From c26780d4510447ca101bfc44a3ad87018a3e9d8a Mon Sep 17 00:00:00 2001 From: Martin Kroeker Date: Sun, 2 May 2021 11:40:56 +0200 Subject: [PATCH] Initialize X and Y to zero for N=0 (Reference-LAPACK PR463) --- lapack-netlib/SRC/cggglm.f | 11 +++++++++-- lapack-netlib/SRC/dggglm.f | 11 +++++++++-- lapack-netlib/SRC/sggglm.f | 11 +++++++++-- lapack-netlib/SRC/zggglm.f | 11 +++++++++-- 4 files changed, 36 insertions(+), 8 deletions(-) diff --git a/lapack-netlib/SRC/cggglm.f b/lapack-netlib/SRC/cggglm.f index 336f41909..9c8e0eec3 100644 --- a/lapack-netlib/SRC/cggglm.f +++ b/lapack-netlib/SRC/cggglm.f @@ -271,8 +271,15 @@ * * Quick return if possible * - IF( N.EQ.0 ) - $ RETURN + IF( N.EQ.0 ) THEN + DO I = 1, M + X(I) = CZERO + END DO + DO I = 1, P + Y(I) = CZERO + END DO + RETURN + END IF * * Compute the GQR factorization of matrices A and B: * diff --git a/lapack-netlib/SRC/dggglm.f b/lapack-netlib/SRC/dggglm.f index 2e92912e0..1fbdc8add 100644 --- a/lapack-netlib/SRC/dggglm.f +++ b/lapack-netlib/SRC/dggglm.f @@ -270,8 +270,15 @@ * * Quick return if possible * - IF( N.EQ.0 ) - $ RETURN + IF( N.EQ.0 ) THEN + DO I = 1, M + X(I) = ZERO + END DO + DO I = 1, P + Y(I) = ZERO + END DO + RETURN + END IF * * Compute the GQR factorization of matrices A and B: * diff --git a/lapack-netlib/SRC/sggglm.f b/lapack-netlib/SRC/sggglm.f index fe63da5f5..572ee511d 100644 --- a/lapack-netlib/SRC/sggglm.f +++ b/lapack-netlib/SRC/sggglm.f @@ -270,8 +270,15 @@ * * Quick return if possible * - IF( N.EQ.0 ) - $ RETURN + IF( N.EQ.0 ) THEN + DO I = 1, M + X(I) = ZERO + END DO + DO I = 1, P + Y(I) = ZERO + END DO + RETURN + END IF * * Compute the GQR factorization of matrices A and B: * diff --git a/lapack-netlib/SRC/zggglm.f b/lapack-netlib/SRC/zggglm.f index d6a30cee7..d4adc5c4d 100644 --- a/lapack-netlib/SRC/zggglm.f +++ b/lapack-netlib/SRC/zggglm.f @@ -271,8 +271,15 @@ * * Quick return if possible * - IF( N.EQ.0 ) - $ RETURN + IF( N.EQ.0 ) THEN + DO I = 1, M + X(I) = CZERO + END DO + DO I = 1, P + Y(I) = CZERO + END DO + RETURN + END IF * * Compute the GQR factorization of matrices A and B: *