Fix typos in comments and documentation (Reference-LAPACK PR 820)
This commit is contained in:
parent
0170ac293e
commit
dbbad9ed61
|
@ -777,7 +777,7 @@
|
||||||
$ 'triangular-pentagonal matrices' )
|
$ 'triangular-pentagonal matrices' )
|
||||||
8004 FORMAT( / 1X, A3, ': TS factorization for ',
|
8004 FORMAT( / 1X, A3, ': TS factorization for ',
|
||||||
$ 'tall-skinny or short-wide matrices' )
|
$ 'tall-skinny or short-wide matrices' )
|
||||||
8005 FORMAT( / 1X, A3, ': Householder recostruction from TSQR',
|
8005 FORMAT( / 1X, A3, ': Householder reconstruction from TSQR',
|
||||||
$ ' factorization output ', /,' for tall-skinny matrices.' )
|
$ ' factorization output ', /,' for tall-skinny matrices.' )
|
||||||
*
|
*
|
||||||
* GE matrix types
|
* GE matrix types
|
||||||
|
|
|
@ -87,7 +87,7 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> NMAX is INTEGER
|
*> NMAX is INTEGER
|
||||||
*> The leading dimension of the work arrays. NMAX >= the
|
*> The leading dimension of the work arrays. NMAX >= the
|
||||||
*> maximumm value of N in NVAL.
|
*> maximum value of N in NVAL.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[out] AP
|
*> \param[out] AP
|
||||||
|
|
|
@ -133,7 +133,7 @@
|
||||||
IF( LSAMEN( 2, C2, 'HE' ) ) THEN
|
IF( LSAMEN( 2, C2, 'HE' ) ) THEN
|
||||||
*
|
*
|
||||||
* Test error exits of the routines that use factorization
|
* Test error exits of the routines that use factorization
|
||||||
* of a Hermitian indefinite matrix with patrial
|
* of a Hermitian indefinite matrix with partial
|
||||||
* (Bunch-Kaufman) diagonal pivoting method.
|
* (Bunch-Kaufman) diagonal pivoting method.
|
||||||
*
|
*
|
||||||
* CHETRF
|
* CHETRF
|
||||||
|
@ -576,7 +576,7 @@
|
||||||
CALL CHKXER( 'CHETRS_AA_STAGE', INFOT, NOUT, LERR, OK )
|
CALL CHKXER( 'CHETRS_AA_STAGE', INFOT, NOUT, LERR, OK )
|
||||||
*
|
*
|
||||||
* Test error exits of the routines that use factorization
|
* Test error exits of the routines that use factorization
|
||||||
* of a Hermitian indefinite packed matrix with patrial
|
* of a Hermitian indefinite packed matrix with partial
|
||||||
* (Bunch-Kaufman) diagonal pivoting method.
|
* (Bunch-Kaufman) diagonal pivoting method.
|
||||||
*
|
*
|
||||||
ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN
|
ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN
|
||||||
|
|
|
@ -137,7 +137,7 @@
|
||||||
IF( LSAMEN( 2, C2, 'HE' ) ) THEN
|
IF( LSAMEN( 2, C2, 'HE' ) ) THEN
|
||||||
*
|
*
|
||||||
* Test error exits of the routines that use factorization
|
* Test error exits of the routines that use factorization
|
||||||
* of a Hermitian indefinite matrix with patrial
|
* of a Hermitian indefinite matrix with partial
|
||||||
* (Bunch-Kaufman) diagonal pivoting method.
|
* (Bunch-Kaufman) diagonal pivoting method.
|
||||||
*
|
*
|
||||||
* CHETRF
|
* CHETRF
|
||||||
|
@ -523,7 +523,7 @@
|
||||||
ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN
|
ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN
|
||||||
*
|
*
|
||||||
* Test error exits of the routines that use factorization
|
* Test error exits of the routines that use factorization
|
||||||
* of a Hermitian indefinite packed matrix with patrial
|
* of a Hermitian indefinite packed matrix with partial
|
||||||
* (Bunch-Kaufman) diagonal pivoting method.
|
* (Bunch-Kaufman) diagonal pivoting method.
|
||||||
*
|
*
|
||||||
* CHPTRF
|
* CHPTRF
|
||||||
|
|
|
@ -130,7 +130,7 @@
|
||||||
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
|
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
|
||||||
*
|
*
|
||||||
* Test error exits of the routines that use factorization
|
* Test error exits of the routines that use factorization
|
||||||
* of a symmetric indefinite matrix with patrial
|
* of a symmetric indefinite matrix with partial
|
||||||
* (Bunch-Kaufman) diagonal pivoting method.
|
* (Bunch-Kaufman) diagonal pivoting method.
|
||||||
*
|
*
|
||||||
* CSYTRF
|
* CSYTRF
|
||||||
|
@ -469,7 +469,7 @@
|
||||||
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
|
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
|
||||||
*
|
*
|
||||||
* Test error exits of the routines that use factorization
|
* Test error exits of the routines that use factorization
|
||||||
* of a symmetric indefinite packed matrix with patrial
|
* of a symmetric indefinite packed matrix with partial
|
||||||
* (Bunch-Kaufman) diagonal pivoting method.
|
* (Bunch-Kaufman) diagonal pivoting method.
|
||||||
*
|
*
|
||||||
* CSPTRF
|
* CSPTRF
|
||||||
|
|
|
@ -135,7 +135,7 @@
|
||||||
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
|
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
|
||||||
*
|
*
|
||||||
* Test error exits of the routines that use factorization
|
* Test error exits of the routines that use factorization
|
||||||
* of a symmetric indefinite matrix with patrial
|
* of a symmetric indefinite matrix with partial
|
||||||
* (Bunch-Kaufman) diagonal pivoting method.
|
* (Bunch-Kaufman) diagonal pivoting method.
|
||||||
*
|
*
|
||||||
* CSYTRF
|
* CSYTRF
|
||||||
|
@ -521,7 +521,7 @@
|
||||||
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
|
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
|
||||||
*
|
*
|
||||||
* Test error exits of the routines that use factorization
|
* Test error exits of the routines that use factorization
|
||||||
* of a symmetric indefinite packed matrix with patrial
|
* of a symmetric indefinite packed matrix with partial
|
||||||
* (Bunch-Kaufman) diagonal pivoting method.
|
* (Bunch-Kaufman) diagonal pivoting method.
|
||||||
*
|
*
|
||||||
* CSPTRF
|
* CSPTRF
|
||||||
|
|
|
@ -39,7 +39,7 @@
|
||||||
*
|
*
|
||||||
*> \param[in] N
|
*> \param[in] N
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> N is INTEGTER
|
*> N is INTEGER
|
||||||
*> The order of the matrix A. N >= 0.
|
*> The order of the matrix A. N >= 0.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
|
|
|
@ -40,14 +40,14 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> TRANS is CHARACTER
|
*> TRANS is CHARACTER
|
||||||
*> Specifies the form of the residual.
|
*> Specifies the form of the residual.
|
||||||
*> = 'N': B - A * X (No transpose)
|
*> = 'N': B - A * X (No transpose)
|
||||||
*> = 'T': B - A**T * X (Transpose)
|
*> = 'T': B - A**T * X (Transpose)
|
||||||
*> = 'C': B - A**H * X (Conjugate transpose)
|
*> = 'C': B - A**H * X (Conjugate transpose)
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] N
|
*> \param[in] N
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> N is INTEGTER
|
*> N is INTEGER
|
||||||
*> The order of the matrix A. N >= 0.
|
*> The order of the matrix A. N >= 0.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
|
|
|
@ -188,7 +188,7 @@
|
||||||
RETURN
|
RETURN
|
||||||
END IF
|
END IF
|
||||||
*
|
*
|
||||||
* a) Revert to multiplyers of L
|
* a) Revert to multipliers of L
|
||||||
*
|
*
|
||||||
CALL CSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
|
CALL CSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
|
||||||
*
|
*
|
||||||
|
|
|
@ -27,7 +27,7 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*>
|
*>
|
||||||
*> CLQT02 tests CUNGLQ, which generates an m-by-n matrix Q with
|
*> CLQT02 tests CUNGLQ, which generates an m-by-n matrix Q with
|
||||||
*> orthonornmal rows that is defined as the product of k elementary
|
*> orthonormal rows that is defined as the product of k elementary
|
||||||
*> reflectors.
|
*> reflectors.
|
||||||
*>
|
*>
|
||||||
*> Given the LQ factorization of an m-by-n matrix A, CLQT02 generates
|
*> Given the LQ factorization of an m-by-n matrix A, CLQT02 generates
|
||||||
|
|
|
@ -36,7 +36,7 @@
|
||||||
*
|
*
|
||||||
*> \param[in] N
|
*> \param[in] N
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> N is INTEGTER
|
*> N is INTEGER
|
||||||
*> The order of the matrix A.
|
*> The order of the matrix A.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
|
|
|
@ -46,7 +46,7 @@
|
||||||
*>
|
*>
|
||||||
*> \param[in] N
|
*> \param[in] N
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> N is INTEGTER
|
*> N is INTEGER
|
||||||
*> The order of the matrix A.
|
*> The order of the matrix A.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
|
|
|
@ -27,7 +27,7 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*>
|
*>
|
||||||
*> CQLT02 tests CUNGQL, which generates an m-by-n matrix Q with
|
*> CQLT02 tests CUNGQL, which generates an m-by-n matrix Q with
|
||||||
*> orthonornmal columns that is defined as the product of k elementary
|
*> orthonormal columns that is defined as the product of k elementary
|
||||||
*> reflectors.
|
*> reflectors.
|
||||||
*>
|
*>
|
||||||
*> Given the QL factorization of an m-by-n matrix A, CQLT02 generates
|
*> Given the QL factorization of an m-by-n matrix A, CQLT02 generates
|
||||||
|
|
|
@ -27,7 +27,7 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*>
|
*>
|
||||||
*> CQRT02 tests CUNGQR, which generates an m-by-n matrix Q with
|
*> CQRT02 tests CUNGQR, which generates an m-by-n matrix Q with
|
||||||
*> orthonornmal columns that is defined as the product of k elementary
|
*> orthonormal columns that is defined as the product of k elementary
|
||||||
*> reflectors.
|
*> reflectors.
|
||||||
*>
|
*>
|
||||||
*> Given the QR factorization of an m-by-n matrix A, CQRT02 generates
|
*> Given the QR factorization of an m-by-n matrix A, CQRT02 generates
|
||||||
|
|
|
@ -27,7 +27,7 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*>
|
*>
|
||||||
*> CRQT02 tests CUNGRQ, which generates an m-by-n matrix Q with
|
*> CRQT02 tests CUNGRQ, which generates an m-by-n matrix Q with
|
||||||
*> orthonornmal rows that is defined as the product of k elementary
|
*> orthonormal rows that is defined as the product of k elementary
|
||||||
*> reflectors.
|
*> reflectors.
|
||||||
*>
|
*>
|
||||||
*> Given the RQ factorization of an m-by-n matrix A, CRQT02 generates
|
*> Given the RQ factorization of an m-by-n matrix A, CRQT02 generates
|
||||||
|
|
|
@ -188,7 +188,7 @@
|
||||||
RETURN
|
RETURN
|
||||||
END IF
|
END IF
|
||||||
*
|
*
|
||||||
* a) Revert to multiplyers of L
|
* a) Revert to multipliers of L
|
||||||
*
|
*
|
||||||
CALL CSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
|
CALL CSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
|
||||||
*
|
*
|
||||||
|
|
|
@ -86,7 +86,7 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> NMAX is INTEGER
|
*> NMAX is INTEGER
|
||||||
*> The leading dimension of the work arrays. NMAX >= the
|
*> The leading dimension of the work arrays. NMAX >= the
|
||||||
*> maximumm value of N in NVAL.
|
*> maximum value of N in NVAL.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[out] AP
|
*> \param[out] AP
|
||||||
|
|
|
@ -346,7 +346,7 @@
|
||||||
CALL DGET08( TRANS, N, N, NRHS, A, LDA, X, LDA, WORK,
|
CALL DGET08( TRANS, N, N, NRHS, A, LDA, X, LDA, WORK,
|
||||||
$ LDA, RWORK, RESULT( 1 ) )
|
$ LDA, RWORK, RESULT( 1 ) )
|
||||||
*
|
*
|
||||||
* Check if the test passes the tesing.
|
* Check if the test passes the testing.
|
||||||
* Print information about the tests that did not
|
* Print information about the tests that did not
|
||||||
* pass the testing.
|
* pass the testing.
|
||||||
*
|
*
|
||||||
|
|
|
@ -365,7 +365,7 @@
|
||||||
CALL DPOT06( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
|
CALL DPOT06( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
|
||||||
$ LDA, RWORK, RESULT( 1 ) )
|
$ LDA, RWORK, RESULT( 1 ) )
|
||||||
*
|
*
|
||||||
* Check if the test passes the tesing.
|
* Check if the test passes the testing.
|
||||||
* Print information about the tests that did not
|
* Print information about the tests that did not
|
||||||
* pass the testing.
|
* pass the testing.
|
||||||
*
|
*
|
||||||
|
|
|
@ -133,7 +133,7 @@
|
||||||
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
|
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
|
||||||
*
|
*
|
||||||
* Test error exits of the routines that use factorization
|
* Test error exits of the routines that use factorization
|
||||||
* of a symmetric indefinite matrix with patrial
|
* of a symmetric indefinite matrix with partial
|
||||||
* (Bunch-Kaufman) pivoting.
|
* (Bunch-Kaufman) pivoting.
|
||||||
*
|
*
|
||||||
* DSYTRF
|
* DSYTRF
|
||||||
|
@ -581,7 +581,7 @@
|
||||||
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
|
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
|
||||||
*
|
*
|
||||||
* Test error exits of the routines that use factorization
|
* Test error exits of the routines that use factorization
|
||||||
* of a symmetric indefinite packed matrix with patrial
|
* of a symmetric indefinite packed matrix with partial
|
||||||
* (Bunch-Kaufman) pivoting.
|
* (Bunch-Kaufman) pivoting.
|
||||||
*
|
*
|
||||||
* DSPTRF
|
* DSPTRF
|
||||||
|
|
|
@ -138,7 +138,7 @@
|
||||||
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
|
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
|
||||||
*
|
*
|
||||||
* Test error exits of the routines that use factorization
|
* Test error exits of the routines that use factorization
|
||||||
* of a symmetric indefinite matrix with patrial
|
* of a symmetric indefinite matrix with partial
|
||||||
* (Bunch-Kaufman) pivoting.
|
* (Bunch-Kaufman) pivoting.
|
||||||
*
|
*
|
||||||
* DSYTRF
|
* DSYTRF
|
||||||
|
@ -528,7 +528,7 @@
|
||||||
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
|
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
|
||||||
*
|
*
|
||||||
* Test error exits of the routines that use factorization
|
* Test error exits of the routines that use factorization
|
||||||
* of a symmetric indefinite packed matrix with patrial
|
* of a symmetric indefinite packed matrix with partial
|
||||||
* (Bunch-Kaufman) pivoting.
|
* (Bunch-Kaufman) pivoting.
|
||||||
*
|
*
|
||||||
* DSPTRF
|
* DSPTRF
|
||||||
|
|
|
@ -39,7 +39,7 @@
|
||||||
*
|
*
|
||||||
*> \param[in] N
|
*> \param[in] N
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> N is INTEGTER
|
*> N is INTEGER
|
||||||
*> The order of the matrix A. N >= 0.
|
*> The order of the matrix A. N >= 0.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
|
|
|
@ -41,14 +41,14 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> TRANS is CHARACTER
|
*> TRANS is CHARACTER
|
||||||
*> Specifies the form of the residual.
|
*> Specifies the form of the residual.
|
||||||
*> = 'N': B - A * X (No transpose)
|
*> = 'N': B - A * X (No transpose)
|
||||||
*> = 'T': B - A**T * X (Transpose)
|
*> = 'T': B - A**T * X (Transpose)
|
||||||
*> = 'C': B - A**H * X (Conjugate transpose = Transpose)
|
*> = 'C': B - A**H * X (Conjugate transpose = Transpose)
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] N
|
*> \param[in] N
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> N is INTEGTER
|
*> N is INTEGER
|
||||||
*> The order of the matrix A. N >= 0.
|
*> The order of the matrix A. N >= 0.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
|
|
|
@ -27,7 +27,7 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*>
|
*>
|
||||||
*> DLQT02 tests DORGLQ, which generates an m-by-n matrix Q with
|
*> DLQT02 tests DORGLQ, which generates an m-by-n matrix Q with
|
||||||
*> orthonornmal rows that is defined as the product of k elementary
|
*> orthonormal rows that is defined as the product of k elementary
|
||||||
*> reflectors.
|
*> reflectors.
|
||||||
*>
|
*>
|
||||||
*> Given the LQ factorization of an m-by-n matrix A, DLQT02 generates
|
*> Given the LQ factorization of an m-by-n matrix A, DLQT02 generates
|
||||||
|
|
|
@ -35,7 +35,7 @@
|
||||||
*
|
*
|
||||||
*> \param[in] N
|
*> \param[in] N
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> N is INTEGTER
|
*> N is INTEGER
|
||||||
*> The order of the matrix A.
|
*> The order of the matrix A.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
|
|
|
@ -35,7 +35,7 @@
|
||||||
*
|
*
|
||||||
*> \param[in] N
|
*> \param[in] N
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> N is INTEGTER
|
*> N is INTEGER
|
||||||
*> The order of the matrix A.
|
*> The order of the matrix A.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
|
|
|
@ -27,7 +27,7 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*>
|
*>
|
||||||
*> DQLT02 tests DORGQL, which generates an m-by-n matrix Q with
|
*> DQLT02 tests DORGQL, which generates an m-by-n matrix Q with
|
||||||
*> orthonornmal columns that is defined as the product of k elementary
|
*> orthonormal columns that is defined as the product of k elementary
|
||||||
*> reflectors.
|
*> reflectors.
|
||||||
*>
|
*>
|
||||||
*> Given the QL factorization of an m-by-n matrix A, DQLT02 generates
|
*> Given the QL factorization of an m-by-n matrix A, DQLT02 generates
|
||||||
|
|
|
@ -27,7 +27,7 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*>
|
*>
|
||||||
*> DQRT02 tests DORGQR, which generates an m-by-n matrix Q with
|
*> DQRT02 tests DORGQR, which generates an m-by-n matrix Q with
|
||||||
*> orthonornmal columns that is defined as the product of k elementary
|
*> orthonormal columns that is defined as the product of k elementary
|
||||||
*> reflectors.
|
*> reflectors.
|
||||||
*>
|
*>
|
||||||
*> Given the QR factorization of an m-by-n matrix A, DQRT02 generates
|
*> Given the QR factorization of an m-by-n matrix A, DQRT02 generates
|
||||||
|
|
|
@ -27,7 +27,7 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*>
|
*>
|
||||||
*> DRQT02 tests DORGRQ, which generates an m-by-n matrix Q with
|
*> DRQT02 tests DORGRQ, which generates an m-by-n matrix Q with
|
||||||
*> orthonornmal rows that is defined as the product of k elementary
|
*> orthonormal rows that is defined as the product of k elementary
|
||||||
*> reflectors.
|
*> reflectors.
|
||||||
*>
|
*>
|
||||||
*> Given the RQ factorization of an m-by-n matrix A, DRQT02 generates
|
*> Given the RQ factorization of an m-by-n matrix A, DRQT02 generates
|
||||||
|
|
|
@ -183,7 +183,7 @@
|
||||||
RETURN
|
RETURN
|
||||||
END IF
|
END IF
|
||||||
*
|
*
|
||||||
* a) Revert to multiplyers of L
|
* a) Revert to multipliers of L
|
||||||
*
|
*
|
||||||
CALL DSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
|
CALL DSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
|
||||||
*
|
*
|
||||||
|
|
|
@ -86,7 +86,7 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> NMAX is INTEGER
|
*> NMAX is INTEGER
|
||||||
*> The leading dimension of the work arrays. NMAX >= the
|
*> The leading dimension of the work arrays. NMAX >= the
|
||||||
*> maximumm value of N in NVAL.
|
*> maximum value of N in NVAL.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[out] AP
|
*> \param[out] AP
|
||||||
|
|
|
@ -133,7 +133,7 @@
|
||||||
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
|
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
|
||||||
*
|
*
|
||||||
* Test error exits of the routines that use factorization
|
* Test error exits of the routines that use factorization
|
||||||
* of a symmetric indefinite matrix with patrial
|
* of a symmetric indefinite matrix with partial
|
||||||
* (Bunch-Kaufman) pivoting.
|
* (Bunch-Kaufman) pivoting.
|
||||||
*
|
*
|
||||||
* SSYTRF
|
* SSYTRF
|
||||||
|
@ -581,7 +581,7 @@
|
||||||
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
|
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
|
||||||
*
|
*
|
||||||
* Test error exits of the routines that use factorization
|
* Test error exits of the routines that use factorization
|
||||||
* of a symmetric indefinite packed matrix with patrial
|
* of a symmetric indefinite packed matrix with partial
|
||||||
* (Bunch-Kaufman) pivoting.
|
* (Bunch-Kaufman) pivoting.
|
||||||
*
|
*
|
||||||
* SSPTRF
|
* SSPTRF
|
||||||
|
|
|
@ -137,7 +137,7 @@
|
||||||
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
|
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
|
||||||
*
|
*
|
||||||
* Test error exits of the routines that use factorization
|
* Test error exits of the routines that use factorization
|
||||||
* of a symmetric indefinite matrix with patrial
|
* of a symmetric indefinite matrix with partial
|
||||||
* (Bunch-Kaufman) pivoting.
|
* (Bunch-Kaufman) pivoting.
|
||||||
*
|
*
|
||||||
* SSYTRF
|
* SSYTRF
|
||||||
|
@ -527,7 +527,7 @@
|
||||||
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
|
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
|
||||||
*
|
*
|
||||||
* Test error exits of the routines that use factorization
|
* Test error exits of the routines that use factorization
|
||||||
* of a symmetric indefinite packed matrix with patrial
|
* of a symmetric indefinite packed matrix with partial
|
||||||
* (Bunch-Kaufman) pivoting.
|
* (Bunch-Kaufman) pivoting.
|
||||||
*
|
*
|
||||||
* SSPTRF
|
* SSPTRF
|
||||||
|
|
|
@ -39,7 +39,7 @@
|
||||||
*
|
*
|
||||||
*> \param[in] N
|
*> \param[in] N
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> N is INTEGTER
|
*> N is INTEGER
|
||||||
*> The order of the matrix A. N >= 0.
|
*> The order of the matrix A. N >= 0.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
|
|
|
@ -41,14 +41,14 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> TRANS is CHARACTER
|
*> TRANS is CHARACTER
|
||||||
*> Specifies the form of the residual.
|
*> Specifies the form of the residual.
|
||||||
*> = 'N': B - A * X (No transpose)
|
*> = 'N': B - A * X (No transpose)
|
||||||
*> = 'T': B - A**T * X (Transpose)
|
*> = 'T': B - A**T * X (Transpose)
|
||||||
*> = 'C': B - A**H * X (Conjugate transpose = Transpose)
|
*> = 'C': B - A**H * X (Conjugate transpose = Transpose)
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] N
|
*> \param[in] N
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> N is INTEGTER
|
*> N is INTEGER
|
||||||
*> The order of the matrix A. N >= 0.
|
*> The order of the matrix A. N >= 0.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
|
|
|
@ -27,7 +27,7 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*>
|
*>
|
||||||
*> SLQT02 tests SORGLQ, which generates an m-by-n matrix Q with
|
*> SLQT02 tests SORGLQ, which generates an m-by-n matrix Q with
|
||||||
*> orthonornmal rows that is defined as the product of k elementary
|
*> orthonormal rows that is defined as the product of k elementary
|
||||||
*> reflectors.
|
*> reflectors.
|
||||||
*>
|
*>
|
||||||
*> Given the LQ factorization of an m-by-n matrix A, SLQT02 generates
|
*> Given the LQ factorization of an m-by-n matrix A, SLQT02 generates
|
||||||
|
|
|
@ -35,7 +35,7 @@
|
||||||
*
|
*
|
||||||
*> \param[in] N
|
*> \param[in] N
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> N is INTEGTER
|
*> N is INTEGER
|
||||||
*> The order of the matrix A.
|
*> The order of the matrix A.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
|
|
|
@ -35,7 +35,7 @@
|
||||||
*
|
*
|
||||||
*> \param[in] N
|
*> \param[in] N
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> N is INTEGTER
|
*> N is INTEGER
|
||||||
*> The order of the matrix A.
|
*> The order of the matrix A.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
|
|
|
@ -27,7 +27,7 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*>
|
*>
|
||||||
*> SQLT02 tests SORGQL, which generates an m-by-n matrix Q with
|
*> SQLT02 tests SORGQL, which generates an m-by-n matrix Q with
|
||||||
*> orthonornmal columns that is defined as the product of k elementary
|
*> orthonormal columns that is defined as the product of k elementary
|
||||||
*> reflectors.
|
*> reflectors.
|
||||||
*>
|
*>
|
||||||
*> Given the QL factorization of an m-by-n matrix A, SQLT02 generates
|
*> Given the QL factorization of an m-by-n matrix A, SQLT02 generates
|
||||||
|
|
|
@ -27,7 +27,7 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*>
|
*>
|
||||||
*> SQRT02 tests SORGQR, which generates an m-by-n matrix Q with
|
*> SQRT02 tests SORGQR, which generates an m-by-n matrix Q with
|
||||||
*> orthonornmal columns that is defined as the product of k elementary
|
*> orthonormal columns that is defined as the product of k elementary
|
||||||
*> reflectors.
|
*> reflectors.
|
||||||
*>
|
*>
|
||||||
*> Given the QR factorization of an m-by-n matrix A, SQRT02 generates
|
*> Given the QR factorization of an m-by-n matrix A, SQRT02 generates
|
||||||
|
|
|
@ -27,7 +27,7 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*>
|
*>
|
||||||
*> SRQT02 tests SORGRQ, which generates an m-by-n matrix Q with
|
*> SRQT02 tests SORGRQ, which generates an m-by-n matrix Q with
|
||||||
*> orthonornmal rows that is defined as the product of k elementary
|
*> orthonormal rows that is defined as the product of k elementary
|
||||||
*> reflectors.
|
*> reflectors.
|
||||||
*>
|
*>
|
||||||
*> Given the RQ factorization of an m-by-n matrix A, SRQT02 generates
|
*> Given the RQ factorization of an m-by-n matrix A, SRQT02 generates
|
||||||
|
|
|
@ -183,7 +183,7 @@
|
||||||
RETURN
|
RETURN
|
||||||
END IF
|
END IF
|
||||||
*
|
*
|
||||||
* a) Revert to multiplyers of L
|
* a) Revert to multipliers of L
|
||||||
*
|
*
|
||||||
CALL SSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
|
CALL SSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
|
||||||
*
|
*
|
||||||
|
|
|
@ -87,7 +87,7 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> NMAX is INTEGER
|
*> NMAX is INTEGER
|
||||||
*> The leading dimension of the work arrays. NMAX >= the
|
*> The leading dimension of the work arrays. NMAX >= the
|
||||||
*> maximumm value of N in NVAL.
|
*> maximum value of N in NVAL.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[out] AP
|
*> \param[out] AP
|
||||||
|
|
|
@ -348,7 +348,7 @@
|
||||||
CALL ZGET08( TRANS, N, N, NRHS, A, LDA, X, LDA, WORK,
|
CALL ZGET08( TRANS, N, N, NRHS, A, LDA, X, LDA, WORK,
|
||||||
$ LDA, RWORK, RESULT( 1 ) )
|
$ LDA, RWORK, RESULT( 1 ) )
|
||||||
*
|
*
|
||||||
* Check if the test passes the tesing.
|
* Check if the test passes the testing.
|
||||||
* Print information about the tests that did not
|
* Print information about the tests that did not
|
||||||
* pass the testing.
|
* pass the testing.
|
||||||
*
|
*
|
||||||
|
|
|
@ -367,7 +367,7 @@
|
||||||
CALL ZPOT06( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
|
CALL ZPOT06( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
|
||||||
$ LDA, RWORK, RESULT( 1 ) )
|
$ LDA, RWORK, RESULT( 1 ) )
|
||||||
*
|
*
|
||||||
* Check if the test passes the tesing.
|
* Check if the test passes the testing.
|
||||||
* Print information about the tests that did not
|
* Print information about the tests that did not
|
||||||
* pass the testing.
|
* pass the testing.
|
||||||
*
|
*
|
||||||
|
|
|
@ -135,7 +135,7 @@
|
||||||
IF( LSAMEN( 2, C2, 'HE' ) ) THEN
|
IF( LSAMEN( 2, C2, 'HE' ) ) THEN
|
||||||
*
|
*
|
||||||
* Test error exits of the routines that use factorization
|
* Test error exits of the routines that use factorization
|
||||||
* of a Hermitian indefinite matrix with patrial
|
* of a Hermitian indefinite matrix with partial
|
||||||
* (Bunch-Kaufman) diagonal pivoting method.
|
* (Bunch-Kaufman) diagonal pivoting method.
|
||||||
*
|
*
|
||||||
* ZHETRF
|
* ZHETRF
|
||||||
|
@ -580,7 +580,7 @@
|
||||||
ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN
|
ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN
|
||||||
*
|
*
|
||||||
* Test error exits of the routines that use factorization
|
* Test error exits of the routines that use factorization
|
||||||
* of a Hermitian indefinite packed matrix with patrial
|
* of a Hermitian indefinite packed matrix with partial
|
||||||
* (Bunch-Kaufman) diagonal pivoting method.
|
* (Bunch-Kaufman) diagonal pivoting method.
|
||||||
*
|
*
|
||||||
* ZHPTRF
|
* ZHPTRF
|
||||||
|
|
|
@ -138,7 +138,7 @@
|
||||||
OK = .TRUE.
|
OK = .TRUE.
|
||||||
*
|
*
|
||||||
* Test error exits of the routines that use factorization
|
* Test error exits of the routines that use factorization
|
||||||
* of a Hermitian indefinite matrix with patrial
|
* of a Hermitian indefinite matrix with partial
|
||||||
* (Bunch-Kaufman) diagonal pivoting method.
|
* (Bunch-Kaufman) diagonal pivoting method.
|
||||||
*
|
*
|
||||||
IF( LSAMEN( 2, C2, 'HE' ) ) THEN
|
IF( LSAMEN( 2, C2, 'HE' ) ) THEN
|
||||||
|
@ -526,7 +526,7 @@
|
||||||
ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN
|
ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN
|
||||||
*
|
*
|
||||||
* Test error exits of the routines that use factorization
|
* Test error exits of the routines that use factorization
|
||||||
* of a Hermitian indefinite packed matrix with patrial
|
* of a Hermitian indefinite packed matrix with partial
|
||||||
* (Bunch-Kaufman) diagonal pivoting method.
|
* (Bunch-Kaufman) diagonal pivoting method.
|
||||||
*
|
*
|
||||||
* ZHPTRF
|
* ZHPTRF
|
||||||
|
|
|
@ -132,7 +132,7 @@
|
||||||
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
|
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
|
||||||
*
|
*
|
||||||
* Test error exits of the routines that use factorization
|
* Test error exits of the routines that use factorization
|
||||||
* of a symmetric indefinite matrix with patrial
|
* of a symmetric indefinite matrix with partial
|
||||||
* (Bunch-Kaufman) diagonal pivoting method.
|
* (Bunch-Kaufman) diagonal pivoting method.
|
||||||
*
|
*
|
||||||
* ZSYTRF
|
* ZSYTRF
|
||||||
|
@ -471,7 +471,7 @@
|
||||||
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
|
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
|
||||||
*
|
*
|
||||||
* Test error exits of the routines that use factorization
|
* Test error exits of the routines that use factorization
|
||||||
* of a symmetric indefinite packed matrix with patrial
|
* of a symmetric indefinite packed matrix with partial
|
||||||
* (Bunch-Kaufman) pivoting.
|
* (Bunch-Kaufman) pivoting.
|
||||||
*
|
*
|
||||||
* ZSPTRF
|
* ZSPTRF
|
||||||
|
|
|
@ -139,7 +139,7 @@
|
||||||
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
|
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
|
||||||
*
|
*
|
||||||
* Test error exits of the routines that use factorization
|
* Test error exits of the routines that use factorization
|
||||||
* of a symmetric indefinite matrix with patrial
|
* of a symmetric indefinite matrix with partial
|
||||||
* (Bunch-Kaufman) diagonal pivoting method.
|
* (Bunch-Kaufman) diagonal pivoting method.
|
||||||
*
|
*
|
||||||
* ZSYTRF
|
* ZSYTRF
|
||||||
|
@ -525,7 +525,7 @@
|
||||||
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
|
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
|
||||||
*
|
*
|
||||||
* Test error exits of the routines that use factorization
|
* Test error exits of the routines that use factorization
|
||||||
* of a symmetric indefinite packed matrix with patrial
|
* of a symmetric indefinite packed matrix with partial
|
||||||
* (Bunch-Kaufman) pivoting.
|
* (Bunch-Kaufman) pivoting.
|
||||||
*
|
*
|
||||||
* ZSPTRF
|
* ZSPTRF
|
||||||
|
|
|
@ -39,7 +39,7 @@
|
||||||
*
|
*
|
||||||
*> \param[in] N
|
*> \param[in] N
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> N is INTEGTER
|
*> N is INTEGER
|
||||||
*> The order of the matrix A. N >= 0.
|
*> The order of the matrix A. N >= 0.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
|
|
|
@ -40,14 +40,14 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> TRANS is CHARACTER
|
*> TRANS is CHARACTER
|
||||||
*> Specifies the form of the residual.
|
*> Specifies the form of the residual.
|
||||||
*> = 'N': B - A * X (No transpose)
|
*> = 'N': B - A * X (No transpose)
|
||||||
*> = 'T': B - A**T * X (Transpose)
|
*> = 'T': B - A**T * X (Transpose)
|
||||||
*> = 'C': B - A**H * X (Conjugate transpose)
|
*> = 'C': B - A**H * X (Conjugate transpose)
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] N
|
*> \param[in] N
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> N is INTEGTER
|
*> N is INTEGER
|
||||||
*> The order of the matrix A. N >= 0.
|
*> The order of the matrix A. N >= 0.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
|
|
|
@ -188,7 +188,7 @@
|
||||||
RETURN
|
RETURN
|
||||||
END IF
|
END IF
|
||||||
*
|
*
|
||||||
* a) Revert to multiplyers of L
|
* a) Revert to multipliers of L
|
||||||
*
|
*
|
||||||
CALL ZSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
|
CALL ZSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
|
||||||
*
|
*
|
||||||
|
|
|
@ -27,7 +27,7 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*>
|
*>
|
||||||
*> ZLQT02 tests ZUNGLQ, which generates an m-by-n matrix Q with
|
*> ZLQT02 tests ZUNGLQ, which generates an m-by-n matrix Q with
|
||||||
*> orthonornmal rows that is defined as the product of k elementary
|
*> orthonormal rows that is defined as the product of k elementary
|
||||||
*> reflectors.
|
*> reflectors.
|
||||||
*>
|
*>
|
||||||
*> Given the LQ factorization of an m-by-n matrix A, ZLQT02 generates
|
*> Given the LQ factorization of an m-by-n matrix A, ZLQT02 generates
|
||||||
|
|
|
@ -36,7 +36,7 @@
|
||||||
*
|
*
|
||||||
*> \param[in] N
|
*> \param[in] N
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> N is INTEGTER
|
*> N is INTEGER
|
||||||
*> The order of the matrix A.
|
*> The order of the matrix A.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
|
|
|
@ -46,7 +46,7 @@
|
||||||
*>
|
*>
|
||||||
*> \param[in] N
|
*> \param[in] N
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> N is INTEGTER
|
*> N is INTEGER
|
||||||
*> The order of the matrix A.
|
*> The order of the matrix A.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
|
|
|
@ -27,7 +27,7 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*>
|
*>
|
||||||
*> ZQLT02 tests ZUNGQL, which generates an m-by-n matrix Q with
|
*> ZQLT02 tests ZUNGQL, which generates an m-by-n matrix Q with
|
||||||
*> orthonornmal columns that is defined as the product of k elementary
|
*> orthonormal columns that is defined as the product of k elementary
|
||||||
*> reflectors.
|
*> reflectors.
|
||||||
*>
|
*>
|
||||||
*> Given the QL factorization of an m-by-n matrix A, ZQLT02 generates
|
*> Given the QL factorization of an m-by-n matrix A, ZQLT02 generates
|
||||||
|
|
|
@ -27,7 +27,7 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*>
|
*>
|
||||||
*> ZQRT02 tests ZUNGQR, which generates an m-by-n matrix Q with
|
*> ZQRT02 tests ZUNGQR, which generates an m-by-n matrix Q with
|
||||||
*> orthonornmal columns that is defined as the product of k elementary
|
*> orthonormal columns that is defined as the product of k elementary
|
||||||
*> reflectors.
|
*> reflectors.
|
||||||
*>
|
*>
|
||||||
*> Given the QR factorization of an m-by-n matrix A, ZQRT02 generates
|
*> Given the QR factorization of an m-by-n matrix A, ZQRT02 generates
|
||||||
|
|
|
@ -27,7 +27,7 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*>
|
*>
|
||||||
*> ZRQT02 tests ZUNGRQ, which generates an m-by-n matrix Q with
|
*> ZRQT02 tests ZUNGRQ, which generates an m-by-n matrix Q with
|
||||||
*> orthonornmal rows that is defined as the product of k elementary
|
*> orthonormal rows that is defined as the product of k elementary
|
||||||
*> reflectors.
|
*> reflectors.
|
||||||
*>
|
*>
|
||||||
*> Given the RQ factorization of an m-by-n matrix A, ZRQT02 generates
|
*> Given the RQ factorization of an m-by-n matrix A, ZRQT02 generates
|
||||||
|
|
|
@ -188,7 +188,7 @@
|
||||||
RETURN
|
RETURN
|
||||||
END IF
|
END IF
|
||||||
*
|
*
|
||||||
* a) Revert to multiplyers of L
|
* a) Revert to multipliers of L
|
||||||
*
|
*
|
||||||
CALL ZSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
|
CALL ZSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
|
||||||
*
|
*
|
||||||
|
|
Loading…
Reference in New Issue