Merge pull request #4338 from martin-frbg/lapack941
Docu fix for Truncated QR With Pivoting (Reference-LAPACK PR 941)
This commit is contained in:
commit
be8661ba40
|
@ -55,7 +55,7 @@
|
|||
*> where:
|
||||
*>
|
||||
*> P(K) is an N-by-N permutation matrix;
|
||||
*> Q(K) is an M-by-M orthogonal matrix;
|
||||
*> Q(K) is an M-by-M unitary matrix;
|
||||
*> R(K)_approx = ( R11(K), R12(K) ) is a rank K approximation of the
|
||||
*> full rank factor R with K-by-K upper-triangular
|
||||
*> R11(K) and K-by-N rectangular R12(K). The diagonal
|
||||
|
@ -124,14 +124,14 @@
|
|||
*> d) RELMAXC2NRMK equals MAXC2NRMK divided by MAXC2NRM, the maximum
|
||||
*> column 2-norm of the original matrix A, which is equal
|
||||
*> to abs(R(1,1)), ( if K = min(M,N), RELMAXC2NRMK = 0.0 );
|
||||
*> e) Q(K)**H * B, the matrix B with the orthogonal
|
||||
*> e) Q(K)**H * B, the matrix B with the unitary
|
||||
*> transformation Q(K)**H applied on the left.
|
||||
*>
|
||||
*> The N-by-N permutation matrix P(K) is stored in a compact form in
|
||||
*> the integer array JPIV. For 1 <= j <= N, column j
|
||||
*> of the matrix A was interchanged with column JPIV(j).
|
||||
*>
|
||||
*> The M-by-M orthogonal matrix Q is represented as a product
|
||||
*> The M-by-M unitary matrix Q is represented as a product
|
||||
*> of elementary Householder reflectors
|
||||
*>
|
||||
*> Q(K) = H(1) * H(2) * . . . * H(K),
|
||||
|
@ -300,7 +300,7 @@
|
|||
*>
|
||||
*> 1. The elements below the diagonal of the subarray
|
||||
*> A(1:M,1:K) together with TAU(1:K) represent the
|
||||
*> orthogonal matrix Q(K) as a product of K Householder
|
||||
*> unitary matrix Q(K) as a product of K Householder
|
||||
*> elementary reflectors.
|
||||
*>
|
||||
*> 2. The elements on and above the diagonal of
|
||||
|
@ -579,8 +579,8 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> November 2023, Igor Kozachenko, James Demmel,
|
||||
*> Computer Science Division,
|
||||
*> University of California, Berkeley
|
||||
*> EECS Department,
|
||||
*> University of California, Berkeley, USA.
|
||||
*>
|
||||
*> \endverbatim
|
||||
*
|
||||
|
|
|
@ -178,7 +178,7 @@
|
|||
*> On exit:
|
||||
*> 1. The elements in block A(IOFFSET+1:M,1:K) below
|
||||
*> the diagonal together with the array TAU represent
|
||||
*> the orthogonal matrix Q(K) as a product of elementary
|
||||
*> the unitary matrix Q(K) as a product of elementary
|
||||
*> reflectors.
|
||||
*> 2. The upper triangular block of the matrix A stored
|
||||
*> in A(IOFFSET+1:M,1:K) is the triangular factor obtained.
|
||||
|
@ -332,8 +332,8 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> November 2023, Igor Kozachenko, James Demmel,
|
||||
*> Computer Science Division,
|
||||
*> University of California, Berkeley
|
||||
*> EECS Department,
|
||||
*> University of California, Berkeley, USA.
|
||||
*>
|
||||
*> \endverbatim
|
||||
*
|
||||
|
|
|
@ -196,7 +196,7 @@
|
|||
*> On exit:
|
||||
*> 1. The elements in block A(IOFFSET+1:M,1:KB) below
|
||||
*> the diagonal together with the array TAU represent
|
||||
*> the orthogonal matrix Q(KB) as a product of elementary
|
||||
*> the unitary matrix Q(KB) as a product of elementary
|
||||
*> reflectors.
|
||||
*> 2. The upper triangular block of the matrix A stored
|
||||
*> in A(IOFFSET+1:M,1:KB) is the triangular factor obtained.
|
||||
|
@ -383,8 +383,8 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> November 2023, Igor Kozachenko, James Demmel,
|
||||
*> Computer Science Division,
|
||||
*> University of California, Berkeley
|
||||
*> EECS Department,
|
||||
*> University of California, Berkeley, USA.
|
||||
*>
|
||||
*> \endverbatim
|
||||
*
|
||||
|
|
|
@ -573,8 +573,8 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> November 2023, Igor Kozachenko, James Demmel,
|
||||
*> Computer Science Division,
|
||||
*> University of California, Berkeley
|
||||
*> EECS Department,
|
||||
*> University of California, Berkeley, USA.
|
||||
*>
|
||||
*> \endverbatim
|
||||
*
|
||||
|
|
|
@ -331,8 +331,8 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> November 2023, Igor Kozachenko, James Demmel,
|
||||
*> Computer Science Division,
|
||||
*> University of California, Berkeley
|
||||
*> EECS Department,
|
||||
*> University of California, Berkeley, USA.
|
||||
*>
|
||||
*> \endverbatim
|
||||
*
|
||||
|
|
|
@ -389,8 +389,8 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> November 2023, Igor Kozachenko, James Demmel,
|
||||
*> Computer Science Division,
|
||||
*> University of California, Berkeley
|
||||
*> EECS Department,
|
||||
*> University of California, Berkeley, USA.
|
||||
*>
|
||||
*> \endverbatim
|
||||
*
|
||||
|
|
|
@ -573,8 +573,8 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> November 2023, Igor Kozachenko, James Demmel,
|
||||
*> Computer Science Division,
|
||||
*> University of California, Berkeley
|
||||
*> EECS Department,
|
||||
*> University of California, Berkeley, USA.
|
||||
*>
|
||||
*> \endverbatim
|
||||
*
|
||||
|
|
|
@ -331,8 +331,8 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> November 2023, Igor Kozachenko, James Demmel,
|
||||
*> Computer Science Division,
|
||||
*> University of California, Berkeley
|
||||
*> EECS Department,
|
||||
*> University of California, Berkeley, USA.
|
||||
*>
|
||||
*> \endverbatim
|
||||
*
|
||||
|
|
|
@ -389,8 +389,8 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> November 2023, Igor Kozachenko, James Demmel,
|
||||
*> Computer Science Division,
|
||||
*> University of California, Berkeley
|
||||
*> EECS Department,
|
||||
*> University of California, Berkeley, USA.
|
||||
*>
|
||||
*> \endverbatim
|
||||
*
|
||||
|
|
|
@ -55,7 +55,7 @@
|
|||
*> where:
|
||||
*>
|
||||
*> P(K) is an N-by-N permutation matrix;
|
||||
*> Q(K) is an M-by-M orthogonal matrix;
|
||||
*> Q(K) is an M-by-M unitary matrix;
|
||||
*> R(K)_approx = ( R11(K), R12(K) ) is a rank K approximation of the
|
||||
*> full rank factor R with K-by-K upper-triangular
|
||||
*> R11(K) and K-by-N rectangular R12(K). The diagonal
|
||||
|
@ -124,14 +124,14 @@
|
|||
*> d) RELMAXC2NRMK equals MAXC2NRMK divided by MAXC2NRM, the maximum
|
||||
*> column 2-norm of the original matrix A, which is equal
|
||||
*> to abs(R(1,1)), ( if K = min(M,N), RELMAXC2NRMK = 0.0 );
|
||||
*> e) Q(K)**H * B, the matrix B with the orthogonal
|
||||
*> e) Q(K)**H * B, the matrix B with the unitary
|
||||
*> transformation Q(K)**H applied on the left.
|
||||
*>
|
||||
*> The N-by-N permutation matrix P(K) is stored in a compact form in
|
||||
*> the integer array JPIV. For 1 <= j <= N, column j
|
||||
*> of the matrix A was interchanged with column JPIV(j).
|
||||
*>
|
||||
*> The M-by-M orthogonal matrix Q is represented as a product
|
||||
*> The M-by-M unitary matrix Q is represented as a product
|
||||
*> of elementary Householder reflectors
|
||||
*>
|
||||
*> Q(K) = H(1) * H(2) * . . . * H(K),
|
||||
|
@ -300,7 +300,7 @@
|
|||
*>
|
||||
*> 1. The elements below the diagonal of the subarray
|
||||
*> A(1:M,1:K) together with TAU(1:K) represent the
|
||||
*> orthogonal matrix Q(K) as a product of K Householder
|
||||
*> unitary matrix Q(K) as a product of K Householder
|
||||
*> elementary reflectors.
|
||||
*>
|
||||
*> 2. The elements on and above the diagonal of
|
||||
|
@ -579,8 +579,8 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> November 2023, Igor Kozachenko, James Demmel,
|
||||
*> Computer Science Division,
|
||||
*> University of California, Berkeley
|
||||
*> EECS Department,
|
||||
*> University of California, Berkeley, USA.
|
||||
*>
|
||||
*> \endverbatim
|
||||
*
|
||||
|
|
|
@ -178,7 +178,7 @@
|
|||
*> On exit:
|
||||
*> 1. The elements in block A(IOFFSET+1:M,1:K) below
|
||||
*> the diagonal together with the array TAU represent
|
||||
*> the orthogonal matrix Q(K) as a product of elementary
|
||||
*> the unitary matrix Q(K) as a product of elementary
|
||||
*> reflectors.
|
||||
*> 2. The upper triangular block of the matrix A stored
|
||||
*> in A(IOFFSET+1:M,1:K) is the triangular factor obtained.
|
||||
|
@ -332,8 +332,8 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> November 2023, Igor Kozachenko, James Demmel,
|
||||
*> Computer Science Division,
|
||||
*> University of California, Berkeley
|
||||
*> EECS Department,
|
||||
*> University of California, Berkeley, USA.
|
||||
*>
|
||||
*> \endverbatim
|
||||
*
|
||||
|
|
|
@ -196,7 +196,7 @@
|
|||
*> On exit:
|
||||
*> 1. The elements in block A(IOFFSET+1:M,1:KB) below
|
||||
*> the diagonal together with the array TAU represent
|
||||
*> the orthogonal matrix Q(KB) as a product of elementary
|
||||
*> the unitary matrix Q(KB) as a product of elementary
|
||||
*> reflectors.
|
||||
*> 2. The upper triangular block of the matrix A stored
|
||||
*> in A(IOFFSET+1:M,1:KB) is the triangular factor obtained.
|
||||
|
@ -383,8 +383,8 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> November 2023, Igor Kozachenko, James Demmel,
|
||||
*> Computer Science Division,
|
||||
*> University of California, Berkeley
|
||||
*> EECS Department,
|
||||
*> University of California, Berkeley, USA.
|
||||
*>
|
||||
*> \endverbatim
|
||||
*
|
||||
|
|
Loading…
Reference in New Issue