Merge pull request #2614 from mhillenibm/gemm_vec_z14

s390x: Improve performance of SGEMM and STRMM on z14 and newer
This commit is contained in:
Martin Kroeker 2020-05-13 15:09:23 +02:00 committed by GitHub
commit ea78106c71
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 570 additions and 55 deletions

View File

@ -184,3 +184,6 @@ In chronological order:
* Rajalakshmi Srinivasaraghavan <https://github.com/RajalakshmiSR>
* [2020-04-15] Half-precision GEMM for bfloat16
* Marius Hillenbrand <https://github.com/mhillenibm>
* [2020-05-12] Revise dynamic architecture detection for IBM z
* [2020-05-12] Add new sgemm and strmm kernel for IBM z14

View File

@ -563,8 +563,27 @@ DYNAMIC_CORE += EMAG8180
endif
ifeq ($(ARCH), zarch)
DYNAMIC_CORE = Z13
DYNAMIC_CORE = ZARCH_GENERIC
# Z13 is supported since gcc-5.2, gcc-6, and in RHEL 7.3 and newer
GCC_GE_52 := $(subst 0,,$(shell expr `$(CC) -dumpversion` \>= "5.2"))
ifeq ($(wildcard /etc/redhat-release), /etc/redhat-release)
RHEL_WITH_Z13 := $(subst 0,,$(shell source /etc/os-release ; expr $$VERSION_ID \>= "7.3"))
endif
ifeq ($(or $(GCC_GE_52),$(RHEL_WITH_Z13)), 1)
DYNAMIC_CORE += Z13
else
$(info OpenBLAS: Not building Z13 kernels because gcc is older than 5.2 or 6.x)
endif
GCC_MAJOR_GE_7 := $(shell expr `$(CC) -dumpversion | cut -f1 -d.` \>= 7)
ifeq ($(GCC_MAJOR_GE_7), 1)
DYNAMIC_CORE += Z14
else
$(info OpenBLAS: Not building Z14 kernels because gcc is older than 7.x)
endif
endif
ifeq ($(ARCH), power)

View File

@ -5,6 +5,6 @@ FCOMMON_OPT += -march=z13 -mzvector
endif
ifeq ($(CORE), Z14)
CCOMMON_OPT += -march=z14 -mzvector
CCOMMON_OPT += -march=z14 -mzvector -O3
FCOMMON_OPT += -march=z14 -mzvector
endif

View File

@ -1,12 +1,58 @@
#include "common.h"
#include <stdbool.h>
// Gate kernels for z13 and z14 on gcc version
#if (__GNUC__ == 5 && __GNUC_MINOR__ >= 2) || __GNUC__ >= 6 || \
/* RHEL 7 since 7.3: */ \
(__GNUC__ == 4 && __GNUC_MINOR__ == 8 && __GNUC_PATCHLEVEL__ == 5 && \
__GNUC_RH_RELEASE__ >= 11)
#define HAVE_Z13_SUPPORT
#endif
#if __GNUC__ >= 7
#define HAVE_Z14_SUPPORT
#endif
// Guard the use of getauxval() on glibc version >= 2.16
#ifdef __GLIBC__
#include <features.h>
#if __GLIBC_PREREQ(2, 16)
#include <sys/auxv.h>
#define HAVE_GETAUXVAL 1
static unsigned long get_hwcap(void)
{
unsigned long hwcap = getauxval(AT_HWCAP);
char *maskenv;
// honor requests for not using specific CPU features in LD_HWCAP_MASK
maskenv = getenv("LD_HWCAP_MASK");
if (maskenv)
hwcap &= strtoul(maskenv, NULL, 0);
return hwcap;
// note that a missing auxval is interpreted as no capabilities
// available, which is safe.
}
#else // __GLIBC_PREREQ(2, 16)
#warn "Cannot detect SIMD support in Z13 or newer architectures since glibc is older than 2.16"
static unsigned long get_hwcap(void) {
// treat missing support for getauxval() as no capabilities available,
// which is safe.
return 0;
}
#endif // __GLIBC_PREREQ(2, 16)
#endif // __GLIBC
extern gotoblas_t gotoblas_ZARCH_GENERIC;
#ifdef HAVE_Z13_SUPPORT
extern gotoblas_t gotoblas_Z13;
#endif
#ifdef HAVE_Z14_SUPPORT
extern gotoblas_t gotoblas_Z14;
//extern gotoblas_t gotoblas_Z15;
//#if (!defined C_GCC) || (GCC_VERSION >= 60000)
//extern gotoblas_t gotoblas_Z14;
//#endif
#endif
#define NUM_CORETYPES 4
@ -16,47 +62,50 @@ static char* corename[] = {
"unknown",
"Z13",
"Z14",
// "Z15",
"ZARCH_GENERIC",
};
char* gotoblas_corename(void) {
#ifdef HAVE_Z13_SUPPORT
if (gotoblas == &gotoblas_Z13) return corename[1];
#endif
#ifdef HAVE_Z14_SUPPORT
if (gotoblas == &gotoblas_Z14) return corename[2];
// if (gotoblas == &gotoblas_Z15) return corename[3];
//#if (!defined C_GCC) || (GCC_VERSION >= 60000)
// if (gotoblas == &gotoblas_POWER9) return corename[3];
//#endif
return corename[0]; // try generic?
#endif
if (gotoblas == &gotoblas_ZARCH_GENERIC) return corename[3];
return corename[0];
}
// __builtin_cpu_is is not supported by zarch
/**
* Detect the fitting set of kernels by retrieving the CPU features supported by
* OS from the auxiliary value AT_HWCAP and choosing the set of kernels
* ("coretype") that exploits most of the features and can be compiled with the
* available gcc version.
* Note that we cannot use vector registers on a z13 or newer unless supported
* by the OS kernel (which needs to handle them properly during context switch).
*/
static gotoblas_t* get_coretype(void) {
FILE* infile;
char buffer[512], * p;
p = (char*)NULL;
infile = fopen("/proc/sysinfo", "r");
while (fgets(buffer, sizeof(buffer), infile)) {
if (!strncmp("Type", buffer, 4)) {
p = strchr(buffer, ':') + 2;
#if 0
fprintf(stderr, "%s\n", p);
unsigned long hwcap __attribute__((unused)) = get_hwcap();
// z14 and z15 systems: exploit Vector Facility (SIMD) and
// Vector-Enhancements Facility 1 (float SIMD instructions), if present.
#ifdef HAVE_Z14_SUPPORT
if ((hwcap & HWCAP_S390_VX) && (hwcap & HWCAP_S390_VXE))
return &gotoblas_Z14;
#endif
break;
}
}
fclose(infile);
// z13: Vector Facility (SIMD for double)
#ifdef HAVE_Z13_SUPPORT
if (hwcap & HWCAP_S390_VX)
return &gotoblas_Z13;
#endif
if (strstr(p, "2964")) return &gotoblas_Z13;
if (strstr(p, "2965")) return &gotoblas_Z13;
if (strstr(p, "3906")) return &gotoblas_Z14;
if (strstr(p, "3907")) return &gotoblas_Z14;
if (strstr(p, "8561")) return &gotoblas_Z14; // fallback z15 to z14
if (strstr(p, "8562")) return &gotoblas_Z14; // fallback z15 to z14
return NULL; // should be ZARCH_GENERIC
// fallback in case of missing compiler support, systems before z13, or
// when the OS does not advertise support for the Vector Facility (e.g.,
// missing support in the OS kernel)
return &gotoblas_ZARCH_GENERIC;
}
static gotoblas_t* force_coretype(char* coretype) {
@ -76,12 +125,13 @@ static gotoblas_t* force_coretype(char* coretype) {
switch (found)
{
#ifdef HAVE_Z13_SUPPORT
case 1: return (&gotoblas_Z13);
#endif
#ifdef HAVE_Z14_SUPPORT
case 2: return (&gotoblas_Z14);
// case 3: return (&gotoblas_Z15);
//#if (!defined C_GCC) || (GCC_VERSION >= 60000)
// case 3: return (&gotoblas_POWER9);
//#endif
#endif
case 3: return (&gotoblas_ZARCH_GENERIC);
default: return NULL;
}
snprintf(message, 128, "Core not found: %s\n", coretype);
@ -109,9 +159,9 @@ void gotoblas_dynamic_init(void) {
if (gotoblas == NULL)
{
snprintf(coremsg, 128, "Falling back to Z14 core\n");
snprintf(coremsg, 128, "Failed to detect system, falling back to generic z support.\n");
openblas_warning(1, coremsg);
gotoblas = &gotoblas_Z14;
gotoblas = &gotoblas_ZARCH_GENERIC;
}
if (gotoblas && gotoblas->init) {

View File

@ -86,23 +86,23 @@ DGEMVTKERNEL = dgemv_t_4.c
CGEMVTKERNEL = cgemv_t_4.c
ZGEMVTKERNEL = zgemv_t_4.c
STRMMKERNEL = strmm8x4V.S
STRMMKERNEL = gemm_vec.c
DTRMMKERNEL = trmm8x4V.S
CTRMMKERNEL = ctrmm4x4V.S
ZTRMMKERNEL = ztrmm4x4V.S
SGEMMKERNEL = strmm8x4V.S
SGEMMINCOPY = ../generic/gemm_ncopy_8.c
SGEMMITCOPY = ../generic/gemm_tcopy_8.c
SGEMMONCOPY = ../generic/gemm_ncopy_4.c
SGEMMOTCOPY = ../generic/gemm_tcopy_4.c
SGEMMKERNEL = gemm_vec.c
ifneq ($(SGEMM_UNROLL_M),$(SGEMM_UNROLL_N))
SGEMMINCOPY = ../generic/gemm_ncopy_$(SGEMM_UNROLL_M).c
SGEMMITCOPY = ../generic/gemm_tcopy_$(SGEMM_UNROLL_M).c
SGEMMINCOPYOBJ = sgemm_incopy$(TSUFFIX).$(SUFFIX)
SGEMMITCOPYOBJ = sgemm_itcopy$(TSUFFIX).$(SUFFIX)
endif
SGEMMONCOPY = ../generic/gemm_ncopy_$(SGEMM_UNROLL_N).c
SGEMMOTCOPY = ../generic/gemm_tcopy_$(SGEMM_UNROLL_N).c
SGEMMONCOPYOBJ = sgemm_oncopy$(TSUFFIX).$(SUFFIX)
SGEMMOTCOPYOBJ = sgemm_otcopy$(TSUFFIX).$(SUFFIX)
DGEMMKERNEL = gemm8x4V.S
DGEMMINCOPY = ../generic/gemm_ncopy_8.c
DGEMMITCOPY = ../generic/gemm_tcopy_8.c
@ -145,7 +145,3 @@ ZTRSMKERNEL_LT = ../generic/trsm_kernel_LT.c
ZTRSMKERNEL_RN = ../generic/trsm_kernel_RN.c
ZTRSMKERNEL_RT = ../generic/trsm_kernel_RT.c

447
kernel/zarch/gemm_vec.c Normal file
View File

@ -0,0 +1,447 @@
/*
* Copyright (c) IBM Corporation 2020.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name of the OpenBLAS project nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "common.h"
#include <vecintrin.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#ifdef COMPLEX
#error "Handling for complex numbers is not supported in this kernel"
#endif
#ifdef DOUBLE
#define UNROLL_M DGEMM_DEFAULT_UNROLL_M
#define UNROLL_N DGEMM_DEFAULT_UNROLL_N
#else
#define UNROLL_M SGEMM_DEFAULT_UNROLL_M
#define UNROLL_N SGEMM_DEFAULT_UNROLL_N
#endif
static const size_t unroll_m = UNROLL_M;
static const size_t unroll_n = UNROLL_N;
/* Handling of triangular matrices */
#ifdef TRMMKERNEL
static const bool trmm = true;
static const bool left =
#ifdef LEFT
true;
#else
false;
#endif
static const bool backwards =
#if defined(LEFT) != defined(TRANSA)
true;
#else
false;
#endif
#else
static const bool trmm = false;
static const bool left = false;
static const bool backwards = false;
#endif /* TRMMKERNEL */
/*
* Background:
*
* The algorithm of GotoBLAS / OpenBLAS breaks down the matrix multiplication
* problem by splitting all matrices into partitions multiple times, so that the
* submatrices fit into the L1 or L2 caches. As a result, each multiplication of
* submatrices can stream data fast from L1 and L2 caches. Inbetween, it copies
* and rearranges the submatrices to enable contiguous memory accesses to
* improve locality in both caches and TLBs.
*
* At the heart of the algorithm is this kernel, which multiplies, a "Block
* matrix" A (small dimensions) with a "Panel matrix" B (number of rows is
* small) and adds the result into a "Panel matrix" C; GotoBLAS calls this
* operation GEBP. This kernel further partitions GEBP twice, such that (1)
* submatrices of C and B fit into the L1 caches (GEBP_column_block) and (2) a
* block of C fits into the registers, while multiplying panels from A and B
* streamed from the L2 and L1 cache, respectively (GEBP_block).
*
*
* Algorithm GEBP(A, B, C, m, n, k, alpha):
*
* The problem is calculating C += alpha * (A * B)
* C is an m x n matrix, A is an m x k matrix, B is an k x n matrix.
*
* - C is in column-major-order, with an offset of ldc to the element in the
* next column (same row).
* - A is in row-major-order yet stores SGEMM_UNROLL_M elements of each column
* contiguously while walking along rows.
* - B is in column-major-order but packs SGEMM_UNROLL_N elements of a row
* contiguously.
* If the numbers of rows and columns are not multiples of SGEMM_UNROLL_M or
* SGEMM_UNROLL_N, the remaining elements are arranged in blocks with power-of-2
* dimensions (e.g., 5 remaining columns would be in a block-of-4 and a
* block-of-1).
*
* Note that packing A and B into that form is taken care of by the caller in
* driver/level3/level3.c (actually done by "copy kernels").
*
* Steps:
* - Partition C and B into blocks of n_r (SGEMM_UNROLL_N) columns, C_j and B_j.
* Now, B_j should fit into the L1 cache.
* - For each partition, calculate C_j += alpha * (A * B_j) by
* (1) Calculate C_aux := A * B_j (see below)
* (2) unpack C_j = C_j + alpha * C_aux
*
*
* Algorithm for Calculating C_aux:
*
* - Further partition C_aux and A into groups of m_r (SGEMM_UNROLL_M) rows,
* such that the m_r x n_r-submatrix of C_aux can be held in registers. Each
* submatrix of C_aux can be calculated independently, and the registers are
* added back into C_j.
*
* - For each row-block of C_aux:
* (uses a row block of A and full B_j)
* - stream over all columns of A, multiply with elements from B and
* accumulate in registers. (use different inner-kernels to exploit
* vectorization for varying block sizes)
* - add alpha * row block of C_aux back into C_j.
*
* Note that there are additional mechanics for handling triangular matrices,
* calculating B := alpha (A * B) where either of the matrices A or B can be
* triangular. In case of A, the macro "LEFT" is defined. In addition, A can
* optionally be transposed.
* The code effectively skips an "offset" number of columns in A and rows of B
* in each block, to save unnecessary work by exploiting the triangular nature.
* To handle all cases, the code discerns (1) a "left" mode when A is triangular
* and (2) "forward" / "backwards" modes where only the first "offset"
* columns/rows of A/B are used or where the first "offset" columns/rows are
* skipped, respectively.
*
* Reference:
*
* The summary above is based on staring at various kernel implementations and:
* K. Goto and R. A. Van de Geijn, Anatomy of High-Performance Matrix
* Multiplication, in ACM Transactions of Mathematical Software, Vol. 34, No.
* 3, May 2008.
*/
#define VLEN_BYTES 16
#define VLEN_FLOATS (VLEN_BYTES / sizeof(FLOAT))
typedef FLOAT vector_float __attribute__ ((vector_size (16)));
/**
* Calculate for a row-block in C_i of size ROWSxCOLS using vector intrinsics.
*
* @param[in] A Pointer current block of input matrix A.
* @param[in] k Number of columns in A.
* @param[in] B Pointer current block of input matrix B.
* @param[inout] C Pointer current block of output matrix C.
* @param[in] ldc Offset between elements in adjacent columns in C.
* @param[in] alpha Scalar factor.
*/
#define VECTOR_BLOCK(ROWS, COLS) \
static inline void GEBP_block_##ROWS##_##COLS( \
FLOAT const *restrict A, BLASLONG bk, FLOAT const *restrict B, \
FLOAT *restrict C, BLASLONG ldc, FLOAT alpha) { \
_Static_assert( \
ROWS % VLEN_FLOATS == 0, \
"rows in block must be multiples of vector length"); \
vector_float Caux[ROWS / VLEN_FLOATS][COLS]; \
\
for (BLASLONG i = 0; i < ROWS / VLEN_FLOATS; i++) \
for (BLASLONG j = 0; j < COLS; j++) \
Caux[i][j] = vec_splats(ZERO); \
\
/* \
* Stream over the row-block of A, which is packed \
* column-by-column, multiply by coefficients in B and add up \
* into temporaries Caux (which the compiler will hold in \
* registers). Vectorization: Multiply column vectors from A \
* with scalars from B and add up in column vectors of Caux. \
* That equates to unrolling the loop over rows (in i) and \
* executing each unrolled iteration as a vector element. \
*/ \
for (BLASLONG k = 0; k < bk; k++) { \
for (BLASLONG i = 0; i < ROWS / VLEN_FLOATS; i++) { \
vector_float Ak = \
*(vector_float *)(A + i * VLEN_FLOATS + \
k * ROWS); \
\
for (BLASLONG j = 0; j < COLS; j++) \
Caux[i][j] += Ak * B[j + k * COLS]; \
} \
} \
\
/* \
* Unpack row-block of C_aux into outer C_i, multiply by \
* alpha and add up. \
*/ \
for (BLASLONG j = 0; j < COLS; j++) { \
for (BLASLONG i = 0; i < ROWS / VLEN_FLOATS; i++) { \
vector_float *C_ij = \
(vector_float *)(C + i * VLEN_FLOATS + \
j * ldc); \
if (trmm) { \
*C_ij = alpha * Caux[i][j]; \
} else { \
*C_ij += alpha * Caux[i][j]; \
} \
} \
} \
}
#if UNROLL_M == 16
VECTOR_BLOCK(16, 4)
VECTOR_BLOCK(16, 2)
VECTOR_BLOCK(16, 1)
#endif
#if UNROLL_N == 8
VECTOR_BLOCK(8, 8)
VECTOR_BLOCK(4, 8)
#endif
VECTOR_BLOCK(8, 4)
VECTOR_BLOCK(8, 2)
VECTOR_BLOCK(8, 1)
VECTOR_BLOCK(4, 4)
VECTOR_BLOCK(4, 2)
VECTOR_BLOCK(4, 1)
#ifdef DOUBLE
VECTOR_BLOCK(2, 4)
VECTOR_BLOCK(2, 2)
#endif
/**
* Handle calculation for row blocks in C_i of any size by dispatching into
* macro-defined (inline) functions or by deferring to a simple generic
* implementation. Note that the compiler can remove this awkward-looking
* dispatching code while inlineing.
*
* @param[in] m Number of rows in block C_i.
* @param[in] n Number of columns in block C_i.
* @param[in] first_row Index of first row of the block C_i (relative to C).
* @param[in] A Pointer to input matrix A (note: all of it).
* @param[in] k Number of columns in A and rows in B.
* @param[in] B Pointer to current column block (panel) of input matrix B.
* @param[inout] C Pointer to current column block (panel) of output matrix C.
* @param[in] ldc Offset between elements in adjacent columns in C.
* @param[in] alpha Scalar factor.
* @param[in] offset Number of columns of A and rows of B to skip (for triangular matrices).
* @param[in] off Running offset for handling triangular matrices.
*/
static inline void GEBP_block(BLASLONG m, BLASLONG n,
BLASLONG first_row,
const FLOAT * restrict A, BLASLONG k,
const FLOAT * restrict B,
FLOAT *restrict C, BLASLONG ldc,
FLOAT alpha,
BLASLONG offset, BLASLONG off)
{
if (trmm && left)
off = offset + first_row;
A += first_row * k;
C += first_row;
if (trmm) {
if (backwards) {
A += off * m;
B += off * n;
k -= off;
} else {
if (left) {
k = off + m;
} else {
k = off + n;
}
}
}
#define BLOCK(bm, bn) \
if (m == bm && n == bn) { \
GEBP_block_##bm##_##bn(A, k, B, C, ldc, alpha); \
return; \
}
#if UNROLL_M == 16
BLOCK(16, 4); BLOCK(16, 2); BLOCK(16, 1);
#endif
#if UNROLL_N == 8
BLOCK(8, 8); BLOCK(4, 8);
#endif
BLOCK(8, 4); BLOCK(8, 2); BLOCK(8, 1);
BLOCK(4, 4); BLOCK(4, 2); BLOCK(4, 1);
#ifdef DOUBLE
BLOCK(2, 4);
BLOCK(2, 2);
#endif
#undef BLOCK
/* simple implementation for smaller block sizes: */
FLOAT Caux[m][n] __attribute__ ((aligned (16)));
/*
* Peel off first iteration (i.e., column of A) for initializing Caux
*/
for (BLASLONG i = 0; i < m; i++)
for (BLASLONG j = 0; j < n; j++)
Caux[i][j] = A[i] * B[j];
for (BLASLONG kk = 1; kk < k; kk++)
for (BLASLONG i = 0; i < m; i++)
for (BLASLONG j = 0; j < n; j++)
Caux[i][j] += A[i + kk * m] * B[j + kk * n];
for (BLASLONG i = 0; i < m; i++)
for (BLASLONG j = 0; j < n; j++)
if (trmm) {
C[i + j * ldc] = alpha * Caux[i][j];
} else {
C[i + j * ldc] += alpha * Caux[i][j];
}
}
/**
* Handle a column block (panel) of C and B while calculating C += alpha(A * B).
*
* @param[in] num_cols Number of columns in the block (in C and B).
* @param[in] first_col First column of the current block (in C and B).
* @param[in] A Pointer to input matrix A.
* @param[in] bk Number of columns in A and rows in B.
* @param[in] B Pointer to input matrix B (note: all of it).
* @param[in] bm Number of rows in C and A.
* @param[inout] C Pointer to output matrix C (note: all of it).
* @param[in] ldc Offset between elements in adjacent columns in C.
* @param[in] alpha Scalar factor.
* @param[in] offset Number of columns of A and rows of B to skip (for triangular matrices).
*/
static inline void GEBP_column_block(BLASLONG num_cols, BLASLONG first_col,
const FLOAT *restrict A, BLASLONG bk,
const FLOAT *restrict B, BLASLONG bm,
FLOAT *restrict C, BLASLONG ldc,
FLOAT alpha,
BLASLONG const offset) {
FLOAT *restrict C_i = C + first_col * ldc;
/*
* B is in column-order with n_r packed row elements, which does
* not matter -- we always move in full such blocks of
* column*pack
*/
const FLOAT *restrict B_i = B + first_col * bk;
BLASLONG off = 0;
if (trmm) {
if (left) {
off = offset;
} else {
off = -offset + first_col;
}
}
/*
* Calculate C_aux := A * B_j
* then unpack C_i += alpha * C_aux.
*
* For that purpose, further partition C_aux and A into blocks
* of m_r (unroll_m) rows, or powers-of-2 if smaller.
*/
BLASLONG row = 0;
for (BLASLONG block_size = unroll_m; block_size > 0; block_size /= 2)
for (; bm - row >= block_size; row += block_size)
GEBP_block(block_size, num_cols, row, A, bk, B_i, C_i,
ldc, alpha, offset, off);
}
/**
* Inner kernel for matrix-matrix multiplication. C += alpha (A * B)
* where C is an m-by-n matrix, A is m-by-k and B is k-by-n. Note that A, B, and
* C are pointers to submatrices of the actual matrices.
*
* For triangular matrix multiplication, calculate B := alpha (A * B) where A
* or B can be triangular (in case of A, the macro LEFT will be defined).
*
* @param[in] bm Number of rows in C and A.
* @param[in] bn Number of columns in C and B.
* @param[in] bk Number of columns in A and rows in B.
* @param[in] alpha Scalar factor.
* @param[in] ba Pointer to input matrix A.
* @param[in] bb Pointer to input matrix B.
* @param[inout] C Pointer to output matrix C.
* @param[in] ldc Offset between elements in adjacent columns in C.
* @param[in] offset Number of columns of A and rows of B to skip (for triangular matrices).
* @returns 0 on success.
*/
int CNAME(BLASLONG bm, BLASLONG bn, BLASLONG bk, FLOAT alpha,
FLOAT *restrict ba, FLOAT *restrict bb,
FLOAT *restrict C, BLASLONG ldc
#ifdef TRMMKERNEL
, BLASLONG offset
#endif
)
{
if ( (bm == 0) || (bn == 0) || (bk == 0) || (alpha == ZERO))
return 0;
/*
* interface code allocates buffers for ba and bb at page
* granularity (i.e., using mmap(MAP_ANONYMOUS), so enable the compiler
* to make use of the fact in vector load operations.
*/
ba = __builtin_assume_aligned(ba, 16);
bb = __builtin_assume_aligned(bb, 16);
/*
* Use offset and off even when compiled as SGEMMKERNEL to simplify
* function signatures and function calls.
*/
#ifndef TRMMKERNEL
BLASLONG const offset = 0;
#endif
/*
* Partition B and C into blocks of n_r (unroll_n) columns, called B_i
* and C_i. For each partition, calculate C_i += alpha * (A * B_j).
*
* For remaining columns that do not fill up a block of n_r, iteratively
* use smaller block sizes of powers of 2.
*/
BLASLONG col = 0;
for (BLASLONG block_size = unroll_n; block_size > 0; block_size /= 2)
for (; bn - col >= block_size; col += block_size)
GEBP_column_block(block_size, col, ba, bk, bb, bm, C, ldc, alpha, offset);
return 0;
}

View File

@ -2999,7 +2999,7 @@ is a big desktop or server with abundant cache rather than a phone or embedded d
#define GEMM_DEFAULT_OFFSET_B 0
#define GEMM_DEFAULT_ALIGN 0x03fffUL
#define SGEMM_DEFAULT_UNROLL_M 8
#define SGEMM_DEFAULT_UNROLL_M 16
#define SGEMM_DEFAULT_UNROLL_N 4
#define DGEMM_DEFAULT_UNROLL_M 8