Merge pull request #4294 from martin-frbg/lapack909
Fix accumulation in LAPACK ?LASSQ (Reference-LAPACK PR 909)
This commit is contained in:
commit
fea1d4f66c
|
@ -34,28 +34,15 @@
|
|||
!>
|
||||
!> \verbatim
|
||||
!>
|
||||
!> CLASSQ returns the values scl and smsq such that
|
||||
!> CLASSQ returns the values scale_out and sumsq_out such that
|
||||
!>
|
||||
!> ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,
|
||||
!> (scale_out**2)*sumsq_out = x( 1 )**2 +...+ x( n )**2 + (scale**2)*sumsq,
|
||||
!>
|
||||
!> where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is
|
||||
!> where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is
|
||||
!> assumed to be non-negative.
|
||||
!>
|
||||
!> scale and sumsq must be supplied in SCALE and SUMSQ and
|
||||
!> scl and smsq are overwritten on SCALE and SUMSQ respectively.
|
||||
!>
|
||||
!> If scale * sqrt( sumsq ) > tbig then
|
||||
!> we require: scale >= sqrt( TINY*EPS ) / sbig on entry,
|
||||
!> and if 0 < scale * sqrt( sumsq ) < tsml then
|
||||
!> we require: scale <= sqrt( HUGE ) / ssml on entry,
|
||||
!> where
|
||||
!> tbig -- upper threshold for values whose square is representable;
|
||||
!> sbig -- scaling constant for big numbers; \see la_constants.f90
|
||||
!> tsml -- lower threshold for values whose square is representable;
|
||||
!> ssml -- scaling constant for small numbers; \see la_constants.f90
|
||||
!> and
|
||||
!> TINY*EPS -- tiniest representable number;
|
||||
!> HUGE -- biggest representable number.
|
||||
!> scale_out and sumsq_out are overwritten on SCALE and SUMSQ respectively.
|
||||
!>
|
||||
!> \endverbatim
|
||||
!
|
||||
|
@ -72,7 +59,7 @@
|
|||
!> \verbatim
|
||||
!> X is COMPLEX array, dimension (1+(N-1)*abs(INCX))
|
||||
!> The vector for which a scaled sum of squares is computed.
|
||||
!> x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
|
||||
!> x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
|
||||
!> \endverbatim
|
||||
!>
|
||||
!> \param[in] INCX
|
||||
|
@ -82,24 +69,24 @@
|
|||
!> If INCX > 0, X(1+(i-1)*INCX) = x(i) for 1 <= i <= n
|
||||
!> If INCX < 0, X(1-(n-i)*INCX) = x(i) for 1 <= i <= n
|
||||
!> If INCX = 0, x isn't a vector so there is no need to call
|
||||
!> this subroutine. If you call it anyway, it will count x(1)
|
||||
!> this subroutine. If you call it anyway, it will count x(1)
|
||||
!> in the vector norm N times.
|
||||
!> \endverbatim
|
||||
!>
|
||||
!> \param[in,out] SCALE
|
||||
!> \verbatim
|
||||
!> SCALE is REAL
|
||||
!> On entry, the value scale in the equation above.
|
||||
!> On exit, SCALE is overwritten with scl , the scaling factor
|
||||
!> On entry, the value scale in the equation above.
|
||||
!> On exit, SCALE is overwritten by scale_out, the scaling factor
|
||||
!> for the sum of squares.
|
||||
!> \endverbatim
|
||||
!>
|
||||
!> \param[in,out] SUMSQ
|
||||
!> \verbatim
|
||||
!> SUMSQ is REAL
|
||||
!> On entry, the value sumsq in the equation above.
|
||||
!> On exit, SUMSQ is overwritten with smsq , the basic sum of
|
||||
!> squares from which scl has been factored out.
|
||||
!> On entry, the value sumsq in the equation above.
|
||||
!> On exit, SUMSQ is overwritten by sumsq_out, the basic sum of
|
||||
!> squares from which scale_out has been factored out.
|
||||
!> \endverbatim
|
||||
!
|
||||
! Authors:
|
||||
|
@ -130,10 +117,10 @@
|
|||
!>
|
||||
!> \endverbatim
|
||||
!
|
||||
!> \ingroup OTHERauxiliary
|
||||
!> \ingroup lassq
|
||||
!
|
||||
! =====================================================================
|
||||
subroutine CLASSQ( n, x, incx, scl, sumsq )
|
||||
subroutine CLASSQ( n, x, incx, scale, sumsq )
|
||||
use LA_CONSTANTS, &
|
||||
only: wp=>sp, zero=>szero, one=>sone, &
|
||||
sbig=>ssbig, ssml=>sssml, tbig=>stbig, tsml=>stsml
|
||||
|
@ -145,7 +132,7 @@ subroutine CLASSQ( n, x, incx, scl, sumsq )
|
|||
!
|
||||
! .. Scalar Arguments ..
|
||||
integer :: incx, n
|
||||
real(wp) :: scl, sumsq
|
||||
real(wp) :: scale, sumsq
|
||||
! ..
|
||||
! .. Array Arguments ..
|
||||
complex(wp) :: x(*)
|
||||
|
@ -158,10 +145,10 @@ subroutine CLASSQ( n, x, incx, scl, sumsq )
|
|||
!
|
||||
! Quick return if possible
|
||||
!
|
||||
if( LA_ISNAN(scl) .or. LA_ISNAN(sumsq) ) return
|
||||
if( sumsq == zero ) scl = one
|
||||
if( scl == zero ) then
|
||||
scl = one
|
||||
if( LA_ISNAN(scale) .or. LA_ISNAN(sumsq) ) return
|
||||
if( sumsq == zero ) scale = one
|
||||
if( scale == zero ) then
|
||||
scale = one
|
||||
sumsq = zero
|
||||
end if
|
||||
if (n <= 0) then
|
||||
|
@ -207,15 +194,27 @@ subroutine CLASSQ( n, x, incx, scl, sumsq )
|
|||
! Put the existing sum of squares into one of the accumulators
|
||||
!
|
||||
if( sumsq > zero ) then
|
||||
ax = scl*sqrt( sumsq )
|
||||
ax = scale*sqrt( sumsq )
|
||||
if (ax > tbig) then
|
||||
! We assume scl >= sqrt( TINY*EPS ) / sbig
|
||||
abig = abig + (scl*sbig)**2 * sumsq
|
||||
if (scale > one) then
|
||||
scale = scale * sbig
|
||||
abig = abig + scale * (scale * sumsq)
|
||||
else
|
||||
! sumsq > tbig^2 => (sbig * (sbig * sumsq)) is representable
|
||||
abig = abig + scale * (scale * (sbig * (sbig * sumsq)))
|
||||
end if
|
||||
else if (ax < tsml) then
|
||||
! We assume scl <= sqrt( HUGE ) / ssml
|
||||
if (notbig) asml = asml + (scl*ssml)**2 * sumsq
|
||||
if (notbig) then
|
||||
if (scale < one) then
|
||||
scale = scale * ssml
|
||||
asml = asml + scale * (scale * sumsq)
|
||||
else
|
||||
! sumsq < tsml^2 => (ssml * (ssml * sumsq)) is representable
|
||||
asml = asml + scale * (scale * (ssml * (ssml * sumsq)))
|
||||
end if
|
||||
end if
|
||||
else
|
||||
amed = amed + scl**2 * sumsq
|
||||
amed = amed + scale * (scale * sumsq)
|
||||
end if
|
||||
end if
|
||||
!
|
||||
|
@ -229,7 +228,7 @@ subroutine CLASSQ( n, x, incx, scl, sumsq )
|
|||
if (amed > zero .or. LA_ISNAN(amed)) then
|
||||
abig = abig + (amed*sbig)*sbig
|
||||
end if
|
||||
scl = one / sbig
|
||||
scale = one / sbig
|
||||
sumsq = abig
|
||||
else if (asml > zero) then
|
||||
!
|
||||
|
@ -245,17 +244,17 @@ subroutine CLASSQ( n, x, incx, scl, sumsq )
|
|||
ymin = asml
|
||||
ymax = amed
|
||||
end if
|
||||
scl = one
|
||||
scale = one
|
||||
sumsq = ymax**2*( one + (ymin/ymax)**2 )
|
||||
else
|
||||
scl = one / ssml
|
||||
scale = one / ssml
|
||||
sumsq = asml
|
||||
end if
|
||||
else
|
||||
!
|
||||
! Otherwise all values are mid-range or zero
|
||||
!
|
||||
scl = one
|
||||
scale = one
|
||||
sumsq = amed
|
||||
end if
|
||||
return
|
||||
|
|
|
@ -34,28 +34,15 @@
|
|||
!>
|
||||
!> \verbatim
|
||||
!>
|
||||
!> DLASSQ returns the values scl and smsq such that
|
||||
!> DLASSQ returns the values scale_out and sumsq_out such that
|
||||
!>
|
||||
!> ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,
|
||||
!> (scale_out**2)*sumsq_out = x( 1 )**2 +...+ x( n )**2 + (scale**2)*sumsq,
|
||||
!>
|
||||
!> where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is
|
||||
!> where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is
|
||||
!> assumed to be non-negative.
|
||||
!>
|
||||
!> scale and sumsq must be supplied in SCALE and SUMSQ and
|
||||
!> scl and smsq are overwritten on SCALE and SUMSQ respectively.
|
||||
!>
|
||||
!> If scale * sqrt( sumsq ) > tbig then
|
||||
!> we require: scale >= sqrt( TINY*EPS ) / sbig on entry,
|
||||
!> and if 0 < scale * sqrt( sumsq ) < tsml then
|
||||
!> we require: scale <= sqrt( HUGE ) / ssml on entry,
|
||||
!> where
|
||||
!> tbig -- upper threshold for values whose square is representable;
|
||||
!> sbig -- scaling constant for big numbers; \see la_constants.f90
|
||||
!> tsml -- lower threshold for values whose square is representable;
|
||||
!> ssml -- scaling constant for small numbers; \see la_constants.f90
|
||||
!> and
|
||||
!> TINY*EPS -- tiniest representable number;
|
||||
!> HUGE -- biggest representable number.
|
||||
!> scale_out and sumsq_out are overwritten on SCALE and SUMSQ respectively.
|
||||
!>
|
||||
!> \endverbatim
|
||||
!
|
||||
|
@ -72,7 +59,7 @@
|
|||
!> \verbatim
|
||||
!> X is DOUBLE PRECISION array, dimension (1+(N-1)*abs(INCX))
|
||||
!> The vector for which a scaled sum of squares is computed.
|
||||
!> x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
|
||||
!> x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
|
||||
!> \endverbatim
|
||||
!>
|
||||
!> \param[in] INCX
|
||||
|
@ -82,24 +69,24 @@
|
|||
!> If INCX > 0, X(1+(i-1)*INCX) = x(i) for 1 <= i <= n
|
||||
!> If INCX < 0, X(1-(n-i)*INCX) = x(i) for 1 <= i <= n
|
||||
!> If INCX = 0, x isn't a vector so there is no need to call
|
||||
!> this subroutine. If you call it anyway, it will count x(1)
|
||||
!> this subroutine. If you call it anyway, it will count x(1)
|
||||
!> in the vector norm N times.
|
||||
!> \endverbatim
|
||||
!>
|
||||
!> \param[in,out] SCALE
|
||||
!> \verbatim
|
||||
!> SCALE is DOUBLE PRECISION
|
||||
!> On entry, the value scale in the equation above.
|
||||
!> On exit, SCALE is overwritten with scl , the scaling factor
|
||||
!> On entry, the value scale in the equation above.
|
||||
!> On exit, SCALE is overwritten by scale_out, the scaling factor
|
||||
!> for the sum of squares.
|
||||
!> \endverbatim
|
||||
!>
|
||||
!> \param[in,out] SUMSQ
|
||||
!> \verbatim
|
||||
!> SUMSQ is DOUBLE PRECISION
|
||||
!> On entry, the value sumsq in the equation above.
|
||||
!> On exit, SUMSQ is overwritten with smsq , the basic sum of
|
||||
!> squares from which scl has been factored out.
|
||||
!> On entry, the value sumsq in the equation above.
|
||||
!> On exit, SUMSQ is overwritten by sumsq_out, the basic sum of
|
||||
!> squares from which scale_out has been factored out.
|
||||
!> \endverbatim
|
||||
!
|
||||
! Authors:
|
||||
|
@ -130,10 +117,10 @@
|
|||
!>
|
||||
!> \endverbatim
|
||||
!
|
||||
!> \ingroup OTHERauxiliary
|
||||
!> \ingroup lassq
|
||||
!
|
||||
! =====================================================================
|
||||
subroutine DLASSQ( n, x, incx, scl, sumsq )
|
||||
subroutine DLASSQ( n, x, incx, scale, sumsq )
|
||||
use LA_CONSTANTS, &
|
||||
only: wp=>dp, zero=>dzero, one=>done, &
|
||||
sbig=>dsbig, ssml=>dssml, tbig=>dtbig, tsml=>dtsml
|
||||
|
@ -145,7 +132,7 @@ subroutine DLASSQ( n, x, incx, scl, sumsq )
|
|||
!
|
||||
! .. Scalar Arguments ..
|
||||
integer :: incx, n
|
||||
real(wp) :: scl, sumsq
|
||||
real(wp) :: scale, sumsq
|
||||
! ..
|
||||
! .. Array Arguments ..
|
||||
real(wp) :: x(*)
|
||||
|
@ -158,10 +145,10 @@ subroutine DLASSQ( n, x, incx, scl, sumsq )
|
|||
!
|
||||
! Quick return if possible
|
||||
!
|
||||
if( LA_ISNAN(scl) .or. LA_ISNAN(sumsq) ) return
|
||||
if( sumsq == zero ) scl = one
|
||||
if( scl == zero ) then
|
||||
scl = one
|
||||
if( LA_ISNAN(scale) .or. LA_ISNAN(sumsq) ) return
|
||||
if( sumsq == zero ) scale = one
|
||||
if( scale == zero ) then
|
||||
scale = one
|
||||
sumsq = zero
|
||||
end if
|
||||
if (n <= 0) then
|
||||
|
@ -198,15 +185,27 @@ subroutine DLASSQ( n, x, incx, scl, sumsq )
|
|||
! Put the existing sum of squares into one of the accumulators
|
||||
!
|
||||
if( sumsq > zero ) then
|
||||
ax = scl*sqrt( sumsq )
|
||||
ax = scale*sqrt( sumsq )
|
||||
if (ax > tbig) then
|
||||
! We assume scl >= sqrt( TINY*EPS ) / sbig
|
||||
abig = abig + (scl*sbig)**2 * sumsq
|
||||
if (scale > one) then
|
||||
scale = scale * sbig
|
||||
abig = abig + scale * (scale * sumsq)
|
||||
else
|
||||
! sumsq > tbig^2 => (sbig * (sbig * sumsq)) is representable
|
||||
abig = abig + scale * (scale * (sbig * (sbig * sumsq)))
|
||||
end if
|
||||
else if (ax < tsml) then
|
||||
! We assume scl <= sqrt( HUGE ) / ssml
|
||||
if (notbig) asml = asml + (scl*ssml)**2 * sumsq
|
||||
if (notbig) then
|
||||
if (scale < one) then
|
||||
scale = scale * ssml
|
||||
asml = asml + scale * (scale * sumsq)
|
||||
else
|
||||
! sumsq < tsml^2 => (ssml * (ssml * sumsq)) is representable
|
||||
asml = asml + scale * (scale * (ssml * (ssml * sumsq)))
|
||||
end if
|
||||
end if
|
||||
else
|
||||
amed = amed + scl**2 * sumsq
|
||||
amed = amed + scale * (scale * sumsq)
|
||||
end if
|
||||
end if
|
||||
!
|
||||
|
@ -220,7 +219,7 @@ subroutine DLASSQ( n, x, incx, scl, sumsq )
|
|||
if (amed > zero .or. LA_ISNAN(amed)) then
|
||||
abig = abig + (amed*sbig)*sbig
|
||||
end if
|
||||
scl = one / sbig
|
||||
scale = one / sbig
|
||||
sumsq = abig
|
||||
else if (asml > zero) then
|
||||
!
|
||||
|
@ -236,17 +235,17 @@ subroutine DLASSQ( n, x, incx, scl, sumsq )
|
|||
ymin = asml
|
||||
ymax = amed
|
||||
end if
|
||||
scl = one
|
||||
scale = one
|
||||
sumsq = ymax**2*( one + (ymin/ymax)**2 )
|
||||
else
|
||||
scl = one / ssml
|
||||
scale = one / ssml
|
||||
sumsq = asml
|
||||
end if
|
||||
else
|
||||
!
|
||||
! Otherwise all values are mid-range or zero
|
||||
!
|
||||
scl = one
|
||||
scale = one
|
||||
sumsq = amed
|
||||
end if
|
||||
return
|
||||
|
|
|
@ -34,28 +34,15 @@
|
|||
!>
|
||||
!> \verbatim
|
||||
!>
|
||||
!> SLASSQ returns the values scl and smsq such that
|
||||
!> SLASSQ returns the values scale_out and sumsq_out such that
|
||||
!>
|
||||
!> ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,
|
||||
!> (scale_out**2)*sumsq_out = x( 1 )**2 +...+ x( n )**2 + (scale**2)*sumsq,
|
||||
!>
|
||||
!> where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is
|
||||
!> where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is
|
||||
!> assumed to be non-negative.
|
||||
!>
|
||||
!> scale and sumsq must be supplied in SCALE and SUMSQ and
|
||||
!> scl and smsq are overwritten on SCALE and SUMSQ respectively.
|
||||
!>
|
||||
!> If scale * sqrt( sumsq ) > tbig then
|
||||
!> we require: scale >= sqrt( TINY*EPS ) / sbig on entry,
|
||||
!> and if 0 < scale * sqrt( sumsq ) < tsml then
|
||||
!> we require: scale <= sqrt( HUGE ) / ssml on entry,
|
||||
!> where
|
||||
!> tbig -- upper threshold for values whose square is representable;
|
||||
!> sbig -- scaling constant for big numbers; \see la_constants.f90
|
||||
!> tsml -- lower threshold for values whose square is representable;
|
||||
!> ssml -- scaling constant for small numbers; \see la_constants.f90
|
||||
!> and
|
||||
!> TINY*EPS -- tiniest representable number;
|
||||
!> HUGE -- biggest representable number.
|
||||
!> scale_out and sumsq_out are overwritten on SCALE and SUMSQ respectively.
|
||||
!>
|
||||
!> \endverbatim
|
||||
!
|
||||
|
@ -72,7 +59,7 @@
|
|||
!> \verbatim
|
||||
!> X is REAL array, dimension (1+(N-1)*abs(INCX))
|
||||
!> The vector for which a scaled sum of squares is computed.
|
||||
!> x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
|
||||
!> x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
|
||||
!> \endverbatim
|
||||
!>
|
||||
!> \param[in] INCX
|
||||
|
@ -82,24 +69,24 @@
|
|||
!> If INCX > 0, X(1+(i-1)*INCX) = x(i) for 1 <= i <= n
|
||||
!> If INCX < 0, X(1-(n-i)*INCX) = x(i) for 1 <= i <= n
|
||||
!> If INCX = 0, x isn't a vector so there is no need to call
|
||||
!> this subroutine. If you call it anyway, it will count x(1)
|
||||
!> this subroutine. If you call it anyway, it will count x(1)
|
||||
!> in the vector norm N times.
|
||||
!> \endverbatim
|
||||
!>
|
||||
!> \param[in,out] SCALE
|
||||
!> \verbatim
|
||||
!> SCALE is REAL
|
||||
!> On entry, the value scale in the equation above.
|
||||
!> On exit, SCALE is overwritten with scl , the scaling factor
|
||||
!> On entry, the value scale in the equation above.
|
||||
!> On exit, SCALE is overwritten by scale_out, the scaling factor
|
||||
!> for the sum of squares.
|
||||
!> \endverbatim
|
||||
!>
|
||||
!> \param[in,out] SUMSQ
|
||||
!> \verbatim
|
||||
!> SUMSQ is REAL
|
||||
!> On entry, the value sumsq in the equation above.
|
||||
!> On exit, SUMSQ is overwritten with smsq , the basic sum of
|
||||
!> squares from which scl has been factored out.
|
||||
!> On entry, the value sumsq in the equation above.
|
||||
!> On exit, SUMSQ is overwritten by sumsq_out, the basic sum of
|
||||
!> squares from which scale_out has been factored out.
|
||||
!> \endverbatim
|
||||
!
|
||||
! Authors:
|
||||
|
@ -130,10 +117,10 @@
|
|||
!>
|
||||
!> \endverbatim
|
||||
!
|
||||
!> \ingroup OTHERauxiliary
|
||||
!> \ingroup lassq
|
||||
!
|
||||
! =====================================================================
|
||||
subroutine SLASSQ( n, x, incx, scl, sumsq )
|
||||
subroutine SLASSQ( n, x, incx, scale, sumsq )
|
||||
use LA_CONSTANTS, &
|
||||
only: wp=>sp, zero=>szero, one=>sone, &
|
||||
sbig=>ssbig, ssml=>sssml, tbig=>stbig, tsml=>stsml
|
||||
|
@ -145,7 +132,7 @@ subroutine SLASSQ( n, x, incx, scl, sumsq )
|
|||
!
|
||||
! .. Scalar Arguments ..
|
||||
integer :: incx, n
|
||||
real(wp) :: scl, sumsq
|
||||
real(wp) :: scale, sumsq
|
||||
! ..
|
||||
! .. Array Arguments ..
|
||||
real(wp) :: x(*)
|
||||
|
@ -158,10 +145,10 @@ subroutine SLASSQ( n, x, incx, scl, sumsq )
|
|||
!
|
||||
! Quick return if possible
|
||||
!
|
||||
if( LA_ISNAN(scl) .or. LA_ISNAN(sumsq) ) return
|
||||
if( sumsq == zero ) scl = one
|
||||
if( scl == zero ) then
|
||||
scl = one
|
||||
if( LA_ISNAN(scale) .or. LA_ISNAN(sumsq) ) return
|
||||
if( sumsq == zero ) scale = one
|
||||
if( scale == zero ) then
|
||||
scale = one
|
||||
sumsq = zero
|
||||
end if
|
||||
if (n <= 0) then
|
||||
|
@ -198,15 +185,27 @@ subroutine SLASSQ( n, x, incx, scl, sumsq )
|
|||
! Put the existing sum of squares into one of the accumulators
|
||||
!
|
||||
if( sumsq > zero ) then
|
||||
ax = scl*sqrt( sumsq )
|
||||
ax = scale*sqrt( sumsq )
|
||||
if (ax > tbig) then
|
||||
! We assume scl >= sqrt( TINY*EPS ) / sbig
|
||||
abig = abig + (scl*sbig)**2 * sumsq
|
||||
if (scale > one) then
|
||||
scale = scale * sbig
|
||||
abig = abig + scale * (scale * sumsq)
|
||||
else
|
||||
! sumsq > tbig^2 => (sbig * (sbig * sumsq)) is representable
|
||||
abig = abig + scale * (scale * (sbig * (sbig * sumsq)))
|
||||
end if
|
||||
else if (ax < tsml) then
|
||||
! We assume scl <= sqrt( HUGE ) / ssml
|
||||
if (notbig) asml = asml + (scl*ssml)**2 * sumsq
|
||||
if (notbig) then
|
||||
if (scale < one) then
|
||||
scale = scale * ssml
|
||||
asml = asml + scale * (scale * sumsq)
|
||||
else
|
||||
! sumsq < tsml^2 => (ssml * (ssml * sumsq)) is representable
|
||||
asml = asml + scale * (scale * (ssml * (ssml * sumsq)))
|
||||
end if
|
||||
end if
|
||||
else
|
||||
amed = amed + scl**2 * sumsq
|
||||
amed = amed + scale * (scale * sumsq)
|
||||
end if
|
||||
end if
|
||||
!
|
||||
|
@ -220,7 +219,7 @@ subroutine SLASSQ( n, x, incx, scl, sumsq )
|
|||
if (amed > zero .or. LA_ISNAN(amed)) then
|
||||
abig = abig + (amed*sbig)*sbig
|
||||
end if
|
||||
scl = one / sbig
|
||||
scale = one / sbig
|
||||
sumsq = abig
|
||||
else if (asml > zero) then
|
||||
!
|
||||
|
@ -236,17 +235,17 @@ subroutine SLASSQ( n, x, incx, scl, sumsq )
|
|||
ymin = asml
|
||||
ymax = amed
|
||||
end if
|
||||
scl = one
|
||||
scale = one
|
||||
sumsq = ymax**2*( one + (ymin/ymax)**2 )
|
||||
else
|
||||
scl = one / ssml
|
||||
scale = one / ssml
|
||||
sumsq = asml
|
||||
end if
|
||||
else
|
||||
!
|
||||
! Otherwise all values are mid-range or zero
|
||||
!
|
||||
scl = one
|
||||
scale = one
|
||||
sumsq = amed
|
||||
end if
|
||||
return
|
||||
|
|
|
@ -34,28 +34,15 @@
|
|||
!>
|
||||
!> \verbatim
|
||||
!>
|
||||
!> ZLASSQ returns the values scl and smsq such that
|
||||
!> ZLASSQ returns the values scale_out and sumsq_out such that
|
||||
!>
|
||||
!> ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,
|
||||
!> (scale_out**2)*sumsq_out = x( 1 )**2 +...+ x( n )**2 + (scale**2)*sumsq,
|
||||
!>
|
||||
!> where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is
|
||||
!> where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is
|
||||
!> assumed to be non-negative.
|
||||
!>
|
||||
!> scale and sumsq must be supplied in SCALE and SUMSQ and
|
||||
!> scl and smsq are overwritten on SCALE and SUMSQ respectively.
|
||||
!>
|
||||
!> If scale * sqrt( sumsq ) > tbig then
|
||||
!> we require: scale >= sqrt( TINY*EPS ) / sbig on entry,
|
||||
!> and if 0 < scale * sqrt( sumsq ) < tsml then
|
||||
!> we require: scale <= sqrt( HUGE ) / ssml on entry,
|
||||
!> where
|
||||
!> tbig -- upper threshold for values whose square is representable;
|
||||
!> sbig -- scaling constant for big numbers; \see la_constants.f90
|
||||
!> tsml -- lower threshold for values whose square is representable;
|
||||
!> ssml -- scaling constant for small numbers; \see la_constants.f90
|
||||
!> and
|
||||
!> TINY*EPS -- tiniest representable number;
|
||||
!> HUGE -- biggest representable number.
|
||||
!> scale_out and sumsq_out are overwritten on SCALE and SUMSQ respectively.
|
||||
!>
|
||||
!> \endverbatim
|
||||
!
|
||||
|
@ -72,7 +59,7 @@
|
|||
!> \verbatim
|
||||
!> X is DOUBLE COMPLEX array, dimension (1+(N-1)*abs(INCX))
|
||||
!> The vector for which a scaled sum of squares is computed.
|
||||
!> x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
|
||||
!> x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
|
||||
!> \endverbatim
|
||||
!>
|
||||
!> \param[in] INCX
|
||||
|
@ -82,24 +69,24 @@
|
|||
!> If INCX > 0, X(1+(i-1)*INCX) = x(i) for 1 <= i <= n
|
||||
!> If INCX < 0, X(1-(n-i)*INCX) = x(i) for 1 <= i <= n
|
||||
!> If INCX = 0, x isn't a vector so there is no need to call
|
||||
!> this subroutine. If you call it anyway, it will count x(1)
|
||||
!> this subroutine. If you call it anyway, it will count x(1)
|
||||
!> in the vector norm N times.
|
||||
!> \endverbatim
|
||||
!>
|
||||
!> \param[in,out] SCALE
|
||||
!> \verbatim
|
||||
!> SCALE is DOUBLE PRECISION
|
||||
!> On entry, the value scale in the equation above.
|
||||
!> On exit, SCALE is overwritten with scl , the scaling factor
|
||||
!> On entry, the value scale in the equation above.
|
||||
!> On exit, SCALE is overwritten by scale_out, the scaling factor
|
||||
!> for the sum of squares.
|
||||
!> \endverbatim
|
||||
!>
|
||||
!> \param[in,out] SUMSQ
|
||||
!> \verbatim
|
||||
!> SUMSQ is DOUBLE PRECISION
|
||||
!> On entry, the value sumsq in the equation above.
|
||||
!> On exit, SUMSQ is overwritten with smsq , the basic sum of
|
||||
!> squares from which scl has been factored out.
|
||||
!> On entry, the value sumsq in the equation above.
|
||||
!> On exit, SUMSQ is overwritten by sumsq_out, the basic sum of
|
||||
!> squares from which scale_out has been factored out.
|
||||
!> \endverbatim
|
||||
!
|
||||
! Authors:
|
||||
|
@ -130,10 +117,10 @@
|
|||
!>
|
||||
!> \endverbatim
|
||||
!
|
||||
!> \ingroup OTHERauxiliary
|
||||
!> \ingroup lassq
|
||||
!
|
||||
! =====================================================================
|
||||
subroutine ZLASSQ( n, x, incx, scl, sumsq )
|
||||
subroutine ZLASSQ( n, x, incx, scale, sumsq )
|
||||
use LA_CONSTANTS, &
|
||||
only: wp=>dp, zero=>dzero, one=>done, &
|
||||
sbig=>dsbig, ssml=>dssml, tbig=>dtbig, tsml=>dtsml
|
||||
|
@ -145,7 +132,7 @@ subroutine ZLASSQ( n, x, incx, scl, sumsq )
|
|||
!
|
||||
! .. Scalar Arguments ..
|
||||
integer :: incx, n
|
||||
real(wp) :: scl, sumsq
|
||||
real(wp) :: scale, sumsq
|
||||
! ..
|
||||
! .. Array Arguments ..
|
||||
complex(wp) :: x(*)
|
||||
|
@ -158,10 +145,10 @@ subroutine ZLASSQ( n, x, incx, scl, sumsq )
|
|||
!
|
||||
! Quick return if possible
|
||||
!
|
||||
if( LA_ISNAN(scl) .or. LA_ISNAN(sumsq) ) return
|
||||
if( sumsq == zero ) scl = one
|
||||
if( scl == zero ) then
|
||||
scl = one
|
||||
if( LA_ISNAN(scale) .or. LA_ISNAN(sumsq) ) return
|
||||
if( sumsq == zero ) scale = one
|
||||
if( scale == zero ) then
|
||||
scale = one
|
||||
sumsq = zero
|
||||
end if
|
||||
if (n <= 0) then
|
||||
|
@ -207,15 +194,27 @@ subroutine ZLASSQ( n, x, incx, scl, sumsq )
|
|||
! Put the existing sum of squares into one of the accumulators
|
||||
!
|
||||
if( sumsq > zero ) then
|
||||
ax = scl*sqrt( sumsq )
|
||||
ax = scale*sqrt( sumsq )
|
||||
if (ax > tbig) then
|
||||
! We assume scl >= sqrt( TINY*EPS ) / sbig
|
||||
abig = abig + (scl*sbig)**2 * sumsq
|
||||
if (scale > one) then
|
||||
scale = scale * sbig
|
||||
abig = abig + scale * (scale * sumsq)
|
||||
else
|
||||
! sumsq > tbig^2 => (sbig * (sbig * sumsq)) is representable
|
||||
abig = abig + scale * (scale * (sbig * (sbig * sumsq)))
|
||||
end if
|
||||
else if (ax < tsml) then
|
||||
! We assume scl <= sqrt( HUGE ) / ssml
|
||||
if (notbig) asml = asml + (scl*ssml)**2 * sumsq
|
||||
if (notbig) then
|
||||
if (scale < one) then
|
||||
scale = scale * ssml
|
||||
asml = asml + scale * (scale * sumsq)
|
||||
else
|
||||
! sumsq < tsml^2 => (ssml * (ssml * sumsq)) is representable
|
||||
asml = asml + scale * (scale * (ssml * (ssml * sumsq)))
|
||||
end if
|
||||
end if
|
||||
else
|
||||
amed = amed + scl**2 * sumsq
|
||||
amed = amed + scale * (scale * sumsq)
|
||||
end if
|
||||
end if
|
||||
!
|
||||
|
@ -229,7 +228,7 @@ subroutine ZLASSQ( n, x, incx, scl, sumsq )
|
|||
if (amed > zero .or. LA_ISNAN(amed)) then
|
||||
abig = abig + (amed*sbig)*sbig
|
||||
end if
|
||||
scl = one / sbig
|
||||
scale = one / sbig
|
||||
sumsq = abig
|
||||
else if (asml > zero) then
|
||||
!
|
||||
|
@ -245,17 +244,17 @@ subroutine ZLASSQ( n, x, incx, scl, sumsq )
|
|||
ymin = asml
|
||||
ymax = amed
|
||||
end if
|
||||
scl = one
|
||||
scale = one
|
||||
sumsq = ymax**2*( one + (ymin/ymax)**2 )
|
||||
else
|
||||
scl = one / ssml
|
||||
scale = one / ssml
|
||||
sumsq = asml
|
||||
end if
|
||||
else
|
||||
!
|
||||
! Otherwise all values are mid-range or zero
|
||||
!
|
||||
scl = one
|
||||
scale = one
|
||||
sumsq = amed
|
||||
end if
|
||||
return
|
||||
|
|
Loading…
Reference in New Issue