vendor the asv setup
This commit is contained in:
parent
141e422933
commit
efae015273
|
@ -0,0 +1 @@
|
|||
Benchmark graphs are at https://ev-br.github.io/ob-bench-asv/
|
|
@ -0,0 +1,258 @@
|
|||
# Write the benchmarking functions here.
|
||||
# See "Writing benchmarks" in the asv docs for more information.
|
||||
|
||||
'''
|
||||
class TimeSuite:
|
||||
"""
|
||||
An example benchmark that times the performance of various kinds
|
||||
of iterating over dictionaries in Python.
|
||||
"""
|
||||
def setup(self):
|
||||
self.d = {}
|
||||
for x in range(500):
|
||||
self.d[x] = None
|
||||
|
||||
def time_keys(self):
|
||||
for key in self.d.keys():
|
||||
pass
|
||||
|
||||
def time_values(self):
|
||||
for value in self.d.values():
|
||||
pass
|
||||
|
||||
def time_range(self):
|
||||
d = self.d
|
||||
for key in range(500):
|
||||
d[key]
|
||||
|
||||
|
||||
class MemSuite:
|
||||
def mem_list(self):
|
||||
return [0] * 256
|
||||
'''
|
||||
|
||||
|
||||
import numpy as np
|
||||
from openblas_wrap import (
|
||||
# level 1
|
||||
dnrm2, ddot, daxpy,
|
||||
# level 3
|
||||
dgemm, dsyrk,
|
||||
# lapack
|
||||
dgesv, # linalg.solve
|
||||
dgesdd, dgesdd_lwork, # linalg.svd
|
||||
dsyev, dsyev_lwork, # linalg.eigh
|
||||
)
|
||||
|
||||
# ### BLAS level 1 ###
|
||||
|
||||
# dnrm2
|
||||
|
||||
dnrm2_sizes = [100, 1000]
|
||||
|
||||
def run_dnrm2(n, x, incx):
|
||||
res = dnrm2(x, n, incx=incx)
|
||||
return res
|
||||
|
||||
|
||||
|
||||
class Nrm2:
|
||||
|
||||
params = [100, 1000]
|
||||
param_names = ["size"]
|
||||
|
||||
def setup(self, n):
|
||||
rndm = np.random.RandomState(1234)
|
||||
self.x = rndm.uniform(size=(n,)).astype(float)
|
||||
|
||||
def time_dnrm2(self, n):
|
||||
run_dnrm2(n, self.x, 1)
|
||||
|
||||
|
||||
# ddot
|
||||
|
||||
ddot_sizes = [100, 1000]
|
||||
|
||||
def run_ddot(x, y,):
|
||||
res = ddot(x, y)
|
||||
return res
|
||||
|
||||
|
||||
class DDot:
|
||||
params = ddot_sizes
|
||||
param_names = ["size"]
|
||||
|
||||
def setup(self, n):
|
||||
rndm = np.random.RandomState(1234)
|
||||
self.x = np.array(rndm.uniform(size=(n,)), dtype=float)
|
||||
self.y = np.array(rndm.uniform(size=(n,)), dtype=float)
|
||||
|
||||
def time_ddot(self, n):
|
||||
run_ddot(self.x, self.y)
|
||||
|
||||
|
||||
|
||||
# daxpy
|
||||
|
||||
daxpy_sizes = [100, 1000]
|
||||
|
||||
def run_daxpy(x, y,):
|
||||
res = daxpy(x, y, a=2.0)
|
||||
return res
|
||||
|
||||
|
||||
class Daxpy:
|
||||
params = daxpy_sizes
|
||||
param_names = ["size"]
|
||||
|
||||
def setup(self, n):
|
||||
rndm = np.random.RandomState(1234)
|
||||
self.x = np.array(rndm.uniform(size=(n,)), dtype=float)
|
||||
self.y = np.array(rndm.uniform(size=(n,)), dtype=float)
|
||||
|
||||
def time_daxpy(self, n):
|
||||
run_daxpy(self.x, self.y)
|
||||
|
||||
|
||||
|
||||
# ### BLAS level 3 ###
|
||||
|
||||
# dgemm
|
||||
|
||||
gemm_sizes = [100, 1000]
|
||||
|
||||
def run_dgemm(a, b, c):
|
||||
alpha = 1.0
|
||||
res = dgemm(alpha, a, b, c=c, overwrite_c=True)
|
||||
return res
|
||||
|
||||
|
||||
class Dgemm:
|
||||
params = gemm_sizes
|
||||
param_names = ["size"]
|
||||
|
||||
def setup(self, n):
|
||||
rndm = np.random.RandomState(1234)
|
||||
self.a = np.array(rndm.uniform(size=(n, n)), dtype=float, order='F')
|
||||
self.b = np.array(rndm.uniform(size=(n, n)), dtype=float, order='F')
|
||||
self.c = np.empty((n, n), dtype=float, order='F')
|
||||
|
||||
def time_dgemm(self, n):
|
||||
run_dgemm(self.a, self.b, self.c)
|
||||
|
||||
|
||||
# dsyrk
|
||||
|
||||
syrk_sizes = [100, 1000]
|
||||
|
||||
|
||||
def run_dsyrk(a, c):
|
||||
res = dsyrk(1.0, a, c=c, overwrite_c=True)
|
||||
return res
|
||||
|
||||
|
||||
class DSyrk:
|
||||
params = syrk_sizes
|
||||
param_names = ["size"]
|
||||
|
||||
def setup(self, n):
|
||||
rndm = np.random.RandomState(1234)
|
||||
self.a = np.array(rndm.uniform(size=(n, n)), dtype=float, order='F')
|
||||
self.c = np.empty((n, n), dtype=float, order='F')
|
||||
|
||||
def time_dsyrk(self, n):
|
||||
run_dsyrk(self.a, self.c)
|
||||
|
||||
|
||||
# ### LAPACK ###
|
||||
|
||||
# linalg.solve
|
||||
|
||||
dgesv_sizes = [100, 1000]
|
||||
|
||||
|
||||
def run_dgesv(a, b):
|
||||
res = dgesv(a, b, overwrite_a=True, overwrite_b=True)
|
||||
return res
|
||||
|
||||
|
||||
class Dgesv:
|
||||
params = dgesv_sizes
|
||||
param_names = ["size"]
|
||||
|
||||
def setup(self, n):
|
||||
rndm = np.random.RandomState(1234)
|
||||
self.a = (np.array(rndm.uniform(size=(n, n)), dtype=float, order='F') +
|
||||
np.eye(n, order='F'))
|
||||
self.b = np.array(rndm.uniform(size=(n, 1)), order='F')
|
||||
|
||||
def time_dgesv(self, n):
|
||||
run_dgesv(self.a, self.b)
|
||||
|
||||
# XXX: how to run asserts?
|
||||
# lu, piv, x, info = benchmark(run_gesv, a, b)
|
||||
# assert lu is a
|
||||
# assert x is b
|
||||
# assert info == 0
|
||||
|
||||
|
||||
# linalg.svd
|
||||
|
||||
dgesdd_sizes = ["100, 5", "1000, 222"]
|
||||
|
||||
|
||||
def run_dgesdd(a, lwork):
|
||||
res = dgesdd(a, lwork=lwork, full_matrices=False, overwrite_a=False)
|
||||
return res
|
||||
|
||||
|
||||
class Dgesdd:
|
||||
params = dgesdd_sizes
|
||||
param_names = ["(m, n)"]
|
||||
|
||||
def setup(self, mn):
|
||||
m, n = (int(x) for x in mn.split(","))
|
||||
|
||||
rndm = np.random.RandomState(1234)
|
||||
a = np.array(rndm.uniform(size=(m, n)), dtype=float, order='F')
|
||||
|
||||
lwork, info = dgesdd_lwork(m, n)
|
||||
lwork = int(lwork)
|
||||
assert info == 0
|
||||
|
||||
self.a, self.lwork = a, lwork
|
||||
|
||||
def time_dgesdd(self, mn):
|
||||
run_dgesdd(self.a, self.lwork)
|
||||
|
||||
|
||||
# linalg.eigh
|
||||
|
||||
dsyev_sizes = [50, 200]
|
||||
|
||||
|
||||
def run_dsyev(a, lwork):
|
||||
res = dsyev(a, lwork=lwork, overwrite_a=True)
|
||||
return res
|
||||
|
||||
|
||||
class Dsyev:
|
||||
params = dsyev_sizes
|
||||
param_names = ["size"]
|
||||
|
||||
def setup(self, n):
|
||||
rndm = np.random.RandomState(1234)
|
||||
a = rndm.uniform(size=(n, n))
|
||||
a = np.asarray(a + a.T, dtype=float, order='F')
|
||||
a_ = a.copy()
|
||||
|
||||
lwork, info = dsyev_lwork(n)
|
||||
lwork = int(lwork)
|
||||
assert info == 0
|
||||
|
||||
self.a = a_
|
||||
self.lwork = lwork
|
||||
|
||||
def time_dsyev(self, n):
|
||||
run_dsyev(self.a, self.lwork)
|
||||
|
|
@ -0,0 +1,48 @@
|
|||
#
|
||||
# Taken from SciPy (of course)
|
||||
#
|
||||
project(
|
||||
'openblas-wrap',
|
||||
'c', 'fortran',
|
||||
version: '0.1',
|
||||
license: 'BSD-3',
|
||||
meson_version: '>= 1.1.0',
|
||||
default_options: [
|
||||
'buildtype=debugoptimized',
|
||||
'b_ndebug=if-release',
|
||||
'c_std=c17',
|
||||
'fortran_std=legacy',
|
||||
],
|
||||
)
|
||||
|
||||
py3 = import('python').find_installation(pure: false)
|
||||
py3_dep = py3.dependency()
|
||||
|
||||
cc = meson.get_compiler('c')
|
||||
|
||||
_global_c_args = cc.get_supported_arguments(
|
||||
'-Wno-unused-but-set-variable',
|
||||
'-Wno-unused-function',
|
||||
'-Wno-conversion',
|
||||
'-Wno-misleading-indentation',
|
||||
)
|
||||
add_project_arguments(_global_c_args, language : 'c')
|
||||
|
||||
# We need -lm for all C code (assuming it uses math functions, which is safe to
|
||||
# assume for SciPy). For C++ it isn't needed, because libstdc++/libc++ is
|
||||
# guaranteed to depend on it. For Fortran code, Meson already adds `-lm`.
|
||||
m_dep = cc.find_library('m', required : false)
|
||||
if m_dep.found()
|
||||
add_project_link_arguments('-lm', language : 'c')
|
||||
endif
|
||||
|
||||
generate_f2pymod = find_program('openblas_wrap/generate_f2pymod.py')
|
||||
|
||||
openblas = dependency('scipy_openblas', method: 'pkg-config', required: true)
|
||||
openblas_dep = declare_dependency(
|
||||
dependencies: openblas,
|
||||
compile_args: []
|
||||
)
|
||||
|
||||
|
||||
subdir('openblas_wrap')
|
|
@ -0,0 +1,29 @@
|
|||
"""
|
||||
Trampoline to hide the LAPACK details (scipy.lapack.linalg or scipy_openblas32 or...)
|
||||
from benchmarking.
|
||||
"""
|
||||
|
||||
__version__ = "0.1"
|
||||
|
||||
import scipy_openblas32 # preload symbols. typically done in _distributor_init.py
|
||||
|
||||
#from scipy.linalg.blas import (
|
||||
from ._flapack import (
|
||||
# level 1
|
||||
scipy_dnrm2 as dnrm2,
|
||||
scipy_ddot as ddot,
|
||||
scipy_daxpy as daxpy,
|
||||
# level 3
|
||||
scipy_dgemm as dgemm,
|
||||
scipy_dsyrk as dsyrk,
|
||||
)
|
||||
|
||||
#from scipy.linalg.lapack import (
|
||||
from openblas_wrap._flapack import (
|
||||
# linalg.solve
|
||||
scipy_dgesv as dgesv,
|
||||
# linalg.svd
|
||||
scipy_dgesdd as dgesdd, scipy_dgesdd_lwork as dgesdd_lwork,
|
||||
# linalg.eigh
|
||||
scipy_dsyev as dsyev, scipy_dsyev_lwork as dsyev_lwork
|
||||
)
|
|
@ -0,0 +1,4 @@
|
|||
'''
|
||||
Helper to preload OpenBLAS from scipy_openblas32
|
||||
'''
|
||||
import scipy_openblas32
|
|
@ -0,0 +1,327 @@
|
|||
!
|
||||
! Taken from scipy/linalg
|
||||
!
|
||||
! Shorthand notations
|
||||
!
|
||||
! <tchar=s,d,cs,zd>
|
||||
! <tchar2c=cs,zd>
|
||||
!
|
||||
! <prefix=scipy_s,scipy_d,scipy_c,scipy_z>
|
||||
! <prefix2=scipy_s,scipy_d>
|
||||
! <prefix2c=scipy_c,scipy_z>
|
||||
! <prefix3=scipy_s,scipy_sc>
|
||||
! <prefix4=scipy_d,scipy_dz>
|
||||
! <prefix6=scipy_s,scipy_d,scipy_c,scipy_z,scipy_c,scipy_z>
|
||||
!
|
||||
! <ftype2=real,double precision>
|
||||
! <ftype2c=complex,double complex>
|
||||
! <ftype3=real,complex>
|
||||
! <ftype4=double precision,double complex>
|
||||
! <ftypereal3=real,real>
|
||||
! <ftypereal4=double precision,double precision>
|
||||
! <ftype6=real,double precision,complex,double complex,\2,\3>
|
||||
! <ftype6creal=real,double precision,complex,double complex,\0,\1>
|
||||
!
|
||||
! <ctype2=float,double>
|
||||
! <ctype2c=complex_float,complex_double>
|
||||
! <ctype3=float,complex_float>
|
||||
! <ctype4=double,complex_double>
|
||||
! <ctypereal3=float,float>
|
||||
! <ctypereal4=double,double>
|
||||
! <ctype6=float,double,complex_float,complex_double,\2,\3>
|
||||
! <ctype6creal=float,double,complex_float,complex_double,\0,\1>
|
||||
!
|
||||
!
|
||||
! Level 1 BLAS
|
||||
!
|
||||
|
||||
|
||||
python module _flapack
|
||||
usercode '''
|
||||
#define F_INT int
|
||||
'''
|
||||
|
||||
interface
|
||||
|
||||
|
||||
subroutine <prefix>axpy(n,a,x,offx,incx,y,offy,incy)
|
||||
! Calculate z = a*x+y, where a is scalar.
|
||||
|
||||
callstatement (*f2py_func)(&n,&a,x+offx,&incx,y+offy,&incy)
|
||||
callprotoargument F_INT*,<ctype>*,<ctype>*,F_INT*,<ctype>*,F_INT*
|
||||
|
||||
<ftype> dimension(*), intent(in) :: x
|
||||
<ftype> dimension(*), intent(in,out,out=z) :: y
|
||||
<ftype> optional, intent(in):: a=<1.0,\0,(1.0\,0.0),\2>
|
||||
integer optional, intent(in),check(incx>0||incx<0) :: incx = 1
|
||||
integer optional, intent(in),check(incy>0||incy<0) :: incy = 1
|
||||
integer optional, intent(in),depend(x) :: offx=0
|
||||
integer optional, intent(in),depend(y) :: offy=0
|
||||
check(offx>=0 && offx<len(x)) :: offx
|
||||
check(offy>=0 && offy<len(y)) :: offy
|
||||
integer optional, intent(in),depend(x,incx,offx,y,incy,offy) :: &
|
||||
n = (len(x)-offx)/abs(incx)
|
||||
check(len(x)-offx>(n-1)*abs(incx)) :: n
|
||||
check(len(y)-offy>(n-1)*abs(incy)) :: n
|
||||
|
||||
end subroutine <prefix>axpy
|
||||
|
||||
function scipy_ddot(n,x,offx,incx,y,offy,incy) result (xy)
|
||||
! Computes a vector-vector dot product.
|
||||
|
||||
callstatement scipy_ddot_return_value = (*f2py_func)(&n,x+offx,&incx,y+offy,&incy)
|
||||
callprotoargument F_INT*,double*,F_INT*,double*,F_INT*
|
||||
intent(c) scipy_ddot
|
||||
fortranname F_FUNC(scipy_ddot,DDOT)
|
||||
|
||||
double precision dimension(*), intent(in) :: x
|
||||
double precision dimension(*), intent(in) :: y
|
||||
double precision ddot,xy
|
||||
integer optional, intent(in),check(incx>0||incx<0) :: incx = 1
|
||||
integer optional, intent(in),check(incy>0||incy<0) :: incy = 1
|
||||
integer optional, intent(in),depend(x) :: offx=0
|
||||
integer optional, intent(in),depend(y) :: offy=0
|
||||
check(offx>=0 && offx<len(x)) :: offx
|
||||
check(offy>=0 && offy<len(y)) :: offy
|
||||
integer optional, intent(in),depend(x,incx,offx,y,incy,offy) :: &
|
||||
n = (len(x)-offx)/abs(incx)
|
||||
check(len(x)-offx>(n-1)*abs(incx)) :: n
|
||||
check(len(y)-offy>(n-1)*abs(incy)) :: n
|
||||
|
||||
end function scipy_ddot
|
||||
|
||||
|
||||
function <prefix4>nrm2(n,x,offx,incx) result(n2)
|
||||
|
||||
<ftypereal4> <prefix4>nrm2, n2
|
||||
|
||||
callstatement <prefix4>nrm2_return_value = (*f2py_func)(&n,x+offx,&incx)
|
||||
callprotoargument F_INT*,<ctype4>*,F_INT*
|
||||
intent(c) <prefix4>nrm2
|
||||
fortranname F_FUNC(<prefix4>nrm2,<D,DZ>NRM2)
|
||||
|
||||
<ftype4> dimension(*),intent(in) :: x
|
||||
|
||||
integer optional, intent(in),check(incx>0) :: incx = 1
|
||||
|
||||
integer optional,intent(in),depend(x) :: offx=0
|
||||
check(offx>=0 && offx<len(x)) :: offx
|
||||
|
||||
integer optional,intent(in),depend(x,incx,offx) :: n = (len(x)-offx)/abs(incx)
|
||||
check(len(x)-offx>(n-1)*abs(incx)) :: n
|
||||
|
||||
end function <prefix4>nrm2
|
||||
|
||||
!
|
||||
! Level 3 BLAS
|
||||
!
|
||||
|
||||
|
||||
subroutine <prefix>gemm(m,n,k,alpha,a,b,beta,c,trans_a,trans_b,lda,ka,ldb,kb)
|
||||
! Computes a scalar-matrix-matrix product and adds the result to a
|
||||
! scalar-matrix product.
|
||||
!
|
||||
! c = gemm(alpha,a,b,beta=0,c=0,trans_a=0,trans_b=0,overwrite_c=0)
|
||||
! Calculate C <- alpha * op(A) * op(B) + beta * C
|
||||
|
||||
callstatement (*f2py_func)((trans_a?(trans_a==2?"C":"T"):"N"), &
|
||||
(trans_b?(trans_b==2?"C":"T"):"N"),&m,&n,&k,&alpha,a,&lda,b,&ldb,&beta,c,&m)
|
||||
callprotoargument char*,char*,F_INT*,F_INT*,F_INT*,<ctype>*,<ctype>*,F_INT*,<ctype>*, &
|
||||
F_INT*,<ctype>*,<ctype>*,F_INT*
|
||||
|
||||
integer optional,intent(in),check(trans_a>=0 && trans_a <=2) :: trans_a = 0
|
||||
integer optional,intent(in),check(trans_b>=0 && trans_b <=2) :: trans_b = 0
|
||||
<ftype> intent(in) :: alpha
|
||||
<ftype> intent(in),optional :: beta = <0.0,\0,(0.0\,0.0),\2>
|
||||
|
||||
<ftype> dimension(lda,ka),intent(in) :: a
|
||||
<ftype> dimension(ldb,kb),intent(in) :: b
|
||||
<ftype> dimension(m,n),intent(in,out,copy),depend(m,n),optional :: c
|
||||
check(shape(c,0)==m && shape(c,1)==n) :: c
|
||||
|
||||
integer depend(a),intent(hide) :: lda = shape(a,0)
|
||||
integer depend(a),intent(hide) :: ka = shape(a,1)
|
||||
integer depend(b),intent(hide) :: ldb = shape(b,0)
|
||||
integer depend(b),intent(hide) :: kb = shape(b,1)
|
||||
|
||||
integer depend(a,trans_a,ka,lda),intent(hide):: m = (trans_a?ka:lda)
|
||||
integer depend(a,trans_a,ka,lda),intent(hide):: k = (trans_a?lda:ka)
|
||||
integer depend(b,trans_b,kb,ldb,k),intent(hide),check(trans_b?kb==k:ldb==k) :: &
|
||||
n = (trans_b?ldb:kb)
|
||||
|
||||
end subroutine <prefix>gemm
|
||||
|
||||
|
||||
subroutine <prefix6><sy,\0,\0,\0,he,he>rk(n,k,alpha,a,beta,c,trans,lower,lda,ka)
|
||||
! performs one of the symmetric rank k operations
|
||||
! C := alpha*A*A**T + beta*C, or C := alpha*A**T*A + beta*C,
|
||||
!
|
||||
! c = syrk(alpha,a,beta=0,c=0,trans=0,lower=0,overwrite_c=0)
|
||||
!
|
||||
callstatement (*f2py_func)((lower?"L":"U"), &
|
||||
(trans?(trans==2?"C":"T"):"N"), &n,&k,&alpha,a,&lda,&beta,c,&n)
|
||||
callprotoargument char*,char*,F_INT*,F_INT*,<ctype6>*,<ctype6>*,F_INT*,<ctype6>*, &
|
||||
<ctype6>*,F_INT*
|
||||
|
||||
integer optional, intent(in),check(lower==0||lower==1) :: lower = 0
|
||||
integer optional,intent(in),check(trans>=0 && trans <=2) :: trans = 0
|
||||
|
||||
<ftype6> intent(in) :: alpha
|
||||
<ftype6> intent(in),optional :: beta = <0.0,\0,(0.0\,0.0),\2,\2,\2>
|
||||
|
||||
<ftype6> dimension(lda,ka),intent(in) :: a
|
||||
<ftype6> dimension(n,n),intent(in,out,copy),depend(n),optional :: c
|
||||
check(shape(c,0)==n && shape(c,1)==n) :: c
|
||||
|
||||
integer depend(a),intent(hide) :: lda = shape(a,0)
|
||||
integer depend(a),intent(hide) :: ka = shape(a,1)
|
||||
|
||||
integer depend(a, trans, ka, lda), intent(hide) :: n = (trans ? ka : lda)
|
||||
integer depend(a, trans, ka, lda), intent(hide) :: k = (trans ? lda : ka)
|
||||
|
||||
end subroutine <prefix6><sy,\0,\0,\0,he,he>rk
|
||||
|
||||
|
||||
!
|
||||
! LAPACK
|
||||
!
|
||||
|
||||
subroutine <prefix>gesv(n,nrhs,a,piv,b,info)
|
||||
! lu,piv,x,info = gesv(a,b,overwrite_a=0,overwrite_b=0)
|
||||
! Solve A * X = B.
|
||||
! A = P * L * U
|
||||
! U is upper diagonal triangular, L is unit lower triangular,
|
||||
! piv pivots columns.
|
||||
|
||||
callstatement {F_INT i;(*f2py_func)(&n,&nrhs,a,&n,piv,b,&n,&info);for(i=0;i\<n;--piv[i++]);}
|
||||
callprotoargument F_INT*,F_INT*,<ctype>*,F_INT*,F_INT*,<ctype>*,F_INT*,F_INT*
|
||||
|
||||
integer depend(a),intent(hide):: n = shape(a,0)
|
||||
integer depend(b),intent(hide):: nrhs = shape(b,1)
|
||||
<ftype> dimension(n,n),check(shape(a,0)==shape(a,1)) :: a
|
||||
integer dimension(n),depend(n),intent(out) :: piv
|
||||
<ftype> dimension(n,nrhs),check(shape(a,0)==shape(b,0)),depend(n) :: b
|
||||
integer intent(out)::info
|
||||
intent(in,out,copy,out=x) b
|
||||
intent(in,out,copy,out=lu) a
|
||||
end subroutine <prefix>gesv
|
||||
|
||||
|
||||
subroutine <prefix2>gesdd(m,n,minmn,u0,u1,vt0,vt1,a,compute_uv,full_matrices,u,s,vt,work,lwork,iwork,info)
|
||||
! u,s,vt,info = gesdd(a,compute_uv=1,lwork=..,overwrite_a=0)
|
||||
! Compute the singular value decomposition (SVD) using divide and conquer:
|
||||
! A = U * SIGMA * transpose(V)
|
||||
! A - M x N matrix
|
||||
! U - M x M matrix or min(M,N) x N if full_matrices=False
|
||||
! SIGMA - M x N zero matrix with a main diagonal filled with min(M,N)
|
||||
! singular values
|
||||
! transpose(V) - N x N matrix or N x min(M,N) if full_matrices=False
|
||||
|
||||
callstatement (*f2py_func)((compute_uv?(full_matrices?"A":"S"):"N"),&m,&n,a,&m,s,u,&u0,vt,&vt0,work,&lwork,iwork,&info)
|
||||
callprotoargument char*,F_INT*,F_INT*,<ctype2>*,F_INT*,<ctype2>*,<ctype2>*,F_INT*,<ctype2>*,F_INT*,<ctype2>*,F_INT*,F_INT*,F_INT*
|
||||
|
||||
integer intent(in),optional,check(compute_uv==0||compute_uv==1):: compute_uv = 1
|
||||
integer intent(in),optional,check(full_matrices==0||full_matrices==1):: full_matrices = 1
|
||||
integer intent(hide),depend(a):: m = shape(a,0)
|
||||
integer intent(hide),depend(a):: n = shape(a,1)
|
||||
integer intent(hide),depend(m,n):: minmn = MIN(m,n)
|
||||
integer intent(hide),depend(compute_uv,minmn) :: u0 = (compute_uv?m:1)
|
||||
integer intent(hide),depend(compute_uv,minmn, full_matrices) :: u1 = (compute_uv?(full_matrices?m:minmn):1)
|
||||
integer intent(hide),depend(compute_uv,minmn, full_matrices) :: vt0 = (compute_uv?(full_matrices?n:minmn):1)
|
||||
integer intent(hide),depend(compute_uv,minmn) :: vt1 = (compute_uv?n:1)
|
||||
<ftype2> dimension(m,n),intent(in,copy,aligned8) :: a
|
||||
<ftype2> dimension(minmn),intent(out),depend(minmn) :: s
|
||||
<ftype2> dimension(u0,u1),intent(out),depend(u0, u1) :: u
|
||||
<ftype2> dimension(vt0,vt1),intent(out),depend(vt0, vt1) :: vt
|
||||
<ftype2> dimension(lwork),intent(hide,cache),depend(lwork) :: work
|
||||
integer optional,intent(in),depend(minmn,compute_uv) &
|
||||
:: lwork = max((compute_uv?4*minmn*minmn+MAX(m,n)+9*minmn:MAX(14*minmn+4,10*minmn+2+25*(25+8))+MAX(m,n)),1)
|
||||
integer intent(hide,cache),dimension(8*minmn),depend(minmn) :: iwork
|
||||
integer intent(out)::info
|
||||
|
||||
end subroutine <prefix2>gesdd
|
||||
|
||||
subroutine <prefix2>gesdd_lwork(m,n,minmn,u0,vt0,a,compute_uv,full_matrices,u,s,vt,work,lwork,iwork,info)
|
||||
! LWORK computation for (S/D)GESDD
|
||||
|
||||
fortranname <prefix2>gesdd
|
||||
callstatement (*f2py_func)((compute_uv?(full_matrices?"A":"S"):"N"),&m,&n,&a,&m,&s,&u,&u0,&vt,&vt0,&work,&lwork,&iwork,&info)
|
||||
callprotoargument char*,F_INT*,F_INT*,<ctype2>*,F_INT*,<ctype2>*,<ctype2>*,F_INT*,<ctype2>*,F_INT*,<ctype2>*,F_INT*,F_INT*,F_INT*
|
||||
|
||||
integer intent(in),optional,check(compute_uv==0||compute_uv==1):: compute_uv = 1
|
||||
integer intent(in),optional,check(full_matrices==0||full_matrices==1):: full_matrices = 1
|
||||
integer intent(in) :: m
|
||||
integer intent(in) :: n
|
||||
integer intent(hide),depend(m,n):: minmn = MIN(m,n)
|
||||
integer intent(hide),depend(compute_uv,minmn) :: u0 = (compute_uv?m:1)
|
||||
integer intent(hide),depend(compute_uv,minmn, full_matrices) :: vt0 = (compute_uv?(full_matrices?n:minmn):1)
|
||||
<ftype2> intent(hide) :: a
|
||||
<ftype2> intent(hide) :: s
|
||||
<ftype2> intent(hide) :: u
|
||||
<ftype2> intent(hide) :: vt
|
||||
<ftype2> intent(out) :: work
|
||||
integer intent(hide) :: lwork = -1
|
||||
integer intent(hide) :: iwork
|
||||
integer intent(out) :: info
|
||||
|
||||
end subroutine <prefix2>gesdd_lwork
|
||||
|
||||
|
||||
subroutine <prefix2>syev(compute_v,lower,n,w,a,lda,work,lwork,info)
|
||||
! w,v,info = syev(a,compute_v=1,lower=0,lwork=3*n-1,overwrite_a=0)
|
||||
! Compute all eigenvalues and, optionally, eigenvectors of a
|
||||
! real symmetric matrix A.
|
||||
!
|
||||
! Performance tip:
|
||||
! If compute_v=0 then set also overwrite_a=1.
|
||||
|
||||
callstatement (*f2py_func)((compute_v?"V":"N"),(lower?"L":"U"),&n,a,&lda,w,work,&lwork,&info)
|
||||
callprotoargument char*,char*,F_INT*,<ctype2>*,F_INT*,<ctype2>*,<ctype2>*,F_INT*,F_INT*
|
||||
|
||||
integer optional,intent(in):: compute_v = 1
|
||||
check(compute_v==1||compute_v==0) compute_v
|
||||
integer optional,intent(in),check(lower==0||lower==1) :: lower = 0
|
||||
|
||||
integer intent(hide),depend(a):: n = shape(a,0)
|
||||
integer intent(hide),depend(a):: lda = MAX(1,shape(a,0))
|
||||
<ftype2> dimension(n,n),check(shape(a,0)==shape(a,1)) :: a
|
||||
intent(in,copy,out,out=v) :: a
|
||||
|
||||
<ftype2> dimension(n),intent(out),depend(n) :: w
|
||||
|
||||
integer optional,intent(in),depend(n) :: lwork=max(3*n-1,1)
|
||||
check(lwork>=3*n-1) :: lwork
|
||||
<ftype2> dimension(lwork),intent(hide),depend(lwork) :: work
|
||||
|
||||
integer intent(out) :: info
|
||||
|
||||
end subroutine <prefix2>syev
|
||||
|
||||
|
||||
subroutine <prefix2>syev_lwork(lower,n,w,a,lda,work,lwork,info)
|
||||
! LWORK routines for syev
|
||||
|
||||
fortranname <prefix2>syev
|
||||
|
||||
callstatement (*f2py_func)("N",(lower?"L":"U"),&n,&a,&lda,&w,&work,&lwork,&info)
|
||||
callprotoargument char*,char*,F_INT*,<ctype2>*,F_INT*,<ctype2>*,<ctype2>*,F_INT*,F_INT*
|
||||
|
||||
integer intent(in):: n
|
||||
integer optional,intent(in),check(lower==0||lower==1) :: lower = 0
|
||||
|
||||
integer intent(hide),depend(n):: lda = MAX(1, n)
|
||||
<ftype2> intent(hide):: a
|
||||
<ftype2> intent(hide):: w
|
||||
integer intent(hide):: lwork = -1
|
||||
|
||||
<ftype2> intent(out):: work
|
||||
integer intent(out):: info
|
||||
|
||||
end subroutine <prefix2>syev_lwork
|
||||
|
||||
end interface
|
||||
|
||||
end python module _flapack
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,299 @@
|
|||
#!/usr/bin/env python3
|
||||
"""
|
||||
Process f2py template files (`filename.pyf.src` -> `filename.pyf`)
|
||||
|
||||
Usage: python generate_pyf.py filename.pyf.src -o filename.pyf
|
||||
"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
import re
|
||||
import subprocess
|
||||
import argparse
|
||||
|
||||
|
||||
# START OF CODE VENDORED FROM `numpy.distutils.from_template`
|
||||
#############################################################
|
||||
"""
|
||||
process_file(filename)
|
||||
|
||||
takes templated file .xxx.src and produces .xxx file where .xxx
|
||||
is .pyf .f90 or .f using the following template rules:
|
||||
|
||||
'<..>' denotes a template.
|
||||
|
||||
All function and subroutine blocks in a source file with names that
|
||||
contain '<..>' will be replicated according to the rules in '<..>'.
|
||||
|
||||
The number of comma-separated words in '<..>' will determine the number of
|
||||
replicates.
|
||||
|
||||
'<..>' may have two different forms, named and short. For example,
|
||||
|
||||
named:
|
||||
<p=d,s,z,c> where anywhere inside a block '<p>' will be replaced with
|
||||
'd', 's', 'z', and 'c' for each replicate of the block.
|
||||
|
||||
<_c> is already defined: <_c=s,d,c,z>
|
||||
<_t> is already defined: <_t=real,double precision,complex,double complex>
|
||||
|
||||
short:
|
||||
<s,d,c,z>, a short form of the named, useful when no <p> appears inside
|
||||
a block.
|
||||
|
||||
In general, '<..>' contains a comma separated list of arbitrary
|
||||
expressions. If these expression must contain a comma|leftarrow|rightarrow,
|
||||
then prepend the comma|leftarrow|rightarrow with a backslash.
|
||||
|
||||
If an expression matches '\\<index>' then it will be replaced
|
||||
by <index>-th expression.
|
||||
|
||||
Note that all '<..>' forms in a block must have the same number of
|
||||
comma-separated entries.
|
||||
|
||||
Predefined named template rules:
|
||||
<prefix=s,d,c,z>
|
||||
<ftype=real,double precision,complex,double complex>
|
||||
<ftypereal=real,double precision,\\0,\\1>
|
||||
<ctype=float,double,complex_float,complex_double>
|
||||
<ctypereal=float,double,\\0,\\1>
|
||||
"""
|
||||
|
||||
routine_start_re = re.compile(
|
||||
r'(\n|\A)(( (\$|\*))|)\s*(subroutine|function)\b',
|
||||
re.I
|
||||
)
|
||||
routine_end_re = re.compile(r'\n\s*end\s*(subroutine|function)\b.*(\n|\Z)', re.I)
|
||||
function_start_re = re.compile(r'\n (\$|\*)\s*function\b', re.I)
|
||||
|
||||
def parse_structure(astr):
|
||||
""" Return a list of tuples for each function or subroutine each
|
||||
tuple is the start and end of a subroutine or function to be
|
||||
expanded.
|
||||
"""
|
||||
|
||||
spanlist = []
|
||||
ind = 0
|
||||
while True:
|
||||
m = routine_start_re.search(astr, ind)
|
||||
if m is None:
|
||||
break
|
||||
start = m.start()
|
||||
if function_start_re.match(astr, start, m.end()):
|
||||
while True:
|
||||
i = astr.rfind('\n', ind, start)
|
||||
if i==-1:
|
||||
break
|
||||
start = i
|
||||
if astr[i:i+7]!='\n $':
|
||||
break
|
||||
start += 1
|
||||
m = routine_end_re.search(astr, m.end())
|
||||
ind = end = m and m.end()-1 or len(astr)
|
||||
spanlist.append((start, end))
|
||||
return spanlist
|
||||
|
||||
template_re = re.compile(r"<\s*(\w[\w\d]*)\s*>")
|
||||
named_re = re.compile(r"<\s*(\w[\w\d]*)\s*=\s*(.*?)\s*>")
|
||||
list_re = re.compile(r"<\s*((.*?))\s*>")
|
||||
|
||||
def find_repl_patterns(astr):
|
||||
reps = named_re.findall(astr)
|
||||
names = {}
|
||||
for rep in reps:
|
||||
name = rep[0].strip() or unique_key(names)
|
||||
repl = rep[1].replace(r'\,', '@comma@')
|
||||
thelist = conv(repl)
|
||||
names[name] = thelist
|
||||
return names
|
||||
|
||||
def find_and_remove_repl_patterns(astr):
|
||||
names = find_repl_patterns(astr)
|
||||
astr = re.subn(named_re, '', astr)[0]
|
||||
return astr, names
|
||||
|
||||
item_re = re.compile(r"\A\\(?P<index>\d+)\Z")
|
||||
def conv(astr):
|
||||
b = astr.split(',')
|
||||
l = [x.strip() for x in b]
|
||||
for i in range(len(l)):
|
||||
m = item_re.match(l[i])
|
||||
if m:
|
||||
j = int(m.group('index'))
|
||||
l[i] = l[j]
|
||||
return ','.join(l)
|
||||
|
||||
def unique_key(adict):
|
||||
""" Obtain a unique key given a dictionary."""
|
||||
allkeys = list(adict.keys())
|
||||
done = False
|
||||
n = 1
|
||||
while not done:
|
||||
newkey = '__l%s' % (n)
|
||||
if newkey in allkeys:
|
||||
n += 1
|
||||
else:
|
||||
done = True
|
||||
return newkey
|
||||
|
||||
|
||||
template_name_re = re.compile(r'\A\s*(\w[\w\d]*)\s*\Z')
|
||||
def expand_sub(substr, names):
|
||||
substr = substr.replace(r'\>', '@rightarrow@')
|
||||
substr = substr.replace(r'\<', '@leftarrow@')
|
||||
lnames = find_repl_patterns(substr)
|
||||
substr = named_re.sub(r"<\1>", substr) # get rid of definition templates
|
||||
|
||||
def listrepl(mobj):
|
||||
thelist = conv(mobj.group(1).replace(r'\,', '@comma@'))
|
||||
if template_name_re.match(thelist):
|
||||
return "<%s>" % (thelist)
|
||||
name = None
|
||||
for key in lnames.keys(): # see if list is already in dictionary
|
||||
if lnames[key] == thelist:
|
||||
name = key
|
||||
if name is None: # this list is not in the dictionary yet
|
||||
name = unique_key(lnames)
|
||||
lnames[name] = thelist
|
||||
return "<%s>" % name
|
||||
|
||||
substr = list_re.sub(listrepl, substr) # convert all lists to named templates
|
||||
# newnames are constructed as needed
|
||||
|
||||
numsubs = None
|
||||
base_rule = None
|
||||
rules = {}
|
||||
for r in template_re.findall(substr):
|
||||
if r not in rules:
|
||||
thelist = lnames.get(r, names.get(r, None))
|
||||
if thelist is None:
|
||||
raise ValueError('No replicates found for <%s>' % (r))
|
||||
if r not in names and not thelist.startswith('_'):
|
||||
names[r] = thelist
|
||||
rule = [i.replace('@comma@', ',') for i in thelist.split(',')]
|
||||
num = len(rule)
|
||||
|
||||
if numsubs is None:
|
||||
numsubs = num
|
||||
rules[r] = rule
|
||||
base_rule = r
|
||||
elif num == numsubs:
|
||||
rules[r] = rule
|
||||
else:
|
||||
print("Mismatch in number of replacements (base <{}={}>) "
|
||||
"for <{}={}>. Ignoring."
|
||||
.format(base_rule, ','.join(rules[base_rule]), r, thelist))
|
||||
if not rules:
|
||||
return substr
|
||||
|
||||
def namerepl(mobj):
|
||||
name = mobj.group(1)
|
||||
return rules.get(name, (k+1)*[name])[k]
|
||||
|
||||
newstr = ''
|
||||
for k in range(numsubs):
|
||||
newstr += template_re.sub(namerepl, substr) + '\n\n'
|
||||
|
||||
newstr = newstr.replace('@rightarrow@', '>')
|
||||
newstr = newstr.replace('@leftarrow@', '<')
|
||||
return newstr
|
||||
|
||||
def process_str(allstr):
|
||||
newstr = allstr
|
||||
writestr = ''
|
||||
|
||||
struct = parse_structure(newstr)
|
||||
|
||||
oldend = 0
|
||||
names = {}
|
||||
names.update(_special_names)
|
||||
for sub in struct:
|
||||
cleanedstr, defs = find_and_remove_repl_patterns(newstr[oldend:sub[0]])
|
||||
writestr += cleanedstr
|
||||
names.update(defs)
|
||||
writestr += expand_sub(newstr[sub[0]:sub[1]], names)
|
||||
oldend = sub[1]
|
||||
writestr += newstr[oldend:]
|
||||
|
||||
return writestr
|
||||
|
||||
include_src_re = re.compile(
|
||||
r"(\n|\A)\s*include\s*['\"](?P<name>[\w\d./\\]+\.src)['\"]",
|
||||
re.I
|
||||
)
|
||||
|
||||
def resolve_includes(source):
|
||||
d = os.path.dirname(source)
|
||||
with open(source) as fid:
|
||||
lines = []
|
||||
for line in fid:
|
||||
m = include_src_re.match(line)
|
||||
if m:
|
||||
fn = m.group('name')
|
||||
if not os.path.isabs(fn):
|
||||
fn = os.path.join(d, fn)
|
||||
if os.path.isfile(fn):
|
||||
lines.extend(resolve_includes(fn))
|
||||
else:
|
||||
lines.append(line)
|
||||
else:
|
||||
lines.append(line)
|
||||
return lines
|
||||
|
||||
def process_file(source):
|
||||
lines = resolve_includes(source)
|
||||
return process_str(''.join(lines))
|
||||
|
||||
_special_names = find_repl_patterns('''
|
||||
<_c=s,d,c,z>
|
||||
<_t=real,double precision,complex,double complex>
|
||||
<prefix=s,d,c,z>
|
||||
<ftype=real,double precision,complex,double complex>
|
||||
<ctype=float,double,complex_float,complex_double>
|
||||
<ftypereal=real,double precision,\\0,\\1>
|
||||
<ctypereal=float,double,\\0,\\1>
|
||||
''')
|
||||
|
||||
# END OF CODE VENDORED FROM `numpy.distutils.from_template`
|
||||
###########################################################
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("infile", type=str,
|
||||
help="Path to the input file")
|
||||
parser.add_argument("-o", "--outdir", type=str,
|
||||
help="Path to the output directory")
|
||||
args = parser.parse_args()
|
||||
|
||||
if not args.infile.endswith(('.pyf', '.pyf.src', '.f.src')):
|
||||
raise ValueError(f"Input file has unknown extension: {args.infile}")
|
||||
|
||||
outdir_abs = os.path.join(os.getcwd(), args.outdir)
|
||||
|
||||
# Write out the .pyf/.f file
|
||||
if args.infile.endswith(('.pyf.src', '.f.src')):
|
||||
code = process_file(args.infile)
|
||||
fname_pyf = os.path.join(args.outdir,
|
||||
os.path.splitext(os.path.split(args.infile)[1])[0])
|
||||
|
||||
with open(fname_pyf, 'w') as f:
|
||||
f.write(code)
|
||||
else:
|
||||
fname_pyf = args.infile
|
||||
|
||||
# Now invoke f2py to generate the C API module file
|
||||
if args.infile.endswith(('.pyf.src', '.pyf')):
|
||||
p = subprocess.Popen([sys.executable, '-m', 'numpy.f2py', fname_pyf,
|
||||
'--build-dir', outdir_abs], #'--quiet'],
|
||||
stdout=subprocess.PIPE, stderr=subprocess.PIPE,
|
||||
cwd=os.getcwd())
|
||||
out, err = p.communicate()
|
||||
if not (p.returncode == 0):
|
||||
raise RuntimeError(f"Writing {args.outfile} with f2py failed!\n"
|
||||
f"{out}\n"
|
||||
r"{err}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -0,0 +1,50 @@
|
|||
# find numpy & f2py includes
|
||||
inc_numpy = run_command(py3,
|
||||
['-c', 'import os; os.chdir(".."); import numpy; print(numpy.get_include())'],
|
||||
check : true
|
||||
).stdout().strip()
|
||||
|
||||
inc_f2py = run_command(py3,
|
||||
['-c', 'import os; os.chdir(".."); import numpy.f2py; print(numpy.f2py.get_include())'],
|
||||
check : true
|
||||
).stdout().strip()
|
||||
|
||||
|
||||
inc_np = include_directories(inc_numpy, inc_f2py)
|
||||
fortranobject_c = inc_f2py / 'fortranobject.c'
|
||||
|
||||
|
||||
fortranobject_lib = static_library('_fortranobject',
|
||||
fortranobject_c,
|
||||
# c_args: numpy_nodepr_api,
|
||||
dependencies: py3_dep,
|
||||
include_directories: [inc_np, inc_f2py],
|
||||
gnu_symbol_visibility: 'hidden',
|
||||
)
|
||||
fortranobject_dep = declare_dependency(
|
||||
link_with: fortranobject_lib,
|
||||
include_directories: [inc_np, inc_f2py],
|
||||
)
|
||||
|
||||
|
||||
# f2py generated wrappers
|
||||
|
||||
flapack_module = custom_target('flapack_module',
|
||||
output: ['_flapackmodule.c'],
|
||||
input: 'blas_lapack.pyf.src',
|
||||
command: [generate_f2pymod, '@INPUT@', '-o', '@OUTDIR@'],
|
||||
)
|
||||
|
||||
py3.extension_module('_flapack',
|
||||
flapack_module,
|
||||
link_args: [], # version_link_args,
|
||||
dependencies: [openblas_dep, fortranobject_dep],
|
||||
install: true,
|
||||
subdir: 'openblas_wrap'
|
||||
)
|
||||
|
||||
|
||||
py3.install_sources(
|
||||
['__init__.py'],
|
||||
subdir: 'openblas_wrap'
|
||||
)
|
|
@ -0,0 +1,22 @@
|
|||
[build-system]
|
||||
build-backend = "mesonpy"
|
||||
requires = [
|
||||
"meson-python>=0.16.0",
|
||||
"numpy",
|
||||
"scipy_openblas32"
|
||||
]
|
||||
|
||||
|
||||
|
||||
[project]
|
||||
name = "openblas_wrap"
|
||||
version = "0.1"
|
||||
maintainers = [
|
||||
{name = ".", email = ".@gmail.com"}
|
||||
]
|
||||
description = "a wrapper"
|
||||
requires-python = ">=3.10"
|
||||
dependencies = ["numpy>=1.23,<3",
|
||||
"scipy_openblas32"
|
||||
]
|
||||
|
Loading…
Reference in New Issue