diff --git a/lapack-netlib/SRC/dporfsx.f b/lapack-netlib/SRC/dporfsx.f
index 53724925e..67cca9ccf 100644
--- a/lapack-netlib/SRC/dporfsx.f
+++ b/lapack-netlib/SRC/dporfsx.f
@@ -135,7 +135,7 @@
*> \param[in,out] S
*> \verbatim
*> S is DOUBLE PRECISION array, dimension (N)
-*> The row scale factors for A. If EQUED = 'Y', A is multiplied on
+*> The scale factors for A. If EQUED = 'Y', A is multiplied on
*> the left and right by diag(S). S is an input argument if FACT =
*> 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED
*> = 'Y', each element of S must be positive. If S is output, each
@@ -263,7 +263,7 @@
*> information as described below. There currently are up to three
*> pieces of information returned for each right-hand side. If
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
-*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
+*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
@@ -299,14 +299,14 @@
*> \param[in] NPARAMS
*> \verbatim
*> NPARAMS is INTEGER
-*> Specifies the number of parameters set in PARAMS. If .LE. 0, the
+*> Specifies the number of parameters set in PARAMS. If <= 0, the
*> PARAMS array is never referenced and default values are used.
*> \endverbatim
*>
*> \param[in,out] PARAMS
*> \verbatim
*> PARAMS is DOUBLE PRECISION array, dimension (NPARAMS)
-*> Specifies algorithm parameters. If an entry is .LT. 0.0, then
+*> Specifies algorithm parameters. If an entry is < 0.0, then
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
@@ -314,9 +314,9 @@
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
-*> = 0.0 : No refinement is performed, and no error bounds are
+*> = 0.0: No refinement is performed, and no error bounds are
*> computed.
-*> = 1.0 : Use the double-precision refinement algorithm,
+*> = 1.0: Use the double-precision refinement algorithm,
*> possibly with doubled-single computations if the
*> compilation environment does not support DOUBLE
*> PRECISION.
diff --git a/lapack-netlib/SRC/dposvxx.f b/lapack-netlib/SRC/dposvxx.f
index 488e0b15a..b0de44910 100644
--- a/lapack-netlib/SRC/dposvxx.f
+++ b/lapack-netlib/SRC/dposvxx.f
@@ -366,7 +366,7 @@
*> information as described below. There currently are up to three
*> pieces of information returned for each right-hand side. If
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
-*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
+*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
@@ -402,14 +402,14 @@
*> \param[in] NPARAMS
*> \verbatim
*> NPARAMS is INTEGER
-*> Specifies the number of parameters set in PARAMS. If .LE. 0, the
+*> Specifies the number of parameters set in PARAMS. If <= 0, the
*> PARAMS array is never referenced and default values are used.
*> \endverbatim
*>
*> \param[in,out] PARAMS
*> \verbatim
*> PARAMS is DOUBLE PRECISION array, dimension NPARAMS
-*> Specifies algorithm parameters. If an entry is .LT. 0.0, then
+*> Specifies algorithm parameters. If an entry is < 0.0, then
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
@@ -417,9 +417,9 @@
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
-*> = 0.0 : No refinement is performed, and no error bounds are
+*> = 0.0: No refinement is performed, and no error bounds are
*> computed.
-*> = 1.0 : Use the extra-precise refinement algorithm.
+*> = 1.0: Use the extra-precise refinement algorithm.
*> (other values are reserved for future use)
*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
diff --git a/lapack-netlib/SRC/dsb2st_kernels.f b/lapack-netlib/SRC/dsb2st_kernels.f
index 3bf126d5b..a9dc6b5ca 100644
--- a/lapack-netlib/SRC/dsb2st_kernels.f
+++ b/lapack-netlib/SRC/dsb2st_kernels.f
@@ -1,26 +1,26 @@
*> \brief \b DSB2ST_KERNELS
*
* @generated from zhb2st_kernels.f, fortran z -> d, Wed Dec 7 08:22:39 2016
-*
+*
* =========== DOCUMENTATION ===========
*
-* Online html documentation available at
-* http://www.netlib.org/lapack/explore-html/
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
-*> Download DSB2ST_KERNELS + dependencies
-*>
-*> [TGZ]
-*>
-*> [ZIP]
-*>
+*> Download DSB2ST_KERNELS + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
*> [TXT]
-*> \endhtmlonly
+*> \endhtmlonly
*
* Definition:
* ===========
*
-* SUBROUTINE DSB2ST_KERNELS( UPLO, WANTZ, TTYPE,
+* SUBROUTINE DSB2ST_KERNELS( UPLO, WANTZ, TTYPE,
* ST, ED, SWEEP, N, NB, IB,
* A, LDA, V, TAU, LDVT, WORK)
*
@@ -32,9 +32,9 @@
* INTEGER TTYPE, ST, ED, SWEEP, N, NB, IB, LDA, LDVT
* ..
* .. Array Arguments ..
-* DOUBLE PRECISION A( LDA, * ), V( * ),
+* DOUBLE PRECISION A( LDA, * ), V( * ),
* TAU( * ), WORK( * )
-*
+*
*> \par Purpose:
* =============
*>
@@ -124,7 +124,7 @@
*> LDVT is INTEGER.
*> \endverbatim
*>
-*> \param[in] WORK
+*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array. Workspace of size nb.
*> \endverbatim
@@ -147,7 +147,7 @@
*> http://doi.acm.org/10.1145/2063384.2063394
*>
*> A. Haidar, J. Kurzak, P. Luszczek, 2013.
-*> An improved parallel singular value algorithm and its implementation
+*> An improved parallel singular value algorithm and its implementation
*> for multicore hardware, In Proceedings of 2013 International Conference
*> for High Performance Computing, Networking, Storage and Analysis (SC '13).
*> Denver, Colorado, USA, 2013.
@@ -155,16 +155,16 @@
*> http://doi.acm.org/10.1145/2503210.2503292
*>
*> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
-*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure
+*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure
*> calculations based on fine-grained memory aware tasks.
*> International Journal of High Performance Computing Applications.
*> Volume 28 Issue 2, Pages 196-209, May 2014.
-*> http://hpc.sagepub.com/content/28/2/196
+*> http://hpc.sagepub.com/content/28/2/196
*>
*> \endverbatim
*>
* =====================================================================
- SUBROUTINE DSB2ST_KERNELS( UPLO, WANTZ, TTYPE,
+ SUBROUTINE DSB2ST_KERNELS( UPLO, WANTZ, TTYPE,
$ ST, ED, SWEEP, N, NB, IB,
$ A, LDA, V, TAU, LDVT, WORK)
*
@@ -181,7 +181,7 @@
INTEGER TTYPE, ST, ED, SWEEP, N, NB, IB, LDA, LDVT
* ..
* .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), V( * ),
+ DOUBLE PRECISION A( LDA, * ), V( * ),
$ TAU( * ), WORK( * )
* ..
*
@@ -195,8 +195,8 @@
* .. Local Scalars ..
LOGICAL UPPER
INTEGER I, J1, J2, LM, LN, VPOS, TAUPOS,
- $ DPOS, OFDPOS, AJETER
- DOUBLE PRECISION CTMP
+ $ DPOS, OFDPOS, AJETER
+ DOUBLE PRECISION CTMP
* ..
* .. External Subroutines ..
EXTERNAL DLARFG, DLARFX, DLARFY
@@ -209,7 +209,7 @@
* ..
* ..
* .. Executable Statements ..
-*
+*
AJETER = IB + LDVT
UPPER = LSAME( UPLO, 'U' )
@@ -240,10 +240,10 @@
V( VPOS ) = ONE
DO 10 I = 1, LM-1
V( VPOS+I ) = ( A( OFDPOS-I, ST+I ) )
- A( OFDPOS-I, ST+I ) = ZERO
+ A( OFDPOS-I, ST+I ) = ZERO
10 CONTINUE
CTMP = ( A( OFDPOS, ST ) )
- CALL DLARFG( LM, CTMP, V( VPOS+1 ), 1,
+ CALL DLARFG( LM, CTMP, V( VPOS+1 ), 1,
$ TAU( TAUPOS ) )
A( OFDPOS, ST ) = CTMP
*
@@ -281,14 +281,14 @@
*
V( VPOS ) = ONE
DO 30 I = 1, LM-1
- V( VPOS+I ) =
+ V( VPOS+I ) =
$ ( A( DPOS-NB-I, J1+I ) )
A( DPOS-NB-I, J1+I ) = ZERO
30 CONTINUE
CTMP = ( A( DPOS-NB, J1 ) )
CALL DLARFG( LM, CTMP, V( VPOS+1 ), 1, TAU( TAUPOS ) )
A( DPOS-NB, J1 ) = CTMP
-*
+*
CALL DLARFX( 'Right', LN-1, LM, V( VPOS ),
$ TAU( TAUPOS ),
$ A( DPOS-NB+1, J1 ), LDA-1, WORK)
@@ -296,9 +296,9 @@
ENDIF
*
* Lower case
-*
+*
ELSE
-*
+*
IF( WANTZ ) THEN
VPOS = MOD( SWEEP-1, 2 ) * N + ST
TAUPOS = MOD( SWEEP-1, 2 ) * N + ST
@@ -313,9 +313,9 @@
V( VPOS ) = ONE
DO 20 I = 1, LM-1
V( VPOS+I ) = A( OFDPOS+I, ST-1 )
- A( OFDPOS+I, ST-1 ) = ZERO
+ A( OFDPOS+I, ST-1 ) = ZERO
20 CONTINUE
- CALL DLARFG( LM, A( OFDPOS, ST-1 ), V( VPOS+1 ), 1,
+ CALL DLARFG( LM, A( OFDPOS, ST-1 ), V( VPOS+1 ), 1,
$ TAU( TAUPOS ) )
*
LM = ED - ST + 1
@@ -342,7 +342,7 @@
LM = J2-J1+1
*
IF( LM.GT.0) THEN
- CALL DLARFX( 'Right', LM, LN, V( VPOS ),
+ CALL DLARFX( 'Right', LM, LN, V( VPOS ),
$ TAU( TAUPOS ), A( DPOS+NB, ST ),
$ LDA-1, WORK)
*
@@ -359,13 +359,13 @@
V( VPOS+I ) = A( DPOS+NB+I, ST )
A( DPOS+NB+I, ST ) = ZERO
40 CONTINUE
- CALL DLARFG( LM, A( DPOS+NB, ST ), V( VPOS+1 ), 1,
+ CALL DLARFG( LM, A( DPOS+NB, ST ), V( VPOS+1 ), 1,
$ TAU( TAUPOS ) )
*
- CALL DLARFX( 'Left', LM, LN-1, V( VPOS ),
+ CALL DLARFX( 'Left', LM, LN-1, V( VPOS ),
$ ( TAU( TAUPOS ) ),
$ A( DPOS+NB-1, ST+1 ), LDA-1, WORK)
-
+
ENDIF
ENDIF
ENDIF
@@ -374,4 +374,4 @@
*
* END OF DSB2ST_KERNELS
*
- END
+ END
diff --git a/lapack-netlib/SRC/dsbgvx.f b/lapack-netlib/SRC/dsbgvx.f
index eab5ebcbb..6de1eb89b 100644
--- a/lapack-netlib/SRC/dsbgvx.f
+++ b/lapack-netlib/SRC/dsbgvx.f
@@ -261,11 +261,11 @@
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
-*> = 0 : successful exit
-*> < 0 : if INFO = -i, the i-th argument had an illegal value
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
*> <= N: if INFO = i, then i eigenvectors failed to converge.
*> Their indices are stored in IFAIL.
-*> > N : DPBSTF returned an error code; i.e.,
+*> > N: DPBSTF returned an error code; i.e.,
*> if INFO = N + i, for 1 <= i <= N, then the leading
*> minor of order i of B is not positive definite.
*> The factorization of B could not be completed and
diff --git a/lapack-netlib/SRC/dsgesv.f b/lapack-netlib/SRC/dsgesv.f
index f47327d00..edbb87e7a 100644
--- a/lapack-netlib/SRC/dsgesv.f
+++ b/lapack-netlib/SRC/dsgesv.f
@@ -92,9 +92,9 @@
*> dimension (LDA,N)
*> On entry, the N-by-N coefficient matrix A.
*> On exit, if iterative refinement has been successfully used
-*> (INFO.EQ.0 and ITER.GE.0, see description below), then A is
+*> (INFO = 0 and ITER >= 0, see description below), then A is
*> unchanged, if double precision factorization has been used
-*> (INFO.EQ.0 and ITER.LT.0, see description below), then the
+*> (INFO = 0 and ITER < 0, see description below), then the
*> array A contains the factors L and U from the factorization
*> A = P*L*U; the unit diagonal elements of L are not stored.
*> \endverbatim
@@ -111,8 +111,8 @@
*> The pivot indices that define the permutation matrix P;
*> row i of the matrix was interchanged with row IPIV(i).
*> Corresponds either to the single precision factorization
-*> (if INFO.EQ.0 and ITER.GE.0) or the double precision
-*> factorization (if INFO.EQ.0 and ITER.LT.0).
+*> (if INFO = 0 and ITER >= 0) or the double precision
+*> factorization (if INFO = 0 and ITER < 0).
*> \endverbatim
*>
*> \param[in] B
@@ -406,7 +406,7 @@
30 CONTINUE
*
* If we are at this place of the code, this is because we have
-* performed ITER=ITERMAX iterations and never satisified the
+* performed ITER=ITERMAX iterations and never satisfied the
* stopping criterion, set up the ITER flag accordingly and follow up
* on double precision routine.
*
diff --git a/lapack-netlib/SRC/dsposv.f b/lapack-netlib/SRC/dsposv.f
index 4a8575241..6c8baa56b 100644
--- a/lapack-netlib/SRC/dsposv.f
+++ b/lapack-netlib/SRC/dsposv.f
@@ -106,9 +106,9 @@
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
*> On exit, if iterative refinement has been successfully used
-*> (INFO.EQ.0 and ITER.GE.0, see description below), then A is
+*> (INFO = 0 and ITER >= 0, see description below), then A is
*> unchanged, if double precision factorization has been used
-*> (INFO.EQ.0 and ITER.LT.0, see description below), then the
+*> (INFO = 0 and ITER < 0, see description below), then the
*> array A contains the factor U or L from the Cholesky
*> factorization A = U**T*U or A = L*L**T.
*> \endverbatim
@@ -413,7 +413,7 @@
30 CONTINUE
*
* If we are at this place of the code, this is because we have
-* performed ITER=ITERMAX iterations and never satisified the
+* performed ITER=ITERMAX iterations and never satisfied the
* stopping criterion, set up the ITER flag accordingly and follow
* up on double precision routine.
*
diff --git a/lapack-netlib/SRC/dstemr.f b/lapack-netlib/SRC/dstemr.f
index a1a8e3433..16c9d970d 100644
--- a/lapack-netlib/SRC/dstemr.f
+++ b/lapack-netlib/SRC/dstemr.f
@@ -233,13 +233,13 @@
*> \param[in,out] TRYRAC
*> \verbatim
*> TRYRAC is LOGICAL
-*> If TRYRAC.EQ..TRUE., indicates that the code should check whether
+*> If TRYRAC = .TRUE., indicates that the code should check whether
*> the tridiagonal matrix defines its eigenvalues to high relative
*> accuracy. If so, the code uses relative-accuracy preserving
*> algorithms that might be (a bit) slower depending on the matrix.
*> If the matrix does not define its eigenvalues to high relative
*> accuracy, the code can uses possibly faster algorithms.
-*> If TRYRAC.EQ..FALSE., the code is not required to guarantee
+*> If TRYRAC = .FALSE., the code is not required to guarantee
*> relatively accurate eigenvalues and can use the fastest possible
*> techniques.
*> On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix
diff --git a/lapack-netlib/SRC/dsyconvf.f b/lapack-netlib/SRC/dsyconvf.f
index 37c8157ba..60cfd1e65 100644
--- a/lapack-netlib/SRC/dsyconvf.f
+++ b/lapack-netlib/SRC/dsyconvf.f
@@ -291,7 +291,7 @@
*
* Convert PERMUTATIONS and IPIV
*
-* Apply permutaions to submatrices of upper part of A
+* Apply permutations to submatrices of upper part of A
* in factorization order where i decreases from N to 1
*
I = N
@@ -344,7 +344,7 @@
*
* Revert PERMUTATIONS and IPIV
*
-* Apply permutaions to submatrices of upper part of A
+* Apply permutations to submatrices of upper part of A
* in reverse factorization order where i increases from 1 to N
*
I = 1
@@ -435,7 +435,7 @@
*
* Convert PERMUTATIONS and IPIV
*
-* Apply permutaions to submatrices of lower part of A
+* Apply permutations to submatrices of lower part of A
* in factorization order where k increases from 1 to N
*
I = 1
@@ -488,7 +488,7 @@
*
* Revert PERMUTATIONS and IPIV
*
-* Apply permutaions to submatrices of lower part of A
+* Apply permutations to submatrices of lower part of A
* in reverse factorization order where i decreases from N to 1
*
I = N
diff --git a/lapack-netlib/SRC/dsyconvf_rook.f b/lapack-netlib/SRC/dsyconvf_rook.f
index 5c774906e..bd683a087 100644
--- a/lapack-netlib/SRC/dsyconvf_rook.f
+++ b/lapack-netlib/SRC/dsyconvf_rook.f
@@ -282,7 +282,7 @@
*
* Convert PERMUTATIONS
*
-* Apply permutaions to submatrices of upper part of A
+* Apply permutations to submatrices of upper part of A
* in factorization order where i decreases from N to 1
*
I = N
@@ -333,7 +333,7 @@
*
* Revert PERMUTATIONS
*
-* Apply permutaions to submatrices of upper part of A
+* Apply permutations to submatrices of upper part of A
* in reverse factorization order where i increases from 1 to N
*
I = 1
@@ -423,7 +423,7 @@
*
* Convert PERMUTATIONS
*
-* Apply permutaions to submatrices of lower part of A
+* Apply permutations to submatrices of lower part of A
* in factorization order where i increases from 1 to N
*
I = 1
@@ -474,7 +474,7 @@
*
* Revert PERMUTATIONS
*
-* Apply permutaions to submatrices of lower part of A
+* Apply permutations to submatrices of lower part of A
* in reverse factorization order where i decreases from N to 1
*
I = N
diff --git a/lapack-netlib/SRC/dsyev_2stage.f b/lapack-netlib/SRC/dsyev_2stage.f
index fff0dedbc..9d802905c 100644
--- a/lapack-netlib/SRC/dsyev_2stage.f
+++ b/lapack-netlib/SRC/dsyev_2stage.f
@@ -317,7 +317,7 @@
IF( .NOT.WANTZ ) THEN
CALL DSTERF( N, W, WORK( INDE ), INFO )
ELSE
-* Not available in this release, and agrument checking should not
+* Not available in this release, and argument checking should not
* let it getting here
RETURN
CALL DORGTR( UPLO, N, A, LDA, WORK( INDTAU ), WORK( INDWRK ),
diff --git a/lapack-netlib/SRC/dsyevd_2stage.f b/lapack-netlib/SRC/dsyevd_2stage.f
index 75a6da436..ff8e08d71 100644
--- a/lapack-netlib/SRC/dsyevd_2stage.f
+++ b/lapack-netlib/SRC/dsyevd_2stage.f
@@ -385,7 +385,7 @@
IF( .NOT.WANTZ ) THEN
CALL DSTERF( N, W, WORK( INDE ), INFO )
ELSE
-* Not available in this release, and agrument checking should not
+* Not available in this release, and argument checking should not
* let it getting here
RETURN
CALL DSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
diff --git a/lapack-netlib/SRC/dsyrfsx.f b/lapack-netlib/SRC/dsyrfsx.f
index e128cd4e0..eb091e720 100644
--- a/lapack-netlib/SRC/dsyrfsx.f
+++ b/lapack-netlib/SRC/dsyrfsx.f
@@ -271,7 +271,7 @@
*> information as described below. There currently are up to three
*> pieces of information returned for each right-hand side. If
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
-*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
+*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
@@ -307,14 +307,14 @@
*> \param[in] NPARAMS
*> \verbatim
*> NPARAMS is INTEGER
-*> Specifies the number of parameters set in PARAMS. If .LE. 0, the
+*> Specifies the number of parameters set in PARAMS. If <= 0, the
*> PARAMS array is never referenced and default values are used.
*> \endverbatim
*>
*> \param[in,out] PARAMS
*> \verbatim
*> PARAMS is DOUBLE PRECISION array, dimension (NPARAMS)
-*> Specifies algorithm parameters. If an entry is .LT. 0.0, then
+*> Specifies algorithm parameters. If an entry is < 0.0, then
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
@@ -322,9 +322,9 @@
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
-*> = 0.0 : No refinement is performed, and no error bounds are
+*> = 0.0: No refinement is performed, and no error bounds are
*> computed.
-*> = 1.0 : Use the double-precision refinement algorithm,
+*> = 1.0: Use the double-precision refinement algorithm,
*> possibly with doubled-single computations if the
*> compilation environment does not support DOUBLE
*> PRECISION.
diff --git a/lapack-netlib/SRC/dsysv_aa.f b/lapack-netlib/SRC/dsysv_aa.f
index 7192928c6..4ee474448 100644
--- a/lapack-netlib/SRC/dsysv_aa.f
+++ b/lapack-netlib/SRC/dsysv_aa.f
@@ -42,7 +42,7 @@
*> matrices.
*>
*> Aasen's algorithm is used to factor A as
-*> A = U * T * U**T, if UPLO = 'U', or
+*> A = U**T * T * U, if UPLO = 'U', or
*> A = L * T * L**T, if UPLO = 'L',
*> where U (or L) is a product of permutation and unit upper (lower)
*> triangular matrices, and T is symmetric tridiagonal. The factored
@@ -86,7 +86,7 @@
*>
*> On exit, if INFO = 0, the tridiagonal matrix T and the
*> multipliers used to obtain the factor U or L from the
-*> factorization A = U*T*U**T or A = L*T*L**T as computed by
+*> factorization A = U**T*T*U or A = L*T*L**T as computed by
*> DSYTRF.
*> \endverbatim
*>
@@ -230,7 +230,7 @@
RETURN
END IF
*
-* Compute the factorization A = U*T*U**T or A = L*T*L**T.
+* Compute the factorization A = U**T*T*U or A = L*T*L**T.
*
CALL DSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
IF( INFO.EQ.0 ) THEN
diff --git a/lapack-netlib/SRC/dsysv_aa_2stage.f b/lapack-netlib/SRC/dsysv_aa_2stage.f
index 05e538f0b..ef593bc7e 100644
--- a/lapack-netlib/SRC/dsysv_aa_2stage.f
+++ b/lapack-netlib/SRC/dsysv_aa_2stage.f
@@ -45,7 +45,7 @@
*> matrices.
*>
*> Aasen's 2-stage algorithm is used to factor A as
-*> A = U * T * U**T, if UPLO = 'U', or
+*> A = U**T * T * U, if UPLO = 'U', or
*> A = L * T * L**T, if UPLO = 'L',
*> where U (or L) is a product of permutation and unit upper (lower)
*> triangular matrices, and T is symmetric and band. The matrix T is
@@ -259,7 +259,7 @@
END IF
*
*
-* Compute the factorization A = U*T*U**T or A = L*T*L**T.
+* Compute the factorization A = U**T*T*U or A = L*T*L**T.
*
CALL DSYTRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, IPIV2,
$ WORK, LWORK, INFO )
diff --git a/lapack-netlib/SRC/dsysvxx.f b/lapack-netlib/SRC/dsysvxx.f
index 6e167d81e..0be50bcd1 100644
--- a/lapack-netlib/SRC/dsysvxx.f
+++ b/lapack-netlib/SRC/dsysvxx.f
@@ -377,7 +377,7 @@
*> information as described below. There currently are up to three
*> pieces of information returned for each right-hand side. If
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
-*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
+*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
@@ -413,14 +413,14 @@
*> \param[in] NPARAMS
*> \verbatim
*> NPARAMS is INTEGER
-*> Specifies the number of parameters set in PARAMS. If .LE. 0, the
+*> Specifies the number of parameters set in PARAMS. If <= 0, the
*> PARAMS array is never referenced and default values are used.
*> \endverbatim
*>
*> \param[in,out] PARAMS
*> \verbatim
*> PARAMS is DOUBLE PRECISION array, dimension (NPARAMS)
-*> Specifies algorithm parameters. If an entry is .LT. 0.0, then
+*> Specifies algorithm parameters. If an entry is < 0.0, then
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
@@ -428,9 +428,9 @@
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0D+0
-*> = 0.0 : No refinement is performed, and no error bounds are
+*> = 0.0: No refinement is performed, and no error bounds are
*> computed.
-*> = 1.0 : Use the extra-precise refinement algorithm.
+*> = 1.0: Use the extra-precise refinement algorithm.
*> (other values are reserved for future use)
*>
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
diff --git a/lapack-netlib/SRC/dsytf2_rk.f b/lapack-netlib/SRC/dsytf2_rk.f
index 45cf62ab9..cc9e4616e 100644
--- a/lapack-netlib/SRC/dsytf2_rk.f
+++ b/lapack-netlib/SRC/dsytf2_rk.f
@@ -312,7 +312,7 @@
*
* Factorize A as U*D*U**T using the upper triangle of A
*
-* Initilize the first entry of array E, where superdiagonal
+* Initialize the first entry of array E, where superdiagonal
* elements of D are stored
*
E( 1 ) = ZERO
@@ -623,7 +623,7 @@
*
* Factorize A as L*D*L**T using the lower triangle of A
*
-* Initilize the unused last entry of the subdiagonal array E.
+* Initialize the unused last entry of the subdiagonal array E.
*
E( N ) = ZERO
*
diff --git a/lapack-netlib/SRC/dsytrd_2stage.f b/lapack-netlib/SRC/dsytrd_2stage.f
index 522602bb2..fc4b92908 100644
--- a/lapack-netlib/SRC/dsytrd_2stage.f
+++ b/lapack-netlib/SRC/dsytrd_2stage.f
@@ -123,23 +123,22 @@
*>
*> \param[out] HOUS2
*> \verbatim
-*> HOUS2 is DOUBLE PRECISION array, dimension LHOUS2, that
-*> store the Householder representation of the stage2
+*> HOUS2 is DOUBLE PRECISION array, dimension (LHOUS2)
+*> Stores the Householder representation of the stage2
*> band to tridiagonal.
*> \endverbatim
*>
*> \param[in] LHOUS2
*> \verbatim
*> LHOUS2 is INTEGER
-*> The dimension of the array HOUS2. LHOUS2 = MAX(1, dimension)
-*> If LWORK = -1, or LHOUS2=-1,
+*> The dimension of the array HOUS2.
+*> If LWORK = -1, or LHOUS2 = -1,
*> then a query is assumed; the routine
*> only calculates the optimal size of the HOUS2 array, returns
*> this value as the first entry of the HOUS2 array, and no error
*> message related to LHOUS2 is issued by XERBLA.
-*> LHOUS2 = MAX(1, dimension) where
-*> dimension = 4*N if VECT='N'
-*> not available now if VECT='H'
+*> If VECT='N', LHOUS2 = max(1, 4*n);
+*> if VECT='V', option not yet available.
*> \endverbatim
*>
*> \param[out] WORK
diff --git a/lapack-netlib/SRC/dsytrd_sb2st.F b/lapack-netlib/SRC/dsytrd_sb2st.F
index 4d81fe226..19f3613e3 100644
--- a/lapack-netlib/SRC/dsytrd_sb2st.F
+++ b/lapack-netlib/SRC/dsytrd_sb2st.F
@@ -50,9 +50,9 @@
* Arguments:
* ==========
*
-*> \param[in] STAGE
+*> \param[in] STAGE1
*> \verbatim
-*> STAGE is CHARACTER*1
+*> STAGE1 is CHARACTER*1
*> = 'N': "No": to mention that the stage 1 of the reduction
*> from dense to band using the dsytrd_sy2sb routine
*> was not called before this routine to reproduce AB.
@@ -481,7 +481,7 @@
*
* Call the kernel
*
-#if defined(_OPENMP) && _OPENMP >= 201307
+#if defined(_OPENMP)
IF( TTYPE.NE.1 ) THEN
!$OMP TASK DEPEND(in:WORK(MYID+SHIFT-1))
!$OMP$ DEPEND(in:WORK(MYID-1))
diff --git a/lapack-netlib/SRC/dsytrd_sy2sb.f b/lapack-netlib/SRC/dsytrd_sy2sb.f
index e0a5debc5..7f30817b0 100644
--- a/lapack-netlib/SRC/dsytrd_sy2sb.f
+++ b/lapack-netlib/SRC/dsytrd_sy2sb.f
@@ -363,7 +363,7 @@
*
*
* Set the workspace of the triangular matrix T to zero once such a
-* way everytime T is generated the upper/lower portion will be always zero
+* way every time T is generated the upper/lower portion will be always zero
*
CALL DLASET( "A", LDT, KD, ZERO, ZERO, WORK( TPOS ), LDT )
*
diff --git a/lapack-netlib/SRC/dsytrf.f b/lapack-netlib/SRC/dsytrf.f
index d8da4f122..a3bd30a2f 100644
--- a/lapack-netlib/SRC/dsytrf.f
+++ b/lapack-netlib/SRC/dsytrf.f
@@ -39,7 +39,7 @@
*> the Bunch-Kaufman diagonal pivoting method. The form of the
*> factorization is
*>
-*> A = U*D*U**T or A = L*D*L**T
+*> A = U**T*D*U or A = L*D*L**T
*>
*> where U (or L) is a product of permutation and unit upper (lower)
*> triangular matrices, and D is symmetric and block diagonal with
@@ -144,7 +144,7 @@
*>
*> \verbatim
*>
-*> If UPLO = 'U', then A = U*D*U**T, where
+*> If UPLO = 'U', then A = U**T*D*U, where
*> U = P(n)*U(n)* ... *P(k)U(k)* ...,
*> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
*> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
@@ -262,7 +262,7 @@
*
IF( UPPER ) THEN
*
-* Factorize A as U*D*U**T using the upper triangle of A
+* Factorize A as U**T*D*U using the upper triangle of A
*
* K is the main loop index, decreasing from N to 1 in steps of
* KB, where KB is the number of columns factorized by DLASYF;
diff --git a/lapack-netlib/SRC/dsytrf_aa.f b/lapack-netlib/SRC/dsytrf_aa.f
index 24b3f393b..6df0da2cd 100644
--- a/lapack-netlib/SRC/dsytrf_aa.f
+++ b/lapack-netlib/SRC/dsytrf_aa.f
@@ -37,7 +37,7 @@
*> DSYTRF_AA computes the factorization of a real symmetric matrix A
*> using the Aasen's algorithm. The form of the factorization is
*>
-*> A = U*T*U**T or A = L*T*L**T
+*> A = U**T*T*U or A = L*T*L**T
*>
*> where U (or L) is a product of permutation and unit upper (lower)
*> triangular matrices, and T is a symmetric tridiagonal matrix.
@@ -223,7 +223,7 @@
IF( UPPER ) THEN
*
* .....................................................
-* Factorize A as L*D*L**T using the upper triangle of A
+* Factorize A as U**T*D*U using the upper triangle of A
* .....................................................
*
* Copy first row A(1, 1:N) into H(1:n) (stored in WORK(1:N))
@@ -256,7 +256,7 @@
$ A( MAX(1, J), J+1 ), LDA,
$ IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
*
-* Ajust IPIV and apply it back (J-th step picks (J+1)-th pivot)
+* Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot)
*
DO J2 = J+2, MIN(N, J+JB+1)
IPIV( J2 ) = IPIV( J2 ) + J
@@ -375,7 +375,7 @@
$ A( J+1, MAX(1, J) ), LDA,
$ IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
*
-* Ajust IPIV and apply it back (J-th step picks (J+1)-th pivot)
+* Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot)
*
DO J2 = J+2, MIN(N, J+JB+1)
IPIV( J2 ) = IPIV( J2 ) + J
diff --git a/lapack-netlib/SRC/dsytrf_aa_2stage.f b/lapack-netlib/SRC/dsytrf_aa_2stage.f
index 25fc1a2eb..a37be5bdd 100644
--- a/lapack-netlib/SRC/dsytrf_aa_2stage.f
+++ b/lapack-netlib/SRC/dsytrf_aa_2stage.f
@@ -38,7 +38,7 @@
*> DSYTRF_AA_2STAGE computes the factorization of a real symmetric matrix A
*> using the Aasen's algorithm. The form of the factorization is
*>
-*> A = U*T*U**T or A = L*T*L**T
+*> A = U**T*T*U or A = L*T*L**T
*>
*> where U (or L) is a product of permutation and unit upper (lower)
*> triangular matrices, and T is a symmetric band matrix with the
@@ -103,6 +103,22 @@
*> no error message related to LTB is issued by XERBLA.
*> \endverbatim
*>
+*> \param[out] IPIV
+*> \verbatim
+*> IPIV is INTEGER array, dimension (N)
+*> On exit, it contains the details of the interchanges, i.e.,
+*> the row and column k of A were interchanged with the
+*> row and column IPIV(k).
+*> \endverbatim
+*>
+*> \param[out] IPIV2
+*> \verbatim
+*> IPIV2 is INTEGER array, dimension (N)
+*> On exit, it contains the details of the interchanges, i.e.,
+*> the row and column k of T were interchanged with the
+*> row and column IPIV2(k).
+*> \endverbatim
+*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION workspace of size LWORK
@@ -120,22 +136,6 @@
*> no error message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
-*> \param[out] IPIV
-*> \verbatim
-*> IPIV is INTEGER array, dimension (N)
-*> On exit, it contains the details of the interchanges, i.e.,
-*> the row and column k of A were interchanged with the
-*> row and column IPIV(k).
-*> \endverbatim
-*>
-*> \param[out] IPIV2
-*> \verbatim
-*> IPIV2 is INTEGER array, dimension (N)
-*> On exit, it contains the details of the interchanges, i.e.,
-*> the row and column k of T were interchanged with the
-*> row and column IPIV2(k).
-*> \endverbatim
-*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
@@ -275,7 +275,7 @@
IF( UPPER ) THEN
*
* .....................................................
-* Factorize A as L*D*L**T using the upper triangle of A
+* Factorize A as U**T*D*U using the upper triangle of A
* .....................................................
*
DO J = 0, NT-1
@@ -442,12 +442,14 @@ c END IF
* > Apply pivots to previous columns of L
CALL DSWAP( K-1, A( (J+1)*NB+1, I1 ), 1,
$ A( (J+1)*NB+1, I2 ), 1 )
-* > Swap A(I1+1:M, I1) with A(I2, I1+1:M)
- CALL DSWAP( I2-I1-1, A( I1, I1+1 ), LDA,
- $ A( I1+1, I2 ), 1 )
+* > Swap A(I1+1:M, I1) with A(I2, I1+1:M)
+ IF( I2.GT.(I1+1) )
+ $ CALL DSWAP( I2-I1-1, A( I1, I1+1 ), LDA,
+ $ A( I1+1, I2 ), 1 )
* > Swap A(I2+1:M, I1) with A(I2+1:M, I2)
- CALL DSWAP( N-I2, A( I1, I2+1 ), LDA,
- $ A( I2, I2+1 ), LDA )
+ IF( I2.LT.N )
+ $ CALL DSWAP( N-I2, A( I1, I2+1 ), LDA,
+ $ A( I2, I2+1 ), LDA )
* > Swap A(I1, I1) with A(I2, I2)
PIV = A( I1, I1 )
A( I1, I1 ) = A( I2, I2 )
@@ -616,11 +618,13 @@ c END IF
CALL DSWAP( K-1, A( I1, (J+1)*NB+1 ), LDA,
$ A( I2, (J+1)*NB+1 ), LDA )
* > Swap A(I1+1:M, I1) with A(I2, I1+1:M)
- CALL DSWAP( I2-I1-1, A( I1+1, I1 ), 1,
- $ A( I2, I1+1 ), LDA )
+ IF( I2.GT.(I1+1) )
+ $ CALL DSWAP( I2-I1-1, A( I1+1, I1 ), 1,
+ $ A( I2, I1+1 ), LDA )
* > Swap A(I2+1:M, I1) with A(I2+1:M, I2)
- CALL DSWAP( N-I2, A( I2+1, I1 ), 1,
- $ A( I2+1, I2 ), 1 )
+ IF( I2.LT.N )
+ $ CALL DSWAP( N-I2, A( I2+1, I1 ), 1,
+ $ A( I2+1, I2 ), 1 )
* > Swap A(I1, I1) with A(I2, I2)
PIV = A( I1, I1 )
A( I1, I1 ) = A( I2, I2 )
diff --git a/lapack-netlib/SRC/dsytri2.f b/lapack-netlib/SRC/dsytri2.f
index 23f8b9fa2..5c3a5ec76 100644
--- a/lapack-netlib/SRC/dsytri2.f
+++ b/lapack-netlib/SRC/dsytri2.f
@@ -62,7 +62,7 @@
*> \param[in,out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
-*> On entry, the NB diagonal matrix D and the multipliers
+*> On entry, the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by DSYTRF.
*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
@@ -82,7 +82,7 @@
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
-*> Details of the interchanges and the NB structure of D
+*> Details of the interchanges and the block structure of D
*> as determined by DSYTRF.
*> \endverbatim
*>
diff --git a/lapack-netlib/SRC/dsytrs_aa.f b/lapack-netlib/SRC/dsytrs_aa.f
index 05ef31ff3..d9dc0a6d1 100644
--- a/lapack-netlib/SRC/dsytrs_aa.f
+++ b/lapack-netlib/SRC/dsytrs_aa.f
@@ -37,7 +37,7 @@
*> \verbatim
*>
*> DSYTRS_AA solves a system of linear equations A*X = B with a real
-*> symmetric matrix A using the factorization A = U*T*U**T or
+*> symmetric matrix A using the factorization A = U**T*T*U or
*> A = L*T*L**T computed by DSYTRF_AA.
*> \endverbatim
*
@@ -49,7 +49,7 @@
*> UPLO is CHARACTER*1
*> Specifies whether the details of the factorization are stored
*> as an upper or lower triangular matrix.
-*> = 'U': Upper triangular, form is A = U*T*U**T;
+*> = 'U': Upper triangular, form is A = U**T*T*U;
*> = 'L': Lower triangular, form is A = L*T*L**T.
*> \endverbatim
*>
@@ -97,14 +97,16 @@
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
-*> \param[in] WORK
+*> \param[out] WORK
*> \verbatim
-*> WORK is DOUBLE array, dimension (MAX(1,LWORK))
+*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
-*> LWORK is INTEGER, LWORK >= MAX(1,3*N-2).
+*> LWORK is INTEGER
+*> The dimension of the array WORK. LWORK >= max(1,3*N-2).
+*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
@@ -198,22 +200,29 @@
*
IF( UPPER ) THEN
*
-* Solve A*X = B, where A = U*T*U**T.
+* Solve A*X = B, where A = U**T*T*U.
*
-* Pivot, P**T * B
+* 1) Forward substitution with U**T
*
- DO K = 1, N
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- END DO
+ IF( N.GT.1 ) THEN
*
-* Compute (U \P**T * B) -> B [ (U \P**T * B) ]
+* Pivot, P**T * B -> B
*
- CALL DTRSM('L', 'U', 'T', 'U', N-1, NRHS, ONE, A( 1, 2 ), LDA,
- $ B( 2, 1 ), LDB)
+ DO K = 1, N
+ KP = IPIV( K )
+ IF( KP.NE.K )
+ $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
+ END DO
*
-* Compute T \ B -> B [ T \ (U \P**T * B) ]
+* Compute U**T \ B -> B [ (U**T \P**T * B) ]
+*
+ CALL DTRSM('L', 'U', 'T', 'U', N-1, NRHS, ONE, A( 1, 2 ),
+ $ LDA, B( 2, 1 ), LDB)
+ END IF
+*
+* 2) Solve with triangular matrix T
+*
+* Compute T \ B -> B [ T \ (U**T \P**T * B) ]
*
CALL DLACPY( 'F', 1, N, A( 1, 1 ), LDA+1, WORK( N ), 1)
IF( N.GT.1 ) THEN
@@ -223,35 +232,47 @@
CALL DGTSV( N, NRHS, WORK( 1 ), WORK( N ), WORK( 2*N ), B, LDB,
$ INFO )
*
-* Compute (U**T \ B) -> B [ U**T \ (T \ (U \P**T * B) ) ]
+* 3) Backward substitution with U
*
- CALL DTRSM( 'L', 'U', 'N', 'U', N-1, NRHS, ONE, A( 1, 2 ), LDA,
- $ B( 2, 1 ), LDB)
+ IF( N.GT.1 ) THEN
*
-* Pivot, P * B [ P * (U**T \ (T \ (U \P**T * B) )) ]
+* Compute U \ B -> B [ U \ (T \ (U**T \P**T * B) ) ]
*
- DO K = N, 1, -1
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- END DO
+ CALL DTRSM( 'L', 'U', 'N', 'U', N-1, NRHS, ONE, A( 1, 2 ),
+ $ LDA, B( 2, 1 ), LDB)
+*
+* Pivot, P * B -> B [ P * (U \ (T \ (U**T \P**T * B) )) ]
+*
+ DO K = N, 1, -1
+ KP = IPIV( K )
+ IF( KP.NE.K )
+ $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
+ END DO
+ END IF
*
ELSE
*
* Solve A*X = B, where A = L*T*L**T.
*
-* Pivot, P**T * B
+* 1) Forward substitution with L
*
- DO K = 1, N
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- END DO
+ IF( N.GT.1 ) THEN
*
-* Compute (L \P**T * B) -> B [ (L \P**T * B) ]
+* Pivot, P**T * B -> B
*
- CALL DTRSM( 'L', 'L', 'N', 'U', N-1, NRHS, ONE, A( 2, 1 ), LDA,
- $ B( 2, 1 ), LDB)
+ DO K = 1, N
+ KP = IPIV( K )
+ IF( KP.NE.K )
+ $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
+ END DO
+*
+* Compute L \ B -> B [ (L \P**T * B) ]
+*
+ CALL DTRSM( 'L', 'L', 'N', 'U', N-1, NRHS, ONE, A( 2, 1 ),
+ $ LDA, B( 2, 1 ), LDB)
+ END IF
+*
+* 2) Solve with triangular matrix T
*
* Compute T \ B -> B [ T \ (L \P**T * B) ]
*
@@ -263,18 +284,23 @@
CALL DGTSV( N, NRHS, WORK( 1 ), WORK(N), WORK( 2*N ), B, LDB,
$ INFO)
*
-* Compute (L**T \ B) -> B [ L**T \ (T \ (L \P**T * B) ) ]
+* 3) Backward substitution with L**T
*
- CALL DTRSM( 'L', 'L', 'T', 'U', N-1, NRHS, ONE, A( 2, 1 ), LDA,
- $ B( 2, 1 ), LDB)
+ IF( N.GT.1 ) THEN
*
-* Pivot, P * B [ P * (L**T \ (T \ (L \P**T * B) )) ]
+* Compute (L**T \ B) -> B [ L**T \ (T \ (L \P**T * B) ) ]
*
- DO K = N, 1, -1
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- END DO
+ CALL DTRSM( 'L', 'L', 'T', 'U', N-1, NRHS, ONE, A( 2, 1 ),
+ $ LDA, B( 2, 1 ), LDB)
+*
+* Pivot, P * B -> B [ P * (L**T \ (T \ (L \P**T * B) )) ]
+*
+ DO K = N, 1, -1
+ KP = IPIV( K )
+ IF( KP.NE.K )
+ $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
+ END DO
+ END IF
*
END IF
*
diff --git a/lapack-netlib/SRC/dsytrs_aa_2stage.f b/lapack-netlib/SRC/dsytrs_aa_2stage.f
index bb283cb95..69c702f8a 100644
--- a/lapack-netlib/SRC/dsytrs_aa_2stage.f
+++ b/lapack-netlib/SRC/dsytrs_aa_2stage.f
@@ -36,7 +36,7 @@
*> \verbatim
*>
*> DSYTRS_AA_2STAGE solves a system of linear equations A*X = B with a real
-*> symmetric matrix A using the factorization A = U*T*U**T or
+*> symmetric matrix A using the factorization A = U**T*T*U or
*> A = L*T*L**T computed by DSYTRF_AA_2STAGE.
*> \endverbatim
*
@@ -48,7 +48,7 @@
*> UPLO is CHARACTER*1
*> Specifies whether the details of the factorization are stored
*> as an upper or lower triangular matrix.
-*> = 'U': Upper triangular, form is A = U*T*U**T;
+*> = 'U': Upper triangular, form is A = U**T*T*U;
*> = 'L': Lower triangular, form is A = L*T*L**T.
*> \endverbatim
*>
@@ -208,15 +208,15 @@
*
IF( UPPER ) THEN
*
-* Solve A*X = B, where A = U*T*U**T.
+* Solve A*X = B, where A = U**T*T*U.
*
IF( N.GT.NB ) THEN
*
-* Pivot, P**T * B
+* Pivot, P**T * B -> B
*
CALL DLASWP( NRHS, B, LDB, NB+1, N, IPIV, 1 )
*
-* Compute (U**T \P**T * B) -> B [ (U**T \P**T * B) ]
+* Compute (U**T \ B) -> B [ (U**T \P**T * B) ]
*
CALL DTRSM( 'L', 'U', 'T', 'U', N-NB, NRHS, ONE, A(1, NB+1),
$ LDA, B(NB+1, 1), LDB)
@@ -234,7 +234,7 @@
CALL DTRSM( 'L', 'U', 'N', 'U', N-NB, NRHS, ONE, A(1, NB+1),
$ LDA, B(NB+1, 1), LDB)
*
-* Pivot, P * B [ P * (U \ (T \ (U**T \P**T * B) )) ]
+* Pivot, P * B -> B [ P * (U \ (T \ (U**T \P**T * B) )) ]
*
CALL DLASWP( NRHS, B, LDB, NB+1, N, IPIV, -1 )
*
@@ -246,11 +246,11 @@
*
IF( N.GT.NB ) THEN
*
-* Pivot, P**T * B
+* Pivot, P**T * B -> B
*
CALL DLASWP( NRHS, B, LDB, NB+1, N, IPIV, 1 )
*
-* Compute (L \P**T * B) -> B [ (L \P**T * B) ]
+* Compute (L \ B) -> B [ (L \P**T * B) ]
*
CALL DTRSM( 'L', 'L', 'N', 'U', N-NB, NRHS, ONE, A(NB+1, 1),
$ LDA, B(NB+1, 1), LDB)
@@ -268,7 +268,7 @@
CALL DTRSM( 'L', 'L', 'T', 'U', N-NB, NRHS, ONE, A(NB+1, 1),
$ LDA, B(NB+1, 1), LDB)
*
-* Pivot, P * B [ P * (L**T \ (T \ (L \P**T * B) )) ]
+* Pivot, P * B -> B [ P * (L**T \ (T \ (L \P**T * B) )) ]
*
CALL DLASWP( NRHS, B, LDB, NB+1, N, IPIV, -1 )
*
diff --git a/lapack-netlib/SRC/dtgsy2.f b/lapack-netlib/SRC/dtgsy2.f
index 1c687b15e..e8c9b4001 100644
--- a/lapack-netlib/SRC/dtgsy2.f
+++ b/lapack-netlib/SRC/dtgsy2.f
@@ -71,7 +71,7 @@
*> R * B**T + L * E**T = scale * -F
*>
*> This case is used to compute an estimate of Dif[(A, D), (B, E)] =
-*> sigma_min(Z) using reverse communicaton with DLACON.
+*> sigma_min(Z) using reverse communication with DLACON.
*>
*> DTGSY2 also (IJOB >= 1) contributes to the computation in DTGSYL
*> of an upper bound on the separation between to matrix pairs. Then
@@ -85,7 +85,7 @@
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
-*> = 'N', solve the generalized Sylvester equation (1).
+*> = 'N': solve the generalized Sylvester equation (1).
*> = 'T': solve the 'transposed' system (3).
*> \endverbatim
*>
diff --git a/lapack-netlib/SRC/dtgsyl.f b/lapack-netlib/SRC/dtgsyl.f
index 1cc3a1bf8..bb0751794 100644
--- a/lapack-netlib/SRC/dtgsyl.f
+++ b/lapack-netlib/SRC/dtgsyl.f
@@ -88,20 +88,20 @@
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
-*> = 'N', solve the generalized Sylvester equation (1).
-*> = 'T', solve the 'transposed' system (3).
+*> = 'N': solve the generalized Sylvester equation (1).
+*> = 'T': solve the 'transposed' system (3).
*> \endverbatim
*>
*> \param[in] IJOB
*> \verbatim
*> IJOB is INTEGER
*> Specifies what kind of functionality to be performed.
-*> =0: solve (1) only.
-*> =1: The functionality of 0 and 3.
-*> =2: The functionality of 0 and 4.
-*> =3: Only an estimate of Dif[(A,D), (B,E)] is computed.
+*> = 0: solve (1) only.
+*> = 1: The functionality of 0 and 3.
+*> = 2: The functionality of 0 and 4.
+*> = 3: Only an estimate of Dif[(A,D), (B,E)] is computed.
*> (look ahead strategy IJOB = 1 is used).
-*> =4: Only an estimate of Dif[(A,D), (B,E)] is computed.
+*> = 4: Only an estimate of Dif[(A,D), (B,E)] is computed.
*> ( DGECON on sub-systems is used ).
*> Not referenced if TRANS = 'T'.
*> \endverbatim
diff --git a/lapack-netlib/SRC/dtpmlqt.f b/lapack-netlib/SRC/dtpmlqt.f
index 3782d0c71..975ebdc27 100644
--- a/lapack-netlib/SRC/dtpmlqt.f
+++ b/lapack-netlib/SRC/dtpmlqt.f
@@ -94,7 +94,7 @@
*>
*> \param[in] V
*> \verbatim
-*> V is DOUBLE PRECISION array, dimension (LDA,K)
+*> V is DOUBLE PRECISION array, dimension (LDV,K)
*> The i-th row must contain the vector which defines the
*> elementary reflector H(i), for i = 1,2,...,k, as returned by
*> DTPLQT in B. See Further Details.
diff --git a/lapack-netlib/SRC/dtpmqrt.f b/lapack-netlib/SRC/dtpmqrt.f
index 44985a80d..a7888e192 100644
--- a/lapack-netlib/SRC/dtpmqrt.f
+++ b/lapack-netlib/SRC/dtpmqrt.f
@@ -94,7 +94,7 @@
*>
*> \param[in] V
*> \verbatim
-*> V is DOUBLE PRECISION array, dimension (LDA,K)
+*> V is DOUBLE PRECISION array, dimension (LDV,K)
*> The i-th column must contain the vector which defines the
*> elementary reflector H(i), for i = 1,2,...,k, as returned by
*> CTPQRT in B. See Further Details.
diff --git a/lapack-netlib/SRC/dtprfb.f b/lapack-netlib/SRC/dtprfb.f
index 6ae8fad8c..6d3b4dae1 100644
--- a/lapack-netlib/SRC/dtprfb.f
+++ b/lapack-netlib/SRC/dtprfb.f
@@ -152,8 +152,8 @@
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A.
-*> If SIDE = 'L', LDC >= max(1,K);
-*> If SIDE = 'R', LDC >= max(1,M).
+*> If SIDE = 'L', LDA >= max(1,K);
+*> If SIDE = 'R', LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in,out] B