Patch LAPACK XLASD4.f as discussed in JuliaLang/julia#2340
This commit is contained in:
parent
c92ae012a6
commit
eae6920f2d
|
@ -223,6 +223,7 @@
|
|||
*
|
||||
EPS = DLAMCH( 'Epsilon' )
|
||||
RHOINV = ONE / RHO
|
||||
TAU2= ZERO
|
||||
*
|
||||
* The case I = N
|
||||
*
|
||||
|
@ -275,6 +276,7 @@
|
|||
ELSE
|
||||
TAU2 = ( A+SQRT( A*A+FOUR*B*C ) ) / ( TWO*C )
|
||||
END IF
|
||||
TAU = TAU2 / ( D( N )+SQRT( D( N )*D( N )+TAU2 ) )
|
||||
END IF
|
||||
*
|
||||
* It can be proved that
|
||||
|
@ -293,6 +295,8 @@
|
|||
ELSE
|
||||
TAU2 = ( A+SQRT( A*A+FOUR*B*C ) ) / ( TWO*C )
|
||||
END IF
|
||||
TAU = TAU2 / ( D( N )+SQRT( D( N )*D( N )+TAU2 ) )
|
||||
|
||||
*
|
||||
* It can be proved that
|
||||
* D(N)^2 < D(N)^2+TAU2 < SIGMA(N)^2 < D(N)^2+RHO/2
|
||||
|
@ -301,7 +305,7 @@
|
|||
*
|
||||
* The following TAU is to approximate SIGMA_n - D( N )
|
||||
*
|
||||
TAU = TAU2 / ( D( N )+SQRT( D( N )*D( N )+TAU2 ) )
|
||||
* TAU = TAU2 / ( D( N )+SQRT( D( N )*D( N )+TAU2 ) )
|
||||
*
|
||||
SIGMA = D( N ) + TAU
|
||||
DO 30 J = 1, N
|
||||
|
|
|
@ -223,6 +223,7 @@
|
|||
*
|
||||
EPS = SLAMCH( 'Epsilon' )
|
||||
RHOINV = ONE / RHO
|
||||
TAU2= ZERO
|
||||
*
|
||||
* The case I = N
|
||||
*
|
||||
|
@ -275,6 +276,7 @@
|
|||
ELSE
|
||||
TAU2 = ( A+SQRT( A*A+FOUR*B*C ) ) / ( TWO*C )
|
||||
END IF
|
||||
TAU = TAU2 / ( D( N )+SQRT( D( N )*D( N )+TAU2 ) )
|
||||
END IF
|
||||
*
|
||||
* It can be proved that
|
||||
|
@ -293,6 +295,8 @@
|
|||
ELSE
|
||||
TAU2 = ( A+SQRT( A*A+FOUR*B*C ) ) / ( TWO*C )
|
||||
END IF
|
||||
TAU = TAU2 / ( D( N )+SQRT( D( N )*D( N )+TAU2 ) )
|
||||
|
||||
*
|
||||
* It can be proved that
|
||||
* D(N)^2 < D(N)^2+TAU2 < SIGMA(N)^2 < D(N)^2+RHO/2
|
||||
|
@ -301,7 +305,7 @@
|
|||
*
|
||||
* The following TAU is to approximate SIGMA_n - D( N )
|
||||
*
|
||||
TAU = TAU2 / ( D( N )+SQRT( D( N )*D( N )+TAU2 ) )
|
||||
* TAU = TAU2 / ( D( N )+SQRT( D( N )*D( N )+TAU2 ) )
|
||||
*
|
||||
SIGMA = D( N ) + TAU
|
||||
DO 30 J = 1, N
|
||||
|
|
Loading…
Reference in New Issue