank first determined after the rank
+*> revealing QR factorization, following the strategy specified by the
+*> value of JOBA. If JOBV = 'R' and JOBU = 'R', only NUMRANK
+*> leading singular values and vectors are then requested in the call
+*> of CGESVD. The final value of NUMRANK might be further reduced if
+*> some singular values are computed as zeros.
+*> \endverbatim
+*>
+*> \param[out] IWORK
+*> \verbatim
+*> IWORK is INTEGER array, dimension (max(1, LIWORK)).
+*> On exit, IWORK(1:N) contains column pivoting permutation of the
+*> rank revealing QR factorization.
+*> If JOBP = 'P', IWORK(N+1:N+M-1) contains the indices of the sequence
+*> of row swaps used in row pivoting. These can be used to restore the
+*> left singular vectors in the case JOBU = 'F'.
+*
+*> If LIWORK, LCWORK, or LRWORK = -1, then on exit, if INFO = 0,
+*> LIWORK(1) returns the minimal LIWORK.
+*> \endverbatim
+*>
+*> \param[in] LIWORK
+*> \verbatim
+*> LIWORK is INTEGER
+*> The dimension of the array IWORK.
+*> LIWORK >= N + M - 1, if JOBP = 'P';
+*> LIWORK >= N if JOBP = 'N'.
+*>
+*> If LIWORK = -1, then a workspace query is assumed; the routine
+*> only calculates and returns the optimal and minimal sizes
+*> for the CWORK, IWORK, and RWORK arrays, and no error
+*> message related to LCWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] CWORK
+*> \verbatim
+*> CWORK is COMPLEX*12 array, dimension (max(2, LCWORK)), used as a workspace.
+*> On exit, if, on entry, LCWORK.NE.-1, CWORK(1:N) contains parameters
+*> needed to recover the Q factor from the QR factorization computed by
+*> ZGEQP3.
+*
+*> If LIWORK, LCWORK, or LRWORK = -1, then on exit, if INFO = 0,
+*> CWORK(1) returns the optimal LCWORK, and
+*> CWORK(2) returns the minimal LCWORK.
+*> \endverbatim
+*>
+*> \param[in,out] LCWORK
+*> \verbatim
+*> LCWORK is INTEGER
+*> The dimension of the array CWORK. It is determined as follows:
+*> Let LWQP3 = N+1, LWCON = 2*N, and let
+*> LWUNQ = { MAX( N, 1 ), if JOBU = 'R', 'S', or 'U'
+*> { MAX( M, 1 ), if JOBU = 'A'
+*> LWSVD = MAX( 3*N, 1 )
+*> LWLQF = MAX( N/2, 1 ), LWSVD2 = MAX( 3*(N/2), 1 ), LWUNLQ = MAX( N, 1 ),
+*> LWQRF = MAX( N/2, 1 ), LWUNQ2 = MAX( N, 1 )
+*> Then the minimal value of LCWORK is:
+*> = MAX( N + LWQP3, LWSVD ) if only the singular values are needed;
+*> = MAX( N + LWQP3, LWCON, LWSVD ) if only the singular values are needed,
+*> and a scaled condition estimate requested;
+*>
+*> = N + MAX( LWQP3, LWSVD, LWUNQ ) if the singular values and the left
+*> singular vectors are requested;
+*> = N + MAX( LWQP3, LWCON, LWSVD, LWUNQ ) if the singular values and the left
+*> singular vectors are requested, and also
+*> a scaled condition estimate requested;
+*>
+*> = N + MAX( LWQP3, LWSVD ) if the singular values and the right
+*> singular vectors are requested;
+*> = N + MAX( LWQP3, LWCON, LWSVD ) if the singular values and the right
+*> singular vectors are requested, and also
+*> a scaled condition etimate requested;
+*>
+*> = N + MAX( LWQP3, LWSVD, LWUNQ ) if the full SVD is requested with JOBV = 'R';
+*> independent of JOBR;
+*> = N + MAX( LWQP3, LWCON, LWSVD, LWUNQ ) if the full SVD is requested,
+*> JOBV = 'R' and, also a scaled condition
+*> estimate requested; independent of JOBR;
+*> = MAX( N + MAX( LWQP3, LWSVD, LWUNQ ),
+*> N + MAX( LWQP3, N/2+LWLQF, N/2+LWSVD2, N/2+LWUNLQ, LWUNQ) ) if the
+*> full SVD is requested with JOBV = 'A' or 'V', and
+*> JOBR ='N'
+*> = MAX( N + MAX( LWQP3, LWCON, LWSVD, LWUNQ ),
+*> N + MAX( LWQP3, LWCON, N/2+LWLQF, N/2+LWSVD2, N/2+LWUNLQ, LWUNQ ) )
+*> if the full SVD is requested with JOBV = 'A' or 'V', and
+*> JOBR ='N', and also a scaled condition number estimate
+*> requested.
+*> = MAX( N + MAX( LWQP3, LWSVD, LWUNQ ),
+*> N + MAX( LWQP3, N/2+LWQRF, N/2+LWSVD2, N/2+LWUNQ2, LWUNQ ) ) if the
+*> full SVD is requested with JOBV = 'A', 'V', and JOBR ='T'
+*> = MAX( N + MAX( LWQP3, LWCON, LWSVD, LWUNQ ),
+*> N + MAX( LWQP3, LWCON, N/2+LWQRF, N/2+LWSVD2, N/2+LWUNQ2, LWUNQ ) )
+*> if the full SVD is requested with JOBV = 'A', 'V' and
+*> JOBR ='T', and also a scaled condition number estimate
+*> requested.
+*> Finally, LCWORK must be at least two: LCWORK = MAX( 2, LCWORK ).
+*>
+*> If LCWORK = -1, then a workspace query is assumed; the routine
+*> only calculates and returns the optimal and minimal sizes
+*> for the CWORK, IWORK, and RWORK arrays, and no error
+*> message related to LCWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] RWORK
+*> \verbatim
+*> RWORK is DOUBLE PRECISION array, dimension (max(1, LRWORK)).
+*> On exit,
+*> 1. If JOBA = 'E', RWORK(1) contains an estimate of the condition
+*> number of column scaled A. If A = C * D where D is diagonal and C
+*> has unit columns in the Euclidean norm, then, assuming full column rank,
+*> N^(-1/4) * RWORK(1) <= ||pinv(C)||_2 <= N^(1/4) * RWORK(1).
+*> Otherwise, RWORK(1) = -1.
+*> 2. RWORK(2) contains the number of singular values computed as
+*> exact zeros in ZGESVD applied to the upper triangular or trapeziodal
+*> R (from the initial QR factorization). In case of early exit (no call to
+*> ZGESVD, such as in the case of zero matrix) RWORK(2) = -1.
+*
+*> If LIWORK, LCWORK, or LRWORK = -1, then on exit, if INFO = 0,
+*> RWORK(1) returns the minimal LRWORK.
+*> \endverbatim
+*>
+*> \param[in] LRWORK
+*> \verbatim
+*> LRWORK is INTEGER.
+*> The dimension of the array RWORK.
+*> If JOBP ='P', then LRWORK >= MAX(2, M, 5*N);
+*> Otherwise, LRWORK >= MAX(2, 5*N).
+*
+*> If LRWORK = -1, then a workspace query is assumed; the routine
+*> only calculates and returns the optimal and minimal sizes
+*> for the CWORK, IWORK, and RWORK arrays, and no error
+*> message related to LCWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit.
+*> < 0: if INFO = -i, the i-th argument had an illegal value.
+*> > 0: if ZBDSQR did not converge, INFO specifies how many superdiagonals
+*> of an intermediate bidiagonal form B (computed in ZGESVD) did not
+*> converge to zero.
+*> \endverbatim
+*
+*> \par Further Details:
+* ========================
+*>
+*> \verbatim
+*>
+*> 1. The data movement (matrix transpose) is coded using simple nested
+*> DO-loops because BLAS and LAPACK do not provide corresponding subroutines.
+*> Those DO-loops are easily identified in this source code - by the CONTINUE
+*> statements labeled with 11**. In an optimized version of this code, the
+*> nested DO loops should be replaced with calls to an optimized subroutine.
+*> 2. This code scales A by 1/SQRT(M) if the largest ABS(A(i,j)) could cause
+*> column norm overflow. This is the minial precaution and it is left to the
+*> SVD routine (CGESVD) to do its own preemptive scaling if potential over-
+*> or underflows are detected. To avoid repeated scanning of the array A,
+*> an optimal implementation would do all necessary scaling before calling
+*> CGESVD and the scaling in CGESVD can be switched off.
+*> 3. Other comments related to code optimization are given in comments in the
+*> code, enlosed in [[double brackets]].
+*> \endverbatim
+*
+*> \par Bugs, examples and comments
+* ===========================
+*
+*> \verbatim
+*> Please report all bugs and send interesting examples and/or comments to
+*> drmac@math.hr. Thank you.
+*> \endverbatim
+*
+*> \par References
+* ===============
+*
+*> \verbatim
+*> [1] Zlatko Drmac, Algorithm 977: A QR-Preconditioned QR SVD Method for
+*> Computing the SVD with High Accuracy. ACM Trans. Math. Softw.
+*> 44(1): 11:1-11:30 (2017)
+*>
+*> SIGMA library, xGESVDQ section updated February 2016.
+*> Developed and coded by Zlatko Drmac, Department of Mathematics
+*> University of Zagreb, Croatia, drmac@math.hr
+*> \endverbatim
+*
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*> Developed and coded by Zlatko Drmac, Department of Mathematics
+*> University of Zagreb, Croatia, drmac@math.hr
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2018
+*
+*> \ingroup complex16GEsing
+*
+* =====================================================================
+ SUBROUTINE ZGESVDQ( JOBA, JOBP, JOBR, JOBU, JOBV, M, N, A, LDA,
+ $ S, U, LDU, V, LDV, NUMRANK, IWORK, LIWORK,
+ $ CWORK, LCWORK, RWORK, LRWORK, INFO )
+* .. Scalar Arguments ..
+ IMPLICIT NONE
+ CHARACTER JOBA, JOBP, JOBR, JOBU, JOBV
+ INTEGER M, N, LDA, LDU, LDV, NUMRANK, LIWORK, LCWORK, LRWORK,
+ $ INFO
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 A( LDA, * ), U( LDU, * ), V( LDV, * ), CWORK( * )
+ DOUBLE PRECISION S( * ), RWORK( * )
+ INTEGER IWORK( * )
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
+ COMPLEX*16 CZERO, CONE
+ PARAMETER ( CZERO = (0.0D0,0.0D0), CONE = (1.0D0,0.0D0) )
+* ..
+* .. Local Scalars ..
+ INTEGER IERR, NR, N1, OPTRATIO, p, q
+ INTEGER LWCON, LWQP3, LWRK_ZGELQF, LWRK_ZGESVD, LWRK_ZGESVD2,
+ $ LWRK_ZGEQP3, LWRK_ZGEQRF, LWRK_ZUNMLQ, LWRK_ZUNMQR,
+ $ LWRK_ZUNMQR2, LWLQF, LWQRF, LWSVD, LWSVD2, LWUNQ,
+ $ LWUNQ2, LWUNLQ, MINWRK, MINWRK2, OPTWRK, OPTWRK2,
+ $ IMINWRK, RMINWRK
+ LOGICAL ACCLA, ACCLM, ACCLH, ASCALED, CONDA, DNTWU, DNTWV,
+ $ LQUERY, LSVC0, LSVEC, ROWPRM, RSVEC, RTRANS, WNTUA,
+ $ WNTUF, WNTUR, WNTUS, WNTVA, WNTVR
+ DOUBLE PRECISION BIG, EPSLN, RTMP, SCONDA, SFMIN
+ COMPLEX*16 CTMP
+* ..
+* .. Local Arrays
+ COMPLEX*16 CDUMMY(1)
+ DOUBLE PRECISION RDUMMY(1)
+* ..
+* .. External Subroutines (BLAS, LAPACK)
+ EXTERNAL ZGELQF, ZGEQP3, ZGEQRF, ZGESVD, ZLACPY, ZLAPMT,
+ $ ZLASCL, ZLASET, ZLASWP, ZDSCAL, DLASET, DLASCL,
+ $ ZPOCON, ZUNMLQ, ZUNMQR, XERBLA
+* ..
+* .. External Functions (BLAS, LAPACK)
+ LOGICAL LSAME
+ INTEGER IDAMAX
+ DOUBLE PRECISION ZLANGE, DZNRM2, DLAMCH
+ EXTERNAL LSAME, ZLANGE, IDAMAX, DZNRM2, DLAMCH
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, CONJG, MAX, MIN, DBLE, SQRT
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments
+*
+ WNTUS = LSAME( JOBU, 'S' ) .OR. LSAME( JOBU, 'U' )
+ WNTUR = LSAME( JOBU, 'R' )
+ WNTUA = LSAME( JOBU, 'A' )
+ WNTUF = LSAME( JOBU, 'F' )
+ LSVC0 = WNTUS .OR. WNTUR .OR. WNTUA
+ LSVEC = LSVC0 .OR. WNTUF
+ DNTWU = LSAME( JOBU, 'N' )
+*
+ WNTVR = LSAME( JOBV, 'R' )
+ WNTVA = LSAME( JOBV, 'A' ) .OR. LSAME( JOBV, 'V' )
+ RSVEC = WNTVR .OR. WNTVA
+ DNTWV = LSAME( JOBV, 'N' )
+*
+ ACCLA = LSAME( JOBA, 'A' )
+ ACCLM = LSAME( JOBA, 'M' )
+ CONDA = LSAME( JOBA, 'E' )
+ ACCLH = LSAME( JOBA, 'H' ) .OR. CONDA
+*
+ ROWPRM = LSAME( JOBP, 'P' )
+ RTRANS = LSAME( JOBR, 'T' )
+*
+ IF ( ROWPRM ) THEN
+ IMINWRK = MAX( 1, N + M - 1 )
+ RMINWRK = MAX( 2, M, 5*N )
+ ELSE
+ IMINWRK = MAX( 1, N )
+ RMINWRK = MAX( 2, 5*N )
+ END IF
+ LQUERY = (LIWORK .EQ. -1 .OR. LCWORK .EQ. -1 .OR. LRWORK .EQ. -1)
+ INFO = 0
+ IF ( .NOT. ( ACCLA .OR. ACCLM .OR. ACCLH ) ) THEN
+ INFO = -1
+ ELSE IF ( .NOT.( ROWPRM .OR. LSAME( JOBP, 'N' ) ) ) THEN
+ INFO = -2
+ ELSE IF ( .NOT.( RTRANS .OR. LSAME( JOBR, 'N' ) ) ) THEN
+ INFO = -3
+ ELSE IF ( .NOT.( LSVEC .OR. DNTWU ) ) THEN
+ INFO = -4
+ ELSE IF ( WNTUR .AND. WNTVA ) THEN
+ INFO = -5
+ ELSE IF ( .NOT.( RSVEC .OR. DNTWV )) THEN
+ INFO = -5
+ ELSE IF ( M.LT.0 ) THEN
+ INFO = -6
+ ELSE IF ( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
+ INFO = -7
+ ELSE IF ( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -9
+ ELSE IF ( LDU.LT.1 .OR. ( LSVC0 .AND. LDU.LT.M ) .OR.
+ $ ( WNTUF .AND. LDU.LT.N ) ) THEN
+ INFO = -12
+ ELSE IF ( LDV.LT.1 .OR. ( RSVEC .AND. LDV.LT.N ) .OR.
+ $ ( CONDA .AND. LDV.LT.N ) ) THEN
+ INFO = -14
+ ELSE IF ( LIWORK .LT. IMINWRK .AND. .NOT. LQUERY ) THEN
+ INFO = -17
+ END IF
+*
+*
+ IF ( INFO .EQ. 0 ) THEN
+* .. compute the minimal and the optimal workspace lengths
+* [[The expressions for computing the minimal and the optimal
+* values of LCWORK are written with a lot of redundancy and
+* can be simplified. However, this detailed form is easier for
+* maintenance and modifications of the code.]]
+*
+* .. minimal workspace length for ZGEQP3 of an M x N matrix
+ LWQP3 = N+1
+* .. minimal workspace length for ZUNMQR to build left singular vectors
+ IF ( WNTUS .OR. WNTUR ) THEN
+ LWUNQ = MAX( N , 1 )
+ ELSE IF ( WNTUA ) THEN
+ LWUNQ = MAX( M , 1 )
+ END IF
+* .. minimal workspace length for ZPOCON of an N x N matrix
+ LWCON = 2 * N
+* .. ZGESVD of an N x N matrix
+ LWSVD = MAX( 3 * N, 1 )
+ IF ( LQUERY ) THEN
+ CALL ZGEQP3( M, N, A, LDA, IWORK, CDUMMY, CDUMMY, -1,
+ $ RDUMMY, IERR )
+ LWRK_ZGEQP3 = INT( CDUMMY(1) )
+ IF ( WNTUS .OR. WNTUR ) THEN
+ CALL ZUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
+ $ LDU, CDUMMY, -1, IERR )
+ LWRK_ZUNMQR = INT( CDUMMY(1) )
+ ELSE IF ( WNTUA ) THEN
+ CALL ZUNMQR( 'L', 'N', M, M, N, A, LDA, CDUMMY, U,
+ $ LDU, CDUMMY, -1, IERR )
+ LWRK_ZUNMQR = INT( CDUMMY(1) )
+ ELSE
+ LWRK_ZUNMQR = 0
+ END IF
+ END IF
+ MINWRK = 2
+ OPTWRK = 2
+ IF ( .NOT. (LSVEC .OR. RSVEC ) ) THEN
+* .. minimal and optimal sizes of the complex workspace if
+* only the singular values are requested
+ IF ( CONDA ) THEN
+ MINWRK = MAX( N+LWQP3, LWCON, LWSVD )
+ ELSE
+ MINWRK = MAX( N+LWQP3, LWSVD )
+ END IF
+ IF ( LQUERY ) THEN
+ CALL ZGESVD( 'N', 'N', N, N, A, LDA, S, U, LDU,
+ $ V, LDV, CDUMMY, -1, RDUMMY, IERR )
+ LWRK_ZGESVD = INT( CDUMMY(1) )
+ IF ( CONDA ) THEN
+ OPTWRK = MAX( N+LWRK_ZGEQP3, N+LWCON, LWRK_ZGESVD )
+ ELSE
+ OPTWRK = MAX( N+LWRK_ZGEQP3, LWRK_ZGESVD )
+ END IF
+ END IF
+ ELSE IF ( LSVEC .AND. (.NOT.RSVEC) ) THEN
+* .. minimal and optimal sizes of the complex workspace if the
+* singular values and the left singular vectors are requested
+ IF ( CONDA ) THEN
+ MINWRK = N + MAX( LWQP3, LWCON, LWSVD, LWUNQ )
+ ELSE
+ MINWRK = N + MAX( LWQP3, LWSVD, LWUNQ )
+ END IF
+ IF ( LQUERY ) THEN
+ IF ( RTRANS ) THEN
+ CALL ZGESVD( 'N', 'O', N, N, A, LDA, S, U, LDU,
+ $ V, LDV, CDUMMY, -1, RDUMMY, IERR )
+ ELSE
+ CALL ZGESVD( 'O', 'N', N, N, A, LDA, S, U, LDU,
+ $ V, LDV, CDUMMY, -1, RDUMMY, IERR )
+ END IF
+ LWRK_ZGESVD = INT( CDUMMY(1) )
+ IF ( CONDA ) THEN
+ OPTWRK = N + MAX( LWRK_ZGEQP3, LWCON, LWRK_ZGESVD,
+ $ LWRK_ZUNMQR )
+ ELSE
+ OPTWRK = N + MAX( LWRK_ZGEQP3, LWRK_ZGESVD,
+ $ LWRK_ZUNMQR )
+ END IF
+ END IF
+ ELSE IF ( RSVEC .AND. (.NOT.LSVEC) ) THEN
+* .. minimal and optimal sizes of the complex workspace if the
+* singular values and the right singular vectors are requested
+ IF ( CONDA ) THEN
+ MINWRK = N + MAX( LWQP3, LWCON, LWSVD )
+ ELSE
+ MINWRK = N + MAX( LWQP3, LWSVD )
+ END IF
+ IF ( LQUERY ) THEN
+ IF ( RTRANS ) THEN
+ CALL ZGESVD( 'O', 'N', N, N, A, LDA, S, U, LDU,
+ $ V, LDV, CDUMMY, -1, RDUMMY, IERR )
+ ELSE
+ CALL ZGESVD( 'N', 'O', N, N, A, LDA, S, U, LDU,
+ $ V, LDV, CDUMMY, -1, RDUMMY, IERR )
+ END IF
+ LWRK_ZGESVD = INT( CDUMMY(1) )
+ IF ( CONDA ) THEN
+ OPTWRK = N + MAX( LWRK_ZGEQP3, LWCON, LWRK_ZGESVD )
+ ELSE
+ OPTWRK = N + MAX( LWRK_ZGEQP3, LWRK_ZGESVD )
+ END IF
+ END IF
+ ELSE
+* .. minimal and optimal sizes of the complex workspace if the
+* full SVD is requested
+ IF ( RTRANS ) THEN
+ MINWRK = MAX( LWQP3, LWSVD, LWUNQ )
+ IF ( CONDA ) MINWRK = MAX( MINWRK, LWCON )
+ MINWRK = MINWRK + N
+ IF ( WNTVA ) THEN
+* .. minimal workspace length for N x N/2 ZGEQRF
+ LWQRF = MAX( N/2, 1 )
+* .. minimal workspace lengt for N/2 x N/2 ZGESVD
+ LWSVD2 = MAX( 3 * (N/2), 1 )
+ LWUNQ2 = MAX( N, 1 )
+ MINWRK2 = MAX( LWQP3, N/2+LWQRF, N/2+LWSVD2,
+ $ N/2+LWUNQ2, LWUNQ )
+ IF ( CONDA ) MINWRK2 = MAX( MINWRK2, LWCON )
+ MINWRK2 = N + MINWRK2
+ MINWRK = MAX( MINWRK, MINWRK2 )
+ END IF
+ ELSE
+ MINWRK = MAX( LWQP3, LWSVD, LWUNQ )
+ IF ( CONDA ) MINWRK = MAX( MINWRK, LWCON )
+ MINWRK = MINWRK + N
+ IF ( WNTVA ) THEN
+* .. minimal workspace length for N/2 x N ZGELQF
+ LWLQF = MAX( N/2, 1 )
+ LWSVD2 = MAX( 3 * (N/2), 1 )
+ LWUNLQ = MAX( N , 1 )
+ MINWRK2 = MAX( LWQP3, N/2+LWLQF, N/2+LWSVD2,
+ $ N/2+LWUNLQ, LWUNQ )
+ IF ( CONDA ) MINWRK2 = MAX( MINWRK2, LWCON )
+ MINWRK2 = N + MINWRK2
+ MINWRK = MAX( MINWRK, MINWRK2 )
+ END IF
+ END IF
+ IF ( LQUERY ) THEN
+ IF ( RTRANS ) THEN
+ CALL ZGESVD( 'O', 'A', N, N, A, LDA, S, U, LDU,
+ $ V, LDV, CDUMMY, -1, RDUMMY, IERR )
+ LWRK_ZGESVD = INT( CDUMMY(1) )
+ OPTWRK = MAX(LWRK_ZGEQP3,LWRK_ZGESVD,LWRK_ZUNMQR)
+ IF ( CONDA ) OPTWRK = MAX( OPTWRK, LWCON )
+ OPTWRK = N + OPTWRK
+ IF ( WNTVA ) THEN
+ CALL ZGEQRF(N,N/2,U,LDU,CDUMMY,CDUMMY,-1,IERR)
+ LWRK_ZGEQRF = INT( CDUMMY(1) )
+ CALL ZGESVD( 'S', 'O', N/2,N/2, V,LDV, S, U,LDU,
+ $ V, LDV, CDUMMY, -1, RDUMMY, IERR )
+ LWRK_ZGESVD2 = INT( CDUMMY(1) )
+ CALL ZUNMQR( 'R', 'C', N, N, N/2, U, LDU, CDUMMY,
+ $ V, LDV, CDUMMY, -1, IERR )
+ LWRK_ZUNMQR2 = INT( CDUMMY(1) )
+ OPTWRK2 = MAX( LWRK_ZGEQP3, N/2+LWRK_ZGEQRF,
+ $ N/2+LWRK_ZGESVD2, N/2+LWRK_ZUNMQR2 )
+ IF ( CONDA ) OPTWRK2 = MAX( OPTWRK2, LWCON )
+ OPTWRK2 = N + OPTWRK2
+ OPTWRK = MAX( OPTWRK, OPTWRK2 )
+ END IF
+ ELSE
+ CALL ZGESVD( 'S', 'O', N, N, A, LDA, S, U, LDU,
+ $ V, LDV, CDUMMY, -1, RDUMMY, IERR )
+ LWRK_ZGESVD = INT( CDUMMY(1) )
+ OPTWRK = MAX(LWRK_ZGEQP3,LWRK_ZGESVD,LWRK_ZUNMQR)
+ IF ( CONDA ) OPTWRK = MAX( OPTWRK, LWCON )
+ OPTWRK = N + OPTWRK
+ IF ( WNTVA ) THEN
+ CALL ZGELQF(N/2,N,U,LDU,CDUMMY,CDUMMY,-1,IERR)
+ LWRK_ZGELQF = INT( CDUMMY(1) )
+ CALL ZGESVD( 'S','O', N/2,N/2, V, LDV, S, U, LDU,
+ $ V, LDV, CDUMMY, -1, RDUMMY, IERR )
+ LWRK_ZGESVD2 = INT( CDUMMY(1) )
+ CALL ZUNMLQ( 'R', 'N', N, N, N/2, U, LDU, CDUMMY,
+ $ V, LDV, CDUMMY,-1,IERR )
+ LWRK_ZUNMLQ = INT( CDUMMY(1) )
+ OPTWRK2 = MAX( LWRK_ZGEQP3, N/2+LWRK_ZGELQF,
+ $ N/2+LWRK_ZGESVD2, N/2+LWRK_ZUNMLQ )
+ IF ( CONDA ) OPTWRK2 = MAX( OPTWRK2, LWCON )
+ OPTWRK2 = N + OPTWRK2
+ OPTWRK = MAX( OPTWRK, OPTWRK2 )
+ END IF
+ END IF
+ END IF
+ END IF
+*
+ MINWRK = MAX( 2, MINWRK )
+ OPTWRK = MAX( 2, OPTWRK )
+ IF ( LCWORK .LT. MINWRK .AND. (.NOT.LQUERY) ) INFO = -19
+*
+ END IF
+*
+ IF (INFO .EQ. 0 .AND. LRWORK .LT. RMINWRK .AND. .NOT. LQUERY) THEN
+ INFO = -21
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZGESVDQ', -INFO )
+ RETURN
+ ELSE IF ( LQUERY ) THEN
+*
+* Return optimal workspace
+*
+ IWORK(1) = IMINWRK
+ CWORK(1) = OPTWRK
+ CWORK(2) = MINWRK
+ RWORK(1) = RMINWRK
+ RETURN
+ END IF
+*
+* Quick return if the matrix is void.
+*
+ IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) ) THEN
+* .. all output is void.
+ RETURN
+ END IF
+*
+ BIG = DLAMCH('O')
+ ASCALED = .FALSE.
+ IF ( ROWPRM ) THEN
+* .. reordering the rows in decreasing sequence in the
+* ell-infinity norm - this enhances numerical robustness in
+* the case of differently scaled rows.
+ DO 1904 p = 1, M
+* RWORK(p) = ABS( A(p,IZAMAX(N,A(p,1),LDA)) )
+* [[ZLANGE will return NaN if an entry of the p-th row is Nan]]
+ RWORK(p) = ZLANGE( 'M', 1, N, A(p,1), LDA, RDUMMY )
+* .. check for NaN's and Inf's
+ IF ( ( RWORK(p) .NE. RWORK(p) ) .OR.
+ $ ( (RWORK(p)*ZERO) .NE. ZERO ) ) THEN
+ INFO = -8
+ CALL XERBLA( 'ZGESVDQ', -INFO )
+ RETURN
+ END IF
+ 1904 CONTINUE
+ DO 1952 p = 1, M - 1
+ q = IDAMAX( M-p+1, RWORK(p), 1 ) + p - 1
+ IWORK(N+p) = q
+ IF ( p .NE. q ) THEN
+ RTMP = RWORK(p)
+ RWORK(p) = RWORK(q)
+ RWORK(q) = RTMP
+ END IF
+ 1952 CONTINUE
+*
+ IF ( RWORK(1) .EQ. ZERO ) THEN
+* Quick return: A is the M x N zero matrix.
+ NUMRANK = 0
+ CALL DLASET( 'G', N, 1, ZERO, ZERO, S, N )
+ IF ( WNTUS ) CALL ZLASET('G', M, N, CZERO, CONE, U, LDU)
+ IF ( WNTUA ) CALL ZLASET('G', M, M, CZERO, CONE, U, LDU)
+ IF ( WNTVA ) CALL ZLASET('G', N, N, CZERO, CONE, V, LDV)
+ IF ( WNTUF ) THEN
+ CALL ZLASET( 'G', N, 1, CZERO, CZERO, CWORK, N )
+ CALL ZLASET( 'G', M, N, CZERO, CONE, U, LDU )
+ END IF
+ DO 5001 p = 1, N
+ IWORK(p) = p
+ 5001 CONTINUE
+ IF ( ROWPRM ) THEN
+ DO 5002 p = N + 1, N + M - 1
+ IWORK(p) = p - N
+ 5002 CONTINUE
+ END IF
+ IF ( CONDA ) RWORK(1) = -1
+ RWORK(2) = -1
+ RETURN
+ END IF
+*
+ IF ( RWORK(1) .GT. BIG / SQRT(DBLE(M)) ) THEN
+* .. to prevent overflow in the QR factorization, scale the
+* matrix by 1/sqrt(M) if too large entry detected
+ CALL ZLASCL('G',0,0,SQRT(DBLE(M)),ONE, M,N, A,LDA, IERR)
+ ASCALED = .TRUE.
+ END IF
+ CALL ZLASWP( N, A, LDA, 1, M-1, IWORK(N+1), 1 )
+ END IF
+*
+* .. At this stage, preemptive scaling is done only to avoid column
+* norms overflows during the QR factorization. The SVD procedure should
+* have its own scaling to save the singular values from overflows and
+* underflows. That depends on the SVD procedure.
+*
+ IF ( .NOT.ROWPRM ) THEN
+ RTMP = ZLANGE( 'M', M, N, A, LDA, RWORK )
+ IF ( ( RTMP .NE. RTMP ) .OR.
+ $ ( (RTMP*ZERO) .NE. ZERO ) ) THEN
+ INFO = -8
+ CALL XERBLA( 'ZGESVDQ', -INFO )
+ RETURN
+ END IF
+ IF ( RTMP .GT. BIG / SQRT(DBLE(M)) ) THEN
+* .. to prevent overflow in the QR factorization, scale the
+* matrix by 1/sqrt(M) if too large entry detected
+ CALL ZLASCL('G',0,0, SQRT(DBLE(M)),ONE, M,N, A,LDA, IERR)
+ ASCALED = .TRUE.
+ END IF
+ END IF
+*
+* .. QR factorization with column pivoting
+*
+* A * P = Q * [ R ]
+* [ 0 ]
+*
+ DO 1963 p = 1, N
+* .. all columns are free columns
+ IWORK(p) = 0
+ 1963 CONTINUE
+ CALL ZGEQP3( M, N, A, LDA, IWORK, CWORK, CWORK(N+1), LCWORK-N,
+ $ RWORK, IERR )
+*
+* If the user requested accuracy level allows truncation in the
+* computed upper triangular factor, the matrix R is examined and,
+* if possible, replaced with its leading upper trapezoidal part.
+*
+ EPSLN = DLAMCH('E')
+ SFMIN = DLAMCH('S')
+* SMALL = SFMIN / EPSLN
+ NR = N
+*
+ IF ( ACCLA ) THEN
+*
+* Standard absolute error bound suffices. All sigma_i with
+* sigma_i < N*EPS*||A||_F are flushed to zero. This is an
+* aggressive enforcement of lower numerical rank by introducing a
+* backward error of the order of N*EPS*||A||_F.
+ NR = 1
+ RTMP = SQRT(DBLE(N))*EPSLN
+ DO 3001 p = 2, N
+ IF ( ABS(A(p,p)) .LT. (RTMP*ABS(A(1,1))) ) GO TO 3002
+ NR = NR + 1
+ 3001 CONTINUE
+ 3002 CONTINUE
+*
+ ELSEIF ( ACCLM ) THEN
+* .. similarly as above, only slightly more gentle (less aggressive).
+* Sudden drop on the diagonal of R is used as the criterion for being
+* close-to-rank-deficient. The threshold is set to EPSLN=DLAMCH('E').
+* [[This can be made more flexible by replacing this hard-coded value
+* with a user specified threshold.]] Also, the values that underflow
+* will be truncated.
+ NR = 1
+ DO 3401 p = 2, N
+ IF ( ( ABS(A(p,p)) .LT. (EPSLN*ABS(A(p-1,p-1))) ) .OR.
+ $ ( ABS(A(p,p)) .LT. SFMIN ) ) GO TO 3402
+ NR = NR + 1
+ 3401 CONTINUE
+ 3402 CONTINUE
+*
+ ELSE
+* .. RRQR not authorized to determine numerical rank except in the
+* obvious case of zero pivots.
+* .. inspect R for exact zeros on the diagonal;
+* R(i,i)=0 => R(i:N,i:N)=0.
+ NR = 1
+ DO 3501 p = 2, N
+ IF ( ABS(A(p,p)) .EQ. ZERO ) GO TO 3502
+ NR = NR + 1
+ 3501 CONTINUE
+ 3502 CONTINUE
+*
+ IF ( CONDA ) THEN
+* Estimate the scaled condition number of A. Use the fact that it is
+* the same as the scaled condition number of R.
+* .. V is used as workspace
+ CALL ZLACPY( 'U', N, N, A, LDA, V, LDV )
+* Only the leading NR x NR submatrix of the triangular factor
+* is considered. Only if NR=N will this give a reliable error
+* bound. However, even for NR < N, this can be used on an
+* expert level and obtain useful information in the sense of
+* perturbation theory.
+ DO 3053 p = 1, NR
+ RTMP = DZNRM2( p, V(1,p), 1 )
+ CALL ZDSCAL( p, ONE/RTMP, V(1,p), 1 )
+ 3053 CONTINUE
+ IF ( .NOT. ( LSVEC .OR. RSVEC ) ) THEN
+ CALL ZPOCON( 'U', NR, V, LDV, ONE, RTMP,
+ $ CWORK, RWORK, IERR )
+ ELSE
+ CALL ZPOCON( 'U', NR, V, LDV, ONE, RTMP,
+ $ CWORK(N+1), RWORK, IERR )
+ END IF
+ SCONDA = ONE / SQRT(RTMP)
+* For NR=N, SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1),
+* N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
+* See the reference [1] for more details.
+ END IF
+*
+ ENDIF
+*
+ IF ( WNTUR ) THEN
+ N1 = NR
+ ELSE IF ( WNTUS .OR. WNTUF) THEN
+ N1 = N
+ ELSE IF ( WNTUA ) THEN
+ N1 = M
+ END IF
+*
+ IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN
+*.......................................................................
+* .. only the singular values are requested
+*.......................................................................
+ IF ( RTRANS ) THEN
+*
+* .. compute the singular values of R**H = [A](1:NR,1:N)**H
+* .. set the lower triangle of [A] to [A](1:NR,1:N)**H and
+* the upper triangle of [A] to zero.
+ DO 1146 p = 1, MIN( N, NR )
+ A(p,p) = CONJG(A(p,p))
+ DO 1147 q = p + 1, N
+ A(q,p) = CONJG(A(p,q))
+ IF ( q .LE. NR ) A(p,q) = CZERO
+ 1147 CONTINUE
+ 1146 CONTINUE
+*
+ CALL ZGESVD( 'N', 'N', N, NR, A, LDA, S, U, LDU,
+ $ V, LDV, CWORK, LCWORK, RWORK, INFO )
+*
+ ELSE
+*
+* .. compute the singular values of R = [A](1:NR,1:N)
+*
+ IF ( NR .GT. 1 )
+ $ CALL ZLASET( 'L', NR-1,NR-1, CZERO,CZERO, A(2,1), LDA )
+ CALL ZGESVD( 'N', 'N', NR, N, A, LDA, S, U, LDU,
+ $ V, LDV, CWORK, LCWORK, RWORK, INFO )
+*
+ END IF
+*
+ ELSE IF ( LSVEC .AND. ( .NOT. RSVEC) ) THEN
+*.......................................................................
+* .. the singular values and the left singular vectors requested
+*.......................................................................""""""""
+ IF ( RTRANS ) THEN
+* .. apply ZGESVD to R**H
+* .. copy R**H into [U] and overwrite [U] with the right singular
+* vectors of R
+ DO 1192 p = 1, NR
+ DO 1193 q = p, N
+ U(q,p) = CONJG(A(p,q))
+ 1193 CONTINUE
+ 1192 CONTINUE
+ IF ( NR .GT. 1 )
+ $ CALL ZLASET( 'U', NR-1,NR-1, CZERO,CZERO, U(1,2), LDU )
+* .. the left singular vectors not computed, the NR right singular
+* vectors overwrite [U](1:NR,1:NR) as conjugate transposed. These
+* will be pre-multiplied by Q to build the left singular vectors of A.
+ CALL ZGESVD( 'N', 'O', N, NR, U, LDU, S, U, LDU,
+ $ U, LDU, CWORK(N+1), LCWORK-N, RWORK, INFO )
+*
+ DO 1119 p = 1, NR
+ U(p,p) = CONJG(U(p,p))
+ DO 1120 q = p + 1, NR
+ CTMP = CONJG(U(q,p))
+ U(q,p) = CONJG(U(p,q))
+ U(p,q) = CTMP
+ 1120 CONTINUE
+ 1119 CONTINUE
+*
+ ELSE
+* .. apply ZGESVD to R
+* .. copy R into [U] and overwrite [U] with the left singular vectors
+ CALL ZLACPY( 'U', NR, N, A, LDA, U, LDU )
+ IF ( NR .GT. 1 )
+ $ CALL ZLASET( 'L', NR-1, NR-1, CZERO, CZERO, U(2,1), LDU )
+* .. the right singular vectors not computed, the NR left singular
+* vectors overwrite [U](1:NR,1:NR)
+ CALL ZGESVD( 'O', 'N', NR, N, U, LDU, S, U, LDU,
+ $ V, LDV, CWORK(N+1), LCWORK-N, RWORK, INFO )
+* .. now [U](1:NR,1:NR) contains the NR left singular vectors of
+* R. These will be pre-multiplied by Q to build the left singular
+* vectors of A.
+ END IF
+*
+* .. assemble the left singular vector matrix U of dimensions
+* (M x NR) or (M x N) or (M x M).
+ IF ( ( NR .LT. M ) .AND. ( .NOT.WNTUF ) ) THEN
+ CALL ZLASET('A', M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU)
+ IF ( NR .LT. N1 ) THEN
+ CALL ZLASET( 'A',NR,N1-NR,CZERO,CZERO,U(1,NR+1), LDU )
+ CALL ZLASET( 'A',M-NR,N1-NR,CZERO,CONE,
+ $ U(NR+1,NR+1), LDU )
+ END IF
+ END IF
+*
+* The Q matrix from the first QRF is built into the left singular
+* vectors matrix U.
+*
+ IF ( .NOT.WNTUF )
+ $ CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
+ $ LDU, CWORK(N+1), LCWORK-N, IERR )
+ IF ( ROWPRM .AND. .NOT.WNTUF )
+ $ CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(N+1), -1 )
+*
+ ELSE IF ( RSVEC .AND. ( .NOT. LSVEC ) ) THEN
+*.......................................................................
+* .. the singular values and the right singular vectors requested
+*.......................................................................
+ IF ( RTRANS ) THEN
+* .. apply ZGESVD to R**H
+* .. copy R**H into V and overwrite V with the left singular vectors
+ DO 1165 p = 1, NR
+ DO 1166 q = p, N
+ V(q,p) = CONJG(A(p,q))
+ 1166 CONTINUE
+ 1165 CONTINUE
+ IF ( NR .GT. 1 )
+ $ CALL ZLASET( 'U', NR-1,NR-1, CZERO,CZERO, V(1,2), LDV )
+* .. the left singular vectors of R**H overwrite V, the right singular
+* vectors not computed
+ IF ( WNTVR .OR. ( NR .EQ. N ) ) THEN
+ CALL ZGESVD( 'O', 'N', N, NR, V, LDV, S, U, LDU,
+ $ U, LDU, CWORK(N+1), LCWORK-N, RWORK, INFO )
+*
+ DO 1121 p = 1, NR
+ V(p,p) = CONJG(V(p,p))
+ DO 1122 q = p + 1, NR
+ CTMP = CONJG(V(q,p))
+ V(q,p) = CONJG(V(p,q))
+ V(p,q) = CTMP
+ 1122 CONTINUE
+ 1121 CONTINUE
+*
+ IF ( NR .LT. N ) THEN
+ DO 1103 p = 1, NR
+ DO 1104 q = NR + 1, N
+ V(p,q) = CONJG(V(q,p))
+ 1104 CONTINUE
+ 1103 CONTINUE
+ END IF
+ CALL ZLAPMT( .FALSE., NR, N, V, LDV, IWORK )
+ ELSE
+* .. need all N right singular vectors and NR < N
+* [!] This is simple implementation that augments [V](1:N,1:NR)
+* by padding a zero block. In the case NR << N, a more efficient
+* way is to first use the QR factorization. For more details
+* how to implement this, see the " FULL SVD " branch.
+ CALL ZLASET('G', N, N-NR, CZERO, CZERO, V(1,NR+1), LDV)
+ CALL ZGESVD( 'O', 'N', N, N, V, LDV, S, U, LDU,
+ $ U, LDU, CWORK(N+1), LCWORK-N, RWORK, INFO )
+*
+ DO 1123 p = 1, N
+ V(p,p) = CONJG(V(p,p))
+ DO 1124 q = p + 1, N
+ CTMP = CONJG(V(q,p))
+ V(q,p) = CONJG(V(p,q))
+ V(p,q) = CTMP
+ 1124 CONTINUE
+ 1123 CONTINUE
+ CALL ZLAPMT( .FALSE., N, N, V, LDV, IWORK )
+ END IF
+*
+ ELSE
+* .. aply ZGESVD to R
+* .. copy R into V and overwrite V with the right singular vectors
+ CALL ZLACPY( 'U', NR, N, A, LDA, V, LDV )
+ IF ( NR .GT. 1 )
+ $ CALL ZLASET( 'L', NR-1, NR-1, CZERO, CZERO, V(2,1), LDV )
+* .. the right singular vectors overwrite V, the NR left singular
+* vectors stored in U(1:NR,1:NR)
+ IF ( WNTVR .OR. ( NR .EQ. N ) ) THEN
+ CALL ZGESVD( 'N', 'O', NR, N, V, LDV, S, U, LDU,
+ $ V, LDV, CWORK(N+1), LCWORK-N, RWORK, INFO )
+ CALL ZLAPMT( .FALSE., NR, N, V, LDV, IWORK )
+* .. now [V](1:NR,1:N) contains V(1:N,1:NR)**H
+ ELSE
+* .. need all N right singular vectors and NR < N
+* [!] This is simple implementation that augments [V](1:NR,1:N)
+* by padding a zero block. In the case NR << N, a more efficient
+* way is to first use the LQ factorization. For more details
+* how to implement this, see the " FULL SVD " branch.
+ CALL ZLASET('G', N-NR, N, CZERO,CZERO, V(NR+1,1), LDV)
+ CALL ZGESVD( 'N', 'O', N, N, V, LDV, S, U, LDU,
+ $ V, LDV, CWORK(N+1), LCWORK-N, RWORK, INFO )
+ CALL ZLAPMT( .FALSE., N, N, V, LDV, IWORK )
+ END IF
+* .. now [V] contains the adjoint of the matrix of the right singular
+* vectors of A.
+ END IF
+*
+ ELSE
+*.......................................................................
+* .. FULL SVD requested
+*.......................................................................
+ IF ( RTRANS ) THEN
+*
+* .. apply ZGESVD to R**H [[this option is left for R&D&T]]
+*
+ IF ( WNTVR .OR. ( NR .EQ. N ) ) THEN
+* .. copy R**H into [V] and overwrite [V] with the left singular
+* vectors of R**H
+ DO 1168 p = 1, NR
+ DO 1169 q = p, N
+ V(q,p) = CONJG(A(p,q))
+ 1169 CONTINUE
+ 1168 CONTINUE
+ IF ( NR .GT. 1 )
+ $ CALL ZLASET( 'U', NR-1,NR-1, CZERO,CZERO, V(1,2), LDV )
+*
+* .. the left singular vectors of R**H overwrite [V], the NR right
+* singular vectors of R**H stored in [U](1:NR,1:NR) as conjugate
+* transposed
+ CALL ZGESVD( 'O', 'A', N, NR, V, LDV, S, V, LDV,
+ $ U, LDU, CWORK(N+1), LCWORK-N, RWORK, INFO )
+* .. assemble V
+ DO 1115 p = 1, NR
+ V(p,p) = CONJG(V(p,p))
+ DO 1116 q = p + 1, NR
+ CTMP = CONJG(V(q,p))
+ V(q,p) = CONJG(V(p,q))
+ V(p,q) = CTMP
+ 1116 CONTINUE
+ 1115 CONTINUE
+ IF ( NR .LT. N ) THEN
+ DO 1101 p = 1, NR
+ DO 1102 q = NR+1, N
+ V(p,q) = CONJG(V(q,p))
+ 1102 CONTINUE
+ 1101 CONTINUE
+ END IF
+ CALL ZLAPMT( .FALSE., NR, N, V, LDV, IWORK )
+*
+ DO 1117 p = 1, NR
+ U(p,p) = CONJG(U(p,p))
+ DO 1118 q = p + 1, NR
+ CTMP = CONJG(U(q,p))
+ U(q,p) = CONJG(U(p,q))
+ U(p,q) = CTMP
+ 1118 CONTINUE
+ 1117 CONTINUE
+*
+ IF ( ( NR .LT. M ) .AND. .NOT.(WNTUF)) THEN
+ CALL ZLASET('A', M-NR,NR, CZERO,CZERO, U(NR+1,1), LDU)
+ IF ( NR .LT. N1 ) THEN
+ CALL ZLASET('A',NR,N1-NR,CZERO,CZERO,U(1,NR+1),LDU)
+ CALL ZLASET( 'A',M-NR,N1-NR,CZERO,CONE,
+ $ U(NR+1,NR+1), LDU )
+ END IF
+ END IF
+*
+ ELSE
+* .. need all N right singular vectors and NR < N
+* .. copy R**H into [V] and overwrite [V] with the left singular
+* vectors of R**H
+* [[The optimal ratio N/NR for using QRF instead of padding
+* with zeros. Here hard coded to 2; it must be at least
+* two due to work space constraints.]]
+* OPTRATIO = ILAENV(6, 'ZGESVD', 'S' // 'O', NR,N,0,0)
+* OPTRATIO = MAX( OPTRATIO, 2 )
+ OPTRATIO = 2
+ IF ( OPTRATIO*NR .GT. N ) THEN
+ DO 1198 p = 1, NR
+ DO 1199 q = p, N
+ V(q,p) = CONJG(A(p,q))
+ 1199 CONTINUE
+ 1198 CONTINUE
+ IF ( NR .GT. 1 )
+ $ CALL ZLASET('U',NR-1,NR-1, CZERO,CZERO, V(1,2),LDV)
+*
+ CALL ZLASET('A',N,N-NR,CZERO,CZERO,V(1,NR+1),LDV)
+ CALL ZGESVD( 'O', 'A', N, N, V, LDV, S, V, LDV,
+ $ U, LDU, CWORK(N+1), LCWORK-N, RWORK, INFO )
+*
+ DO 1113 p = 1, N
+ V(p,p) = CONJG(V(p,p))
+ DO 1114 q = p + 1, N
+ CTMP = CONJG(V(q,p))
+ V(q,p) = CONJG(V(p,q))
+ V(p,q) = CTMP
+ 1114 CONTINUE
+ 1113 CONTINUE
+ CALL ZLAPMT( .FALSE., N, N, V, LDV, IWORK )
+* .. assemble the left singular vector matrix U of dimensions
+* (M x N1), i.e. (M x N) or (M x M).
+*
+ DO 1111 p = 1, N
+ U(p,p) = CONJG(U(p,p))
+ DO 1112 q = p + 1, N
+ CTMP = CONJG(U(q,p))
+ U(q,p) = CONJG(U(p,q))
+ U(p,q) = CTMP
+ 1112 CONTINUE
+ 1111 CONTINUE
+*
+ IF ( ( N .LT. M ) .AND. .NOT.(WNTUF)) THEN
+ CALL ZLASET('A',M-N,N,CZERO,CZERO,U(N+1,1),LDU)
+ IF ( N .LT. N1 ) THEN
+ CALL ZLASET('A',N,N1-N,CZERO,CZERO,U(1,N+1),LDU)
+ CALL ZLASET('A',M-N,N1-N,CZERO,CONE,
+ $ U(N+1,N+1), LDU )
+ END IF
+ END IF
+ ELSE
+* .. copy R**H into [U] and overwrite [U] with the right
+* singular vectors of R
+ DO 1196 p = 1, NR
+ DO 1197 q = p, N
+ U(q,NR+p) = CONJG(A(p,q))
+ 1197 CONTINUE
+ 1196 CONTINUE
+ IF ( NR .GT. 1 )
+ $ CALL ZLASET('U',NR-1,NR-1,CZERO,CZERO,U(1,NR+2),LDU)
+ CALL ZGEQRF( N, NR, U(1,NR+1), LDU, CWORK(N+1),
+ $ CWORK(N+NR+1), LCWORK-N-NR, IERR )
+ DO 1143 p = 1, NR
+ DO 1144 q = 1, N
+ V(q,p) = CONJG(U(p,NR+q))
+ 1144 CONTINUE
+ 1143 CONTINUE
+ CALL ZLASET('U',NR-1,NR-1,CZERO,CZERO,V(1,2),LDV)
+ CALL ZGESVD( 'S', 'O', NR, NR, V, LDV, S, U, LDU,
+ $ V,LDV, CWORK(N+NR+1),LCWORK-N-NR,RWORK, INFO )
+ CALL ZLASET('A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV)
+ CALL ZLASET('A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV)
+ CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
+ CALL ZUNMQR('R','C', N, N, NR, U(1,NR+1), LDU,
+ $ CWORK(N+1),V,LDV,CWORK(N+NR+1),LCWORK-N-NR,IERR)
+ CALL ZLAPMT( .FALSE., N, N, V, LDV, IWORK )
+* .. assemble the left singular vector matrix U of dimensions
+* (M x NR) or (M x N) or (M x M).
+ IF ( ( NR .LT. M ) .AND. .NOT.(WNTUF)) THEN
+ CALL ZLASET('A',M-NR,NR,CZERO,CZERO,U(NR+1,1),LDU)
+ IF ( NR .LT. N1 ) THEN
+ CALL ZLASET('A',NR,N1-NR,CZERO,CZERO,U(1,NR+1),LDU)
+ CALL ZLASET( 'A',M-NR,N1-NR,CZERO,CONE,
+ $ U(NR+1,NR+1),LDU)
+ END IF
+ END IF
+ END IF
+ END IF
+*
+ ELSE
+*
+* .. apply ZGESVD to R [[this is the recommended option]]
+*
+ IF ( WNTVR .OR. ( NR .EQ. N ) ) THEN
+* .. copy R into [V] and overwrite V with the right singular vectors
+ CALL ZLACPY( 'U', NR, N, A, LDA, V, LDV )
+ IF ( NR .GT. 1 )
+ $ CALL ZLASET( 'L', NR-1,NR-1, CZERO,CZERO, V(2,1), LDV )
+* .. the right singular vectors of R overwrite [V], the NR left
+* singular vectors of R stored in [U](1:NR,1:NR)
+ CALL ZGESVD( 'S', 'O', NR, N, V, LDV, S, U, LDU,
+ $ V, LDV, CWORK(N+1), LCWORK-N, RWORK, INFO )
+ CALL ZLAPMT( .FALSE., NR, N, V, LDV, IWORK )
+* .. now [V](1:NR,1:N) contains V(1:N,1:NR)**H
+* .. assemble the left singular vector matrix U of dimensions
+* (M x NR) or (M x N) or (M x M).
+ IF ( ( NR .LT. M ) .AND. .NOT.(WNTUF)) THEN
+ CALL ZLASET('A', M-NR,NR, CZERO,CZERO, U(NR+1,1), LDU)
+ IF ( NR .LT. N1 ) THEN
+ CALL ZLASET('A',NR,N1-NR,CZERO,CZERO,U(1,NR+1),LDU)
+ CALL ZLASET( 'A',M-NR,N1-NR,CZERO,CONE,
+ $ U(NR+1,NR+1), LDU )
+ END IF
+ END IF
+*
+ ELSE
+* .. need all N right singular vectors and NR < N
+* .. the requested number of the left singular vectors
+* is then N1 (N or M)
+* [[The optimal ratio N/NR for using LQ instead of padding
+* with zeros. Here hard coded to 2; it must be at least
+* two due to work space constraints.]]
+* OPTRATIO = ILAENV(6, 'ZGESVD', 'S' // 'O', NR,N,0,0)
+* OPTRATIO = MAX( OPTRATIO, 2 )
+ OPTRATIO = 2
+ IF ( OPTRATIO * NR .GT. N ) THEN
+ CALL ZLACPY( 'U', NR, N, A, LDA, V, LDV )
+ IF ( NR .GT. 1 )
+ $ CALL ZLASET('L', NR-1,NR-1, CZERO,CZERO, V(2,1),LDV)
+* .. the right singular vectors of R overwrite [V], the NR left
+* singular vectors of R stored in [U](1:NR,1:NR)
+ CALL ZLASET('A', N-NR,N, CZERO,CZERO, V(NR+1,1),LDV)
+ CALL ZGESVD( 'S', 'O', N, N, V, LDV, S, U, LDU,
+ $ V, LDV, CWORK(N+1), LCWORK-N, RWORK, INFO )
+ CALL ZLAPMT( .FALSE., N, N, V, LDV, IWORK )
+* .. now [V] contains the adjoint of the matrix of the right
+* singular vectors of A. The leading N left singular vectors
+* are in [U](1:N,1:N)
+* .. assemble the left singular vector matrix U of dimensions
+* (M x N1), i.e. (M x N) or (M x M).
+ IF ( ( N .LT. M ) .AND. .NOT.(WNTUF)) THEN
+ CALL ZLASET('A',M-N,N,CZERO,CZERO,U(N+1,1),LDU)
+ IF ( N .LT. N1 ) THEN
+ CALL ZLASET('A',N,N1-N,CZERO,CZERO,U(1,N+1),LDU)
+ CALL ZLASET( 'A',M-N,N1-N,CZERO,CONE,
+ $ U(N+1,N+1), LDU )
+ END IF
+ END IF
+ ELSE
+ CALL ZLACPY( 'U', NR, N, A, LDA, U(NR+1,1), LDU )
+ IF ( NR .GT. 1 )
+ $ CALL ZLASET('L',NR-1,NR-1,CZERO,CZERO,U(NR+2,1),LDU)
+ CALL ZGELQF( NR, N, U(NR+1,1), LDU, CWORK(N+1),
+ $ CWORK(N+NR+1), LCWORK-N-NR, IERR )
+ CALL ZLACPY('L',NR,NR,U(NR+1,1),LDU,V,LDV)
+ IF ( NR .GT. 1 )
+ $ CALL ZLASET('U',NR-1,NR-1,CZERO,CZERO,V(1,2),LDV)
+ CALL ZGESVD( 'S', 'O', NR, NR, V, LDV, S, U, LDU,
+ $ V, LDV, CWORK(N+NR+1), LCWORK-N-NR, RWORK, INFO )
+ CALL ZLASET('A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV)
+ CALL ZLASET('A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV)
+ CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
+ CALL ZUNMLQ('R','N',N,N,NR,U(NR+1,1),LDU,CWORK(N+1),
+ $ V, LDV, CWORK(N+NR+1),LCWORK-N-NR,IERR)
+ CALL ZLAPMT( .FALSE., N, N, V, LDV, IWORK )
+* .. assemble the left singular vector matrix U of dimensions
+* (M x NR) or (M x N) or (M x M).
+ IF ( ( NR .LT. M ) .AND. .NOT.(WNTUF)) THEN
+ CALL ZLASET('A',M-NR,NR,CZERO,CZERO,U(NR+1,1),LDU)
+ IF ( NR .LT. N1 ) THEN
+ CALL ZLASET('A',NR,N1-NR,CZERO,CZERO,U(1,NR+1),LDU)
+ CALL ZLASET( 'A',M-NR,N1-NR,CZERO,CONE,
+ $ U(NR+1,NR+1), LDU )
+ END IF
+ END IF
+ END IF
+ END IF
+* .. end of the "R**H or R" branch
+ END IF
+*
+* The Q matrix from the first QRF is built into the left singular
+* vectors matrix U.
+*
+ IF ( .NOT. WNTUF )
+ $ CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
+ $ LDU, CWORK(N+1), LCWORK-N, IERR )
+ IF ( ROWPRM .AND. .NOT.WNTUF )
+ $ CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(N+1), -1 )
+*
+* ... end of the "full SVD" branch
+ END IF
+*
+* Check whether some singular values are returned as zeros, e.g.
+* due to underflow, and update the numerical rank.
+ p = NR
+ DO 4001 q = p, 1, -1
+ IF ( S(q) .GT. ZERO ) GO TO 4002
+ NR = NR - 1
+ 4001 CONTINUE
+ 4002 CONTINUE
+*
+* .. if numerical rank deficiency is detected, the truncated
+* singular values are set to zero.
+ IF ( NR .LT. N ) CALL DLASET( 'G', N-NR,1, ZERO,ZERO, S(NR+1), N )
+* .. undo scaling; this may cause overflow in the largest singular
+* values.
+ IF ( ASCALED )
+ $ CALL DLASCL( 'G',0,0, ONE,SQRT(DBLE(M)), NR,1, S, N, IERR )
+ IF ( CONDA ) RWORK(1) = SCONDA
+ RWORK(2) = p - NR
+* .. p-NR is the number of singular values that are computed as
+* exact zeros in ZGESVD() applied to the (possibly truncated)
+* full row rank triangular (trapezoidal) factor of A.
+ NUMRANK = NR
+*
+ RETURN
+*
+* End of ZGESVDQ
+*
+ END
diff --git a/lapack-netlib/SRC/zgesvdx.f b/lapack-netlib/SRC/zgesvdx.f
index 56b5cd4f2..12b20c0ba 100644
--- a/lapack-netlib/SRC/zgesvdx.f
+++ b/lapack-netlib/SRC/zgesvdx.f
@@ -18,7 +18,7 @@
* Definition:
* ===========
*
-* SUBROUTINE CGESVDX( JOBU, JOBVT, RANGE, M, N, A, LDA, VL, VU,
+* SUBROUTINE ZGESVDX( JOBU, JOBVT, RANGE, M, N, A, LDA, VL, VU,
* $ IL, IU, NS, S, U, LDU, VT, LDVT, WORK,
* $ LWORK, RWORK, IWORK, INFO )
*
diff --git a/lapack-netlib/SRC/zgesvj.f b/lapack-netlib/SRC/zgesvj.f
index fd32f92d8..7c25a3495 100644
--- a/lapack-netlib/SRC/zgesvj.f
+++ b/lapack-netlib/SRC/zgesvj.f
@@ -89,12 +89,12 @@
*> Specifies whether to compute the right singular vectors, that
*> is, the matrix V:
*> = 'V' or 'J': the matrix V is computed and returned in the array V
-*> = 'A' : the Jacobi rotations are applied to the MV-by-N
+*> = 'A': the Jacobi rotations are applied to the MV-by-N
*> array V. In other words, the right singular vector
*> matrix V is not computed explicitly; instead it is
*> applied to an MV-by-N matrix initially stored in the
*> first MV rows of V.
-*> = 'N' : the matrix V is not computed and the array V is not
+*> = 'N': the matrix V is not computed and the array V is not
*> referenced
*> \endverbatim
*>
@@ -116,8 +116,8 @@
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the M-by-N matrix A.
*> On exit,
-*> If JOBU .EQ. 'U' .OR. JOBU .EQ. 'C':
-*> If INFO .EQ. 0 :
+*> If JOBU = 'U' .OR. JOBU = 'C':
+*> If INFO = 0 :
*> RANKA orthonormal columns of U are returned in the
*> leading RANKA columns of the array A. Here RANKA <= N
*> is the number of computed singular values of A that are
@@ -127,9 +127,9 @@
*> in the array RWORK as RANKA=NINT(RWORK(2)). Also see the
*> descriptions of SVA and RWORK. The computed columns of U
*> are mutually numerically orthogonal up to approximately
-*> TOL=SQRT(M)*EPS (default); or TOL=CTOL*EPS (JOBU.EQ.'C'),
+*> TOL=SQRT(M)*EPS (default); or TOL=CTOL*EPS (JOBU = 'C'),
*> see the description of JOBU.
-*> If INFO .GT. 0,
+*> If INFO > 0,
*> the procedure ZGESVJ did not converge in the given number
*> of iterations (sweeps). In that case, the computed
*> columns of U may not be orthogonal up to TOL. The output
@@ -137,8 +137,8 @@
*> values in SVA(1:N)) and V is still a decomposition of the
*> input matrix A in the sense that the residual
*> || A - SCALE * U * SIGMA * V^* ||_2 / ||A||_2 is small.
-*> If JOBU .EQ. 'N':
-*> If INFO .EQ. 0 :
+*> If JOBU = 'N':
+*> If INFO = 0 :
*> Note that the left singular vectors are 'for free' in the
*> one-sided Jacobi SVD algorithm. However, if only the
*> singular values are needed, the level of numerical
@@ -147,7 +147,7 @@
*> numerically orthogonal up to approximately M*EPS. Thus,
*> on exit, A contains the columns of U scaled with the
*> corresponding singular values.
-*> If INFO .GT. 0 :
+*> If INFO > 0:
*> the procedure ZGESVJ did not converge in the given number
*> of iterations (sweeps).
*> \endverbatim
@@ -162,9 +162,9 @@
*> \verbatim
*> SVA is DOUBLE PRECISION array, dimension (N)
*> On exit,
-*> If INFO .EQ. 0 :
+*> If INFO = 0 :
*> depending on the value SCALE = RWORK(1), we have:
-*> If SCALE .EQ. ONE:
+*> If SCALE = ONE:
*> SVA(1:N) contains the computed singular values of A.
*> During the computation SVA contains the Euclidean column
*> norms of the iterated matrices in the array A.
@@ -173,7 +173,7 @@
*> factored representation is due to the fact that some of the
*> singular values of A might underflow or overflow.
*>
-*> If INFO .GT. 0 :
+*> If INFO > 0:
*> the procedure ZGESVJ did not converge in the given number of
*> iterations (sweeps) and SCALE*SVA(1:N) may not be accurate.
*> \endverbatim
@@ -181,7 +181,7 @@
*> \param[in] MV
*> \verbatim
*> MV is INTEGER
-*> If JOBV .EQ. 'A', then the product of Jacobi rotations in ZGESVJ
+*> If JOBV = 'A', then the product of Jacobi rotations in ZGESVJ
*> is applied to the first MV rows of V. See the description of JOBV.
*> \endverbatim
*>
@@ -199,16 +199,16 @@
*> \param[in] LDV
*> \verbatim
*> LDV is INTEGER
-*> The leading dimension of the array V, LDV .GE. 1.
-*> If JOBV .EQ. 'V', then LDV .GE. max(1,N).
-*> If JOBV .EQ. 'A', then LDV .GE. max(1,MV) .
+*> The leading dimension of the array V, LDV >= 1.
+*> If JOBV = 'V', then LDV >= max(1,N).
+*> If JOBV = 'A', then LDV >= max(1,MV) .
*> \endverbatim
*>
*> \param[in,out] CWORK
*> \verbatim
*> CWORK is COMPLEX*16 array, dimension (max(1,LWORK))
*> Used as workspace.
-*> If on entry LWORK .EQ. -1, then a workspace query is assumed and
+*> If on entry LWORK = -1, then a workspace query is assumed and
*> no computation is done; CWORK(1) is set to the minial (and optimal)
*> length of CWORK.
*> \endverbatim
@@ -223,7 +223,7 @@
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (max(6,LRWORK))
*> On entry,
-*> If JOBU .EQ. 'C' :
+*> If JOBU = 'C' :
*> RWORK(1) = CTOL, where CTOL defines the threshold for convergence.
*> The process stops if all columns of A are mutually
*> orthogonal up to CTOL*EPS, EPS=DLAMCH('E').
@@ -243,11 +243,11 @@
*> RWORK(5) = max_{i.NE.j} |COS(A(:,i),A(:,j))| in the last sweep.
*> This is useful information in cases when ZGESVJ did
*> not converge, as it can be used to estimate whether
-*> the output is stil useful and for post festum analysis.
+*> the output is still useful and for post festum analysis.
*> RWORK(6) = the largest absolute value over all sines of the
*> Jacobi rotation angles in the last sweep. It can be
*> useful for a post festum analysis.
-*> If on entry LRWORK .EQ. -1, then a workspace query is assumed and
+*> If on entry LRWORK = -1, then a workspace query is assumed and
*> no computation is done; RWORK(1) is set to the minial (and optimal)
*> length of RWORK.
*> \endverbatim
@@ -261,9 +261,9 @@
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
-*> = 0 : successful exit.
-*> < 0 : if INFO = -i, then the i-th argument had an illegal value
-*> > 0 : ZGESVJ did not converge in the maximal allowed number
+*> = 0: successful exit.
+*> < 0: if INFO = -i, then the i-th argument had an illegal value
+*> > 0: ZGESVJ did not converge in the maximal allowed number
*> (NSWEEP=30) of sweeps. The output may still be useful.
*> See the description of RWORK.
*> \endverbatim
diff --git a/lapack-netlib/SRC/zgesvxx.f b/lapack-netlib/SRC/zgesvxx.f
index c3727b70e..60bb71cd3 100644
--- a/lapack-netlib/SRC/zgesvxx.f
+++ b/lapack-netlib/SRC/zgesvxx.f
@@ -411,7 +411,7 @@
*> information as described below. There currently are up to three
*> pieces of information returned for each right-hand side. If
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
-*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
+*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
@@ -447,14 +447,14 @@
*> \param[in] NPARAMS
*> \verbatim
*> NPARAMS is INTEGER
-*> Specifies the number of parameters set in PARAMS. If .LE. 0, the
+*> Specifies the number of parameters set in PARAMS. If <= 0, the
*> PARAMS array is never referenced and default values are used.
*> \endverbatim
*>
*> \param[in,out] PARAMS
*> \verbatim
*> PARAMS is DOUBLE PRECISION array, dimension NPARAMS
-*> Specifies algorithm parameters. If an entry is .LT. 0.0, then
+*> Specifies algorithm parameters. If an entry is < 0.0, then
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
@@ -462,9 +462,9 @@
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
-*> = 0.0 : No refinement is performed, and no error bounds are
+*> = 0.0: No refinement is performed, and no error bounds are
*> computed.
-*> = 1.0 : Use the extra-precise refinement algorithm.
+*> = 1.0: Use the extra-precise refinement algorithm.
*> (other values are reserved for future use)
*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
diff --git a/lapack-netlib/SRC/zgetsls.f b/lapack-netlib/SRC/zgetsls.f
index 5ce11efef..1aab3c662 100644
--- a/lapack-netlib/SRC/zgetsls.f
+++ b/lapack-netlib/SRC/zgetsls.f
@@ -1,3 +1,5 @@
+*> \brief \b ZGETSLS
+*
* Definition:
* ===========
*
diff --git a/lapack-netlib/SRC/zggesx.f b/lapack-netlib/SRC/zggesx.f
index 661523465..c546e61f1 100644
--- a/lapack-netlib/SRC/zggesx.f
+++ b/lapack-netlib/SRC/zggesx.f
@@ -120,10 +120,10 @@
*> \verbatim
*> SENSE is CHARACTER*1
*> Determines which reciprocal condition numbers are computed.
-*> = 'N' : None are computed;
-*> = 'E' : Computed for average of selected eigenvalues only;
-*> = 'V' : Computed for selected deflating subspaces only;
-*> = 'B' : Computed for both.
+*> = 'N': None are computed;
+*> = 'E': Computed for average of selected eigenvalues only;
+*> = 'V': Computed for selected deflating subspaces only;
+*> = 'B': Computed for both.
*> If SENSE = 'E', 'V', or 'B', SORT must equal 'S'.
*> \endverbatim
*>
diff --git a/lapack-netlib/SRC/zgsvj0.f b/lapack-netlib/SRC/zgsvj0.f
index c4a6bd38a..ab7e31725 100644
--- a/lapack-netlib/SRC/zgsvj0.f
+++ b/lapack-netlib/SRC/zgsvj0.f
@@ -117,7 +117,7 @@
*> \param[in] MV
*> \verbatim
*> MV is INTEGER
-*> If JOBV .EQ. 'A', then MV rows of V are post-multipled by a
+*> If JOBV = 'A', then MV rows of V are post-multipled by a
*> sequence of Jacobi rotations.
*> If JOBV = 'N', then MV is not referenced.
*> \endverbatim
@@ -125,9 +125,9 @@
*> \param[in,out] V
*> \verbatim
*> V is COMPLEX*16 array, dimension (LDV,N)
-*> If JOBV .EQ. 'V' then N rows of V are post-multipled by a
+*> If JOBV = 'V' then N rows of V are post-multipled by a
*> sequence of Jacobi rotations.
-*> If JOBV .EQ. 'A' then MV rows of V are post-multipled by a
+*> If JOBV = 'A' then MV rows of V are post-multipled by a
*> sequence of Jacobi rotations.
*> If JOBV = 'N', then V is not referenced.
*> \endverbatim
@@ -136,8 +136,8 @@
*> \verbatim
*> LDV is INTEGER
*> The leading dimension of the array V, LDV >= 1.
-*> If JOBV = 'V', LDV .GE. N.
-*> If JOBV = 'A', LDV .GE. MV.
+*> If JOBV = 'V', LDV >= N.
+*> If JOBV = 'A', LDV >= MV.
*> \endverbatim
*>
*> \param[in] EPS
@@ -157,7 +157,7 @@
*> TOL is DOUBLE PRECISION
*> TOL is the threshold for Jacobi rotations. For a pair
*> A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
-*> applied only if ABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.
+*> applied only if ABS(COS(angle(A(:,p),A(:,q)))) > TOL.
*> \endverbatim
*>
*> \param[in] NSWEEP
@@ -175,14 +175,14 @@
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
-*> LWORK is the dimension of WORK. LWORK .GE. M.
+*> LWORK is the dimension of WORK. LWORK >= M.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
-*> = 0 : successful exit.
-*> < 0 : if INFO = -i, then the i-th argument had an illegal value
+*> = 0: successful exit.
+*> < 0: if INFO = -i, then the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
diff --git a/lapack-netlib/SRC/zgsvj1.f b/lapack-netlib/SRC/zgsvj1.f
index 91e39ca8a..f0a23034b 100644
--- a/lapack-netlib/SRC/zgsvj1.f
+++ b/lapack-netlib/SRC/zgsvj1.f
@@ -61,7 +61,7 @@
*> In terms of the columns of A, the first N1 columns are rotated 'against'
*> the remaining N-N1 columns, trying to increase the angle between the
*> corresponding subspaces. The off-diagonal block is N1-by(N-N1) and it is
-*> tiled using quadratic tiles of side KBL. Here, KBL is a tunning parmeter.
+*> tiled using quadratic tiles of side KBL. Here, KBL is a tunning parameter.
*> The number of sweeps is given in NSWEEP and the orthogonality threshold
*> is given in TOL.
*> \endverbatim
@@ -147,7 +147,7 @@
*> \param[in] MV
*> \verbatim
*> MV is INTEGER
-*> If JOBV .EQ. 'A', then MV rows of V are post-multipled by a
+*> If JOBV = 'A', then MV rows of V are post-multipled by a
*> sequence of Jacobi rotations.
*> If JOBV = 'N', then MV is not referenced.
*> \endverbatim
@@ -155,9 +155,9 @@
*> \param[in,out] V
*> \verbatim
*> V is COMPLEX*16 array, dimension (LDV,N)
-*> If JOBV .EQ. 'V' then N rows of V are post-multipled by a
+*> If JOBV = 'V' then N rows of V are post-multipled by a
*> sequence of Jacobi rotations.
-*> If JOBV .EQ. 'A' then MV rows of V are post-multipled by a
+*> If JOBV = 'A' then MV rows of V are post-multipled by a
*> sequence of Jacobi rotations.
*> If JOBV = 'N', then V is not referenced.
*> \endverbatim
@@ -166,8 +166,8 @@
*> \verbatim
*> LDV is INTEGER
*> The leading dimension of the array V, LDV >= 1.
-*> If JOBV = 'V', LDV .GE. N.
-*> If JOBV = 'A', LDV .GE. MV.
+*> If JOBV = 'V', LDV >= N.
+*> If JOBV = 'A', LDV >= MV.
*> \endverbatim
*>
*> \param[in] EPS
@@ -187,7 +187,7 @@
*> TOL is DOUBLE PRECISION
*> TOL is the threshold for Jacobi rotations. For a pair
*> A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
-*> applied only if ABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.
+*> applied only if ABS(COS(angle(A(:,p),A(:,q)))) > TOL.
*> \endverbatim
*>
*> \param[in] NSWEEP
@@ -205,14 +205,14 @@
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
-*> LWORK is the dimension of WORK. LWORK .GE. M.
+*> LWORK is the dimension of WORK. LWORK >= M.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
-*> = 0 : successful exit.
-*> < 0 : if INFO = -i, then the i-th argument had an illegal value
+*> = 0: successful exit.
+*> < 0: if INFO = -i, then the i-th argument had an illegal value
*> \endverbatim
*
* Authors: