Fix typos in comments and documentation (Reference-LAPACK PR 820)

This commit is contained in:
Martin Kroeker 2023-05-18 12:49:33 +02:00 committed by GitHub
parent 0170ac293e
commit dbbad9ed61
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
59 changed files with 75 additions and 75 deletions

View File

@ -777,7 +777,7 @@
$ 'triangular-pentagonal matrices' ) $ 'triangular-pentagonal matrices' )
8004 FORMAT( / 1X, A3, ': TS factorization for ', 8004 FORMAT( / 1X, A3, ': TS factorization for ',
$ 'tall-skinny or short-wide matrices' ) $ 'tall-skinny or short-wide matrices' )
8005 FORMAT( / 1X, A3, ': Householder recostruction from TSQR', 8005 FORMAT( / 1X, A3, ': Householder reconstruction from TSQR',
$ ' factorization output ', /,' for tall-skinny matrices.' ) $ ' factorization output ', /,' for tall-skinny matrices.' )
* *
* GE matrix types * GE matrix types

View File

@ -87,7 +87,7 @@
*> \verbatim *> \verbatim
*> NMAX is INTEGER *> NMAX is INTEGER
*> The leading dimension of the work arrays. NMAX >= the *> The leading dimension of the work arrays. NMAX >= the
*> maximumm value of N in NVAL. *> maximum value of N in NVAL.
*> \endverbatim *> \endverbatim
*> *>
*> \param[out] AP *> \param[out] AP

View File

@ -133,7 +133,7 @@
IF( LSAMEN( 2, C2, 'HE' ) ) THEN IF( LSAMEN( 2, C2, 'HE' ) ) THEN
* *
* Test error exits of the routines that use factorization * Test error exits of the routines that use factorization
* of a Hermitian indefinite matrix with patrial * of a Hermitian indefinite matrix with partial
* (Bunch-Kaufman) diagonal pivoting method. * (Bunch-Kaufman) diagonal pivoting method.
* *
* CHETRF * CHETRF
@ -576,7 +576,7 @@
CALL CHKXER( 'CHETRS_AA_STAGE', INFOT, NOUT, LERR, OK ) CALL CHKXER( 'CHETRS_AA_STAGE', INFOT, NOUT, LERR, OK )
* *
* Test error exits of the routines that use factorization * Test error exits of the routines that use factorization
* of a Hermitian indefinite packed matrix with patrial * of a Hermitian indefinite packed matrix with partial
* (Bunch-Kaufman) diagonal pivoting method. * (Bunch-Kaufman) diagonal pivoting method.
* *
ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN

View File

@ -137,7 +137,7 @@
IF( LSAMEN( 2, C2, 'HE' ) ) THEN IF( LSAMEN( 2, C2, 'HE' ) ) THEN
* *
* Test error exits of the routines that use factorization * Test error exits of the routines that use factorization
* of a Hermitian indefinite matrix with patrial * of a Hermitian indefinite matrix with partial
* (Bunch-Kaufman) diagonal pivoting method. * (Bunch-Kaufman) diagonal pivoting method.
* *
* CHETRF * CHETRF
@ -523,7 +523,7 @@
ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN
* *
* Test error exits of the routines that use factorization * Test error exits of the routines that use factorization
* of a Hermitian indefinite packed matrix with patrial * of a Hermitian indefinite packed matrix with partial
* (Bunch-Kaufman) diagonal pivoting method. * (Bunch-Kaufman) diagonal pivoting method.
* *
* CHPTRF * CHPTRF

View File

@ -130,7 +130,7 @@
IF( LSAMEN( 2, C2, 'SY' ) ) THEN IF( LSAMEN( 2, C2, 'SY' ) ) THEN
* *
* Test error exits of the routines that use factorization * Test error exits of the routines that use factorization
* of a symmetric indefinite matrix with patrial * of a symmetric indefinite matrix with partial
* (Bunch-Kaufman) diagonal pivoting method. * (Bunch-Kaufman) diagonal pivoting method.
* *
* CSYTRF * CSYTRF
@ -469,7 +469,7 @@
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
* *
* Test error exits of the routines that use factorization * Test error exits of the routines that use factorization
* of a symmetric indefinite packed matrix with patrial * of a symmetric indefinite packed matrix with partial
* (Bunch-Kaufman) diagonal pivoting method. * (Bunch-Kaufman) diagonal pivoting method.
* *
* CSPTRF * CSPTRF

View File

@ -135,7 +135,7 @@
IF( LSAMEN( 2, C2, 'SY' ) ) THEN IF( LSAMEN( 2, C2, 'SY' ) ) THEN
* *
* Test error exits of the routines that use factorization * Test error exits of the routines that use factorization
* of a symmetric indefinite matrix with patrial * of a symmetric indefinite matrix with partial
* (Bunch-Kaufman) diagonal pivoting method. * (Bunch-Kaufman) diagonal pivoting method.
* *
* CSYTRF * CSYTRF
@ -521,7 +521,7 @@
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
* *
* Test error exits of the routines that use factorization * Test error exits of the routines that use factorization
* of a symmetric indefinite packed matrix with patrial * of a symmetric indefinite packed matrix with partial
* (Bunch-Kaufman) diagonal pivoting method. * (Bunch-Kaufman) diagonal pivoting method.
* *
* CSPTRF * CSPTRF

View File

@ -39,7 +39,7 @@
* *
*> \param[in] N *> \param[in] N
*> \verbatim *> \verbatim
*> N is INTEGTER *> N is INTEGER
*> The order of the matrix A. N >= 0. *> The order of the matrix A. N >= 0.
*> \endverbatim *> \endverbatim
*> *>

View File

@ -40,14 +40,14 @@
*> \verbatim *> \verbatim
*> TRANS is CHARACTER *> TRANS is CHARACTER
*> Specifies the form of the residual. *> Specifies the form of the residual.
*> = 'N': B - A * X (No transpose) *> = 'N': B - A * X (No transpose)
*> = 'T': B - A**T * X (Transpose) *> = 'T': B - A**T * X (Transpose)
*> = 'C': B - A**H * X (Conjugate transpose) *> = 'C': B - A**H * X (Conjugate transpose)
*> \endverbatim *> \endverbatim
*> *>
*> \param[in] N *> \param[in] N
*> \verbatim *> \verbatim
*> N is INTEGTER *> N is INTEGER
*> The order of the matrix A. N >= 0. *> The order of the matrix A. N >= 0.
*> \endverbatim *> \endverbatim
*> *>

View File

@ -188,7 +188,7 @@
RETURN RETURN
END IF END IF
* *
* a) Revert to multiplyers of L * a) Revert to multipliers of L
* *
CALL CSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO ) CALL CSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
* *

View File

@ -27,7 +27,7 @@
*> \verbatim *> \verbatim
*> *>
*> CLQT02 tests CUNGLQ, which generates an m-by-n matrix Q with *> CLQT02 tests CUNGLQ, which generates an m-by-n matrix Q with
*> orthonornmal rows that is defined as the product of k elementary *> orthonormal rows that is defined as the product of k elementary
*> reflectors. *> reflectors.
*> *>
*> Given the LQ factorization of an m-by-n matrix A, CLQT02 generates *> Given the LQ factorization of an m-by-n matrix A, CLQT02 generates

View File

@ -36,7 +36,7 @@
* *
*> \param[in] N *> \param[in] N
*> \verbatim *> \verbatim
*> N is INTEGTER *> N is INTEGER
*> The order of the matrix A. *> The order of the matrix A.
*> \endverbatim *> \endverbatim
*> *>

View File

@ -46,7 +46,7 @@
*> *>
*> \param[in] N *> \param[in] N
*> \verbatim *> \verbatim
*> N is INTEGTER *> N is INTEGER
*> The order of the matrix A. *> The order of the matrix A.
*> \endverbatim *> \endverbatim
*> *>

View File

@ -27,7 +27,7 @@
*> \verbatim *> \verbatim
*> *>
*> CQLT02 tests CUNGQL, which generates an m-by-n matrix Q with *> CQLT02 tests CUNGQL, which generates an m-by-n matrix Q with
*> orthonornmal columns that is defined as the product of k elementary *> orthonormal columns that is defined as the product of k elementary
*> reflectors. *> reflectors.
*> *>
*> Given the QL factorization of an m-by-n matrix A, CQLT02 generates *> Given the QL factorization of an m-by-n matrix A, CQLT02 generates

View File

@ -27,7 +27,7 @@
*> \verbatim *> \verbatim
*> *>
*> CQRT02 tests CUNGQR, which generates an m-by-n matrix Q with *> CQRT02 tests CUNGQR, which generates an m-by-n matrix Q with
*> orthonornmal columns that is defined as the product of k elementary *> orthonormal columns that is defined as the product of k elementary
*> reflectors. *> reflectors.
*> *>
*> Given the QR factorization of an m-by-n matrix A, CQRT02 generates *> Given the QR factorization of an m-by-n matrix A, CQRT02 generates

View File

@ -27,7 +27,7 @@
*> \verbatim *> \verbatim
*> *>
*> CRQT02 tests CUNGRQ, which generates an m-by-n matrix Q with *> CRQT02 tests CUNGRQ, which generates an m-by-n matrix Q with
*> orthonornmal rows that is defined as the product of k elementary *> orthonormal rows that is defined as the product of k elementary
*> reflectors. *> reflectors.
*> *>
*> Given the RQ factorization of an m-by-n matrix A, CRQT02 generates *> Given the RQ factorization of an m-by-n matrix A, CRQT02 generates

View File

@ -188,7 +188,7 @@
RETURN RETURN
END IF END IF
* *
* a) Revert to multiplyers of L * a) Revert to multipliers of L
* *
CALL CSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO ) CALL CSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
* *

View File

@ -86,7 +86,7 @@
*> \verbatim *> \verbatim
*> NMAX is INTEGER *> NMAX is INTEGER
*> The leading dimension of the work arrays. NMAX >= the *> The leading dimension of the work arrays. NMAX >= the
*> maximumm value of N in NVAL. *> maximum value of N in NVAL.
*> \endverbatim *> \endverbatim
*> *>
*> \param[out] AP *> \param[out] AP

View File

@ -346,7 +346,7 @@
CALL DGET08( TRANS, N, N, NRHS, A, LDA, X, LDA, WORK, CALL DGET08( TRANS, N, N, NRHS, A, LDA, X, LDA, WORK,
$ LDA, RWORK, RESULT( 1 ) ) $ LDA, RWORK, RESULT( 1 ) )
* *
* Check if the test passes the tesing. * Check if the test passes the testing.
* Print information about the tests that did not * Print information about the tests that did not
* pass the testing. * pass the testing.
* *

View File

@ -365,7 +365,7 @@
CALL DPOT06( UPLO, N, NRHS, A, LDA, X, LDA, WORK, CALL DPOT06( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
$ LDA, RWORK, RESULT( 1 ) ) $ LDA, RWORK, RESULT( 1 ) )
* *
* Check if the test passes the tesing. * Check if the test passes the testing.
* Print information about the tests that did not * Print information about the tests that did not
* pass the testing. * pass the testing.
* *

View File

@ -133,7 +133,7 @@
IF( LSAMEN( 2, C2, 'SY' ) ) THEN IF( LSAMEN( 2, C2, 'SY' ) ) THEN
* *
* Test error exits of the routines that use factorization * Test error exits of the routines that use factorization
* of a symmetric indefinite matrix with patrial * of a symmetric indefinite matrix with partial
* (Bunch-Kaufman) pivoting. * (Bunch-Kaufman) pivoting.
* *
* DSYTRF * DSYTRF
@ -581,7 +581,7 @@
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
* *
* Test error exits of the routines that use factorization * Test error exits of the routines that use factorization
* of a symmetric indefinite packed matrix with patrial * of a symmetric indefinite packed matrix with partial
* (Bunch-Kaufman) pivoting. * (Bunch-Kaufman) pivoting.
* *
* DSPTRF * DSPTRF

View File

@ -138,7 +138,7 @@
IF( LSAMEN( 2, C2, 'SY' ) ) THEN IF( LSAMEN( 2, C2, 'SY' ) ) THEN
* *
* Test error exits of the routines that use factorization * Test error exits of the routines that use factorization
* of a symmetric indefinite matrix with patrial * of a symmetric indefinite matrix with partial
* (Bunch-Kaufman) pivoting. * (Bunch-Kaufman) pivoting.
* *
* DSYTRF * DSYTRF
@ -528,7 +528,7 @@
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
* *
* Test error exits of the routines that use factorization * Test error exits of the routines that use factorization
* of a symmetric indefinite packed matrix with patrial * of a symmetric indefinite packed matrix with partial
* (Bunch-Kaufman) pivoting. * (Bunch-Kaufman) pivoting.
* *
* DSPTRF * DSPTRF

View File

@ -39,7 +39,7 @@
* *
*> \param[in] N *> \param[in] N
*> \verbatim *> \verbatim
*> N is INTEGTER *> N is INTEGER
*> The order of the matrix A. N >= 0. *> The order of the matrix A. N >= 0.
*> \endverbatim *> \endverbatim
*> *>

View File

@ -41,14 +41,14 @@
*> \verbatim *> \verbatim
*> TRANS is CHARACTER *> TRANS is CHARACTER
*> Specifies the form of the residual. *> Specifies the form of the residual.
*> = 'N': B - A * X (No transpose) *> = 'N': B - A * X (No transpose)
*> = 'T': B - A**T * X (Transpose) *> = 'T': B - A**T * X (Transpose)
*> = 'C': B - A**H * X (Conjugate transpose = Transpose) *> = 'C': B - A**H * X (Conjugate transpose = Transpose)
*> \endverbatim *> \endverbatim
*> *>
*> \param[in] N *> \param[in] N
*> \verbatim *> \verbatim
*> N is INTEGTER *> N is INTEGER
*> The order of the matrix A. N >= 0. *> The order of the matrix A. N >= 0.
*> \endverbatim *> \endverbatim
*> *>

View File

@ -27,7 +27,7 @@
*> \verbatim *> \verbatim
*> *>
*> DLQT02 tests DORGLQ, which generates an m-by-n matrix Q with *> DLQT02 tests DORGLQ, which generates an m-by-n matrix Q with
*> orthonornmal rows that is defined as the product of k elementary *> orthonormal rows that is defined as the product of k elementary
*> reflectors. *> reflectors.
*> *>
*> Given the LQ factorization of an m-by-n matrix A, DLQT02 generates *> Given the LQ factorization of an m-by-n matrix A, DLQT02 generates

View File

@ -35,7 +35,7 @@
* *
*> \param[in] N *> \param[in] N
*> \verbatim *> \verbatim
*> N is INTEGTER *> N is INTEGER
*> The order of the matrix A. *> The order of the matrix A.
*> \endverbatim *> \endverbatim
*> *>

View File

@ -35,7 +35,7 @@
* *
*> \param[in] N *> \param[in] N
*> \verbatim *> \verbatim
*> N is INTEGTER *> N is INTEGER
*> The order of the matrix A. *> The order of the matrix A.
*> \endverbatim *> \endverbatim
*> *>

View File

@ -27,7 +27,7 @@
*> \verbatim *> \verbatim
*> *>
*> DQLT02 tests DORGQL, which generates an m-by-n matrix Q with *> DQLT02 tests DORGQL, which generates an m-by-n matrix Q with
*> orthonornmal columns that is defined as the product of k elementary *> orthonormal columns that is defined as the product of k elementary
*> reflectors. *> reflectors.
*> *>
*> Given the QL factorization of an m-by-n matrix A, DQLT02 generates *> Given the QL factorization of an m-by-n matrix A, DQLT02 generates

View File

@ -27,7 +27,7 @@
*> \verbatim *> \verbatim
*> *>
*> DQRT02 tests DORGQR, which generates an m-by-n matrix Q with *> DQRT02 tests DORGQR, which generates an m-by-n matrix Q with
*> orthonornmal columns that is defined as the product of k elementary *> orthonormal columns that is defined as the product of k elementary
*> reflectors. *> reflectors.
*> *>
*> Given the QR factorization of an m-by-n matrix A, DQRT02 generates *> Given the QR factorization of an m-by-n matrix A, DQRT02 generates

View File

@ -27,7 +27,7 @@
*> \verbatim *> \verbatim
*> *>
*> DRQT02 tests DORGRQ, which generates an m-by-n matrix Q with *> DRQT02 tests DORGRQ, which generates an m-by-n matrix Q with
*> orthonornmal rows that is defined as the product of k elementary *> orthonormal rows that is defined as the product of k elementary
*> reflectors. *> reflectors.
*> *>
*> Given the RQ factorization of an m-by-n matrix A, DRQT02 generates *> Given the RQ factorization of an m-by-n matrix A, DRQT02 generates

View File

@ -183,7 +183,7 @@
RETURN RETURN
END IF END IF
* *
* a) Revert to multiplyers of L * a) Revert to multipliers of L
* *
CALL DSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO ) CALL DSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
* *

View File

@ -86,7 +86,7 @@
*> \verbatim *> \verbatim
*> NMAX is INTEGER *> NMAX is INTEGER
*> The leading dimension of the work arrays. NMAX >= the *> The leading dimension of the work arrays. NMAX >= the
*> maximumm value of N in NVAL. *> maximum value of N in NVAL.
*> \endverbatim *> \endverbatim
*> *>
*> \param[out] AP *> \param[out] AP

View File

@ -133,7 +133,7 @@
IF( LSAMEN( 2, C2, 'SY' ) ) THEN IF( LSAMEN( 2, C2, 'SY' ) ) THEN
* *
* Test error exits of the routines that use factorization * Test error exits of the routines that use factorization
* of a symmetric indefinite matrix with patrial * of a symmetric indefinite matrix with partial
* (Bunch-Kaufman) pivoting. * (Bunch-Kaufman) pivoting.
* *
* SSYTRF * SSYTRF
@ -581,7 +581,7 @@
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
* *
* Test error exits of the routines that use factorization * Test error exits of the routines that use factorization
* of a symmetric indefinite packed matrix with patrial * of a symmetric indefinite packed matrix with partial
* (Bunch-Kaufman) pivoting. * (Bunch-Kaufman) pivoting.
* *
* SSPTRF * SSPTRF

View File

@ -137,7 +137,7 @@
IF( LSAMEN( 2, C2, 'SY' ) ) THEN IF( LSAMEN( 2, C2, 'SY' ) ) THEN
* *
* Test error exits of the routines that use factorization * Test error exits of the routines that use factorization
* of a symmetric indefinite matrix with patrial * of a symmetric indefinite matrix with partial
* (Bunch-Kaufman) pivoting. * (Bunch-Kaufman) pivoting.
* *
* SSYTRF * SSYTRF
@ -527,7 +527,7 @@
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
* *
* Test error exits of the routines that use factorization * Test error exits of the routines that use factorization
* of a symmetric indefinite packed matrix with patrial * of a symmetric indefinite packed matrix with partial
* (Bunch-Kaufman) pivoting. * (Bunch-Kaufman) pivoting.
* *
* SSPTRF * SSPTRF

View File

@ -39,7 +39,7 @@
* *
*> \param[in] N *> \param[in] N
*> \verbatim *> \verbatim
*> N is INTEGTER *> N is INTEGER
*> The order of the matrix A. N >= 0. *> The order of the matrix A. N >= 0.
*> \endverbatim *> \endverbatim
*> *>

View File

@ -41,14 +41,14 @@
*> \verbatim *> \verbatim
*> TRANS is CHARACTER *> TRANS is CHARACTER
*> Specifies the form of the residual. *> Specifies the form of the residual.
*> = 'N': B - A * X (No transpose) *> = 'N': B - A * X (No transpose)
*> = 'T': B - A**T * X (Transpose) *> = 'T': B - A**T * X (Transpose)
*> = 'C': B - A**H * X (Conjugate transpose = Transpose) *> = 'C': B - A**H * X (Conjugate transpose = Transpose)
*> \endverbatim *> \endverbatim
*> *>
*> \param[in] N *> \param[in] N
*> \verbatim *> \verbatim
*> N is INTEGTER *> N is INTEGER
*> The order of the matrix A. N >= 0. *> The order of the matrix A. N >= 0.
*> \endverbatim *> \endverbatim
*> *>

View File

@ -27,7 +27,7 @@
*> \verbatim *> \verbatim
*> *>
*> SLQT02 tests SORGLQ, which generates an m-by-n matrix Q with *> SLQT02 tests SORGLQ, which generates an m-by-n matrix Q with
*> orthonornmal rows that is defined as the product of k elementary *> orthonormal rows that is defined as the product of k elementary
*> reflectors. *> reflectors.
*> *>
*> Given the LQ factorization of an m-by-n matrix A, SLQT02 generates *> Given the LQ factorization of an m-by-n matrix A, SLQT02 generates

View File

@ -35,7 +35,7 @@
* *
*> \param[in] N *> \param[in] N
*> \verbatim *> \verbatim
*> N is INTEGTER *> N is INTEGER
*> The order of the matrix A. *> The order of the matrix A.
*> \endverbatim *> \endverbatim
*> *>

View File

@ -35,7 +35,7 @@
* *
*> \param[in] N *> \param[in] N
*> \verbatim *> \verbatim
*> N is INTEGTER *> N is INTEGER
*> The order of the matrix A. *> The order of the matrix A.
*> \endverbatim *> \endverbatim
*> *>

View File

@ -27,7 +27,7 @@
*> \verbatim *> \verbatim
*> *>
*> SQLT02 tests SORGQL, which generates an m-by-n matrix Q with *> SQLT02 tests SORGQL, which generates an m-by-n matrix Q with
*> orthonornmal columns that is defined as the product of k elementary *> orthonormal columns that is defined as the product of k elementary
*> reflectors. *> reflectors.
*> *>
*> Given the QL factorization of an m-by-n matrix A, SQLT02 generates *> Given the QL factorization of an m-by-n matrix A, SQLT02 generates

View File

@ -27,7 +27,7 @@
*> \verbatim *> \verbatim
*> *>
*> SQRT02 tests SORGQR, which generates an m-by-n matrix Q with *> SQRT02 tests SORGQR, which generates an m-by-n matrix Q with
*> orthonornmal columns that is defined as the product of k elementary *> orthonormal columns that is defined as the product of k elementary
*> reflectors. *> reflectors.
*> *>
*> Given the QR factorization of an m-by-n matrix A, SQRT02 generates *> Given the QR factorization of an m-by-n matrix A, SQRT02 generates

View File

@ -27,7 +27,7 @@
*> \verbatim *> \verbatim
*> *>
*> SRQT02 tests SORGRQ, which generates an m-by-n matrix Q with *> SRQT02 tests SORGRQ, which generates an m-by-n matrix Q with
*> orthonornmal rows that is defined as the product of k elementary *> orthonormal rows that is defined as the product of k elementary
*> reflectors. *> reflectors.
*> *>
*> Given the RQ factorization of an m-by-n matrix A, SRQT02 generates *> Given the RQ factorization of an m-by-n matrix A, SRQT02 generates

View File

@ -183,7 +183,7 @@
RETURN RETURN
END IF END IF
* *
* a) Revert to multiplyers of L * a) Revert to multipliers of L
* *
CALL SSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO ) CALL SSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
* *

View File

@ -87,7 +87,7 @@
*> \verbatim *> \verbatim
*> NMAX is INTEGER *> NMAX is INTEGER
*> The leading dimension of the work arrays. NMAX >= the *> The leading dimension of the work arrays. NMAX >= the
*> maximumm value of N in NVAL. *> maximum value of N in NVAL.
*> \endverbatim *> \endverbatim
*> *>
*> \param[out] AP *> \param[out] AP

View File

@ -348,7 +348,7 @@
CALL ZGET08( TRANS, N, N, NRHS, A, LDA, X, LDA, WORK, CALL ZGET08( TRANS, N, N, NRHS, A, LDA, X, LDA, WORK,
$ LDA, RWORK, RESULT( 1 ) ) $ LDA, RWORK, RESULT( 1 ) )
* *
* Check if the test passes the tesing. * Check if the test passes the testing.
* Print information about the tests that did not * Print information about the tests that did not
* pass the testing. * pass the testing.
* *

View File

@ -367,7 +367,7 @@
CALL ZPOT06( UPLO, N, NRHS, A, LDA, X, LDA, WORK, CALL ZPOT06( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
$ LDA, RWORK, RESULT( 1 ) ) $ LDA, RWORK, RESULT( 1 ) )
* *
* Check if the test passes the tesing. * Check if the test passes the testing.
* Print information about the tests that did not * Print information about the tests that did not
* pass the testing. * pass the testing.
* *

View File

@ -135,7 +135,7 @@
IF( LSAMEN( 2, C2, 'HE' ) ) THEN IF( LSAMEN( 2, C2, 'HE' ) ) THEN
* *
* Test error exits of the routines that use factorization * Test error exits of the routines that use factorization
* of a Hermitian indefinite matrix with patrial * of a Hermitian indefinite matrix with partial
* (Bunch-Kaufman) diagonal pivoting method. * (Bunch-Kaufman) diagonal pivoting method.
* *
* ZHETRF * ZHETRF
@ -580,7 +580,7 @@
ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN
* *
* Test error exits of the routines that use factorization * Test error exits of the routines that use factorization
* of a Hermitian indefinite packed matrix with patrial * of a Hermitian indefinite packed matrix with partial
* (Bunch-Kaufman) diagonal pivoting method. * (Bunch-Kaufman) diagonal pivoting method.
* *
* ZHPTRF * ZHPTRF

View File

@ -138,7 +138,7 @@
OK = .TRUE. OK = .TRUE.
* *
* Test error exits of the routines that use factorization * Test error exits of the routines that use factorization
* of a Hermitian indefinite matrix with patrial * of a Hermitian indefinite matrix with partial
* (Bunch-Kaufman) diagonal pivoting method. * (Bunch-Kaufman) diagonal pivoting method.
* *
IF( LSAMEN( 2, C2, 'HE' ) ) THEN IF( LSAMEN( 2, C2, 'HE' ) ) THEN
@ -526,7 +526,7 @@
ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN
* *
* Test error exits of the routines that use factorization * Test error exits of the routines that use factorization
* of a Hermitian indefinite packed matrix with patrial * of a Hermitian indefinite packed matrix with partial
* (Bunch-Kaufman) diagonal pivoting method. * (Bunch-Kaufman) diagonal pivoting method.
* *
* ZHPTRF * ZHPTRF

View File

@ -132,7 +132,7 @@
IF( LSAMEN( 2, C2, 'SY' ) ) THEN IF( LSAMEN( 2, C2, 'SY' ) ) THEN
* *
* Test error exits of the routines that use factorization * Test error exits of the routines that use factorization
* of a symmetric indefinite matrix with patrial * of a symmetric indefinite matrix with partial
* (Bunch-Kaufman) diagonal pivoting method. * (Bunch-Kaufman) diagonal pivoting method.
* *
* ZSYTRF * ZSYTRF
@ -471,7 +471,7 @@
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
* *
* Test error exits of the routines that use factorization * Test error exits of the routines that use factorization
* of a symmetric indefinite packed matrix with patrial * of a symmetric indefinite packed matrix with partial
* (Bunch-Kaufman) pivoting. * (Bunch-Kaufman) pivoting.
* *
* ZSPTRF * ZSPTRF

View File

@ -139,7 +139,7 @@
IF( LSAMEN( 2, C2, 'SY' ) ) THEN IF( LSAMEN( 2, C2, 'SY' ) ) THEN
* *
* Test error exits of the routines that use factorization * Test error exits of the routines that use factorization
* of a symmetric indefinite matrix with patrial * of a symmetric indefinite matrix with partial
* (Bunch-Kaufman) diagonal pivoting method. * (Bunch-Kaufman) diagonal pivoting method.
* *
* ZSYTRF * ZSYTRF
@ -525,7 +525,7 @@
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
* *
* Test error exits of the routines that use factorization * Test error exits of the routines that use factorization
* of a symmetric indefinite packed matrix with patrial * of a symmetric indefinite packed matrix with partial
* (Bunch-Kaufman) pivoting. * (Bunch-Kaufman) pivoting.
* *
* ZSPTRF * ZSPTRF

View File

@ -39,7 +39,7 @@
* *
*> \param[in] N *> \param[in] N
*> \verbatim *> \verbatim
*> N is INTEGTER *> N is INTEGER
*> The order of the matrix A. N >= 0. *> The order of the matrix A. N >= 0.
*> \endverbatim *> \endverbatim
*> *>

View File

@ -40,14 +40,14 @@
*> \verbatim *> \verbatim
*> TRANS is CHARACTER *> TRANS is CHARACTER
*> Specifies the form of the residual. *> Specifies the form of the residual.
*> = 'N': B - A * X (No transpose) *> = 'N': B - A * X (No transpose)
*> = 'T': B - A**T * X (Transpose) *> = 'T': B - A**T * X (Transpose)
*> = 'C': B - A**H * X (Conjugate transpose) *> = 'C': B - A**H * X (Conjugate transpose)
*> \endverbatim *> \endverbatim
*> *>
*> \param[in] N *> \param[in] N
*> \verbatim *> \verbatim
*> N is INTEGTER *> N is INTEGER
*> The order of the matrix A. N >= 0. *> The order of the matrix A. N >= 0.
*> \endverbatim *> \endverbatim
*> *>

View File

@ -188,7 +188,7 @@
RETURN RETURN
END IF END IF
* *
* a) Revert to multiplyers of L * a) Revert to multipliers of L
* *
CALL ZSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO ) CALL ZSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
* *

View File

@ -27,7 +27,7 @@
*> \verbatim *> \verbatim
*> *>
*> ZLQT02 tests ZUNGLQ, which generates an m-by-n matrix Q with *> ZLQT02 tests ZUNGLQ, which generates an m-by-n matrix Q with
*> orthonornmal rows that is defined as the product of k elementary *> orthonormal rows that is defined as the product of k elementary
*> reflectors. *> reflectors.
*> *>
*> Given the LQ factorization of an m-by-n matrix A, ZLQT02 generates *> Given the LQ factorization of an m-by-n matrix A, ZLQT02 generates

View File

@ -36,7 +36,7 @@
* *
*> \param[in] N *> \param[in] N
*> \verbatim *> \verbatim
*> N is INTEGTER *> N is INTEGER
*> The order of the matrix A. *> The order of the matrix A.
*> \endverbatim *> \endverbatim
*> *>

View File

@ -46,7 +46,7 @@
*> *>
*> \param[in] N *> \param[in] N
*> \verbatim *> \verbatim
*> N is INTEGTER *> N is INTEGER
*> The order of the matrix A. *> The order of the matrix A.
*> \endverbatim *> \endverbatim
*> *>

View File

@ -27,7 +27,7 @@
*> \verbatim *> \verbatim
*> *>
*> ZQLT02 tests ZUNGQL, which generates an m-by-n matrix Q with *> ZQLT02 tests ZUNGQL, which generates an m-by-n matrix Q with
*> orthonornmal columns that is defined as the product of k elementary *> orthonormal columns that is defined as the product of k elementary
*> reflectors. *> reflectors.
*> *>
*> Given the QL factorization of an m-by-n matrix A, ZQLT02 generates *> Given the QL factorization of an m-by-n matrix A, ZQLT02 generates

View File

@ -27,7 +27,7 @@
*> \verbatim *> \verbatim
*> *>
*> ZQRT02 tests ZUNGQR, which generates an m-by-n matrix Q with *> ZQRT02 tests ZUNGQR, which generates an m-by-n matrix Q with
*> orthonornmal columns that is defined as the product of k elementary *> orthonormal columns that is defined as the product of k elementary
*> reflectors. *> reflectors.
*> *>
*> Given the QR factorization of an m-by-n matrix A, ZQRT02 generates *> Given the QR factorization of an m-by-n matrix A, ZQRT02 generates

View File

@ -27,7 +27,7 @@
*> \verbatim *> \verbatim
*> *>
*> ZRQT02 tests ZUNGRQ, which generates an m-by-n matrix Q with *> ZRQT02 tests ZUNGRQ, which generates an m-by-n matrix Q with
*> orthonornmal rows that is defined as the product of k elementary *> orthonormal rows that is defined as the product of k elementary
*> reflectors. *> reflectors.
*> *>
*> Given the RQ factorization of an m-by-n matrix A, ZRQT02 generates *> Given the RQ factorization of an m-by-n matrix A, ZRQT02 generates

View File

@ -188,7 +188,7 @@
RETURN RETURN
END IF END IF
* *
* a) Revert to multiplyers of L * a) Revert to multipliers of L
* *
CALL ZSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO ) CALL ZSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
* *