Fix typos in comments and documentation (Reference-LAPACK PR 820)
This commit is contained in:
parent
0170ac293e
commit
dbbad9ed61
|
@ -777,7 +777,7 @@
|
|||
$ 'triangular-pentagonal matrices' )
|
||||
8004 FORMAT( / 1X, A3, ': TS factorization for ',
|
||||
$ 'tall-skinny or short-wide matrices' )
|
||||
8005 FORMAT( / 1X, A3, ': Householder recostruction from TSQR',
|
||||
8005 FORMAT( / 1X, A3, ': Householder reconstruction from TSQR',
|
||||
$ ' factorization output ', /,' for tall-skinny matrices.' )
|
||||
*
|
||||
* GE matrix types
|
||||
|
|
|
@ -87,7 +87,7 @@
|
|||
*> \verbatim
|
||||
*> NMAX is INTEGER
|
||||
*> The leading dimension of the work arrays. NMAX >= the
|
||||
*> maximumm value of N in NVAL.
|
||||
*> maximum value of N in NVAL.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] AP
|
||||
|
|
|
@ -133,7 +133,7 @@
|
|||
IF( LSAMEN( 2, C2, 'HE' ) ) THEN
|
||||
*
|
||||
* Test error exits of the routines that use factorization
|
||||
* of a Hermitian indefinite matrix with patrial
|
||||
* of a Hermitian indefinite matrix with partial
|
||||
* (Bunch-Kaufman) diagonal pivoting method.
|
||||
*
|
||||
* CHETRF
|
||||
|
@ -576,7 +576,7 @@
|
|||
CALL CHKXER( 'CHETRS_AA_STAGE', INFOT, NOUT, LERR, OK )
|
||||
*
|
||||
* Test error exits of the routines that use factorization
|
||||
* of a Hermitian indefinite packed matrix with patrial
|
||||
* of a Hermitian indefinite packed matrix with partial
|
||||
* (Bunch-Kaufman) diagonal pivoting method.
|
||||
*
|
||||
ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN
|
||||
|
|
|
@ -137,7 +137,7 @@
|
|||
IF( LSAMEN( 2, C2, 'HE' ) ) THEN
|
||||
*
|
||||
* Test error exits of the routines that use factorization
|
||||
* of a Hermitian indefinite matrix with patrial
|
||||
* of a Hermitian indefinite matrix with partial
|
||||
* (Bunch-Kaufman) diagonal pivoting method.
|
||||
*
|
||||
* CHETRF
|
||||
|
@ -523,7 +523,7 @@
|
|||
ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN
|
||||
*
|
||||
* Test error exits of the routines that use factorization
|
||||
* of a Hermitian indefinite packed matrix with patrial
|
||||
* of a Hermitian indefinite packed matrix with partial
|
||||
* (Bunch-Kaufman) diagonal pivoting method.
|
||||
*
|
||||
* CHPTRF
|
||||
|
|
|
@ -130,7 +130,7 @@
|
|||
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
|
||||
*
|
||||
* Test error exits of the routines that use factorization
|
||||
* of a symmetric indefinite matrix with patrial
|
||||
* of a symmetric indefinite matrix with partial
|
||||
* (Bunch-Kaufman) diagonal pivoting method.
|
||||
*
|
||||
* CSYTRF
|
||||
|
@ -469,7 +469,7 @@
|
|||
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
|
||||
*
|
||||
* Test error exits of the routines that use factorization
|
||||
* of a symmetric indefinite packed matrix with patrial
|
||||
* of a symmetric indefinite packed matrix with partial
|
||||
* (Bunch-Kaufman) diagonal pivoting method.
|
||||
*
|
||||
* CSPTRF
|
||||
|
|
|
@ -135,7 +135,7 @@
|
|||
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
|
||||
*
|
||||
* Test error exits of the routines that use factorization
|
||||
* of a symmetric indefinite matrix with patrial
|
||||
* of a symmetric indefinite matrix with partial
|
||||
* (Bunch-Kaufman) diagonal pivoting method.
|
||||
*
|
||||
* CSYTRF
|
||||
|
@ -521,7 +521,7 @@
|
|||
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
|
||||
*
|
||||
* Test error exits of the routines that use factorization
|
||||
* of a symmetric indefinite packed matrix with patrial
|
||||
* of a symmetric indefinite packed matrix with partial
|
||||
* (Bunch-Kaufman) diagonal pivoting method.
|
||||
*
|
||||
* CSPTRF
|
||||
|
|
|
@ -39,7 +39,7 @@
|
|||
*
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGTER
|
||||
*> N is INTEGER
|
||||
*> The order of the matrix A. N >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
|
|
|
@ -40,14 +40,14 @@
|
|||
*> \verbatim
|
||||
*> TRANS is CHARACTER
|
||||
*> Specifies the form of the residual.
|
||||
*> = 'N': B - A * X (No transpose)
|
||||
*> = 'N': B - A * X (No transpose)
|
||||
*> = 'T': B - A**T * X (Transpose)
|
||||
*> = 'C': B - A**H * X (Conjugate transpose)
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGTER
|
||||
*> N is INTEGER
|
||||
*> The order of the matrix A. N >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
|
|
|
@ -188,7 +188,7 @@
|
|||
RETURN
|
||||
END IF
|
||||
*
|
||||
* a) Revert to multiplyers of L
|
||||
* a) Revert to multipliers of L
|
||||
*
|
||||
CALL CSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
|
||||
*
|
||||
|
|
|
@ -27,7 +27,7 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> CLQT02 tests CUNGLQ, which generates an m-by-n matrix Q with
|
||||
*> orthonornmal rows that is defined as the product of k elementary
|
||||
*> orthonormal rows that is defined as the product of k elementary
|
||||
*> reflectors.
|
||||
*>
|
||||
*> Given the LQ factorization of an m-by-n matrix A, CLQT02 generates
|
||||
|
|
|
@ -36,7 +36,7 @@
|
|||
*
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGTER
|
||||
*> N is INTEGER
|
||||
*> The order of the matrix A.
|
||||
*> \endverbatim
|
||||
*>
|
||||
|
|
|
@ -46,7 +46,7 @@
|
|||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGTER
|
||||
*> N is INTEGER
|
||||
*> The order of the matrix A.
|
||||
*> \endverbatim
|
||||
*>
|
||||
|
|
|
@ -27,7 +27,7 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> CQLT02 tests CUNGQL, which generates an m-by-n matrix Q with
|
||||
*> orthonornmal columns that is defined as the product of k elementary
|
||||
*> orthonormal columns that is defined as the product of k elementary
|
||||
*> reflectors.
|
||||
*>
|
||||
*> Given the QL factorization of an m-by-n matrix A, CQLT02 generates
|
||||
|
|
|
@ -27,7 +27,7 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> CQRT02 tests CUNGQR, which generates an m-by-n matrix Q with
|
||||
*> orthonornmal columns that is defined as the product of k elementary
|
||||
*> orthonormal columns that is defined as the product of k elementary
|
||||
*> reflectors.
|
||||
*>
|
||||
*> Given the QR factorization of an m-by-n matrix A, CQRT02 generates
|
||||
|
|
|
@ -27,7 +27,7 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> CRQT02 tests CUNGRQ, which generates an m-by-n matrix Q with
|
||||
*> orthonornmal rows that is defined as the product of k elementary
|
||||
*> orthonormal rows that is defined as the product of k elementary
|
||||
*> reflectors.
|
||||
*>
|
||||
*> Given the RQ factorization of an m-by-n matrix A, CRQT02 generates
|
||||
|
|
|
@ -188,7 +188,7 @@
|
|||
RETURN
|
||||
END IF
|
||||
*
|
||||
* a) Revert to multiplyers of L
|
||||
* a) Revert to multipliers of L
|
||||
*
|
||||
CALL CSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
|
||||
*
|
||||
|
|
|
@ -86,7 +86,7 @@
|
|||
*> \verbatim
|
||||
*> NMAX is INTEGER
|
||||
*> The leading dimension of the work arrays. NMAX >= the
|
||||
*> maximumm value of N in NVAL.
|
||||
*> maximum value of N in NVAL.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] AP
|
||||
|
|
|
@ -346,7 +346,7 @@
|
|||
CALL DGET08( TRANS, N, N, NRHS, A, LDA, X, LDA, WORK,
|
||||
$ LDA, RWORK, RESULT( 1 ) )
|
||||
*
|
||||
* Check if the test passes the tesing.
|
||||
* Check if the test passes the testing.
|
||||
* Print information about the tests that did not
|
||||
* pass the testing.
|
||||
*
|
||||
|
|
|
@ -365,7 +365,7 @@
|
|||
CALL DPOT06( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
|
||||
$ LDA, RWORK, RESULT( 1 ) )
|
||||
*
|
||||
* Check if the test passes the tesing.
|
||||
* Check if the test passes the testing.
|
||||
* Print information about the tests that did not
|
||||
* pass the testing.
|
||||
*
|
||||
|
|
|
@ -133,7 +133,7 @@
|
|||
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
|
||||
*
|
||||
* Test error exits of the routines that use factorization
|
||||
* of a symmetric indefinite matrix with patrial
|
||||
* of a symmetric indefinite matrix with partial
|
||||
* (Bunch-Kaufman) pivoting.
|
||||
*
|
||||
* DSYTRF
|
||||
|
@ -581,7 +581,7 @@
|
|||
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
|
||||
*
|
||||
* Test error exits of the routines that use factorization
|
||||
* of a symmetric indefinite packed matrix with patrial
|
||||
* of a symmetric indefinite packed matrix with partial
|
||||
* (Bunch-Kaufman) pivoting.
|
||||
*
|
||||
* DSPTRF
|
||||
|
|
|
@ -138,7 +138,7 @@
|
|||
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
|
||||
*
|
||||
* Test error exits of the routines that use factorization
|
||||
* of a symmetric indefinite matrix with patrial
|
||||
* of a symmetric indefinite matrix with partial
|
||||
* (Bunch-Kaufman) pivoting.
|
||||
*
|
||||
* DSYTRF
|
||||
|
@ -528,7 +528,7 @@
|
|||
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
|
||||
*
|
||||
* Test error exits of the routines that use factorization
|
||||
* of a symmetric indefinite packed matrix with patrial
|
||||
* of a symmetric indefinite packed matrix with partial
|
||||
* (Bunch-Kaufman) pivoting.
|
||||
*
|
||||
* DSPTRF
|
||||
|
|
|
@ -39,7 +39,7 @@
|
|||
*
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGTER
|
||||
*> N is INTEGER
|
||||
*> The order of the matrix A. N >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
|
|
|
@ -41,14 +41,14 @@
|
|||
*> \verbatim
|
||||
*> TRANS is CHARACTER
|
||||
*> Specifies the form of the residual.
|
||||
*> = 'N': B - A * X (No transpose)
|
||||
*> = 'N': B - A * X (No transpose)
|
||||
*> = 'T': B - A**T * X (Transpose)
|
||||
*> = 'C': B - A**H * X (Conjugate transpose = Transpose)
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGTER
|
||||
*> N is INTEGER
|
||||
*> The order of the matrix A. N >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
|
|
|
@ -27,7 +27,7 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> DLQT02 tests DORGLQ, which generates an m-by-n matrix Q with
|
||||
*> orthonornmal rows that is defined as the product of k elementary
|
||||
*> orthonormal rows that is defined as the product of k elementary
|
||||
*> reflectors.
|
||||
*>
|
||||
*> Given the LQ factorization of an m-by-n matrix A, DLQT02 generates
|
||||
|
|
|
@ -35,7 +35,7 @@
|
|||
*
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGTER
|
||||
*> N is INTEGER
|
||||
*> The order of the matrix A.
|
||||
*> \endverbatim
|
||||
*>
|
||||
|
|
|
@ -35,7 +35,7 @@
|
|||
*
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGTER
|
||||
*> N is INTEGER
|
||||
*> The order of the matrix A.
|
||||
*> \endverbatim
|
||||
*>
|
||||
|
|
|
@ -27,7 +27,7 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> DQLT02 tests DORGQL, which generates an m-by-n matrix Q with
|
||||
*> orthonornmal columns that is defined as the product of k elementary
|
||||
*> orthonormal columns that is defined as the product of k elementary
|
||||
*> reflectors.
|
||||
*>
|
||||
*> Given the QL factorization of an m-by-n matrix A, DQLT02 generates
|
||||
|
|
|
@ -27,7 +27,7 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> DQRT02 tests DORGQR, which generates an m-by-n matrix Q with
|
||||
*> orthonornmal columns that is defined as the product of k elementary
|
||||
*> orthonormal columns that is defined as the product of k elementary
|
||||
*> reflectors.
|
||||
*>
|
||||
*> Given the QR factorization of an m-by-n matrix A, DQRT02 generates
|
||||
|
|
|
@ -27,7 +27,7 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> DRQT02 tests DORGRQ, which generates an m-by-n matrix Q with
|
||||
*> orthonornmal rows that is defined as the product of k elementary
|
||||
*> orthonormal rows that is defined as the product of k elementary
|
||||
*> reflectors.
|
||||
*>
|
||||
*> Given the RQ factorization of an m-by-n matrix A, DRQT02 generates
|
||||
|
|
|
@ -183,7 +183,7 @@
|
|||
RETURN
|
||||
END IF
|
||||
*
|
||||
* a) Revert to multiplyers of L
|
||||
* a) Revert to multipliers of L
|
||||
*
|
||||
CALL DSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
|
||||
*
|
||||
|
|
|
@ -86,7 +86,7 @@
|
|||
*> \verbatim
|
||||
*> NMAX is INTEGER
|
||||
*> The leading dimension of the work arrays. NMAX >= the
|
||||
*> maximumm value of N in NVAL.
|
||||
*> maximum value of N in NVAL.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] AP
|
||||
|
|
|
@ -133,7 +133,7 @@
|
|||
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
|
||||
*
|
||||
* Test error exits of the routines that use factorization
|
||||
* of a symmetric indefinite matrix with patrial
|
||||
* of a symmetric indefinite matrix with partial
|
||||
* (Bunch-Kaufman) pivoting.
|
||||
*
|
||||
* SSYTRF
|
||||
|
@ -581,7 +581,7 @@
|
|||
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
|
||||
*
|
||||
* Test error exits of the routines that use factorization
|
||||
* of a symmetric indefinite packed matrix with patrial
|
||||
* of a symmetric indefinite packed matrix with partial
|
||||
* (Bunch-Kaufman) pivoting.
|
||||
*
|
||||
* SSPTRF
|
||||
|
|
|
@ -137,7 +137,7 @@
|
|||
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
|
||||
*
|
||||
* Test error exits of the routines that use factorization
|
||||
* of a symmetric indefinite matrix with patrial
|
||||
* of a symmetric indefinite matrix with partial
|
||||
* (Bunch-Kaufman) pivoting.
|
||||
*
|
||||
* SSYTRF
|
||||
|
@ -527,7 +527,7 @@
|
|||
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
|
||||
*
|
||||
* Test error exits of the routines that use factorization
|
||||
* of a symmetric indefinite packed matrix with patrial
|
||||
* of a symmetric indefinite packed matrix with partial
|
||||
* (Bunch-Kaufman) pivoting.
|
||||
*
|
||||
* SSPTRF
|
||||
|
|
|
@ -39,7 +39,7 @@
|
|||
*
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGTER
|
||||
*> N is INTEGER
|
||||
*> The order of the matrix A. N >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
|
|
|
@ -41,14 +41,14 @@
|
|||
*> \verbatim
|
||||
*> TRANS is CHARACTER
|
||||
*> Specifies the form of the residual.
|
||||
*> = 'N': B - A * X (No transpose)
|
||||
*> = 'N': B - A * X (No transpose)
|
||||
*> = 'T': B - A**T * X (Transpose)
|
||||
*> = 'C': B - A**H * X (Conjugate transpose = Transpose)
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGTER
|
||||
*> N is INTEGER
|
||||
*> The order of the matrix A. N >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
|
|
|
@ -27,7 +27,7 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> SLQT02 tests SORGLQ, which generates an m-by-n matrix Q with
|
||||
*> orthonornmal rows that is defined as the product of k elementary
|
||||
*> orthonormal rows that is defined as the product of k elementary
|
||||
*> reflectors.
|
||||
*>
|
||||
*> Given the LQ factorization of an m-by-n matrix A, SLQT02 generates
|
||||
|
|
|
@ -35,7 +35,7 @@
|
|||
*
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGTER
|
||||
*> N is INTEGER
|
||||
*> The order of the matrix A.
|
||||
*> \endverbatim
|
||||
*>
|
||||
|
|
|
@ -35,7 +35,7 @@
|
|||
*
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGTER
|
||||
*> N is INTEGER
|
||||
*> The order of the matrix A.
|
||||
*> \endverbatim
|
||||
*>
|
||||
|
|
|
@ -27,7 +27,7 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> SQLT02 tests SORGQL, which generates an m-by-n matrix Q with
|
||||
*> orthonornmal columns that is defined as the product of k elementary
|
||||
*> orthonormal columns that is defined as the product of k elementary
|
||||
*> reflectors.
|
||||
*>
|
||||
*> Given the QL factorization of an m-by-n matrix A, SQLT02 generates
|
||||
|
|
|
@ -27,7 +27,7 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> SQRT02 tests SORGQR, which generates an m-by-n matrix Q with
|
||||
*> orthonornmal columns that is defined as the product of k elementary
|
||||
*> orthonormal columns that is defined as the product of k elementary
|
||||
*> reflectors.
|
||||
*>
|
||||
*> Given the QR factorization of an m-by-n matrix A, SQRT02 generates
|
||||
|
|
|
@ -27,7 +27,7 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> SRQT02 tests SORGRQ, which generates an m-by-n matrix Q with
|
||||
*> orthonornmal rows that is defined as the product of k elementary
|
||||
*> orthonormal rows that is defined as the product of k elementary
|
||||
*> reflectors.
|
||||
*>
|
||||
*> Given the RQ factorization of an m-by-n matrix A, SRQT02 generates
|
||||
|
|
|
@ -183,7 +183,7 @@
|
|||
RETURN
|
||||
END IF
|
||||
*
|
||||
* a) Revert to multiplyers of L
|
||||
* a) Revert to multipliers of L
|
||||
*
|
||||
CALL SSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
|
||||
*
|
||||
|
|
|
@ -87,7 +87,7 @@
|
|||
*> \verbatim
|
||||
*> NMAX is INTEGER
|
||||
*> The leading dimension of the work arrays. NMAX >= the
|
||||
*> maximumm value of N in NVAL.
|
||||
*> maximum value of N in NVAL.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] AP
|
||||
|
|
|
@ -348,7 +348,7 @@
|
|||
CALL ZGET08( TRANS, N, N, NRHS, A, LDA, X, LDA, WORK,
|
||||
$ LDA, RWORK, RESULT( 1 ) )
|
||||
*
|
||||
* Check if the test passes the tesing.
|
||||
* Check if the test passes the testing.
|
||||
* Print information about the tests that did not
|
||||
* pass the testing.
|
||||
*
|
||||
|
|
|
@ -367,7 +367,7 @@
|
|||
CALL ZPOT06( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
|
||||
$ LDA, RWORK, RESULT( 1 ) )
|
||||
*
|
||||
* Check if the test passes the tesing.
|
||||
* Check if the test passes the testing.
|
||||
* Print information about the tests that did not
|
||||
* pass the testing.
|
||||
*
|
||||
|
|
|
@ -135,7 +135,7 @@
|
|||
IF( LSAMEN( 2, C2, 'HE' ) ) THEN
|
||||
*
|
||||
* Test error exits of the routines that use factorization
|
||||
* of a Hermitian indefinite matrix with patrial
|
||||
* of a Hermitian indefinite matrix with partial
|
||||
* (Bunch-Kaufman) diagonal pivoting method.
|
||||
*
|
||||
* ZHETRF
|
||||
|
@ -580,7 +580,7 @@
|
|||
ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN
|
||||
*
|
||||
* Test error exits of the routines that use factorization
|
||||
* of a Hermitian indefinite packed matrix with patrial
|
||||
* of a Hermitian indefinite packed matrix with partial
|
||||
* (Bunch-Kaufman) diagonal pivoting method.
|
||||
*
|
||||
* ZHPTRF
|
||||
|
|
|
@ -138,7 +138,7 @@
|
|||
OK = .TRUE.
|
||||
*
|
||||
* Test error exits of the routines that use factorization
|
||||
* of a Hermitian indefinite matrix with patrial
|
||||
* of a Hermitian indefinite matrix with partial
|
||||
* (Bunch-Kaufman) diagonal pivoting method.
|
||||
*
|
||||
IF( LSAMEN( 2, C2, 'HE' ) ) THEN
|
||||
|
@ -526,7 +526,7 @@
|
|||
ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN
|
||||
*
|
||||
* Test error exits of the routines that use factorization
|
||||
* of a Hermitian indefinite packed matrix with patrial
|
||||
* of a Hermitian indefinite packed matrix with partial
|
||||
* (Bunch-Kaufman) diagonal pivoting method.
|
||||
*
|
||||
* ZHPTRF
|
||||
|
|
|
@ -132,7 +132,7 @@
|
|||
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
|
||||
*
|
||||
* Test error exits of the routines that use factorization
|
||||
* of a symmetric indefinite matrix with patrial
|
||||
* of a symmetric indefinite matrix with partial
|
||||
* (Bunch-Kaufman) diagonal pivoting method.
|
||||
*
|
||||
* ZSYTRF
|
||||
|
@ -471,7 +471,7 @@
|
|||
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
|
||||
*
|
||||
* Test error exits of the routines that use factorization
|
||||
* of a symmetric indefinite packed matrix with patrial
|
||||
* of a symmetric indefinite packed matrix with partial
|
||||
* (Bunch-Kaufman) pivoting.
|
||||
*
|
||||
* ZSPTRF
|
||||
|
|
|
@ -139,7 +139,7 @@
|
|||
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
|
||||
*
|
||||
* Test error exits of the routines that use factorization
|
||||
* of a symmetric indefinite matrix with patrial
|
||||
* of a symmetric indefinite matrix with partial
|
||||
* (Bunch-Kaufman) diagonal pivoting method.
|
||||
*
|
||||
* ZSYTRF
|
||||
|
@ -525,7 +525,7 @@
|
|||
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
|
||||
*
|
||||
* Test error exits of the routines that use factorization
|
||||
* of a symmetric indefinite packed matrix with patrial
|
||||
* of a symmetric indefinite packed matrix with partial
|
||||
* (Bunch-Kaufman) pivoting.
|
||||
*
|
||||
* ZSPTRF
|
||||
|
|
|
@ -39,7 +39,7 @@
|
|||
*
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGTER
|
||||
*> N is INTEGER
|
||||
*> The order of the matrix A. N >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
|
|
|
@ -40,14 +40,14 @@
|
|||
*> \verbatim
|
||||
*> TRANS is CHARACTER
|
||||
*> Specifies the form of the residual.
|
||||
*> = 'N': B - A * X (No transpose)
|
||||
*> = 'N': B - A * X (No transpose)
|
||||
*> = 'T': B - A**T * X (Transpose)
|
||||
*> = 'C': B - A**H * X (Conjugate transpose)
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGTER
|
||||
*> N is INTEGER
|
||||
*> The order of the matrix A. N >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
|
|
|
@ -188,7 +188,7 @@
|
|||
RETURN
|
||||
END IF
|
||||
*
|
||||
* a) Revert to multiplyers of L
|
||||
* a) Revert to multipliers of L
|
||||
*
|
||||
CALL ZSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
|
||||
*
|
||||
|
|
|
@ -27,7 +27,7 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> ZLQT02 tests ZUNGLQ, which generates an m-by-n matrix Q with
|
||||
*> orthonornmal rows that is defined as the product of k elementary
|
||||
*> orthonormal rows that is defined as the product of k elementary
|
||||
*> reflectors.
|
||||
*>
|
||||
*> Given the LQ factorization of an m-by-n matrix A, ZLQT02 generates
|
||||
|
|
|
@ -36,7 +36,7 @@
|
|||
*
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGTER
|
||||
*> N is INTEGER
|
||||
*> The order of the matrix A.
|
||||
*> \endverbatim
|
||||
*>
|
||||
|
|
|
@ -46,7 +46,7 @@
|
|||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGTER
|
||||
*> N is INTEGER
|
||||
*> The order of the matrix A.
|
||||
*> \endverbatim
|
||||
*>
|
||||
|
|
|
@ -27,7 +27,7 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> ZQLT02 tests ZUNGQL, which generates an m-by-n matrix Q with
|
||||
*> orthonornmal columns that is defined as the product of k elementary
|
||||
*> orthonormal columns that is defined as the product of k elementary
|
||||
*> reflectors.
|
||||
*>
|
||||
*> Given the QL factorization of an m-by-n matrix A, ZQLT02 generates
|
||||
|
|
|
@ -27,7 +27,7 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> ZQRT02 tests ZUNGQR, which generates an m-by-n matrix Q with
|
||||
*> orthonornmal columns that is defined as the product of k elementary
|
||||
*> orthonormal columns that is defined as the product of k elementary
|
||||
*> reflectors.
|
||||
*>
|
||||
*> Given the QR factorization of an m-by-n matrix A, ZQRT02 generates
|
||||
|
|
|
@ -27,7 +27,7 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> ZRQT02 tests ZUNGRQ, which generates an m-by-n matrix Q with
|
||||
*> orthonornmal rows that is defined as the product of k elementary
|
||||
*> orthonormal rows that is defined as the product of k elementary
|
||||
*> reflectors.
|
||||
*>
|
||||
*> Given the RQ factorization of an m-by-n matrix A, ZRQT02 generates
|
||||
|
|
|
@ -188,7 +188,7 @@
|
|||
RETURN
|
||||
END IF
|
||||
*
|
||||
* a) Revert to multiplyers of L
|
||||
* a) Revert to multipliers of L
|
||||
*
|
||||
CALL ZSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
|
||||
*
|
||||
|
|
Loading…
Reference in New Issue