diff --git a/lapack-netlib/SRC/cgelst.f b/lapack-netlib/SRC/cgelst.f
new file mode 100644
index 000000000..7d8e44ddf
--- /dev/null
+++ b/lapack-netlib/SRC/cgelst.f
@@ -0,0 +1,533 @@
+*> \brief CGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q.
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download CGELST + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE CGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
+* INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER TRANS
+* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
+* ..
+* .. Array Arguments ..
+* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> CGELST solves overdetermined or underdetermined real linear systems
+*> involving an M-by-N matrix A, or its conjugate-transpose, using a QR
+*> or LQ factorization of A with compact WY representation of Q.
+*> It is assumed that A has full rank.
+*>
+*> The following options are provided:
+*>
+*> 1. If TRANS = 'N' and m >= n: find the least squares solution of
+*> an overdetermined system, i.e., solve the least squares problem
+*> minimize || B - A*X ||.
+*>
+*> 2. If TRANS = 'N' and m < n: find the minimum norm solution of
+*> an underdetermined system A * X = B.
+*>
+*> 3. If TRANS = 'C' and m >= n: find the minimum norm solution of
+*> an underdetermined system A**T * X = B.
+*>
+*> 4. If TRANS = 'C' and m < n: find the least squares solution of
+*> an overdetermined system, i.e., solve the least squares problem
+*> minimize || B - A**T * X ||.
+*>
+*> Several right hand side vectors b and solution vectors x can be
+*> handled in a single call; they are stored as the columns of the
+*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
+*> matrix X.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] TRANS
+*> \verbatim
+*> TRANS is CHARACTER*1
+*> = 'N': the linear system involves A;
+*> = 'C': the linear system involves A**H.
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] NRHS
+*> \verbatim
+*> NRHS is INTEGER
+*> The number of right hand sides, i.e., the number of
+*> columns of the matrices B and X. NRHS >=0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX array, dimension (LDA,N)
+*> On entry, the M-by-N matrix A.
+*> On exit,
+*> if M >= N, A is overwritten by details of its QR
+*> factorization as returned by CGEQRT;
+*> if M < N, A is overwritten by details of its LQ
+*> factorization as returned by CGELQT.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is COMPLEX array, dimension (LDB,NRHS)
+*> On entry, the matrix B of right hand side vectors, stored
+*> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
+*> if TRANS = 'C'.
+*> On exit, if INFO = 0, B is overwritten by the solution
+*> vectors, stored columnwise:
+*> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
+*> squares solution vectors; the residual sum of squares for the
+*> solution in each column is given by the sum of squares of
+*> modulus of elements N+1 to M in that column;
+*> if TRANS = 'N' and m < n, rows 1 to N of B contain the
+*> minimum norm solution vectors;
+*> if TRANS = 'C' and m >= n, rows 1 to M of B contain the
+*> minimum norm solution vectors;
+*> if TRANS = 'C' and m < n, rows 1 to M of B contain the
+*> least squares solution vectors; the residual sum of squares
+*> for the solution in each column is given by the sum of
+*> squares of the modulus of elements M+1 to N in that column.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= MAX(1,M,N).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The dimension of the array WORK.
+*> LWORK >= max( 1, MN + max( MN, NRHS ) ).
+*> For optimal performance,
+*> LWORK >= max( 1, (MN + max( MN, NRHS ))*NB ).
+*> where MN = min(M,N) and NB is the optimum block size.
+*>
+*> If LWORK = -1, then a workspace query is assumed; the routine
+*> only calculates the optimal size of the WORK array, returns
+*> this value as the first entry of the WORK array, and no error
+*> message related to LWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: if INFO = i, the i-th diagonal element of the
+*> triangular factor of A is zero, so that A does not have
+*> full rank; the least squares solution could not be
+*> computed.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup complexGEsolve
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2022, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*> \endverbatim
+*
+* =====================================================================
+ SUBROUTINE CGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
+ $ INFO )
+*
+* -- LAPACK driver routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ CHARACTER TRANS
+ INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
+* ..
+* .. Array Arguments ..
+ COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO, ONE
+ PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
+ COMPLEX CZERO
+ PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY, TPSD
+ INTEGER BROW, I, IASCL, IBSCL, J, LWOPT, MN, MNNRHS,
+ $ NB, NBMIN, SCLLEN
+ REAL ANRM, BIGNUM, BNRM, SMLNUM
+* ..
+* .. Local Arrays ..
+ REAL RWORK( 1 )
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ REAL SLAMCH, CLANGE
+ EXTERNAL LSAME, ILAENV, SLAMCH, CLANGE
+* ..
+* .. External Subroutines ..
+ EXTERNAL CGELQT, CGEQRT, CGEMLQT, CGEMQRT, SLABAD,
+ $ CLASCL, CLASET, CTRTRS, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC REAL, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments.
+*
+ INFO = 0
+ MN = MIN( M, N )
+ LQUERY = ( LWORK.EQ.-1 )
+ IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'C' ) ) ) THEN
+ INFO = -1
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -6
+ ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
+ INFO = -8
+ ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
+ $ THEN
+ INFO = -10
+ END IF
+*
+* Figure out optimal block size and optimal workspace size
+*
+ IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
+*
+ TPSD = .TRUE.
+ IF( LSAME( TRANS, 'N' ) )
+ $ TPSD = .FALSE.
+*
+ NB = ILAENV( 1, 'CGELST', ' ', M, N, -1, -1 )
+*
+ MNNRHS = MAX( MN, NRHS )
+ LWOPT = MAX( 1, (MN+MNNRHS)*NB )
+ WORK( 1 ) = REAL( LWOPT )
+*
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'CGELST ', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( MIN( M, N, NRHS ).EQ.0 ) THEN
+ CALL CLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
+ WORK( 1 ) = REAL( LWOPT )
+ RETURN
+ END IF
+*
+* *GEQRT and *GELQT routines cannot accept NB larger than min(M,N)
+*
+ IF( NB.GT.MN ) NB = MN
+*
+* Determine the block size from the supplied LWORK
+* ( at this stage we know that LWORK >= (minimum required workspace,
+* but it may be less than optimal)
+*
+ NB = MIN( NB, LWORK/( MN + MNNRHS ) )
+*
+* The minimum value of NB, when blocked code is used
+*
+ NBMIN = MAX( 2, ILAENV( 2, 'CGELST', ' ', M, N, -1, -1 ) )
+*
+ IF( NB.LT.NBMIN ) THEN
+ NB = 1
+ END IF
+*
+* Get machine parameters
+*
+ SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' )
+ BIGNUM = ONE / SMLNUM
+ CALL SLABAD( SMLNUM, BIGNUM )
+*
+* Scale A, B if max element outside range [SMLNUM,BIGNUM]
+*
+ ANRM = CLANGE( 'M', M, N, A, LDA, RWORK )
+ IASCL = 0
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
+*
+* Scale matrix norm up to SMLNUM
+*
+ CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
+ IASCL = 1
+ ELSE IF( ANRM.GT.BIGNUM ) THEN
+*
+* Scale matrix norm down to BIGNUM
+*
+ CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
+ IASCL = 2
+ ELSE IF( ANRM.EQ.ZERO ) THEN
+*
+* Matrix all zero. Return zero solution.
+*
+ CALL CLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
+ WORK( 1 ) = REAL( LWOPT )
+ RETURN
+ END IF
+*
+ BROW = M
+ IF( TPSD )
+ $ BROW = N
+ BNRM = CLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
+ IBSCL = 0
+ IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
+*
+* Scale matrix norm up to SMLNUM
+*
+ CALL CLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
+ $ INFO )
+ IBSCL = 1
+ ELSE IF( BNRM.GT.BIGNUM ) THEN
+*
+* Scale matrix norm down to BIGNUM
+*
+ CALL CLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
+ $ INFO )
+ IBSCL = 2
+ END IF
+*
+ IF( M.GE.N ) THEN
+*
+* M > N:
+* Compute the blocked QR factorization of A,
+* using the compact WY representation of Q,
+* workspace at least N, optimally N*NB.
+*
+ CALL CGEQRT( M, N, NB, A, LDA, WORK( 1 ), NB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ IF( .NOT.TPSD ) THEN
+*
+* M > N, A is not transposed:
+* Overdetermined system of equations,
+* least-squares problem, min || A * X - B ||.
+*
+* Compute B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL CGEMQRT( 'Left', 'Conjugate transpose', M, NRHS, N, NB,
+ $ A, LDA, WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+* Compute B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
+*
+ CALL CTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+ SCLLEN = N
+*
+ ELSE
+*
+* M > N, A is transposed:
+* Underdetermined system of equations,
+* minimum norm solution of A**T * X = B.
+*
+* Compute B := inv(R**T) * B in two row blocks of B.
+*
+* Block 1: B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
+*
+ CALL CTRTRS( 'Upper', 'Conjugate transpose', 'Non-unit',
+ $ N, NRHS, A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+* Block 2: Zero out all rows below the N-th row in B:
+* B(N+1:M,1:NRHS) = ZERO
+*
+ DO J = 1, NRHS
+ DO I = N + 1, M
+ B( I, J ) = ZERO
+ END DO
+ END DO
+*
+* Compute B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL CGEMQRT( 'Left', 'No transpose', M, NRHS, N, NB,
+ $ A, LDA, WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ SCLLEN = M
+*
+ END IF
+*
+ ELSE
+*
+* M < N:
+* Compute the blocked LQ factorization of A,
+* using the compact WY representation of Q,
+* workspace at least M, optimally M*NB.
+*
+ CALL CGELQT( M, N, NB, A, LDA, WORK( 1 ), NB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ IF( .NOT.TPSD ) THEN
+*
+* M < N, A is not transposed:
+* Underdetermined system of equations,
+* minimum norm solution of A * X = B.
+*
+* Compute B := inv(L) * B in two row blocks of B.
+*
+* Block 1: B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
+*
+ CALL CTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+* Block 2: Zero out all rows below the M-th row in B:
+* B(M+1:N,1:NRHS) = ZERO
+*
+ DO J = 1, NRHS
+ DO I = M + 1, N
+ B( I, J ) = ZERO
+ END DO
+ END DO
+*
+* Compute B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL CGEMLQT( 'Left', 'Conjugate transpose', N, NRHS, M, NB,
+ $ A, LDA, WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ SCLLEN = N
+*
+ ELSE
+*
+* M < N, A is transposed:
+* Overdetermined system of equations,
+* least-squares problem, min || A**T * X - B ||.
+*
+* Compute B(1:N,1:NRHS) := Q * B(1:N,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL CGEMLQT( 'Left', 'No transpose', N, NRHS, M, NB,
+ $ A, LDA, WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1), INFO )
+*
+* Compute B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
+*
+ CALL CTRTRS( 'Lower', 'Conjugate transpose', 'Non-unit',
+ $ M, NRHS, A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+ SCLLEN = M
+*
+ END IF
+*
+ END IF
+*
+* Undo scaling
+*
+ IF( IASCL.EQ.1 ) THEN
+ CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ ELSE IF( IASCL.EQ.2 ) THEN
+ CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ END IF
+ IF( IBSCL.EQ.1 ) THEN
+ CALL CLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ ELSE IF( IBSCL.EQ.2 ) THEN
+ CALL CLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ END IF
+*
+ WORK( 1 ) = REAL( LWOPT )
+*
+ RETURN
+*
+* End of CGELST
+*
+ END
diff --git a/lapack-netlib/SRC/dgelst.f b/lapack-netlib/SRC/dgelst.f
new file mode 100644
index 000000000..ca0e04a9b
--- /dev/null
+++ b/lapack-netlib/SRC/dgelst.f
@@ -0,0 +1,531 @@
+*> \brief DGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q.
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download DGELST + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE DGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
+* INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER TRANS
+* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
+* ..
+* .. Array Arguments ..
+* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> DGELST solves overdetermined or underdetermined real linear systems
+*> involving an M-by-N matrix A, or its transpose, using a QR or LQ
+*> factorization of A with compact WY representation of Q.
+*> It is assumed that A has full rank.
+*>
+*> The following options are provided:
+*>
+*> 1. If TRANS = 'N' and m >= n: find the least squares solution of
+*> an overdetermined system, i.e., solve the least squares problem
+*> minimize || B - A*X ||.
+*>
+*> 2. If TRANS = 'N' and m < n: find the minimum norm solution of
+*> an underdetermined system A * X = B.
+*>
+*> 3. If TRANS = 'T' and m >= n: find the minimum norm solution of
+*> an underdetermined system A**T * X = B.
+*>
+*> 4. If TRANS = 'T' and m < n: find the least squares solution of
+*> an overdetermined system, i.e., solve the least squares problem
+*> minimize || B - A**T * X ||.
+*>
+*> Several right hand side vectors b and solution vectors x can be
+*> handled in a single call; they are stored as the columns of the
+*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
+*> matrix X.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] TRANS
+*> \verbatim
+*> TRANS is CHARACTER*1
+*> = 'N': the linear system involves A;
+*> = 'T': the linear system involves A**T.
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] NRHS
+*> \verbatim
+*> NRHS is INTEGER
+*> The number of right hand sides, i.e., the number of
+*> columns of the matrices B and X. NRHS >=0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is DOUBLE PRECISION array, dimension (LDA,N)
+*> On entry, the M-by-N matrix A.
+*> On exit,
+*> if M >= N, A is overwritten by details of its QR
+*> factorization as returned by DGEQRT;
+*> if M < N, A is overwritten by details of its LQ
+*> factorization as returned by DGELQT.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
+*> On entry, the matrix B of right hand side vectors, stored
+*> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
+*> if TRANS = 'T'.
+*> On exit, if INFO = 0, B is overwritten by the solution
+*> vectors, stored columnwise:
+*> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
+*> squares solution vectors; the residual sum of squares for the
+*> solution in each column is given by the sum of squares of
+*> elements N+1 to M in that column;
+*> if TRANS = 'N' and m < n, rows 1 to N of B contain the
+*> minimum norm solution vectors;
+*> if TRANS = 'T' and m >= n, rows 1 to M of B contain the
+*> minimum norm solution vectors;
+*> if TRANS = 'T' and m < n, rows 1 to M of B contain the
+*> least squares solution vectors; the residual sum of squares
+*> for the solution in each column is given by the sum of
+*> squares of elements M+1 to N in that column.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= MAX(1,M,N).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The dimension of the array WORK.
+*> LWORK >= max( 1, MN + max( MN, NRHS ) ).
+*> For optimal performance,
+*> LWORK >= max( 1, (MN + max( MN, NRHS ))*NB ).
+*> where MN = min(M,N) and NB is the optimum block size.
+*>
+*> If LWORK = -1, then a workspace query is assumed; the routine
+*> only calculates the optimal size of the WORK array, returns
+*> this value as the first entry of the WORK array, and no error
+*> message related to LWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: if INFO = i, the i-th diagonal element of the
+*> triangular factor of A is zero, so that A does not have
+*> full rank; the least squares solution could not be
+*> computed.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup doubleGEsolve
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2022, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*> \endverbatim
+*
+* =====================================================================
+ SUBROUTINE DGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
+ $ INFO )
+*
+* -- LAPACK driver routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ CHARACTER TRANS
+ INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY, TPSD
+ INTEGER BROW, I, IASCL, IBSCL, J, LWOPT, MN, MNNRHS,
+ $ NB, NBMIN, SCLLEN
+ DOUBLE PRECISION ANRM, BIGNUM, BNRM, SMLNUM
+* ..
+* .. Local Arrays ..
+ DOUBLE PRECISION RWORK( 1 )
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ DOUBLE PRECISION DLAMCH, DLANGE
+ EXTERNAL LSAME, ILAENV, DLAMCH, DLANGE
+* ..
+* .. External Subroutines ..
+ EXTERNAL DGELQT, DGEQRT, DGEMLQT, DGEMQRT, DLABAD,
+ $ DLASCL, DLASET, DTRTRS, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC DBLE, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments.
+*
+ INFO = 0
+ MN = MIN( M, N )
+ LQUERY = ( LWORK.EQ.-1 )
+ IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' ) ) ) THEN
+ INFO = -1
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -6
+ ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
+ INFO = -8
+ ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
+ $ THEN
+ INFO = -10
+ END IF
+*
+* Figure out optimal block size and optimal workspace size
+*
+ IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
+*
+ TPSD = .TRUE.
+ IF( LSAME( TRANS, 'N' ) )
+ $ TPSD = .FALSE.
+*
+ NB = ILAENV( 1, 'DGELST', ' ', M, N, -1, -1 )
+*
+ MNNRHS = MAX( MN, NRHS )
+ LWOPT = MAX( 1, (MN+MNNRHS)*NB )
+ WORK( 1 ) = DBLE( LWOPT )
+*
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DGELST ', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( MIN( M, N, NRHS ).EQ.0 ) THEN
+ CALL DLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
+ WORK( 1 ) = DBLE( LWOPT )
+ RETURN
+ END IF
+*
+* *GEQRT and *GELQT routines cannot accept NB larger than min(M,N)
+*
+ IF( NB.GT.MN ) NB = MN
+*
+* Determine the block size from the supplied LWORK
+* ( at this stage we know that LWORK >= (minimum required workspace,
+* but it may be less than optimal)
+*
+ NB = MIN( NB, LWORK/( MN + MNNRHS ) )
+*
+* The minimum value of NB, when blocked code is used
+*
+ NBMIN = MAX( 2, ILAENV( 2, 'DGELST', ' ', M, N, -1, -1 ) )
+*
+ IF( NB.LT.NBMIN ) THEN
+ NB = 1
+ END IF
+*
+* Get machine parameters
+*
+ SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
+ BIGNUM = ONE / SMLNUM
+ CALL DLABAD( SMLNUM, BIGNUM )
+*
+* Scale A, B if max element outside range [SMLNUM,BIGNUM]
+*
+ ANRM = DLANGE( 'M', M, N, A, LDA, RWORK )
+ IASCL = 0
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
+*
+* Scale matrix norm up to SMLNUM
+*
+ CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
+ IASCL = 1
+ ELSE IF( ANRM.GT.BIGNUM ) THEN
+*
+* Scale matrix norm down to BIGNUM
+*
+ CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
+ IASCL = 2
+ ELSE IF( ANRM.EQ.ZERO ) THEN
+*
+* Matrix all zero. Return zero solution.
+*
+ CALL DLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
+ WORK( 1 ) = DBLE( LWOPT )
+ RETURN
+ END IF
+*
+ BROW = M
+ IF( TPSD )
+ $ BROW = N
+ BNRM = DLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
+ IBSCL = 0
+ IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
+*
+* Scale matrix norm up to SMLNUM
+*
+ CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
+ $ INFO )
+ IBSCL = 1
+ ELSE IF( BNRM.GT.BIGNUM ) THEN
+*
+* Scale matrix norm down to BIGNUM
+*
+ CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
+ $ INFO )
+ IBSCL = 2
+ END IF
+*
+ IF( M.GE.N ) THEN
+*
+* M > N:
+* Compute the blocked QR factorization of A,
+* using the compact WY representation of Q,
+* workspace at least N, optimally N*NB.
+*
+ CALL DGEQRT( M, N, NB, A, LDA, WORK( 1 ), NB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ IF( .NOT.TPSD ) THEN
+*
+* M > N, A is not transposed:
+* Overdetermined system of equations,
+* least-squares problem, min || A * X - B ||.
+*
+* Compute B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL DGEMQRT( 'Left', 'Transpose', M, NRHS, N, NB, A, LDA,
+ $ WORK( 1 ), NB, B, LDB, WORK( MN*NB+1 ),
+ $ INFO )
+*
+* Compute B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
+*
+ CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+ SCLLEN = N
+*
+ ELSE
+*
+* M > N, A is transposed:
+* Underdetermined system of equations,
+* minimum norm solution of A**T * X = B.
+*
+* Compute B := inv(R**T) * B in two row blocks of B.
+*
+* Block 1: B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
+*
+ CALL DTRTRS( 'Upper', 'Transpose', 'Non-unit', N, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+* Block 2: Zero out all rows below the N-th row in B:
+* B(N+1:M,1:NRHS) = ZERO
+*
+ DO J = 1, NRHS
+ DO I = N + 1, M
+ B( I, J ) = ZERO
+ END DO
+ END DO
+*
+* Compute B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL DGEMQRT( 'Left', 'No transpose', M, NRHS, N, NB,
+ $ A, LDA, WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ SCLLEN = M
+*
+ END IF
+*
+ ELSE
+*
+* M < N:
+* Compute the blocked LQ factorization of A,
+* using the compact WY representation of Q,
+* workspace at least M, optimally M*NB.
+*
+ CALL DGELQT( M, N, NB, A, LDA, WORK( 1 ), NB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ IF( .NOT.TPSD ) THEN
+*
+* M < N, A is not transposed:
+* Underdetermined system of equations,
+* minimum norm solution of A * X = B.
+*
+* Compute B := inv(L) * B in two row blocks of B.
+*
+* Block 1: B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
+*
+ CALL DTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+* Block 2: Zero out all rows below the M-th row in B:
+* B(M+1:N,1:NRHS) = ZERO
+*
+ DO J = 1, NRHS
+ DO I = M + 1, N
+ B( I, J ) = ZERO
+ END DO
+ END DO
+*
+* Compute B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL DGEMLQT( 'Left', 'Transpose', N, NRHS, M, NB, A, LDA,
+ $ WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ SCLLEN = N
+*
+ ELSE
+*
+* M < N, A is transposed:
+* Overdetermined system of equations,
+* least-squares problem, min || A**T * X - B ||.
+*
+* Compute B(1:N,1:NRHS) := Q * B(1:N,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL DGEMLQT( 'Left', 'No transpose', N, NRHS, M, NB,
+ $ A, LDA, WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1), INFO )
+*
+* Compute B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
+*
+ CALL DTRTRS( 'Lower', 'Transpose', 'Non-unit', M, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+ SCLLEN = M
+*
+ END IF
+*
+ END IF
+*
+* Undo scaling
+*
+ IF( IASCL.EQ.1 ) THEN
+ CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ ELSE IF( IASCL.EQ.2 ) THEN
+ CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ END IF
+ IF( IBSCL.EQ.1 ) THEN
+ CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ ELSE IF( IBSCL.EQ.2 ) THEN
+ CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ END IF
+*
+ WORK( 1 ) = DBLE( LWOPT )
+*
+ RETURN
+*
+* End of DGELST
+*
+ END
diff --git a/lapack-netlib/SRC/sgelst.f b/lapack-netlib/SRC/sgelst.f
new file mode 100644
index 000000000..5377bc720
--- /dev/null
+++ b/lapack-netlib/SRC/sgelst.f
@@ -0,0 +1,531 @@
+*> \brief SGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q.
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download SGELST + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE SGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
+* INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER TRANS
+* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
+* ..
+* .. Array Arguments ..
+* REAL A( LDA, * ), B( LDB, * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> SGELST solves overdetermined or underdetermined real linear systems
+*> involving an M-by-N matrix A, or its transpose, using a QR or LQ
+*> factorization of A with compact WY representation of Q.
+*> It is assumed that A has full rank.
+*>
+*> The following options are provided:
+*>
+*> 1. If TRANS = 'N' and m >= n: find the least squares solution of
+*> an overdetermined system, i.e., solve the least squares problem
+*> minimize || B - A*X ||.
+*>
+*> 2. If TRANS = 'N' and m < n: find the minimum norm solution of
+*> an underdetermined system A * X = B.
+*>
+*> 3. If TRANS = 'T' and m >= n: find the minimum norm solution of
+*> an underdetermined system A**T * X = B.
+*>
+*> 4. If TRANS = 'T' and m < n: find the least squares solution of
+*> an overdetermined system, i.e., solve the least squares problem
+*> minimize || B - A**T * X ||.
+*>
+*> Several right hand side vectors b and solution vectors x can be
+*> handled in a single call; they are stored as the columns of the
+*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
+*> matrix X.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] TRANS
+*> \verbatim
+*> TRANS is CHARACTER*1
+*> = 'N': the linear system involves A;
+*> = 'T': the linear system involves A**T.
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] NRHS
+*> \verbatim
+*> NRHS is INTEGER
+*> The number of right hand sides, i.e., the number of
+*> columns of the matrices B and X. NRHS >=0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is REAL array, dimension (LDA,N)
+*> On entry, the M-by-N matrix A.
+*> On exit,
+*> if M >= N, A is overwritten by details of its QR
+*> factorization as returned by SGEQRT;
+*> if M < N, A is overwritten by details of its LQ
+*> factorization as returned by SGELQT.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is REAL array, dimension (LDB,NRHS)
+*> On entry, the matrix B of right hand side vectors, stored
+*> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
+*> if TRANS = 'T'.
+*> On exit, if INFO = 0, B is overwritten by the solution
+*> vectors, stored columnwise:
+*> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
+*> squares solution vectors; the residual sum of squares for the
+*> solution in each column is given by the sum of squares of
+*> elements N+1 to M in that column;
+*> if TRANS = 'N' and m < n, rows 1 to N of B contain the
+*> minimum norm solution vectors;
+*> if TRANS = 'T' and m >= n, rows 1 to M of B contain the
+*> minimum norm solution vectors;
+*> if TRANS = 'T' and m < n, rows 1 to M of B contain the
+*> least squares solution vectors; the residual sum of squares
+*> for the solution in each column is given by the sum of
+*> squares of elements M+1 to N in that column.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= MAX(1,M,N).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is REAL array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The dimension of the array WORK.
+*> LWORK >= max( 1, MN + max( MN, NRHS ) ).
+*> For optimal performance,
+*> LWORK >= max( 1, (MN + max( MN, NRHS ))*NB ).
+*> where MN = min(M,N) and NB is the optimum block size.
+*>
+*> If LWORK = -1, then a workspace query is assumed; the routine
+*> only calculates the optimal size of the WORK array, returns
+*> this value as the first entry of the WORK array, and no error
+*> message related to LWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: if INFO = i, the i-th diagonal element of the
+*> triangular factor of A is zero, so that A does not have
+*> full rank; the least squares solution could not be
+*> computed.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup realGEsolve
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2022, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*> \endverbatim
+*
+* =====================================================================
+ SUBROUTINE SGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
+ $ INFO )
+*
+* -- LAPACK driver routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ CHARACTER TRANS
+ INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
+* ..
+* .. Array Arguments ..
+ REAL A( LDA, * ), B( LDB, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO, ONE
+ PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY, TPSD
+ INTEGER BROW, I, IASCL, IBSCL, J, LWOPT, MN, MNNRHS,
+ $ NB, NBMIN, SCLLEN
+ REAL ANRM, BIGNUM, BNRM, SMLNUM
+* ..
+* .. Local Arrays ..
+ REAL RWORK( 1 )
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ REAL SLAMCH, SLANGE
+ EXTERNAL LSAME, ILAENV, SLAMCH, SLANGE
+* ..
+* .. External Subroutines ..
+ EXTERNAL SGELQT, SGEQRT, SGEMLQT, SGEMQRT, SLABAD,
+ $ SLASCL, SLASET, STRTRS, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC REAL, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments.
+*
+ INFO = 0
+ MN = MIN( M, N )
+ LQUERY = ( LWORK.EQ.-1 )
+ IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' ) ) ) THEN
+ INFO = -1
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -6
+ ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
+ INFO = -8
+ ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
+ $ THEN
+ INFO = -10
+ END IF
+*
+* Figure out optimal block size and optimal workspace size
+*
+ IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
+*
+ TPSD = .TRUE.
+ IF( LSAME( TRANS, 'N' ) )
+ $ TPSD = .FALSE.
+*
+ NB = ILAENV( 1, 'SGELST', ' ', M, N, -1, -1 )
+*
+ MNNRHS = MAX( MN, NRHS )
+ LWOPT = MAX( 1, (MN+MNNRHS)*NB )
+ WORK( 1 ) = REAL( LWOPT )
+*
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'SGELST ', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( MIN( M, N, NRHS ).EQ.0 ) THEN
+ CALL SLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
+ WORK( 1 ) = REAL( LWOPT )
+ RETURN
+ END IF
+*
+* *GEQRT and *GELQT routines cannot accept NB larger than min(M,N)
+*
+ IF( NB.GT.MN ) NB = MN
+*
+* Determine the block size from the supplied LWORK
+* ( at this stage we know that LWORK >= (minimum required workspace,
+* but it may be less than optimal)
+*
+ NB = MIN( NB, LWORK/( MN + MNNRHS ) )
+*
+* The minimum value of NB, when blocked code is used
+*
+ NBMIN = MAX( 2, ILAENV( 2, 'SGELST', ' ', M, N, -1, -1 ) )
+*
+ IF( NB.LT.NBMIN ) THEN
+ NB = 1
+ END IF
+*
+* Get machine parameters
+*
+ SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' )
+ BIGNUM = ONE / SMLNUM
+ CALL SLABAD( SMLNUM, BIGNUM )
+*
+* Scale A, B if max element outside range [SMLNUM,BIGNUM]
+*
+ ANRM = SLANGE( 'M', M, N, A, LDA, RWORK )
+ IASCL = 0
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
+*
+* Scale matrix norm up to SMLNUM
+*
+ CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
+ IASCL = 1
+ ELSE IF( ANRM.GT.BIGNUM ) THEN
+*
+* Scale matrix norm down to BIGNUM
+*
+ CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
+ IASCL = 2
+ ELSE IF( ANRM.EQ.ZERO ) THEN
+*
+* Matrix all zero. Return zero solution.
+*
+ CALL SLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
+ WORK( 1 ) = REAL( LWOPT )
+ RETURN
+ END IF
+*
+ BROW = M
+ IF( TPSD )
+ $ BROW = N
+ BNRM = SLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
+ IBSCL = 0
+ IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
+*
+* Scale matrix norm up to SMLNUM
+*
+ CALL SLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
+ $ INFO )
+ IBSCL = 1
+ ELSE IF( BNRM.GT.BIGNUM ) THEN
+*
+* Scale matrix norm down to BIGNUM
+*
+ CALL SLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
+ $ INFO )
+ IBSCL = 2
+ END IF
+*
+ IF( M.GE.N ) THEN
+*
+* M > N:
+* Compute the blocked QR factorization of A,
+* using the compact WY representation of Q,
+* workspace at least N, optimally N*NB.
+*
+ CALL SGEQRT( M, N, NB, A, LDA, WORK( 1 ), NB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ IF( .NOT.TPSD ) THEN
+*
+* M > N, A is not transposed:
+* Overdetermined system of equations,
+* least-squares problem, min || A * X - B ||.
+*
+* Compute B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL SGEMQRT( 'Left', 'Transpose', M, NRHS, N, NB, A, LDA,
+ $ WORK( 1 ), NB, B, LDB, WORK( MN*NB+1 ),
+ $ INFO )
+*
+* Compute B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
+*
+ CALL STRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+ SCLLEN = N
+*
+ ELSE
+*
+* M > N, A is transposed:
+* Underdetermined system of equations,
+* minimum norm solution of A**T * X = B.
+*
+* Compute B := inv(R**T) * B in two row blocks of B.
+*
+* Block 1: B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
+*
+ CALL STRTRS( 'Upper', 'Transpose', 'Non-unit', N, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+* Block 2: Zero out all rows below the N-th row in B:
+* B(N+1:M,1:NRHS) = ZERO
+*
+ DO J = 1, NRHS
+ DO I = N + 1, M
+ B( I, J ) = ZERO
+ END DO
+ END DO
+*
+* Compute B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL SGEMQRT( 'Left', 'No transpose', M, NRHS, N, NB,
+ $ A, LDA, WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ SCLLEN = M
+*
+ END IF
+*
+ ELSE
+*
+* M < N:
+* Compute the blocked LQ factorization of A,
+* using the compact WY representation of Q,
+* workspace at least M, optimally M*NB.
+*
+ CALL SGELQT( M, N, NB, A, LDA, WORK( 1 ), NB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ IF( .NOT.TPSD ) THEN
+*
+* M < N, A is not transposed:
+* Underdetermined system of equations,
+* minimum norm solution of A * X = B.
+*
+* Compute B := inv(L) * B in two row blocks of B.
+*
+* Block 1: B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
+*
+ CALL STRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+* Block 2: Zero out all rows below the M-th row in B:
+* B(M+1:N,1:NRHS) = ZERO
+*
+ DO J = 1, NRHS
+ DO I = M + 1, N
+ B( I, J ) = ZERO
+ END DO
+ END DO
+*
+* Compute B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL SGEMLQT( 'Left', 'Transpose', N, NRHS, M, NB, A, LDA,
+ $ WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ SCLLEN = N
+*
+ ELSE
+*
+* M < N, A is transposed:
+* Overdetermined system of equations,
+* least-squares problem, min || A**T * X - B ||.
+*
+* Compute B(1:N,1:NRHS) := Q * B(1:N,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL SGEMLQT( 'Left', 'No transpose', N, NRHS, M, NB,
+ $ A, LDA, WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1), INFO )
+*
+* Compute B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
+*
+ CALL STRTRS( 'Lower', 'Transpose', 'Non-unit', M, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+ SCLLEN = M
+*
+ END IF
+*
+ END IF
+*
+* Undo scaling
+*
+ IF( IASCL.EQ.1 ) THEN
+ CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ ELSE IF( IASCL.EQ.2 ) THEN
+ CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ END IF
+ IF( IBSCL.EQ.1 ) THEN
+ CALL SLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ ELSE IF( IBSCL.EQ.2 ) THEN
+ CALL SLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ END IF
+*
+ WORK( 1 ) = REAL( LWOPT )
+*
+ RETURN
+*
+* End of SGELST
+*
+ END
diff --git a/lapack-netlib/SRC/zgelst.f b/lapack-netlib/SRC/zgelst.f
new file mode 100644
index 000000000..4dabdc91e
--- /dev/null
+++ b/lapack-netlib/SRC/zgelst.f
@@ -0,0 +1,533 @@
+*> \brief ZGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q.
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download ZGELST + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
+* INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER TRANS
+* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
+* ..
+* .. Array Arguments ..
+* COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZGELST solves overdetermined or underdetermined real linear systems
+*> involving an M-by-N matrix A, or its conjugate-transpose, using a QR
+*> or LQ factorization of A with compact WY representation of Q.
+*> It is assumed that A has full rank.
+*>
+*> The following options are provided:
+*>
+*> 1. If TRANS = 'N' and m >= n: find the least squares solution of
+*> an overdetermined system, i.e., solve the least squares problem
+*> minimize || B - A*X ||.
+*>
+*> 2. If TRANS = 'N' and m < n: find the minimum norm solution of
+*> an underdetermined system A * X = B.
+*>
+*> 3. If TRANS = 'C' and m >= n: find the minimum norm solution of
+*> an underdetermined system A**T * X = B.
+*>
+*> 4. If TRANS = 'C' and m < n: find the least squares solution of
+*> an overdetermined system, i.e., solve the least squares problem
+*> minimize || B - A**T * X ||.
+*>
+*> Several right hand side vectors b and solution vectors x can be
+*> handled in a single call; they are stored as the columns of the
+*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
+*> matrix X.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] TRANS
+*> \verbatim
+*> TRANS is CHARACTER*1
+*> = 'N': the linear system involves A;
+*> = 'C': the linear system involves A**H.
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] NRHS
+*> \verbatim
+*> NRHS is INTEGER
+*> The number of right hand sides, i.e., the number of
+*> columns of the matrices B and X. NRHS >=0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX*16 array, dimension (LDA,N)
+*> On entry, the M-by-N matrix A.
+*> On exit,
+*> if M >= N, A is overwritten by details of its QR
+*> factorization as returned by ZGEQRT;
+*> if M < N, A is overwritten by details of its LQ
+*> factorization as returned by ZGELQT.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is COMPLEX*16 array, dimension (LDB,NRHS)
+*> On entry, the matrix B of right hand side vectors, stored
+*> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
+*> if TRANS = 'C'.
+*> On exit, if INFO = 0, B is overwritten by the solution
+*> vectors, stored columnwise:
+*> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
+*> squares solution vectors; the residual sum of squares for the
+*> solution in each column is given by the sum of squares of
+*> modulus of elements N+1 to M in that column;
+*> if TRANS = 'N' and m < n, rows 1 to N of B contain the
+*> minimum norm solution vectors;
+*> if TRANS = 'C' and m >= n, rows 1 to M of B contain the
+*> minimum norm solution vectors;
+*> if TRANS = 'C' and m < n, rows 1 to M of B contain the
+*> least squares solution vectors; the residual sum of squares
+*> for the solution in each column is given by the sum of
+*> squares of the modulus of elements M+1 to N in that column.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= MAX(1,M,N).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The dimension of the array WORK.
+*> LWORK >= max( 1, MN + max( MN, NRHS ) ).
+*> For optimal performance,
+*> LWORK >= max( 1, (MN + max( MN, NRHS ))*NB ).
+*> where MN = min(M,N) and NB is the optimum block size.
+*>
+*> If LWORK = -1, then a workspace query is assumed; the routine
+*> only calculates the optimal size of the WORK array, returns
+*> this value as the first entry of the WORK array, and no error
+*> message related to LWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: if INFO = i, the i-th diagonal element of the
+*> triangular factor of A is zero, so that A does not have
+*> full rank; the least squares solution could not be
+*> computed.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup complex16GEsolve
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2022, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*> \endverbatim
+*
+* =====================================================================
+ SUBROUTINE ZGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
+ $ INFO )
+*
+* -- LAPACK driver routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ CHARACTER TRANS
+ INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+ COMPLEX*16 CZERO
+ PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY, TPSD
+ INTEGER BROW, I, IASCL, IBSCL, J, LWOPT, MN, MNNRHS,
+ $ NB, NBMIN, SCLLEN
+ DOUBLE PRECISION ANRM, BIGNUM, BNRM, SMLNUM
+* ..
+* .. Local Arrays ..
+ DOUBLE PRECISION RWORK( 1 )
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ DOUBLE PRECISION DLAMCH, ZLANGE
+ EXTERNAL LSAME, ILAENV, DLAMCH, ZLANGE
+* ..
+* .. External Subroutines ..
+ EXTERNAL ZGELQT, ZGEQRT, ZGEMLQT, ZGEMQRT, DLABAD,
+ $ ZLASCL, ZLASET, ZTRTRS, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC DBLE, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments.
+*
+ INFO = 0
+ MN = MIN( M, N )
+ LQUERY = ( LWORK.EQ.-1 )
+ IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'C' ) ) ) THEN
+ INFO = -1
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -6
+ ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
+ INFO = -8
+ ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
+ $ THEN
+ INFO = -10
+ END IF
+*
+* Figure out optimal block size and optimal workspace size
+*
+ IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
+*
+ TPSD = .TRUE.
+ IF( LSAME( TRANS, 'N' ) )
+ $ TPSD = .FALSE.
+*
+ NB = ILAENV( 1, 'ZGELST', ' ', M, N, -1, -1 )
+*
+ MNNRHS = MAX( MN, NRHS )
+ LWOPT = MAX( 1, (MN+MNNRHS)*NB )
+ WORK( 1 ) = DBLE( LWOPT )
+*
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZGELST ', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( MIN( M, N, NRHS ).EQ.0 ) THEN
+ CALL ZLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
+ WORK( 1 ) = DBLE( LWOPT )
+ RETURN
+ END IF
+*
+* *GEQRT and *GELQT routines cannot accept NB larger than min(M,N)
+*
+ IF( NB.GT.MN ) NB = MN
+*
+* Determine the block size from the supplied LWORK
+* ( at this stage we know that LWORK >= (minimum required workspace,
+* but it may be less than optimal)
+*
+ NB = MIN( NB, LWORK/( MN + MNNRHS ) )
+*
+* The minimum value of NB, when blocked code is used
+*
+ NBMIN = MAX( 2, ILAENV( 2, 'ZGELST', ' ', M, N, -1, -1 ) )
+*
+ IF( NB.LT.NBMIN ) THEN
+ NB = 1
+ END IF
+*
+* Get machine parameters
+*
+ SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
+ BIGNUM = ONE / SMLNUM
+ CALL DLABAD( SMLNUM, BIGNUM )
+*
+* Scale A, B if max element outside range [SMLNUM,BIGNUM]
+*
+ ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
+ IASCL = 0
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
+*
+* Scale matrix norm up to SMLNUM
+*
+ CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
+ IASCL = 1
+ ELSE IF( ANRM.GT.BIGNUM ) THEN
+*
+* Scale matrix norm down to BIGNUM
+*
+ CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
+ IASCL = 2
+ ELSE IF( ANRM.EQ.ZERO ) THEN
+*
+* Matrix all zero. Return zero solution.
+*
+ CALL ZLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
+ WORK( 1 ) = DBLE( LWOPT )
+ RETURN
+ END IF
+*
+ BROW = M
+ IF( TPSD )
+ $ BROW = N
+ BNRM = ZLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
+ IBSCL = 0
+ IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
+*
+* Scale matrix norm up to SMLNUM
+*
+ CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
+ $ INFO )
+ IBSCL = 1
+ ELSE IF( BNRM.GT.BIGNUM ) THEN
+*
+* Scale matrix norm down to BIGNUM
+*
+ CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
+ $ INFO )
+ IBSCL = 2
+ END IF
+*
+ IF( M.GE.N ) THEN
+*
+* M > N:
+* Compute the blocked QR factorization of A,
+* using the compact WY representation of Q,
+* workspace at least N, optimally N*NB.
+*
+ CALL ZGEQRT( M, N, NB, A, LDA, WORK( 1 ), NB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ IF( .NOT.TPSD ) THEN
+*
+* M > N, A is not transposed:
+* Overdetermined system of equations,
+* least-squares problem, min || A * X - B ||.
+*
+* Compute B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL ZGEMQRT( 'Left', 'Conjugate transpose', M, NRHS, N, NB,
+ $ A, LDA, WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+* Compute B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
+*
+ CALL ZTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+ SCLLEN = N
+*
+ ELSE
+*
+* M > N, A is transposed:
+* Underdetermined system of equations,
+* minimum norm solution of A**T * X = B.
+*
+* Compute B := inv(R**T) * B in two row blocks of B.
+*
+* Block 1: B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
+*
+ CALL ZTRTRS( 'Upper', 'Conjugate transpose', 'Non-unit',
+ $ N, NRHS, A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+* Block 2: Zero out all rows below the N-th row in B:
+* B(N+1:M,1:NRHS) = ZERO
+*
+ DO J = 1, NRHS
+ DO I = N + 1, M
+ B( I, J ) = ZERO
+ END DO
+ END DO
+*
+* Compute B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL ZGEMQRT( 'Left', 'No transpose', M, NRHS, N, NB,
+ $ A, LDA, WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ SCLLEN = M
+*
+ END IF
+*
+ ELSE
+*
+* M < N:
+* Compute the blocked LQ factorization of A,
+* using the compact WY representation of Q,
+* workspace at least M, optimally M*NB.
+*
+ CALL ZGELQT( M, N, NB, A, LDA, WORK( 1 ), NB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ IF( .NOT.TPSD ) THEN
+*
+* M < N, A is not transposed:
+* Underdetermined system of equations,
+* minimum norm solution of A * X = B.
+*
+* Compute B := inv(L) * B in two row blocks of B.
+*
+* Block 1: B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
+*
+ CALL ZTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+* Block 2: Zero out all rows below the M-th row in B:
+* B(M+1:N,1:NRHS) = ZERO
+*
+ DO J = 1, NRHS
+ DO I = M + 1, N
+ B( I, J ) = ZERO
+ END DO
+ END DO
+*
+* Compute B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL ZGEMLQT( 'Left', 'Conjugate transpose', N, NRHS, M, NB,
+ $ A, LDA, WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1 ), INFO )
+*
+ SCLLEN = N
+*
+ ELSE
+*
+* M < N, A is transposed:
+* Overdetermined system of equations,
+* least-squares problem, min || A**T * X - B ||.
+*
+* Compute B(1:N,1:NRHS) := Q * B(1:N,1:NRHS),
+* using the compact WY representation of Q,
+* workspace at least NRHS, optimally NRHS*NB.
+*
+ CALL ZGEMLQT( 'Left', 'No transpose', N, NRHS, M, NB,
+ $ A, LDA, WORK( 1 ), NB, B, LDB,
+ $ WORK( MN*NB+1), INFO )
+*
+* Compute B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
+*
+ CALL ZTRTRS( 'Lower', 'Conjugate transpose', 'Non-unit',
+ $ M, NRHS, A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+ SCLLEN = M
+*
+ END IF
+*
+ END IF
+*
+* Undo scaling
+*
+ IF( IASCL.EQ.1 ) THEN
+ CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ ELSE IF( IASCL.EQ.2 ) THEN
+ CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ END IF
+ IF( IBSCL.EQ.1 ) THEN
+ CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ ELSE IF( IBSCL.EQ.2 ) THEN
+ CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ END IF
+*
+ WORK( 1 ) = DBLE( LWOPT )
+*
+ RETURN
+*
+* End of ZGELST
+*
+ END