Merge pull request #3765 from martin-frbg/f2cpointer

Fix pointer/integer argument mismatch in the f2c-translated LAPACK
This commit is contained in:
Martin Kroeker 2022-09-14 15:51:49 +02:00 committed by GitHub
commit dc856de3af
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
23 changed files with 51 additions and 51 deletions

View File

@ -969,7 +969,7 @@ real *sfac;
1.17 };
/* Local variables */
extern /* Subroutine */ srottest_();
extern /* Subroutine */ void srottest_();
static integer i__, k, ksize;
extern /* Subroutine */ int stest_(), srotmtest_();
static integer ki, kn;

View File

@ -796,10 +796,10 @@ L10:
temp = log((real) (*n)) / log(2.f);
lgn = (integer) temp;
if (pow_ii(&c__2, &lgn) < *n) {
if (pow_ii(c__2, lgn) < *n) {
++lgn;
}
if (pow_ii(&c__2, &lgn) < *n) {
if (pow_ii(c__2, lgn) < *n) {
++lgn;
}
iprmpt = indxq + *n + 1;

View File

@ -864,11 +864,11 @@ f"> */
/* Form the z-vector which consists of the last row of Q_1 and the */
/* first row of Q_2. */
ptr = pow_ii(&c__2, tlvls) + 1;
ptr = pow_ii(c__2, *tlvls) + 1;
i__1 = *curlvl - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *tlvls - i__;
ptr += pow_ii(&c__2, &i__2);
ptr += pow_ii(c__2, i__2);
/* L10: */
}
curr = ptr + *curpbm;

View File

@ -1051,7 +1051,7 @@ f"> */
/* Finally go through the left singular vector matrices of all */
/* the other subproblems bottom-up on the tree. */
j = pow_ii(&c__2, &nlvl);
j = pow_ii(c__2, nlvl);
sqre = 0;
for (lvl = nlvl; lvl >= 1; --lvl) {
@ -1065,7 +1065,7 @@ f"> */
ll = 1;
} else {
i__1 = lvl - 1;
lf = pow_ii(&c__2, &i__1);
lf = pow_ii(c__2, i__1);
ll = (lf << 1) - 1;
}
i__1 = ll;
@ -1110,7 +1110,7 @@ L170:
ll = 1;
} else {
i__2 = lvl - 1;
lf = pow_ii(&c__2, &i__2);
lf = pow_ii(c__2, i__2);
ll = (lf << 1) - 1;
}
i__2 = lf;

View File

@ -836,10 +836,10 @@ f"> */
lrwmin = *n - 1 << 1;
} else if (icompz == 1) {
lgn = (integer) (log((real) (*n)) / log(2.f));
if (pow_ii(&c__2, &lgn) < *n) {
if (pow_ii(c__2, lgn) < *n) {
++lgn;
}
if (pow_ii(&c__2, &lgn) < *n) {
if (pow_ii(c__2, lgn) < *n) {
++lgn;
}
lwmin = *n * *n;

View File

@ -827,10 +827,10 @@ L10:
temp = log((doublereal) (*n)) / log(2.);
lgn = (integer) temp;
if (pow_ii(&c__2, &lgn) < *n) {
if (pow_ii(c__2, lgn) < *n) {
++lgn;
}
if (pow_ii(&c__2, &lgn) < *n) {
if (pow_ii(c__2, lgn) < *n) {
++lgn;
}
iprmpt = indxq + *n + 1;

View File

@ -885,11 +885,11 @@ f"> */
/* Form the z-vector which consists of the last row of Q_1 and the */
/* first row of Q_2. */
ptr = pow_ii(&c__2, tlvls) + 1;
ptr = pow_ii(c__2, *tlvls) + 1;
i__1 = *curlvl - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *tlvls - i__;
ptr += pow_ii(&c__2, &i__2);
ptr += pow_ii(c__2, i__2);
/* L10: */
}
curr = ptr + *curpbm;

View File

@ -754,7 +754,7 @@ f"> */
/* scheme */
i__1 = *curlvl - 1;
curr = ptr + *curpbm * pow_ii(&c__2, curlvl) + pow_ii(&c__2, &i__1) - 1;
curr = ptr + *curpbm * pow_ii(c__2, *curlvl) + pow_ii(c__2, i__1) - 1;
/* Determine size of these matrices. We add HALF to the value of */
/* the SQRT in case the machine underestimates one of these square */
@ -781,12 +781,12 @@ f"> */
/* rotations and permutation and then multiplying the center matrices */
/* against the current Z. */
ptr = pow_ii(&c__2, tlvls) + 1;
ptr = pow_ii(c__2, *tlvls) + 1;
i__1 = *curlvl - 1;
for (k = 1; k <= i__1; ++k) {
i__2 = *curlvl - k;
i__3 = *curlvl - k - 1;
curr = ptr + *curpbm * pow_ii(&c__2, &i__2) + pow_ii(&c__2, &i__3) -
curr = ptr + *curpbm * pow_ii(c__2, i__2) + pow_ii(c__2, i__3) -
1;
psiz1 = prmptr[curr + 1] - prmptr[curr];
psiz2 = prmptr[curr + 2] - prmptr[curr + 1];
@ -847,7 +847,7 @@ f"> */
c__1);
i__2 = *tlvls - k;
ptr += pow_ii(&c__2, &i__2);
ptr += pow_ii(c__2, i__2);
/* L70: */
}

View File

@ -951,7 +951,7 @@ f"> */
/* Finally go through the left singular vector matrices of all */
/* the other subproblems bottom-up on the tree. */
j = pow_ii(&c__2, &nlvl);
j = pow_ii(c__2, nlvl);
sqre = 0;
for (lvl = nlvl; lvl >= 1; --lvl) {
@ -965,7 +965,7 @@ f"> */
ll = 1;
} else {
i__1 = lvl - 1;
lf = pow_ii(&c__2, &i__1);
lf = pow_ii(c__2, i__1);
ll = (lf << 1) - 1;
}
i__1 = ll;
@ -1010,7 +1010,7 @@ L50:
ll = 1;
} else {
i__2 = lvl - 1;
lf = pow_ii(&c__2, &i__2);
lf = pow_ii(c__2, i__2);
ll = (lf << 1) - 1;
}
i__2 = lf;

View File

@ -824,7 +824,7 @@ f"> */
ll = 1;
} else {
i__1 = lvl - 1;
lf = pow_ii(&c__2, &i__1);
lf = pow_ii(c__2, i__1);
ll = (lf << 1) - 1;
}
i__1 = ll;

View File

@ -1027,7 +1027,7 @@ f"> */
/* Now conquer each subproblem bottom-up. */
j = pow_ii(&c__2, &nlvl);
j = pow_ii(c__2, nlvl);
for (lvl = nlvl; lvl >= 1; --lvl) {
lvl2 = (lvl << 1) - 1;
@ -1039,7 +1039,7 @@ f"> */
ll = 1;
} else {
i__1 = lvl - 1;
lf = pow_ii(&c__2, &i__1);
lf = pow_ii(c__2, i__1);
ll = (lf << 1) - 1;
}
i__1 = ll;

View File

@ -806,10 +806,10 @@ f"> */
lwmin = *n - 1 << 1;
} else {
lgn = (integer) (log((doublereal) (*n)) / log(2.));
if (pow_ii(&c__2, &lgn) < *n) {
if (pow_ii(c__2, lgn) < *n) {
++lgn;
}
if (pow_ii(&c__2, &lgn) < *n) {
if (pow_ii(c__2, lgn) < *n) {
++lgn;
}
if (icompz == 1) {

View File

@ -823,10 +823,10 @@ L10:
temp = log((real) (*n)) / log(2.f);
lgn = (integer) temp;
if (pow_ii(&c__2, &lgn) < *n) {
if (pow_ii(c__2, lgn) < *n) {
++lgn;
}
if (pow_ii(&c__2, &lgn) < *n) {
if (pow_ii(c__2, lgn) < *n) {
++lgn;
}
iprmpt = indxq + *n + 1;

View File

@ -883,11 +883,11 @@ f"> */
/* Form the z-vector which consists of the last row of Q_1 and the */
/* first row of Q_2. */
ptr = pow_ii(&c__2, tlvls) + 1;
ptr = pow_ii(c__2, *tlvls) + 1;
i__1 = *curlvl - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *tlvls - i__;
ptr += pow_ii(&c__2, &i__2);
ptr += pow_ii(c__2, i__2);
/* L10: */
}
curr = ptr + *curpbm;

View File

@ -753,7 +753,7 @@ f"> */
/* scheme */
i__1 = *curlvl - 1;
curr = ptr + *curpbm * pow_ii(&c__2, curlvl) + pow_ii(&c__2, &i__1) - 1;
curr = ptr + *curpbm * pow_ii(c__2, *curlvl) + pow_ii(c__2, i__1) - 1;
/* Determine size of these matrices. We add HALF to the value of */
/* the SQRT in case the machine underestimates one of these square */
@ -779,12 +779,12 @@ f"> */
/* rotations and permutation and then multiplying the center matrices */
/* against the current Z. */
ptr = pow_ii(&c__2, tlvls) + 1;
ptr = pow_ii(c__2, *tlvls) + 1;
i__1 = *curlvl - 1;
for (k = 1; k <= i__1; ++k) {
i__2 = *curlvl - k;
i__3 = *curlvl - k - 1;
curr = ptr + *curpbm * pow_ii(&c__2, &i__2) + pow_ii(&c__2, &i__3) -
curr = ptr + *curpbm * pow_ii(c__2, i__2) + pow_ii(c__2, i__3) -
1;
psiz1 = prmptr[curr + 1] - prmptr[curr];
psiz2 = prmptr[curr + 2] - prmptr[curr + 1];
@ -844,7 +844,7 @@ f"> */
c__1);
i__2 = *tlvls - k;
ptr += pow_ii(&c__2, &i__2);
ptr += pow_ii(c__2, i__2);
/* L70: */
}

View File

@ -946,7 +946,7 @@ f"> */
/* Finally go through the left singular vector matrices of all */
/* the other subproblems bottom-up on the tree. */
j = pow_ii(&c__2, &nlvl);
j = pow_ii(c__2, nlvl);
sqre = 0;
for (lvl = nlvl; lvl >= 1; --lvl) {
@ -960,7 +960,7 @@ f"> */
ll = 1;
} else {
i__1 = lvl - 1;
lf = pow_ii(&c__2, &i__1);
lf = pow_ii(c__2, i__1);
ll = (lf << 1) - 1;
}
i__1 = ll;
@ -1005,7 +1005,7 @@ L50:
ll = 1;
} else {
i__2 = lvl - 1;
lf = pow_ii(&c__2, &i__2);
lf = pow_ii(c__2, i__2);
ll = (lf << 1) - 1;
}
i__2 = lf;

View File

@ -821,7 +821,7 @@ f"> */
ll = 1;
} else {
i__1 = lvl - 1;
lf = pow_ii(&c__2, &i__1);
lf = pow_ii(c__2, i__1);
ll = (lf << 1) - 1;
}
i__1 = ll;

View File

@ -1023,7 +1023,7 @@ f"> */
/* Now conquer each subproblem bottom-up. */
j = pow_ii(&c__2, &nlvl);
j = pow_ii(c__2, nlvl);
for (lvl = nlvl; lvl >= 1; --lvl) {
lvl2 = (lvl << 1) - 1;
@ -1035,7 +1035,7 @@ f"> */
ll = 1;
} else {
i__1 = lvl - 1;
lf = pow_ii(&c__2, &i__1);
lf = pow_ii(c__2, i__1);
ll = (lf << 1) - 1;
}
i__1 = ll;

View File

@ -804,10 +804,10 @@ f"> */
lwmin = *n - 1 << 1;
} else {
lgn = (integer) (log((real) (*n)) / log(2.f));
if (pow_ii(&c__2, &lgn) < *n) {
if (pow_ii(c__2, lgn) < *n) {
++lgn;
}
if (pow_ii(&c__2, &lgn) < *n) {
if (pow_ii(c__2, lgn) < *n) {
++lgn;
}
if (icompz == 1) {

View File

@ -793,10 +793,10 @@ L10:
temp = log((doublereal) (*n)) / log(2.);
lgn = (integer) temp;
if (pow_ii(&c__2, &lgn) < *n) {
if (pow_ii(c__2, lgn) < *n) {
++lgn;
}
if (pow_ii(&c__2, &lgn) < *n) {
if (pow_ii(c__2, lgn) < *n) {
++lgn;
}
iprmpt = indxq + *n + 1;

View File

@ -864,11 +864,11 @@ f"> */
/* Form the z-vector which consists of the last row of Q_1 and the */
/* first row of Q_2. */
ptr = pow_ii(&c__2, tlvls) + 1;
ptr = pow_ii(c__2, *tlvls) + 1;
i__1 = *curlvl - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *tlvls - i__;
ptr += pow_ii(&c__2, &i__2);
ptr += pow_ii(c__2, i__2);
/* L10: */
}
curr = ptr + *curpbm;

View File

@ -1051,7 +1051,7 @@ f"> */
/* Finally go through the left singular vector matrices of all */
/* the other subproblems bottom-up on the tree. */
j = pow_ii(&c__2, &nlvl);
j = pow_ii(c__2, nlvl);
sqre = 0;
for (lvl = nlvl; lvl >= 1; --lvl) {
@ -1065,7 +1065,7 @@ f"> */
ll = 1;
} else {
i__1 = lvl - 1;
lf = pow_ii(&c__2, &i__1);
lf = pow_ii(c__2, i__1);
ll = (lf << 1) - 1;
}
i__1 = ll;
@ -1110,7 +1110,7 @@ L170:
ll = 1;
} else {
i__2 = lvl - 1;
lf = pow_ii(&c__2, &i__2);
lf = pow_ii(c__2, i__2);
ll = (lf << 1) - 1;
}
i__2 = lf;

View File

@ -836,10 +836,10 @@ f"> */
lrwmin = *n - 1 << 1;
} else if (icompz == 1) {
lgn = (integer) (log((doublereal) (*n)) / log(2.));
if (pow_ii(&c__2, &lgn) < *n) {
if (pow_ii(c__2, lgn) < *n) {
++lgn;
}
if (pow_ii(&c__2, &lgn) < *n) {
if (pow_ii(c__2, lgn) < *n) {
++lgn;
}
lwmin = *n * *n;