Fix function documentation for LAPACK ?TPRFB (Reference-LAPACK PR665)

This commit is contained in:
Martin Kroeker 2022-11-21 20:01:47 +01:00 committed by GitHub
parent c45edcb537
commit f8f2bebf11
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 46 additions and 46 deletions

View File

@ -1,4 +1,4 @@
*> \brief \b CTPRFB applies a real or complex "triangular-pentagonal" blocked reflector to a real or complex matrix, which is composed of two blocks.
*> \brief \b CTPRFB applies a complex "triangular-pentagonal" block reflector to a complex matrix, which is composed of two blocks.
*
* =========== DOCUMENTATION ===========
*

View File

@ -1,4 +1,4 @@
*> \brief \b DTPRFB applies a real or complex "triangular-pentagonal" blocked reflector to a real or complex matrix, which is composed of two blocks.
*> \brief \b DTPRFB applies a real "triangular-pentagonal" block reflector to a real matrix, which is composed of two blocks.
*
* =========== DOCUMENTATION ===========
*

View File

@ -1,4 +1,4 @@
*> \brief \b STPRFB applies a real or complex "triangular-pentagonal" blocked reflector to a real or complex matrix, which is composed of two blocks.
*> \brief \b STPRFB applies a real "triangular-pentagonal" block reflector to a real matrix, which is composed of two blocks.
*
* =========== DOCUMENTATION ===========
*
@ -37,7 +37,7 @@
*> \verbatim
*>
*> STPRFB applies a real "triangular-pentagonal" block reflector H or its
*> conjugate transpose H^H to a real matrix C, which is composed of two
*> transpose H**T to a real matrix C, which is composed of two
*> blocks A and B, either from the left or right.
*>
*> \endverbatim
@ -48,15 +48,15 @@
*> \param[in] SIDE
*> \verbatim
*> SIDE is CHARACTER*1
*> = 'L': apply H or H^H from the Left
*> = 'R': apply H or H^H from the Right
*> = 'L': apply H or H**T from the Left
*> = 'R': apply H or H**T from the Right
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> = 'N': apply H (No transpose)
*> = 'C': apply H^H (Conjugate transpose)
*> = 'T': apply H**T (Transpose)
*> \endverbatim
*>
*> \param[in] DIRECT
@ -145,7 +145,7 @@
*> (LDA,N) if SIDE = 'L' or (LDA,K) if SIDE = 'R'
*> On entry, the K-by-N or M-by-K matrix A.
*> On exit, A is overwritten by the corresponding block of
*> H*C or H^H*C or C*H or C*H^H. See Further Details.
*> H*C or H**T*C or C*H or C*H**T. See Further Details.
*> \endverbatim
*>
*> \param[in] LDA
@ -161,7 +161,7 @@
*> B is REAL array, dimension (LDB,N)
*> On entry, the M-by-N matrix B.
*> On exit, B is overwritten by the corresponding block of
*> H*C or H^H*C or C*H or C*H^H. See Further Details.
*> H*C or H**T*C or C*H or C*H**T. See Further Details.
*> \endverbatim
*>
*> \param[in] LDB
@ -327,13 +327,13 @@
* Let W = [ I ] (K-by-K)
* [ V ] (M-by-K)
*
* Form H C or H^H C where C = [ A ] (K-by-N)
* [ B ] (M-by-N)
* Form H C or H**T C where C = [ A ] (K-by-N)
* [ B ] (M-by-N)
*
* H = I - W T W^H or H^H = I - W T^H W^H
* H = I - W T W**T or H**T = I - W T**T W**T
*
* A = A - T (A + V^H B) or A = A - T^H (A + V^H B)
* B = B - V T (A + V^H B) or B = B - V T^H (A + V^H B)
* A = A - T (A + V**T B) or A = A - T**T (A + V**T B)
* B = B - V T (A + V**T B) or B = B - V T**T (A + V**T B)
*
* ---------------------------------------------------------------------------
*
@ -388,12 +388,12 @@
* Let W = [ I ] (K-by-K)
* [ V ] (N-by-K)
*
* Form C H or C H^H where C = [ A B ] (A is M-by-K, B is M-by-N)
* Form C H or C H**T where C = [ A B ] (A is M-by-K, B is M-by-N)
*
* H = I - W T W^H or H^H = I - W T^H W^H
* H = I - W T W**T or H**T = I - W T**T W**T
*
* A = A - (A + B V) T or A = A - (A + B V) T^H
* B = B - (A + B V) T V^H or B = B - (A + B V) T^H V^H
* A = A - (A + B V) T or A = A - (A + B V) T**T
* B = B - (A + B V) T V**T or B = B - (A + B V) T**T V**T
*
* ---------------------------------------------------------------------------
*
@ -448,13 +448,13 @@
* Let W = [ V ] (M-by-K)
* [ I ] (K-by-K)
*
* Form H C or H^H C where C = [ B ] (M-by-N)
* [ A ] (K-by-N)
* Form H C or H**T C where C = [ B ] (M-by-N)
* [ A ] (K-by-N)
*
* H = I - W T W^H or H^H = I - W T^H W^H
* H = I - W T W**T or H**T = I - W T**T W**T
*
* A = A - T (A + V^H B) or A = A - T^H (A + V^H B)
* B = B - V T (A + V^H B) or B = B - V T^H (A + V^H B)
* A = A - T (A + V**T B) or A = A - T**T (A + V**T B)
* B = B - V T (A + V**T B) or B = B - V T**T (A + V**T B)
*
* ---------------------------------------------------------------------------
*
@ -510,12 +510,12 @@
* Let W = [ V ] (N-by-K)
* [ I ] (K-by-K)
*
* Form C H or C H^H where C = [ B A ] (B is M-by-N, A is M-by-K)
* Form C H or C H**T where C = [ B A ] (B is M-by-N, A is M-by-K)
*
* H = I - W T W^H or H^H = I - W T^H W^H
* H = I - W T W**T or H**T = I - W T**T W**T
*
* A = A - (A + B V) T or A = A - (A + B V) T^H
* B = B - (A + B V) T V^H or B = B - (A + B V) T^H V^H
* A = A - (A + B V) T or A = A - (A + B V) T**T
* B = B - (A + B V) T V**T or B = B - (A + B V) T**T V**T
*
* ---------------------------------------------------------------------------
*
@ -569,13 +569,13 @@
*
* Let W = [ I V ] ( I is K-by-K, V is K-by-M )
*
* Form H C or H^H C where C = [ A ] (K-by-N)
* [ B ] (M-by-N)
* Form H C or H**T C where C = [ A ] (K-by-N)
* [ B ] (M-by-N)
*
* H = I - W^H T W or H^H = I - W^H T^H W
* H = I - W**T T W or H**T = I - W**T T**T W
*
* A = A - T (A + V B) or A = A - T^H (A + V B)
* B = B - V^H T (A + V B) or B = B - V^H T^H (A + V B)
* A = A - T (A + V B) or A = A - T**T (A + V B)
* B = B - V**T T (A + V B) or B = B - V**T T**T (A + V B)
*
* ---------------------------------------------------------------------------
*
@ -629,12 +629,12 @@
*
* Let W = [ I V ] ( I is K-by-K, V is K-by-N )
*
* Form C H or C H^H where C = [ A B ] (A is M-by-K, B is M-by-N)
* Form C H or C H**T where C = [ A B ] (A is M-by-K, B is M-by-N)
*
* H = I - W^H T W or H^H = I - W^H T^H W
* H = I - W**T T W or H**T = I - W**T T**T W
*
* A = A - (A + B V^H) T or A = A - (A + B V^H) T^H
* B = B - (A + B V^H) T V or B = B - (A + B V^H) T^H V
* A = A - (A + B V**T) T or A = A - (A + B V**T) T**T
* B = B - (A + B V**T) T V or B = B - (A + B V**T) T**T V
*
* ---------------------------------------------------------------------------
*
@ -688,13 +688,13 @@
*
* Let W = [ V I ] ( I is K-by-K, V is K-by-M )
*
* Form H C or H^H C where C = [ B ] (M-by-N)
* [ A ] (K-by-N)
* Form H C or H**T C where C = [ B ] (M-by-N)
* [ A ] (K-by-N)
*
* H = I - W^H T W or H^H = I - W^H T^H W
* H = I - W**T T W or H**T = I - W**T T**T W
*
* A = A - T (A + V B) or A = A - T^H (A + V B)
* B = B - V^H T (A + V B) or B = B - V^H T^H (A + V B)
* A = A - T (A + V B) or A = A - T**T (A + V B)
* B = B - V**T T (A + V B) or B = B - V**T T**T (A + V B)
*
* ---------------------------------------------------------------------------
*
@ -748,12 +748,12 @@
*
* Let W = [ V I ] ( I is K-by-K, V is K-by-N )
*
* Form C H or C H^H where C = [ B A ] (A is M-by-K, B is M-by-N)
* Form C H or C H**T where C = [ B A ] (A is M-by-K, B is M-by-N)
*
* H = I - W^H T W or H^H = I - W^H T^H W
* H = I - W**T T W or H**T = I - W**T T**T W
*
* A = A - (A + B V^H) T or A = A - (A + B V^H) T^H
* B = B - (A + B V^H) T V or B = B - (A + B V^H) T^H V
* A = A - (A + B V**T) T or A = A - (A + B V**T) T**T
* B = B - (A + B V**T) T V or B = B - (A + B V**T) T**T V
*
* ---------------------------------------------------------------------------
*

View File

@ -1,4 +1,4 @@
*> \brief \b ZTPRFB applies a real or complex "triangular-pentagonal" blocked reflector to a real or complex matrix, which is composed of two blocks.
*> \brief \b ZTPRFB applies a complex "triangular-pentagonal" block reflector to a complex matrix, which is composed of two blocks.
*
* =========== DOCUMENTATION ===========
*