From 2d369bd916355e1b2c9612d962554948b6c5bb5f Mon Sep 17 00:00:00 2001 From: Martin Kroeker Date: Fri, 26 Feb 2021 09:09:43 +0100 Subject: [PATCH 01/17] fix undefined CC variable --- f_check | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/f_check b/f_check index d044f2547..fe947bf66 100644 --- a/f_check +++ b/f_check @@ -330,7 +330,7 @@ if ($link ne "") { $flags =~ s/\@/\,/g; $linker_L .= "-Wl,". $flags . " " ; } - if ($flags =~ /-lgomp/ && $CC =~ /clang/) { + if ($flags =~ /-lgomp/ && $ENV{"CC"} =~ /clang/) { $flags = "-lomp"; } From 0571c3187b12afd7e55dfdd482743bf3134edc82 Mon Sep 17 00:00:00 2001 From: Rajalakshmi Srinivasaraghavan Date: Fri, 26 Feb 2021 20:56:34 -0600 Subject: [PATCH 02/17] POWER10: Rename mma builtins The LLVM and GCC teams agreed to rename the __builtin_mma_assemble_pair and __builtin_mma_disassemble_pair built-ins to __builtin_vsx_assemble_pair and __builtin_vsx_disassemble_pair respectively. This patch is to make corresponding changes in dgemm kernel. Also made changes in inputs to those builtins to avoid some potential typecasting issues. Reference gcc commit id:77ef995c1fbcab76a2a69b9f4700bcfd005d8e62 --- kernel/power/dgemm_kernel_power10.c | 77 ++++++++++++++--------------- 1 file changed, 37 insertions(+), 40 deletions(-) diff --git a/kernel/power/dgemm_kernel_power10.c b/kernel/power/dgemm_kernel_power10.c index b531799a6..e918e61c3 100644 --- a/kernel/power/dgemm_kernel_power10.c +++ b/kernel/power/dgemm_kernel_power10.c @@ -29,7 +29,13 @@ USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. typedef __vector unsigned char vec_t; typedef FLOAT v4sf_t __attribute__ ((vector_size (16))); -typedef FLOAT v2sf_t __attribute__ ((vector_size (8))); +#if !__has_builtin(__builtin_vsx_assemble_pair) +#define __builtin_vsx_assemble_pair __builtin_mma_assemble_pair +#endif + +#if !__has_builtin(__builtin_vsx_disassemble_pair) +#define __builtin_vsx_disassemble_pair __builtin_mma_disassemble_pair +#endif #ifdef TRMMKERNEL #define SAVE_ACC(ACC, J) \ @@ -186,8 +192,8 @@ CNAME (BLASLONG m, BLASLONG n, BLASLONG k, FLOAT alpha, FLOAT * A, FLOAT * B, vec_t *rowA = (vec_t *) & AO[0]; vec_t *rb = (vec_t *) & BO[0]; __vector_pair rowB, rowB1; - __builtin_mma_assemble_pair (&rowB, rb[1], rb[0]); - __builtin_mma_assemble_pair (&rowB1, rb[3], rb[2]); + __builtin_vsx_assemble_pair (&rowB, rb[1], rb[0]); + __builtin_vsx_assemble_pair (&rowB1, rb[3], rb[2]); __builtin_mma_xvf64ger (&acc0, rowB, rowA[0]); __builtin_mma_xvf64ger (&acc1, rowB1, rowA[0]); __builtin_mma_xvf64ger (&acc2, rowB, rowA[1]); @@ -200,8 +206,8 @@ CNAME (BLASLONG m, BLASLONG n, BLASLONG k, FLOAT alpha, FLOAT * A, FLOAT * B, { rowA = (vec_t *) & AO[l << 3]; rb = (vec_t *) & BO[l << 3]; - __builtin_mma_assemble_pair (&rowB, rb[1], rb[0]); - __builtin_mma_assemble_pair (&rowB1, rb[3], rb[2]); + __builtin_vsx_assemble_pair (&rowB, rb[1], rb[0]); + __builtin_vsx_assemble_pair (&rowB1, rb[3], rb[2]); __builtin_mma_xvf64gerpp (&acc0, rowB, rowA[0]); __builtin_mma_xvf64gerpp (&acc1, rowB1, rowA[0]); __builtin_mma_xvf64gerpp (&acc2, rowB, rowA[1]); @@ -242,8 +248,8 @@ CNAME (BLASLONG m, BLASLONG n, BLASLONG k, FLOAT alpha, FLOAT * A, FLOAT * B, vec_t *rowA = (vec_t *) & AO[0]; __vector_pair rowB, rowB1; vec_t *rb = (vec_t *) & BO[0]; - __builtin_mma_assemble_pair (&rowB, rb[1], rb[0]); - __builtin_mma_assemble_pair (&rowB1, rb[3], rb[2]); + __builtin_vsx_assemble_pair (&rowB, rb[1], rb[0]); + __builtin_vsx_assemble_pair (&rowB1, rb[3], rb[2]); __builtin_mma_xvf64ger (&acc0, rowB, rowA[0]); __builtin_mma_xvf64ger (&acc1, rowB1, rowA[0]); __builtin_mma_xvf64ger (&acc2, rowB, rowA[1]); @@ -252,8 +258,8 @@ CNAME (BLASLONG m, BLASLONG n, BLASLONG k, FLOAT alpha, FLOAT * A, FLOAT * B, { rowA = (vec_t *) & AO[l << 2]; rb = (vec_t *) & BO[l << 3]; - __builtin_mma_assemble_pair (&rowB, rb[1], rb[0]); - __builtin_mma_assemble_pair (&rowB1, rb[3], rb[2]); + __builtin_vsx_assemble_pair (&rowB, rb[1], rb[0]); + __builtin_vsx_assemble_pair (&rowB1, rb[3], rb[2]); __builtin_mma_xvf64gerpp (&acc0, rowB, rowA[0]); __builtin_mma_xvf64gerpp (&acc1, rowB1, rowA[0]); __builtin_mma_xvf64gerpp (&acc2, rowB, rowA[1]); @@ -286,16 +292,16 @@ CNAME (BLASLONG m, BLASLONG n, BLASLONG k, FLOAT alpha, FLOAT * A, FLOAT * B, vec_t *rowA = (vec_t *) & AO[0]; __vector_pair rowB, rowB1; vec_t *rb = (vec_t *) & BO[0]; - __builtin_mma_assemble_pair (&rowB, rb[1], rb[0]); - __builtin_mma_assemble_pair (&rowB1, rb[3], rb[2]); + __builtin_vsx_assemble_pair (&rowB, rb[1], rb[0]); + __builtin_vsx_assemble_pair (&rowB1, rb[3], rb[2]); __builtin_mma_xvf64ger (&acc0, rowB, rowA[0]); __builtin_mma_xvf64ger (&acc1, rowB1, rowA[0]); for (l = 1; l < temp; l++) { rowA = (vec_t *) & AO[l << 1]; rb = (vec_t *) & BO[l << 3]; - __builtin_mma_assemble_pair (&rowB, rb[1], rb[0]); - __builtin_mma_assemble_pair (&rowB1, rb[3], rb[2]); + __builtin_vsx_assemble_pair (&rowB, rb[1], rb[0]); + __builtin_vsx_assemble_pair (&rowB1, rb[3], rb[2]); __builtin_mma_xvf64gerpp (&acc0, rowB, rowA[0]); __builtin_mma_xvf64gerpp (&acc1, rowB1, rowA[0]); } @@ -398,7 +404,7 @@ CNAME (BLASLONG m, BLASLONG n, BLASLONG k, FLOAT alpha, FLOAT * A, FLOAT * B, vec_t *rowA = (vec_t *) & AO[0]; __vector_pair rowB; vec_t *rb = (vec_t *) & BO[0]; - __builtin_mma_assemble_pair (&rowB, rb[1], rb[0]); + __builtin_vsx_assemble_pair (&rowB, rb[1], rb[0]); __builtin_mma_xvf64ger (&acc0, rowB, rowA[0]); __builtin_mma_xvf64ger (&acc1, rowB, rowA[1]); __builtin_mma_xvf64ger (&acc2, rowB, rowA[2]); @@ -407,7 +413,7 @@ CNAME (BLASLONG m, BLASLONG n, BLASLONG k, FLOAT alpha, FLOAT * A, FLOAT * B, { rowA = (vec_t *) & AO[l << 3]; rb = (vec_t *) & BO[l << 2]; - __builtin_mma_assemble_pair (&rowB, rb[1], rb[0]); + __builtin_vsx_assemble_pair (&rowB, rb[1], rb[0]); __builtin_mma_xvf64gerpp (&acc0, rowB, rowA[0]); __builtin_mma_xvf64gerpp (&acc1, rowB, rowA[1]); __builtin_mma_xvf64gerpp (&acc2, rowB, rowA[2]); @@ -440,14 +446,14 @@ CNAME (BLASLONG m, BLASLONG n, BLASLONG k, FLOAT alpha, FLOAT * A, FLOAT * B, vec_t *rowA = (vec_t *) & AO[0]; __vector_pair rowB; vec_t *rb = (vec_t *) & BO[0]; - __builtin_mma_assemble_pair (&rowB, rb[1], rb[0]); + __builtin_vsx_assemble_pair (&rowB, rb[1], rb[0]); __builtin_mma_xvf64ger (&acc0, rowB, rowA[0]); __builtin_mma_xvf64ger (&acc1, rowB, rowA[1]); for (l = 1; l < temp; l++) { rowA = (vec_t *) & AO[l << 2]; rb = (vec_t *) & BO[l << 2]; - __builtin_mma_assemble_pair (&rowB, rb[1], rb[0]); + __builtin_vsx_assemble_pair (&rowB, rb[1], rb[0]); __builtin_mma_xvf64gerpp (&acc0, rowB, rowA[0]); __builtin_mma_xvf64gerpp (&acc1, rowB, rowA[1]); } @@ -476,13 +482,13 @@ CNAME (BLASLONG m, BLASLONG n, BLASLONG k, FLOAT alpha, FLOAT * A, FLOAT * B, vec_t *rowA = (vec_t *) & AO[0]; __vector_pair rowB; vec_t *rb = (vec_t *) & BO[0]; - __builtin_mma_assemble_pair (&rowB, rb[1], rb[0]); + __builtin_vsx_assemble_pair (&rowB, rb[1], rb[0]); __builtin_mma_xvf64ger (&acc0, rowB, rowA[0]); for (l = 1; l < temp; l++) { rowA = (vec_t *) & AO[l << 1]; rb = (vec_t *) & BO[l << 2]; - __builtin_mma_assemble_pair (&rowB, rb[1], rb[0]); + __builtin_vsx_assemble_pair (&rowB, rb[1], rb[0]); __builtin_mma_xvf64gerpp (&acc0, rowB, rowA[0]); } SAVE_ACC (&acc0, 0); @@ -562,11 +568,9 @@ CNAME (BLASLONG m, BLASLONG n, BLASLONG k, FLOAT alpha, FLOAT * A, FLOAT * B, v4sf_t result[4]; __vector_quad acc0, acc1, acc2, acc3; BLASLONG l = 0; - FLOAT t[4] = { 0, 0, 0, 0 }; - t[0] = BO[0], t[1] = BO[1]; __vector_pair rowB; - vec_t *rb = (vec_t *) & t[0]; - __builtin_mma_assemble_pair (&rowB, rb[1], rb[0]); + vec_t *rb = (vec_t *) & BO[0]; + __builtin_vsx_assemble_pair (&rowB, rb[0], rb[0]); vec_t *rowA = (vec_t *) & AO[0]; __builtin_mma_xvf64ger (&acc0, rowB, rowA[0]); __builtin_mma_xvf64ger (&acc1, rowB, rowA[1]); @@ -574,9 +578,8 @@ CNAME (BLASLONG m, BLASLONG n, BLASLONG k, FLOAT alpha, FLOAT * A, FLOAT * B, __builtin_mma_xvf64ger (&acc3, rowB, rowA[3]); for (l = 1; l < temp; l++) { - t[0] = BO[l << 1], t[1] = BO[(l << 1) + 1]; - rb = (vec_t *) & t[0]; - __builtin_mma_assemble_pair (&rowB, rb[1], rb[0]); + rb = (vec_t *) & BO[l << 1]; + __builtin_vsx_assemble_pair (&rowB, rb[0], rb[0]); rowA = (vec_t *) & AO[l << 3]; __builtin_mma_xvf64gerpp (&acc0, rowB, rowA[0]); __builtin_mma_xvf64gerpp (&acc1, rowB, rowA[1]); @@ -607,19 +610,16 @@ CNAME (BLASLONG m, BLASLONG n, BLASLONG k, FLOAT alpha, FLOAT * A, FLOAT * B, v4sf_t result[4]; __vector_quad acc0, acc1; BLASLONG l = 0; - FLOAT t[4] = { 0, 0, 0, 0 }; - t[0] = BO[0], t[1] = BO[1]; __vector_pair rowB; - vec_t *rb = (vec_t *) & t[0]; - __builtin_mma_assemble_pair (&rowB, rb[1], rb[0]); + vec_t *rb = (vec_t *) & BO[0]; + __builtin_vsx_assemble_pair (&rowB, rb[0], rb[0]); vec_t *rowA = (vec_t *) & AO[0]; __builtin_mma_xvf64ger (&acc0, rowB, rowA[0]); __builtin_mma_xvf64ger (&acc1, rowB, rowA[1]); for (l = 1; l < temp; l++) { - t[0] = BO[l << 1], t[1] = BO[(l << 1) + 1]; - rb = (vec_t *) & t[0]; - __builtin_mma_assemble_pair (&rowB, rb[1], rb[0]); + rb = (vec_t *) & BO[l << 1]; + __builtin_vsx_assemble_pair (&rowB, rb[0], rb[0]); rowA = (vec_t *) & AO[l << 2]; __builtin_mma_xvf64gerpp (&acc0, rowB, rowA[0]); __builtin_mma_xvf64gerpp (&acc1, rowB, rowA[1]); @@ -646,18 +646,15 @@ CNAME (BLASLONG m, BLASLONG n, BLASLONG k, FLOAT alpha, FLOAT * A, FLOAT * B, v4sf_t result[4]; __vector_quad acc0; BLASLONG l = 0; - FLOAT t[4] = { 0, 0, 0, 0 }; - t[0] = BO[0], t[1] = BO[1]; __vector_pair rowB; - vec_t *rb = (vec_t *) & t[0]; - __builtin_mma_assemble_pair (&rowB, rb[1], rb[0]); + vec_t *rb = (vec_t *) & BO[0]; + __builtin_vsx_assemble_pair (&rowB, rb[0], rb[0]); vec_t *rowA = (vec_t *) & AO[0]; __builtin_mma_xvf64ger (&acc0, rowB, rowA[0]); for (l = 1; l < temp; l++) { - t[0] = BO[l << 1], t[1] = BO[(l << 1) + 1]; - rb = (vec_t *) & t[0]; - __builtin_mma_assemble_pair (&rowB, rb[1], rb[0]); + rb = (vec_t *) & BO[l << 1]; + __builtin_vsx_assemble_pair (&rowB, rb[0], rb[0]); rowA = (vec_t *) & AO[l << 1]; __builtin_mma_xvf64gerpp (&acc0, rowB, rowA[0]); } From 0197519dd71eb894e8ce02b78383242032b8c207 Mon Sep 17 00:00:00 2001 From: Martin Kroeker Date: Sun, 28 Feb 2021 18:46:08 +0100 Subject: [PATCH 03/17] Delete cchkee.f --- lapack-netlib/TESTING/EIG/cchkee.f | 2507 ---------------------------- 1 file changed, 2507 deletions(-) delete mode 100644 lapack-netlib/TESTING/EIG/cchkee.f diff --git a/lapack-netlib/TESTING/EIG/cchkee.f b/lapack-netlib/TESTING/EIG/cchkee.f deleted file mode 100644 index f2a5f8d41..000000000 --- a/lapack-netlib/TESTING/EIG/cchkee.f +++ /dev/null @@ -1,2507 +0,0 @@ -*> \brief \b CCHKEE -* -* =========== DOCUMENTATION =========== -* -* Online html documentation available at -* http://www.netlib.org/lapack/explore-html/ -* -* Definition: -* =========== -* -* PROGRAM CCHKEE -* -* -*> \par Purpose: -* ============= -*> -*> \verbatim -*> -*> CCHKEE tests the COMPLEX LAPACK subroutines for the matrix -*> eigenvalue problem. The test paths in this version are -*> -*> NEP (Nonsymmetric Eigenvalue Problem): -*> Test CGEHRD, CUNGHR, CHSEQR, CTREVC, CHSEIN, and CUNMHR -*> -*> SEP (Hermitian Eigenvalue Problem): -*> Test CHETRD, CUNGTR, CSTEQR, CSTERF, CSTEIN, CSTEDC, -*> and drivers CHEEV(X), CHBEV(X), CHPEV(X), -*> CHEEVD, CHBEVD, CHPEVD -*> -*> SVD (Singular Value Decomposition): -*> Test CGEBRD, CUNGBR, and CBDSQR -*> and the drivers CGESVD, CGESDD -*> -*> CEV (Nonsymmetric Eigenvalue/eigenvector Driver): -*> Test CGEEV -*> -*> CES (Nonsymmetric Schur form Driver): -*> Test CGEES -*> -*> CVX (Nonsymmetric Eigenvalue/eigenvector Expert Driver): -*> Test CGEEVX -*> -*> CSX (Nonsymmetric Schur form Expert Driver): -*> Test CGEESX -*> -*> CGG (Generalized Nonsymmetric Eigenvalue Problem): -*> Test CGGHD3, CGGBAL, CGGBAK, CHGEQZ, and CTGEVC -*> -*> CGS (Generalized Nonsymmetric Schur form Driver): -*> Test CGGES -*> -*> CGV (Generalized Nonsymmetric Eigenvalue/eigenvector Driver): -*> Test CGGEV -*> -*> CGX (Generalized Nonsymmetric Schur form Expert Driver): -*> Test CGGESX -*> -*> CXV (Generalized Nonsymmetric Eigenvalue/eigenvector Expert Driver): -*> Test CGGEVX -*> -*> CSG (Hermitian Generalized Eigenvalue Problem): -*> Test CHEGST, CHEGV, CHEGVD, CHEGVX, CHPGST, CHPGV, CHPGVD, -*> CHPGVX, CHBGST, CHBGV, CHBGVD, and CHBGVX -*> -*> CHB (Hermitian Band Eigenvalue Problem): -*> Test CHBTRD -*> -*> CBB (Band Singular Value Decomposition): -*> Test CGBBRD -*> -*> CEC (Eigencondition estimation): -*> Test CTRSYL, CTREXC, CTRSNA, and CTRSEN -*> -*> CBL (Balancing a general matrix) -*> Test CGEBAL -*> -*> CBK (Back transformation on a balanced matrix) -*> Test CGEBAK -*> -*> CGL (Balancing a matrix pair) -*> Test CGGBAL -*> -*> CGK (Back transformation on a matrix pair) -*> Test CGGBAK -*> -*> GLM (Generalized Linear Regression Model): -*> Tests CGGGLM -*> -*> GQR (Generalized QR and RQ factorizations): -*> Tests CGGQRF and CGGRQF -*> -*> GSV (Generalized Singular Value Decomposition): -*> Tests CGGSVD, CGGSVP, CTGSJA, CLAGS2, CLAPLL, and CLAPMT -*> -*> CSD (CS decomposition): -*> Tests CUNCSD -*> -*> LSE (Constrained Linear Least Squares): -*> Tests CGGLSE -*> -*> Each test path has a different set of inputs, but the data sets for -*> the driver routines xEV, xES, xVX, and xSX can be concatenated in a -*> single input file. The first line of input should contain one of the -*> 3-character path names in columns 1-3. The number of remaining lines -*> depends on what is found on the first line. -*> -*> The number of matrix types used in testing is often controllable from -*> the input file. The number of matrix types for each path, and the -*> test routine that describes them, is as follows: -*> -*> Path name(s) Types Test routine -*> -*> CHS or NEP 21 CCHKHS -*> CST or SEP 21 CCHKST (routines) -*> 18 CDRVST (drivers) -*> CBD or SVD 16 CCHKBD (routines) -*> 5 CDRVBD (drivers) -*> CEV 21 CDRVEV -*> CES 21 CDRVES -*> CVX 21 CDRVVX -*> CSX 21 CDRVSX -*> CGG 26 CCHKGG (routines) -*> CGS 26 CDRGES -*> CGX 5 CDRGSX -*> CGV 26 CDRGEV -*> CXV 2 CDRGVX -*> CSG 21 CDRVSG -*> CHB 15 CCHKHB -*> CBB 15 CCHKBB -*> CEC - CCHKEC -*> CBL - CCHKBL -*> CBK - CCHKBK -*> CGL - CCHKGL -*> CGK - CCHKGK -*> GLM 8 CCKGLM -*> GQR 8 CCKGQR -*> GSV 8 CCKGSV -*> CSD 3 CCKCSD -*> LSE 8 CCKLSE -*> -*>----------------------------------------------------------------------- -*> -*> NEP input file: -*> -*> line 2: NN, INTEGER -*> Number of values of N. -*> -*> line 3: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix dimension N. -*> -*> line 4: NPARMS, INTEGER -*> Number of values of the parameters NB, NBMIN, NX, NS, and -*> MAXB. -*> -*> line 5: NBVAL, INTEGER array, dimension (NPARMS) -*> The values for the blocksize NB. -*> -*> line 6: NBMIN, INTEGER array, dimension (NPARMS) -*> The values for the minimum blocksize NBMIN. -*> -*> line 7: NXVAL, INTEGER array, dimension (NPARMS) -*> The values for the crossover point NX. -*> -*> line 8: INMIN, INTEGER array, dimension (NPARMS) -*> LAHQR vs TTQRE crossover point, >= 11 -*> -*> line 9: INWIN, INTEGER array, dimension (NPARMS) -*> recommended deflation window size -*> -*> line 10: INIBL, INTEGER array, dimension (NPARMS) -*> nibble crossover point -*> -*> line 11: ISHFTS, INTEGER array, dimension (NPARMS) -*> number of simultaneous shifts) -*> -*> line 12: IACC22, INTEGER array, dimension (NPARMS) -*> select structured matrix multiply: 0, 1 or 2) -*> -*> line 13: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. To have all of the test -*> ratios printed, use THRESH = 0.0 . -*> -*> line 14: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 14 was 2: -*> -*> line 15: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 15-EOF: The remaining lines occur in sets of 1 or 2 and allow -*> the user to specify the matrix types. Each line contains -*> a 3-character path name in columns 1-3, and the number -*> of matrix types must be the first nonblank item in columns -*> 4-80. If the number of matrix types is at least 1 but is -*> less than the maximum number of possible types, a second -*> line will be read to get the numbers of the matrix types to -*> be used. For example, -*> NEP 21 -*> requests all of the matrix types for the nonsymmetric -*> eigenvalue problem, while -*> NEP 4 -*> 9 10 11 12 -*> requests only matrices of type 9, 10, 11, and 12. -*> -*> The valid 3-character path names are 'NEP' or 'CHS' for the -*> nonsymmetric eigenvalue routines. -*> -*>----------------------------------------------------------------------- -*> -*> SEP or CSG input file: -*> -*> line 2: NN, INTEGER -*> Number of values of N. -*> -*> line 3: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix dimension N. -*> -*> line 4: NPARMS, INTEGER -*> Number of values of the parameters NB, NBMIN, and NX. -*> -*> line 5: NBVAL, INTEGER array, dimension (NPARMS) -*> The values for the blocksize NB. -*> -*> line 6: NBMIN, INTEGER array, dimension (NPARMS) -*> The values for the minimum blocksize NBMIN. -*> -*> line 7: NXVAL, INTEGER array, dimension (NPARMS) -*> The values for the crossover point NX. -*> -*> line 8: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 9: TSTCHK, LOGICAL -*> Flag indicating whether or not to test the LAPACK routines. -*> -*> line 10: TSTDRV, LOGICAL -*> Flag indicating whether or not to test the driver routines. -*> -*> line 11: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 12: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 12 was 2: -*> -*> line 13: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 13-EOF: Lines specifying matrix types, as for NEP. -*> The valid 3-character path names are 'SEP' or 'CST' for the -*> Hermitian eigenvalue routines and driver routines, and -*> 'CSG' for the routines for the Hermitian generalized -*> eigenvalue problem. -*> -*>----------------------------------------------------------------------- -*> -*> SVD input file: -*> -*> line 2: NN, INTEGER -*> Number of values of M and N. -*> -*> line 3: MVAL, INTEGER array, dimension (NN) -*> The values for the matrix row dimension M. -*> -*> line 4: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix column dimension N. -*> -*> line 5: NPARMS, INTEGER -*> Number of values of the parameter NB, NBMIN, NX, and NRHS. -*> -*> line 6: NBVAL, INTEGER array, dimension (NPARMS) -*> The values for the blocksize NB. -*> -*> line 7: NBMIN, INTEGER array, dimension (NPARMS) -*> The values for the minimum blocksize NBMIN. -*> -*> line 8: NXVAL, INTEGER array, dimension (NPARMS) -*> The values for the crossover point NX. -*> -*> line 9: NSVAL, INTEGER array, dimension (NPARMS) -*> The values for the number of right hand sides NRHS. -*> -*> line 10: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 11: TSTCHK, LOGICAL -*> Flag indicating whether or not to test the LAPACK routines. -*> -*> line 12: TSTDRV, LOGICAL -*> Flag indicating whether or not to test the driver routines. -*> -*> line 13: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 14: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 14 was 2: -*> -*> line 15: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 15-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path names are 'SVD' or 'CBD' for both the -*> SVD routines and the SVD driver routines. -*> -*>----------------------------------------------------------------------- -*> -*> CEV and CES data files: -*> -*> line 1: 'CEV' or 'CES' in columns 1 to 3. -*> -*> line 2: NSIZES, INTEGER -*> Number of sizes of matrices to use. Should be at least 0 -*> and at most 20. If NSIZES = 0, no testing is done -*> (although the remaining 3 lines are still read). -*> -*> line 3: NN, INTEGER array, dimension(NSIZES) -*> Dimensions of matrices to be tested. -*> -*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> These integer parameters determine how blocking is done -*> (see ILAENV for details) -*> NB : block size -*> NBMIN : minimum block size -*> NX : minimum dimension for blocking -*> NS : number of shifts in xHSEQR -*> NBCOL : minimum column dimension for blocking -*> -*> line 5: THRESH, REAL -*> The test threshold against which computed residuals are -*> compared. Should generally be in the range from 10. to 20. -*> If it is 0., all test case data will be printed. -*> -*> line 6: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 6 was 2: -*> -*> line 7: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 8 and following: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'CEV' to test CGEEV, or -*> 'CES' to test CGEES. -*> -*>----------------------------------------------------------------------- -*> -*> The CVX data has two parts. The first part is identical to CEV, -*> and the second part consists of test matrices with precomputed -*> solutions. -*> -*> line 1: 'CVX' in columns 1-3. -*> -*> line 2: NSIZES, INTEGER -*> If NSIZES = 0, no testing of randomly generated examples -*> is done, but any precomputed examples are tested. -*> -*> line 3: NN, INTEGER array, dimension(NSIZES) -*> -*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> -*> line 5: THRESH, REAL -*> -*> line 6: NEWSD, INTEGER -*> -*> If line 6 was 2: -*> -*> line 7: INTEGER array, dimension (4) -*> -*> lines 8 and following: The first line contains 'CVX' in columns 1-3 -*> followed by the number of matrix types, possibly with -*> a second line to specify certain matrix types. -*> If the number of matrix types = 0, no testing of randomly -*> generated examples is done, but any precomputed examples -*> are tested. -*> -*> remaining lines : Each matrix is stored on 1+N+N**2 lines, where N is -*> its dimension. The first line contains the dimension N and -*> ISRT (two integers). ISRT indicates whether the last N lines -*> are sorted by increasing real part of the eigenvalue -*> (ISRT=0) or by increasing imaginary part (ISRT=1). The next -*> N**2 lines contain the matrix rowwise, one entry per line. -*> The last N lines correspond to each eigenvalue. Each of -*> these last N lines contains 4 real values: the real part of -*> the eigenvalues, the imaginary part of the eigenvalue, the -*> reciprocal condition number of the eigenvalues, and the -*> reciprocal condition number of the vector eigenvector. The -*> end of data is indicated by dimension N=0. Even if no data -*> is to be tested, there must be at least one line containing -*> N=0. -*> -*>----------------------------------------------------------------------- -*> -*> The CSX data is like CVX. The first part is identical to CEV, and the -*> second part consists of test matrices with precomputed solutions. -*> -*> line 1: 'CSX' in columns 1-3. -*> -*> line 2: NSIZES, INTEGER -*> If NSIZES = 0, no testing of randomly generated examples -*> is done, but any precomputed examples are tested. -*> -*> line 3: NN, INTEGER array, dimension(NSIZES) -*> -*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> -*> line 5: THRESH, REAL -*> -*> line 6: NEWSD, INTEGER -*> -*> If line 6 was 2: -*> -*> line 7: INTEGER array, dimension (4) -*> -*> lines 8 and following: The first line contains 'CSX' in columns 1-3 -*> followed by the number of matrix types, possibly with -*> a second line to specify certain matrix types. -*> If the number of matrix types = 0, no testing of randomly -*> generated examples is done, but any precomputed examples -*> are tested. -*> -*> remaining lines : Each matrix is stored on 3+N**2 lines, where N is -*> its dimension. The first line contains the dimension N, the -*> dimension M of an invariant subspace, and ISRT. The second -*> line contains M integers, identifying the eigenvalues in the -*> invariant subspace (by their position in a list of -*> eigenvalues ordered by increasing real part (if ISRT=0) or -*> by increasing imaginary part (if ISRT=1)). The next N**2 -*> lines contain the matrix rowwise. The last line contains the -*> reciprocal condition number for the average of the selected -*> eigenvalues, and the reciprocal condition number for the -*> corresponding right invariant subspace. The end of data in -*> indicated by a line containing N=0, M=0, and ISRT = 0. Even -*> if no data is to be tested, there must be at least one line -*> containing N=0, M=0 and ISRT=0. -*> -*>----------------------------------------------------------------------- -*> -*> CGG input file: -*> -*> line 2: NN, INTEGER -*> Number of values of N. -*> -*> line 3: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix dimension N. -*> -*> line 4: NPARMS, INTEGER -*> Number of values of the parameters NB, NBMIN, NBCOL, NS, and -*> MAXB. -*> -*> line 5: NBVAL, INTEGER array, dimension (NPARMS) -*> The values for the blocksize NB. -*> -*> line 6: NBMIN, INTEGER array, dimension (NPARMS) -*> The values for NBMIN, the minimum row dimension for blocks. -*> -*> line 7: NSVAL, INTEGER array, dimension (NPARMS) -*> The values for the number of shifts. -*> -*> line 8: MXBVAL, INTEGER array, dimension (NPARMS) -*> The values for MAXB, used in determining minimum blocksize. -*> -*> line 9: IACC22, INTEGER array, dimension (NPARMS) -*> select structured matrix multiply: 1 or 2) -*> -*> line 10: NBCOL, INTEGER array, dimension (NPARMS) -*> The values for NBCOL, the minimum column dimension for -*> blocks. -*> -*> line 11: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 12: TSTCHK, LOGICAL -*> Flag indicating whether or not to test the LAPACK routines. -*> -*> line 13: TSTDRV, LOGICAL -*> Flag indicating whether or not to test the driver routines. -*> -*> line 14: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 15: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 15 was 2: -*> -*> line 16: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 17-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'CGG' for the generalized -*> eigenvalue problem routines and driver routines. -*> -*>----------------------------------------------------------------------- -*> -*> CGS and CGV input files: -*> -*> line 1: 'CGS' or 'CGV' in columns 1 to 3. -*> -*> line 2: NN, INTEGER -*> Number of values of N. -*> -*> line 3: NVAL, INTEGER array, dimension(NN) -*> Dimensions of matrices to be tested. -*> -*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> These integer parameters determine how blocking is done -*> (see ILAENV for details) -*> NB : block size -*> NBMIN : minimum block size -*> NX : minimum dimension for blocking -*> NS : number of shifts in xHGEQR -*> NBCOL : minimum column dimension for blocking -*> -*> line 5: THRESH, REAL -*> The test threshold against which computed residuals are -*> compared. Should generally be in the range from 10. to 20. -*> If it is 0., all test case data will be printed. -*> -*> line 6: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits. -*> -*> line 7: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 17 was 2: -*> -*> line 7: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 7-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'CGS' for the generalized -*> eigenvalue problem routines and driver routines. -*> -*>----------------------------------------------------------------------- -*> -*> CGX input file: -*> line 1: 'CGX' in columns 1 to 3. -*> -*> line 2: N, INTEGER -*> Value of N. -*> -*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> These integer parameters determine how blocking is done -*> (see ILAENV for details) -*> NB : block size -*> NBMIN : minimum block size -*> NX : minimum dimension for blocking -*> NS : number of shifts in xHGEQR -*> NBCOL : minimum column dimension for blocking -*> -*> line 4: THRESH, REAL -*> The test threshold against which computed residuals are -*> compared. Should generally be in the range from 10. to 20. -*> Information will be printed about each test for which the -*> test ratio is greater than or equal to the threshold. -*> -*> line 5: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 6: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 6 was 2: -*> -*> line 7: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> If line 2 was 0: -*> -*> line 7-EOF: Precomputed examples are tested. -*> -*> remaining lines : Each example is stored on 3+2*N*N lines, where N is -*> its dimension. The first line contains the dimension (a -*> single integer). The next line contains an integer k such -*> that only the last k eigenvalues will be selected and appear -*> in the leading diagonal blocks of $A$ and $B$. The next N*N -*> lines contain the matrix A, one element per line. The next N*N -*> lines contain the matrix B. The last line contains the -*> reciprocal of the eigenvalue cluster condition number and the -*> reciprocal of the deflating subspace (associated with the -*> selected eigencluster) condition number. The end of data is -*> indicated by dimension N=0. Even if no data is to be tested, -*> there must be at least one line containing N=0. -*> -*>----------------------------------------------------------------------- -*> -*> CXV input files: -*> line 1: 'CXV' in columns 1 to 3. -*> -*> line 2: N, INTEGER -*> Value of N. -*> -*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> These integer parameters determine how blocking is done -*> (see ILAENV for details) -*> NB : block size -*> NBMIN : minimum block size -*> NX : minimum dimension for blocking -*> NS : number of shifts in xHGEQR -*> NBCOL : minimum column dimension for blocking -*> -*> line 4: THRESH, REAL -*> The test threshold against which computed residuals are -*> compared. Should generally be in the range from 10. to 20. -*> Information will be printed about each test for which the -*> test ratio is greater than or equal to the threshold. -*> -*> line 5: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 6: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 6 was 2: -*> -*> line 7: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> If line 2 was 0: -*> -*> line 7-EOF: Precomputed examples are tested. -*> -*> remaining lines : Each example is stored on 3+2*N*N lines, where N is -*> its dimension. The first line contains the dimension (a -*> single integer). The next N*N lines contain the matrix A, one -*> element per line. The next N*N lines contain the matrix B. -*> The next line contains the reciprocals of the eigenvalue -*> condition numbers. The last line contains the reciprocals of -*> the eigenvector condition numbers. The end of data is -*> indicated by dimension N=0. Even if no data is to be tested, -*> there must be at least one line containing N=0. -*> -*>----------------------------------------------------------------------- -*> -*> CHB input file: -*> -*> line 2: NN, INTEGER -*> Number of values of N. -*> -*> line 3: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix dimension N. -*> -*> line 4: NK, INTEGER -*> Number of values of K. -*> -*> line 5: KVAL, INTEGER array, dimension (NK) -*> The values for the matrix dimension K. -*> -*> line 6: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 7 was 2: -*> -*> line 8: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 8-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'CHB'. -*> -*>----------------------------------------------------------------------- -*> -*> CBB input file: -*> -*> line 2: NN, INTEGER -*> Number of values of M and N. -*> -*> line 3: MVAL, INTEGER array, dimension (NN) -*> The values for the matrix row dimension M. -*> -*> line 4: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix column dimension N. -*> -*> line 4: NK, INTEGER -*> Number of values of K. -*> -*> line 5: KVAL, INTEGER array, dimension (NK) -*> The values for the matrix bandwidth K. -*> -*> line 6: NPARMS, INTEGER -*> Number of values of the parameter NRHS -*> -*> line 7: NSVAL, INTEGER array, dimension (NPARMS) -*> The values for the number of right hand sides NRHS. -*> -*> line 8: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 9: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 9 was 2: -*> -*> line 10: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 10-EOF: Lines specifying matrix types, as for SVD. -*> The 3-character path name is 'CBB'. -*> -*>----------------------------------------------------------------------- -*> -*> CEC input file: -*> -*> line 2: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> lines 3-EOF: -*> -*> Input for testing the eigencondition routines consists of a set of -*> specially constructed test cases and their solutions. The data -*> format is not intended to be modified by the user. -*> -*>----------------------------------------------------------------------- -*> -*> CBL and CBK input files: -*> -*> line 1: 'CBL' in columns 1-3 to test CGEBAL, or 'CBK' in -*> columns 1-3 to test CGEBAK. -*> -*> The remaining lines consist of specially constructed test cases. -*> -*>----------------------------------------------------------------------- -*> -*> CGL and CGK input files: -*> -*> line 1: 'CGL' in columns 1-3 to test CGGBAL, or 'CGK' in -*> columns 1-3 to test CGGBAK. -*> -*> The remaining lines consist of specially constructed test cases. -*> -*>----------------------------------------------------------------------- -*> -*> GLM data file: -*> -*> line 1: 'GLM' in columns 1 to 3. -*> -*> line 2: NN, INTEGER -*> Number of values of M, P, and N. -*> -*> line 3: MVAL, INTEGER array, dimension(NN) -*> Values of M (row dimension). -*> -*> line 4: PVAL, INTEGER array, dimension(NN) -*> Values of P (row dimension). -*> -*> line 5: NVAL, INTEGER array, dimension(NN) -*> Values of N (column dimension), note M <= N <= M+P. -*> -*> line 6: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 8: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 8 was 2: -*> -*> line 9: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'GLM' for the generalized -*> linear regression model routines. -*> -*>----------------------------------------------------------------------- -*> -*> GQR data file: -*> -*> line 1: 'GQR' in columns 1 to 3. -*> -*> line 2: NN, INTEGER -*> Number of values of M, P, and N. -*> -*> line 3: MVAL, INTEGER array, dimension(NN) -*> Values of M. -*> -*> line 4: PVAL, INTEGER array, dimension(NN) -*> Values of P. -*> -*> line 5: NVAL, INTEGER array, dimension(NN) -*> Values of N. -*> -*> line 6: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 8: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 8 was 2: -*> -*> line 9: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'GQR' for the generalized -*> QR and RQ routines. -*> -*>----------------------------------------------------------------------- -*> -*> GSV data file: -*> -*> line 1: 'GSV' in columns 1 to 3. -*> -*> line 2: NN, INTEGER -*> Number of values of M, P, and N. -*> -*> line 3: MVAL, INTEGER array, dimension(NN) -*> Values of M (row dimension). -*> -*> line 4: PVAL, INTEGER array, dimension(NN) -*> Values of P (row dimension). -*> -*> line 5: NVAL, INTEGER array, dimension(NN) -*> Values of N (column dimension). -*> -*> line 6: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 8: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 8 was 2: -*> -*> line 9: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'GSV' for the generalized -*> SVD routines. -*> -*>----------------------------------------------------------------------- -*> -*> CSD data file: -*> -*> line 1: 'CSD' in columns 1 to 3. -*> -*> line 2: NM, INTEGER -*> Number of values of M, P, and N. -*> -*> line 3: MVAL, INTEGER array, dimension(NM) -*> Values of M (row and column dimension of orthogonal matrix). -*> -*> line 4: PVAL, INTEGER array, dimension(NM) -*> Values of P (row dimension of top-left block). -*> -*> line 5: NVAL, INTEGER array, dimension(NM) -*> Values of N (column dimension of top-left block). -*> -*> line 6: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 8: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 8 was 2: -*> -*> line 9: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'CSD' for the CSD routine. -*> -*>----------------------------------------------------------------------- -*> -*> LSE data file: -*> -*> line 1: 'LSE' in columns 1 to 3. -*> -*> line 2: NN, INTEGER -*> Number of values of M, P, and N. -*> -*> line 3: MVAL, INTEGER array, dimension(NN) -*> Values of M. -*> -*> line 4: PVAL, INTEGER array, dimension(NN) -*> Values of P. -*> -*> line 5: NVAL, INTEGER array, dimension(NN) -*> Values of N, note P <= N <= P+M. -*> -*> line 6: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 8: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 8 was 2: -*> -*> line 9: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'GSV' for the generalized -*> SVD routines. -*> -*>----------------------------------------------------------------------- -*> -*> NMAX is currently set to 132 and must be at least 12 for some of the -*> precomputed examples, and LWORK = NMAX*(5*NMAX+20) in the parameter -*> statements below. For SVD, we assume NRHS may be as big as N. The -*> parameter NEED is set to 14 to allow for 14 N-by-N matrices for CGG. -*> \endverbatim -* -* Arguments: -* ========== -* -* -* Authors: -* ======== -* -*> \author Univ. of Tennessee -*> \author Univ. of California Berkeley -*> \author Univ. of Colorado Denver -*> \author NAG Ltd. -* -*> \date June 2016 -* -*> \ingroup complex_eig -* -* ===================================================================== - PROGRAM CCHKEE -* -* -- LAPACK test routine (version 3.7.0) -- -* -- LAPACK is a software package provided by Univ. of Tennessee, -- -* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* June 2016 -* -* ===================================================================== -* -* .. Parameters .. - INTEGER NMAX - PARAMETER ( NMAX = 132 ) - INTEGER NCMAX - PARAMETER ( NCMAX = 20 ) - INTEGER NEED - PARAMETER ( NEED = 14 ) - INTEGER LWORK - PARAMETER ( LWORK = NMAX*( 5*NMAX+20 ) ) - INTEGER LIWORK - PARAMETER ( LIWORK = NMAX*( NMAX+20 ) ) - INTEGER MAXIN - PARAMETER ( MAXIN = 20 ) - INTEGER MAXT - PARAMETER ( MAXT = 30 ) - INTEGER NIN, NOUT - PARAMETER ( NIN = 5, NOUT = 6 ) -* .. -* .. Local Scalars .. - LOGICAL CBB, CBK, CBL, CES, CEV, CGG, CGK, CGL, CGS, - $ CGV, CGX, CHB, CSD, CSX, CVX, CXV, FATAL, GLM, - $ GQR, GSV, LSE, NEP, SEP, SVD, TSTCHK, TSTDIF, - $ TSTDRV, TSTERR - CHARACTER C1 - CHARACTER*3 C3, PATH - CHARACTER*32 VNAME - CHARACTER*10 INTSTR - CHARACTER*80 LINE - INTEGER I, I1, IC, INFO, ITMP, K, LENP, MAXTYP, NEWSD, - $ NK, NN, NPARMS, NRHS, NTYPES, - $ VERS_MAJOR, VERS_MINOR, VERS_PATCH - REAL EPS, S1, S2, THRESH, THRSHN -* .. -* .. Local Arrays .. - LOGICAL DOTYPE( MAXT ), LOGWRK( NMAX ) - INTEGER IOLDSD( 4 ), ISEED( 4 ), IWORK( LIWORK ), - $ KVAL( MAXIN ), MVAL( MAXIN ), MXBVAL( MAXIN ), - $ NBCOL( MAXIN ), NBMIN( MAXIN ), NBVAL( MAXIN ), - $ NSVAL( MAXIN ), NVAL( MAXIN ), NXVAL( MAXIN ), - $ PVAL( MAXIN ) - INTEGER INMIN( MAXIN ), INWIN( MAXIN ), INIBL( MAXIN ), - $ ISHFTS( MAXIN ), IACC22( MAXIN ) - REAL ALPHA( NMAX ), BETA( NMAX ), DR( NMAX, 12 ), - $ RESULT( 500 ), RWORK( LWORK ), S( NMAX*NMAX ) - COMPLEX A( NMAX*NMAX, NEED ), B( NMAX*NMAX, 5 ), - $ C( NCMAX*NCMAX, NCMAX*NCMAX ), DC( NMAX, 6 ), - $ TAUA( NMAX ), TAUB( NMAX ), WORK( LWORK ), - $ X( 5*NMAX ) -* .. -* .. External Functions .. - LOGICAL LSAMEN - REAL SECOND, SLAMCH - EXTERNAL LSAMEN, SECOND, SLAMCH -* .. -* .. External Subroutines .. - EXTERNAL ALAREQ, CCHKBB, CCHKBD, CCHKBK, CCHKBL, CCHKEC, - $ CCHKGG, CCHKGK, CCHKGL, CCHKHB, CCHKHS, CCHKST, - $ CCKCSD, CCKGLM, CCKGQR, CCKGSV, CCKLSE, CDRGES, - $ CDRGEV, CDRGSX, CDRGVX, CDRVBD, CDRVES, CDRVEV, - $ CDRVSG, CDRVST, CDRVSX, CDRVVX, CERRBD, - $ CERRED, CERRGG, CERRHS, CERRST, ILAVER, XLAENV, - $ CDRGES3, CDRGEV3, - $ CCHKST2STG, CDRVST2STG, CCHKHB2STG -* .. -* .. Intrinsic Functions .. - INTRINSIC LEN, MIN -* .. -* .. Scalars in Common .. - LOGICAL LERR, OK - CHARACTER*32 SRNAMT - INTEGER INFOT, MAXB, NPROC, NSHIFT, NUNIT, SELDIM, - $ SELOPT -* .. -* .. Arrays in Common .. - LOGICAL SELVAL( 20 ) - INTEGER IPARMS( 100 ) - REAL SELWI( 20 ), SELWR( 20 ) -* .. -* .. Common blocks .. - COMMON / CENVIR / NPROC, NSHIFT, MAXB - COMMON / CLAENV / IPARMS - COMMON / INFOC / INFOT, NUNIT, OK, LERR - COMMON / SRNAMC / SRNAMT - COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI -* .. -* .. Data statements .. - DATA INTSTR / '0123456789' / - DATA IOLDSD / 0, 0, 0, 1 / -* .. -* .. Executable Statements .. -* - A = 0.0 - B = 0.0 - C = 0.0 - DC = 0.0 - S1 = SECOND( ) - FATAL = .FALSE. - NUNIT = NOUT -* -* Return to here to read multiple sets of data -* - 10 CONTINUE -* -* Read the first line and set the 3-character test path -* - READ( NIN, FMT = '(A80)', END = 380 )LINE - PATH = LINE( 1: 3 ) - NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'CHS' ) - SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'CST' ) .OR. - $ LSAMEN( 3, PATH, 'CSG' ) .OR. LSAMEN( 3, PATH, 'SE2' ) - SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'CBD' ) - CEV = LSAMEN( 3, PATH, 'CEV' ) - CES = LSAMEN( 3, PATH, 'CES' ) - CVX = LSAMEN( 3, PATH, 'CVX' ) - CSX = LSAMEN( 3, PATH, 'CSX' ) - CGG = LSAMEN( 3, PATH, 'CGG' ) - CGS = LSAMEN( 3, PATH, 'CGS' ) - CGX = LSAMEN( 3, PATH, 'CGX' ) - CGV = LSAMEN( 3, PATH, 'CGV' ) - CXV = LSAMEN( 3, PATH, 'CXV' ) - CHB = LSAMEN( 3, PATH, 'CHB' ) - CBB = LSAMEN( 3, PATH, 'CBB' ) - GLM = LSAMEN( 3, PATH, 'GLM' ) - GQR = LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' ) - GSV = LSAMEN( 3, PATH, 'GSV' ) - CSD = LSAMEN( 3, PATH, 'CSD' ) - LSE = LSAMEN( 3, PATH, 'LSE' ) - CBL = LSAMEN( 3, PATH, 'CBL' ) - CBK = LSAMEN( 3, PATH, 'CBK' ) - CGL = LSAMEN( 3, PATH, 'CGL' ) - CGK = LSAMEN( 3, PATH, 'CGK' ) -* -* Report values of parameters. -* - IF( PATH.EQ.' ' ) THEN - GO TO 10 - ELSE IF( NEP ) THEN - WRITE( NOUT, FMT = 9987 ) - ELSE IF( SEP ) THEN - WRITE( NOUT, FMT = 9986 ) - ELSE IF( SVD ) THEN - WRITE( NOUT, FMT = 9985 ) - ELSE IF( CEV ) THEN - WRITE( NOUT, FMT = 9979 ) - ELSE IF( CES ) THEN - WRITE( NOUT, FMT = 9978 ) - ELSE IF( CVX ) THEN - WRITE( NOUT, FMT = 9977 ) - ELSE IF( CSX ) THEN - WRITE( NOUT, FMT = 9976 ) - ELSE IF( CGG ) THEN - WRITE( NOUT, FMT = 9975 ) - ELSE IF( CGS ) THEN - WRITE( NOUT, FMT = 9964 ) - ELSE IF( CGX ) THEN - WRITE( NOUT, FMT = 9965 ) - ELSE IF( CGV ) THEN - WRITE( NOUT, FMT = 9963 ) - ELSE IF( CXV ) THEN - WRITE( NOUT, FMT = 9962 ) - ELSE IF( CHB ) THEN - WRITE( NOUT, FMT = 9974 ) - ELSE IF( CBB ) THEN - WRITE( NOUT, FMT = 9967 ) - ELSE IF( GLM ) THEN - WRITE( NOUT, FMT = 9971 ) - ELSE IF( GQR ) THEN - WRITE( NOUT, FMT = 9970 ) - ELSE IF( GSV ) THEN - WRITE( NOUT, FMT = 9969 ) - ELSE IF( CSD ) THEN - WRITE( NOUT, FMT = 9960 ) - ELSE IF( LSE ) THEN - WRITE( NOUT, FMT = 9968 ) - ELSE IF( CBL ) THEN -* -* CGEBAL: Balancing -* - CALL CCHKBL( NIN, NOUT ) - GO TO 380 - ELSE IF( CBK ) THEN -* -* CGEBAK: Back transformation -* - CALL CCHKBK( NIN, NOUT ) - GO TO 380 - ELSE IF( CGL ) THEN -* -* CGGBAL: Balancing -* - CALL CCHKGL( NIN, NOUT ) - GO TO 380 - ELSE IF( CGK ) THEN -* -* CGGBAK: Back transformation -* - CALL CCHKGK( NIN, NOUT ) - GO TO 380 - ELSE IF( LSAMEN( 3, PATH, 'CEC' ) ) THEN -* -* CEC: Eigencondition estimation -* - READ( NIN, FMT = * )THRESH - CALL XLAENV( 1, 1 ) - CALL XLAENV( 12, 1 ) - TSTERR = .TRUE. - CALL CCHKEC( THRESH, TSTERR, NIN, NOUT ) - GO TO 380 - ELSE - WRITE( NOUT, FMT = 9992 )PATH - GO TO 380 - END IF - CALL ILAVER( VERS_MAJOR, VERS_MINOR, VERS_PATCH ) - WRITE( NOUT, FMT = 9972 ) VERS_MAJOR, VERS_MINOR, VERS_PATCH - WRITE( NOUT, FMT = 9984 ) -* -* Read the number of values of M, P, and N. -* - READ( NIN, FMT = * )NN - IF( NN.LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' NN ', NN, 1 - NN = 0 - FATAL = .TRUE. - ELSE IF( NN.GT.MAXIN ) THEN - WRITE( NOUT, FMT = 9988 )' NN ', NN, MAXIN - NN = 0 - FATAL = .TRUE. - END IF -* -* Read the values of M -* - IF( .NOT.( CGX .OR. CXV ) ) THEN - READ( NIN, FMT = * )( MVAL( I ), I = 1, NN ) - IF( SVD ) THEN - VNAME = ' M ' - ELSE - VNAME = ' N ' - END IF - DO 20 I = 1, NN - IF( MVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )VNAME, MVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( MVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )VNAME, MVAL( I ), NMAX - FATAL = .TRUE. - END IF - 20 CONTINUE - WRITE( NOUT, FMT = 9983 )'M: ', ( MVAL( I ), I = 1, NN ) - END IF -* -* Read the values of P -* - IF( GLM .OR. GQR .OR. GSV .OR. CSD .OR. LSE ) THEN - READ( NIN, FMT = * )( PVAL( I ), I = 1, NN ) - DO 30 I = 1, NN - IF( PVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' P ', PVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( PVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' P ', PVAL( I ), NMAX - FATAL = .TRUE. - END IF - 30 CONTINUE - WRITE( NOUT, FMT = 9983 )'P: ', ( PVAL( I ), I = 1, NN ) - END IF -* -* Read the values of N -* - IF( SVD .OR. CBB .OR. GLM .OR. GQR .OR. GSV .OR. CSD .OR. - $ LSE ) THEN - READ( NIN, FMT = * )( NVAL( I ), I = 1, NN ) - DO 40 I = 1, NN - IF( NVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' N ', NVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( NVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' N ', NVAL( I ), NMAX - FATAL = .TRUE. - END IF - 40 CONTINUE - ELSE - DO 50 I = 1, NN - NVAL( I ) = MVAL( I ) - 50 CONTINUE - END IF - IF( .NOT.( CGX .OR. CXV ) ) THEN - WRITE( NOUT, FMT = 9983 )'N: ', ( NVAL( I ), I = 1, NN ) - ELSE - WRITE( NOUT, FMT = 9983 )'N: ', NN - END IF -* -* Read the number of values of K, followed by the values of K -* - IF( CHB .OR. CBB ) THEN - READ( NIN, FMT = * )NK - READ( NIN, FMT = * )( KVAL( I ), I = 1, NK ) - DO 60 I = 1, NK - IF( KVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' K ', KVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( KVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' K ', KVAL( I ), NMAX - FATAL = .TRUE. - END IF - 60 CONTINUE - WRITE( NOUT, FMT = 9983 )'K: ', ( KVAL( I ), I = 1, NK ) - END IF -* - IF( CEV .OR. CES .OR. CVX .OR. CSX ) THEN -* -* For the nonsymmetric QR driver routines, only one set of -* parameters is allowed. -* - READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ), - $ INMIN( 1 ), INWIN( 1 ), INIBL(1), ISHFTS(1), IACC22(1) - IF( NBVAL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1 - FATAL = .TRUE. - ELSE IF( NBMIN( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1 - FATAL = .TRUE. - ELSE IF( NXVAL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1 - FATAL = .TRUE. - ELSE IF( INMIN( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( 1 ), 1 - FATAL = .TRUE. - ELSE IF( INWIN( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( 1 ), 1 - FATAL = .TRUE. - ELSE IF( INIBL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( 1 ), 1 - FATAL = .TRUE. - ELSE IF( ISHFTS( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( 1 ), 1 - FATAL = .TRUE. - ELSE IF( IACC22( 1 ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( 1 ), 0 - FATAL = .TRUE. - END IF - CALL XLAENV( 1, NBVAL( 1 ) ) - CALL XLAENV( 2, NBMIN( 1 ) ) - CALL XLAENV( 3, NXVAL( 1 ) ) - CALL XLAENV(12, MAX( 11, INMIN( 1 ) ) ) - CALL XLAENV(13, INWIN( 1 ) ) - CALL XLAENV(14, INIBL( 1 ) ) - CALL XLAENV(15, ISHFTS( 1 ) ) - CALL XLAENV(16, IACC22( 1 ) ) - WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 ) - WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 ) - WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 ) - WRITE( NOUT, FMT = 9983 )'INMIN: ', INMIN( 1 ) - WRITE( NOUT, FMT = 9983 )'INWIN: ', INWIN( 1 ) - WRITE( NOUT, FMT = 9983 )'INIBL: ', INIBL( 1 ) - WRITE( NOUT, FMT = 9983 )'ISHFTS: ', ISHFTS( 1 ) - WRITE( NOUT, FMT = 9983 )'IACC22: ', IACC22( 1 ) -* - ELSE IF( CGS .OR. CGX .OR. CGV .OR. CXV ) THEN -* -* For the nonsymmetric generalized driver routines, only one set of -* parameters is allowed. -* - READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ), - $ NSVAL( 1 ), MXBVAL( 1 ) - IF( NBVAL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1 - FATAL = .TRUE. - ELSE IF( NBMIN( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1 - FATAL = .TRUE. - ELSE IF( NXVAL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1 - FATAL = .TRUE. - ELSE IF( NSVAL( 1 ).LT.2 ) THEN - WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( 1 ), 2 - FATAL = .TRUE. - ELSE IF( MXBVAL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( 1 ), 1 - FATAL = .TRUE. - END IF - CALL XLAENV( 1, NBVAL( 1 ) ) - CALL XLAENV( 2, NBMIN( 1 ) ) - CALL XLAENV( 3, NXVAL( 1 ) ) - CALL XLAENV( 4, NSVAL( 1 ) ) - CALL XLAENV( 8, MXBVAL( 1 ) ) - WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 ) - WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 ) - WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 ) - WRITE( NOUT, FMT = 9983 )'NS: ', NSVAL( 1 ) - WRITE( NOUT, FMT = 9983 )'MAXB: ', MXBVAL( 1 ) - ELSE IF( .NOT.CHB .AND. .NOT.GLM .AND. .NOT.GQR .AND. .NOT. - $ GSV .AND. .NOT.CSD .AND. .NOT.LSE ) THEN -* -* For the other paths, the number of parameters can be varied -* from the input file. Read the number of parameter values. -* - READ( NIN, FMT = * )NPARMS - IF( NPARMS.LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )'NPARMS', NPARMS, 1 - NPARMS = 0 - FATAL = .TRUE. - ELSE IF( NPARMS.GT.MAXIN ) THEN - WRITE( NOUT, FMT = 9988 )'NPARMS', NPARMS, MAXIN - NPARMS = 0 - FATAL = .TRUE. - END IF -* -* Read the values of NB -* - IF( .NOT.CBB ) THEN - READ( NIN, FMT = * )( NBVAL( I ), I = 1, NPARMS ) - DO 70 I = 1, NPARMS - IF( NBVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( NBVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' NB ', NBVAL( I ), NMAX - FATAL = .TRUE. - END IF - 70 CONTINUE - WRITE( NOUT, FMT = 9983 )'NB: ', - $ ( NBVAL( I ), I = 1, NPARMS ) - END IF -* -* Read the values of NBMIN -* - IF( NEP .OR. SEP .OR. SVD .OR. CGG ) THEN - READ( NIN, FMT = * )( NBMIN( I ), I = 1, NPARMS ) - DO 80 I = 1, NPARMS - IF( NBMIN( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( I ), 0 - FATAL = .TRUE. - ELSE IF( NBMIN( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )'NBMIN ', NBMIN( I ), NMAX - FATAL = .TRUE. - END IF - 80 CONTINUE - WRITE( NOUT, FMT = 9983 )'NBMIN:', - $ ( NBMIN( I ), I = 1, NPARMS ) - ELSE - DO 90 I = 1, NPARMS - NBMIN( I ) = 1 - 90 CONTINUE - END IF -* -* Read the values of NX -* - IF( NEP .OR. SEP .OR. SVD ) THEN - READ( NIN, FMT = * )( NXVAL( I ), I = 1, NPARMS ) - DO 100 I = 1, NPARMS - IF( NXVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( NXVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' NX ', NXVAL( I ), NMAX - FATAL = .TRUE. - END IF - 100 CONTINUE - WRITE( NOUT, FMT = 9983 )'NX: ', - $ ( NXVAL( I ), I = 1, NPARMS ) - ELSE - DO 110 I = 1, NPARMS - NXVAL( I ) = 1 - 110 CONTINUE - END IF -* -* Read the values of NSHIFT (if CGG) or NRHS (if SVD -* or CBB). -* - IF( SVD .OR. CBB .OR. CGG ) THEN - READ( NIN, FMT = * )( NSVAL( I ), I = 1, NPARMS ) - DO 120 I = 1, NPARMS - IF( NSVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( NSVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' NS ', NSVAL( I ), NMAX - FATAL = .TRUE. - END IF - 120 CONTINUE - WRITE( NOUT, FMT = 9983 )'NS: ', - $ ( NSVAL( I ), I = 1, NPARMS ) - ELSE - DO 130 I = 1, NPARMS - NSVAL( I ) = 1 - 130 CONTINUE - END IF -* -* Read the values for MAXB. -* - IF( CGG ) THEN - READ( NIN, FMT = * )( MXBVAL( I ), I = 1, NPARMS ) - DO 140 I = 1, NPARMS - IF( MXBVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( MXBVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' MAXB ', MXBVAL( I ), NMAX - FATAL = .TRUE. - END IF - 140 CONTINUE - WRITE( NOUT, FMT = 9983 )'MAXB: ', - $ ( MXBVAL( I ), I = 1, NPARMS ) - ELSE - DO 150 I = 1, NPARMS - MXBVAL( I ) = 1 - 150 CONTINUE - END IF -* -* Read the values for INMIN. -* - IF( NEP ) THEN - READ( NIN, FMT = * )( INMIN( I ), I = 1, NPARMS ) - DO 540 I = 1, NPARMS - IF( INMIN( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( I ), 0 - FATAL = .TRUE. - END IF - 540 CONTINUE - WRITE( NOUT, FMT = 9983 )'INMIN: ', - $ ( INMIN( I ), I = 1, NPARMS ) - ELSE - DO 550 I = 1, NPARMS - INMIN( I ) = 1 - 550 CONTINUE - END IF -* -* Read the values for INWIN. -* - IF( NEP ) THEN - READ( NIN, FMT = * )( INWIN( I ), I = 1, NPARMS ) - DO 560 I = 1, NPARMS - IF( INWIN( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( I ), 0 - FATAL = .TRUE. - END IF - 560 CONTINUE - WRITE( NOUT, FMT = 9983 )'INWIN: ', - $ ( INWIN( I ), I = 1, NPARMS ) - ELSE - DO 570 I = 1, NPARMS - INWIN( I ) = 1 - 570 CONTINUE - END IF -* -* Read the values for INIBL. -* - IF( NEP ) THEN - READ( NIN, FMT = * )( INIBL( I ), I = 1, NPARMS ) - DO 580 I = 1, NPARMS - IF( INIBL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( I ), 0 - FATAL = .TRUE. - END IF - 580 CONTINUE - WRITE( NOUT, FMT = 9983 )'INIBL: ', - $ ( INIBL( I ), I = 1, NPARMS ) - ELSE - DO 590 I = 1, NPARMS - INIBL( I ) = 1 - 590 CONTINUE - END IF -* -* Read the values for ISHFTS. -* - IF( NEP ) THEN - READ( NIN, FMT = * )( ISHFTS( I ), I = 1, NPARMS ) - DO 600 I = 1, NPARMS - IF( ISHFTS( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( I ), 0 - FATAL = .TRUE. - END IF - 600 CONTINUE - WRITE( NOUT, FMT = 9983 )'ISHFTS: ', - $ ( ISHFTS( I ), I = 1, NPARMS ) - ELSE - DO 610 I = 1, NPARMS - ISHFTS( I ) = 1 - 610 CONTINUE - END IF -* -* Read the values for IACC22. -* - IF( NEP .OR. CGG ) THEN - READ( NIN, FMT = * )( IACC22( I ), I = 1, NPARMS ) - DO 620 I = 1, NPARMS - IF( IACC22( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( I ), 0 - FATAL = .TRUE. - END IF - 620 CONTINUE - WRITE( NOUT, FMT = 9983 )'IACC22: ', - $ ( IACC22( I ), I = 1, NPARMS ) - ELSE - DO 630 I = 1, NPARMS - IACC22( I ) = 1 - 630 CONTINUE - END IF -* -* Read the values for NBCOL. -* - IF( CGG ) THEN - READ( NIN, FMT = * )( NBCOL( I ), I = 1, NPARMS ) - DO 160 I = 1, NPARMS - IF( NBCOL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )'NBCOL ', NBCOL( I ), 0 - FATAL = .TRUE. - ELSE IF( NBCOL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )'NBCOL ', NBCOL( I ), NMAX - FATAL = .TRUE. - END IF - 160 CONTINUE - WRITE( NOUT, FMT = 9983 )'NBCOL:', - $ ( NBCOL( I ), I = 1, NPARMS ) - ELSE - DO 170 I = 1, NPARMS - NBCOL( I ) = 1 - 170 CONTINUE - END IF - END IF -* -* Calculate and print the machine dependent constants. -* - WRITE( NOUT, FMT = * ) - EPS = SLAMCH( 'Underflow threshold' ) - WRITE( NOUT, FMT = 9981 )'underflow', EPS - EPS = SLAMCH( 'Overflow threshold' ) - WRITE( NOUT, FMT = 9981 )'overflow ', EPS - EPS = SLAMCH( 'Epsilon' ) - WRITE( NOUT, FMT = 9981 )'precision', EPS -* -* Read the threshold value for the test ratios. -* - READ( NIN, FMT = * )THRESH - WRITE( NOUT, FMT = 9982 )THRESH - IF( SEP .OR. SVD .OR. CGG ) THEN -* -* Read the flag that indicates whether to test LAPACK routines. -* - READ( NIN, FMT = * )TSTCHK -* -* Read the flag that indicates whether to test driver routines. -* - READ( NIN, FMT = * )TSTDRV - END IF -* -* Read the flag that indicates whether to test the error exits. -* - READ( NIN, FMT = * )TSTERR -* -* Read the code describing how to set the random number seed. -* - READ( NIN, FMT = * )NEWSD -* -* If NEWSD = 2, read another line with 4 integers for the seed. -* - IF( NEWSD.EQ.2 ) - $ READ( NIN, FMT = * )( IOLDSD( I ), I = 1, 4 ) -* - DO 180 I = 1, 4 - ISEED( I ) = IOLDSD( I ) - 180 CONTINUE -* - IF( FATAL ) THEN - WRITE( NOUT, FMT = 9999 ) - STOP - END IF -* -* Read the input lines indicating the test path and its parameters. -* The first three characters indicate the test path, and the number -* of test matrix types must be the first nonblank item in columns -* 4-80. -* - 190 CONTINUE -* - IF( .NOT.( CGX .OR. CXV ) ) THEN -* - 200 CONTINUE - READ( NIN, FMT = '(A80)', END = 380 )LINE - C3 = LINE( 1: 3 ) - LENP = LEN( LINE ) - I = 3 - ITMP = 0 - I1 = 0 - 210 CONTINUE - I = I + 1 - IF( I.GT.LENP ) THEN - IF( I1.GT.0 ) THEN - GO TO 240 - ELSE - NTYPES = MAXT - GO TO 240 - END IF - END IF - IF( LINE( I: I ).NE.' ' .AND. LINE( I: I ).NE.',' ) THEN - I1 = I - C1 = LINE( I1: I1 ) -* -* Check that a valid integer was read -* - DO 220 K = 1, 10 - IF( C1.EQ.INTSTR( K: K ) ) THEN - IC = K - 1 - GO TO 230 - END IF - 220 CONTINUE - WRITE( NOUT, FMT = 9991 )I, LINE - GO TO 200 - 230 CONTINUE - ITMP = 10*ITMP + IC - GO TO 210 - ELSE IF( I1.GT.0 ) THEN - GO TO 240 - ELSE - GO TO 210 - END IF - 240 CONTINUE - NTYPES = ITMP -* -* Skip the tests if NTYPES is <= 0. -* - IF( .NOT.( CEV .OR. CES .OR. CVX .OR. CSX .OR. CGV .OR. - $ CGS ) .AND. NTYPES.LE.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - GO TO 200 - END IF -* - ELSE - IF( CGX ) - $ C3 = 'CGX' - IF( CXV ) - $ C3 = 'CXV' - END IF -* -* Reset the random number seed. -* - IF( NEWSD.EQ.0 ) THEN - DO 250 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 250 CONTINUE - END IF -* - IF( LSAMEN( 3, C3, 'CHS' ) .OR. LSAMEN( 3, C3, 'NEP' ) ) THEN -* -* ------------------------------------- -* NEP: Nonsymmetric Eigenvalue Problem -* ------------------------------------- -* Vary the parameters -* NB = block size -* NBMIN = minimum block size -* NX = crossover point -* NS = number of shifts -* MAXB = minimum submatrix size -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV( 1, 1 ) - IF( TSTERR ) - $ CALL CERRHS( 'CHSEQR', NOUT ) - DO 270 I = 1, NPARMS - CALL XLAENV( 1, NBVAL( I ) ) - CALL XLAENV( 2, NBMIN( I ) ) - CALL XLAENV( 3, NXVAL( I ) ) - CALL XLAENV(12, MAX( 11, INMIN( I ) ) ) - CALL XLAENV(13, INWIN( I ) ) - CALL XLAENV(14, INIBL( I ) ) - CALL XLAENV(15, ISHFTS( I ) ) - CALL XLAENV(16, IACC22( I ) ) -* - IF( NEWSD.EQ.0 ) THEN - DO 260 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 260 CONTINUE - END IF - WRITE( NOUT, FMT = 9961 )C3, NBVAL( I ), NBMIN( I ), - $ NXVAL( I ), MAX( 11, INMIN(I)), - $ INWIN( I ), INIBL( I ), ISHFTS( I ), IACC22( I ) - CALL CCHKHS( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), A( 1, 5 ), NMAX, A( 1, 6 ), - $ A( 1, 7 ), DC( 1, 1 ), DC( 1, 2 ), A( 1, 8 ), - $ A( 1, 9 ), A( 1, 10 ), A( 1, 11 ), A( 1, 12 ), - $ DC( 1, 3 ), WORK, LWORK, RWORK, IWORK, LOGWRK, - $ RESULT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'CCHKHS', INFO - 270 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'CST' ) .OR. LSAMEN( 3, C3, 'SEP' ) - $ .OR. LSAMEN( 3, C3, 'SE2' ) ) THEN -* -* ---------------------------------- -* SEP: Symmetric Eigenvalue Problem -* ---------------------------------- -* Vary the parameters -* NB = block size -* NBMIN = minimum block size -* NX = crossover point -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV( 1, 1 ) - CALL XLAENV( 9, 25 ) - IF( TSTERR ) - $ CALL CERRST( 'CST', NOUT ) - DO 290 I = 1, NPARMS - CALL XLAENV( 1, NBVAL( I ) ) - CALL XLAENV( 2, NBMIN( I ) ) - CALL XLAENV( 3, NXVAL( I ) ) -* - IF( NEWSD.EQ.0 ) THEN - DO 280 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 280 CONTINUE - END IF - WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ), - $ NXVAL( I ) - IF( TSTCHK ) THEN - IF( LSAMEN( 3, C3, 'SE2' ) ) THEN - CALL CCHKST2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, - $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), - $ DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ), - $ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), - $ DR( 1, 7 ), DR( 1, 8 ), DR( 1, 9 ), - $ DR( 1, 10 ), DR( 1, 11 ), A( 1, 3 ), NMAX, - $ A( 1, 4 ), A( 1, 5 ), DC( 1, 1 ), A( 1, 6 ), - $ WORK, LWORK, RWORK, LWORK, IWORK, LIWORK, - $ RESULT, INFO ) - ELSE - CALL CCHKST( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, - $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), - $ DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ), - $ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), - $ DR( 1, 7 ), DR( 1, 8 ), DR( 1, 9 ), - $ DR( 1, 10 ), DR( 1, 11 ), A( 1, 3 ), NMAX, - $ A( 1, 4 ), A( 1, 5 ), DC( 1, 1 ), A( 1, 6 ), - $ WORK, LWORK, RWORK, LWORK, IWORK, LIWORK, - $ RESULT, INFO ) - ENDIF - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'CCHKST', INFO - END IF - IF( TSTDRV ) THEN - IF( LSAMEN( 3, C3, 'SE2' ) ) THEN - CALL CDRVST2STG( NN, NVAL, 18, DOTYPE, ISEED, THRESH, - $ NOUT, A( 1, 1 ), NMAX, DR( 1, 3 ), DR( 1, 4 ), - $ DR( 1, 5 ), DR( 1, 8 ), DR( 1, 9 ), - $ DR( 1, 10 ), A( 1, 2 ), NMAX, A( 1, 3 ), - $ DC( 1, 1 ), A( 1, 4 ), WORK, LWORK, RWORK, - $ LWORK, IWORK, LIWORK, RESULT, INFO ) - ELSE - CALL CDRVST( NN, NVAL, 18, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, DR( 1, 3 ), DR( 1, 4 ), - $ DR( 1, 5 ), DR( 1, 8 ), DR( 1, 9 ), - $ DR( 1, 10 ), A( 1, 2 ), NMAX, A( 1, 3 ), - $ DC( 1, 1 ), A( 1, 4 ), WORK, LWORK, RWORK, - $ LWORK, IWORK, LIWORK, RESULT, INFO ) - ENDIF - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'CDRVST', INFO - END IF - 290 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'CSG' ) ) THEN -* -* ---------------------------------------------- -* CSG: Hermitian Generalized Eigenvalue Problem -* ---------------------------------------------- -* Vary the parameters -* NB = block size -* NBMIN = minimum block size -* NX = crossover point -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV( 9, 25 ) - DO 310 I = 1, NPARMS - CALL XLAENV( 1, NBVAL( I ) ) - CALL XLAENV( 2, NBMIN( I ) ) - CALL XLAENV( 3, NXVAL( I ) ) -* - IF( NEWSD.EQ.0 ) THEN - DO 300 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 300 CONTINUE - END IF - WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ), - $ NXVAL( I ) - IF( TSTCHK ) THEN -* CALL CDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, -* $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, -* $ DR( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ), -* $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK, -* $ LWORK, RWORK, LWORK, IWORK, LIWORK, RESULT, -* $ INFO ) - CALL CDRVSG2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, - $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, - $ DR( 1, 3 ), DR( 1, 4 ), A( 1, 3 ), NMAX, - $ A( 1, 4 ), A( 1, 5 ), A( 1, 6 ), - $ A( 1, 7 ), WORK, LWORK, RWORK, LWORK, - $ IWORK, LIWORK, RESULT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'CDRVSG', INFO - END IF - 310 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'CBD' ) .OR. LSAMEN( 3, C3, 'SVD' ) ) THEN -* -* ---------------------------------- -* SVD: Singular Value Decomposition -* ---------------------------------- -* Vary the parameters -* NB = block size -* NBMIN = minimum block size -* NX = crossover point -* NRHS = number of right hand sides -* - MAXTYP = 16 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV( 9, 25 ) -* -* Test the error exits -* - CALL XLAENV( 1, 1 ) - IF( TSTERR .AND. TSTCHK ) - $ CALL CERRBD( 'CBD', NOUT ) - IF( TSTERR .AND. TSTDRV ) - $ CALL CERRED( 'CBD', NOUT ) -* - DO 330 I = 1, NPARMS - NRHS = NSVAL( I ) - CALL XLAENV( 1, NBVAL( I ) ) - CALL XLAENV( 2, NBMIN( I ) ) - CALL XLAENV( 3, NXVAL( I ) ) - IF( NEWSD.EQ.0 ) THEN - DO 320 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 320 CONTINUE - END IF - WRITE( NOUT, FMT = 9995 )C3, NBVAL( I ), NBMIN( I ), - $ NXVAL( I ), NRHS - IF( TSTCHK ) THEN - CALL CCHKBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, NRHS, ISEED, - $ THRESH, A( 1, 1 ), NMAX, DR( 1, 1 ), - $ DR( 1, 2 ), DR( 1, 3 ), DR( 1, 4 ), - $ A( 1, 2 ), NMAX, A( 1, 3 ), A( 1, 4 ), - $ A( 1, 5 ), NMAX, A( 1, 6 ), NMAX, A( 1, 7 ), - $ A( 1, 8 ), WORK, LWORK, RWORK, NOUT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'CCHKBD', INFO - END IF - IF( TSTDRV ) - $ CALL CDRVBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, ISEED, - $ THRESH, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, - $ A( 1, 3 ), NMAX, A( 1, 4 ), A( 1, 5 ), - $ A( 1, 6 ), DR( 1, 1 ), DR( 1, 2 ), - $ DR( 1, 3 ), WORK, LWORK, RWORK, IWORK, NOUT, - $ INFO ) - 330 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'CEV' ) ) THEN -* -* -------------------------------------------- -* CEV: Nonsymmetric Eigenvalue Problem Driver -* CGEEV (eigenvalues and eigenvectors) -* -------------------------------------------- -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LE.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL CERRED( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL CDRVEV( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), DC( 1, 1 ), - $ DC( 1, 2 ), A( 1, 3 ), NMAX, A( 1, 4 ), NMAX, - $ A( 1, 5 ), NMAX, RESULT, WORK, LWORK, RWORK, - $ IWORK, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'CGEEV', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'CES' ) ) THEN -* -* -------------------------------------------- -* CES: Nonsymmetric Eigenvalue Problem Driver -* CGEES (Schur form) -* -------------------------------------------- -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LE.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL CERRED( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL CDRVES( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ DC( 1, 1 ), DC( 1, 2 ), A( 1, 4 ), NMAX, - $ RESULT, WORK, LWORK, RWORK, IWORK, LOGWRK, - $ INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'CGEES', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'CVX' ) ) THEN -* -* -------------------------------------------------------------- -* CVX: Nonsymmetric Eigenvalue Problem Expert Driver -* CGEEVX (eigenvalues, eigenvectors and condition numbers) -* -------------------------------------------------------------- -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LT.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL CERRED( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL CDRVVX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN, - $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), DC( 1, 1 ), - $ DC( 1, 2 ), A( 1, 3 ), NMAX, A( 1, 4 ), NMAX, - $ A( 1, 5 ), NMAX, DR( 1, 1 ), DR( 1, 2 ), - $ DR( 1, 3 ), DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), - $ DR( 1, 7 ), DR( 1, 8 ), RESULT, WORK, LWORK, - $ RWORK, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'CGEEVX', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'CSX' ) ) THEN -* -* --------------------------------------------------- -* CSX: Nonsymmetric Eigenvalue Problem Expert Driver -* CGEESX (Schur form and condition numbers) -* --------------------------------------------------- -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LT.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL CERRED( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL CDRVSX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN, - $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ DC( 1, 1 ), DC( 1, 2 ), DC( 1, 3 ), A( 1, 4 ), - $ NMAX, A( 1, 5 ), RESULT, WORK, LWORK, RWORK, - $ LOGWRK, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'CGEESX', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'CGG' ) ) THEN -* -* ------------------------------------------------- -* CGG: Generalized Nonsymmetric Eigenvalue Problem -* ------------------------------------------------- -* Vary the parameters -* NB = block size -* NBMIN = minimum block size -* NS = number of shifts -* MAXB = minimum submatrix size -* IACC22: structured matrix multiply -* NBCOL = minimum column dimension for blocks -* - MAXTYP = 26 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV(1,1) - IF( TSTCHK .AND. TSTERR ) - $ CALL CERRGG( C3, NOUT ) - DO 350 I = 1, NPARMS - CALL XLAENV( 1, NBVAL( I ) ) - CALL XLAENV( 2, NBMIN( I ) ) - CALL XLAENV( 4, NSVAL( I ) ) - CALL XLAENV( 8, MXBVAL( I ) ) - CALL XLAENV( 16, IACC22( I ) ) - CALL XLAENV( 5, NBCOL( I ) ) -* - IF( NEWSD.EQ.0 ) THEN - DO 340 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 340 CONTINUE - END IF - WRITE( NOUT, FMT = 9996 )C3, NBVAL( I ), NBMIN( I ), - $ NSVAL( I ), MXBVAL( I ), IACC22( I ), NBCOL( I ) - TSTDIF = .FALSE. - THRSHN = 10. - IF( TSTCHK ) THEN - CALL CCHKGG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, - $ TSTDIF, THRSHN, NOUT, A( 1, 1 ), NMAX, - $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), - $ A( 1, 6 ), A( 1, 7 ), A( 1, 8 ), A( 1, 9 ), - $ NMAX, A( 1, 10 ), A( 1, 11 ), A( 1, 12 ), - $ DC( 1, 1 ), DC( 1, 2 ), DC( 1, 3 ), - $ DC( 1, 4 ), A( 1, 13 ), A( 1, 14 ), WORK, - $ LWORK, RWORK, LOGWRK, RESULT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'CCHKGG', INFO - END IF - 350 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'CGS' ) ) THEN -* -* ------------------------------------------------- -* CGS: Generalized Nonsymmetric Eigenvalue Problem -* CGGES (Schur form) -* ------------------------------------------------- -* - MAXTYP = 26 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LE.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL CERRGG( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL CDRGES( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), - $ DC( 1, 1 ), DC( 1, 2 ), WORK, LWORK, RWORK, - $ RESULT, LOGWRK, INFO ) -* - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'CDRGES', INFO -* -* Blocked version -* - CALL XLAENV(16,2) - CALL CDRGES3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), - $ DC( 1, 1 ), DC( 1, 2 ), WORK, LWORK, RWORK, - $ RESULT, LOGWRK, INFO ) -* - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'CDRGES3', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - - GO TO 10 -* - ELSE IF( CGX ) THEN -* -* ------------------------------------------------- -* CGX Generalized Nonsymmetric Eigenvalue Problem -* CGGESX (Schur form and condition numbers) -* ------------------------------------------------- -* - MAXTYP = 5 - NTYPES = MAXTYP - IF( NN.LT.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL CERRGG( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV( 5, 2 ) - CALL CDRGSX( NN, NCMAX, THRESH, NIN, NOUT, A( 1, 1 ), NMAX, - $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), - $ A( 1, 6 ), DC( 1, 1 ), DC( 1, 2 ), C, - $ NCMAX*NCMAX, S, WORK, LWORK, RWORK, IWORK, - $ LIWORK, LOGWRK, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'CDRGSX', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'CGV' ) ) THEN -* -* ------------------------------------------------- -* CGV: Generalized Nonsymmetric Eigenvalue Problem -* CGGEV (Eigenvalue/vector form) -* ------------------------------------------------- -* - MAXTYP = 26 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LE.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL CERRGG( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL CDRGEV( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), - $ A( 1, 9 ), NMAX, DC( 1, 1 ), DC( 1, 2 ), - $ DC( 1, 3 ), DC( 1, 4 ), WORK, LWORK, RWORK, - $ RESULT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'CDRGEV', INFO -* -* Blocked version -* - CALL XLAENV(16,2) - CALL CDRGEV3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), - $ A( 1, 9 ), NMAX, DC( 1, 1 ), DC( 1, 2 ), - $ DC( 1, 3 ), DC( 1, 4 ), WORK, LWORK, RWORK, - $ RESULT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'CDRGEV3', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( CXV ) THEN -* -* ------------------------------------------------- -* CXV: Generalized Nonsymmetric Eigenvalue Problem -* CGGEVX (eigenvalue/vector with condition numbers) -* ------------------------------------------------- -* - MAXTYP = 2 - NTYPES = MAXTYP - IF( NN.LT.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL CERRGG( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL CDRGVX( NN, THRESH, NIN, NOUT, A( 1, 1 ), NMAX, - $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), DC( 1, 1 ), - $ DC( 1, 2 ), A( 1, 5 ), A( 1, 6 ), IWORK( 1 ), - $ IWORK( 2 ), DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ), - $ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), WORK, - $ LWORK, RWORK, IWORK( 3 ), LIWORK-2, RESULT, - $ LOGWRK, INFO ) -* - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'CDRGVX', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'CHB' ) ) THEN -* -* ------------------------------ -* CHB: Hermitian Band Reduction -* ------------------------------ -* - MAXTYP = 15 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - IF( TSTERR ) - $ CALL CERRST( 'CHB', NOUT ) -* CALL CCHKHB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH, -* $ NOUT, A( 1, 1 ), NMAX, DR( 1, 1 ), DR( 1, 2 ), -* $ A( 1, 2 ), NMAX, WORK, LWORK, RWORK, RESULT, -* $ INFO ) - CALL CCHKHB2STG( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, - $ THRESH, NOUT, A( 1, 1 ), NMAX, DR( 1, 1 ), - $ DR( 1, 2 ), DR( 1, 3 ), DR( 1, 4 ), DR( 1, 5 ), - $ A( 1, 2 ), NMAX, WORK, LWORK, RWORK, RESULT, - $ INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'CCHKHB', INFO -* - ELSE IF( LSAMEN( 3, C3, 'CBB' ) ) THEN -* -* ------------------------------ -* CBB: General Band Reduction -* ------------------------------ -* - MAXTYP = 15 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - DO 370 I = 1, NPARMS - NRHS = NSVAL( I ) -* - IF( NEWSD.EQ.0 ) THEN - DO 360 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 360 CONTINUE - END IF - WRITE( NOUT, FMT = 9966 )C3, NRHS - CALL CCHKBB( NN, MVAL, NVAL, NK, KVAL, MAXTYP, DOTYPE, NRHS, - $ ISEED, THRESH, NOUT, A( 1, 1 ), NMAX, - $ A( 1, 2 ), 2*NMAX, DR( 1, 1 ), DR( 1, 2 ), - $ A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, A( 1, 6 ), - $ NMAX, A( 1, 7 ), WORK, LWORK, RWORK, RESULT, - $ INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'CCHKBB', INFO - 370 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'GLM' ) ) THEN -* -* ----------------------------------------- -* GLM: Generalized Linear Regression Model -* ----------------------------------------- -* - CALL XLAENV( 1, 1 ) - IF( TSTERR ) - $ CALL CERRGG( 'GLM', NOUT ) - CALL CCKGLM( NN, NVAL, MVAL, PVAL, NTYPES, ISEED, THRESH, NMAX, - $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X, - $ WORK, DR( 1, 1 ), NIN, NOUT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'CCKGLM', INFO -* - ELSE IF( LSAMEN( 3, C3, 'GQR' ) ) THEN -* -* ------------------------------------------ -* GQR: Generalized QR and RQ factorizations -* ------------------------------------------ -* - CALL XLAENV( 1, 1 ) - IF( TSTERR ) - $ CALL CERRGG( 'GQR', NOUT ) - CALL CCKGQR( NN, MVAL, NN, PVAL, NN, NVAL, NTYPES, ISEED, - $ THRESH, NMAX, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), TAUA, B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), - $ B( 1, 4 ), B( 1, 5 ), TAUB, WORK, DR( 1, 1 ), NIN, - $ NOUT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'CCKGQR', INFO -* - ELSE IF( LSAMEN( 3, C3, 'GSV' ) ) THEN -* -* ---------------------------------------------- -* GSV: Generalized Singular Value Decomposition -* ---------------------------------------------- -* - CALL XLAENV(1,1) - IF( TSTERR ) - $ CALL CERRGG( 'GSV', NOUT ) - CALL CCKGSV( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, - $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), - $ A( 1, 3 ), B( 1, 3 ), A( 1, 4 ), ALPHA, BETA, - $ B( 1, 4 ), IWORK, WORK, DR( 1, 1 ), NIN, NOUT, - $ INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'CCKGSV', INFO -* - ELSE IF( LSAMEN( 3, C3, 'CSD' ) ) THEN -* -* ---------------------------------------------- -* CSD: CS Decomposition -* ---------------------------------------------- -* - CALL XLAENV(1,1) - IF( TSTERR ) - $ CALL CERRGG( 'CSD', NOUT ) - CALL CCKCSD( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, - $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), - $ A( 1, 5 ), A( 1, 6 ), RWORK, IWORK, WORK, - $ DR( 1, 1 ), NIN, NOUT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'CCKCSD', INFO -* - ELSE IF( LSAMEN( 3, C3, 'LSE' ) ) THEN -* -* -------------------------------------- -* LSE: Constrained Linear Least Squares -* -------------------------------------- -* - CALL XLAENV( 1, 1 ) - IF( TSTERR ) - $ CALL CERRGG( 'LSE', NOUT ) - CALL CCKLSE( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, - $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X, - $ WORK, DR( 1, 1 ), NIN, NOUT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'CCKLSE', INFO - ELSE - WRITE( NOUT, FMT = * ) - WRITE( NOUT, FMT = * ) - WRITE( NOUT, FMT = 9992 )C3 - END IF - IF( .NOT.( CGX .OR. CXV ) ) - $ GO TO 190 - 380 CONTINUE - WRITE( NOUT, FMT = 9994 ) - S2 = SECOND( ) - WRITE( NOUT, FMT = 9993 )S2 - S1 -* - 9999 FORMAT( / ' Execution not attempted due to input errors' ) - 9997 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4 ) - 9996 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NS =', I4, - $ ', MAXB =', I4, ', IACC22 =', I4, ', NBCOL =', I4 ) - 9995 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4, - $ ', NRHS =', I4 ) - 9994 FORMAT( / / ' End of tests' ) - 9993 FORMAT( ' Total time used = ', F12.2, ' seconds', / ) - 9992 FORMAT( 1X, A3, ': Unrecognized path name' ) - 9991 FORMAT( / / ' *** Invalid integer value in column ', I2, - $ ' of input', ' line:', / A79 ) - 9990 FORMAT( / / 1X, A3, ' routines were not tested' ) - 9989 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be >=', - $ I6 ) - 9988 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be <=', - $ I6 ) - 9987 FORMAT( ' Tests of the Nonsymmetric Eigenvalue Problem routines' ) - 9986 FORMAT( ' Tests of the Hermitian Eigenvalue Problem routines' ) - 9985 FORMAT( ' Tests of the Singular Value Decomposition routines' ) - 9984 FORMAT( / ' The following parameter values will be used:' ) - 9983 FORMAT( 4X, A, 10I6, / 10X, 10I6 ) - 9982 FORMAT( / ' Routines pass computational tests if test ratio is ', - $ 'less than', F8.2, / ) - 9981 FORMAT( ' Relative machine ', A, ' is taken to be', E16.6 ) - 9980 FORMAT( ' *** Error code from ', A, ' = ', I4 ) - 9979 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver', - $ / ' CGEEV (eigenvalues and eigevectors)' ) - 9978 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver', - $ / ' CGEES (Schur form)' ) - 9977 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert', - $ ' Driver', / ' CGEEVX (eigenvalues, eigenvectors and', - $ ' condition numbers)' ) - 9976 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert', - $ ' Driver', / ' CGEESX (Schur form and condition', - $ ' numbers)' ) - 9975 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', - $ 'Problem routines' ) - 9974 FORMAT( ' Tests of CHBTRD', / ' (reduction of a Hermitian band ', - $ 'matrix to real tridiagonal form)' ) - 9973 FORMAT( / 1X, 71( '-' ) ) - 9972 FORMAT( / ' LAPACK VERSION ', I1, '.', I1, '.', I1 ) - 9971 FORMAT( / ' Tests of the Generalized Linear Regression Model ', - $ 'routines' ) - 9970 FORMAT( / ' Tests of the Generalized QR and RQ routines' ) - 9969 FORMAT( / ' Tests of the Generalized Singular Value', - $ ' Decomposition routines' ) - 9968 FORMAT( / ' Tests of the Linear Least Squares routines' ) - 9967 FORMAT( ' Tests of CGBBRD', / ' (reduction of a general band ', - $ 'matrix to real bidiagonal form)' ) - 9966 FORMAT( / / 1X, A3, ': NRHS =', I4 ) - 9965 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', - $ 'Problem Expert Driver CGGESX' ) - 9964 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', - $ 'Problem Driver CGGES' ) - 9963 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', - $ 'Problem Driver CGGEV' ) - 9962 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', - $ 'Problem Expert Driver CGGEVX' ) - 9961 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4, - $ ', INMIN=', I4, - $ ', INWIN =', I4, ', INIBL =', I4, ', ISHFTS =', I4, - $ ', IACC22 =', I4) - 9960 FORMAT( / ' Tests of the CS Decomposition routines' ) -* -* End of CCHKEE -* - END From ee16efff3cd5a4ee7b6c0efcc263964f1304a3a8 Mon Sep 17 00:00:00 2001 From: Martin Kroeker Date: Sun, 28 Feb 2021 18:46:38 +0100 Subject: [PATCH 04/17] Delete dchkee.f --- lapack-netlib/TESTING/EIG/dchkee.f | 2507 ---------------------------- 1 file changed, 2507 deletions(-) delete mode 100644 lapack-netlib/TESTING/EIG/dchkee.f diff --git a/lapack-netlib/TESTING/EIG/dchkee.f b/lapack-netlib/TESTING/EIG/dchkee.f deleted file mode 100644 index dc6f3205a..000000000 --- a/lapack-netlib/TESTING/EIG/dchkee.f +++ /dev/null @@ -1,2507 +0,0 @@ -*> \brief \b DCHKEE -* -* =========== DOCUMENTATION =========== -* -* Online html documentation available at -* http://www.netlib.org/lapack/explore-html/ -* -* Definition: -* =========== -* -* PROGRAM DCHKEE -* -* -*> \par Purpose: -* ============= -*> -*> \verbatim -*> -*> DCHKEE tests the DOUBLE PRECISION LAPACK subroutines for the matrix -*> eigenvalue problem. The test paths in this version are -*> -*> NEP (Nonsymmetric Eigenvalue Problem): -*> Test DGEHRD, DORGHR, DHSEQR, DTREVC, DHSEIN, and DORMHR -*> -*> SEP (Symmetric Eigenvalue Problem): -*> Test DSYTRD, DORGTR, DSTEQR, DSTERF, DSTEIN, DSTEDC, -*> and drivers DSYEV(X), DSBEV(X), DSPEV(X), DSTEV(X), -*> DSYEVD, DSBEVD, DSPEVD, DSTEVD -*> -*> SVD (Singular Value Decomposition): -*> Test DGEBRD, DORGBR, DBDSQR, DBDSDC -*> and the drivers DGESVD, DGESDD -*> -*> DEV (Nonsymmetric Eigenvalue/eigenvector Driver): -*> Test DGEEV -*> -*> DES (Nonsymmetric Schur form Driver): -*> Test DGEES -*> -*> DVX (Nonsymmetric Eigenvalue/eigenvector Expert Driver): -*> Test DGEEVX -*> -*> DSX (Nonsymmetric Schur form Expert Driver): -*> Test DGEESX -*> -*> DGG (Generalized Nonsymmetric Eigenvalue Problem): -*> Test DGGHD3, DGGBAL, DGGBAK, DHGEQZ, and DTGEVC -*> -*> DGS (Generalized Nonsymmetric Schur form Driver): -*> Test DGGES -*> -*> DGV (Generalized Nonsymmetric Eigenvalue/eigenvector Driver): -*> Test DGGEV -*> -*> DGX (Generalized Nonsymmetric Schur form Expert Driver): -*> Test DGGESX -*> -*> DXV (Generalized Nonsymmetric Eigenvalue/eigenvector Expert Driver): -*> Test DGGEVX -*> -*> DSG (Symmetric Generalized Eigenvalue Problem): -*> Test DSYGST, DSYGV, DSYGVD, DSYGVX, DSPGST, DSPGV, DSPGVD, -*> DSPGVX, DSBGST, DSBGV, DSBGVD, and DSBGVX -*> -*> DSB (Symmetric Band Eigenvalue Problem): -*> Test DSBTRD -*> -*> DBB (Band Singular Value Decomposition): -*> Test DGBBRD -*> -*> DEC (Eigencondition estimation): -*> Test DLALN2, DLASY2, DLAEQU, DLAEXC, DTRSYL, DTREXC, DTRSNA, -*> DTRSEN, and DLAQTR -*> -*> DBL (Balancing a general matrix) -*> Test DGEBAL -*> -*> DBK (Back transformation on a balanced matrix) -*> Test DGEBAK -*> -*> DGL (Balancing a matrix pair) -*> Test DGGBAL -*> -*> DGK (Back transformation on a matrix pair) -*> Test DGGBAK -*> -*> GLM (Generalized Linear Regression Model): -*> Tests DGGGLM -*> -*> GQR (Generalized QR and RQ factorizations): -*> Tests DGGQRF and DGGRQF -*> -*> GSV (Generalized Singular Value Decomposition): -*> Tests DGGSVD, DGGSVP, DTGSJA, DLAGS2, DLAPLL, and DLAPMT -*> -*> CSD (CS decomposition): -*> Tests DORCSD -*> -*> LSE (Constrained Linear Least Squares): -*> Tests DGGLSE -*> -*> Each test path has a different set of inputs, but the data sets for -*> the driver routines xEV, xES, xVX, and xSX can be concatenated in a -*> single input file. The first line of input should contain one of the -*> 3-character path names in columns 1-3. The number of remaining lines -*> depends on what is found on the first line. -*> -*> The number of matrix types used in testing is often controllable from -*> the input file. The number of matrix types for each path, and the -*> test routine that describes them, is as follows: -*> -*> Path name(s) Types Test routine -*> -*> DHS or NEP 21 DCHKHS -*> DST or SEP 21 DCHKST (routines) -*> 18 DDRVST (drivers) -*> DBD or SVD 16 DCHKBD (routines) -*> 5 DDRVBD (drivers) -*> DEV 21 DDRVEV -*> DES 21 DDRVES -*> DVX 21 DDRVVX -*> DSX 21 DDRVSX -*> DGG 26 DCHKGG (routines) -*> DGS 26 DDRGES -*> DGX 5 DDRGSX -*> DGV 26 DDRGEV -*> DXV 2 DDRGVX -*> DSG 21 DDRVSG -*> DSB 15 DCHKSB -*> DBB 15 DCHKBB -*> DEC - DCHKEC -*> DBL - DCHKBL -*> DBK - DCHKBK -*> DGL - DCHKGL -*> DGK - DCHKGK -*> GLM 8 DCKGLM -*> GQR 8 DCKGQR -*> GSV 8 DCKGSV -*> CSD 3 DCKCSD -*> LSE 8 DCKLSE -*> -*>----------------------------------------------------------------------- -*> -*> NEP input file: -*> -*> line 2: NN, INTEGER -*> Number of values of N. -*> -*> line 3: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix dimension N. -*> -*> line 4: NPARMS, INTEGER -*> Number of values of the parameters NB, NBMIN, NX, NS, and -*> MAXB. -*> -*> line 5: NBVAL, INTEGER array, dimension (NPARMS) -*> The values for the blocksize NB. -*> -*> line 6: NBMIN, INTEGER array, dimension (NPARMS) -*> The values for the minimum blocksize NBMIN. -*> -*> line 7: NXVAL, INTEGER array, dimension (NPARMS) -*> The values for the crossover point NX. -*> -*> line 8: INMIN, INTEGER array, dimension (NPARMS) -*> LAHQR vs TTQRE crossover point, >= 11 -*> -*> line 9: INWIN, INTEGER array, dimension (NPARMS) -*> recommended deflation window size -*> -*> line 10: INIBL, INTEGER array, dimension (NPARMS) -*> nibble crossover point -*> -*> line 11: ISHFTS, INTEGER array, dimension (NPARMS) -*> number of simultaneous shifts) -*> -*> line 12: IACC22, INTEGER array, dimension (NPARMS) -*> select structured matrix multiply: 0, 1 or 2) -*> -*> line 13: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. To have all of the test -*> ratios printed, use THRESH = 0.0 . -*> -*> line 14: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 14 was 2: -*> -*> line 15: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 15-EOF: The remaining lines occur in sets of 1 or 2 and allow -*> the user to specify the matrix types. Each line contains -*> a 3-character path name in columns 1-3, and the number -*> of matrix types must be the first nonblank item in columns -*> 4-80. If the number of matrix types is at least 1 but is -*> less than the maximum number of possible types, a second -*> line will be read to get the numbers of the matrix types to -*> be used. For example, -*> NEP 21 -*> requests all of the matrix types for the nonsymmetric -*> eigenvalue problem, while -*> NEP 4 -*> 9 10 11 12 -*> requests only matrices of type 9, 10, 11, and 12. -*> -*> The valid 3-character path names are 'NEP' or 'SHS' for the -*> nonsymmetric eigenvalue routines. -*> -*>----------------------------------------------------------------------- -*> -*> SEP or DSG input file: -*> -*> line 2: NN, INTEGER -*> Number of values of N. -*> -*> line 3: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix dimension N. -*> -*> line 4: NPARMS, INTEGER -*> Number of values of the parameters NB, NBMIN, and NX. -*> -*> line 5: NBVAL, INTEGER array, dimension (NPARMS) -*> The values for the blocksize NB. -*> -*> line 6: NBMIN, INTEGER array, dimension (NPARMS) -*> The values for the minimum blocksize NBMIN. -*> -*> line 7: NXVAL, INTEGER array, dimension (NPARMS) -*> The values for the crossover point NX. -*> -*> line 8: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 9: TSTCHK, LOGICAL -*> Flag indicating whether or not to test the LAPACK routines. -*> -*> line 10: TSTDRV, LOGICAL -*> Flag indicating whether or not to test the driver routines. -*> -*> line 11: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 12: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 12 was 2: -*> -*> line 13: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 13-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path names are 'SEP' or 'SST' for the -*> symmetric eigenvalue routines and driver routines, and -*> 'DSG' for the routines for the symmetric generalized -*> eigenvalue problem. -*> -*>----------------------------------------------------------------------- -*> -*> SVD input file: -*> -*> line 2: NN, INTEGER -*> Number of values of M and N. -*> -*> line 3: MVAL, INTEGER array, dimension (NN) -*> The values for the matrix row dimension M. -*> -*> line 4: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix column dimension N. -*> -*> line 5: NPARMS, INTEGER -*> Number of values of the parameter NB, NBMIN, NX, and NRHS. -*> -*> line 6: NBVAL, INTEGER array, dimension (NPARMS) -*> The values for the blocksize NB. -*> -*> line 7: NBMIN, INTEGER array, dimension (NPARMS) -*> The values for the minimum blocksize NBMIN. -*> -*> line 8: NXVAL, INTEGER array, dimension (NPARMS) -*> The values for the crossover point NX. -*> -*> line 9: NSVAL, INTEGER array, dimension (NPARMS) -*> The values for the number of right hand sides NRHS. -*> -*> line 10: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 11: TSTCHK, LOGICAL -*> Flag indicating whether or not to test the LAPACK routines. -*> -*> line 12: TSTDRV, LOGICAL -*> Flag indicating whether or not to test the driver routines. -*> -*> line 13: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 14: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 14 was 2: -*> -*> line 15: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 15-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path names are 'SVD' or 'SBD' for both the -*> SVD routines and the SVD driver routines. -*> -*>----------------------------------------------------------------------- -*> -*> DEV and DES data files: -*> -*> line 1: 'DEV' or 'DES' in columns 1 to 3. -*> -*> line 2: NSIZES, INTEGER -*> Number of sizes of matrices to use. Should be at least 0 -*> and at most 20. If NSIZES = 0, no testing is done -*> (although the remaining 3 lines are still read). -*> -*> line 3: NN, INTEGER array, dimension(NSIZES) -*> Dimensions of matrices to be tested. -*> -*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> These integer parameters determine how blocking is done -*> (see ILAENV for details) -*> NB : block size -*> NBMIN : minimum block size -*> NX : minimum dimension for blocking -*> NS : number of shifts in xHSEQR -*> NBCOL : minimum column dimension for blocking -*> -*> line 5: THRESH, REAL -*> The test threshold against which computed residuals are -*> compared. Should generally be in the range from 10. to 20. -*> If it is 0., all test case data will be printed. -*> -*> line 6: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits. -*> -*> line 7: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 7 was 2: -*> -*> line 8: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9 and following: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'DEV' to test SGEEV, or -*> 'DES' to test SGEES. -*> -*>----------------------------------------------------------------------- -*> -*> The DVX data has two parts. The first part is identical to DEV, -*> and the second part consists of test matrices with precomputed -*> solutions. -*> -*> line 1: 'DVX' in columns 1-3. -*> -*> line 2: NSIZES, INTEGER -*> If NSIZES = 0, no testing of randomly generated examples -*> is done, but any precomputed examples are tested. -*> -*> line 3: NN, INTEGER array, dimension(NSIZES) -*> -*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> -*> line 5: THRESH, REAL -*> -*> line 6: TSTERR, LOGICAL -*> -*> line 7: NEWSD, INTEGER -*> -*> If line 7 was 2: -*> -*> line 8: INTEGER array, dimension (4) -*> -*> lines 9 and following: The first line contains 'DVX' in columns 1-3 -*> followed by the number of matrix types, possibly with -*> a second line to specify certain matrix types. -*> If the number of matrix types = 0, no testing of randomly -*> generated examples is done, but any precomputed examples -*> are tested. -*> -*> remaining lines : Each matrix is stored on 1+2*N lines, where N is -*> its dimension. The first line contains the dimension (a -*> single integer). The next N lines contain the matrix, one -*> row per line. The last N lines correspond to each -*> eigenvalue. Each of these last N lines contains 4 real -*> values: the real part of the eigenvalue, the imaginary -*> part of the eigenvalue, the reciprocal condition number of -*> the eigenvalues, and the reciprocal condition number of the -*> eigenvector. The end of data is indicated by dimension N=0. -*> Even if no data is to be tested, there must be at least one -*> line containing N=0. -*> -*>----------------------------------------------------------------------- -*> -*> The DSX data is like DVX. The first part is identical to DEV, and the -*> second part consists of test matrices with precomputed solutions. -*> -*> line 1: 'DSX' in columns 1-3. -*> -*> line 2: NSIZES, INTEGER -*> If NSIZES = 0, no testing of randomly generated examples -*> is done, but any precomputed examples are tested. -*> -*> line 3: NN, INTEGER array, dimension(NSIZES) -*> -*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> -*> line 5: THRESH, REAL -*> -*> line 6: TSTERR, LOGICAL -*> -*> line 7: NEWSD, INTEGER -*> -*> If line 7 was 2: -*> -*> line 8: INTEGER array, dimension (4) -*> -*> lines 9 and following: The first line contains 'DSX' in columns 1-3 -*> followed by the number of matrix types, possibly with -*> a second line to specify certain matrix types. -*> If the number of matrix types = 0, no testing of randomly -*> generated examples is done, but any precomputed examples -*> are tested. -*> -*> remaining lines : Each matrix is stored on 3+N lines, where N is its -*> dimension. The first line contains the dimension N and the -*> dimension M of an invariant subspace. The second line -*> contains M integers, identifying the eigenvalues in the -*> invariant subspace (by their position in a list of -*> eigenvalues ordered by increasing real part). The next N -*> lines contain the matrix. The last line contains the -*> reciprocal condition number for the average of the selected -*> eigenvalues, and the reciprocal condition number for the -*> corresponding right invariant subspace. The end of data is -*> indicated by a line containing N=0 and M=0. Even if no data -*> is to be tested, there must be at least one line containing -*> N=0 and M=0. -*> -*>----------------------------------------------------------------------- -*> -*> DGG input file: -*> -*> line 2: NN, INTEGER -*> Number of values of N. -*> -*> line 3: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix dimension N. -*> -*> line 4: NPARMS, INTEGER -*> Number of values of the parameters NB, NBMIN, NS, MAXB, and -*> NBCOL. -*> -*> line 5: NBVAL, INTEGER array, dimension (NPARMS) -*> The values for the blocksize NB. -*> -*> line 6: NBMIN, INTEGER array, dimension (NPARMS) -*> The values for NBMIN, the minimum row dimension for blocks. -*> -*> line 7: NSVAL, INTEGER array, dimension (NPARMS) -*> The values for the number of shifts. -*> -*> line 8: MXBVAL, INTEGER array, dimension (NPARMS) -*> The values for MAXB, used in determining minimum blocksize. -*> -*> line 9: IACC22, INTEGER array, dimension (NPARMS) -*> select structured matrix multiply: 1 or 2) -*> -*> line 10: NBCOL, INTEGER array, dimension (NPARMS) -*> The values for NBCOL, the minimum column dimension for -*> blocks. -*> -*> line 11: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 12: TSTCHK, LOGICAL -*> Flag indicating whether or not to test the LAPACK routines. -*> -*> line 13: TSTDRV, LOGICAL -*> Flag indicating whether or not to test the driver routines. -*> -*> line 14: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 15: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 15 was 2: -*> -*> line 16: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 17-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'DGG' for the generalized -*> eigenvalue problem routines and driver routines. -*> -*>----------------------------------------------------------------------- -*> -*> DGS and DGV input files: -*> -*> line 1: 'DGS' or 'DGV' in columns 1 to 3. -*> -*> line 2: NN, INTEGER -*> Number of values of N. -*> -*> line 3: NVAL, INTEGER array, dimension(NN) -*> Dimensions of matrices to be tested. -*> -*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> These integer parameters determine how blocking is done -*> (see ILAENV for details) -*> NB : block size -*> NBMIN : minimum block size -*> NX : minimum dimension for blocking -*> NS : number of shifts in xHGEQR -*> NBCOL : minimum column dimension for blocking -*> -*> line 5: THRESH, REAL -*> The test threshold against which computed residuals are -*> compared. Should generally be in the range from 10. to 20. -*> If it is 0., all test case data will be printed. -*> -*> line 6: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits. -*> -*> line 7: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 17 was 2: -*> -*> line 7: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 7-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'DGS' for the generalized -*> eigenvalue problem routines and driver routines. -*> -*>----------------------------------------------------------------------- -*> -*> DXV input files: -*> -*> line 1: 'DXV' in columns 1 to 3. -*> -*> line 2: N, INTEGER -*> Value of N. -*> -*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> These integer parameters determine how blocking is done -*> (see ILAENV for details) -*> NB : block size -*> NBMIN : minimum block size -*> NX : minimum dimension for blocking -*> NS : number of shifts in xHGEQR -*> NBCOL : minimum column dimension for blocking -*> -*> line 4: THRESH, REAL -*> The test threshold against which computed residuals are -*> compared. Should generally be in the range from 10. to 20. -*> Information will be printed about each test for which the -*> test ratio is greater than or equal to the threshold. -*> -*> line 5: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 6: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 6 was 2: -*> -*> line 7: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> If line 2 was 0: -*> -*> line 7-EOF: Precomputed examples are tested. -*> -*> remaining lines : Each example is stored on 3+2*N lines, where N is -*> its dimension. The first line contains the dimension (a -*> single integer). The next N lines contain the matrix A, one -*> row per line. The next N lines contain the matrix B. The -*> next line contains the reciprocals of the eigenvalue -*> condition numbers. The last line contains the reciprocals of -*> the eigenvector condition numbers. The end of data is -*> indicated by dimension N=0. Even if no data is to be tested, -*> there must be at least one line containing N=0. -*> -*>----------------------------------------------------------------------- -*> -*> DGX input files: -*> -*> line 1: 'DGX' in columns 1 to 3. -*> -*> line 2: N, INTEGER -*> Value of N. -*> -*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> These integer parameters determine how blocking is done -*> (see ILAENV for details) -*> NB : block size -*> NBMIN : minimum block size -*> NX : minimum dimension for blocking -*> NS : number of shifts in xHGEQR -*> NBCOL : minimum column dimension for blocking -*> -*> line 4: THRESH, REAL -*> The test threshold against which computed residuals are -*> compared. Should generally be in the range from 10. to 20. -*> Information will be printed about each test for which the -*> test ratio is greater than or equal to the threshold. -*> -*> line 5: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 6: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 6 was 2: -*> -*> line 7: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> If line 2 was 0: -*> -*> line 7-EOF: Precomputed examples are tested. -*> -*> remaining lines : Each example is stored on 3+2*N lines, where N is -*> its dimension. The first line contains the dimension (a -*> single integer). The next line contains an integer k such -*> that only the last k eigenvalues will be selected and appear -*> in the leading diagonal blocks of $A$ and $B$. The next N -*> lines contain the matrix A, one row per line. The next N -*> lines contain the matrix B. The last line contains the -*> reciprocal of the eigenvalue cluster condition number and the -*> reciprocal of the deflating subspace (associated with the -*> selected eigencluster) condition number. The end of data is -*> indicated by dimension N=0. Even if no data is to be tested, -*> there must be at least one line containing N=0. -*> -*>----------------------------------------------------------------------- -*> -*> DSB input file: -*> -*> line 2: NN, INTEGER -*> Number of values of N. -*> -*> line 3: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix dimension N. -*> -*> line 4: NK, INTEGER -*> Number of values of K. -*> -*> line 5: KVAL, INTEGER array, dimension (NK) -*> The values for the matrix dimension K. -*> -*> line 6: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 7 was 2: -*> -*> line 8: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 8-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'DSB'. -*> -*>----------------------------------------------------------------------- -*> -*> DBB input file: -*> -*> line 2: NN, INTEGER -*> Number of values of M and N. -*> -*> line 3: MVAL, INTEGER array, dimension (NN) -*> The values for the matrix row dimension M. -*> -*> line 4: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix column dimension N. -*> -*> line 4: NK, INTEGER -*> Number of values of K. -*> -*> line 5: KVAL, INTEGER array, dimension (NK) -*> The values for the matrix bandwidth K. -*> -*> line 6: NPARMS, INTEGER -*> Number of values of the parameter NRHS -*> -*> line 7: NSVAL, INTEGER array, dimension (NPARMS) -*> The values for the number of right hand sides NRHS. -*> -*> line 8: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 9: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 9 was 2: -*> -*> line 10: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 10-EOF: Lines specifying matrix types, as for SVD. -*> The 3-character path name is 'DBB'. -*> -*>----------------------------------------------------------------------- -*> -*> DEC input file: -*> -*> line 2: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> lines 3-EOF: -*> -*> Input for testing the eigencondition routines consists of a set of -*> specially constructed test cases and their solutions. The data -*> format is not intended to be modified by the user. -*> -*>----------------------------------------------------------------------- -*> -*> DBL and DBK input files: -*> -*> line 1: 'DBL' in columns 1-3 to test SGEBAL, or 'DBK' in -*> columns 1-3 to test SGEBAK. -*> -*> The remaining lines consist of specially constructed test cases. -*> -*>----------------------------------------------------------------------- -*> -*> DGL and DGK input files: -*> -*> line 1: 'DGL' in columns 1-3 to test DGGBAL, or 'DGK' in -*> columns 1-3 to test DGGBAK. -*> -*> The remaining lines consist of specially constructed test cases. -*> -*>----------------------------------------------------------------------- -*> -*> GLM data file: -*> -*> line 1: 'GLM' in columns 1 to 3. -*> -*> line 2: NN, INTEGER -*> Number of values of M, P, and N. -*> -*> line 3: MVAL, INTEGER array, dimension(NN) -*> Values of M (row dimension). -*> -*> line 4: PVAL, INTEGER array, dimension(NN) -*> Values of P (row dimension). -*> -*> line 5: NVAL, INTEGER array, dimension(NN) -*> Values of N (column dimension), note M <= N <= M+P. -*> -*> line 6: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 8: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 8 was 2: -*> -*> line 9: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'GLM' for the generalized -*> linear regression model routines. -*> -*>----------------------------------------------------------------------- -*> -*> GQR data file: -*> -*> line 1: 'GQR' in columns 1 to 3. -*> -*> line 2: NN, INTEGER -*> Number of values of M, P, and N. -*> -*> line 3: MVAL, INTEGER array, dimension(NN) -*> Values of M. -*> -*> line 4: PVAL, INTEGER array, dimension(NN) -*> Values of P. -*> -*> line 5: NVAL, INTEGER array, dimension(NN) -*> Values of N. -*> -*> line 6: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 8: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 8 was 2: -*> -*> line 9: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'GQR' for the generalized -*> QR and RQ routines. -*> -*>----------------------------------------------------------------------- -*> -*> GSV data file: -*> -*> line 1: 'GSV' in columns 1 to 3. -*> -*> line 2: NN, INTEGER -*> Number of values of M, P, and N. -*> -*> line 3: MVAL, INTEGER array, dimension(NN) -*> Values of M (row dimension). -*> -*> line 4: PVAL, INTEGER array, dimension(NN) -*> Values of P (row dimension). -*> -*> line 5: NVAL, INTEGER array, dimension(NN) -*> Values of N (column dimension). -*> -*> line 6: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 8: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 8 was 2: -*> -*> line 9: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'GSV' for the generalized -*> SVD routines. -*> -*>----------------------------------------------------------------------- -*> -*> CSD data file: -*> -*> line 1: 'CSD' in columns 1 to 3. -*> -*> line 2: NM, INTEGER -*> Number of values of M, P, and N. -*> -*> line 3: MVAL, INTEGER array, dimension(NM) -*> Values of M (row and column dimension of orthogonal matrix). -*> -*> line 4: PVAL, INTEGER array, dimension(NM) -*> Values of P (row dimension of top-left block). -*> -*> line 5: NVAL, INTEGER array, dimension(NM) -*> Values of N (column dimension of top-left block). -*> -*> line 6: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 8: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 8 was 2: -*> -*> line 9: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'CSD' for the CSD routine. -*> -*>----------------------------------------------------------------------- -*> -*> LSE data file: -*> -*> line 1: 'LSE' in columns 1 to 3. -*> -*> line 2: NN, INTEGER -*> Number of values of M, P, and N. -*> -*> line 3: MVAL, INTEGER array, dimension(NN) -*> Values of M. -*> -*> line 4: PVAL, INTEGER array, dimension(NN) -*> Values of P. -*> -*> line 5: NVAL, INTEGER array, dimension(NN) -*> Values of N, note P <= N <= P+M. -*> -*> line 6: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 8: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 8 was 2: -*> -*> line 9: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'GSV' for the generalized -*> SVD routines. -*> -*>----------------------------------------------------------------------- -*> -*> NMAX is currently set to 132 and must be at least 12 for some of the -*> precomputed examples, and LWORK = NMAX*(5*NMAX+5)+1 in the parameter -*> statements below. For SVD, we assume NRHS may be as big as N. The -*> parameter NEED is set to 14 to allow for 14 N-by-N matrices for DGG. -*> \endverbatim -* -* Arguments: -* ========== -* -* -* Authors: -* ======== -* -*> \author Univ. of Tennessee -*> \author Univ. of California Berkeley -*> \author Univ. of Colorado Denver -*> \author NAG Ltd. -* -*> \date June 2016 -* -*> \ingroup double_eig -* -* ===================================================================== - PROGRAM DCHKEE -* -* -- LAPACK test routine (version 3.7.0) -- -* -- LAPACK is a software package provided by Univ. of Tennessee, -- -* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* June 2016 -* -* ===================================================================== -* -* .. Parameters .. - INTEGER NMAX - PARAMETER ( NMAX = 132 ) - INTEGER NCMAX - PARAMETER ( NCMAX = 20 ) - INTEGER NEED - PARAMETER ( NEED = 14 ) - INTEGER LWORK - PARAMETER ( LWORK = NMAX*( 5*NMAX+5 )+1 ) - INTEGER LIWORK - PARAMETER ( LIWORK = NMAX*( 5*NMAX+20 ) ) - INTEGER MAXIN - PARAMETER ( MAXIN = 20 ) - INTEGER MAXT - PARAMETER ( MAXT = 30 ) - INTEGER NIN, NOUT - PARAMETER ( NIN = 5, NOUT = 6 ) -* .. -* .. Local Scalars .. - LOGICAL CSD, DBB, DGG, DSB, FATAL, GLM, GQR, GSV, LSE, - $ NEP, DBK, DBL, SEP, DES, DEV, DGK, DGL, DGS, - $ DGV, DGX, DSX, SVD, DVX, DXV, TSTCHK, TSTDIF, - $ TSTDRV, TSTERR - CHARACTER C1 - CHARACTER*3 C3, PATH - CHARACTER*32 VNAME - CHARACTER*10 INTSTR - CHARACTER*80 LINE - INTEGER I, I1, IC, INFO, ITMP, K, LENP, MAXTYP, NEWSD, - $ NK, NN, NPARMS, NRHS, NTYPES, - $ VERS_MAJOR, VERS_MINOR, VERS_PATCH - DOUBLE PRECISION EPS, S1, S2, THRESH, THRSHN -* .. -* .. Local Arrays .. - LOGICAL DOTYPE( MAXT ), LOGWRK( NMAX ) - INTEGER IOLDSD( 4 ), ISEED( 4 ), IWORK( LIWORK ), - $ KVAL( MAXIN ), MVAL( MAXIN ), MXBVAL( MAXIN ), - $ NBCOL( MAXIN ), NBMIN( MAXIN ), NBVAL( MAXIN ), - $ NSVAL( MAXIN ), NVAL( MAXIN ), NXVAL( MAXIN ), - $ PVAL( MAXIN ) - INTEGER INMIN( MAXIN ), INWIN( MAXIN ), INIBL( MAXIN ), - $ ISHFTS( MAXIN ), IACC22( MAXIN ) - DOUBLE PRECISION A( NMAX*NMAX, NEED ), B( NMAX*NMAX, 5 ), - $ C( NCMAX*NCMAX, NCMAX*NCMAX ), D( NMAX, 12 ), - $ RESULT( 500 ), TAUA( NMAX ), TAUB( NMAX ), - $ WORK( LWORK ), X( 5*NMAX ) -* .. -* .. External Functions .. - LOGICAL LSAMEN - DOUBLE PRECISION DLAMCH, DSECND - EXTERNAL LSAMEN, DLAMCH, DSECND -* .. -* .. External Subroutines .. - EXTERNAL ALAREQ, DCHKBB, DCHKBD, DCHKBK, DCHKBL, DCHKEC, - $ DCHKGG, DCHKGK, DCHKGL, DCHKHS, DCHKSB, DCHKST, - $ DCKCSD, DCKGLM, DCKGQR, DCKGSV, DCKLSE, DDRGES, - $ DDRGEV, DDRGSX, DDRGVX, DDRVBD, DDRVES, DDRVEV, - $ DDRVSG, DDRVST, DDRVSX, DDRVVX, DERRBD, - $ DERRED, DERRGG, DERRHS, DERRST, ILAVER, XLAENV, - $ DDRGES3, DDRGEV3, - $ DCHKST2STG, DDRVST2STG, DCHKSB2STG, DDRVSG2STG -* .. -* .. Intrinsic Functions .. - INTRINSIC LEN, MIN -* .. -* .. Scalars in Common .. - LOGICAL LERR, OK - CHARACTER*32 SRNAMT - INTEGER INFOT, MAXB, NPROC, NSHIFT, NUNIT, SELDIM, - $ SELOPT -* .. -* .. Arrays in Common .. - LOGICAL SELVAL( 20 ) - INTEGER IPARMS( 100 ) - DOUBLE PRECISION SELWI( 20 ), SELWR( 20 ) -* .. -* .. Common blocks .. - COMMON / CENVIR / NPROC, NSHIFT, MAXB - COMMON / INFOC / INFOT, NUNIT, OK, LERR - COMMON / SRNAMC / SRNAMT - COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI - COMMON / CLAENV / IPARMS -* .. -* .. Data statements .. - DATA INTSTR / '0123456789' / - DATA IOLDSD / 0, 0, 0, 1 / -* .. -* .. Executable Statements .. -* - A = 0.0 - B = 0.0 - C = 0.0 - D = 0.0 - S1 = DSECND( ) - FATAL = .FALSE. - NUNIT = NOUT -* -* Return to here to read multiple sets of data -* - 10 CONTINUE -* -* Read the first line and set the 3-character test path -* - READ( NIN, FMT = '(A80)', END = 380 )LINE - PATH = LINE( 1: 3 ) - NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'DHS' ) - SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'DST' ) .OR. - $ LSAMEN( 3, PATH, 'DSG' ) .OR. LSAMEN( 3, PATH, 'SE2' ) - SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'DBD' ) - DEV = LSAMEN( 3, PATH, 'DEV' ) - DES = LSAMEN( 3, PATH, 'DES' ) - DVX = LSAMEN( 3, PATH, 'DVX' ) - DSX = LSAMEN( 3, PATH, 'DSX' ) - DGG = LSAMEN( 3, PATH, 'DGG' ) - DGS = LSAMEN( 3, PATH, 'DGS' ) - DGX = LSAMEN( 3, PATH, 'DGX' ) - DGV = LSAMEN( 3, PATH, 'DGV' ) - DXV = LSAMEN( 3, PATH, 'DXV' ) - DSB = LSAMEN( 3, PATH, 'DSB' ) - DBB = LSAMEN( 3, PATH, 'DBB' ) - GLM = LSAMEN( 3, PATH, 'GLM' ) - GQR = LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' ) - GSV = LSAMEN( 3, PATH, 'GSV' ) - CSD = LSAMEN( 3, PATH, 'CSD' ) - LSE = LSAMEN( 3, PATH, 'LSE' ) - DBL = LSAMEN( 3, PATH, 'DBL' ) - DBK = LSAMEN( 3, PATH, 'DBK' ) - DGL = LSAMEN( 3, PATH, 'DGL' ) - DGK = LSAMEN( 3, PATH, 'DGK' ) -* -* Report values of parameters. -* - IF( PATH.EQ.' ' ) THEN - GO TO 10 - ELSE IF( NEP ) THEN - WRITE( NOUT, FMT = 9987 ) - ELSE IF( SEP ) THEN - WRITE( NOUT, FMT = 9986 ) - ELSE IF( SVD ) THEN - WRITE( NOUT, FMT = 9985 ) - ELSE IF( DEV ) THEN - WRITE( NOUT, FMT = 9979 ) - ELSE IF( DES ) THEN - WRITE( NOUT, FMT = 9978 ) - ELSE IF( DVX ) THEN - WRITE( NOUT, FMT = 9977 ) - ELSE IF( DSX ) THEN - WRITE( NOUT, FMT = 9976 ) - ELSE IF( DGG ) THEN - WRITE( NOUT, FMT = 9975 ) - ELSE IF( DGS ) THEN - WRITE( NOUT, FMT = 9964 ) - ELSE IF( DGX ) THEN - WRITE( NOUT, FMT = 9965 ) - ELSE IF( DGV ) THEN - WRITE( NOUT, FMT = 9963 ) - ELSE IF( DXV ) THEN - WRITE( NOUT, FMT = 9962 ) - ELSE IF( DSB ) THEN - WRITE( NOUT, FMT = 9974 ) - ELSE IF( DBB ) THEN - WRITE( NOUT, FMT = 9967 ) - ELSE IF( GLM ) THEN - WRITE( NOUT, FMT = 9971 ) - ELSE IF( GQR ) THEN - WRITE( NOUT, FMT = 9970 ) - ELSE IF( GSV ) THEN - WRITE( NOUT, FMT = 9969 ) - ELSE IF( CSD ) THEN - WRITE( NOUT, FMT = 9960 ) - ELSE IF( LSE ) THEN - WRITE( NOUT, FMT = 9968 ) - ELSE IF( DBL ) THEN -* -* DGEBAL: Balancing -* - CALL DCHKBL( NIN, NOUT ) - GO TO 10 - ELSE IF( DBK ) THEN -* -* DGEBAK: Back transformation -* - CALL DCHKBK( NIN, NOUT ) - GO TO 10 - ELSE IF( DGL ) THEN -* -* DGGBAL: Balancing -* - CALL DCHKGL( NIN, NOUT ) - GO TO 10 - ELSE IF( DGK ) THEN -* -* DGGBAK: Back transformation -* - CALL DCHKGK( NIN, NOUT ) - GO TO 10 - ELSE IF( LSAMEN( 3, PATH, 'DEC' ) ) THEN -* -* DEC: Eigencondition estimation -* - READ( NIN, FMT = * )THRESH - CALL XLAENV( 1, 1 ) - CALL XLAENV( 12, 11 ) - CALL XLAENV( 13, 2 ) - CALL XLAENV( 14, 0 ) - CALL XLAENV( 15, 2 ) - CALL XLAENV( 16, 2 ) - TSTERR = .TRUE. - CALL DCHKEC( THRESH, TSTERR, NIN, NOUT ) - GO TO 10 - ELSE - WRITE( NOUT, FMT = 9992 )PATH - GO TO 10 - END IF - CALL ILAVER( VERS_MAJOR, VERS_MINOR, VERS_PATCH ) - WRITE( NOUT, FMT = 9972 ) VERS_MAJOR, VERS_MINOR, VERS_PATCH - WRITE( NOUT, FMT = 9984 ) -* -* Read the number of values of M, P, and N. -* - READ( NIN, FMT = * )NN - IF( NN.LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' NN ', NN, 1 - NN = 0 - FATAL = .TRUE. - ELSE IF( NN.GT.MAXIN ) THEN - WRITE( NOUT, FMT = 9988 )' NN ', NN, MAXIN - NN = 0 - FATAL = .TRUE. - END IF -* -* Read the values of M -* - IF( .NOT.( DGX .OR. DXV ) ) THEN - READ( NIN, FMT = * )( MVAL( I ), I = 1, NN ) - IF( SVD ) THEN - VNAME = ' M ' - ELSE - VNAME = ' N ' - END IF - DO 20 I = 1, NN - IF( MVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )VNAME, MVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( MVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )VNAME, MVAL( I ), NMAX - FATAL = .TRUE. - END IF - 20 CONTINUE - WRITE( NOUT, FMT = 9983 )'M: ', ( MVAL( I ), I = 1, NN ) - END IF -* -* Read the values of P -* - IF( GLM .OR. GQR .OR. GSV .OR. CSD .OR. LSE ) THEN - READ( NIN, FMT = * )( PVAL( I ), I = 1, NN ) - DO 30 I = 1, NN - IF( PVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' P ', PVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( PVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' P ', PVAL( I ), NMAX - FATAL = .TRUE. - END IF - 30 CONTINUE - WRITE( NOUT, FMT = 9983 )'P: ', ( PVAL( I ), I = 1, NN ) - END IF -* -* Read the values of N -* - IF( SVD .OR. DBB .OR. GLM .OR. GQR .OR. GSV .OR. CSD .OR. - $ LSE ) THEN - READ( NIN, FMT = * )( NVAL( I ), I = 1, NN ) - DO 40 I = 1, NN - IF( NVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' N ', NVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( NVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' N ', NVAL( I ), NMAX - FATAL = .TRUE. - END IF - 40 CONTINUE - ELSE - DO 50 I = 1, NN - NVAL( I ) = MVAL( I ) - 50 CONTINUE - END IF - IF( .NOT.( DGX .OR. DXV ) ) THEN - WRITE( NOUT, FMT = 9983 )'N: ', ( NVAL( I ), I = 1, NN ) - ELSE - WRITE( NOUT, FMT = 9983 )'N: ', NN - END IF -* -* Read the number of values of K, followed by the values of K -* - IF( DSB .OR. DBB ) THEN - READ( NIN, FMT = * )NK - READ( NIN, FMT = * )( KVAL( I ), I = 1, NK ) - DO 60 I = 1, NK - IF( KVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' K ', KVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( KVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' K ', KVAL( I ), NMAX - FATAL = .TRUE. - END IF - 60 CONTINUE - WRITE( NOUT, FMT = 9983 )'K: ', ( KVAL( I ), I = 1, NK ) - END IF -* - IF( DEV .OR. DES .OR. DVX .OR. DSX ) THEN -* -* For the nonsymmetric QR driver routines, only one set of -* parameters is allowed. -* - READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ), - $ INMIN( 1 ), INWIN( 1 ), INIBL(1), ISHFTS(1), IACC22(1) - IF( NBVAL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1 - FATAL = .TRUE. - ELSE IF( NBMIN( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1 - FATAL = .TRUE. - ELSE IF( NXVAL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1 - FATAL = .TRUE. - ELSE IF( INMIN( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( 1 ), 1 - FATAL = .TRUE. - ELSE IF( INWIN( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( 1 ), 1 - FATAL = .TRUE. - ELSE IF( INIBL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( 1 ), 1 - FATAL = .TRUE. - ELSE IF( ISHFTS( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( 1 ), 1 - FATAL = .TRUE. - ELSE IF( IACC22( 1 ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( 1 ), 0 - FATAL = .TRUE. - END IF - CALL XLAENV( 1, NBVAL( 1 ) ) - CALL XLAENV( 2, NBMIN( 1 ) ) - CALL XLAENV( 3, NXVAL( 1 ) ) - CALL XLAENV(12, MAX( 11, INMIN( 1 ) ) ) - CALL XLAENV(13, INWIN( 1 ) ) - CALL XLAENV(14, INIBL( 1 ) ) - CALL XLAENV(15, ISHFTS( 1 ) ) - CALL XLAENV(16, IACC22( 1 ) ) - WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 ) - WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 ) - WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 ) - WRITE( NOUT, FMT = 9983 )'INMIN: ', INMIN( 1 ) - WRITE( NOUT, FMT = 9983 )'INWIN: ', INWIN( 1 ) - WRITE( NOUT, FMT = 9983 )'INIBL: ', INIBL( 1 ) - WRITE( NOUT, FMT = 9983 )'ISHFTS: ', ISHFTS( 1 ) - WRITE( NOUT, FMT = 9983 )'IACC22: ', IACC22( 1 ) -* - ELSEIF( DGS .OR. DGX .OR. DGV .OR. DXV ) THEN -* -* For the nonsymmetric generalized driver routines, only one set -* of parameters is allowed. -* - READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ), - $ NSVAL( 1 ), MXBVAL( 1 ) - IF( NBVAL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1 - FATAL = .TRUE. - ELSE IF( NBMIN( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1 - FATAL = .TRUE. - ELSE IF( NXVAL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1 - FATAL = .TRUE. - ELSE IF( NSVAL( 1 ).LT.2 ) THEN - WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( 1 ), 2 - FATAL = .TRUE. - ELSE IF( MXBVAL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( 1 ), 1 - FATAL = .TRUE. - END IF - CALL XLAENV( 1, NBVAL( 1 ) ) - CALL XLAENV( 2, NBMIN( 1 ) ) - CALL XLAENV( 3, NXVAL( 1 ) ) - CALL XLAENV( 4, NSVAL( 1 ) ) - CALL XLAENV( 8, MXBVAL( 1 ) ) - WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 ) - WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 ) - WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 ) - WRITE( NOUT, FMT = 9983 )'NS: ', NSVAL( 1 ) - WRITE( NOUT, FMT = 9983 )'MAXB: ', MXBVAL( 1 ) -* - ELSE IF( .NOT.DSB .AND. .NOT.GLM .AND. .NOT.GQR .AND. .NOT. - $ GSV .AND. .NOT.CSD .AND. .NOT.LSE ) THEN -* -* For the other paths, the number of parameters can be varied -* from the input file. Read the number of parameter values. -* - READ( NIN, FMT = * )NPARMS - IF( NPARMS.LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )'NPARMS', NPARMS, 1 - NPARMS = 0 - FATAL = .TRUE. - ELSE IF( NPARMS.GT.MAXIN ) THEN - WRITE( NOUT, FMT = 9988 )'NPARMS', NPARMS, MAXIN - NPARMS = 0 - FATAL = .TRUE. - END IF -* -* Read the values of NB -* - IF( .NOT.DBB ) THEN - READ( NIN, FMT = * )( NBVAL( I ), I = 1, NPARMS ) - DO 70 I = 1, NPARMS - IF( NBVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( NBVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' NB ', NBVAL( I ), NMAX - FATAL = .TRUE. - END IF - 70 CONTINUE - WRITE( NOUT, FMT = 9983 )'NB: ', - $ ( NBVAL( I ), I = 1, NPARMS ) - END IF -* -* Read the values of NBMIN -* - IF( NEP .OR. SEP .OR. SVD .OR. DGG ) THEN - READ( NIN, FMT = * )( NBMIN( I ), I = 1, NPARMS ) - DO 80 I = 1, NPARMS - IF( NBMIN( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( I ), 0 - FATAL = .TRUE. - ELSE IF( NBMIN( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )'NBMIN ', NBMIN( I ), NMAX - FATAL = .TRUE. - END IF - 80 CONTINUE - WRITE( NOUT, FMT = 9983 )'NBMIN:', - $ ( NBMIN( I ), I = 1, NPARMS ) - ELSE - DO 90 I = 1, NPARMS - NBMIN( I ) = 1 - 90 CONTINUE - END IF -* -* Read the values of NX -* - IF( NEP .OR. SEP .OR. SVD ) THEN - READ( NIN, FMT = * )( NXVAL( I ), I = 1, NPARMS ) - DO 100 I = 1, NPARMS - IF( NXVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( NXVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' NX ', NXVAL( I ), NMAX - FATAL = .TRUE. - END IF - 100 CONTINUE - WRITE( NOUT, FMT = 9983 )'NX: ', - $ ( NXVAL( I ), I = 1, NPARMS ) - ELSE - DO 110 I = 1, NPARMS - NXVAL( I ) = 1 - 110 CONTINUE - END IF -* -* Read the values of NSHIFT (if DGG) or NRHS (if SVD -* or DBB). -* - IF( SVD .OR. DBB .OR. DGG ) THEN - READ( NIN, FMT = * )( NSVAL( I ), I = 1, NPARMS ) - DO 120 I = 1, NPARMS - IF( NSVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( NSVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' NS ', NSVAL( I ), NMAX - FATAL = .TRUE. - END IF - 120 CONTINUE - WRITE( NOUT, FMT = 9983 )'NS: ', - $ ( NSVAL( I ), I = 1, NPARMS ) - ELSE - DO 130 I = 1, NPARMS - NSVAL( I ) = 1 - 130 CONTINUE - END IF -* -* Read the values for MAXB. -* - IF( DGG ) THEN - READ( NIN, FMT = * )( MXBVAL( I ), I = 1, NPARMS ) - DO 140 I = 1, NPARMS - IF( MXBVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( MXBVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' MAXB ', MXBVAL( I ), NMAX - FATAL = .TRUE. - END IF - 140 CONTINUE - WRITE( NOUT, FMT = 9983 )'MAXB: ', - $ ( MXBVAL( I ), I = 1, NPARMS ) - ELSE - DO 150 I = 1, NPARMS - MXBVAL( I ) = 1 - 150 CONTINUE - END IF -* -* Read the values for INMIN. -* - IF( NEP ) THEN - READ( NIN, FMT = * )( INMIN( I ), I = 1, NPARMS ) - DO 540 I = 1, NPARMS - IF( INMIN( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( I ), 0 - FATAL = .TRUE. - END IF - 540 CONTINUE - WRITE( NOUT, FMT = 9983 )'INMIN: ', - $ ( INMIN( I ), I = 1, NPARMS ) - ELSE - DO 550 I = 1, NPARMS - INMIN( I ) = 1 - 550 CONTINUE - END IF -* -* Read the values for INWIN. -* - IF( NEP ) THEN - READ( NIN, FMT = * )( INWIN( I ), I = 1, NPARMS ) - DO 560 I = 1, NPARMS - IF( INWIN( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( I ), 0 - FATAL = .TRUE. - END IF - 560 CONTINUE - WRITE( NOUT, FMT = 9983 )'INWIN: ', - $ ( INWIN( I ), I = 1, NPARMS ) - ELSE - DO 570 I = 1, NPARMS - INWIN( I ) = 1 - 570 CONTINUE - END IF -* -* Read the values for INIBL. -* - IF( NEP ) THEN - READ( NIN, FMT = * )( INIBL( I ), I = 1, NPARMS ) - DO 580 I = 1, NPARMS - IF( INIBL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( I ), 0 - FATAL = .TRUE. - END IF - 580 CONTINUE - WRITE( NOUT, FMT = 9983 )'INIBL: ', - $ ( INIBL( I ), I = 1, NPARMS ) - ELSE - DO 590 I = 1, NPARMS - INIBL( I ) = 1 - 590 CONTINUE - END IF -* -* Read the values for ISHFTS. -* - IF( NEP ) THEN - READ( NIN, FMT = * )( ISHFTS( I ), I = 1, NPARMS ) - DO 600 I = 1, NPARMS - IF( ISHFTS( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( I ), 0 - FATAL = .TRUE. - END IF - 600 CONTINUE - WRITE( NOUT, FMT = 9983 )'ISHFTS: ', - $ ( ISHFTS( I ), I = 1, NPARMS ) - ELSE - DO 610 I = 1, NPARMS - ISHFTS( I ) = 1 - 610 CONTINUE - END IF -* -* Read the values for IACC22. -* - IF( NEP .OR. DGG ) THEN - READ( NIN, FMT = * )( IACC22( I ), I = 1, NPARMS ) - DO 620 I = 1, NPARMS - IF( IACC22( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( I ), 0 - FATAL = .TRUE. - END IF - 620 CONTINUE - WRITE( NOUT, FMT = 9983 )'IACC22: ', - $ ( IACC22( I ), I = 1, NPARMS ) - ELSE - DO 630 I = 1, NPARMS - IACC22( I ) = 1 - 630 CONTINUE - END IF -* -* Read the values for NBCOL. -* - IF( DGG ) THEN - READ( NIN, FMT = * )( NBCOL( I ), I = 1, NPARMS ) - DO 160 I = 1, NPARMS - IF( NBCOL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )'NBCOL ', NBCOL( I ), 0 - FATAL = .TRUE. - ELSE IF( NBCOL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )'NBCOL ', NBCOL( I ), NMAX - FATAL = .TRUE. - END IF - 160 CONTINUE - WRITE( NOUT, FMT = 9983 )'NBCOL:', - $ ( NBCOL( I ), I = 1, NPARMS ) - ELSE - DO 170 I = 1, NPARMS - NBCOL( I ) = 1 - 170 CONTINUE - END IF - END IF -* -* Calculate and print the machine dependent constants. -* - WRITE( NOUT, FMT = * ) - EPS = DLAMCH( 'Underflow threshold' ) - WRITE( NOUT, FMT = 9981 )'underflow', EPS - EPS = DLAMCH( 'Overflow threshold' ) - WRITE( NOUT, FMT = 9981 )'overflow ', EPS - EPS = DLAMCH( 'Epsilon' ) - WRITE( NOUT, FMT = 9981 )'precision', EPS -* -* Read the threshold value for the test ratios. -* - READ( NIN, FMT = * )THRESH - WRITE( NOUT, FMT = 9982 )THRESH - IF( SEP .OR. SVD .OR. DGG ) THEN -* -* Read the flag that indicates whether to test LAPACK routines. -* - READ( NIN, FMT = * )TSTCHK -* -* Read the flag that indicates whether to test driver routines. -* - READ( NIN, FMT = * )TSTDRV - END IF -* -* Read the flag that indicates whether to test the error exits. -* - READ( NIN, FMT = * )TSTERR -* -* Read the code describing how to set the random number seed. -* - READ( NIN, FMT = * )NEWSD -* -* If NEWSD = 2, read another line with 4 integers for the seed. -* - IF( NEWSD.EQ.2 ) - $ READ( NIN, FMT = * )( IOLDSD( I ), I = 1, 4 ) -* - DO 180 I = 1, 4 - ISEED( I ) = IOLDSD( I ) - 180 CONTINUE -* - IF( FATAL ) THEN - WRITE( NOUT, FMT = 9999 ) - STOP - END IF -* -* Read the input lines indicating the test path and its parameters. -* The first three characters indicate the test path, and the number -* of test matrix types must be the first nonblank item in columns -* 4-80. -* - 190 CONTINUE -* - IF( .NOT.( DGX .OR. DXV ) ) THEN -* - 200 CONTINUE - READ( NIN, FMT = '(A80)', END = 380 )LINE - C3 = LINE( 1: 3 ) - LENP = LEN( LINE ) - I = 3 - ITMP = 0 - I1 = 0 - 210 CONTINUE - I = I + 1 - IF( I.GT.LENP ) THEN - IF( I1.GT.0 ) THEN - GO TO 240 - ELSE - NTYPES = MAXT - GO TO 240 - END IF - END IF - IF( LINE( I: I ).NE.' ' .AND. LINE( I: I ).NE.',' ) THEN - I1 = I - C1 = LINE( I1: I1 ) -* -* Check that a valid integer was read -* - DO 220 K = 1, 10 - IF( C1.EQ.INTSTR( K: K ) ) THEN - IC = K - 1 - GO TO 230 - END IF - 220 CONTINUE - WRITE( NOUT, FMT = 9991 )I, LINE - GO TO 200 - 230 CONTINUE - ITMP = 10*ITMP + IC - GO TO 210 - ELSE IF( I1.GT.0 ) THEN - GO TO 240 - ELSE - GO TO 210 - END IF - 240 CONTINUE - NTYPES = ITMP -* -* Skip the tests if NTYPES is <= 0. -* - IF( .NOT.( DEV .OR. DES .OR. DVX .OR. DSX .OR. DGV .OR. - $ DGS ) .AND. NTYPES.LE.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - GO TO 200 - END IF -* - ELSE - IF( DXV ) - $ C3 = 'DXV' - IF( DGX ) - $ C3 = 'DGX' - END IF -* -* Reset the random number seed. -* - IF( NEWSD.EQ.0 ) THEN - DO 250 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 250 CONTINUE - END IF -* - IF( LSAMEN( 3, C3, 'DHS' ) .OR. LSAMEN( 3, C3, 'NEP' ) ) THEN -* -* ------------------------------------- -* NEP: Nonsymmetric Eigenvalue Problem -* ------------------------------------- -* Vary the parameters -* NB = block size -* NBMIN = minimum block size -* NX = crossover point -* NS = number of shifts -* MAXB = minimum submatrix size -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV( 1, 1 ) - IF( TSTERR ) - $ CALL DERRHS( 'DHSEQR', NOUT ) - DO 270 I = 1, NPARMS - CALL XLAENV( 1, NBVAL( I ) ) - CALL XLAENV( 2, NBMIN( I ) ) - CALL XLAENV( 3, NXVAL( I ) ) - CALL XLAENV(12, MAX( 11, INMIN( I ) ) ) - CALL XLAENV(13, INWIN( I ) ) - CALL XLAENV(14, INIBL( I ) ) - CALL XLAENV(15, ISHFTS( I ) ) - CALL XLAENV(16, IACC22( I ) ) -* - IF( NEWSD.EQ.0 ) THEN - DO 260 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 260 CONTINUE - END IF - WRITE( NOUT, FMT = 9961 )C3, NBVAL( I ), NBMIN( I ), - $ NXVAL( I ), MAX( 11, INMIN(I)), - $ INWIN( I ), INIBL( I ), ISHFTS( I ), IACC22( I ) - CALL DCHKHS( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), A( 1, 5 ), NMAX, A( 1, 6 ), - $ A( 1, 7 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), - $ D( 1, 4 ), D( 1, 5 ), D( 1, 6 ), A( 1, 8 ), - $ A( 1, 9 ), A( 1, 10 ), A( 1, 11 ), A( 1, 12 ), - $ D( 1, 7 ), WORK, LWORK, IWORK, LOGWRK, RESULT, - $ INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'DCHKHS', INFO - 270 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'DST' ) .OR. LSAMEN( 3, C3, 'SEP' ) - $ .OR. LSAMEN( 3, C3, 'SE2' ) ) THEN -* -* ---------------------------------- -* SEP: Symmetric Eigenvalue Problem -* ---------------------------------- -* Vary the parameters -* NB = block size -* NBMIN = minimum block size -* NX = crossover point -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV( 1, 1 ) - CALL XLAENV( 9, 25 ) - IF( TSTERR ) - $ CALL DERRST( 'DST', NOUT ) - DO 290 I = 1, NPARMS - CALL XLAENV( 1, NBVAL( I ) ) - CALL XLAENV( 2, NBMIN( I ) ) - CALL XLAENV( 3, NXVAL( I ) ) -* - IF( NEWSD.EQ.0 ) THEN - DO 280 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 280 CONTINUE - END IF - WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ), - $ NXVAL( I ) - IF( TSTCHK ) THEN - IF( LSAMEN( 3, C3, 'SE2' ) ) THEN - CALL DCHKST2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, - $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ), - $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), - $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ), - $ D( 1, 10 ), D( 1, 11 ), A( 1, 3 ), NMAX, - $ A( 1, 4 ), A( 1, 5 ), D( 1, 12 ), A( 1, 6 ), - $ WORK, LWORK, IWORK, LIWORK, RESULT, INFO ) - ELSE - CALL DCHKST( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, - $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ), - $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), - $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ), - $ D( 1, 10 ), D( 1, 11 ), A( 1, 3 ), NMAX, - $ A( 1, 4 ), A( 1, 5 ), D( 1, 12 ), A( 1, 6 ), - $ WORK, LWORK, IWORK, LIWORK, RESULT, INFO ) - ENDIF - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'DCHKST', INFO - END IF - IF( TSTDRV ) THEN - IF( LSAMEN( 3, C3, 'SE2' ) ) THEN - CALL DDRVST2STG( NN, NVAL, 18, DOTYPE, ISEED, THRESH, - $ NOUT, A( 1, 1 ), NMAX, D( 1, 3 ), D( 1, 4 ), - $ D( 1, 5 ), D( 1, 6 ), D( 1, 8 ), D( 1, 9 ), - $ D( 1, 10 ), D( 1, 11 ), A( 1, 2 ), NMAX, - $ A( 1, 3 ), D( 1, 12 ), A( 1, 4 ), WORK, - $ LWORK, IWORK, LIWORK, RESULT, INFO ) - ELSE - CALL DDRVST( NN, NVAL, 18, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, D( 1, 3 ), D( 1, 4 ), - $ D( 1, 5 ), D( 1, 6 ), D( 1, 8 ), D( 1, 9 ), - $ D( 1, 10 ), D( 1, 11 ), A( 1, 2 ), NMAX, - $ A( 1, 3 ), D( 1, 12 ), A( 1, 4 ), WORK, - $ LWORK, IWORK, LIWORK, RESULT, INFO ) - ENDIF - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'DDRVST', INFO - END IF - 290 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'DSG' ) ) THEN -* -* ---------------------------------------------- -* DSG: Symmetric Generalized Eigenvalue Problem -* ---------------------------------------------- -* Vary the parameters -* NB = block size -* NBMIN = minimum block size -* NX = crossover point -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV( 9, 25 ) - DO 310 I = 1, NPARMS - CALL XLAENV( 1, NBVAL( I ) ) - CALL XLAENV( 2, NBMIN( I ) ) - CALL XLAENV( 3, NXVAL( I ) ) -* - IF( NEWSD.EQ.0 ) THEN - DO 300 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 300 CONTINUE - END IF - WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ), - $ NXVAL( I ) - IF( TSTCHK ) THEN -* CALL DDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, -* $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, -* $ D( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ), -* $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK, -* $ LWORK, IWORK, LIWORK, RESULT, INFO ) - CALL DDRVSG2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, - $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, - $ D( 1, 3 ), D( 1, 3 ), A( 1, 3 ), NMAX, - $ A( 1, 4 ), A( 1, 5 ), A( 1, 6 ), - $ A( 1, 7 ), WORK, LWORK, IWORK, LIWORK, - $ RESULT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'DDRVSG', INFO - END IF - 310 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'DBD' ) .OR. LSAMEN( 3, C3, 'SVD' ) ) THEN -* -* ---------------------------------- -* SVD: Singular Value Decomposition -* ---------------------------------- -* Vary the parameters -* NB = block size -* NBMIN = minimum block size -* NX = crossover point -* NRHS = number of right hand sides -* - MAXTYP = 16 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV( 1, 1 ) - CALL XLAENV( 9, 25 ) -* -* Test the error exits -* - IF( TSTERR .AND. TSTCHK ) - $ CALL DERRBD( 'DBD', NOUT ) - IF( TSTERR .AND. TSTDRV ) - $ CALL DERRED( 'DBD', NOUT ) -* - DO 330 I = 1, NPARMS - NRHS = NSVAL( I ) - CALL XLAENV( 1, NBVAL( I ) ) - CALL XLAENV( 2, NBMIN( I ) ) - CALL XLAENV( 3, NXVAL( I ) ) - IF( NEWSD.EQ.0 ) THEN - DO 320 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 320 CONTINUE - END IF - WRITE( NOUT, FMT = 9995 )C3, NBVAL( I ), NBMIN( I ), - $ NXVAL( I ), NRHS - IF( TSTCHK ) THEN - CALL DCHKBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, NRHS, ISEED, - $ THRESH, A( 1, 1 ), NMAX, D( 1, 1 ), - $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 2 ), - $ NMAX, A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), NMAX, - $ A( 1, 6 ), NMAX, A( 1, 7 ), A( 1, 8 ), WORK, - $ LWORK, IWORK, NOUT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'DCHKBD', INFO - END IF - IF( TSTDRV ) - $ CALL DDRVBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, ISEED, - $ THRESH, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, - $ A( 1, 3 ), NMAX, A( 1, 4 ), A( 1, 5 ), - $ A( 1, 6 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), - $ WORK, LWORK, IWORK, NOUT, INFO ) - 330 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'DEV' ) ) THEN -* -* -------------------------------------------- -* DEV: Nonsymmetric Eigenvalue Problem Driver -* DGEEV (eigenvalues and eigenvectors) -* -------------------------------------------- -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LE.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL DERRED( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL DDRVEV( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ), - $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 3 ), - $ NMAX, A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, RESULT, - $ WORK, LWORK, IWORK, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'DGEEV', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'DES' ) ) THEN -* -* -------------------------------------------- -* DES: Nonsymmetric Eigenvalue Problem Driver -* DGEES (Schur form) -* -------------------------------------------- -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LE.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL DERRED( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL DDRVES( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), - $ A( 1, 4 ), NMAX, RESULT, WORK, LWORK, IWORK, - $ LOGWRK, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'DGEES', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'DVX' ) ) THEN -* -* -------------------------------------------------------------- -* DVX: Nonsymmetric Eigenvalue Problem Expert Driver -* DGEEVX (eigenvalues, eigenvectors and condition numbers) -* -------------------------------------------------------------- -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LT.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL DERRED( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL DDRVVX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN, - $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ), - $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 3 ), - $ NMAX, A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, - $ D( 1, 5 ), D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), - $ D( 1, 9 ), D( 1, 10 ), D( 1, 11 ), D( 1, 12 ), - $ RESULT, WORK, LWORK, IWORK, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'DGEEVX', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'DSX' ) ) THEN -* -* --------------------------------------------------- -* DSX: Nonsymmetric Eigenvalue Problem Expert Driver -* DGEESX (Schur form and condition numbers) -* --------------------------------------------------- -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LT.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL DERRED( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL DDRVSX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN, - $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), - $ D( 1, 5 ), D( 1, 6 ), A( 1, 4 ), NMAX, - $ A( 1, 5 ), RESULT, WORK, LWORK, IWORK, LOGWRK, - $ INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'DGEESX', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'DGG' ) ) THEN -* -* ------------------------------------------------- -* DGG: Generalized Nonsymmetric Eigenvalue Problem -* ------------------------------------------------- -* Vary the parameters -* NB = block size -* NBMIN = minimum block size -* NS = number of shifts -* MAXB = minimum submatrix size -* IACC22: structured matrix multiply -* NBCOL = minimum column dimension for blocks -* - MAXTYP = 26 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV(1,1) - IF( TSTCHK .AND. TSTERR ) - $ CALL DERRGG( C3, NOUT ) - DO 350 I = 1, NPARMS - CALL XLAENV( 1, NBVAL( I ) ) - CALL XLAENV( 2, NBMIN( I ) ) - CALL XLAENV( 4, NSVAL( I ) ) - CALL XLAENV( 8, MXBVAL( I ) ) - CALL XLAENV( 16, IACC22( I ) ) - CALL XLAENV( 5, NBCOL( I ) ) -* - IF( NEWSD.EQ.0 ) THEN - DO 340 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 340 CONTINUE - END IF - WRITE( NOUT, FMT = 9996 )C3, NBVAL( I ), NBMIN( I ), - $ NSVAL( I ), MXBVAL( I ), IACC22( I ), NBCOL( I ) - TSTDIF = .FALSE. - THRSHN = 10.D0 - IF( TSTCHK ) THEN - CALL DCHKGG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, - $ TSTDIF, THRSHN, NOUT, A( 1, 1 ), NMAX, - $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), - $ A( 1, 6 ), A( 1, 7 ), A( 1, 8 ), A( 1, 9 ), - $ NMAX, A( 1, 10 ), A( 1, 11 ), A( 1, 12 ), - $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), - $ D( 1, 5 ), D( 1, 6 ), A( 1, 13 ), - $ A( 1, 14 ), WORK, LWORK, LOGWRK, RESULT, - $ INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'DCHKGG', INFO - END IF - 350 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'DGS' ) ) THEN -* -* ------------------------------------------------- -* DGS: Generalized Nonsymmetric Eigenvalue Problem -* DGGES (Schur form) -* ------------------------------------------------- -* - MAXTYP = 26 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LE.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL DERRGG( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL DDRGES( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), - $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), WORK, LWORK, - $ RESULT, LOGWRK, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'DDRGES', INFO -* -* Blocked version -* - CALL XLAENV(16, 2) - CALL DDRGES3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), - $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), WORK, LWORK, - $ RESULT, LOGWRK, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'DDRGES3', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( DGX ) THEN -* -* ------------------------------------------------- -* DGX: Generalized Nonsymmetric Eigenvalue Problem -* DGGESX (Schur form and condition numbers) -* ------------------------------------------------- -* - MAXTYP = 5 - NTYPES = MAXTYP - IF( NN.LT.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL DERRGG( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV( 5, 2 ) - CALL DDRGSX( NN, NCMAX, THRESH, NIN, NOUT, A( 1, 1 ), NMAX, - $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), - $ A( 1, 6 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), - $ C( 1, 1 ), NCMAX*NCMAX, A( 1, 12 ), WORK, - $ LWORK, IWORK, LIWORK, LOGWRK, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'DDRGSX', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'DGV' ) ) THEN -* -* ------------------------------------------------- -* DGV: Generalized Nonsymmetric Eigenvalue Problem -* DGGEV (Eigenvalue/vector form) -* ------------------------------------------------- -* - MAXTYP = 26 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LE.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL DERRGG( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL DDRGEV( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), - $ A( 1, 9 ), NMAX, D( 1, 1 ), D( 1, 2 ), - $ D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), D( 1, 6 ), - $ WORK, LWORK, RESULT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'DDRGEV', INFO -* -* Blocked version -* - CALL DDRGEV3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), - $ A( 1, 9 ), NMAX, D( 1, 1 ), D( 1, 2 ), - $ D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), D( 1, 6 ), - $ WORK, LWORK, RESULT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'DDRGEV3', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( DXV ) THEN -* -* ------------------------------------------------- -* DXV: Generalized Nonsymmetric Eigenvalue Problem -* DGGEVX (eigenvalue/vector with condition numbers) -* ------------------------------------------------- -* - MAXTYP = 2 - NTYPES = MAXTYP - IF( NN.LT.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL DERRGG( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL DDRGVX( NN, THRESH, NIN, NOUT, A( 1, 1 ), NMAX, - $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), D( 1, 1 ), - $ D( 1, 2 ), D( 1, 3 ), A( 1, 5 ), A( 1, 6 ), - $ IWORK( 1 ), IWORK( 2 ), D( 1, 4 ), D( 1, 5 ), - $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ), - $ WORK, LWORK, IWORK( 3 ), LIWORK-2, RESULT, - $ LOGWRK, INFO ) -* - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'DDRGVX', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'DSB' ) ) THEN -* -* ------------------------------ -* DSB: Symmetric Band Reduction -* ------------------------------ -* - MAXTYP = 15 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - IF( TSTERR ) - $ CALL DERRST( 'DSB', NOUT ) -* CALL DCHKSB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH, -* $ NOUT, A( 1, 1 ), NMAX, D( 1, 1 ), D( 1, 2 ), -* $ A( 1, 2 ), NMAX, WORK, LWORK, RESULT, INFO ) - CALL DCHKSB2STG( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, - $ THRESH, NOUT, A( 1, 1 ), NMAX, D( 1, 1 ), - $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), - $ A( 1, 2 ), NMAX, WORK, LWORK, RESULT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'DCHKSB', INFO -* - ELSE IF( LSAMEN( 3, C3, 'DBB' ) ) THEN -* -* ------------------------------ -* DBB: General Band Reduction -* ------------------------------ -* - MAXTYP = 15 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - DO 370 I = 1, NPARMS - NRHS = NSVAL( I ) -* - IF( NEWSD.EQ.0 ) THEN - DO 360 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 360 CONTINUE - END IF - WRITE( NOUT, FMT = 9966 )C3, NRHS - CALL DCHKBB( NN, MVAL, NVAL, NK, KVAL, MAXTYP, DOTYPE, NRHS, - $ ISEED, THRESH, NOUT, A( 1, 1 ), NMAX, - $ A( 1, 2 ), 2*NMAX, D( 1, 1 ), D( 1, 2 ), - $ A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, A( 1, 6 ), - $ NMAX, A( 1, 7 ), WORK, LWORK, RESULT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'DCHKBB', INFO - 370 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'GLM' ) ) THEN -* -* ----------------------------------------- -* GLM: Generalized Linear Regression Model -* ----------------------------------------- -* - CALL XLAENV( 1, 1 ) - IF( TSTERR ) - $ CALL DERRGG( 'GLM', NOUT ) - CALL DCKGLM( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, - $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X, - $ WORK, D( 1, 1 ), NIN, NOUT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'DCKGLM', INFO -* - ELSE IF( LSAMEN( 3, C3, 'GQR' ) ) THEN -* -* ------------------------------------------ -* GQR: Generalized QR and RQ factorizations -* ------------------------------------------ -* - CALL XLAENV( 1, 1 ) - IF( TSTERR ) - $ CALL DERRGG( 'GQR', NOUT ) - CALL DCKGQR( NN, MVAL, NN, PVAL, NN, NVAL, NTYPES, ISEED, - $ THRESH, NMAX, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), TAUA, B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), - $ B( 1, 4 ), B( 1, 5 ), TAUB, WORK, D( 1, 1 ), NIN, - $ NOUT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'DCKGQR', INFO -* - ELSE IF( LSAMEN( 3, C3, 'GSV' ) ) THEN -* -* ---------------------------------------------- -* GSV: Generalized Singular Value Decomposition -* ---------------------------------------------- -* - CALL XLAENV(1,1) - IF( TSTERR ) - $ CALL DERRGG( 'GSV', NOUT ) - CALL DCKGSV( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, - $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), - $ A( 1, 3 ), B( 1, 3 ), A( 1, 4 ), TAUA, TAUB, - $ B( 1, 4 ), IWORK, WORK, D( 1, 1 ), NIN, NOUT, - $ INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'DCKGSV', INFO -* - ELSE IF( LSAMEN( 3, C3, 'CSD' ) ) THEN -* -* ---------------------------------------------- -* CSD: CS Decomposition -* ---------------------------------------------- -* - CALL XLAENV(1,1) - IF( TSTERR ) - $ CALL DERRGG( 'CSD', NOUT ) - CALL DCKCSD( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, - $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), - $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), IWORK, WORK, - $ D( 1, 1 ), NIN, NOUT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'DCKCSD', INFO -* - ELSE IF( LSAMEN( 3, C3, 'LSE' ) ) THEN -* -* -------------------------------------- -* LSE: Constrained Linear Least Squares -* -------------------------------------- -* - CALL XLAENV( 1, 1 ) - IF( TSTERR ) - $ CALL DERRGG( 'LSE', NOUT ) - CALL DCKLSE( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, - $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X, - $ WORK, D( 1, 1 ), NIN, NOUT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'DCKLSE', INFO -* - ELSE - WRITE( NOUT, FMT = * ) - WRITE( NOUT, FMT = * ) - WRITE( NOUT, FMT = 9992 )C3 - END IF - IF( .NOT.( DGX .OR. DXV ) ) - $ GO TO 190 - 380 CONTINUE - WRITE( NOUT, FMT = 9994 ) - S2 = DSECND( ) - WRITE( NOUT, FMT = 9993 )S2 - S1 -* - 9999 FORMAT( / ' Execution not attempted due to input errors' ) - 9997 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4 ) - 9996 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NS =', I4, - $ ', MAXB =', I4, ', IACC22 =', I4, ', NBCOL =', I4 ) - 9995 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4, - $ ', NRHS =', I4 ) - 9994 FORMAT( / / ' End of tests' ) - 9993 FORMAT( ' Total time used = ', F12.2, ' seconds', / ) - 9992 FORMAT( 1X, A3, ': Unrecognized path name' ) - 9991 FORMAT( / / ' *** Invalid integer value in column ', I2, - $ ' of input', ' line:', / A79 ) - 9990 FORMAT( / / 1X, A3, ' routines were not tested' ) - 9989 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be >=', - $ I6 ) - 9988 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be <=', - $ I6 ) - 9987 FORMAT( ' Tests of the Nonsymmetric Eigenvalue Problem routines' ) - 9986 FORMAT( ' Tests of the Symmetric Eigenvalue Problem routines' ) - 9985 FORMAT( ' Tests of the Singular Value Decomposition routines' ) - 9984 FORMAT( / ' The following parameter values will be used:' ) - 9983 FORMAT( 4X, A, 10I6, / 10X, 10I6 ) - 9982 FORMAT( / ' Routines pass computational tests if test ratio is ', - $ 'less than', F8.2, / ) - 9981 FORMAT( ' Relative machine ', A, ' is taken to be', D16.6 ) - 9980 FORMAT( ' *** Error code from ', A, ' = ', I4 ) - 9979 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver', - $ / ' DGEEV (eigenvalues and eigevectors)' ) - 9978 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver', - $ / ' DGEES (Schur form)' ) - 9977 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert', - $ ' Driver', / ' DGEEVX (eigenvalues, eigenvectors and', - $ ' condition numbers)' ) - 9976 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert', - $ ' Driver', / ' DGEESX (Schur form and condition', - $ ' numbers)' ) - 9975 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', - $ 'Problem routines' ) - 9974 FORMAT( ' Tests of DSBTRD', / ' (reduction of a symmetric band ', - $ 'matrix to tridiagonal form)' ) - 9973 FORMAT( / 1X, 71( '-' ) ) - 9972 FORMAT( / ' LAPACK VERSION ', I1, '.', I1, '.', I1 ) - 9971 FORMAT( / ' Tests of the Generalized Linear Regression Model ', - $ 'routines' ) - 9970 FORMAT( / ' Tests of the Generalized QR and RQ routines' ) - 9969 FORMAT( / ' Tests of the Generalized Singular Value', - $ ' Decomposition routines' ) - 9968 FORMAT( / ' Tests of the Linear Least Squares routines' ) - 9967 FORMAT( ' Tests of DGBBRD', / ' (reduction of a general band ', - $ 'matrix to real bidiagonal form)' ) - 9966 FORMAT( / / 1X, A3, ': NRHS =', I4 ) - 9965 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', - $ 'Problem Expert Driver DGGESX' ) - 9964 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', - $ 'Problem Driver DGGES' ) - 9963 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', - $ 'Problem Driver DGGEV' ) - 9962 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', - $ 'Problem Expert Driver DGGEVX' ) - 9961 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4, - $ ', INMIN=', I4, - $ ', INWIN =', I4, ', INIBL =', I4, ', ISHFTS =', I4, - $ ', IACC22 =', I4) - 9960 FORMAT( / ' Tests of the CS Decomposition routines' ) -* -* End of DCHKEE -* - END From 0e96c378fde1e9587dcfec35af221ee8cc3c90cb Mon Sep 17 00:00:00 2001 From: Martin Kroeker Date: Sun, 28 Feb 2021 18:46:52 +0100 Subject: [PATCH 05/17] Delete schkee.f --- lapack-netlib/TESTING/EIG/schkee.f | 2510 ---------------------------- 1 file changed, 2510 deletions(-) delete mode 100644 lapack-netlib/TESTING/EIG/schkee.f diff --git a/lapack-netlib/TESTING/EIG/schkee.f b/lapack-netlib/TESTING/EIG/schkee.f deleted file mode 100644 index 3757e0655..000000000 --- a/lapack-netlib/TESTING/EIG/schkee.f +++ /dev/null @@ -1,2510 +0,0 @@ -*> \brief \b SCHKEE -* -* =========== DOCUMENTATION =========== -* -* Online html documentation available at -* http://www.netlib.org/lapack/explore-html/ -* -* Definition: -* =========== -* -* PROGRAM SCHKEE -* -* -*> \par Purpose: -* ============= -*> -*> \verbatim -*> -*> SCHKEE tests the REAL LAPACK subroutines for the matrix -*> eigenvalue problem. The test paths in this version are -*> -*> NEP (Nonsymmetric Eigenvalue Problem): -*> Test SGEHRD, SORGHR, SHSEQR, STREVC, SHSEIN, and SORMHR -*> -*> SEP (Symmetric Eigenvalue Problem): -*> Test SSYTRD, SORGTR, SSTEQR, SSTERF, SSTEIN, SSTEDC, -*> and drivers SSYEV(X), SSBEV(X), SSPEV(X), SSTEV(X), -*> SSYEVD, SSBEVD, SSPEVD, SSTEVD -*> -*> SVD (Singular Value Decomposition): -*> Test SGEBRD, SORGBR, SBDSQR, SBDSDC -*> and the drivers SGESVD, SGESDD -*> -*> SEV (Nonsymmetric Eigenvalue/eigenvector Driver): -*> Test SGEEV -*> -*> SES (Nonsymmetric Schur form Driver): -*> Test SGEES -*> -*> SVX (Nonsymmetric Eigenvalue/eigenvector Expert Driver): -*> Test SGEEVX -*> -*> SSX (Nonsymmetric Schur form Expert Driver): -*> Test SGEESX -*> -*> SGG (Generalized Nonsymmetric Eigenvalue Problem): -*> Test SGGHD3, SGGBAL, SGGBAK, SHGEQZ, and STGEVC -*> -*> SGS (Generalized Nonsymmetric Schur form Driver): -*> Test SGGES -*> -*> SGV (Generalized Nonsymmetric Eigenvalue/eigenvector Driver): -*> Test SGGEV -*> -*> SGX (Generalized Nonsymmetric Schur form Expert Driver): -*> Test SGGESX -*> -*> SXV (Generalized Nonsymmetric Eigenvalue/eigenvector Expert Driver): -*> Test SGGEVX -*> -*> SSG (Symmetric Generalized Eigenvalue Problem): -*> Test SSYGST, SSYGV, SSYGVD, SSYGVX, SSPGST, SSPGV, SSPGVD, -*> SSPGVX, SSBGST, SSBGV, SSBGVD, and SSBGVX -*> -*> SSB (Symmetric Band Eigenvalue Problem): -*> Test SSBTRD -*> -*> SBB (Band Singular Value Decomposition): -*> Test SGBBRD -*> -*> SEC (Eigencondition estimation): -*> Test SLALN2, SLASY2, SLAEQU, SLAEXC, STRSYL, STREXC, STRSNA, -*> STRSEN, and SLAQTR -*> -*> SBL (Balancing a general matrix) -*> Test SGEBAL -*> -*> SBK (Back transformation on a balanced matrix) -*> Test SGEBAK -*> -*> SGL (Balancing a matrix pair) -*> Test SGGBAL -*> -*> SGK (Back transformation on a matrix pair) -*> Test SGGBAK -*> -*> GLM (Generalized Linear Regression Model): -*> Tests SGGGLM -*> -*> GQR (Generalized QR and RQ factorizations): -*> Tests SGGQRF and SGGRQF -*> -*> GSV (Generalized Singular Value Decomposition): -*> Tests SGGSVD, SGGSVP, STGSJA, SLAGS2, SLAPLL, and SLAPMT -*> -*> CSD (CS decomposition): -*> Tests SORCSD -*> -*> LSE (Constrained Linear Least Squares): -*> Tests SGGLSE -*> -*> Each test path has a different set of inputs, but the data sets for -*> the driver routines xEV, xES, xVX, and xSX can be concatenated in a -*> single input file. The first line of input should contain one of the -*> 3-character path names in columns 1-3. The number of remaining lines -*> depends on what is found on the first line. -*> -*> The number of matrix types used in testing is often controllable from -*> the input file. The number of matrix types for each path, and the -*> test routine that describes them, is as follows: -*> -*> Path name(s) Types Test routine -*> -*> SHS or NEP 21 SCHKHS -*> SST or SEP 21 SCHKST (routines) -*> 18 SDRVST (drivers) -*> SBD or SVD 16 SCHKBD (routines) -*> 5 SDRVBD (drivers) -*> SEV 21 SDRVEV -*> SES 21 SDRVES -*> SVX 21 SDRVVX -*> SSX 21 SDRVSX -*> SGG 26 SCHKGG (routines) -*> SGS 26 SDRGES -*> SGX 5 SDRGSX -*> SGV 26 SDRGEV -*> SXV 2 SDRGVX -*> SSG 21 SDRVSG -*> SSB 15 SCHKSB -*> SBB 15 SCHKBB -*> SEC - SCHKEC -*> SBL - SCHKBL -*> SBK - SCHKBK -*> SGL - SCHKGL -*> SGK - SCHKGK -*> GLM 8 SCKGLM -*> GQR 8 SCKGQR -*> GSV 8 SCKGSV -*> CSD 3 SCKCSD -*> LSE 8 SCKLSE -*> -*>----------------------------------------------------------------------- -*> -*> NEP input file: -*> -*> line 2: NN, INTEGER -*> Number of values of N. -*> -*> line 3: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix dimension N. -*> -*> line 4: NPARMS, INTEGER -*> Number of values of the parameters NB, NBMIN, NX, NS, and -*> MAXB. -*> -*> line 5: NBVAL, INTEGER array, dimension (NPARMS) -*> The values for the blocksize NB. -*> -*> line 6: NBMIN, INTEGER array, dimension (NPARMS) -*> The values for the minimum blocksize NBMIN. -*> -*> line 7: NXVAL, INTEGER array, dimension (NPARMS) -*> The values for the crossover point NX. -*> -*> line 8: INMIN, INTEGER array, dimension (NPARMS) -*> LAHQR vs TTQRE crossover point, >= 11 -*> -*> line 9: INWIN, INTEGER array, dimension (NPARMS) -*> recommended deflation window size -*> -*> line 10: INIBL, INTEGER array, dimension (NPARMS) -*> nibble crossover point -*> -*> line 11: ISHFTS, INTEGER array, dimension (NPARMS) -*> number of simultaneous shifts) -*> -*> line 12: IACC22, INTEGER array, dimension (NPARMS) -*> select structured matrix multiply: 0, 1 or 2) -*> -*> line 13: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. To have all of the test -*> ratios printed, use THRESH = 0.0 . -*> -*> line 14: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 14 was 2: -*> -*> line 15: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 15-EOF: The remaining lines occur in sets of 1 or 2 and allow -*> the user to specify the matrix types. Each line contains -*> a 3-character path name in columns 1-3, and the number -*> of matrix types must be the first nonblank item in columns -*> 4-80. If the number of matrix types is at least 1 but is -*> less than the maximum number of possible types, a second -*> line will be read to get the numbers of the matrix types to -*> be used. For example, -*> NEP 21 -*> requests all of the matrix types for the nonsymmetric -*> eigenvalue problem, while -*> NEP 4 -*> 9 10 11 12 -*> requests only matrices of type 9, 10, 11, and 12. -*> -*> The valid 3-character path names are 'NEP' or 'SHS' for the -*> nonsymmetric eigenvalue routines. -*> -*>----------------------------------------------------------------------- -*> -*> SEP or SSG input file: -*> -*> line 2: NN, INTEGER -*> Number of values of N. -*> -*> line 3: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix dimension N. -*> -*> line 4: NPARMS, INTEGER -*> Number of values of the parameters NB, NBMIN, and NX. -*> -*> line 5: NBVAL, INTEGER array, dimension (NPARMS) -*> The values for the blocksize NB. -*> -*> line 6: NBMIN, INTEGER array, dimension (NPARMS) -*> The values for the minimum blocksize NBMIN. -*> -*> line 7: NXVAL, INTEGER array, dimension (NPARMS) -*> The values for the crossover point NX. -*> -*> line 8: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 9: TSTCHK, LOGICAL -*> Flag indicating whether or not to test the LAPACK routines. -*> -*> line 10: TSTDRV, LOGICAL -*> Flag indicating whether or not to test the driver routines. -*> -*> line 11: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 12: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 12 was 2: -*> -*> line 13: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 13-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path names are 'SEP' or 'SST' for the -*> symmetric eigenvalue routines and driver routines, and -*> 'SSG' for the routines for the symmetric generalized -*> eigenvalue problem. -*> -*>----------------------------------------------------------------------- -*> -*> SVD input file: -*> -*> line 2: NN, INTEGER -*> Number of values of M and N. -*> -*> line 3: MVAL, INTEGER array, dimension (NN) -*> The values for the matrix row dimension M. -*> -*> line 4: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix column dimension N. -*> -*> line 5: NPARMS, INTEGER -*> Number of values of the parameter NB, NBMIN, NX, and NRHS. -*> -*> line 6: NBVAL, INTEGER array, dimension (NPARMS) -*> The values for the blocksize NB. -*> -*> line 7: NBMIN, INTEGER array, dimension (NPARMS) -*> The values for the minimum blocksize NBMIN. -*> -*> line 8: NXVAL, INTEGER array, dimension (NPARMS) -*> The values for the crossover point NX. -*> -*> line 9: NSVAL, INTEGER array, dimension (NPARMS) -*> The values for the number of right hand sides NRHS. -*> -*> line 10: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 11: TSTCHK, LOGICAL -*> Flag indicating whether or not to test the LAPACK routines. -*> -*> line 12: TSTDRV, LOGICAL -*> Flag indicating whether or not to test the driver routines. -*> -*> line 13: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 14: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 14 was 2: -*> -*> line 15: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 15-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path names are 'SVD' or 'SBD' for both the -*> SVD routines and the SVD driver routines. -*> -*>----------------------------------------------------------------------- -*> -*> SEV and SES data files: -*> -*> line 1: 'SEV' or 'SES' in columns 1 to 3. -*> -*> line 2: NSIZES, INTEGER -*> Number of sizes of matrices to use. Should be at least 0 -*> and at most 20. If NSIZES = 0, no testing is done -*> (although the remaining 3 lines are still read). -*> -*> line 3: NN, INTEGER array, dimension(NSIZES) -*> Dimensions of matrices to be tested. -*> -*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> These integer parameters determine how blocking is done -*> (see ILAENV for details) -*> NB : block size -*> NBMIN : minimum block size -*> NX : minimum dimension for blocking -*> NS : number of shifts in xHSEQR -*> NBCOL : minimum column dimension for blocking -*> -*> line 5: THRESH, REAL -*> The test threshold against which computed residuals are -*> compared. Should generally be in the range from 10. to 20. -*> If it is 0., all test case data will be printed. -*> -*> line 6: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits. -*> -*> line 7: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 7 was 2: -*> -*> line 8: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9 and following: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'SEV' to test SGEEV, or -*> 'SES' to test SGEES. -*> -*>----------------------------------------------------------------------- -*> -*> The SVX data has two parts. The first part is identical to SEV, -*> and the second part consists of test matrices with precomputed -*> solutions. -*> -*> line 1: 'SVX' in columns 1-3. -*> -*> line 2: NSIZES, INTEGER -*> If NSIZES = 0, no testing of randomly generated examples -*> is done, but any precomputed examples are tested. -*> -*> line 3: NN, INTEGER array, dimension(NSIZES) -*> -*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> -*> line 5: THRESH, REAL -*> -*> line 6: TSTERR, LOGICAL -*> -*> line 7: NEWSD, INTEGER -*> -*> If line 7 was 2: -*> -*> line 8: INTEGER array, dimension (4) -*> -*> lines 9 and following: The first line contains 'SVX' in columns 1-3 -*> followed by the number of matrix types, possibly with -*> a second line to specify certain matrix types. -*> If the number of matrix types = 0, no testing of randomly -*> generated examples is done, but any precomputed examples -*> are tested. -*> -*> remaining lines : Each matrix is stored on 1+2*N lines, where N is -*> its dimension. The first line contains the dimension (a -*> single integer). The next N lines contain the matrix, one -*> row per line. The last N lines correspond to each -*> eigenvalue. Each of these last N lines contains 4 real -*> values: the real part of the eigenvalue, the imaginary -*> part of the eigenvalue, the reciprocal condition number of -*> the eigenvalues, and the reciprocal condition number of the -*> eigenvector. The end of data is indicated by dimension N=0. -*> Even if no data is to be tested, there must be at least one -*> line containing N=0. -*> -*>----------------------------------------------------------------------- -*> -*> The SSX data is like SVX. The first part is identical to SEV, and the -*> second part consists of test matrices with precomputed solutions. -*> -*> line 1: 'SSX' in columns 1-3. -*> -*> line 2: NSIZES, INTEGER -*> If NSIZES = 0, no testing of randomly generated examples -*> is done, but any precomputed examples are tested. -*> -*> line 3: NN, INTEGER array, dimension(NSIZES) -*> -*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> -*> line 5: THRESH, REAL -*> -*> line 6: TSTERR, LOGICAL -*> -*> line 7: NEWSD, INTEGER -*> -*> If line 7 was 2: -*> -*> line 8: INTEGER array, dimension (4) -*> -*> lines 9 and following: The first line contains 'SSX' in columns 1-3 -*> followed by the number of matrix types, possibly with -*> a second line to specify certain matrix types. -*> If the number of matrix types = 0, no testing of randomly -*> generated examples is done, but any precomputed examples -*> are tested. -*> -*> remaining lines : Each matrix is stored on 3+N lines, where N is its -*> dimension. The first line contains the dimension N and the -*> dimension M of an invariant subspace. The second line -*> contains M integers, identifying the eigenvalues in the -*> invariant subspace (by their position in a list of -*> eigenvalues ordered by increasing real part). The next N -*> lines contain the matrix. The last line contains the -*> reciprocal condition number for the average of the selected -*> eigenvalues, and the reciprocal condition number for the -*> corresponding right invariant subspace. The end of data is -*> indicated by a line containing N=0 and M=0. Even if no data -*> is to be tested, there must be at least one line containing -*> N=0 and M=0. -*> -*>----------------------------------------------------------------------- -*> -*> SGG input file: -*> -*> line 2: NN, INTEGER -*> Number of values of N. -*> -*> line 3: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix dimension N. -*> -*> line 4: NPARMS, INTEGER -*> Number of values of the parameters NB, NBMIN, NS, MAXB, and -*> NBCOL. -*> -*> line 5: NBVAL, INTEGER array, dimension (NPARMS) -*> The values for the blocksize NB. -*> -*> line 6: NBMIN, INTEGER array, dimension (NPARMS) -*> The values for NBMIN, the minimum row dimension for blocks. -*> -*> line 7: NSVAL, INTEGER array, dimension (NPARMS) -*> The values for the number of shifts. -*> -*> line 8: MXBVAL, INTEGER array, dimension (NPARMS) -*> The values for MAXB, used in determining minimum blocksize. -*> -*> line 9: IACC22, INTEGER array, dimension (NPARMS) -*> select structured matrix multiply: 1 or 2) -*> -*> line 10: NBCOL, INTEGER array, dimension (NPARMS) -*> The values for NBCOL, the minimum column dimension for -*> blocks. -*> -*> line 11: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 12: TSTCHK, LOGICAL -*> Flag indicating whether or not to test the LAPACK routines. -*> -*> line 13: TSTDRV, LOGICAL -*> Flag indicating whether or not to test the driver routines. -*> -*> line 14: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 15: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 15 was 2: -*> -*> line 16: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 17-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'SGG' for the generalized -*> eigenvalue problem routines and driver routines. -*> -*>----------------------------------------------------------------------- -*> -*> SGS and SGV input files: -*> -*> line 1: 'SGS' or 'SGV' in columns 1 to 3. -*> -*> line 2: NN, INTEGER -*> Number of values of N. -*> -*> line 3: NVAL, INTEGER array, dimension(NN) -*> Dimensions of matrices to be tested. -*> -*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> These integer parameters determine how blocking is done -*> (see ILAENV for details) -*> NB : block size -*> NBMIN : minimum block size -*> NX : minimum dimension for blocking -*> NS : number of shifts in xHGEQR -*> NBCOL : minimum column dimension for blocking -*> -*> line 5: THRESH, REAL -*> The test threshold against which computed residuals are -*> compared. Should generally be in the range from 10. to 20. -*> If it is 0., all test case data will be printed. -*> -*> line 6: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits. -*> -*> line 7: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 17 was 2: -*> -*> line 7: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 7-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'SGS' for the generalized -*> eigenvalue problem routines and driver routines. -*> -*>----------------------------------------------------------------------- -*> -*> SXV input files: -*> -*> line 1: 'SXV' in columns 1 to 3. -*> -*> line 2: N, INTEGER -*> Value of N. -*> -*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> These integer parameters determine how blocking is done -*> (see ILAENV for details) -*> NB : block size -*> NBMIN : minimum block size -*> NX : minimum dimension for blocking -*> NS : number of shifts in xHGEQR -*> NBCOL : minimum column dimension for blocking -*> -*> line 4: THRESH, REAL -*> The test threshold against which computed residuals are -*> compared. Should generally be in the range from 10. to 20. -*> Information will be printed about each test for which the -*> test ratio is greater than or equal to the threshold. -*> -*> line 5: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 6: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 6 was 2: -*> -*> line 7: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> If line 2 was 0: -*> -*> line 7-EOF: Precomputed examples are tested. -*> -*> remaining lines : Each example is stored on 3+2*N lines, where N is -*> its dimension. The first line contains the dimension (a -*> single integer). The next N lines contain the matrix A, one -*> row per line. The next N lines contain the matrix B. The -*> next line contains the reciprocals of the eigenvalue -*> condition numbers. The last line contains the reciprocals of -*> the eigenvector condition numbers. The end of data is -*> indicated by dimension N=0. Even if no data is to be tested, -*> there must be at least one line containing N=0. -*> -*>----------------------------------------------------------------------- -*> -*> SGX input files: -*> -*> line 1: 'SGX' in columns 1 to 3. -*> -*> line 2: N, INTEGER -*> Value of N. -*> -*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> These integer parameters determine how blocking is done -*> (see ILAENV for details) -*> NB : block size -*> NBMIN : minimum block size -*> NX : minimum dimension for blocking -*> NS : number of shifts in xHGEQR -*> NBCOL : minimum column dimension for blocking -*> -*> line 4: THRESH, REAL -*> The test threshold against which computed residuals are -*> compared. Should generally be in the range from 10. to 20. -*> Information will be printed about each test for which the -*> test ratio is greater than or equal to the threshold. -*> -*> line 5: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 6: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 6 was 2: -*> -*> line 7: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> If line 2 was 0: -*> -*> line 7-EOF: Precomputed examples are tested. -*> -*> remaining lines : Each example is stored on 3+2*N lines, where N is -*> its dimension. The first line contains the dimension (a -*> single integer). The next line contains an integer k such -*> that only the last k eigenvalues will be selected and appear -*> in the leading diagonal blocks of $A$ and $B$. The next N -*> lines contain the matrix A, one row per line. The next N -*> lines contain the matrix B. The last line contains the -*> reciprocal of the eigenvalue cluster condition number and the -*> reciprocal of the deflating subspace (associated with the -*> selected eigencluster) condition number. The end of data is -*> indicated by dimension N=0. Even if no data is to be tested, -*> there must be at least one line containing N=0. -*> -*>----------------------------------------------------------------------- -*> -*> SSB input file: -*> -*> line 2: NN, INTEGER -*> Number of values of N. -*> -*> line 3: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix dimension N. -*> -*> line 4: NK, INTEGER -*> Number of values of K. -*> -*> line 5: KVAL, INTEGER array, dimension (NK) -*> The values for the matrix dimension K. -*> -*> line 6: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 7 was 2: -*> -*> line 8: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 8-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'SSB'. -*> -*>----------------------------------------------------------------------- -*> -*> SBB input file: -*> -*> line 2: NN, INTEGER -*> Number of values of M and N. -*> -*> line 3: MVAL, INTEGER array, dimension (NN) -*> The values for the matrix row dimension M. -*> -*> line 4: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix column dimension N. -*> -*> line 4: NK, INTEGER -*> Number of values of K. -*> -*> line 5: KVAL, INTEGER array, dimension (NK) -*> The values for the matrix bandwidth K. -*> -*> line 6: NPARMS, INTEGER -*> Number of values of the parameter NRHS -*> -*> line 7: NSVAL, INTEGER array, dimension (NPARMS) -*> The values for the number of right hand sides NRHS. -*> -*> line 8: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 9: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 9 was 2: -*> -*> line 10: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 10-EOF: Lines specifying matrix types, as for SVD. -*> The 3-character path name is 'SBB'. -*> -*>----------------------------------------------------------------------- -*> -*> SEC input file: -*> -*> line 2: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> lines 3-EOF: -*> -*> Input for testing the eigencondition routines consists of a set of -*> specially constructed test cases and their solutions. The data -*> format is not intended to be modified by the user. -*> -*>----------------------------------------------------------------------- -*> -*> SBL and SBK input files: -*> -*> line 1: 'SBL' in columns 1-3 to test SGEBAL, or 'SBK' in -*> columns 1-3 to test SGEBAK. -*> -*> The remaining lines consist of specially constructed test cases. -*> -*>----------------------------------------------------------------------- -*> -*> SGL and SGK input files: -*> -*> line 1: 'SGL' in columns 1-3 to test SGGBAL, or 'SGK' in -*> columns 1-3 to test SGGBAK. -*> -*> The remaining lines consist of specially constructed test cases. -*> -*>----------------------------------------------------------------------- -*> -*> GLM data file: -*> -*> line 1: 'GLM' in columns 1 to 3. -*> -*> line 2: NN, INTEGER -*> Number of values of M, P, and N. -*> -*> line 3: MVAL, INTEGER array, dimension(NN) -*> Values of M (row dimension). -*> -*> line 4: PVAL, INTEGER array, dimension(NN) -*> Values of P (row dimension). -*> -*> line 5: NVAL, INTEGER array, dimension(NN) -*> Values of N (column dimension), note M <= N <= M+P. -*> -*> line 6: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 8: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 8 was 2: -*> -*> line 9: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'GLM' for the generalized -*> linear regression model routines. -*> -*>----------------------------------------------------------------------- -*> -*> GQR data file: -*> -*> line 1: 'GQR' in columns 1 to 3. -*> -*> line 2: NN, INTEGER -*> Number of values of M, P, and N. -*> -*> line 3: MVAL, INTEGER array, dimension(NN) -*> Values of M. -*> -*> line 4: PVAL, INTEGER array, dimension(NN) -*> Values of P. -*> -*> line 5: NVAL, INTEGER array, dimension(NN) -*> Values of N. -*> -*> line 6: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 8: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 8 was 2: -*> -*> line 9: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'GQR' for the generalized -*> QR and RQ routines. -*> -*>----------------------------------------------------------------------- -*> -*> GSV data file: -*> -*> line 1: 'GSV' in columns 1 to 3. -*> -*> line 2: NN, INTEGER -*> Number of values of M, P, and N. -*> -*> line 3: MVAL, INTEGER array, dimension(NN) -*> Values of M (row dimension). -*> -*> line 4: PVAL, INTEGER array, dimension(NN) -*> Values of P (row dimension). -*> -*> line 5: NVAL, INTEGER array, dimension(NN) -*> Values of N (column dimension). -*> -*> line 6: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 8: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 8 was 2: -*> -*> line 9: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'GSV' for the generalized -*> SVD routines. -*> -*>----------------------------------------------------------------------- -*> -*> CSD data file: -*> -*> line 1: 'CSD' in columns 1 to 3. -*> -*> line 2: NM, INTEGER -*> Number of values of M, P, and N. -*> -*> line 3: MVAL, INTEGER array, dimension(NM) -*> Values of M (row and column dimension of orthogonal matrix). -*> -*> line 4: PVAL, INTEGER array, dimension(NM) -*> Values of P (row dimension of top-left block). -*> -*> line 5: NVAL, INTEGER array, dimension(NM) -*> Values of N (column dimension of top-left block). -*> -*> line 6: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 8: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 8 was 2: -*> -*> line 9: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'CSD' for the CSD routine. -*> -*>----------------------------------------------------------------------- -*> -*> LSE data file: -*> -*> line 1: 'LSE' in columns 1 to 3. -*> -*> line 2: NN, INTEGER -*> Number of values of M, P, and N. -*> -*> line 3: MVAL, INTEGER array, dimension(NN) -*> Values of M. -*> -*> line 4: PVAL, INTEGER array, dimension(NN) -*> Values of P. -*> -*> line 5: NVAL, INTEGER array, dimension(NN) -*> Values of N, note P <= N <= P+M. -*> -*> line 6: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 8: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 8 was 2: -*> -*> line 9: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'GSV' for the generalized -*> SVD routines. -*> -*>----------------------------------------------------------------------- -*> -*> NMAX is currently set to 132 and must be at least 12 for some of the -*> precomputed examples, and LWORK = NMAX*(5*NMAX+5)+1 in the parameter -*> statements below. For SVD, we assume NRHS may be as big as N. The -*> parameter NEED is set to 14 to allow for 14 N-by-N matrices for SGG. -*> \endverbatim -* -* Arguments: -* ========== -* -* -* Authors: -* ======== -* -*> \author Univ. of Tennessee -*> \author Univ. of California Berkeley -*> \author Univ. of Colorado Denver -*> \author NAG Ltd. -* -*> \date June 2016 -* -*> \ingroup single_eig -* -* ===================================================================== - PROGRAM SCHKEE -* -* -- LAPACK test routine (version 3.7.0) -- -* -- LAPACK is a software package provided by Univ. of Tennessee, -- -* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* June 2016 -* -* ===================================================================== -* -* .. Parameters .. - INTEGER NMAX - PARAMETER ( NMAX = 132 ) - INTEGER NCMAX - PARAMETER ( NCMAX = 20 ) - INTEGER NEED - PARAMETER ( NEED = 14 ) - INTEGER LWORK - PARAMETER ( LWORK = NMAX*( 5*NMAX+5 )+1 ) - INTEGER LIWORK - PARAMETER ( LIWORK = NMAX*( 5*NMAX+20 ) ) - INTEGER MAXIN - PARAMETER ( MAXIN = 20 ) - INTEGER MAXT - PARAMETER ( MAXT = 30 ) - INTEGER NIN, NOUT - PARAMETER ( NIN = 5, NOUT = 6 ) -* .. -* .. Local Scalars .. - LOGICAL CSD, FATAL, GLM, GQR, GSV, LSE, NEP, SBB, SBK, - $ SBL, SEP, SES, SEV, SGG, SGK, SGL, SGS, SGV, - $ SGX, SSB, SSX, SVD, SVX, SXV, TSTCHK, TSTDIF, - $ TSTDRV, TSTERR - CHARACTER C1 - CHARACTER*3 C3, PATH - CHARACTER*32 VNAME - CHARACTER*10 INTSTR - CHARACTER*80 LINE - INTEGER I, I1, IC, INFO, ITMP, K, LENP, MAXTYP, NEWSD, - $ NK, NN, NPARMS, NRHS, NTYPES, - $ VERS_MAJOR, VERS_MINOR, VERS_PATCH - REAL EPS, S1, S2, THRESH, THRSHN -* .. -* .. Local Arrays .. - LOGICAL DOTYPE( MAXT ), LOGWRK( NMAX ) - INTEGER IOLDSD( 4 ), ISEED( 4 ), IWORK( LIWORK ), - $ KVAL( MAXIN ), MVAL( MAXIN ), MXBVAL( MAXIN ), - $ NBCOL( MAXIN ), NBMIN( MAXIN ), NBVAL( MAXIN ), - $ NSVAL( MAXIN ), NVAL( MAXIN ), NXVAL( MAXIN ), - $ PVAL( MAXIN ) - INTEGER INMIN( MAXIN ), INWIN( MAXIN ), INIBL( MAXIN ), - $ ISHFTS( MAXIN ), IACC22( MAXIN ) - REAL A( NMAX*NMAX, NEED ), B( NMAX*NMAX, 5 ), - $ C( NCMAX*NCMAX, NCMAX*NCMAX ), D( NMAX, 12 ), - $ RESULT( 500 ), TAUA( NMAX ), TAUB( NMAX ), - $ WORK( LWORK ), X( 5*NMAX ) -* .. -* .. External Functions .. - LOGICAL LSAMEN - REAL SECOND, SLAMCH - EXTERNAL LSAMEN, SECOND, SLAMCH -* .. -* .. External Subroutines .. - EXTERNAL ALAREQ, SCHKBB, SCHKBD, SCHKBK, SCHKBL, SCHKEC, - $ SCHKGG, SCHKGK, SCHKGL, SCHKHS, SCHKSB, SCHKST, - $ SCKCSD, SCKGLM, SCKGQR, SCKGSV, SCKLSE, SDRGES, - $ SDRGEV, SDRGSX, SDRGVX, SDRVBD, SDRVES, SDRVEV, - $ SDRVSG, SDRVST, SDRVSX, SDRVVX, SERRBD, - $ SERRED, SERRGG, SERRHS, SERRST, ILAVER, XLAENV, - $ SDRGES3, SDRGEV3, - $ SCHKST2STG, SDRVST2STG, SCHKSB2STG, SDRVSG2STG -* .. -* .. Intrinsic Functions .. - INTRINSIC LEN, MIN -* .. -* .. Scalars in Common .. - LOGICAL LERR, OK - CHARACTER*32 SRNAMT - INTEGER INFOT, MAXB, NPROC, NSHIFT, NUNIT, SELDIM, - $ SELOPT -* .. -* .. Arrays in Common .. - LOGICAL SELVAL( 20 ) - INTEGER IPARMS( 100 ) - REAL SELWI( 20 ), SELWR( 20 ) -* .. -* .. Common blocks .. - COMMON / CENVIR / NPROC, NSHIFT, MAXB - COMMON / CLAENV / IPARMS - COMMON / INFOC / INFOT, NUNIT, OK, LERR - COMMON / SRNAMC / SRNAMT - COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI -* .. -* .. Data statements .. - DATA INTSTR / '0123456789' / - DATA IOLDSD / 0, 0, 0, 1 / -* .. -* .. Executable Statements .. -* - A = 0.0 - B = 0.0 - C = 0.0 - D = 0.0 - S1 = SECOND( ) - FATAL = .FALSE. - NUNIT = NOUT -* -* Return to here to read multiple sets of data -* - 10 CONTINUE -* -* Read the first line and set the 3-character test path -* - READ( NIN, FMT = '(A80)', END = 380 )LINE - PATH = LINE( 1: 3 ) - NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'SHS' ) - SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'SST' ) .OR. - $ LSAMEN( 3, PATH, 'SSG' ) .OR. LSAMEN( 3, PATH, 'SE2' ) - SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'DBD' ) - SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'SBD' ) - SEV = LSAMEN( 3, PATH, 'SEV' ) - SES = LSAMEN( 3, PATH, 'SES' ) - SVX = LSAMEN( 3, PATH, 'SVX' ) - SSX = LSAMEN( 3, PATH, 'SSX' ) - SGG = LSAMEN( 3, PATH, 'SGG' ) - SGS = LSAMEN( 3, PATH, 'SGS' ) - SGX = LSAMEN( 3, PATH, 'SGX' ) - SGV = LSAMEN( 3, PATH, 'SGV' ) - SXV = LSAMEN( 3, PATH, 'SXV' ) - SSB = LSAMEN( 3, PATH, 'SSB' ) - SBB = LSAMEN( 3, PATH, 'SBB' ) - GLM = LSAMEN( 3, PATH, 'GLM' ) - GQR = LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' ) - GSV = LSAMEN( 3, PATH, 'GSV' ) - CSD = LSAMEN( 3, PATH, 'CSD' ) - LSE = LSAMEN( 3, PATH, 'LSE' ) - SBL = LSAMEN( 3, PATH, 'SBL' ) - SBK = LSAMEN( 3, PATH, 'SBK' ) - SGL = LSAMEN( 3, PATH, 'SGL' ) - SGK = LSAMEN( 3, PATH, 'SGK' ) -* -* Report values of parameters. -* - IF( PATH.EQ.' ' ) THEN - GO TO 10 - ELSE IF( NEP ) THEN - WRITE( NOUT, FMT = 9987 ) - ELSE IF( SEP ) THEN - WRITE( NOUT, FMT = 9986 ) - ELSE IF( SVD ) THEN - WRITE( NOUT, FMT = 9985 ) - ELSE IF( SEV ) THEN - WRITE( NOUT, FMT = 9979 ) - ELSE IF( SES ) THEN - WRITE( NOUT, FMT = 9978 ) - ELSE IF( SVX ) THEN - WRITE( NOUT, FMT = 9977 ) - ELSE IF( SSX ) THEN - WRITE( NOUT, FMT = 9976 ) - ELSE IF( SGG ) THEN - WRITE( NOUT, FMT = 9975 ) - ELSE IF( SGS ) THEN - WRITE( NOUT, FMT = 9964 ) - ELSE IF( SGX ) THEN - WRITE( NOUT, FMT = 9965 ) - ELSE IF( SGV ) THEN - WRITE( NOUT, FMT = 9963 ) - ELSE IF( SXV ) THEN - WRITE( NOUT, FMT = 9962 ) - ELSE IF( SSB ) THEN - WRITE( NOUT, FMT = 9974 ) - ELSE IF( SBB ) THEN - WRITE( NOUT, FMT = 9967 ) - ELSE IF( GLM ) THEN - WRITE( NOUT, FMT = 9971 ) - ELSE IF( GQR ) THEN - WRITE( NOUT, FMT = 9970 ) - ELSE IF( GSV ) THEN - WRITE( NOUT, FMT = 9969 ) - ELSE IF( CSD ) THEN - WRITE( NOUT, FMT = 9960 ) - ELSE IF( LSE ) THEN - WRITE( NOUT, FMT = 9968 ) - ELSE IF( SBL ) THEN -* -* SGEBAL: Balancing -* - CALL SCHKBL( NIN, NOUT ) - GO TO 10 - ELSE IF( SBK ) THEN -* -* SGEBAK: Back transformation -* - CALL SCHKBK( NIN, NOUT ) - GO TO 10 - ELSE IF( SGL ) THEN -* -* SGGBAL: Balancing -* - CALL SCHKGL( NIN, NOUT ) - GO TO 10 - ELSE IF( SGK ) THEN -* -* SGGBAK: Back transformation -* - CALL SCHKGK( NIN, NOUT ) - GO TO 10 - ELSE IF( LSAMEN( 3, PATH, 'SEC' ) ) THEN -* -* SEC: Eigencondition estimation -* - READ( NIN, FMT = * )THRESH - CALL XLAENV( 1, 1 ) - CALL XLAENV( 12, 11 ) - CALL XLAENV( 13, 2 ) - CALL XLAENV( 14, 0 ) - CALL XLAENV( 15, 2 ) - CALL XLAENV( 16, 2 ) - TSTERR = .TRUE. - CALL SCHKEC( THRESH, TSTERR, NIN, NOUT ) - GO TO 10 - ELSE - WRITE( NOUT, FMT = 9992 )PATH - GO TO 10 - END IF - CALL ILAVER( VERS_MAJOR, VERS_MINOR, VERS_PATCH ) - WRITE( NOUT, FMT = 9972 ) VERS_MAJOR, VERS_MINOR, VERS_PATCH - WRITE( NOUT, FMT = 9984 ) -* -* Read the number of values of M, P, and N. -* - READ( NIN, FMT = * )NN - IF( NN.LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' NN ', NN, 1 - NN = 0 - FATAL = .TRUE. - ELSE IF( NN.GT.MAXIN ) THEN - WRITE( NOUT, FMT = 9988 )' NN ', NN, MAXIN - NN = 0 - FATAL = .TRUE. - END IF -* -* Read the values of M -* - IF( .NOT.( SGX .OR. SXV ) ) THEN - READ( NIN, FMT = * )( MVAL( I ), I = 1, NN ) - IF( SVD ) THEN - VNAME = ' M ' - ELSE - VNAME = ' N ' - END IF - DO 20 I = 1, NN - IF( MVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )VNAME, MVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( MVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )VNAME, MVAL( I ), NMAX - FATAL = .TRUE. - END IF - 20 CONTINUE - WRITE( NOUT, FMT = 9983 )'M: ', ( MVAL( I ), I = 1, NN ) - END IF -* -* Read the values of P -* - IF( GLM .OR. GQR .OR. GSV .OR. CSD .OR. LSE ) THEN - READ( NIN, FMT = * )( PVAL( I ), I = 1, NN ) - DO 30 I = 1, NN - IF( PVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' P ', PVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( PVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' P ', PVAL( I ), NMAX - FATAL = .TRUE. - END IF - 30 CONTINUE - WRITE( NOUT, FMT = 9983 )'P: ', ( PVAL( I ), I = 1, NN ) - END IF -* -* Read the values of N -* - IF( SVD .OR. SBB .OR. GLM .OR. GQR .OR. GSV .OR. CSD .OR. - $ LSE ) THEN - READ( NIN, FMT = * )( NVAL( I ), I = 1, NN ) - DO 40 I = 1, NN - IF( NVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' N ', NVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( NVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' N ', NVAL( I ), NMAX - FATAL = .TRUE. - END IF - 40 CONTINUE - ELSE - DO 50 I = 1, NN - NVAL( I ) = MVAL( I ) - 50 CONTINUE - END IF - IF( .NOT.( SGX .OR. SXV ) ) THEN - WRITE( NOUT, FMT = 9983 )'N: ', ( NVAL( I ), I = 1, NN ) - ELSE - WRITE( NOUT, FMT = 9983 )'N: ', NN - END IF -* -* Read the number of values of K, followed by the values of K -* - IF( SSB .OR. SBB ) THEN - READ( NIN, FMT = * )NK - READ( NIN, FMT = * )( KVAL( I ), I = 1, NK ) - DO 60 I = 1, NK - IF( KVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' K ', KVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( KVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' K ', KVAL( I ), NMAX - FATAL = .TRUE. - END IF - 60 CONTINUE - WRITE( NOUT, FMT = 9983 )'K: ', ( KVAL( I ), I = 1, NK ) - END IF -* - IF( SEV .OR. SES .OR. SVX .OR. SSX ) THEN -* -* For the nonsymmetric QR driver routines, only one set of -* parameters is allowed. -* - READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ), - $ INMIN( 1 ), INWIN( 1 ), INIBL(1), ISHFTS(1), IACC22(1) - IF( NBVAL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1 - FATAL = .TRUE. - ELSE IF( NBMIN( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1 - FATAL = .TRUE. - ELSE IF( NXVAL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1 - FATAL = .TRUE. - ELSE IF( INMIN( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( 1 ), 1 - FATAL = .TRUE. - ELSE IF( INWIN( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( 1 ), 1 - FATAL = .TRUE. - ELSE IF( INIBL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( 1 ), 1 - FATAL = .TRUE. - ELSE IF( ISHFTS( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( 1 ), 1 - FATAL = .TRUE. - ELSE IF( IACC22( 1 ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( 1 ), 0 - FATAL = .TRUE. - END IF - CALL XLAENV( 1, NBVAL( 1 ) ) - CALL XLAENV( 2, NBMIN( 1 ) ) - CALL XLAENV( 3, NXVAL( 1 ) ) - CALL XLAENV(12, MAX( 11, INMIN( 1 ) ) ) - CALL XLAENV(13, INWIN( 1 ) ) - CALL XLAENV(14, INIBL( 1 ) ) - CALL XLAENV(15, ISHFTS( 1 ) ) - CALL XLAENV(16, IACC22( 1 ) ) - WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 ) - WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 ) - WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 ) - WRITE( NOUT, FMT = 9983 )'INMIN: ', INMIN( 1 ) - WRITE( NOUT, FMT = 9983 )'INWIN: ', INWIN( 1 ) - WRITE( NOUT, FMT = 9983 )'INIBL: ', INIBL( 1 ) - WRITE( NOUT, FMT = 9983 )'ISHFTS: ', ISHFTS( 1 ) - WRITE( NOUT, FMT = 9983 )'IACC22: ', IACC22( 1 ) -* - ELSE IF( SGS .OR. SGX .OR. SGV .OR. SXV ) THEN -* -* For the nonsymmetric generalized driver routines, only one set -* of parameters is allowed. -* - READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ), - $ NSVAL( 1 ), MXBVAL( 1 ) - IF( NBVAL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1 - FATAL = .TRUE. - ELSE IF( NBMIN( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1 - FATAL = .TRUE. - ELSE IF( NXVAL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1 - FATAL = .TRUE. - ELSE IF( NSVAL( 1 ).LT.2 ) THEN - WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( 1 ), 2 - FATAL = .TRUE. - ELSE IF( MXBVAL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( 1 ), 1 - FATAL = .TRUE. - END IF - CALL XLAENV( 1, NBVAL( 1 ) ) - CALL XLAENV( 2, NBMIN( 1 ) ) - CALL XLAENV( 3, NXVAL( 1 ) ) - CALL XLAENV( 4, NSVAL( 1 ) ) - CALL XLAENV( 8, MXBVAL( 1 ) ) - WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 ) - WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 ) - WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 ) - WRITE( NOUT, FMT = 9983 )'NS: ', NSVAL( 1 ) - WRITE( NOUT, FMT = 9983 )'MAXB: ', MXBVAL( 1 ) -* - ELSE IF( .NOT.SSB .AND. .NOT.GLM .AND. .NOT.GQR .AND. .NOT. - $ GSV .AND. .NOT.CSD .AND. .NOT.LSE ) THEN -* -* For the other paths, the number of parameters can be varied -* from the input file. Read the number of parameter values. -* - READ( NIN, FMT = * )NPARMS - IF( NPARMS.LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )'NPARMS', NPARMS, 1 - NPARMS = 0 - FATAL = .TRUE. - ELSE IF( NPARMS.GT.MAXIN ) THEN - WRITE( NOUT, FMT = 9988 )'NPARMS', NPARMS, MAXIN - NPARMS = 0 - FATAL = .TRUE. - END IF -* -* Read the values of NB -* - IF( .NOT.SBB ) THEN - READ( NIN, FMT = * )( NBVAL( I ), I = 1, NPARMS ) - DO 70 I = 1, NPARMS - IF( NBVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( NBVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' NB ', NBVAL( I ), NMAX - FATAL = .TRUE. - END IF - 70 CONTINUE - WRITE( NOUT, FMT = 9983 )'NB: ', - $ ( NBVAL( I ), I = 1, NPARMS ) - END IF -* -* Read the values of NBMIN -* - IF( NEP .OR. SEP .OR. SVD .OR. SGG ) THEN - READ( NIN, FMT = * )( NBMIN( I ), I = 1, NPARMS ) - DO 80 I = 1, NPARMS - IF( NBMIN( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( I ), 0 - FATAL = .TRUE. - ELSE IF( NBMIN( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )'NBMIN ', NBMIN( I ), NMAX - FATAL = .TRUE. - END IF - 80 CONTINUE - WRITE( NOUT, FMT = 9983 )'NBMIN:', - $ ( NBMIN( I ), I = 1, NPARMS ) - ELSE - DO 90 I = 1, NPARMS - NBMIN( I ) = 1 - 90 CONTINUE - END IF -* -* Read the values of NX -* - IF( NEP .OR. SEP .OR. SVD ) THEN - READ( NIN, FMT = * )( NXVAL( I ), I = 1, NPARMS ) - DO 100 I = 1, NPARMS - IF( NXVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( NXVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' NX ', NXVAL( I ), NMAX - FATAL = .TRUE. - END IF - 100 CONTINUE - WRITE( NOUT, FMT = 9983 )'NX: ', - $ ( NXVAL( I ), I = 1, NPARMS ) - ELSE - DO 110 I = 1, NPARMS - NXVAL( I ) = 1 - 110 CONTINUE - END IF -* -* Read the values of NSHIFT (if SGG) or NRHS (if SVD -* or SBB). -* - IF( SVD .OR. SBB .OR. SGG ) THEN - READ( NIN, FMT = * )( NSVAL( I ), I = 1, NPARMS ) - DO 120 I = 1, NPARMS - IF( NSVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( NSVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' NS ', NSVAL( I ), NMAX - FATAL = .TRUE. - END IF - 120 CONTINUE - WRITE( NOUT, FMT = 9983 )'NS: ', - $ ( NSVAL( I ), I = 1, NPARMS ) - ELSE - DO 130 I = 1, NPARMS - NSVAL( I ) = 1 - 130 CONTINUE - END IF -* -* Read the values for MAXB. -* - IF( SGG ) THEN - READ( NIN, FMT = * )( MXBVAL( I ), I = 1, NPARMS ) - DO 140 I = 1, NPARMS - IF( MXBVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( MXBVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' MAXB ', MXBVAL( I ), NMAX - FATAL = .TRUE. - END IF - 140 CONTINUE - WRITE( NOUT, FMT = 9983 )'MAXB: ', - $ ( MXBVAL( I ), I = 1, NPARMS ) - ELSE - DO 150 I = 1, NPARMS - MXBVAL( I ) = 1 - 150 CONTINUE - END IF -* -* Read the values for INMIN. -* - IF( NEP ) THEN - READ( NIN, FMT = * )( INMIN( I ), I = 1, NPARMS ) - DO 540 I = 1, NPARMS - IF( INMIN( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( I ), 0 - FATAL = .TRUE. - END IF - 540 CONTINUE - WRITE( NOUT, FMT = 9983 )'INMIN: ', - $ ( INMIN( I ), I = 1, NPARMS ) - ELSE - DO 550 I = 1, NPARMS - INMIN( I ) = 1 - 550 CONTINUE - END IF -* -* Read the values for INWIN. -* - IF( NEP ) THEN - READ( NIN, FMT = * )( INWIN( I ), I = 1, NPARMS ) - DO 560 I = 1, NPARMS - IF( INWIN( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( I ), 0 - FATAL = .TRUE. - END IF - 560 CONTINUE - WRITE( NOUT, FMT = 9983 )'INWIN: ', - $ ( INWIN( I ), I = 1, NPARMS ) - ELSE - DO 570 I = 1, NPARMS - INWIN( I ) = 1 - 570 CONTINUE - END IF -* -* Read the values for INIBL. -* - IF( NEP ) THEN - READ( NIN, FMT = * )( INIBL( I ), I = 1, NPARMS ) - DO 580 I = 1, NPARMS - IF( INIBL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( I ), 0 - FATAL = .TRUE. - END IF - 580 CONTINUE - WRITE( NOUT, FMT = 9983 )'INIBL: ', - $ ( INIBL( I ), I = 1, NPARMS ) - ELSE - DO 590 I = 1, NPARMS - INIBL( I ) = 1 - 590 CONTINUE - END IF -* -* Read the values for ISHFTS. -* - IF( NEP ) THEN - READ( NIN, FMT = * )( ISHFTS( I ), I = 1, NPARMS ) - DO 600 I = 1, NPARMS - IF( ISHFTS( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( I ), 0 - FATAL = .TRUE. - END IF - 600 CONTINUE - WRITE( NOUT, FMT = 9983 )'ISHFTS: ', - $ ( ISHFTS( I ), I = 1, NPARMS ) - ELSE - DO 610 I = 1, NPARMS - ISHFTS( I ) = 1 - 610 CONTINUE - END IF -* -* Read the values for IACC22. -* - IF( NEP .OR. SGG ) THEN - READ( NIN, FMT = * )( IACC22( I ), I = 1, NPARMS ) - DO 620 I = 1, NPARMS - IF( IACC22( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( I ), 0 - FATAL = .TRUE. - END IF - 620 CONTINUE - WRITE( NOUT, FMT = 9983 )'IACC22: ', - $ ( IACC22( I ), I = 1, NPARMS ) - ELSE - DO 630 I = 1, NPARMS - IACC22( I ) = 1 - 630 CONTINUE - END IF -* -* Read the values for NBCOL. -* - IF( SGG ) THEN - READ( NIN, FMT = * )( NBCOL( I ), I = 1, NPARMS ) - DO 160 I = 1, NPARMS - IF( NBCOL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )'NBCOL ', NBCOL( I ), 0 - FATAL = .TRUE. - ELSE IF( NBCOL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )'NBCOL ', NBCOL( I ), NMAX - FATAL = .TRUE. - END IF - 160 CONTINUE - WRITE( NOUT, FMT = 9983 )'NBCOL:', - $ ( NBCOL( I ), I = 1, NPARMS ) - ELSE - DO 170 I = 1, NPARMS - NBCOL( I ) = 1 - 170 CONTINUE - END IF - END IF -* -* Calculate and print the machine dependent constants. -* - WRITE( NOUT, FMT = * ) - EPS = SLAMCH( 'Underflow threshold' ) - WRITE( NOUT, FMT = 9981 )'underflow', EPS - EPS = SLAMCH( 'Overflow threshold' ) - WRITE( NOUT, FMT = 9981 )'overflow ', EPS - EPS = SLAMCH( 'Epsilon' ) - WRITE( NOUT, FMT = 9981 )'precision', EPS -* -* Read the threshold value for the test ratios. -* - READ( NIN, FMT = * )THRESH - WRITE( NOUT, FMT = 9982 )THRESH - IF( SEP .OR. SVD .OR. SGG ) THEN -* -* Read the flag that indicates whether to test LAPACK routines. -* - READ( NIN, FMT = * )TSTCHK -* -* Read the flag that indicates whether to test driver routines. -* - READ( NIN, FMT = * )TSTDRV - END IF -* -* Read the flag that indicates whether to test the error exits. -* - READ( NIN, FMT = * )TSTERR -* -* Read the code describing how to set the random number seed. -* - READ( NIN, FMT = * )NEWSD -* -* If NEWSD = 2, read another line with 4 integers for the seed. -* - IF( NEWSD.EQ.2 ) - $ READ( NIN, FMT = * )( IOLDSD( I ), I = 1, 4 ) -* - DO 180 I = 1, 4 - ISEED( I ) = IOLDSD( I ) - 180 CONTINUE -* - IF( FATAL ) THEN - WRITE( NOUT, FMT = 9999 ) - STOP - END IF -* -* Read the input lines indicating the test path and its parameters. -* The first three characters indicate the test path, and the number -* of test matrix types must be the first nonblank item in columns -* 4-80. -* - 190 CONTINUE -* - IF( .NOT.( SGX .OR. SXV ) ) THEN -* - 200 CONTINUE - READ( NIN, FMT = '(A80)', END = 380 )LINE - C3 = LINE( 1: 3 ) - LENP = LEN( LINE ) - I = 3 - ITMP = 0 - I1 = 0 - 210 CONTINUE - I = I + 1 - IF( I.GT.LENP ) THEN - IF( I1.GT.0 ) THEN - GO TO 240 - ELSE - NTYPES = MAXT - GO TO 240 - END IF - END IF - IF( LINE( I: I ).NE.' ' .AND. LINE( I: I ).NE.',' ) THEN - I1 = I - C1 = LINE( I1: I1 ) -* -* Check that a valid integer was read -* - DO 220 K = 1, 10 - IF( C1.EQ.INTSTR( K: K ) ) THEN - IC = K - 1 - GO TO 230 - END IF - 220 CONTINUE - WRITE( NOUT, FMT = 9991 )I, LINE - GO TO 200 - 230 CONTINUE - ITMP = 10*ITMP + IC - GO TO 210 - ELSE IF( I1.GT.0 ) THEN - GO TO 240 - ELSE - GO TO 210 - END IF - 240 CONTINUE - NTYPES = ITMP -* -* Skip the tests if NTYPES is <= 0. -* - IF( .NOT.( SEV .OR. SES .OR. SVX .OR. SSX .OR. SGV .OR. - $ SGS ) .AND. NTYPES.LE.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - GO TO 200 - END IF -* - ELSE - IF( SXV ) - $ C3 = 'SXV' - IF( SGX ) - $ C3 = 'SGX' - END IF -* -* Reset the random number seed. -* - IF( NEWSD.EQ.0 ) THEN - DO 250 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 250 CONTINUE - END IF -* - IF( LSAMEN( 3, C3, 'SHS' ) .OR. LSAMEN( 3, C3, 'NEP' ) ) THEN -* -* ------------------------------------- -* NEP: Nonsymmetric Eigenvalue Problem -* ------------------------------------- -* Vary the parameters -* NB = block size -* NBMIN = minimum block size -* NX = crossover point -* NS = number of shifts -* MAXB = minimum submatrix size -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV( 1, 1 ) - IF( TSTERR ) - $ CALL SERRHS( 'SHSEQR', NOUT ) - DO 270 I = 1, NPARMS - CALL XLAENV( 1, NBVAL( I ) ) - CALL XLAENV( 2, NBMIN( I ) ) - CALL XLAENV( 3, NXVAL( I ) ) - CALL XLAENV(12, MAX( 11, INMIN( I ) ) ) - CALL XLAENV(13, INWIN( I ) ) - CALL XLAENV(14, INIBL( I ) ) - CALL XLAENV(15, ISHFTS( I ) ) - CALL XLAENV(16, IACC22( I ) ) -* - IF( NEWSD.EQ.0 ) THEN - DO 260 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 260 CONTINUE - END IF - WRITE( NOUT, FMT = 9961 )C3, NBVAL( I ), NBMIN( I ), - $ NXVAL( I ), MAX( 11, INMIN(I)), - $ INWIN( I ), INIBL( I ), ISHFTS( I ), IACC22( I ) - CALL SCHKHS( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), A( 1, 5 ), NMAX, A( 1, 6 ), - $ A( 1, 7 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), - $ D( 1, 4 ), D( 1, 5 ), D( 1, 6 ), A( 1, 8 ), - $ A( 1, 9 ), A( 1, 10 ), A( 1, 11 ), A( 1, 12 ), - $ D( 1, 7 ), WORK, LWORK, IWORK, LOGWRK, RESULT, - $ INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'SCHKHS', INFO - 270 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'SST' ) .OR. LSAMEN( 3, C3, 'SEP' ) - $ .OR. LSAMEN( 3, C3, 'SE2' ) ) THEN -* -* ---------------------------------- -* SEP: Symmetric Eigenvalue Problem -* ---------------------------------- -* Vary the parameters -* NB = block size -* NBMIN = minimum block size -* NX = crossover point -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV( 1, 1 ) - CALL XLAENV( 9, 25 ) - IF( TSTERR ) - $ CALL SERRST( 'SST', NOUT ) - DO 290 I = 1, NPARMS - CALL XLAENV( 1, NBVAL( I ) ) - CALL XLAENV( 2, NBMIN( I ) ) - CALL XLAENV( 3, NXVAL( I ) ) -* - IF( NEWSD.EQ.0 ) THEN - DO 280 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 280 CONTINUE - END IF - WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ), - $ NXVAL( I ) - IF( TSTCHK ) THEN - IF( LSAMEN( 3, C3, 'SE2' ) ) THEN - CALL SCHKST2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, - $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ), - $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), - $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ), - $ D( 1, 10 ), D( 1, 11 ), A( 1, 3 ), NMAX, - $ A( 1, 4 ), A( 1, 5 ), D( 1, 12 ), A( 1, 6 ), - $ WORK, LWORK, IWORK, LIWORK, RESULT, INFO ) - ELSE - CALL SCHKST( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, - $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ), - $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), - $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ), - $ D( 1, 10 ), D( 1, 11 ), A( 1, 3 ), NMAX, - $ A( 1, 4 ), A( 1, 5 ), D( 1, 12 ), A( 1, 6 ), - $ WORK, LWORK, IWORK, LIWORK, RESULT, INFO ) - ENDIF - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'SCHKST', INFO - END IF - IF( TSTDRV ) THEN - IF( LSAMEN( 3, C3, 'SE2' ) ) THEN - CALL SDRVST2STG( NN, NVAL, 18, DOTYPE, ISEED, THRESH, - $ NOUT, A( 1, 1 ), NMAX, D( 1, 3 ), D( 1, 4 ), - $ D( 1, 5 ), D( 1, 6 ), D( 1, 8 ), D( 1, 9 ), - $ D( 1, 10 ), D( 1, 11), A( 1, 2 ), NMAX, - $ A( 1, 3 ), D( 1, 12 ), A( 1, 4 ), WORK, - $ LWORK, IWORK, LIWORK, RESULT, INFO ) - ELSE - CALL SDRVST( NN, NVAL, 18, DOTYPE, ISEED, THRESH, - $ NOUT, A( 1, 1 ), NMAX, D( 1, 3 ), D( 1, 4 ), - $ D( 1, 5 ), D( 1, 6 ), D( 1, 8 ), D( 1, 9 ), - $ D( 1, 10 ), D( 1, 11), A( 1, 2 ), NMAX, - $ A( 1, 3 ), D( 1, 12 ), A( 1, 4 ), WORK, - $ LWORK, IWORK, LIWORK, RESULT, INFO ) - ENDIF - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'SDRVST', INFO - END IF - 290 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'SSG' ) ) THEN -* -* ---------------------------------------------- -* SSG: Symmetric Generalized Eigenvalue Problem -* ---------------------------------------------- -* Vary the parameters -* NB = block size -* NBMIN = minimum block size -* NX = crossover point -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV( 9, 25 ) - DO 310 I = 1, NPARMS - CALL XLAENV( 1, NBVAL( I ) ) - CALL XLAENV( 2, NBMIN( I ) ) - CALL XLAENV( 3, NXVAL( I ) ) -* - IF( NEWSD.EQ.0 ) THEN - DO 300 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 300 CONTINUE - END IF - WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ), - $ NXVAL( I ) - IF( TSTCHK ) THEN -* CALL SDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, -* $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, -* $ D( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ), -* $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK, -* $ LWORK, IWORK, LIWORK, RESULT, INFO ) - CALL SDRVSG2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, - $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, - $ D( 1, 3 ), D( 1, 3 ), A( 1, 3 ), NMAX, - $ A( 1, 4 ), A( 1, 5 ), A( 1, 6 ), - $ A( 1, 7 ), WORK, LWORK, IWORK, LIWORK, - $ RESULT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'SDRVSG', INFO - END IF - 310 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'SBD' ) .OR. LSAMEN( 3, C3, 'SVD' ) ) THEN -* -* ---------------------------------- -* SVD: Singular Value Decomposition -* ---------------------------------- -* Vary the parameters -* NB = block size -* NBMIN = minimum block size -* NX = crossover point -* NRHS = number of right hand sides -* - MAXTYP = 16 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV( 1, 1 ) - CALL XLAENV( 9, 25 ) -* -* Test the error exits -* - IF( TSTERR .AND. TSTCHK ) - $ CALL SERRBD( 'SBD', NOUT ) - IF( TSTERR .AND. TSTDRV ) - $ CALL SERRED( 'SBD', NOUT ) -* - DO 330 I = 1, NPARMS - NRHS = NSVAL( I ) - CALL XLAENV( 1, NBVAL( I ) ) - CALL XLAENV( 2, NBMIN( I ) ) - CALL XLAENV( 3, NXVAL( I ) ) - IF( NEWSD.EQ.0 ) THEN - DO 320 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 320 CONTINUE - END IF - WRITE( NOUT, FMT = 9995 )C3, NBVAL( I ), NBMIN( I ), - $ NXVAL( I ), NRHS - IF( TSTCHK ) THEN - CALL SCHKBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, NRHS, ISEED, - $ THRESH, A( 1, 1 ), NMAX, D( 1, 1 ), - $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 2 ), - $ NMAX, A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), NMAX, - $ A( 1, 6 ), NMAX, A( 1, 7 ), A( 1, 8 ), WORK, - $ LWORK, IWORK, NOUT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'SCHKBD', INFO - END IF - IF( TSTDRV ) - $ CALL SDRVBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, ISEED, - $ THRESH, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, - $ A( 1, 3 ), NMAX, A( 1, 4 ), A( 1, 5 ), - $ A( 1, 6 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), - $ WORK, LWORK, IWORK, NOUT, INFO ) - 330 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'SEV' ) ) THEN -* -* -------------------------------------------- -* SEV: Nonsymmetric Eigenvalue Problem Driver -* SGEEV (eigenvalues and eigenvectors) -* -------------------------------------------- -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LE.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL SERRED( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL SDRVEV( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ), - $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 3 ), - $ NMAX, A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, RESULT, - $ WORK, LWORK, IWORK, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'SGEEV', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'SES' ) ) THEN -* -* -------------------------------------------- -* SES: Nonsymmetric Eigenvalue Problem Driver -* SGEES (Schur form) -* -------------------------------------------- -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LE.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL SERRED( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL SDRVES( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), - $ A( 1, 4 ), NMAX, RESULT, WORK, LWORK, IWORK, - $ LOGWRK, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'SGEES', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'SVX' ) ) THEN -* -* -------------------------------------------------------------- -* SVX: Nonsymmetric Eigenvalue Problem Expert Driver -* SGEEVX (eigenvalues, eigenvectors and condition numbers) -* -------------------------------------------------------------- -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LT.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL SERRED( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL SDRVVX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN, - $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ), - $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 3 ), - $ NMAX, A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, - $ D( 1, 5 ), D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), - $ D( 1, 9 ), D( 1, 10 ), D( 1, 11 ), D( 1, 12 ), - $ RESULT, WORK, LWORK, IWORK, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'SGEEVX', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'SSX' ) ) THEN -* -* --------------------------------------------------- -* SSX: Nonsymmetric Eigenvalue Problem Expert Driver -* SGEESX (Schur form and condition numbers) -* --------------------------------------------------- -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LT.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL SERRED( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL SDRVSX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN, - $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), - $ D( 1, 5 ), D( 1, 6 ), A( 1, 4 ), NMAX, - $ A( 1, 5 ), RESULT, WORK, LWORK, IWORK, LOGWRK, - $ INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'SGEESX', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'SGG' ) ) THEN -* -* ------------------------------------------------- -* SGG: Generalized Nonsymmetric Eigenvalue Problem -* ------------------------------------------------- -* Vary the parameters -* NB = block size -* NBMIN = minimum block size -* NS = number of shifts -* MAXB = minimum submatrix size -* IACC22: structured matrix multiply -* NBCOL = minimum column dimension for blocks -* - MAXTYP = 26 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV(1,1) - IF( TSTCHK .AND. TSTERR ) - & CALL SERRGG( C3, NOUT ) - DO 350 I = 1, NPARMS - CALL XLAENV( 1, NBVAL( I ) ) - CALL XLAENV( 2, NBMIN( I ) ) - CALL XLAENV( 4, NSVAL( I ) ) - CALL XLAENV( 8, MXBVAL( I ) ) - CALL XLAENV( 16, IACC22( I ) ) - CALL XLAENV( 5, NBCOL( I ) ) -* - IF( NEWSD.EQ.0 ) THEN - DO 340 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 340 CONTINUE - END IF - WRITE( NOUT, FMT = 9996 )C3, NBVAL( I ), NBMIN( I ), - $ NSVAL( I ), MXBVAL( I ), IACC22( I ), NBCOL( I ) - TSTDIF = .FALSE. - THRSHN = 10. - IF( TSTCHK ) THEN - CALL SCHKGG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, - $ TSTDIF, THRSHN, NOUT, A( 1, 1 ), NMAX, - $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), - $ A( 1, 6 ), A( 1, 7 ), A( 1, 8 ), A( 1, 9 ), - $ NMAX, A( 1, 10 ), A( 1, 11 ), A( 1, 12 ), - $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), - $ D( 1, 5 ), D( 1, 6 ), A( 1, 13 ), - $ A( 1, 14 ), WORK, LWORK, LOGWRK, RESULT, - $ INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'SCHKGG', INFO - END IF - 350 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'SGS' ) ) THEN -* -* ------------------------------------------------- -* SGS: Generalized Nonsymmetric Eigenvalue Problem -* SGGES (Schur form) -* ------------------------------------------------- -* - MAXTYP = 26 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LE.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL SERRGG( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL SDRGES( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), - $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), WORK, LWORK, - $ RESULT, LOGWRK, INFO ) -* - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'SDRGES', INFO -* -* Blocked version -* - CALL XLAENV(16,1) - CALL SDRGES3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), - $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), WORK, LWORK, - $ RESULT, LOGWRK, INFO ) -* - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'SDRGES3', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( SGX ) THEN -* -* ------------------------------------------------- -* SGX: Generalized Nonsymmetric Eigenvalue Problem -* SGGESX (Schur form and condition numbers) -* ------------------------------------------------- -* - MAXTYP = 5 - NTYPES = MAXTYP - IF( NN.LT.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL SERRGG( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV( 5, 2 ) - CALL SDRGSX( NN, NCMAX, THRESH, NIN, NOUT, A( 1, 1 ), NMAX, - $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), - $ A( 1, 6 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), - $ C( 1, 1 ), NCMAX*NCMAX, A( 1, 12 ), WORK, - $ LWORK, IWORK, LIWORK, LOGWRK, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'SDRGSX', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'SGV' ) ) THEN -* -* ------------------------------------------------- -* SGV: Generalized Nonsymmetric Eigenvalue Problem -* SGGEV (Eigenvalue/vector form) -* ------------------------------------------------- -* - MAXTYP = 26 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LE.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL SERRGG( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL SDRGEV( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), - $ A( 1, 9 ), NMAX, D( 1, 1 ), D( 1, 2 ), - $ D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), D( 1, 6 ), - $ WORK, LWORK, RESULT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'SDRGEV', INFO -* -* Blocked version -* - CALL SDRGEV3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), - $ A( 1, 9 ), NMAX, D( 1, 1 ), D( 1, 2 ), - $ D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), D( 1, 6 ), - $ WORK, LWORK, RESULT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'SDRGEV3', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( SXV ) THEN -* -* ------------------------------------------------- -* SXV: Generalized Nonsymmetric Eigenvalue Problem -* SGGEVX (eigenvalue/vector with condition numbers) -* ------------------------------------------------- -* - MAXTYP = 2 - NTYPES = MAXTYP - IF( NN.LT.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL SERRGG( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL SDRGVX( NN, THRESH, NIN, NOUT, A( 1, 1 ), NMAX, - $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), D( 1, 1 ), - $ D( 1, 2 ), D( 1, 3 ), A( 1, 5 ), A( 1, 6 ), - $ IWORK( 1 ), IWORK( 2 ), D( 1, 4 ), D( 1, 5 ), - $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ), - $ WORK, LWORK, IWORK( 3 ), LIWORK-2, RESULT, - $ LOGWRK, INFO ) -* - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'SDRGVX', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'SSB' ) ) THEN -* -* ------------------------------ -* SSB: Symmetric Band Reduction -* ------------------------------ -* - MAXTYP = 15 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - IF( TSTERR ) - $ CALL SERRST( 'SSB', NOUT ) -* CALL SCHKSB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH, -* $ NOUT, A( 1, 1 ), NMAX, D( 1, 1 ), D( 1, 2 ), -* $ A( 1, 2 ), NMAX, WORK, LWORK, RESULT, INFO ) - CALL SCHKSB2STG( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, - $ THRESH, NOUT, A( 1, 1 ), NMAX, D( 1, 1 ), - $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), - $ A( 1, 2 ), NMAX, WORK, LWORK, RESULT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'SCHKSB', INFO -* - ELSE IF( LSAMEN( 3, C3, 'SBB' ) ) THEN -* -* ------------------------------ -* SBB: General Band Reduction -* ------------------------------ -* - MAXTYP = 15 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - DO 370 I = 1, NPARMS - NRHS = NSVAL( I ) -* - IF( NEWSD.EQ.0 ) THEN - DO 360 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 360 CONTINUE - END IF - WRITE( NOUT, FMT = 9966 )C3, NRHS - CALL SCHKBB( NN, MVAL, NVAL, NK, KVAL, MAXTYP, DOTYPE, NRHS, - $ ISEED, THRESH, NOUT, A( 1, 1 ), NMAX, - $ A( 1, 2 ), 2*NMAX, D( 1, 1 ), D( 1, 2 ), - $ A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, A( 1, 6 ), - $ NMAX, A( 1, 7 ), WORK, LWORK, RESULT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'SCHKBB', INFO - 370 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'GLM' ) ) THEN -* -* ----------------------------------------- -* GLM: Generalized Linear Regression Model -* ----------------------------------------- -* - CALL XLAENV( 1, 1 ) - IF( TSTERR ) - $ CALL SERRGG( 'GLM', NOUT ) - CALL SCKGLM( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, - $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X, - $ WORK, D( 1, 1 ), NIN, NOUT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'SCKGLM', INFO -* - ELSE IF( LSAMEN( 3, C3, 'GQR' ) ) THEN -* -* ------------------------------------------ -* GQR: Generalized QR and RQ factorizations -* ------------------------------------------ -* - CALL XLAENV( 1, 1 ) - IF( TSTERR ) - $ CALL SERRGG( 'GQR', NOUT ) - CALL SCKGQR( NN, MVAL, NN, PVAL, NN, NVAL, NTYPES, ISEED, - $ THRESH, NMAX, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), TAUA, B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), - $ B( 1, 4 ), B( 1, 5 ), TAUB, WORK, D( 1, 1 ), NIN, - $ NOUT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'SCKGQR', INFO -* - ELSE IF( LSAMEN( 3, C3, 'GSV' ) ) THEN -* -* ---------------------------------------------- -* GSV: Generalized Singular Value Decomposition -* ---------------------------------------------- -* - CALL XLAENV( 1, 1 ) - IF( TSTERR ) - $ CALL SERRGG( 'GSV', NOUT ) - CALL SCKGSV( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, - $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), - $ A( 1, 3 ), B( 1, 3 ), A( 1, 4 ), TAUA, TAUB, - $ B( 1, 4 ), IWORK, WORK, D( 1, 1 ), NIN, NOUT, - $ INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'SCKGSV', INFO -* - ELSE IF( LSAMEN( 3, C3, 'CSD' ) ) THEN -* -* ---------------------------------------------- -* CSD: CS Decomposition -* ---------------------------------------------- -* - CALL XLAENV(1,1) - IF( TSTERR ) - $ CALL SERRGG( 'CSD', NOUT ) - CALL SCKCSD( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, - $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), - $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), IWORK, WORK, - $ D( 1, 1 ), NIN, NOUT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'SCKCSD', INFO -* - ELSE IF( LSAMEN( 3, C3, 'LSE' ) ) THEN -* -* -------------------------------------- -* LSE: Constrained Linear Least Squares -* -------------------------------------- -* - CALL XLAENV( 1, 1 ) - IF( TSTERR ) - $ CALL SERRGG( 'LSE', NOUT ) - CALL SCKLSE( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, - $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X, - $ WORK, D( 1, 1 ), NIN, NOUT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'SCKLSE', INFO -* - ELSE - WRITE( NOUT, FMT = * ) - WRITE( NOUT, FMT = * ) - WRITE( NOUT, FMT = 9992 )C3 - END IF - IF( .NOT.( SGX .OR. SXV ) ) - $ GO TO 190 - 380 CONTINUE - WRITE( NOUT, FMT = 9994 ) - S2 = SECOND( ) - WRITE( NOUT, FMT = 9993 )S2 - S1 -* - 9999 FORMAT( / ' Execution not attempted due to input errors' ) - 9997 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4 ) - 9996 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NS =', I4, - $ ', MAXB =', I4, ', IACC22 =', I4, ', NBCOL =', I4 ) - 9995 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4, - $ ', NRHS =', I4 ) - 9994 FORMAT( / / ' End of tests' ) - 9993 FORMAT( ' Total time used = ', F12.2, ' seconds', / ) - 9992 FORMAT( 1X, A3, ': Unrecognized path name' ) - 9991 FORMAT( / / ' *** Invalid integer value in column ', I2, - $ ' of input', ' line:', / A79 ) - 9990 FORMAT( / / 1X, A3, ' routines were not tested' ) - 9989 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be >=', - $ I6 ) - 9988 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be <=', - $ I6 ) - 9987 FORMAT( ' Tests of the Nonsymmetric Eigenvalue Problem routines' ) - 9986 FORMAT( ' Tests of the Symmetric Eigenvalue Problem routines' ) - 9985 FORMAT( ' Tests of the Singular Value Decomposition routines' ) - 9984 FORMAT( / ' The following parameter values will be used:' ) - 9983 FORMAT( 4X, A, 10I6, / 10X, 10I6 ) - 9982 FORMAT( / ' Routines pass computational tests if test ratio is ', - $ 'less than', F8.2, / ) - 9981 FORMAT( ' Relative machine ', A, ' is taken to be', E16.6 ) - 9980 FORMAT( ' *** Error code from ', A, ' = ', I4 ) - 9979 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver', - $ / ' SGEEV (eigenvalues and eigevectors)' ) - 9978 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver', - $ / ' SGEES (Schur form)' ) - 9977 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert', - $ ' Driver', / ' SGEEVX (eigenvalues, eigenvectors and', - $ ' condition numbers)' ) - 9976 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert', - $ ' Driver', / ' SGEESX (Schur form and condition', - $ ' numbers)' ) - 9975 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', - $ 'Problem routines' ) - 9974 FORMAT( ' Tests of SSBTRD', / ' (reduction of a symmetric band ', - $ 'matrix to tridiagonal form)' ) - 9973 FORMAT( / 1X, 71( '-' ) ) - 9972 FORMAT( / ' LAPACK VERSION ', I1, '.', I1, '.', I1 ) - 9971 FORMAT( / ' Tests of the Generalized Linear Regression Model ', - $ 'routines' ) - 9970 FORMAT( / ' Tests of the Generalized QR and RQ routines' ) - 9969 FORMAT( / ' Tests of the Generalized Singular Value', - $ ' Decomposition routines' ) - 9968 FORMAT( / ' Tests of the Linear Least Squares routines' ) - 9967 FORMAT( ' Tests of SGBBRD', / ' (reduction of a general band ', - $ 'matrix to real bidiagonal form)' ) - 9966 FORMAT( / / 1X, A3, ': NRHS =', I4 ) - 9965 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', - $ 'Problem Expert Driver SGGESX' ) - 9964 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', - $ 'Problem Driver SGGES' ) - 9963 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', - $ 'Problem Driver SGGEV' ) - 9962 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', - $ 'Problem Expert Driver SGGEVX' ) - 9961 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4, - $ ', INMIN=', I4, - $ ', INWIN =', I4, ', INIBL =', I4, ', ISHFTS =', I4, - $ ', IACC22 =', I4) - 9960 FORMAT( / ' Tests of the CS Decomposition routines' ) -* -* End of SCHKEE -* - END From 23a0d1bc1fb11a48a97c5d292730c752823f41de Mon Sep 17 00:00:00 2001 From: Martin Kroeker Date: Sun, 28 Feb 2021 18:47:06 +0100 Subject: [PATCH 06/17] Delete zchkee.f --- lapack-netlib/TESTING/EIG/zchkee.f | 2505 ---------------------------- 1 file changed, 2505 deletions(-) delete mode 100644 lapack-netlib/TESTING/EIG/zchkee.f diff --git a/lapack-netlib/TESTING/EIG/zchkee.f b/lapack-netlib/TESTING/EIG/zchkee.f deleted file mode 100644 index 6807ef7e4..000000000 --- a/lapack-netlib/TESTING/EIG/zchkee.f +++ /dev/null @@ -1,2505 +0,0 @@ -*> \brief \b ZCHKEE -* -* =========== DOCUMENTATION =========== -* -* Online html documentation available at -* http://www.netlib.org/lapack/explore-html/ -* -* Definition: -* =========== -* -* PROGRAM ZCHKEE -* -* -*> \par Purpose: -* ============= -*> -*> \verbatim -*> -*> ZCHKEE tests the COMPLEX*16 LAPACK subroutines for the matrix -*> eigenvalue problem. The test paths in this version are -*> -*> NEP (Nonsymmetric Eigenvalue Problem): -*> Test ZGEHRD, ZUNGHR, ZHSEQR, ZTREVC, ZHSEIN, and ZUNMHR -*> -*> SEP (Hermitian Eigenvalue Problem): -*> Test ZHETRD, ZUNGTR, ZSTEQR, ZSTERF, ZSTEIN, ZSTEDC, -*> and drivers ZHEEV(X), ZHBEV(X), ZHPEV(X), -*> ZHEEVD, ZHBEVD, ZHPEVD -*> -*> SVD (Singular Value Decomposition): -*> Test ZGEBRD, ZUNGBR, and ZBDSQR -*> and the drivers ZGESVD, ZGESDD -*> -*> ZEV (Nonsymmetric Eigenvalue/eigenvector Driver): -*> Test ZGEEV -*> -*> ZES (Nonsymmetric Schur form Driver): -*> Test ZGEES -*> -*> ZVX (Nonsymmetric Eigenvalue/eigenvector Expert Driver): -*> Test ZGEEVX -*> -*> ZSX (Nonsymmetric Schur form Expert Driver): -*> Test ZGEESX -*> -*> ZGG (Generalized Nonsymmetric Eigenvalue Problem): -*> Test ZGGHD3, ZGGBAL, ZGGBAK, ZHGEQZ, and ZTGEVC -*> -*> ZGS (Generalized Nonsymmetric Schur form Driver): -*> Test ZGGES -*> -*> ZGV (Generalized Nonsymmetric Eigenvalue/eigenvector Driver): -*> Test ZGGEV -*> -*> ZGX (Generalized Nonsymmetric Schur form Expert Driver): -*> Test ZGGESX -*> -*> ZXV (Generalized Nonsymmetric Eigenvalue/eigenvector Expert Driver): -*> Test ZGGEVX -*> -*> ZSG (Hermitian Generalized Eigenvalue Problem): -*> Test ZHEGST, ZHEGV, ZHEGVD, ZHEGVX, ZHPGST, ZHPGV, ZHPGVD, -*> ZHPGVX, ZHBGST, ZHBGV, ZHBGVD, and ZHBGVX -*> -*> ZHB (Hermitian Band Eigenvalue Problem): -*> Test ZHBTRD -*> -*> ZBB (Band Singular Value Decomposition): -*> Test ZGBBRD -*> -*> ZEC (Eigencondition estimation): -*> Test ZTRSYL, ZTREXC, ZTRSNA, and ZTRSEN -*> -*> ZBL (Balancing a general matrix) -*> Test ZGEBAL -*> -*> ZBK (Back transformation on a balanced matrix) -*> Test ZGEBAK -*> -*> ZGL (Balancing a matrix pair) -*> Test ZGGBAL -*> -*> ZGK (Back transformation on a matrix pair) -*> Test ZGGBAK -*> -*> GLM (Generalized Linear Regression Model): -*> Tests ZGGGLM -*> -*> GQR (Generalized QR and RQ factorizations): -*> Tests ZGGQRF and ZGGRQF -*> -*> GSV (Generalized Singular Value Decomposition): -*> Tests ZGGSVD, ZGGSVP, ZTGSJA, ZLAGS2, ZLAPLL, and ZLAPMT -*> -*> CSD (CS decomposition): -*> Tests ZUNCSD -*> -*> LSE (Constrained Linear Least Squares): -*> Tests ZGGLSE -*> -*> Each test path has a different set of inputs, but the data sets for -*> the driver routines xEV, xES, xVX, and xSX can be concatenated in a -*> single input file. The first line of input should contain one of the -*> 3-character path names in columns 1-3. The number of remaining lines -*> depends on what is found on the first line. -*> -*> The number of matrix types used in testing is often controllable from -*> the input file. The number of matrix types for each path, and the -*> test routine that describes them, is as follows: -*> -*> Path name(s) Types Test routine -*> -*> ZHS or NEP 21 ZCHKHS -*> ZST or SEP 21 ZCHKST (routines) -*> 18 ZDRVST (drivers) -*> ZBD or SVD 16 ZCHKBD (routines) -*> 5 ZDRVBD (drivers) -*> ZEV 21 ZDRVEV -*> ZES 21 ZDRVES -*> ZVX 21 ZDRVVX -*> ZSX 21 ZDRVSX -*> ZGG 26 ZCHKGG (routines) -*> ZGS 26 ZDRGES -*> ZGX 5 ZDRGSX -*> ZGV 26 ZDRGEV -*> ZXV 2 ZDRGVX -*> ZSG 21 ZDRVSG -*> ZHB 15 ZCHKHB -*> ZBB 15 ZCHKBB -*> ZEC - ZCHKEC -*> ZBL - ZCHKBL -*> ZBK - ZCHKBK -*> ZGL - ZCHKGL -*> ZGK - ZCHKGK -*> GLM 8 ZCKGLM -*> GQR 8 ZCKGQR -*> GSV 8 ZCKGSV -*> CSD 3 ZCKCSD -*> LSE 8 ZCKLSE -*> -*>----------------------------------------------------------------------- -*> -*> NEP input file: -*> -*> line 2: NN, INTEGER -*> Number of values of N. -*> -*> line 3: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix dimension N. -*> -*> line 4: NPARMS, INTEGER -*> Number of values of the parameters NB, NBMIN, NX, NS, and -*> MAXB. -*> -*> line 5: NBVAL, INTEGER array, dimension (NPARMS) -*> The values for the blocksize NB. -*> -*> line 6: NBMIN, INTEGER array, dimension (NPARMS) -*> The values for the minimum blocksize NBMIN. -*> -*> line 7: NXVAL, INTEGER array, dimension (NPARMS) -*> The values for the crossover point NX. -*> -*> line 8: INMIN, INTEGER array, dimension (NPARMS) -*> LAHQR vs TTQRE crossover point, >= 11 -*> -*> line 9: INWIN, INTEGER array, dimension (NPARMS) -*> recommended deflation window size -*> -*> line 10: INIBL, INTEGER array, dimension (NPARMS) -*> nibble crossover point -*> -*> line 11: ISHFTS, INTEGER array, dimension (NPARMS) -*> number of simultaneous shifts) -*> -*> line 12: IACC22, INTEGER array, dimension (NPARMS) -*> select structured matrix multiply: 0, 1 or 2) -*> -*> line 13: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. To have all of the test -*> ratios printed, use THRESH = 0.0 . -*> -*> line 14: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 14 was 2: -*> -*> line 15: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 15-EOF: The remaining lines occur in sets of 1 or 2 and allow -*> the user to specify the matrix types. Each line contains -*> a 3-character path name in columns 1-3, and the number -*> of matrix types must be the first nonblank item in columns -*> 4-80. If the number of matrix types is at least 1 but is -*> less than the maximum number of possible types, a second -*> line will be read to get the numbers of the matrix types to -*> be used. For example, -*> NEP 21 -*> requests all of the matrix types for the nonsymmetric -*> eigenvalue problem, while -*> NEP 4 -*> 9 10 11 12 -*> requests only matrices of type 9, 10, 11, and 12. -*> -*> The valid 3-character path names are 'NEP' or 'ZHS' for the -*> nonsymmetric eigenvalue routines. -*> -*>----------------------------------------------------------------------- -*> -*> SEP or ZSG input file: -*> -*> line 2: NN, INTEGER -*> Number of values of N. -*> -*> line 3: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix dimension N. -*> -*> line 4: NPARMS, INTEGER -*> Number of values of the parameters NB, NBMIN, and NX. -*> -*> line 5: NBVAL, INTEGER array, dimension (NPARMS) -*> The values for the blocksize NB. -*> -*> line 6: NBMIN, INTEGER array, dimension (NPARMS) -*> The values for the minimum blocksize NBMIN. -*> -*> line 7: NXVAL, INTEGER array, dimension (NPARMS) -*> The values for the crossover point NX. -*> -*> line 8: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 9: TSTCHK, LOGICAL -*> Flag indicating whether or not to test the LAPACK routines. -*> -*> line 10: TSTDRV, LOGICAL -*> Flag indicating whether or not to test the driver routines. -*> -*> line 11: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 12: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 12 was 2: -*> -*> line 13: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 13-EOF: Lines specifying matrix types, as for NEP. -*> The valid 3-character path names are 'SEP' or 'ZST' for the -*> Hermitian eigenvalue routines and driver routines, and -*> 'ZSG' for the routines for the Hermitian generalized -*> eigenvalue problem. -*> -*>----------------------------------------------------------------------- -*> -*> SVD input file: -*> -*> line 2: NN, INTEGER -*> Number of values of M and N. -*> -*> line 3: MVAL, INTEGER array, dimension (NN) -*> The values for the matrix row dimension M. -*> -*> line 4: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix column dimension N. -*> -*> line 5: NPARMS, INTEGER -*> Number of values of the parameter NB, NBMIN, NX, and NRHS. -*> -*> line 6: NBVAL, INTEGER array, dimension (NPARMS) -*> The values for the blocksize NB. -*> -*> line 7: NBMIN, INTEGER array, dimension (NPARMS) -*> The values for the minimum blocksize NBMIN. -*> -*> line 8: NXVAL, INTEGER array, dimension (NPARMS) -*> The values for the crossover point NX. -*> -*> line 9: NSVAL, INTEGER array, dimension (NPARMS) -*> The values for the number of right hand sides NRHS. -*> -*> line 10: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 11: TSTCHK, LOGICAL -*> Flag indicating whether or not to test the LAPACK routines. -*> -*> line 12: TSTDRV, LOGICAL -*> Flag indicating whether or not to test the driver routines. -*> -*> line 13: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 14: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 14 was 2: -*> -*> line 15: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 15-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path names are 'SVD' or 'ZBD' for both the -*> SVD routines and the SVD driver routines. -*> -*>----------------------------------------------------------------------- -*> -*> ZEV and ZES data files: -*> -*> line 1: 'ZEV' or 'ZES' in columns 1 to 3. -*> -*> line 2: NSIZES, INTEGER -*> Number of sizes of matrices to use. Should be at least 0 -*> and at most 20. If NSIZES = 0, no testing is done -*> (although the remaining 3 lines are still read). -*> -*> line 3: NN, INTEGER array, dimension(NSIZES) -*> Dimensions of matrices to be tested. -*> -*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> These integer parameters determine how blocking is done -*> (see ILAENV for details) -*> NB : block size -*> NBMIN : minimum block size -*> NX : minimum dimension for blocking -*> NS : number of shifts in xHSEQR -*> NBCOL : minimum column dimension for blocking -*> -*> line 5: THRESH, REAL -*> The test threshold against which computed residuals are -*> compared. Should generally be in the range from 10. to 20. -*> If it is 0., all test case data will be printed. -*> -*> line 6: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 6 was 2: -*> -*> line 7: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 8 and following: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'ZEV' to test CGEEV, or -*> 'ZES' to test CGEES. -*> -*>----------------------------------------------------------------------- -*> -*> The ZVX data has two parts. The first part is identical to ZEV, -*> and the second part consists of test matrices with precomputed -*> solutions. -*> -*> line 1: 'ZVX' in columns 1-3. -*> -*> line 2: NSIZES, INTEGER -*> If NSIZES = 0, no testing of randomly generated examples -*> is done, but any precomputed examples are tested. -*> -*> line 3: NN, INTEGER array, dimension(NSIZES) -*> -*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> -*> line 5: THRESH, REAL -*> -*> line 6: NEWSD, INTEGER -*> -*> If line 6 was 2: -*> -*> line 7: INTEGER array, dimension (4) -*> -*> lines 8 and following: The first line contains 'ZVX' in columns 1-3 -*> followed by the number of matrix types, possibly with -*> a second line to specify certain matrix types. -*> If the number of matrix types = 0, no testing of randomly -*> generated examples is done, but any precomputed examples -*> are tested. -*> -*> remaining lines : Each matrix is stored on 1+N+N**2 lines, where N is -*> its dimension. The first line contains the dimension N and -*> ISRT (two integers). ISRT indicates whether the last N lines -*> are sorted by increasing real part of the eigenvalue -*> (ISRT=0) or by increasing imaginary part (ISRT=1). The next -*> N**2 lines contain the matrix rowwise, one entry per line. -*> The last N lines correspond to each eigenvalue. Each of -*> these last N lines contains 4 real values: the real part of -*> the eigenvalues, the imaginary part of the eigenvalue, the -*> reciprocal condition number of the eigenvalues, and the -*> reciprocal condition number of the vector eigenvector. The -*> end of data is indicated by dimension N=0. Even if no data -*> is to be tested, there must be at least one line containing -*> N=0. -*> -*>----------------------------------------------------------------------- -*> -*> The ZSX data is like ZVX. The first part is identical to ZEV, and the -*> second part consists of test matrices with precomputed solutions. -*> -*> line 1: 'ZSX' in columns 1-3. -*> -*> line 2: NSIZES, INTEGER -*> If NSIZES = 0, no testing of randomly generated examples -*> is done, but any precomputed examples are tested. -*> -*> line 3: NN, INTEGER array, dimension(NSIZES) -*> -*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> -*> line 5: THRESH, REAL -*> -*> line 6: NEWSD, INTEGER -*> -*> If line 6 was 2: -*> -*> line 7: INTEGER array, dimension (4) -*> -*> lines 8 and following: The first line contains 'ZSX' in columns 1-3 -*> followed by the number of matrix types, possibly with -*> a second line to specify certain matrix types. -*> If the number of matrix types = 0, no testing of randomly -*> generated examples is done, but any precomputed examples -*> are tested. -*> -*> remaining lines : Each matrix is stored on 3+N**2 lines, where N is -*> its dimension. The first line contains the dimension N, the -*> dimension M of an invariant subspace, and ISRT. The second -*> line contains M integers, identifying the eigenvalues in the -*> invariant subspace (by their position in a list of -*> eigenvalues ordered by increasing real part (if ISRT=0) or -*> by increasing imaginary part (if ISRT=1)). The next N**2 -*> lines contain the matrix rowwise. The last line contains the -*> reciprocal condition number for the average of the selected -*> eigenvalues, and the reciprocal condition number for the -*> corresponding right invariant subspace. The end of data in -*> indicated by a line containing N=0, M=0, and ISRT = 0. Even -*> if no data is to be tested, there must be at least one line -*> containing N=0, M=0 and ISRT=0. -*> -*>----------------------------------------------------------------------- -*> -*> ZGG input file: -*> -*> line 2: NN, INTEGER -*> Number of values of N. -*> -*> line 3: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix dimension N. -*> -*> line 4: NPARMS, INTEGER -*> Number of values of the parameters NB, NBMIN, NBCOL, NS, and -*> MAXB. -*> -*> line 5: NBVAL, INTEGER array, dimension (NPARMS) -*> The values for the blocksize NB. -*> -*> line 6: NBMIN, INTEGER array, dimension (NPARMS) -*> The values for NBMIN, the minimum row dimension for blocks. -*> -*> line 7: NSVAL, INTEGER array, dimension (NPARMS) -*> The values for the number of shifts. -*> -*> line 8: MXBVAL, INTEGER array, dimension (NPARMS) -*> The values for MAXB, used in determining minimum blocksize. -*> -*> line 9: IACC22, INTEGER array, dimension (NPARMS) -*> select structured matrix multiply: 1 or 2) -*> -*> line 10: NBCOL, INTEGER array, dimension (NPARMS) -*> The values for NBCOL, the minimum column dimension for -*> blocks. -*> -*> line 11: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 12: TSTCHK, LOGICAL -*> Flag indicating whether or not to test the LAPACK routines. -*> -*> line 13: TSTDRV, LOGICAL -*> Flag indicating whether or not to test the driver routines. -*> -*> line 14: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 15: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 15 was 2: -*> -*> line 16: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 17-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'ZGG' for the generalized -*> eigenvalue problem routines and driver routines. -*> -*>----------------------------------------------------------------------- -*> -*> ZGS and ZGV input files: -*> -*> line 1: 'ZGS' or 'ZGV' in columns 1 to 3. -*> -*> line 2: NN, INTEGER -*> Number of values of N. -*> -*> line 3: NVAL, INTEGER array, dimension(NN) -*> Dimensions of matrices to be tested. -*> -*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> These integer parameters determine how blocking is done -*> (see ILAENV for details) -*> NB : block size -*> NBMIN : minimum block size -*> NX : minimum dimension for blocking -*> NS : number of shifts in xHGEQR -*> NBCOL : minimum column dimension for blocking -*> -*> line 5: THRESH, REAL -*> The test threshold against which computed residuals are -*> compared. Should generally be in the range from 10. to 20. -*> If it is 0., all test case data will be printed. -*> -*> line 6: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits. -*> -*> line 7: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 17 was 2: -*> -*> line 7: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 7-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'ZGS' for the generalized -*> eigenvalue problem routines and driver routines. -*> -*>----------------------------------------------------------------------- -*> -*> ZGX input file: -*> line 1: 'ZGX' in columns 1 to 3. -*> -*> line 2: N, INTEGER -*> Value of N. -*> -*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> These integer parameters determine how blocking is done -*> (see ILAENV for details) -*> NB : block size -*> NBMIN : minimum block size -*> NX : minimum dimension for blocking -*> NS : number of shifts in xHGEQR -*> NBCOL : minimum column dimension for blocking -*> -*> line 4: THRESH, REAL -*> The test threshold against which computed residuals are -*> compared. Should generally be in the range from 10. to 20. -*> Information will be printed about each test for which the -*> test ratio is greater than or equal to the threshold. -*> -*> line 5: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 6: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 6 was 2: -*> -*> line 7: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> If line 2 was 0: -*> -*> line 7-EOF: Precomputed examples are tested. -*> -*> remaining lines : Each example is stored on 3+2*N*N lines, where N is -*> its dimension. The first line contains the dimension (a -*> single integer). The next line contains an integer k such -*> that only the last k eigenvalues will be selected and appear -*> in the leading diagonal blocks of $A$ and $B$. The next N*N -*> lines contain the matrix A, one element per line. The next N*N -*> lines contain the matrix B. The last line contains the -*> reciprocal of the eigenvalue cluster condition number and the -*> reciprocal of the deflating subspace (associated with the -*> selected eigencluster) condition number. The end of data is -*> indicated by dimension N=0. Even if no data is to be tested, -*> there must be at least one line containing N=0. -*> -*>----------------------------------------------------------------------- -*> -*> ZXV input files: -*> line 1: 'ZXV' in columns 1 to 3. -*> -*> line 2: N, INTEGER -*> Value of N. -*> -*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> These integer parameters determine how blocking is done -*> (see ILAENV for details) -*> NB : block size -*> NBMIN : minimum block size -*> NX : minimum dimension for blocking -*> NS : number of shifts in xHGEQR -*> NBCOL : minimum column dimension for blocking -*> -*> line 4: THRESH, REAL -*> The test threshold against which computed residuals are -*> compared. Should generally be in the range from 10. to 20. -*> Information will be printed about each test for which the -*> test ratio is greater than or equal to the threshold. -*> -*> line 5: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 6: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 6 was 2: -*> -*> line 7: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> If line 2 was 0: -*> -*> line 7-EOF: Precomputed examples are tested. -*> -*> remaining lines : Each example is stored on 3+2*N*N lines, where N is -*> its dimension. The first line contains the dimension (a -*> single integer). The next N*N lines contain the matrix A, one -*> element per line. The next N*N lines contain the matrix B. -*> The next line contains the reciprocals of the eigenvalue -*> condition numbers. The last line contains the reciprocals of -*> the eigenvector condition numbers. The end of data is -*> indicated by dimension N=0. Even if no data is to be tested, -*> there must be at least one line containing N=0. -*> -*>----------------------------------------------------------------------- -*> -*> ZHB input file: -*> -*> line 2: NN, INTEGER -*> Number of values of N. -*> -*> line 3: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix dimension N. -*> -*> line 4: NK, INTEGER -*> Number of values of K. -*> -*> line 5: KVAL, INTEGER array, dimension (NK) -*> The values for the matrix dimension K. -*> -*> line 6: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 7 was 2: -*> -*> line 8: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 8-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'ZHB'. -*> -*>----------------------------------------------------------------------- -*> -*> ZBB input file: -*> -*> line 2: NN, INTEGER -*> Number of values of M and N. -*> -*> line 3: MVAL, INTEGER array, dimension (NN) -*> The values for the matrix row dimension M. -*> -*> line 4: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix column dimension N. -*> -*> line 4: NK, INTEGER -*> Number of values of K. -*> -*> line 5: KVAL, INTEGER array, dimension (NK) -*> The values for the matrix bandwidth K. -*> -*> line 6: NPARMS, INTEGER -*> Number of values of the parameter NRHS -*> -*> line 7: NSVAL, INTEGER array, dimension (NPARMS) -*> The values for the number of right hand sides NRHS. -*> -*> line 8: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 9: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 9 was 2: -*> -*> line 10: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 10-EOF: Lines specifying matrix types, as for SVD. -*> The 3-character path name is 'ZBB'. -*> -*>----------------------------------------------------------------------- -*> -*> ZEC input file: -*> -*> line 2: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> lines 3-EOF: -*> -*> Input for testing the eigencondition routines consists of a set of -*> specially constructed test cases and their solutions. The data -*> format is not intended to be modified by the user. -*> -*>----------------------------------------------------------------------- -*> -*> ZBL and ZBK input files: -*> -*> line 1: 'ZBL' in columns 1-3 to test CGEBAL, or 'ZBK' in -*> columns 1-3 to test CGEBAK. -*> -*> The remaining lines consist of specially constructed test cases. -*> -*>----------------------------------------------------------------------- -*> -*> ZGL and ZGK input files: -*> -*> line 1: 'ZGL' in columns 1-3 to test ZGGBAL, or 'ZGK' in -*> columns 1-3 to test ZGGBAK. -*> -*> The remaining lines consist of specially constructed test cases. -*> -*>----------------------------------------------------------------------- -*> -*> GLM data file: -*> -*> line 1: 'GLM' in columns 1 to 3. -*> -*> line 2: NN, INTEGER -*> Number of values of M, P, and N. -*> -*> line 3: MVAL, INTEGER array, dimension(NN) -*> Values of M (row dimension). -*> -*> line 4: PVAL, INTEGER array, dimension(NN) -*> Values of P (row dimension). -*> -*> line 5: NVAL, INTEGER array, dimension(NN) -*> Values of N (column dimension), note M <= N <= M+P. -*> -*> line 6: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 8: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 8 was 2: -*> -*> line 9: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'GLM' for the generalized -*> linear regression model routines. -*> -*>----------------------------------------------------------------------- -*> -*> GQR data file: -*> -*> line 1: 'GQR' in columns 1 to 3. -*> -*> line 2: NN, INTEGER -*> Number of values of M, P, and N. -*> -*> line 3: MVAL, INTEGER array, dimension(NN) -*> Values of M. -*> -*> line 4: PVAL, INTEGER array, dimension(NN) -*> Values of P. -*> -*> line 5: NVAL, INTEGER array, dimension(NN) -*> Values of N. -*> -*> line 6: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 8: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 8 was 2: -*> -*> line 9: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'GQR' for the generalized -*> QR and RQ routines. -*> -*>----------------------------------------------------------------------- -*> -*> GSV data file: -*> -*> line 1: 'GSV' in columns 1 to 3. -*> -*> line 2: NN, INTEGER -*> Number of values of M, P, and N. -*> -*> line 3: MVAL, INTEGER array, dimension(NN) -*> Values of M (row dimension). -*> -*> line 4: PVAL, INTEGER array, dimension(NN) -*> Values of P (row dimension). -*> -*> line 5: NVAL, INTEGER array, dimension(NN) -*> Values of N (column dimension). -*> -*> line 6: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 8: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 8 was 2: -*> -*> line 9: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'GSV' for the generalized -*> SVD routines. -*> -*>----------------------------------------------------------------------- -*> -*> CSD data file: -*> -*> line 1: 'CSD' in columns 1 to 3. -*> -*> line 2: NM, INTEGER -*> Number of values of M, P, and N. -*> -*> line 3: MVAL, INTEGER array, dimension(NM) -*> Values of M (row and column dimension of orthogonal matrix). -*> -*> line 4: PVAL, INTEGER array, dimension(NM) -*> Values of P (row dimension of top-left block). -*> -*> line 5: NVAL, INTEGER array, dimension(NM) -*> Values of N (column dimension of top-left block). -*> -*> line 6: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 8: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 8 was 2: -*> -*> line 9: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'CSD' for the CSD routine. -*> -*>----------------------------------------------------------------------- -*> -*> LSE data file: -*> -*> line 1: 'LSE' in columns 1 to 3. -*> -*> line 2: NN, INTEGER -*> Number of values of M, P, and N. -*> -*> line 3: MVAL, INTEGER array, dimension(NN) -*> Values of M. -*> -*> line 4: PVAL, INTEGER array, dimension(NN) -*> Values of P. -*> -*> line 5: NVAL, INTEGER array, dimension(NN) -*> Values of N, note P <= N <= P+M. -*> -*> line 6: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 8: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 8 was 2: -*> -*> line 9: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'GSV' for the generalized -*> SVD routines. -*> -*>----------------------------------------------------------------------- -*> -*> NMAX is currently set to 132 and must be at least 12 for some of the -*> precomputed examples, and LWORK = NMAX*(5*NMAX+20) in the parameter -*> statements below. For SVD, we assume NRHS may be as big as N. The -*> parameter NEED is set to 14 to allow for 14 N-by-N matrices for ZGG. -*> \endverbatim -* -* Arguments: -* ========== -* -* -* Authors: -* ======== -* -*> \author Univ. of Tennessee -*> \author Univ. of California Berkeley -*> \author Univ. of Colorado Denver -*> \author NAG Ltd. -* -*> \date June 2016 -* -*> \ingroup complex16_eig -* -* ===================================================================== - PROGRAM ZCHKEE -* -* -- LAPACK test routine (version 3.7.0) -- -* -- LAPACK is a software package provided by Univ. of Tennessee, -- -* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* June 2016 -* -* ===================================================================== -* -* .. Parameters .. - INTEGER NMAX - PARAMETER ( NMAX = 132 ) - INTEGER NCMAX - PARAMETER ( NCMAX = 20 ) - INTEGER NEED - PARAMETER ( NEED = 14 ) - INTEGER LWORK - PARAMETER ( LWORK = NMAX*( 5*NMAX+20 ) ) - INTEGER LIWORK - PARAMETER ( LIWORK = NMAX*( NMAX+20 ) ) - INTEGER MAXIN - PARAMETER ( MAXIN = 20 ) - INTEGER MAXT - PARAMETER ( MAXT = 30 ) - INTEGER NIN, NOUT - PARAMETER ( NIN = 5, NOUT = 6 ) -* .. -* .. Local Scalars .. - LOGICAL ZBK, ZBL, ZES, ZEV, ZGK, ZGL, ZGS, ZGV, ZGX, - $ ZSX, ZVX, ZXV, CSD, FATAL, GLM, GQR, GSV, LSE, - $ NEP, SEP, SVD, TSTCHK, TSTDIF, TSTDRV, TSTERR, - $ ZBB, ZGG, ZHB - CHARACTER C1 - CHARACTER*3 C3, PATH - CHARACTER*32 VNAME - CHARACTER*10 INTSTR - CHARACTER*80 LINE - INTEGER I, I1, IC, INFO, ITMP, K, LENP, MAXTYP, NEWSD, - $ NK, NN, NPARMS, NRHS, NTYPES, - $ VERS_MAJOR, VERS_MINOR, VERS_PATCH - DOUBLE PRECISION EPS, S1, S2, THRESH, THRSHN -* .. -* .. Local Arrays .. - LOGICAL DOTYPE( MAXT ), LOGWRK( NMAX ) - INTEGER IOLDSD( 4 ), ISEED( 4 ), IWORK( LIWORK ), - $ KVAL( MAXIN ), MVAL( MAXIN ), MXBVAL( MAXIN ), - $ NBCOL( MAXIN ), NBMIN( MAXIN ), NBVAL( MAXIN ), - $ NSVAL( MAXIN ), NVAL( MAXIN ), NXVAL( MAXIN ), - $ PVAL( MAXIN ) - INTEGER INMIN( MAXIN ), INWIN( MAXIN ), INIBL( MAXIN ), - $ ISHFTS( MAXIN ), IACC22( MAXIN ) - DOUBLE PRECISION ALPHA( NMAX ), BETA( NMAX ), DR( NMAX, 12 ), - $ RESULT( 500 ), RWORK( LWORK ), S( NMAX*NMAX ) - COMPLEX*16 A( NMAX*NMAX, NEED ), B( NMAX*NMAX, 5 ), - $ C( NCMAX*NCMAX, NCMAX*NCMAX ), DC( NMAX, 6 ), - $ TAUA( NMAX ), TAUB( NMAX ), WORK( LWORK ), - $ X( 5*NMAX ) -* .. -* .. External Functions .. - LOGICAL LSAMEN - DOUBLE PRECISION DLAMCH, DSECND - EXTERNAL LSAMEN, DLAMCH, DSECND -* .. -* .. External Subroutines .. - EXTERNAL ALAREQ, XLAENV, ZCHKBB, ZCHKBD, ZCHKBK, ZCHKBL, - $ ZCHKEC, ZCHKGG, ZCHKGK, ZCHKGL, ZCHKHB, ZCHKHS, - $ ZCHKST, ZCKCSD, ZCKGLM, ZCKGQR, ZCKGSV, ZCKLSE, - $ ZDRGES, ZDRGEV, ZDRGSX, ZDRGVX, ZDRVBD, ZDRVES, - $ ZDRVEV, ZDRVSG, ZDRVST, ZDRVSX, ZDRVVX, - $ ZERRBD, ZERRED, ZERRGG, ZERRHS, ZERRST, ILAVER, - $ ZDRGES3, ZDRGEV3, - $ ZCHKST2STG, ZDRVST2STG, ZCHKHB2STG -* .. -* .. Intrinsic Functions .. - INTRINSIC LEN, MIN -* .. -* .. Scalars in Common .. - LOGICAL LERR, OK - CHARACTER*32 SRNAMT - INTEGER INFOT, MAXB, NPROC, NSHIFT, NUNIT, SELDIM, - $ SELOPT -* .. -* .. Arrays in Common .. - LOGICAL SELVAL( 20 ) - INTEGER IPARMS( 100 ) - DOUBLE PRECISION SELWI( 20 ), SELWR( 20 ) -* .. -* .. Common blocks .. - COMMON / CENVIR / NPROC, NSHIFT, MAXB - COMMON / INFOC / INFOT, NUNIT, OK, LERR - COMMON / SRNAMC / SRNAMT - COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI - COMMON / CLAENV / IPARMS -* .. -* .. Data statements .. - DATA INTSTR / '0123456789' / - DATA IOLDSD / 0, 0, 0, 1 / -* .. -* .. Executable Statements .. -* - A = 0.0 - B = 0.0 - C = 0.0 - DC = 0.0 - S1 = DSECND( ) - FATAL = .FALSE. - NUNIT = NOUT -* -* Return to here to read multiple sets of data -* - 10 CONTINUE -* -* Read the first line and set the 3-character test path -* - READ( NIN, FMT = '(A80)', END = 380 )LINE - PATH = LINE( 1: 3 ) - NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'ZHS' ) - SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'ZST' ) .OR. - $ LSAMEN( 3, PATH, 'ZSG' ) .OR. LSAMEN( 3, PATH, 'SE2' ) - SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'ZBD' ) - ZEV = LSAMEN( 3, PATH, 'ZEV' ) - ZES = LSAMEN( 3, PATH, 'ZES' ) - ZVX = LSAMEN( 3, PATH, 'ZVX' ) - ZSX = LSAMEN( 3, PATH, 'ZSX' ) - ZGG = LSAMEN( 3, PATH, 'ZGG' ) - ZGS = LSAMEN( 3, PATH, 'ZGS' ) - ZGX = LSAMEN( 3, PATH, 'ZGX' ) - ZGV = LSAMEN( 3, PATH, 'ZGV' ) - ZXV = LSAMEN( 3, PATH, 'ZXV' ) - ZHB = LSAMEN( 3, PATH, 'ZHB' ) - ZBB = LSAMEN( 3, PATH, 'ZBB' ) - GLM = LSAMEN( 3, PATH, 'GLM' ) - GQR = LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' ) - GSV = LSAMEN( 3, PATH, 'GSV' ) - CSD = LSAMEN( 3, PATH, 'CSD' ) - LSE = LSAMEN( 3, PATH, 'LSE' ) - ZBL = LSAMEN( 3, PATH, 'ZBL' ) - ZBK = LSAMEN( 3, PATH, 'ZBK' ) - ZGL = LSAMEN( 3, PATH, 'ZGL' ) - ZGK = LSAMEN( 3, PATH, 'ZGK' ) -* -* Report values of parameters. -* - IF( PATH.EQ.' ' ) THEN - GO TO 10 - ELSE IF( NEP ) THEN - WRITE( NOUT, FMT = 9987 ) - ELSE IF( SEP ) THEN - WRITE( NOUT, FMT = 9986 ) - ELSE IF( SVD ) THEN - WRITE( NOUT, FMT = 9985 ) - ELSE IF( ZEV ) THEN - WRITE( NOUT, FMT = 9979 ) - ELSE IF( ZES ) THEN - WRITE( NOUT, FMT = 9978 ) - ELSE IF( ZVX ) THEN - WRITE( NOUT, FMT = 9977 ) - ELSE IF( ZSX ) THEN - WRITE( NOUT, FMT = 9976 ) - ELSE IF( ZGG ) THEN - WRITE( NOUT, FMT = 9975 ) - ELSE IF( ZGS ) THEN - WRITE( NOUT, FMT = 9964 ) - ELSE IF( ZGX ) THEN - WRITE( NOUT, FMT = 9965 ) - ELSE IF( ZGV ) THEN - WRITE( NOUT, FMT = 9963 ) - ELSE IF( ZXV ) THEN - WRITE( NOUT, FMT = 9962 ) - ELSE IF( ZHB ) THEN - WRITE( NOUT, FMT = 9974 ) - ELSE IF( ZBB ) THEN - WRITE( NOUT, FMT = 9967 ) - ELSE IF( GLM ) THEN - WRITE( NOUT, FMT = 9971 ) - ELSE IF( GQR ) THEN - WRITE( NOUT, FMT = 9970 ) - ELSE IF( GSV ) THEN - WRITE( NOUT, FMT = 9969 ) - ELSE IF( CSD ) THEN - WRITE( NOUT, FMT = 9960 ) - ELSE IF( LSE ) THEN - WRITE( NOUT, FMT = 9968 ) - ELSE IF( ZBL ) THEN -* -* ZGEBAL: Balancing -* - CALL ZCHKBL( NIN, NOUT ) - GO TO 380 - ELSE IF( ZBK ) THEN -* -* ZGEBAK: Back transformation -* - CALL ZCHKBK( NIN, NOUT ) - GO TO 380 - ELSE IF( ZGL ) THEN -* -* ZGGBAL: Balancing -* - CALL ZCHKGL( NIN, NOUT ) - GO TO 380 - ELSE IF( ZGK ) THEN -* -* ZGGBAK: Back transformation -* - CALL ZCHKGK( NIN, NOUT ) - GO TO 380 - ELSE IF( LSAMEN( 3, PATH, 'ZEC' ) ) THEN -* -* ZEC: Eigencondition estimation -* - READ( NIN, FMT = * )THRESH - CALL XLAENV( 1, 1 ) - CALL XLAENV( 12, 1 ) - TSTERR = .TRUE. - CALL ZCHKEC( THRESH, TSTERR, NIN, NOUT ) - GO TO 380 - ELSE - WRITE( NOUT, FMT = 9992 )PATH - GO TO 380 - END IF - CALL ILAVER( VERS_MAJOR, VERS_MINOR, VERS_PATCH ) - WRITE( NOUT, FMT = 9972 ) VERS_MAJOR, VERS_MINOR, VERS_PATCH - WRITE( NOUT, FMT = 9984 ) -* -* Read the number of values of M, P, and N. -* - READ( NIN, FMT = * )NN - IF( NN.LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' NN ', NN, 1 - NN = 0 - FATAL = .TRUE. - ELSE IF( NN.GT.MAXIN ) THEN - WRITE( NOUT, FMT = 9988 )' NN ', NN, MAXIN - NN = 0 - FATAL = .TRUE. - END IF -* -* Read the values of M -* - IF( .NOT.( ZGX .OR. ZXV ) ) THEN - READ( NIN, FMT = * )( MVAL( I ), I = 1, NN ) - IF( SVD ) THEN - VNAME = ' M ' - ELSE - VNAME = ' N ' - END IF - DO 20 I = 1, NN - IF( MVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )VNAME, MVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( MVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )VNAME, MVAL( I ), NMAX - FATAL = .TRUE. - END IF - 20 CONTINUE - WRITE( NOUT, FMT = 9983 )'M: ', ( MVAL( I ), I = 1, NN ) - END IF -* -* Read the values of P -* - IF( GLM .OR. GQR .OR. GSV .OR. CSD .OR. LSE ) THEN - READ( NIN, FMT = * )( PVAL( I ), I = 1, NN ) - DO 30 I = 1, NN - IF( PVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' P ', PVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( PVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' P ', PVAL( I ), NMAX - FATAL = .TRUE. - END IF - 30 CONTINUE - WRITE( NOUT, FMT = 9983 )'P: ', ( PVAL( I ), I = 1, NN ) - END IF -* -* Read the values of N -* - IF( SVD .OR. ZBB .OR. GLM .OR. GQR .OR. GSV .OR. CSD .OR. - $ LSE ) THEN - READ( NIN, FMT = * )( NVAL( I ), I = 1, NN ) - DO 40 I = 1, NN - IF( NVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' N ', NVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( NVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' N ', NVAL( I ), NMAX - FATAL = .TRUE. - END IF - 40 CONTINUE - ELSE - DO 50 I = 1, NN - NVAL( I ) = MVAL( I ) - 50 CONTINUE - END IF - IF( .NOT.( ZGX .OR. ZXV ) ) THEN - WRITE( NOUT, FMT = 9983 )'N: ', ( NVAL( I ), I = 1, NN ) - ELSE - WRITE( NOUT, FMT = 9983 )'N: ', NN - END IF -* -* Read the number of values of K, followed by the values of K -* - IF( ZHB .OR. ZBB ) THEN - READ( NIN, FMT = * )NK - READ( NIN, FMT = * )( KVAL( I ), I = 1, NK ) - DO 60 I = 1, NK - IF( KVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' K ', KVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( KVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' K ', KVAL( I ), NMAX - FATAL = .TRUE. - END IF - 60 CONTINUE - WRITE( NOUT, FMT = 9983 )'K: ', ( KVAL( I ), I = 1, NK ) - END IF -* - IF( ZEV .OR. ZES .OR. ZVX .OR. ZSX ) THEN -* -* For the nonsymmetric QR driver routines, only one set of -* parameters is allowed. -* - READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ), - $ INMIN( 1 ), INWIN( 1 ), INIBL(1), ISHFTS(1), IACC22(1) - IF( NBVAL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1 - FATAL = .TRUE. - ELSE IF( NBMIN( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1 - FATAL = .TRUE. - ELSE IF( NXVAL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1 - FATAL = .TRUE. - ELSE IF( INMIN( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( 1 ), 1 - FATAL = .TRUE. - ELSE IF( INWIN( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( 1 ), 1 - FATAL = .TRUE. - ELSE IF( INIBL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( 1 ), 1 - FATAL = .TRUE. - ELSE IF( ISHFTS( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( 1 ), 1 - FATAL = .TRUE. - ELSE IF( IACC22( 1 ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( 1 ), 0 - FATAL = .TRUE. - END IF - CALL XLAENV( 1, NBVAL( 1 ) ) - CALL XLAENV( 2, NBMIN( 1 ) ) - CALL XLAENV( 3, NXVAL( 1 ) ) - CALL XLAENV(12, MAX( 11, INMIN( 1 ) ) ) - CALL XLAENV(13, INWIN( 1 ) ) - CALL XLAENV(14, INIBL( 1 ) ) - CALL XLAENV(15, ISHFTS( 1 ) ) - CALL XLAENV(16, IACC22( 1 ) ) - WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 ) - WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 ) - WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 ) - WRITE( NOUT, FMT = 9983 )'INMIN: ', INMIN( 1 ) - WRITE( NOUT, FMT = 9983 )'INWIN: ', INWIN( 1 ) - WRITE( NOUT, FMT = 9983 )'INIBL: ', INIBL( 1 ) - WRITE( NOUT, FMT = 9983 )'ISHFTS: ', ISHFTS( 1 ) - WRITE( NOUT, FMT = 9983 )'IACC22: ', IACC22( 1 ) -* - ELSE IF( ZGS .OR. ZGX .OR. ZGV .OR. ZXV ) THEN -* -* For the nonsymmetric generalized driver routines, only one set of -* parameters is allowed. -* - READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ), - $ NSVAL( 1 ), MXBVAL( 1 ) - IF( NBVAL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1 - FATAL = .TRUE. - ELSE IF( NBMIN( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1 - FATAL = .TRUE. - ELSE IF( NXVAL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1 - FATAL = .TRUE. - ELSE IF( NSVAL( 1 ).LT.2 ) THEN - WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( 1 ), 2 - FATAL = .TRUE. - ELSE IF( MXBVAL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( 1 ), 1 - FATAL = .TRUE. - END IF - CALL XLAENV( 1, NBVAL( 1 ) ) - CALL XLAENV( 2, NBMIN( 1 ) ) - CALL XLAENV( 3, NXVAL( 1 ) ) - CALL XLAENV( 4, NSVAL( 1 ) ) - CALL XLAENV( 8, MXBVAL( 1 ) ) - WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 ) - WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 ) - WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 ) - WRITE( NOUT, FMT = 9983 )'NS: ', NSVAL( 1 ) - WRITE( NOUT, FMT = 9983 )'MAXB: ', MXBVAL( 1 ) - ELSE IF( .NOT.ZHB .AND. .NOT.GLM .AND. .NOT.GQR .AND. .NOT. - $ GSV .AND. .NOT.CSD .AND. .NOT.LSE ) THEN -* -* For the other paths, the number of parameters can be varied -* from the input file. Read the number of parameter values. -* - READ( NIN, FMT = * )NPARMS - IF( NPARMS.LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )'NPARMS', NPARMS, 1 - NPARMS = 0 - FATAL = .TRUE. - ELSE IF( NPARMS.GT.MAXIN ) THEN - WRITE( NOUT, FMT = 9988 )'NPARMS', NPARMS, MAXIN - NPARMS = 0 - FATAL = .TRUE. - END IF -* -* Read the values of NB -* - IF( .NOT.ZBB ) THEN - READ( NIN, FMT = * )( NBVAL( I ), I = 1, NPARMS ) - DO 70 I = 1, NPARMS - IF( NBVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( NBVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' NB ', NBVAL( I ), NMAX - FATAL = .TRUE. - END IF - 70 CONTINUE - WRITE( NOUT, FMT = 9983 )'NB: ', - $ ( NBVAL( I ), I = 1, NPARMS ) - END IF -* -* Read the values of NBMIN -* - IF( NEP .OR. SEP .OR. SVD .OR. ZGG ) THEN - READ( NIN, FMT = * )( NBMIN( I ), I = 1, NPARMS ) - DO 80 I = 1, NPARMS - IF( NBMIN( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( I ), 0 - FATAL = .TRUE. - ELSE IF( NBMIN( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )'NBMIN ', NBMIN( I ), NMAX - FATAL = .TRUE. - END IF - 80 CONTINUE - WRITE( NOUT, FMT = 9983 )'NBMIN:', - $ ( NBMIN( I ), I = 1, NPARMS ) - ELSE - DO 90 I = 1, NPARMS - NBMIN( I ) = 1 - 90 CONTINUE - END IF -* -* Read the values of NX -* - IF( NEP .OR. SEP .OR. SVD ) THEN - READ( NIN, FMT = * )( NXVAL( I ), I = 1, NPARMS ) - DO 100 I = 1, NPARMS - IF( NXVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( NXVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' NX ', NXVAL( I ), NMAX - FATAL = .TRUE. - END IF - 100 CONTINUE - WRITE( NOUT, FMT = 9983 )'NX: ', - $ ( NXVAL( I ), I = 1, NPARMS ) - ELSE - DO 110 I = 1, NPARMS - NXVAL( I ) = 1 - 110 CONTINUE - END IF -* -* Read the values of NSHIFT (if ZGG) or NRHS (if SVD -* or ZBB). -* - IF( SVD .OR. ZBB .OR. ZGG ) THEN - READ( NIN, FMT = * )( NSVAL( I ), I = 1, NPARMS ) - DO 120 I = 1, NPARMS - IF( NSVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( NSVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' NS ', NSVAL( I ), NMAX - FATAL = .TRUE. - END IF - 120 CONTINUE - WRITE( NOUT, FMT = 9983 )'NS: ', - $ ( NSVAL( I ), I = 1, NPARMS ) - ELSE - DO 130 I = 1, NPARMS - NSVAL( I ) = 1 - 130 CONTINUE - END IF -* -* Read the values for MAXB. -* - IF( ZGG ) THEN - READ( NIN, FMT = * )( MXBVAL( I ), I = 1, NPARMS ) - DO 140 I = 1, NPARMS - IF( MXBVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( MXBVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' MAXB ', MXBVAL( I ), NMAX - FATAL = .TRUE. - END IF - 140 CONTINUE - WRITE( NOUT, FMT = 9983 )'MAXB: ', - $ ( MXBVAL( I ), I = 1, NPARMS ) - ELSE - DO 150 I = 1, NPARMS - MXBVAL( I ) = 1 - 150 CONTINUE - END IF -* -* Read the values for INMIN. -* - IF( NEP ) THEN - READ( NIN, FMT = * )( INMIN( I ), I = 1, NPARMS ) - DO 540 I = 1, NPARMS - IF( INMIN( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( I ), 0 - FATAL = .TRUE. - END IF - 540 CONTINUE - WRITE( NOUT, FMT = 9983 )'INMIN: ', - $ ( INMIN( I ), I = 1, NPARMS ) - ELSE - DO 550 I = 1, NPARMS - INMIN( I ) = 1 - 550 CONTINUE - END IF -* -* Read the values for INWIN. -* - IF( NEP ) THEN - READ( NIN, FMT = * )( INWIN( I ), I = 1, NPARMS ) - DO 560 I = 1, NPARMS - IF( INWIN( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( I ), 0 - FATAL = .TRUE. - END IF - 560 CONTINUE - WRITE( NOUT, FMT = 9983 )'INWIN: ', - $ ( INWIN( I ), I = 1, NPARMS ) - ELSE - DO 570 I = 1, NPARMS - INWIN( I ) = 1 - 570 CONTINUE - END IF -* -* Read the values for INIBL. -* - IF( NEP ) THEN - READ( NIN, FMT = * )( INIBL( I ), I = 1, NPARMS ) - DO 580 I = 1, NPARMS - IF( INIBL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( I ), 0 - FATAL = .TRUE. - END IF - 580 CONTINUE - WRITE( NOUT, FMT = 9983 )'INIBL: ', - $ ( INIBL( I ), I = 1, NPARMS ) - ELSE - DO 590 I = 1, NPARMS - INIBL( I ) = 1 - 590 CONTINUE - END IF -* -* Read the values for ISHFTS. -* - IF( NEP ) THEN - READ( NIN, FMT = * )( ISHFTS( I ), I = 1, NPARMS ) - DO 600 I = 1, NPARMS - IF( ISHFTS( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( I ), 0 - FATAL = .TRUE. - END IF - 600 CONTINUE - WRITE( NOUT, FMT = 9983 )'ISHFTS: ', - $ ( ISHFTS( I ), I = 1, NPARMS ) - ELSE - DO 610 I = 1, NPARMS - ISHFTS( I ) = 1 - 610 CONTINUE - END IF -* -* Read the values for IACC22. -* - IF( NEP .OR. ZGG ) THEN - READ( NIN, FMT = * )( IACC22( I ), I = 1, NPARMS ) - DO 620 I = 1, NPARMS - IF( IACC22( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( I ), 0 - FATAL = .TRUE. - END IF - 620 CONTINUE - WRITE( NOUT, FMT = 9983 )'IACC22: ', - $ ( IACC22( I ), I = 1, NPARMS ) - ELSE - DO 630 I = 1, NPARMS - IACC22( I ) = 1 - 630 CONTINUE - END IF -* -* Read the values for NBCOL. -* - IF( ZGG ) THEN - READ( NIN, FMT = * )( NBCOL( I ), I = 1, NPARMS ) - DO 160 I = 1, NPARMS - IF( NBCOL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )'NBCOL ', NBCOL( I ), 0 - FATAL = .TRUE. - ELSE IF( NBCOL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )'NBCOL ', NBCOL( I ), NMAX - FATAL = .TRUE. - END IF - 160 CONTINUE - WRITE( NOUT, FMT = 9983 )'NBCOL:', - $ ( NBCOL( I ), I = 1, NPARMS ) - ELSE - DO 170 I = 1, NPARMS - NBCOL( I ) = 1 - 170 CONTINUE - END IF - END IF -* -* Calculate and print the machine dependent constants. -* - WRITE( NOUT, FMT = * ) - EPS = DLAMCH( 'Underflow threshold' ) - WRITE( NOUT, FMT = 9981 )'underflow', EPS - EPS = DLAMCH( 'Overflow threshold' ) - WRITE( NOUT, FMT = 9981 )'overflow ', EPS - EPS = DLAMCH( 'Epsilon' ) - WRITE( NOUT, FMT = 9981 )'precision', EPS -* -* Read the threshold value for the test ratios. -* - READ( NIN, FMT = * )THRESH - WRITE( NOUT, FMT = 9982 )THRESH - IF( SEP .OR. SVD .OR. ZGG ) THEN -* -* Read the flag that indicates whether to test LAPACK routines. -* - READ( NIN, FMT = * )TSTCHK -* -* Read the flag that indicates whether to test driver routines. -* - READ( NIN, FMT = * )TSTDRV - END IF -* -* Read the flag that indicates whether to test the error exits. -* - READ( NIN, FMT = * )TSTERR -* -* Read the code describing how to set the random number seed. -* - READ( NIN, FMT = * )NEWSD -* -* If NEWSD = 2, read another line with 4 integers for the seed. -* - IF( NEWSD.EQ.2 ) - $ READ( NIN, FMT = * )( IOLDSD( I ), I = 1, 4 ) -* - DO 180 I = 1, 4 - ISEED( I ) = IOLDSD( I ) - 180 CONTINUE -* - IF( FATAL ) THEN - WRITE( NOUT, FMT = 9999 ) - STOP - END IF -* -* Read the input lines indicating the test path and its parameters. -* The first three characters indicate the test path, and the number -* of test matrix types must be the first nonblank item in columns -* 4-80. -* - 190 CONTINUE -* - IF( .NOT.( ZGX .OR. ZXV ) ) THEN -* - 200 CONTINUE - READ( NIN, FMT = '(A80)', END = 380 )LINE - C3 = LINE( 1: 3 ) - LENP = LEN( LINE ) - I = 3 - ITMP = 0 - I1 = 0 - 210 CONTINUE - I = I + 1 - IF( I.GT.LENP ) THEN - IF( I1.GT.0 ) THEN - GO TO 240 - ELSE - NTYPES = MAXT - GO TO 240 - END IF - END IF - IF( LINE( I: I ).NE.' ' .AND. LINE( I: I ).NE.',' ) THEN - I1 = I - C1 = LINE( I1: I1 ) -* -* Check that a valid integer was read -* - DO 220 K = 1, 10 - IF( C1.EQ.INTSTR( K: K ) ) THEN - IC = K - 1 - GO TO 230 - END IF - 220 CONTINUE - WRITE( NOUT, FMT = 9991 )I, LINE - GO TO 200 - 230 CONTINUE - ITMP = 10*ITMP + IC - GO TO 210 - ELSE IF( I1.GT.0 ) THEN - GO TO 240 - ELSE - GO TO 210 - END IF - 240 CONTINUE - NTYPES = ITMP -* -* Skip the tests if NTYPES is <= 0. -* - IF( .NOT.( ZEV .OR. ZES .OR. ZVX .OR. ZSX .OR. ZGV .OR. - $ ZGS ) .AND. NTYPES.LE.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - GO TO 200 - END IF -* - ELSE - IF( ZGX ) - $ C3 = 'ZGX' - IF( ZXV ) - $ C3 = 'ZXV' - END IF -* -* Reset the random number seed. -* - IF( NEWSD.EQ.0 ) THEN - DO 250 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 250 CONTINUE - END IF -* - IF( LSAMEN( 3, C3, 'ZHS' ) .OR. LSAMEN( 3, C3, 'NEP' ) ) THEN -* -* ------------------------------------- -* NEP: Nonsymmetric Eigenvalue Problem -* ------------------------------------- -* Vary the parameters -* NB = block size -* NBMIN = minimum block size -* NX = crossover point -* NS = number of shifts -* MAXB = minimum submatrix size -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV( 1, 1 ) - IF( TSTERR ) - $ CALL ZERRHS( 'ZHSEQR', NOUT ) - DO 270 I = 1, NPARMS - CALL XLAENV( 1, NBVAL( I ) ) - CALL XLAENV( 2, NBMIN( I ) ) - CALL XLAENV( 3, NXVAL( I ) ) - CALL XLAENV(12, MAX( 11, INMIN( I ) ) ) - CALL XLAENV(13, INWIN( I ) ) - CALL XLAENV(14, INIBL( I ) ) - CALL XLAENV(15, ISHFTS( I ) ) - CALL XLAENV(16, IACC22( I ) ) -* - IF( NEWSD.EQ.0 ) THEN - DO 260 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 260 CONTINUE - END IF - WRITE( NOUT, FMT = 9961 )C3, NBVAL( I ), NBMIN( I ), - $ NXVAL( I ), MAX( 11, INMIN(I)), - $ INWIN( I ), INIBL( I ), ISHFTS( I ), IACC22( I ) - CALL ZCHKHS( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), A( 1, 5 ), NMAX, A( 1, 6 ), - $ A( 1, 7 ), DC( 1, 1 ), DC( 1, 2 ), A( 1, 8 ), - $ A( 1, 9 ), A( 1, 10 ), A( 1, 11 ), A( 1, 12 ), - $ DC( 1, 3 ), WORK, LWORK, RWORK, IWORK, LOGWRK, - $ RESULT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZCHKHS', INFO - 270 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'ZST' ) .OR. LSAMEN( 3, C3, 'SEP' ) - $ .OR. LSAMEN( 3, C3, 'SE2' ) ) THEN -* -* ---------------------------------- -* SEP: Symmetric Eigenvalue Problem -* ---------------------------------- -* Vary the parameters -* NB = block size -* NBMIN = minimum block size -* NX = crossover point -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV( 1, 1 ) - CALL XLAENV( 9, 25 ) - IF( TSTERR ) - $ CALL ZERRST( 'ZST', NOUT ) - DO 290 I = 1, NPARMS - CALL XLAENV( 1, NBVAL( I ) ) - CALL XLAENV( 2, NBMIN( I ) ) - CALL XLAENV( 3, NXVAL( I ) ) -* - IF( NEWSD.EQ.0 ) THEN - DO 280 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 280 CONTINUE - END IF - WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ), - $ NXVAL( I ) - IF( TSTCHK ) THEN - IF( LSAMEN( 3, C3, 'SE2' ) ) THEN - CALL ZCHKST2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, - $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), - $ DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ), - $ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), - $ DR( 1, 7 ), DR( 1, 8 ), DR( 1, 9 ), - $ DR( 1, 10 ), DR( 1, 11 ), A( 1, 3 ), NMAX, - $ A( 1, 4 ), A( 1, 5 ), DC( 1, 1 ), A( 1, 6 ), - $ WORK, LWORK, RWORK, LWORK, IWORK, LIWORK, - $ RESULT, INFO ) - ELSE - CALL ZCHKST( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, - $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), - $ DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ), - $ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), - $ DR( 1, 7 ), DR( 1, 8 ), DR( 1, 9 ), - $ DR( 1, 10 ), DR( 1, 11 ), A( 1, 3 ), NMAX, - $ A( 1, 4 ), A( 1, 5 ), DC( 1, 1 ), A( 1, 6 ), - $ WORK, LWORK, RWORK, LWORK, IWORK, LIWORK, - $ RESULT, INFO ) - ENDIF - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZCHKST', INFO - END IF - IF( TSTDRV ) THEN - IF( LSAMEN( 3, C3, 'SE2' ) ) THEN - CALL ZDRVST2STG( NN, NVAL, 18, DOTYPE, ISEED, THRESH, - $ NOUT, A( 1, 1 ), NMAX, DR( 1, 3 ), DR( 1, 4 ), - $ DR( 1, 5 ), DR( 1, 8 ), DR( 1, 9 ), - $ DR( 1, 10 ), A( 1, 2 ), NMAX, A( 1, 3 ), - $ DC( 1, 1 ), A( 1, 4 ), WORK, LWORK, RWORK, - $ LWORK, IWORK, LIWORK, RESULT, INFO ) - ELSE - CALL ZDRVST( NN, NVAL, 18, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, DR( 1, 3 ), DR( 1, 4 ), - $ DR( 1, 5 ), DR( 1, 8 ), DR( 1, 9 ), - $ DR( 1, 10 ), A( 1, 2 ), NMAX, A( 1, 3 ), - $ DC( 1, 1 ), A( 1, 4 ), WORK, LWORK, RWORK, - $ LWORK, IWORK, LIWORK, RESULT, INFO ) - ENDIF - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZDRVST', INFO - END IF - 290 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'ZSG' ) ) THEN -* -* ---------------------------------------------- -* ZSG: Hermitian Generalized Eigenvalue Problem -* ---------------------------------------------- -* Vary the parameters -* NB = block size -* NBMIN = minimum block size -* NX = crossover point -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV( 9, 25 ) - DO 310 I = 1, NPARMS - CALL XLAENV( 1, NBVAL( I ) ) - CALL XLAENV( 2, NBMIN( I ) ) - CALL XLAENV( 3, NXVAL( I ) ) -* - IF( NEWSD.EQ.0 ) THEN - DO 300 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 300 CONTINUE - END IF - WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ), - $ NXVAL( I ) - IF( TSTCHK ) THEN -* CALL ZDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, -* $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, -* $ DR( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ), -* $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK, -* $ LWORK, RWORK, LWORK, IWORK, LIWORK, RESULT, -* $ INFO ) - CALL ZDRVSG2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, - $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, - $ DR( 1, 3 ), DR( 1, 4 ), A( 1, 3 ), NMAX, - $ A( 1, 4 ), A( 1, 5 ), A( 1, 6 ), - $ A( 1, 7 ), WORK, LWORK, RWORK, LWORK, - $ IWORK, LIWORK, RESULT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZDRVSG', INFO - END IF - 310 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'ZBD' ) .OR. LSAMEN( 3, C3, 'SVD' ) ) THEN -* -* ---------------------------------- -* SVD: Singular Value Decomposition -* ---------------------------------- -* Vary the parameters -* NB = block size -* NBMIN = minimum block size -* NX = crossover point -* NRHS = number of right hand sides -* - MAXTYP = 16 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV( 9, 25 ) -* -* Test the error exits -* - CALL XLAENV( 1, 1 ) - IF( TSTERR .AND. TSTCHK ) - $ CALL ZERRBD( 'ZBD', NOUT ) - IF( TSTERR .AND. TSTDRV ) - $ CALL ZERRED( 'ZBD', NOUT ) -* - DO 330 I = 1, NPARMS - NRHS = NSVAL( I ) - CALL XLAENV( 1, NBVAL( I ) ) - CALL XLAENV( 2, NBMIN( I ) ) - CALL XLAENV( 3, NXVAL( I ) ) - IF( NEWSD.EQ.0 ) THEN - DO 320 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 320 CONTINUE - END IF - WRITE( NOUT, FMT = 9995 )C3, NBVAL( I ), NBMIN( I ), - $ NXVAL( I ), NRHS - IF( TSTCHK ) THEN - CALL ZCHKBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, NRHS, ISEED, - $ THRESH, A( 1, 1 ), NMAX, DR( 1, 1 ), - $ DR( 1, 2 ), DR( 1, 3 ), DR( 1, 4 ), - $ A( 1, 2 ), NMAX, A( 1, 3 ), A( 1, 4 ), - $ A( 1, 5 ), NMAX, A( 1, 6 ), NMAX, A( 1, 7 ), - $ A( 1, 8 ), WORK, LWORK, RWORK, NOUT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZCHKBD', INFO - END IF - IF( TSTDRV ) - $ CALL ZDRVBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, ISEED, - $ THRESH, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, - $ A( 1, 3 ), NMAX, A( 1, 4 ), A( 1, 5 ), - $ A( 1, 6 ), DR( 1, 1 ), DR( 1, 2 ), - $ DR( 1, 3 ), WORK, LWORK, RWORK, IWORK, NOUT, - $ INFO ) - 330 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'ZEV' ) ) THEN -* -* -------------------------------------------- -* ZEV: Nonsymmetric Eigenvalue Problem Driver -* ZGEEV (eigenvalues and eigenvectors) -* -------------------------------------------- -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LE.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL ZERRED( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL ZDRVEV( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), DC( 1, 1 ), - $ DC( 1, 2 ), A( 1, 3 ), NMAX, A( 1, 4 ), NMAX, - $ A( 1, 5 ), NMAX, RESULT, WORK, LWORK, RWORK, - $ IWORK, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZGEEV', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'ZES' ) ) THEN -* -* -------------------------------------------- -* ZES: Nonsymmetric Eigenvalue Problem Driver -* ZGEES (Schur form) -* -------------------------------------------- -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LE.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL ZERRED( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL ZDRVES( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ DC( 1, 1 ), DC( 1, 2 ), A( 1, 4 ), NMAX, - $ RESULT, WORK, LWORK, RWORK, IWORK, LOGWRK, - $ INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZGEES', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'ZVX' ) ) THEN -* -* -------------------------------------------------------------- -* ZVX: Nonsymmetric Eigenvalue Problem Expert Driver -* ZGEEVX (eigenvalues, eigenvectors and condition numbers) -* -------------------------------------------------------------- -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LT.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL ZERRED( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL ZDRVVX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN, - $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), DC( 1, 1 ), - $ DC( 1, 2 ), A( 1, 3 ), NMAX, A( 1, 4 ), NMAX, - $ A( 1, 5 ), NMAX, DR( 1, 1 ), DR( 1, 2 ), - $ DR( 1, 3 ), DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), - $ DR( 1, 7 ), DR( 1, 8 ), RESULT, WORK, LWORK, - $ RWORK, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZGEEVX', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'ZSX' ) ) THEN -* -* --------------------------------------------------- -* ZSX: Nonsymmetric Eigenvalue Problem Expert Driver -* ZGEESX (Schur form and condition numbers) -* --------------------------------------------------- -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LT.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL ZERRED( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL ZDRVSX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN, - $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ DC( 1, 1 ), DC( 1, 2 ), DC( 1, 3 ), A( 1, 4 ), - $ NMAX, A( 1, 5 ), RESULT, WORK, LWORK, RWORK, - $ LOGWRK, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZGEESX', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'ZGG' ) ) THEN -* -* ------------------------------------------------- -* ZGG: Generalized Nonsymmetric Eigenvalue Problem -* ------------------------------------------------- -* Vary the parameters -* NB = block size -* NBMIN = minimum block size -* NS = number of shifts -* MAXB = minimum submatrix size -* IACC22: structured matrix multiply -* NBCOL = minimum column dimension for blocks -* - MAXTYP = 26 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV(1,1) - IF( TSTCHK .AND. TSTERR ) - $ CALL ZERRGG( C3, NOUT ) - DO 350 I = 1, NPARMS - CALL XLAENV( 1, NBVAL( I ) ) - CALL XLAENV( 2, NBMIN( I ) ) - CALL XLAENV( 4, NSVAL( I ) ) - CALL XLAENV( 8, MXBVAL( I ) ) - CALL XLAENV( 16, IACC22( I ) ) - CALL XLAENV( 5, NBCOL( I ) ) -* - IF( NEWSD.EQ.0 ) THEN - DO 340 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 340 CONTINUE - END IF - WRITE( NOUT, FMT = 9996 )C3, NBVAL( I ), NBMIN( I ), - $ NSVAL( I ), MXBVAL( I ), IACC22( I ), NBCOL( I ) - TSTDIF = .FALSE. - THRSHN = 10.D0 - IF( TSTCHK ) THEN - CALL ZCHKGG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, - $ TSTDIF, THRSHN, NOUT, A( 1, 1 ), NMAX, - $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), - $ A( 1, 6 ), A( 1, 7 ), A( 1, 8 ), A( 1, 9 ), - $ NMAX, A( 1, 10 ), A( 1, 11 ), A( 1, 12 ), - $ DC( 1, 1 ), DC( 1, 2 ), DC( 1, 3 ), - $ DC( 1, 4 ), A( 1, 13 ), A( 1, 14 ), WORK, - $ LWORK, RWORK, LOGWRK, RESULT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZCHKGG', INFO - END IF - 350 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'ZGS' ) ) THEN -* -* ------------------------------------------------- -* ZGS: Generalized Nonsymmetric Eigenvalue Problem -* ZGGES (Schur form) -* ------------------------------------------------- -* - MAXTYP = 26 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LE.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL ZERRGG( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL ZDRGES( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), - $ DC( 1, 1 ), DC( 1, 2 ), WORK, LWORK, RWORK, - $ RESULT, LOGWRK, INFO ) -* - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZDRGES', INFO -* -* Blocked version -* - CALL ZDRGES3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), - $ DC( 1, 1 ), DC( 1, 2 ), WORK, LWORK, RWORK, - $ RESULT, LOGWRK, INFO ) -* - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZDRGES3', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( ZGX ) THEN -* -* ------------------------------------------------- -* ZGX Generalized Nonsymmetric Eigenvalue Problem -* ZGGESX (Schur form and condition numbers) -* ------------------------------------------------- -* - MAXTYP = 5 - NTYPES = MAXTYP - IF( NN.LT.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL ZERRGG( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV( 5, 2 ) - CALL ZDRGSX( NN, NCMAX, THRESH, NIN, NOUT, A( 1, 1 ), NMAX, - $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), - $ A( 1, 6 ), DC( 1, 1 ), DC( 1, 2 ), C, - $ NCMAX*NCMAX, S, WORK, LWORK, RWORK, IWORK, - $ LIWORK, LOGWRK, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZDRGSX', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'ZGV' ) ) THEN -* -* ------------------------------------------------- -* ZGV: Generalized Nonsymmetric Eigenvalue Problem -* ZGGEV (Eigenvalue/vector form) -* ------------------------------------------------- -* - MAXTYP = 26 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LE.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL ZERRGG( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL ZDRGEV( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), - $ A( 1, 9 ), NMAX, DC( 1, 1 ), DC( 1, 2 ), - $ DC( 1, 3 ), DC( 1, 4 ), WORK, LWORK, RWORK, - $ RESULT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZDRGEV', INFO -* -* Blocked version -* - CALL XLAENV(16,2) - CALL ZDRGEV3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), - $ A( 1, 9 ), NMAX, DC( 1, 1 ), DC( 1, 2 ), - $ DC( 1, 3 ), DC( 1, 4 ), WORK, LWORK, RWORK, - $ RESULT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZDRGEV3', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( ZXV ) THEN -* -* ------------------------------------------------- -* ZXV: Generalized Nonsymmetric Eigenvalue Problem -* ZGGEVX (eigenvalue/vector with condition numbers) -* ------------------------------------------------- -* - MAXTYP = 2 - NTYPES = MAXTYP - IF( NN.LT.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL ZERRGG( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL ZDRGVX( NN, THRESH, NIN, NOUT, A( 1, 1 ), NMAX, - $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), DC( 1, 1 ), - $ DC( 1, 2 ), A( 1, 5 ), A( 1, 6 ), IWORK( 1 ), - $ IWORK( 2 ), DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ), - $ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), WORK, - $ LWORK, RWORK, IWORK( 3 ), LIWORK-2, RESULT, - $ LOGWRK, INFO ) -* - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZDRGVX', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'ZHB' ) ) THEN -* -* ------------------------------ -* ZHB: Hermitian Band Reduction -* ------------------------------ -* - MAXTYP = 15 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - IF( TSTERR ) - $ CALL ZERRST( 'ZHB', NOUT ) -* CALL ZCHKHB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH, -* $ NOUT, A( 1, 1 ), NMAX, DR( 1, 1 ), DR( 1, 2 ), -* $ A( 1, 2 ), NMAX, WORK, LWORK, RWORK, RESULT, -* $ INFO ) - CALL ZCHKHB2STG( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, - $ THRESH, NOUT, A( 1, 1 ), NMAX, DR( 1, 1 ), - $ DR( 1, 2 ), DR( 1, 3 ), DR( 1, 4 ), DR( 1, 5 ), - $ A( 1, 2 ), NMAX, WORK, LWORK, RWORK, RESULT, - $ INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZCHKHB', INFO -* - ELSE IF( LSAMEN( 3, C3, 'ZBB' ) ) THEN -* -* ------------------------------ -* ZBB: General Band Reduction -* ------------------------------ -* - MAXTYP = 15 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - DO 370 I = 1, NPARMS - NRHS = NSVAL( I ) -* - IF( NEWSD.EQ.0 ) THEN - DO 360 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 360 CONTINUE - END IF - WRITE( NOUT, FMT = 9966 )C3, NRHS - CALL ZCHKBB( NN, MVAL, NVAL, NK, KVAL, MAXTYP, DOTYPE, NRHS, - $ ISEED, THRESH, NOUT, A( 1, 1 ), NMAX, - $ A( 1, 2 ), 2*NMAX, DR( 1, 1 ), DR( 1, 2 ), - $ A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, A( 1, 6 ), - $ NMAX, A( 1, 7 ), WORK, LWORK, RWORK, RESULT, - $ INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZCHKBB', INFO - 370 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'GLM' ) ) THEN -* -* ----------------------------------------- -* GLM: Generalized Linear Regression Model -* ----------------------------------------- -* - CALL XLAENV( 1, 1 ) - IF( TSTERR ) - $ CALL ZERRGG( 'GLM', NOUT ) - CALL ZCKGLM( NN, NVAL, MVAL, PVAL, NTYPES, ISEED, THRESH, NMAX, - $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X, - $ WORK, DR( 1, 1 ), NIN, NOUT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZCKGLM', INFO -* - ELSE IF( LSAMEN( 3, C3, 'GQR' ) ) THEN -* -* ------------------------------------------ -* GQR: Generalized QR and RQ factorizations -* ------------------------------------------ -* - CALL XLAENV( 1, 1 ) - IF( TSTERR ) - $ CALL ZERRGG( 'GQR', NOUT ) - CALL ZCKGQR( NN, MVAL, NN, PVAL, NN, NVAL, NTYPES, ISEED, - $ THRESH, NMAX, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), TAUA, B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), - $ B( 1, 4 ), B( 1, 5 ), TAUB, WORK, DR( 1, 1 ), NIN, - $ NOUT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZCKGQR', INFO -* - ELSE IF( LSAMEN( 3, C3, 'GSV' ) ) THEN -* -* ---------------------------------------------- -* GSV: Generalized Singular Value Decomposition -* ---------------------------------------------- -* - CALL XLAENV(1,1) - IF( TSTERR ) - $ CALL ZERRGG( 'GSV', NOUT ) - CALL ZCKGSV( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, - $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), - $ A( 1, 3 ), B( 1, 3 ), A( 1, 4 ), ALPHA, BETA, - $ B( 1, 4 ), IWORK, WORK, DR( 1, 1 ), NIN, NOUT, - $ INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZCKGSV', INFO -* - ELSE IF( LSAMEN( 3, C3, 'CSD' ) ) THEN -* -* ---------------------------------------------- -* CSD: CS Decomposition -* ---------------------------------------------- -* - CALL XLAENV(1,1) - IF( TSTERR ) - $ CALL ZERRGG( 'CSD', NOUT ) - CALL ZCKCSD( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, - $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), - $ A( 1, 5 ), A( 1, 6 ), RWORK, IWORK, WORK, - $ DR( 1, 1 ), NIN, NOUT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZCKCSD', INFO -* - ELSE IF( LSAMEN( 3, C3, 'LSE' ) ) THEN -* -* -------------------------------------- -* LSE: Constrained Linear Least Squares -* -------------------------------------- -* - CALL XLAENV( 1, 1 ) - IF( TSTERR ) - $ CALL ZERRGG( 'LSE', NOUT ) - CALL ZCKLSE( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, - $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X, - $ WORK, DR( 1, 1 ), NIN, NOUT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZCKLSE', INFO - ELSE - WRITE( NOUT, FMT = * ) - WRITE( NOUT, FMT = * ) - WRITE( NOUT, FMT = 9992 )C3 - END IF - IF( .NOT.( ZGX .OR. ZXV ) ) - $ GO TO 190 - 380 CONTINUE - WRITE( NOUT, FMT = 9994 ) - S2 = DSECND( ) - WRITE( NOUT, FMT = 9993 )S2 - S1 -* - 9999 FORMAT( / ' Execution not attempted due to input errors' ) - 9997 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4 ) - 9996 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NS =', I4, - $ ', MAXB =', I4, ', IACC22 =', I4, ', NBCOL =', I4 ) - 9995 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4, - $ ', NRHS =', I4 ) - 9994 FORMAT( / / ' End of tests' ) - 9993 FORMAT( ' Total time used = ', F12.2, ' seconds', / ) - 9992 FORMAT( 1X, A3, ': Unrecognized path name' ) - 9991 FORMAT( / / ' *** Invalid integer value in column ', I2, - $ ' of input', ' line:', / A79 ) - 9990 FORMAT( / / 1X, A3, ' routines were not tested' ) - 9989 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be >=', - $ I6 ) - 9988 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be <=', - $ I6 ) - 9987 FORMAT( ' Tests of the Nonsymmetric Eigenvalue Problem routines' ) - 9986 FORMAT( ' Tests of the Hermitian Eigenvalue Problem routines' ) - 9985 FORMAT( ' Tests of the Singular Value Decomposition routines' ) - 9984 FORMAT( / ' The following parameter values will be used:' ) - 9983 FORMAT( 4X, A, 10I6, / 10X, 10I6 ) - 9982 FORMAT( / ' Routines pass computational tests if test ratio is ', - $ 'less than', F8.2, / ) - 9981 FORMAT( ' Relative machine ', A, ' is taken to be', D16.6 ) - 9980 FORMAT( ' *** Error code from ', A, ' = ', I4 ) - 9979 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver', - $ / ' ZGEEV (eigenvalues and eigevectors)' ) - 9978 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver', - $ / ' ZGEES (Schur form)' ) - 9977 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert', - $ ' Driver', / ' ZGEEVX (eigenvalues, eigenvectors and', - $ ' condition numbers)' ) - 9976 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert', - $ ' Driver', / ' ZGEESX (Schur form and condition', - $ ' numbers)' ) - 9975 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', - $ 'Problem routines' ) - 9974 FORMAT( ' Tests of ZHBTRD', / ' (reduction of a Hermitian band ', - $ 'matrix to real tridiagonal form)' ) - 9973 FORMAT( / 1X, 71( '-' ) ) - 9972 FORMAT( / ' LAPACK VERSION ', I1, '.', I1, '.', I1 ) - 9971 FORMAT( / ' Tests of the Generalized Linear Regression Model ', - $ 'routines' ) - 9970 FORMAT( / ' Tests of the Generalized QR and RQ routines' ) - 9969 FORMAT( / ' Tests of the Generalized Singular Value', - $ ' Decomposition routines' ) - 9968 FORMAT( / ' Tests of the Linear Least Squares routines' ) - 9967 FORMAT( ' Tests of ZGBBRD', / ' (reduction of a general band ', - $ 'matrix to real bidiagonal form)' ) - 9966 FORMAT( / / 1X, A3, ': NRHS =', I4 ) - 9965 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', - $ 'Problem Expert Driver ZGGESX' ) - 9964 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', - $ 'Problem Driver ZGGES' ) - 9963 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', - $ 'Problem Driver ZGGEV' ) - 9962 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', - $ 'Problem Expert Driver ZGGEVX' ) - 9961 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4, - $ ', INMIN=', I4, - $ ', INWIN =', I4, ', INIBL =', I4, ', ISHFTS =', I4, - $ ', IACC22 =', I4) - 9960 FORMAT( / ' Tests of the CS Decomposition routines' ) -* -* End of ZCHKEE -* - END From 90bb4ac82100639ea5acf0ac48c409f081eceb48 Mon Sep 17 00:00:00 2001 From: Martin Kroeker Date: Sun, 28 Feb 2021 18:49:10 +0100 Subject: [PATCH 07/17] Add rewritten zchkee.F from Reference-LAPACK PR335 --- lapack-netlib/TESTING/EIG/zchkee.F | 2551 ++++++++++++++++++++++++++++ 1 file changed, 2551 insertions(+) create mode 100644 lapack-netlib/TESTING/EIG/zchkee.F diff --git a/lapack-netlib/TESTING/EIG/zchkee.F b/lapack-netlib/TESTING/EIG/zchkee.F new file mode 100644 index 000000000..29604956d --- /dev/null +++ b/lapack-netlib/TESTING/EIG/zchkee.F @@ -0,0 +1,2551 @@ +*> \brief \b ZCHKEE +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +* Definition: +* =========== +* +* PROGRAM ZCHKEE +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> ZCHKEE tests the COMPLEX*16 LAPACK subroutines for the matrix +*> eigenvalue problem. The test paths in this version are +*> +*> NEP (Nonsymmetric Eigenvalue Problem): +*> Test ZGEHRD, ZUNGHR, ZHSEQR, ZTREVC, ZHSEIN, and ZUNMHR +*> +*> SEP (Hermitian Eigenvalue Problem): +*> Test ZHETRD, ZUNGTR, ZSTEQR, ZSTERF, ZSTEIN, ZSTEDC, +*> and drivers ZHEEV(X), ZHBEV(X), ZHPEV(X), +*> ZHEEVD, ZHBEVD, ZHPEVD +*> +*> SVD (Singular Value Decomposition): +*> Test ZGEBRD, ZUNGBR, and ZBDSQR +*> and the drivers ZGESVD, ZGESDD +*> +*> ZEV (Nonsymmetric Eigenvalue/eigenvector Driver): +*> Test ZGEEV +*> +*> ZES (Nonsymmetric Schur form Driver): +*> Test ZGEES +*> +*> ZVX (Nonsymmetric Eigenvalue/eigenvector Expert Driver): +*> Test ZGEEVX +*> +*> ZSX (Nonsymmetric Schur form Expert Driver): +*> Test ZGEESX +*> +*> ZGG (Generalized Nonsymmetric Eigenvalue Problem): +*> Test ZGGHD3, ZGGBAL, ZGGBAK, ZHGEQZ, and ZTGEVC +*> +*> ZGS (Generalized Nonsymmetric Schur form Driver): +*> Test ZGGES +*> +*> ZGV (Generalized Nonsymmetric Eigenvalue/eigenvector Driver): +*> Test ZGGEV +*> +*> ZGX (Generalized Nonsymmetric Schur form Expert Driver): +*> Test ZGGESX +*> +*> ZXV (Generalized Nonsymmetric Eigenvalue/eigenvector Expert Driver): +*> Test ZGGEVX +*> +*> ZSG (Hermitian Generalized Eigenvalue Problem): +*> Test ZHEGST, ZHEGV, ZHEGVD, ZHEGVX, ZHPGST, ZHPGV, ZHPGVD, +*> ZHPGVX, ZHBGST, ZHBGV, ZHBGVD, and ZHBGVX +*> +*> ZHB (Hermitian Band Eigenvalue Problem): +*> Test ZHBTRD +*> +*> ZBB (Band Singular Value Decomposition): +*> Test ZGBBRD +*> +*> ZEC (Eigencondition estimation): +*> Test ZTRSYL, ZTREXC, ZTRSNA, and ZTRSEN +*> +*> ZBL (Balancing a general matrix) +*> Test ZGEBAL +*> +*> ZBK (Back transformation on a balanced matrix) +*> Test ZGEBAK +*> +*> ZGL (Balancing a matrix pair) +*> Test ZGGBAL +*> +*> ZGK (Back transformation on a matrix pair) +*> Test ZGGBAK +*> +*> GLM (Generalized Linear Regression Model): +*> Tests ZGGGLM +*> +*> GQR (Generalized QR and RQ factorizations): +*> Tests ZGGQRF and ZGGRQF +*> +*> GSV (Generalized Singular Value Decomposition): +*> Tests ZGGSVD, ZGGSVP, ZTGSJA, ZLAGS2, ZLAPLL, and ZLAPMT +*> +*> CSD (CS decomposition): +*> Tests ZUNCSD +*> +*> LSE (Constrained Linear Least Squares): +*> Tests ZGGLSE +*> +*> Each test path has a different set of inputs, but the data sets for +*> the driver routines xEV, xES, xVX, and xSX can be concatenated in a +*> single input file. The first line of input should contain one of the +*> 3-character path names in columns 1-3. The number of remaining lines +*> depends on what is found on the first line. +*> +*> The number of matrix types used in testing is often controllable from +*> the input file. The number of matrix types for each path, and the +*> test routine that describes them, is as follows: +*> +*> Path name(s) Types Test routine +*> +*> ZHS or NEP 21 ZCHKHS +*> ZST or SEP 21 ZCHKST (routines) +*> 18 ZDRVST (drivers) +*> ZBD or SVD 16 ZCHKBD (routines) +*> 5 ZDRVBD (drivers) +*> ZEV 21 ZDRVEV +*> ZES 21 ZDRVES +*> ZVX 21 ZDRVVX +*> ZSX 21 ZDRVSX +*> ZGG 26 ZCHKGG (routines) +*> ZGS 26 ZDRGES +*> ZGX 5 ZDRGSX +*> ZGV 26 ZDRGEV +*> ZXV 2 ZDRGVX +*> ZSG 21 ZDRVSG +*> ZHB 15 ZCHKHB +*> ZBB 15 ZCHKBB +*> ZEC - ZCHKEC +*> ZBL - ZCHKBL +*> ZBK - ZCHKBK +*> ZGL - ZCHKGL +*> ZGK - ZCHKGK +*> GLM 8 ZCKGLM +*> GQR 8 ZCKGQR +*> GSV 8 ZCKGSV +*> CSD 3 ZCKCSD +*> LSE 8 ZCKLSE +*> +*>----------------------------------------------------------------------- +*> +*> NEP input file: +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix dimension N. +*> +*> line 4: NPARMS, INTEGER +*> Number of values of the parameters NB, NBMIN, NX, NS, and +*> MAXB. +*> +*> line 5: NBVAL, INTEGER array, dimension (NPARMS) +*> The values for the blocksize NB. +*> +*> line 6: NBMIN, INTEGER array, dimension (NPARMS) +*> The values for the minimum blocksize NBMIN. +*> +*> line 7: NXVAL, INTEGER array, dimension (NPARMS) +*> The values for the crossover point NX. +*> +*> line 8: INMIN, INTEGER array, dimension (NPARMS) +*> LAHQR vs TTQRE crossover point, >= 11 +*> +*> line 9: INWIN, INTEGER array, dimension (NPARMS) +*> recommended deflation window size +*> +*> line 10: INIBL, INTEGER array, dimension (NPARMS) +*> nibble crossover point +*> +*> line 11: ISHFTS, INTEGER array, dimension (NPARMS) +*> number of simultaneous shifts) +*> +*> line 12: IACC22, INTEGER array, dimension (NPARMS) +*> select structured matrix multiply: 0, 1 or 2) +*> +*> line 13: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. To have all of the test +*> ratios printed, use THRESH = 0.0 . +*> +*> line 14: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 14 was 2: +*> +*> line 15: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 15-EOF: The remaining lines occur in sets of 1 or 2 and allow +*> the user to specify the matrix types. Each line contains +*> a 3-character path name in columns 1-3, and the number +*> of matrix types must be the first nonblank item in columns +*> 4-80. If the number of matrix types is at least 1 but is +*> less than the maximum number of possible types, a second +*> line will be read to get the numbers of the matrix types to +*> be used. For example, +*> NEP 21 +*> requests all of the matrix types for the nonsymmetric +*> eigenvalue problem, while +*> NEP 4 +*> 9 10 11 12 +*> requests only matrices of type 9, 10, 11, and 12. +*> +*> The valid 3-character path names are 'NEP' or 'ZHS' for the +*> nonsymmetric eigenvalue routines. +*> +*>----------------------------------------------------------------------- +*> +*> SEP or ZSG input file: +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix dimension N. +*> +*> line 4: NPARMS, INTEGER +*> Number of values of the parameters NB, NBMIN, and NX. +*> +*> line 5: NBVAL, INTEGER array, dimension (NPARMS) +*> The values for the blocksize NB. +*> +*> line 6: NBMIN, INTEGER array, dimension (NPARMS) +*> The values for the minimum blocksize NBMIN. +*> +*> line 7: NXVAL, INTEGER array, dimension (NPARMS) +*> The values for the crossover point NX. +*> +*> line 8: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 9: TSTCHK, LOGICAL +*> Flag indicating whether or not to test the LAPACK routines. +*> +*> line 10: TSTDRV, LOGICAL +*> Flag indicating whether or not to test the driver routines. +*> +*> line 11: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 12: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 12 was 2: +*> +*> line 13: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 13-EOF: Lines specifying matrix types, as for NEP. +*> The valid 3-character path names are 'SEP' or 'ZST' for the +*> Hermitian eigenvalue routines and driver routines, and +*> 'ZSG' for the routines for the Hermitian generalized +*> eigenvalue problem. +*> +*>----------------------------------------------------------------------- +*> +*> SVD input file: +*> +*> line 2: NN, INTEGER +*> Number of values of M and N. +*> +*> line 3: MVAL, INTEGER array, dimension (NN) +*> The values for the matrix row dimension M. +*> +*> line 4: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix column dimension N. +*> +*> line 5: NPARMS, INTEGER +*> Number of values of the parameter NB, NBMIN, NX, and NRHS. +*> +*> line 6: NBVAL, INTEGER array, dimension (NPARMS) +*> The values for the blocksize NB. +*> +*> line 7: NBMIN, INTEGER array, dimension (NPARMS) +*> The values for the minimum blocksize NBMIN. +*> +*> line 8: NXVAL, INTEGER array, dimension (NPARMS) +*> The values for the crossover point NX. +*> +*> line 9: NSVAL, INTEGER array, dimension (NPARMS) +*> The values for the number of right hand sides NRHS. +*> +*> line 10: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 11: TSTCHK, LOGICAL +*> Flag indicating whether or not to test the LAPACK routines. +*> +*> line 12: TSTDRV, LOGICAL +*> Flag indicating whether or not to test the driver routines. +*> +*> line 13: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 14: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 14 was 2: +*> +*> line 15: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 15-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path names are 'SVD' or 'ZBD' for both the +*> SVD routines and the SVD driver routines. +*> +*>----------------------------------------------------------------------- +*> +*> ZEV and ZES data files: +*> +*> line 1: 'ZEV' or 'ZES' in columns 1 to 3. +*> +*> line 2: NSIZES, INTEGER +*> Number of sizes of matrices to use. Should be at least 0 +*> and at most 20. If NSIZES = 0, no testing is done +*> (although the remaining 3 lines are still read). +*> +*> line 3: NN, INTEGER array, dimension(NSIZES) +*> Dimensions of matrices to be tested. +*> +*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> These integer parameters determine how blocking is done +*> (see ILAENV for details) +*> NB : block size +*> NBMIN : minimum block size +*> NX : minimum dimension for blocking +*> NS : number of shifts in xHSEQR +*> NBCOL : minimum column dimension for blocking +*> +*> line 5: THRESH, REAL +*> The test threshold against which computed residuals are +*> compared. Should generally be in the range from 10. to 20. +*> If it is 0., all test case data will be printed. +*> +*> line 6: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 6 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 8 and following: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'ZEV' to test CGEEV, or +*> 'ZES' to test CGEES. +*> +*>----------------------------------------------------------------------- +*> +*> The ZVX data has two parts. The first part is identical to ZEV, +*> and the second part consists of test matrices with precomputed +*> solutions. +*> +*> line 1: 'ZVX' in columns 1-3. +*> +*> line 2: NSIZES, INTEGER +*> If NSIZES = 0, no testing of randomly generated examples +*> is done, but any precomputed examples are tested. +*> +*> line 3: NN, INTEGER array, dimension(NSIZES) +*> +*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> +*> line 5: THRESH, REAL +*> +*> line 6: NEWSD, INTEGER +*> +*> If line 6 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> +*> lines 8 and following: The first line contains 'ZVX' in columns 1-3 +*> followed by the number of matrix types, possibly with +*> a second line to specify certain matrix types. +*> If the number of matrix types = 0, no testing of randomly +*> generated examples is done, but any precomputed examples +*> are tested. +*> +*> remaining lines : Each matrix is stored on 1+N+N**2 lines, where N is +*> its dimension. The first line contains the dimension N and +*> ISRT (two integers). ISRT indicates whether the last N lines +*> are sorted by increasing real part of the eigenvalue +*> (ISRT=0) or by increasing imaginary part (ISRT=1). The next +*> N**2 lines contain the matrix rowwise, one entry per line. +*> The last N lines correspond to each eigenvalue. Each of +*> these last N lines contains 4 real values: the real part of +*> the eigenvalues, the imaginary part of the eigenvalue, the +*> reciprocal condition number of the eigenvalues, and the +*> reciprocal condition number of the vector eigenvector. The +*> end of data is indicated by dimension N=0. Even if no data +*> is to be tested, there must be at least one line containing +*> N=0. +*> +*>----------------------------------------------------------------------- +*> +*> The ZSX data is like ZVX. The first part is identical to ZEV, and the +*> second part consists of test matrices with precomputed solutions. +*> +*> line 1: 'ZSX' in columns 1-3. +*> +*> line 2: NSIZES, INTEGER +*> If NSIZES = 0, no testing of randomly generated examples +*> is done, but any precomputed examples are tested. +*> +*> line 3: NN, INTEGER array, dimension(NSIZES) +*> +*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> +*> line 5: THRESH, REAL +*> +*> line 6: NEWSD, INTEGER +*> +*> If line 6 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> +*> lines 8 and following: The first line contains 'ZSX' in columns 1-3 +*> followed by the number of matrix types, possibly with +*> a second line to specify certain matrix types. +*> If the number of matrix types = 0, no testing of randomly +*> generated examples is done, but any precomputed examples +*> are tested. +*> +*> remaining lines : Each matrix is stored on 3+N**2 lines, where N is +*> its dimension. The first line contains the dimension N, the +*> dimension M of an invariant subspace, and ISRT. The second +*> line contains M integers, identifying the eigenvalues in the +*> invariant subspace (by their position in a list of +*> eigenvalues ordered by increasing real part (if ISRT=0) or +*> by increasing imaginary part (if ISRT=1)). The next N**2 +*> lines contain the matrix rowwise. The last line contains the +*> reciprocal condition number for the average of the selected +*> eigenvalues, and the reciprocal condition number for the +*> corresponding right invariant subspace. The end of data in +*> indicated by a line containing N=0, M=0, and ISRT = 0. Even +*> if no data is to be tested, there must be at least one line +*> containing N=0, M=0 and ISRT=0. +*> +*>----------------------------------------------------------------------- +*> +*> ZGG input file: +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix dimension N. +*> +*> line 4: NPARMS, INTEGER +*> Number of values of the parameters NB, NBMIN, NBCOL, NS, and +*> MAXB. +*> +*> line 5: NBVAL, INTEGER array, dimension (NPARMS) +*> The values for the blocksize NB. +*> +*> line 6: NBMIN, INTEGER array, dimension (NPARMS) +*> The values for NBMIN, the minimum row dimension for blocks. +*> +*> line 7: NSVAL, INTEGER array, dimension (NPARMS) +*> The values for the number of shifts. +*> +*> line 8: MXBVAL, INTEGER array, dimension (NPARMS) +*> The values for MAXB, used in determining minimum blocksize. +*> +*> line 9: IACC22, INTEGER array, dimension (NPARMS) +*> select structured matrix multiply: 1 or 2) +*> +*> line 10: NBCOL, INTEGER array, dimension (NPARMS) +*> The values for NBCOL, the minimum column dimension for +*> blocks. +*> +*> line 11: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 12: TSTCHK, LOGICAL +*> Flag indicating whether or not to test the LAPACK routines. +*> +*> line 13: TSTDRV, LOGICAL +*> Flag indicating whether or not to test the driver routines. +*> +*> line 14: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 15: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 15 was 2: +*> +*> line 16: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 17-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'ZGG' for the generalized +*> eigenvalue problem routines and driver routines. +*> +*>----------------------------------------------------------------------- +*> +*> ZGS and ZGV input files: +*> +*> line 1: 'ZGS' or 'ZGV' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension(NN) +*> Dimensions of matrices to be tested. +*> +*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> These integer parameters determine how blocking is done +*> (see ILAENV for details) +*> NB : block size +*> NBMIN : minimum block size +*> NX : minimum dimension for blocking +*> NS : number of shifts in xHGEQR +*> NBCOL : minimum column dimension for blocking +*> +*> line 5: THRESH, REAL +*> The test threshold against which computed residuals are +*> compared. Should generally be in the range from 10. to 20. +*> If it is 0., all test case data will be printed. +*> +*> line 6: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits. +*> +*> line 7: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 17 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 7-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'ZGS' for the generalized +*> eigenvalue problem routines and driver routines. +*> +*>----------------------------------------------------------------------- +*> +*> ZGX input file: +*> line 1: 'ZGX' in columns 1 to 3. +*> +*> line 2: N, INTEGER +*> Value of N. +*> +*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> These integer parameters determine how blocking is done +*> (see ILAENV for details) +*> NB : block size +*> NBMIN : minimum block size +*> NX : minimum dimension for blocking +*> NS : number of shifts in xHGEQR +*> NBCOL : minimum column dimension for blocking +*> +*> line 4: THRESH, REAL +*> The test threshold against which computed residuals are +*> compared. Should generally be in the range from 10. to 20. +*> Information will be printed about each test for which the +*> test ratio is greater than or equal to the threshold. +*> +*> line 5: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 6: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 6 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> If line 2 was 0: +*> +*> line 7-EOF: Precomputed examples are tested. +*> +*> remaining lines : Each example is stored on 3+2*N*N lines, where N is +*> its dimension. The first line contains the dimension (a +*> single integer). The next line contains an integer k such +*> that only the last k eigenvalues will be selected and appear +*> in the leading diagonal blocks of $A$ and $B$. The next N*N +*> lines contain the matrix A, one element per line. The next N*N +*> lines contain the matrix B. The last line contains the +*> reciprocal of the eigenvalue cluster condition number and the +*> reciprocal of the deflating subspace (associated with the +*> selected eigencluster) condition number. The end of data is +*> indicated by dimension N=0. Even if no data is to be tested, +*> there must be at least one line containing N=0. +*> +*>----------------------------------------------------------------------- +*> +*> ZXV input files: +*> line 1: 'ZXV' in columns 1 to 3. +*> +*> line 2: N, INTEGER +*> Value of N. +*> +*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> These integer parameters determine how blocking is done +*> (see ILAENV for details) +*> NB : block size +*> NBMIN : minimum block size +*> NX : minimum dimension for blocking +*> NS : number of shifts in xHGEQR +*> NBCOL : minimum column dimension for blocking +*> +*> line 4: THRESH, REAL +*> The test threshold against which computed residuals are +*> compared. Should generally be in the range from 10. to 20. +*> Information will be printed about each test for which the +*> test ratio is greater than or equal to the threshold. +*> +*> line 5: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 6: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 6 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> If line 2 was 0: +*> +*> line 7-EOF: Precomputed examples are tested. +*> +*> remaining lines : Each example is stored on 3+2*N*N lines, where N is +*> its dimension. The first line contains the dimension (a +*> single integer). The next N*N lines contain the matrix A, one +*> element per line. The next N*N lines contain the matrix B. +*> The next line contains the reciprocals of the eigenvalue +*> condition numbers. The last line contains the reciprocals of +*> the eigenvector condition numbers. The end of data is +*> indicated by dimension N=0. Even if no data is to be tested, +*> there must be at least one line containing N=0. +*> +*>----------------------------------------------------------------------- +*> +*> ZHB input file: +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix dimension N. +*> +*> line 4: NK, INTEGER +*> Number of values of K. +*> +*> line 5: KVAL, INTEGER array, dimension (NK) +*> The values for the matrix dimension K. +*> +*> line 6: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 7 was 2: +*> +*> line 8: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 8-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'ZHB'. +*> +*>----------------------------------------------------------------------- +*> +*> ZBB input file: +*> +*> line 2: NN, INTEGER +*> Number of values of M and N. +*> +*> line 3: MVAL, INTEGER array, dimension (NN) +*> The values for the matrix row dimension M. +*> +*> line 4: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix column dimension N. +*> +*> line 4: NK, INTEGER +*> Number of values of K. +*> +*> line 5: KVAL, INTEGER array, dimension (NK) +*> The values for the matrix bandwidth K. +*> +*> line 6: NPARMS, INTEGER +*> Number of values of the parameter NRHS +*> +*> line 7: NSVAL, INTEGER array, dimension (NPARMS) +*> The values for the number of right hand sides NRHS. +*> +*> line 8: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 9: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 9 was 2: +*> +*> line 10: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 10-EOF: Lines specifying matrix types, as for SVD. +*> The 3-character path name is 'ZBB'. +*> +*>----------------------------------------------------------------------- +*> +*> ZEC input file: +*> +*> line 2: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> lines 3-EOF: +*> +*> Input for testing the eigencondition routines consists of a set of +*> specially constructed test cases and their solutions. The data +*> format is not intended to be modified by the user. +*> +*>----------------------------------------------------------------------- +*> +*> ZBL and ZBK input files: +*> +*> line 1: 'ZBL' in columns 1-3 to test CGEBAL, or 'ZBK' in +*> columns 1-3 to test CGEBAK. +*> +*> The remaining lines consist of specially constructed test cases. +*> +*>----------------------------------------------------------------------- +*> +*> ZGL and ZGK input files: +*> +*> line 1: 'ZGL' in columns 1-3 to test ZGGBAL, or 'ZGK' in +*> columns 1-3 to test ZGGBAK. +*> +*> The remaining lines consist of specially constructed test cases. +*> +*>----------------------------------------------------------------------- +*> +*> GLM data file: +*> +*> line 1: 'GLM' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NN) +*> Values of M (row dimension). +*> +*> line 4: PVAL, INTEGER array, dimension(NN) +*> Values of P (row dimension). +*> +*> line 5: NVAL, INTEGER array, dimension(NN) +*> Values of N (column dimension), note M <= N <= M+P. +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'GLM' for the generalized +*> linear regression model routines. +*> +*>----------------------------------------------------------------------- +*> +*> GQR data file: +*> +*> line 1: 'GQR' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NN) +*> Values of M. +*> +*> line 4: PVAL, INTEGER array, dimension(NN) +*> Values of P. +*> +*> line 5: NVAL, INTEGER array, dimension(NN) +*> Values of N. +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'GQR' for the generalized +*> QR and RQ routines. +*> +*>----------------------------------------------------------------------- +*> +*> GSV data file: +*> +*> line 1: 'GSV' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NN) +*> Values of M (row dimension). +*> +*> line 4: PVAL, INTEGER array, dimension(NN) +*> Values of P (row dimension). +*> +*> line 5: NVAL, INTEGER array, dimension(NN) +*> Values of N (column dimension). +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'GSV' for the generalized +*> SVD routines. +*> +*>----------------------------------------------------------------------- +*> +*> CSD data file: +*> +*> line 1: 'CSD' in columns 1 to 3. +*> +*> line 2: NM, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NM) +*> Values of M (row and column dimension of orthogonal matrix). +*> +*> line 4: PVAL, INTEGER array, dimension(NM) +*> Values of P (row dimension of top-left block). +*> +*> line 5: NVAL, INTEGER array, dimension(NM) +*> Values of N (column dimension of top-left block). +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'CSD' for the CSD routine. +*> +*>----------------------------------------------------------------------- +*> +*> LSE data file: +*> +*> line 1: 'LSE' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NN) +*> Values of M. +*> +*> line 4: PVAL, INTEGER array, dimension(NN) +*> Values of P. +*> +*> line 5: NVAL, INTEGER array, dimension(NN) +*> Values of N, note P <= N <= P+M. +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'GSV' for the generalized +*> SVD routines. +*> +*>----------------------------------------------------------------------- +*> +*> NMAX is currently set to 132 and must be at least 12 for some of the +*> precomputed examples, and LWORK = NMAX*(5*NMAX+20) in the parameter +*> statements below. For SVD, we assume NRHS may be as big as N. The +*> parameter NEED is set to 14 to allow for 14 N-by-N matrices for ZGG. +*> \endverbatim +* +* Arguments: +* ========== +* +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date June 2016 +* +*> \ingroup complex16_eig +* +* ===================================================================== + PROGRAM ZCHKEE +* +#if defined(_OPENMP) + use omp_lib +#endif +* +* -- LAPACK test routine (version 3.7.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* June 2016 +* +* ===================================================================== +* +* .. Parameters .. + INTEGER NMAX + PARAMETER ( NMAX = 132 ) + INTEGER NCMAX + PARAMETER ( NCMAX = 20 ) + INTEGER NEED + PARAMETER ( NEED = 14 ) + INTEGER LWORK + PARAMETER ( LWORK = NMAX*( 5*NMAX+20 ) ) + INTEGER LIWORK + PARAMETER ( LIWORK = NMAX*( NMAX+20 ) ) + INTEGER MAXIN + PARAMETER ( MAXIN = 20 ) + INTEGER MAXT + PARAMETER ( MAXT = 30 ) + INTEGER NIN, NOUT + PARAMETER ( NIN = 5, NOUT = 6 ) +* .. +* .. Local Scalars .. + LOGICAL ZBK, ZBL, ZES, ZEV, ZGK, ZGL, ZGS, ZGV, ZGX, + $ ZSX, ZVX, ZXV, CSD, FATAL, GLM, GQR, GSV, LSE, + $ NEP, SEP, SVD, TSTCHK, TSTDIF, TSTDRV, TSTERR, + $ ZBB, ZGG, ZHB + CHARACTER C1 + CHARACTER*3 C3, PATH + CHARACTER*32 VNAME + CHARACTER*10 INTSTR + CHARACTER*80 LINE + INTEGER I, I1, IC, INFO, ITMP, K, LENP, MAXTYP, NEWSD, + $ NK, NN, NPARMS, NRHS, NTYPES, + $ VERS_MAJOR, VERS_MINOR, VERS_PATCH, N_THREADS + DOUBLE PRECISION EPS, S1, S2, THRESH, THRSHN +* .. +* .. Local Arrays .. + LOGICAL DOTYPE( MAXT ), LOGWRK( NMAX ) + INTEGER IOLDSD( 4 ), ISEED( 4 ), IWORK( LIWORK ), + $ KVAL( MAXIN ), MVAL( MAXIN ), MXBVAL( MAXIN ), + $ NBCOL( MAXIN ), NBMIN( MAXIN ), NBVAL( MAXIN ), + $ NSVAL( MAXIN ), NVAL( MAXIN ), NXVAL( MAXIN ), + $ PVAL( MAXIN ) + INTEGER INMIN( MAXIN ), INWIN( MAXIN ), INIBL( MAXIN ), + $ ISHFTS( MAXIN ), IACC22( MAXIN ) + DOUBLE PRECISION ALPHA( NMAX ), BETA( NMAX ), DR( NMAX, 12 ), + $ RESULT( 500 ) + COMPLEX*16 DC( NMAX, 6 ), TAUA( NMAX ), TAUB( NMAX ), + $ X( 5*NMAX ) +* .. +* .. Allocatable Arrays .. + INTEGER AllocateStatus + DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: RWORK, S + COMPLEX*16, DIMENSION(:), ALLOCATABLE :: WORK + COMPLEX*16, DIMENSION(:,:), ALLOCATABLE :: A, B, C +* .. +* .. External Functions .. + LOGICAL LSAMEN + DOUBLE PRECISION DLAMCH, DSECND + EXTERNAL LSAMEN, DLAMCH, DSECND +* .. +* .. External Subroutines .. + EXTERNAL ALAREQ, XLAENV, ZCHKBB, ZCHKBD, ZCHKBK, ZCHKBL, + $ ZCHKEC, ZCHKGG, ZCHKGK, ZCHKGL, ZCHKHB, ZCHKHS, + $ ZCHKST, ZCKCSD, ZCKGLM, ZCKGQR, ZCKGSV, ZCKLSE, + $ ZDRGES, ZDRGEV, ZDRGSX, ZDRGVX, ZDRVBD, ZDRVES, + $ ZDRVEV, ZDRVSG, ZDRVST, ZDRVSX, ZDRVVX, + $ ZERRBD, ZERRED, ZERRGG, ZERRHS, ZERRST, ILAVER, + $ ZDRGES3, ZDRGEV3, + $ ZCHKST2STG, ZDRVST2STG, ZCHKHB2STG +* .. +* .. Intrinsic Functions .. + INTRINSIC LEN, MIN +* .. +* .. Scalars in Common .. + LOGICAL LERR, OK + CHARACTER*32 SRNAMT + INTEGER INFOT, MAXB, NPROC, NSHIFT, NUNIT, SELDIM, + $ SELOPT +* .. +* .. Arrays in Common .. + LOGICAL SELVAL( 20 ) + INTEGER IPARMS( 100 ) + DOUBLE PRECISION SELWI( 20 ), SELWR( 20 ) +* .. +* .. Common blocks .. + COMMON / CENVIR / NPROC, NSHIFT, MAXB + COMMON / INFOC / INFOT, NUNIT, OK, LERR + COMMON / SRNAMC / SRNAMT + COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI + COMMON / CLAENV / IPARMS +* .. +* .. Data statements .. + DATA INTSTR / '0123456789' / + DATA IOLDSD / 0, 0, 0, 1 / +* .. +* .. Allocate memory dynamically .. +* + ALLOCATE ( S(NMAX*NMAX), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" + ALLOCATE ( A(NMAX*NMAX,NEED), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" + ALLOCATE ( B(NMAX*NMAX,5), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" + ALLOCATE ( C(NCMAX*NCMAX,NCMAX*NCMAX), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" + ALLOCATE ( RWORK(LWORK), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" + ALLOCATE ( WORK(LWORK), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" +* .. +* .. Executable Statements .. +* + A = 0.0 + B = 0.0 + C = 0.0 + DC = 0.0 + S1 = DSECND( ) + FATAL = .FALSE. + NUNIT = NOUT +* +* Return to here to read multiple sets of data +* + 10 CONTINUE +* +* Read the first line and set the 3-character test path +* + READ( NIN, FMT = '(A80)', END = 380 )LINE + PATH = LINE( 1: 3 ) + NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'ZHS' ) + SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'ZST' ) .OR. + $ LSAMEN( 3, PATH, 'ZSG' ) .OR. LSAMEN( 3, PATH, 'SE2' ) + SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'ZBD' ) + ZEV = LSAMEN( 3, PATH, 'ZEV' ) + ZES = LSAMEN( 3, PATH, 'ZES' ) + ZVX = LSAMEN( 3, PATH, 'ZVX' ) + ZSX = LSAMEN( 3, PATH, 'ZSX' ) + ZGG = LSAMEN( 3, PATH, 'ZGG' ) + ZGS = LSAMEN( 3, PATH, 'ZGS' ) + ZGX = LSAMEN( 3, PATH, 'ZGX' ) + ZGV = LSAMEN( 3, PATH, 'ZGV' ) + ZXV = LSAMEN( 3, PATH, 'ZXV' ) + ZHB = LSAMEN( 3, PATH, 'ZHB' ) + ZBB = LSAMEN( 3, PATH, 'ZBB' ) + GLM = LSAMEN( 3, PATH, 'GLM' ) + GQR = LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' ) + GSV = LSAMEN( 3, PATH, 'GSV' ) + CSD = LSAMEN( 3, PATH, 'CSD' ) + LSE = LSAMEN( 3, PATH, 'LSE' ) + ZBL = LSAMEN( 3, PATH, 'ZBL' ) + ZBK = LSAMEN( 3, PATH, 'ZBK' ) + ZGL = LSAMEN( 3, PATH, 'ZGL' ) + ZGK = LSAMEN( 3, PATH, 'ZGK' ) +* +* Report values of parameters. +* + IF( PATH.EQ.' ' ) THEN + GO TO 10 + ELSE IF( NEP ) THEN + WRITE( NOUT, FMT = 9987 ) + ELSE IF( SEP ) THEN + WRITE( NOUT, FMT = 9986 ) + ELSE IF( SVD ) THEN + WRITE( NOUT, FMT = 9985 ) + ELSE IF( ZEV ) THEN + WRITE( NOUT, FMT = 9979 ) + ELSE IF( ZES ) THEN + WRITE( NOUT, FMT = 9978 ) + ELSE IF( ZVX ) THEN + WRITE( NOUT, FMT = 9977 ) + ELSE IF( ZSX ) THEN + WRITE( NOUT, FMT = 9976 ) + ELSE IF( ZGG ) THEN + WRITE( NOUT, FMT = 9975 ) + ELSE IF( ZGS ) THEN + WRITE( NOUT, FMT = 9964 ) + ELSE IF( ZGX ) THEN + WRITE( NOUT, FMT = 9965 ) + ELSE IF( ZGV ) THEN + WRITE( NOUT, FMT = 9963 ) + ELSE IF( ZXV ) THEN + WRITE( NOUT, FMT = 9962 ) + ELSE IF( ZHB ) THEN + WRITE( NOUT, FMT = 9974 ) + ELSE IF( ZBB ) THEN + WRITE( NOUT, FMT = 9967 ) + ELSE IF( GLM ) THEN + WRITE( NOUT, FMT = 9971 ) + ELSE IF( GQR ) THEN + WRITE( NOUT, FMT = 9970 ) + ELSE IF( GSV ) THEN + WRITE( NOUT, FMT = 9969 ) + ELSE IF( CSD ) THEN + WRITE( NOUT, FMT = 9960 ) + ELSE IF( LSE ) THEN + WRITE( NOUT, FMT = 9968 ) + ELSE IF( ZBL ) THEN +* +* ZGEBAL: Balancing +* + CALL ZCHKBL( NIN, NOUT ) + GO TO 380 + ELSE IF( ZBK ) THEN +* +* ZGEBAK: Back transformation +* + CALL ZCHKBK( NIN, NOUT ) + GO TO 380 + ELSE IF( ZGL ) THEN +* +* ZGGBAL: Balancing +* + CALL ZCHKGL( NIN, NOUT ) + GO TO 380 + ELSE IF( ZGK ) THEN +* +* ZGGBAK: Back transformation +* + CALL ZCHKGK( NIN, NOUT ) + GO TO 380 + ELSE IF( LSAMEN( 3, PATH, 'ZEC' ) ) THEN +* +* ZEC: Eigencondition estimation +* + READ( NIN, FMT = * )THRESH + CALL XLAENV( 1, 1 ) + CALL XLAENV( 12, 1 ) + TSTERR = .TRUE. + CALL ZCHKEC( THRESH, TSTERR, NIN, NOUT ) + GO TO 380 + ELSE + WRITE( NOUT, FMT = 9992 )PATH + GO TO 380 + END IF + CALL ILAVER( VERS_MAJOR, VERS_MINOR, VERS_PATCH ) + WRITE( NOUT, FMT = 9972 ) VERS_MAJOR, VERS_MINOR, VERS_PATCH + WRITE( NOUT, FMT = 9984 ) +* +* Read the number of values of M, P, and N. +* + READ( NIN, FMT = * )NN + IF( NN.LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' NN ', NN, 1 + NN = 0 + FATAL = .TRUE. + ELSE IF( NN.GT.MAXIN ) THEN + WRITE( NOUT, FMT = 9988 )' NN ', NN, MAXIN + NN = 0 + FATAL = .TRUE. + END IF +* +* Read the values of M +* + IF( .NOT.( ZGX .OR. ZXV ) ) THEN + READ( NIN, FMT = * )( MVAL( I ), I = 1, NN ) + IF( SVD ) THEN + VNAME = ' M ' + ELSE + VNAME = ' N ' + END IF + DO 20 I = 1, NN + IF( MVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )VNAME, MVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( MVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )VNAME, MVAL( I ), NMAX + FATAL = .TRUE. + END IF + 20 CONTINUE + WRITE( NOUT, FMT = 9983 )'M: ', ( MVAL( I ), I = 1, NN ) + END IF +* +* Read the values of P +* + IF( GLM .OR. GQR .OR. GSV .OR. CSD .OR. LSE ) THEN + READ( NIN, FMT = * )( PVAL( I ), I = 1, NN ) + DO 30 I = 1, NN + IF( PVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' P ', PVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( PVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' P ', PVAL( I ), NMAX + FATAL = .TRUE. + END IF + 30 CONTINUE + WRITE( NOUT, FMT = 9983 )'P: ', ( PVAL( I ), I = 1, NN ) + END IF +* +* Read the values of N +* + IF( SVD .OR. ZBB .OR. GLM .OR. GQR .OR. GSV .OR. CSD .OR. + $ LSE ) THEN + READ( NIN, FMT = * )( NVAL( I ), I = 1, NN ) + DO 40 I = 1, NN + IF( NVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' N ', NVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( NVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' N ', NVAL( I ), NMAX + FATAL = .TRUE. + END IF + 40 CONTINUE + ELSE + DO 50 I = 1, NN + NVAL( I ) = MVAL( I ) + 50 CONTINUE + END IF + IF( .NOT.( ZGX .OR. ZXV ) ) THEN + WRITE( NOUT, FMT = 9983 )'N: ', ( NVAL( I ), I = 1, NN ) + ELSE + WRITE( NOUT, FMT = 9983 )'N: ', NN + END IF +* +* Read the number of values of K, followed by the values of K +* + IF( ZHB .OR. ZBB ) THEN + READ( NIN, FMT = * )NK + READ( NIN, FMT = * )( KVAL( I ), I = 1, NK ) + DO 60 I = 1, NK + IF( KVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' K ', KVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( KVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' K ', KVAL( I ), NMAX + FATAL = .TRUE. + END IF + 60 CONTINUE + WRITE( NOUT, FMT = 9983 )'K: ', ( KVAL( I ), I = 1, NK ) + END IF +* + IF( ZEV .OR. ZES .OR. ZVX .OR. ZSX ) THEN +* +* For the nonsymmetric QR driver routines, only one set of +* parameters is allowed. +* + READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ), + $ INMIN( 1 ), INWIN( 1 ), INIBL(1), ISHFTS(1), IACC22(1) + IF( NBVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NBMIN( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NXVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( INMIN( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( 1 ), 1 + FATAL = .TRUE. + ELSE IF( INWIN( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( 1 ), 1 + FATAL = .TRUE. + ELSE IF( INIBL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( ISHFTS( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( 1 ), 1 + FATAL = .TRUE. + ELSE IF( IACC22( 1 ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( 1 ), 0 + FATAL = .TRUE. + END IF + CALL XLAENV( 1, NBVAL( 1 ) ) + CALL XLAENV( 2, NBMIN( 1 ) ) + CALL XLAENV( 3, NXVAL( 1 ) ) + CALL XLAENV(12, MAX( 11, INMIN( 1 ) ) ) + CALL XLAENV(13, INWIN( 1 ) ) + CALL XLAENV(14, INIBL( 1 ) ) + CALL XLAENV(15, ISHFTS( 1 ) ) + CALL XLAENV(16, IACC22( 1 ) ) + WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 ) + WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'INMIN: ', INMIN( 1 ) + WRITE( NOUT, FMT = 9983 )'INWIN: ', INWIN( 1 ) + WRITE( NOUT, FMT = 9983 )'INIBL: ', INIBL( 1 ) + WRITE( NOUT, FMT = 9983 )'ISHFTS: ', ISHFTS( 1 ) + WRITE( NOUT, FMT = 9983 )'IACC22: ', IACC22( 1 ) +* + ELSE IF( ZGS .OR. ZGX .OR. ZGV .OR. ZXV ) THEN +* +* For the nonsymmetric generalized driver routines, only one set of +* parameters is allowed. +* + READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ), + $ NSVAL( 1 ), MXBVAL( 1 ) + IF( NBVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NBMIN( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NXVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NSVAL( 1 ).LT.2 ) THEN + WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( 1 ), 2 + FATAL = .TRUE. + ELSE IF( MXBVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( 1 ), 1 + FATAL = .TRUE. + END IF + CALL XLAENV( 1, NBVAL( 1 ) ) + CALL XLAENV( 2, NBMIN( 1 ) ) + CALL XLAENV( 3, NXVAL( 1 ) ) + CALL XLAENV( 4, NSVAL( 1 ) ) + CALL XLAENV( 8, MXBVAL( 1 ) ) + WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 ) + WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'NS: ', NSVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'MAXB: ', MXBVAL( 1 ) + ELSE IF( .NOT.ZHB .AND. .NOT.GLM .AND. .NOT.GQR .AND. .NOT. + $ GSV .AND. .NOT.CSD .AND. .NOT.LSE ) THEN +* +* For the other paths, the number of parameters can be varied +* from the input file. Read the number of parameter values. +* + READ( NIN, FMT = * )NPARMS + IF( NPARMS.LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )'NPARMS', NPARMS, 1 + NPARMS = 0 + FATAL = .TRUE. + ELSE IF( NPARMS.GT.MAXIN ) THEN + WRITE( NOUT, FMT = 9988 )'NPARMS', NPARMS, MAXIN + NPARMS = 0 + FATAL = .TRUE. + END IF +* +* Read the values of NB +* + IF( .NOT.ZBB ) THEN + READ( NIN, FMT = * )( NBVAL( I ), I = 1, NPARMS ) + DO 70 I = 1, NPARMS + IF( NBVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( NBVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' NB ', NBVAL( I ), NMAX + FATAL = .TRUE. + END IF + 70 CONTINUE + WRITE( NOUT, FMT = 9983 )'NB: ', + $ ( NBVAL( I ), I = 1, NPARMS ) + END IF +* +* Read the values of NBMIN +* + IF( NEP .OR. SEP .OR. SVD .OR. ZGG ) THEN + READ( NIN, FMT = * )( NBMIN( I ), I = 1, NPARMS ) + DO 80 I = 1, NPARMS + IF( NBMIN( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( I ), 0 + FATAL = .TRUE. + ELSE IF( NBMIN( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )'NBMIN ', NBMIN( I ), NMAX + FATAL = .TRUE. + END IF + 80 CONTINUE + WRITE( NOUT, FMT = 9983 )'NBMIN:', + $ ( NBMIN( I ), I = 1, NPARMS ) + ELSE + DO 90 I = 1, NPARMS + NBMIN( I ) = 1 + 90 CONTINUE + END IF +* +* Read the values of NX +* + IF( NEP .OR. SEP .OR. SVD ) THEN + READ( NIN, FMT = * )( NXVAL( I ), I = 1, NPARMS ) + DO 100 I = 1, NPARMS + IF( NXVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( NXVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' NX ', NXVAL( I ), NMAX + FATAL = .TRUE. + END IF + 100 CONTINUE + WRITE( NOUT, FMT = 9983 )'NX: ', + $ ( NXVAL( I ), I = 1, NPARMS ) + ELSE + DO 110 I = 1, NPARMS + NXVAL( I ) = 1 + 110 CONTINUE + END IF +* +* Read the values of NSHIFT (if ZGG) or NRHS (if SVD +* or ZBB). +* + IF( SVD .OR. ZBB .OR. ZGG ) THEN + READ( NIN, FMT = * )( NSVAL( I ), I = 1, NPARMS ) + DO 120 I = 1, NPARMS + IF( NSVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( NSVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' NS ', NSVAL( I ), NMAX + FATAL = .TRUE. + END IF + 120 CONTINUE + WRITE( NOUT, FMT = 9983 )'NS: ', + $ ( NSVAL( I ), I = 1, NPARMS ) + ELSE + DO 130 I = 1, NPARMS + NSVAL( I ) = 1 + 130 CONTINUE + END IF +* +* Read the values for MAXB. +* + IF( ZGG ) THEN + READ( NIN, FMT = * )( MXBVAL( I ), I = 1, NPARMS ) + DO 140 I = 1, NPARMS + IF( MXBVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( MXBVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' MAXB ', MXBVAL( I ), NMAX + FATAL = .TRUE. + END IF + 140 CONTINUE + WRITE( NOUT, FMT = 9983 )'MAXB: ', + $ ( MXBVAL( I ), I = 1, NPARMS ) + ELSE + DO 150 I = 1, NPARMS + MXBVAL( I ) = 1 + 150 CONTINUE + END IF +* +* Read the values for INMIN. +* + IF( NEP ) THEN + READ( NIN, FMT = * )( INMIN( I ), I = 1, NPARMS ) + DO 540 I = 1, NPARMS + IF( INMIN( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( I ), 0 + FATAL = .TRUE. + END IF + 540 CONTINUE + WRITE( NOUT, FMT = 9983 )'INMIN: ', + $ ( INMIN( I ), I = 1, NPARMS ) + ELSE + DO 550 I = 1, NPARMS + INMIN( I ) = 1 + 550 CONTINUE + END IF +* +* Read the values for INWIN. +* + IF( NEP ) THEN + READ( NIN, FMT = * )( INWIN( I ), I = 1, NPARMS ) + DO 560 I = 1, NPARMS + IF( INWIN( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( I ), 0 + FATAL = .TRUE. + END IF + 560 CONTINUE + WRITE( NOUT, FMT = 9983 )'INWIN: ', + $ ( INWIN( I ), I = 1, NPARMS ) + ELSE + DO 570 I = 1, NPARMS + INWIN( I ) = 1 + 570 CONTINUE + END IF +* +* Read the values for INIBL. +* + IF( NEP ) THEN + READ( NIN, FMT = * )( INIBL( I ), I = 1, NPARMS ) + DO 580 I = 1, NPARMS + IF( INIBL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( I ), 0 + FATAL = .TRUE. + END IF + 580 CONTINUE + WRITE( NOUT, FMT = 9983 )'INIBL: ', + $ ( INIBL( I ), I = 1, NPARMS ) + ELSE + DO 590 I = 1, NPARMS + INIBL( I ) = 1 + 590 CONTINUE + END IF +* +* Read the values for ISHFTS. +* + IF( NEP ) THEN + READ( NIN, FMT = * )( ISHFTS( I ), I = 1, NPARMS ) + DO 600 I = 1, NPARMS + IF( ISHFTS( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( I ), 0 + FATAL = .TRUE. + END IF + 600 CONTINUE + WRITE( NOUT, FMT = 9983 )'ISHFTS: ', + $ ( ISHFTS( I ), I = 1, NPARMS ) + ELSE + DO 610 I = 1, NPARMS + ISHFTS( I ) = 1 + 610 CONTINUE + END IF +* +* Read the values for IACC22. +* + IF( NEP .OR. ZGG ) THEN + READ( NIN, FMT = * )( IACC22( I ), I = 1, NPARMS ) + DO 620 I = 1, NPARMS + IF( IACC22( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( I ), 0 + FATAL = .TRUE. + END IF + 620 CONTINUE + WRITE( NOUT, FMT = 9983 )'IACC22: ', + $ ( IACC22( I ), I = 1, NPARMS ) + ELSE + DO 630 I = 1, NPARMS + IACC22( I ) = 1 + 630 CONTINUE + END IF +* +* Read the values for NBCOL. +* + IF( ZGG ) THEN + READ( NIN, FMT = * )( NBCOL( I ), I = 1, NPARMS ) + DO 160 I = 1, NPARMS + IF( NBCOL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )'NBCOL ', NBCOL( I ), 0 + FATAL = .TRUE. + ELSE IF( NBCOL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )'NBCOL ', NBCOL( I ), NMAX + FATAL = .TRUE. + END IF + 160 CONTINUE + WRITE( NOUT, FMT = 9983 )'NBCOL:', + $ ( NBCOL( I ), I = 1, NPARMS ) + ELSE + DO 170 I = 1, NPARMS + NBCOL( I ) = 1 + 170 CONTINUE + END IF + END IF +* +* Calculate and print the machine dependent constants. +* + WRITE( NOUT, FMT = * ) + EPS = DLAMCH( 'Underflow threshold' ) + WRITE( NOUT, FMT = 9981 )'underflow', EPS + EPS = DLAMCH( 'Overflow threshold' ) + WRITE( NOUT, FMT = 9981 )'overflow ', EPS + EPS = DLAMCH( 'Epsilon' ) + WRITE( NOUT, FMT = 9981 )'precision', EPS +* +* Read the threshold value for the test ratios. +* + READ( NIN, FMT = * )THRESH + WRITE( NOUT, FMT = 9982 )THRESH + IF( SEP .OR. SVD .OR. ZGG ) THEN +* +* Read the flag that indicates whether to test LAPACK routines. +* + READ( NIN, FMT = * )TSTCHK +* +* Read the flag that indicates whether to test driver routines. +* + READ( NIN, FMT = * )TSTDRV + END IF +* +* Read the flag that indicates whether to test the error exits. +* + READ( NIN, FMT = * )TSTERR +* +* Read the code describing how to set the random number seed. +* + READ( NIN, FMT = * )NEWSD +* +* If NEWSD = 2, read another line with 4 integers for the seed. +* + IF( NEWSD.EQ.2 ) + $ READ( NIN, FMT = * )( IOLDSD( I ), I = 1, 4 ) +* + DO 180 I = 1, 4 + ISEED( I ) = IOLDSD( I ) + 180 CONTINUE +* + IF( FATAL ) THEN + WRITE( NOUT, FMT = 9999 ) + STOP + END IF +* +* Read the input lines indicating the test path and its parameters. +* The first three characters indicate the test path, and the number +* of test matrix types must be the first nonblank item in columns +* 4-80. +* + 190 CONTINUE +* + IF( .NOT.( ZGX .OR. ZXV ) ) THEN +* + 200 CONTINUE + READ( NIN, FMT = '(A80)', END = 380 )LINE + C3 = LINE( 1: 3 ) + LENP = LEN( LINE ) + I = 3 + ITMP = 0 + I1 = 0 + 210 CONTINUE + I = I + 1 + IF( I.GT.LENP ) THEN + IF( I1.GT.0 ) THEN + GO TO 240 + ELSE + NTYPES = MAXT + GO TO 240 + END IF + END IF + IF( LINE( I: I ).NE.' ' .AND. LINE( I: I ).NE.',' ) THEN + I1 = I + C1 = LINE( I1: I1 ) +* +* Check that a valid integer was read +* + DO 220 K = 1, 10 + IF( C1.EQ.INTSTR( K: K ) ) THEN + IC = K - 1 + GO TO 230 + END IF + 220 CONTINUE + WRITE( NOUT, FMT = 9991 )I, LINE + GO TO 200 + 230 CONTINUE + ITMP = 10*ITMP + IC + GO TO 210 + ELSE IF( I1.GT.0 ) THEN + GO TO 240 + ELSE + GO TO 210 + END IF + 240 CONTINUE + NTYPES = ITMP +* +* Skip the tests if NTYPES is <= 0. +* + IF( .NOT.( ZEV .OR. ZES .OR. ZVX .OR. ZSX .OR. ZGV .OR. + $ ZGS ) .AND. NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + GO TO 200 + END IF +* + ELSE + IF( ZGX ) + $ C3 = 'ZGX' + IF( ZXV ) + $ C3 = 'ZXV' + END IF +* +* Reset the random number seed. +* + IF( NEWSD.EQ.0 ) THEN + DO 250 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 250 CONTINUE + END IF +* + IF( LSAMEN( 3, C3, 'ZHS' ) .OR. LSAMEN( 3, C3, 'NEP' ) ) THEN +* +* ------------------------------------- +* NEP: Nonsymmetric Eigenvalue Problem +* ------------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NX = crossover point +* NS = number of shifts +* MAXB = minimum submatrix size +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 1, 1 ) + IF( TSTERR ) + $ CALL ZERRHS( 'ZHSEQR', NOUT ) + DO 270 I = 1, NPARMS + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 3, NXVAL( I ) ) + CALL XLAENV(12, MAX( 11, INMIN( I ) ) ) + CALL XLAENV(13, INWIN( I ) ) + CALL XLAENV(14, INIBL( I ) ) + CALL XLAENV(15, ISHFTS( I ) ) + CALL XLAENV(16, IACC22( I ) ) +* + IF( NEWSD.EQ.0 ) THEN + DO 260 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 260 CONTINUE + END IF + WRITE( NOUT, FMT = 9961 )C3, NBVAL( I ), NBMIN( I ), + $ NXVAL( I ), MAX( 11, INMIN(I)), + $ INWIN( I ), INIBL( I ), ISHFTS( I ), IACC22( I ) + CALL ZCHKHS( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 5 ), NMAX, A( 1, 6 ), + $ A( 1, 7 ), DC( 1, 1 ), DC( 1, 2 ), A( 1, 8 ), + $ A( 1, 9 ), A( 1, 10 ), A( 1, 11 ), A( 1, 12 ), + $ DC( 1, 3 ), WORK, LWORK, RWORK, IWORK, LOGWRK, + $ RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'ZCHKHS', INFO + 270 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'ZST' ) .OR. LSAMEN( 3, C3, 'SEP' ) + $ .OR. LSAMEN( 3, C3, 'SE2' ) ) THEN +* +* ---------------------------------- +* SEP: Symmetric Eigenvalue Problem +* ---------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NX = crossover point +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 1, 1 ) + CALL XLAENV( 9, 25 ) + IF( TSTERR ) THEN +#if defined(_OPENMP) + N_THREADS = OMP_GET_NUM_THREADS() + CALL OMP_SET_NUM_THREADS(1) +#endif + CALL ZERRST( 'ZST', NOUT ) +#if defined(_OPENMP) + CALL OMP_SET_NUM_THREADS(N_THREADS) +#endif + END IF + DO 290 I = 1, NPARMS + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 3, NXVAL( I ) ) +* + IF( NEWSD.EQ.0 ) THEN + DO 280 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 280 CONTINUE + END IF + WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ), + $ NXVAL( I ) + IF( TSTCHK ) THEN + IF( LSAMEN( 3, C3, 'SE2' ) ) THEN + CALL ZCHKST2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), + $ DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ), + $ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), + $ DR( 1, 7 ), DR( 1, 8 ), DR( 1, 9 ), + $ DR( 1, 10 ), DR( 1, 11 ), A( 1, 3 ), NMAX, + $ A( 1, 4 ), A( 1, 5 ), DC( 1, 1 ), A( 1, 6 ), + $ WORK, LWORK, RWORK, LWORK, IWORK, LIWORK, + $ RESULT, INFO ) + ELSE + CALL ZCHKST( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), + $ DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ), + $ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), + $ DR( 1, 7 ), DR( 1, 8 ), DR( 1, 9 ), + $ DR( 1, 10 ), DR( 1, 11 ), A( 1, 3 ), NMAX, + $ A( 1, 4 ), A( 1, 5 ), DC( 1, 1 ), A( 1, 6 ), + $ WORK, LWORK, RWORK, LWORK, IWORK, LIWORK, + $ RESULT, INFO ) + ENDIF + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'ZCHKST', INFO + END IF + IF( TSTDRV ) THEN + IF( LSAMEN( 3, C3, 'SE2' ) ) THEN + CALL ZDRVST2STG( NN, NVAL, 18, DOTYPE, ISEED, THRESH, + $ NOUT, A( 1, 1 ), NMAX, DR( 1, 3 ), DR( 1, 4 ), + $ DR( 1, 5 ), DR( 1, 8 ), DR( 1, 9 ), + $ DR( 1, 10 ), A( 1, 2 ), NMAX, A( 1, 3 ), + $ DC( 1, 1 ), A( 1, 4 ), WORK, LWORK, RWORK, + $ LWORK, IWORK, LIWORK, RESULT, INFO ) + ELSE + CALL ZDRVST( NN, NVAL, 18, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, DR( 1, 3 ), DR( 1, 4 ), + $ DR( 1, 5 ), DR( 1, 8 ), DR( 1, 9 ), + $ DR( 1, 10 ), A( 1, 2 ), NMAX, A( 1, 3 ), + $ DC( 1, 1 ), A( 1, 4 ), WORK, LWORK, RWORK, + $ LWORK, IWORK, LIWORK, RESULT, INFO ) + ENDIF + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'ZDRVST', INFO + END IF + 290 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'ZSG' ) ) THEN +* +* ---------------------------------------------- +* ZSG: Hermitian Generalized Eigenvalue Problem +* ---------------------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NX = crossover point +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 9, 25 ) + DO 310 I = 1, NPARMS + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 3, NXVAL( I ) ) +* + IF( NEWSD.EQ.0 ) THEN + DO 300 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 300 CONTINUE + END IF + WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ), + $ NXVAL( I ) + IF( TSTCHK ) THEN +* CALL ZDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, +* $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, +* $ DR( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ), +* $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK, +* $ LWORK, RWORK, LWORK, IWORK, LIWORK, RESULT, +* $ INFO ) + CALL ZDRVSG2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, + $ DR( 1, 3 ), DR( 1, 4 ), A( 1, 3 ), NMAX, + $ A( 1, 4 ), A( 1, 5 ), A( 1, 6 ), + $ A( 1, 7 ), WORK, LWORK, RWORK, LWORK, + $ IWORK, LIWORK, RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'ZDRVSG', INFO + END IF + 310 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'ZBD' ) .OR. LSAMEN( 3, C3, 'SVD' ) ) THEN +* +* ---------------------------------- +* SVD: Singular Value Decomposition +* ---------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NX = crossover point +* NRHS = number of right hand sides +* + MAXTYP = 16 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 9, 25 ) +* +* Test the error exits +* + CALL XLAENV( 1, 1 ) + IF( TSTERR .AND. TSTCHK ) + $ CALL ZERRBD( 'ZBD', NOUT ) + IF( TSTERR .AND. TSTDRV ) + $ CALL ZERRED( 'ZBD', NOUT ) +* + DO 330 I = 1, NPARMS + NRHS = NSVAL( I ) + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 3, NXVAL( I ) ) + IF( NEWSD.EQ.0 ) THEN + DO 320 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 320 CONTINUE + END IF + WRITE( NOUT, FMT = 9995 )C3, NBVAL( I ), NBMIN( I ), + $ NXVAL( I ), NRHS + IF( TSTCHK ) THEN + CALL ZCHKBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, NRHS, ISEED, + $ THRESH, A( 1, 1 ), NMAX, DR( 1, 1 ), + $ DR( 1, 2 ), DR( 1, 3 ), DR( 1, 4 ), + $ A( 1, 2 ), NMAX, A( 1, 3 ), A( 1, 4 ), + $ A( 1, 5 ), NMAX, A( 1, 6 ), NMAX, A( 1, 7 ), + $ A( 1, 8 ), WORK, LWORK, RWORK, NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'ZCHKBD', INFO + END IF + IF( TSTDRV ) + $ CALL ZDRVBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, ISEED, + $ THRESH, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, + $ A( 1, 3 ), NMAX, A( 1, 4 ), A( 1, 5 ), + $ A( 1, 6 ), DR( 1, 1 ), DR( 1, 2 ), + $ DR( 1, 3 ), WORK, LWORK, RWORK, IWORK, NOUT, + $ INFO ) + 330 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'ZEV' ) ) THEN +* +* -------------------------------------------- +* ZEV: Nonsymmetric Eigenvalue Problem Driver +* ZGEEV (eigenvalues and eigenvectors) +* -------------------------------------------- +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL ZERRED( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL ZDRVEV( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), DC( 1, 1 ), + $ DC( 1, 2 ), A( 1, 3 ), NMAX, A( 1, 4 ), NMAX, + $ A( 1, 5 ), NMAX, RESULT, WORK, LWORK, RWORK, + $ IWORK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'ZGEEV', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'ZES' ) ) THEN +* +* -------------------------------------------- +* ZES: Nonsymmetric Eigenvalue Problem Driver +* ZGEES (Schur form) +* -------------------------------------------- +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL ZERRED( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL ZDRVES( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ DC( 1, 1 ), DC( 1, 2 ), A( 1, 4 ), NMAX, + $ RESULT, WORK, LWORK, RWORK, IWORK, LOGWRK, + $ INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'ZGEES', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'ZVX' ) ) THEN +* +* -------------------------------------------------------------- +* ZVX: Nonsymmetric Eigenvalue Problem Expert Driver +* ZGEEVX (eigenvalues, eigenvectors and condition numbers) +* -------------------------------------------------------------- +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LT.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL ZERRED( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL ZDRVVX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), DC( 1, 1 ), + $ DC( 1, 2 ), A( 1, 3 ), NMAX, A( 1, 4 ), NMAX, + $ A( 1, 5 ), NMAX, DR( 1, 1 ), DR( 1, 2 ), + $ DR( 1, 3 ), DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), + $ DR( 1, 7 ), DR( 1, 8 ), RESULT, WORK, LWORK, + $ RWORK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'ZGEEVX', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'ZSX' ) ) THEN +* +* --------------------------------------------------- +* ZSX: Nonsymmetric Eigenvalue Problem Expert Driver +* ZGEESX (Schur form and condition numbers) +* --------------------------------------------------- +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LT.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL ZERRED( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL ZDRVSX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ DC( 1, 1 ), DC( 1, 2 ), DC( 1, 3 ), A( 1, 4 ), + $ NMAX, A( 1, 5 ), RESULT, WORK, LWORK, RWORK, + $ LOGWRK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'ZGEESX', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'ZGG' ) ) THEN +* +* ------------------------------------------------- +* ZGG: Generalized Nonsymmetric Eigenvalue Problem +* ------------------------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NS = number of shifts +* MAXB = minimum submatrix size +* IACC22: structured matrix multiply +* NBCOL = minimum column dimension for blocks +* + MAXTYP = 26 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV(1,1) + IF( TSTCHK .AND. TSTERR ) + $ CALL ZERRGG( C3, NOUT ) + DO 350 I = 1, NPARMS + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 4, NSVAL( I ) ) + CALL XLAENV( 8, MXBVAL( I ) ) + CALL XLAENV( 16, IACC22( I ) ) + CALL XLAENV( 5, NBCOL( I ) ) +* + IF( NEWSD.EQ.0 ) THEN + DO 340 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 340 CONTINUE + END IF + WRITE( NOUT, FMT = 9996 )C3, NBVAL( I ), NBMIN( I ), + $ NSVAL( I ), MXBVAL( I ), IACC22( I ), NBCOL( I ) + TSTDIF = .FALSE. + THRSHN = 10.D0 + IF( TSTCHK ) THEN + CALL ZCHKGG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, + $ TSTDIF, THRSHN, NOUT, A( 1, 1 ), NMAX, + $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), + $ A( 1, 6 ), A( 1, 7 ), A( 1, 8 ), A( 1, 9 ), + $ NMAX, A( 1, 10 ), A( 1, 11 ), A( 1, 12 ), + $ DC( 1, 1 ), DC( 1, 2 ), DC( 1, 3 ), + $ DC( 1, 4 ), A( 1, 13 ), A( 1, 14 ), WORK, + $ LWORK, RWORK, LOGWRK, RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'ZCHKGG', INFO + END IF + 350 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'ZGS' ) ) THEN +* +* ------------------------------------------------- +* ZGS: Generalized Nonsymmetric Eigenvalue Problem +* ZGGES (Schur form) +* ------------------------------------------------- +* + MAXTYP = 26 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL ZERRGG( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL ZDRGES( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), + $ DC( 1, 1 ), DC( 1, 2 ), WORK, LWORK, RWORK, + $ RESULT, LOGWRK, INFO ) +* + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'ZDRGES', INFO +* +* Blocked version +* + CALL ZDRGES3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), + $ DC( 1, 1 ), DC( 1, 2 ), WORK, LWORK, RWORK, + $ RESULT, LOGWRK, INFO ) +* + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'ZDRGES3', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( ZGX ) THEN +* +* ------------------------------------------------- +* ZGX Generalized Nonsymmetric Eigenvalue Problem +* ZGGESX (Schur form and condition numbers) +* ------------------------------------------------- +* + MAXTYP = 5 + NTYPES = MAXTYP + IF( NN.LT.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL ZERRGG( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 5, 2 ) + CALL ZDRGSX( NN, NCMAX, THRESH, NIN, NOUT, A( 1, 1 ), NMAX, + $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), + $ A( 1, 6 ), DC( 1, 1 ), DC( 1, 2 ), C, + $ NCMAX*NCMAX, S, WORK, LWORK, RWORK, IWORK, + $ LIWORK, LOGWRK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'ZDRGSX', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'ZGV' ) ) THEN +* +* ------------------------------------------------- +* ZGV: Generalized Nonsymmetric Eigenvalue Problem +* ZGGEV (Eigenvalue/vector form) +* ------------------------------------------------- +* + MAXTYP = 26 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL ZERRGG( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL ZDRGEV( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), + $ A( 1, 9 ), NMAX, DC( 1, 1 ), DC( 1, 2 ), + $ DC( 1, 3 ), DC( 1, 4 ), WORK, LWORK, RWORK, + $ RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'ZDRGEV', INFO +* +* Blocked version +* + CALL XLAENV(16,2) + CALL ZDRGEV3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), + $ A( 1, 9 ), NMAX, DC( 1, 1 ), DC( 1, 2 ), + $ DC( 1, 3 ), DC( 1, 4 ), WORK, LWORK, RWORK, + $ RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'ZDRGEV3', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( ZXV ) THEN +* +* ------------------------------------------------- +* ZXV: Generalized Nonsymmetric Eigenvalue Problem +* ZGGEVX (eigenvalue/vector with condition numbers) +* ------------------------------------------------- +* + MAXTYP = 2 + NTYPES = MAXTYP + IF( NN.LT.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL ZERRGG( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL ZDRGVX( NN, THRESH, NIN, NOUT, A( 1, 1 ), NMAX, + $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), DC( 1, 1 ), + $ DC( 1, 2 ), A( 1, 5 ), A( 1, 6 ), IWORK( 1 ), + $ IWORK( 2 ), DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ), + $ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), WORK, + $ LWORK, RWORK, IWORK( 3 ), LIWORK-2, RESULT, + $ LOGWRK, INFO ) +* + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'ZDRGVX', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'ZHB' ) ) THEN +* +* ------------------------------ +* ZHB: Hermitian Band Reduction +* ------------------------------ +* + MAXTYP = 15 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + IF( TSTERR ) THEN +#if defined(_OPENMP) + N_THREADS = OMP_GET_NUM_THREADS() + CALL OMP_SET_NUM_THREADS(1) +#endif + CALL ZERRST( 'ZHB', NOUT ) +#if defined(_OPENMP) + CALL OMP_SET_NUM_THREADS(N_THREADS) +#endif + END IF +* CALL ZCHKHB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH, +* $ NOUT, A( 1, 1 ), NMAX, DR( 1, 1 ), DR( 1, 2 ), +* $ A( 1, 2 ), NMAX, WORK, LWORK, RWORK, RESULT, +* $ INFO ) + CALL ZCHKHB2STG( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, + $ THRESH, NOUT, A( 1, 1 ), NMAX, DR( 1, 1 ), + $ DR( 1, 2 ), DR( 1, 3 ), DR( 1, 4 ), DR( 1, 5 ), + $ A( 1, 2 ), NMAX, WORK, LWORK, RWORK, RESULT, + $ INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'ZCHKHB', INFO +* + ELSE IF( LSAMEN( 3, C3, 'ZBB' ) ) THEN +* +* ------------------------------ +* ZBB: General Band Reduction +* ------------------------------ +* + MAXTYP = 15 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + DO 370 I = 1, NPARMS + NRHS = NSVAL( I ) +* + IF( NEWSD.EQ.0 ) THEN + DO 360 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 360 CONTINUE + END IF + WRITE( NOUT, FMT = 9966 )C3, NRHS + CALL ZCHKBB( NN, MVAL, NVAL, NK, KVAL, MAXTYP, DOTYPE, NRHS, + $ ISEED, THRESH, NOUT, A( 1, 1 ), NMAX, + $ A( 1, 2 ), 2*NMAX, DR( 1, 1 ), DR( 1, 2 ), + $ A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, A( 1, 6 ), + $ NMAX, A( 1, 7 ), WORK, LWORK, RWORK, RESULT, + $ INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'ZCHKBB', INFO + 370 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'GLM' ) ) THEN +* +* ----------------------------------------- +* GLM: Generalized Linear Regression Model +* ----------------------------------------- +* + CALL XLAENV( 1, 1 ) + IF( TSTERR ) + $ CALL ZERRGG( 'GLM', NOUT ) + CALL ZCKGLM( NN, NVAL, MVAL, PVAL, NTYPES, ISEED, THRESH, NMAX, + $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X, + $ WORK, DR( 1, 1 ), NIN, NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'ZCKGLM', INFO +* + ELSE IF( LSAMEN( 3, C3, 'GQR' ) ) THEN +* +* ------------------------------------------ +* GQR: Generalized QR and RQ factorizations +* ------------------------------------------ +* + CALL XLAENV( 1, 1 ) + IF( TSTERR ) + $ CALL ZERRGG( 'GQR', NOUT ) + CALL ZCKGQR( NN, MVAL, NN, PVAL, NN, NVAL, NTYPES, ISEED, + $ THRESH, NMAX, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), TAUA, B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), + $ B( 1, 4 ), B( 1, 5 ), TAUB, WORK, DR( 1, 1 ), NIN, + $ NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'ZCKGQR', INFO +* + ELSE IF( LSAMEN( 3, C3, 'GSV' ) ) THEN +* +* ---------------------------------------------- +* GSV: Generalized Singular Value Decomposition +* ---------------------------------------------- +* + CALL XLAENV(1,1) + IF( TSTERR ) + $ CALL ZERRGG( 'GSV', NOUT ) + CALL ZCKGSV( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, + $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), + $ A( 1, 3 ), B( 1, 3 ), A( 1, 4 ), ALPHA, BETA, + $ B( 1, 4 ), IWORK, WORK, DR( 1, 1 ), NIN, NOUT, + $ INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'ZCKGSV', INFO +* + ELSE IF( LSAMEN( 3, C3, 'CSD' ) ) THEN +* +* ---------------------------------------------- +* CSD: CS Decomposition +* ---------------------------------------------- +* + CALL XLAENV(1,1) + IF( TSTERR ) + $ CALL ZERRGG( 'CSD', NOUT ) + CALL ZCKCSD( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, + $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), + $ A( 1, 5 ), A( 1, 6 ), RWORK, IWORK, WORK, + $ DR( 1, 1 ), NIN, NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'ZCKCSD', INFO +* + ELSE IF( LSAMEN( 3, C3, 'LSE' ) ) THEN +* +* -------------------------------------- +* LSE: Constrained Linear Least Squares +* -------------------------------------- +* + CALL XLAENV( 1, 1 ) + IF( TSTERR ) + $ CALL ZERRGG( 'LSE', NOUT ) + CALL ZCKLSE( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, + $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X, + $ WORK, DR( 1, 1 ), NIN, NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'ZCKLSE', INFO + ELSE + WRITE( NOUT, FMT = * ) + WRITE( NOUT, FMT = * ) + WRITE( NOUT, FMT = 9992 )C3 + END IF + IF( .NOT.( ZGX .OR. ZXV ) ) + $ GO TO 190 + 380 CONTINUE + WRITE( NOUT, FMT = 9994 ) + S2 = DSECND( ) + WRITE( NOUT, FMT = 9993 )S2 - S1 +* + DEALLOCATE (S, STAT = AllocateStatus) + DEALLOCATE (A, STAT = AllocateStatus) + DEALLOCATE (B, STAT = AllocateStatus) + DEALLOCATE (C, STAT = AllocateStatus) + DEALLOCATE (RWORK, STAT = AllocateStatus) + DEALLOCATE (WORK, STAT = AllocateStatus) +* + 9999 FORMAT( / ' Execution not attempted due to input errors' ) + 9997 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4 ) + 9996 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NS =', I4, + $ ', MAXB =', I4, ', IACC22 =', I4, ', NBCOL =', I4 ) + 9995 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4, + $ ', NRHS =', I4 ) + 9994 FORMAT( / / ' End of tests' ) + 9993 FORMAT( ' Total time used = ', F12.2, ' seconds', / ) + 9992 FORMAT( 1X, A3, ': Unrecognized path name' ) + 9991 FORMAT( / / ' *** Invalid integer value in column ', I2, + $ ' of input', ' line:', / A79 ) + 9990 FORMAT( / / 1X, A3, ' routines were not tested' ) + 9989 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be >=', + $ I6 ) + 9988 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be <=', + $ I6 ) + 9987 FORMAT( ' Tests of the Nonsymmetric Eigenvalue Problem routines' ) + 9986 FORMAT( ' Tests of the Hermitian Eigenvalue Problem routines' ) + 9985 FORMAT( ' Tests of the Singular Value Decomposition routines' ) + 9984 FORMAT( / ' The following parameter values will be used:' ) + 9983 FORMAT( 4X, A, 10I6, / 10X, 10I6 ) + 9982 FORMAT( / ' Routines pass computational tests if test ratio is ', + $ 'less than', F8.2, / ) + 9981 FORMAT( ' Relative machine ', A, ' is taken to be', D16.6 ) + 9980 FORMAT( ' *** Error code from ', A, ' = ', I4 ) + 9979 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver', + $ / ' ZGEEV (eigenvalues and eigevectors)' ) + 9978 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver', + $ / ' ZGEES (Schur form)' ) + 9977 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert', + $ ' Driver', / ' ZGEEVX (eigenvalues, eigenvectors and', + $ ' condition numbers)' ) + 9976 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert', + $ ' Driver', / ' ZGEESX (Schur form and condition', + $ ' numbers)' ) + 9975 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem routines' ) + 9974 FORMAT( ' Tests of ZHBTRD', / ' (reduction of a Hermitian band ', + $ 'matrix to real tridiagonal form)' ) + 9973 FORMAT( / 1X, 71( '-' ) ) + 9972 FORMAT( / ' LAPACK VERSION ', I1, '.', I1, '.', I1 ) + 9971 FORMAT( / ' Tests of the Generalized Linear Regression Model ', + $ 'routines' ) + 9970 FORMAT( / ' Tests of the Generalized QR and RQ routines' ) + 9969 FORMAT( / ' Tests of the Generalized Singular Value', + $ ' Decomposition routines' ) + 9968 FORMAT( / ' Tests of the Linear Least Squares routines' ) + 9967 FORMAT( ' Tests of ZGBBRD', / ' (reduction of a general band ', + $ 'matrix to real bidiagonal form)' ) + 9966 FORMAT( / / 1X, A3, ': NRHS =', I4 ) + 9965 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem Expert Driver ZGGESX' ) + 9964 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem Driver ZGGES' ) + 9963 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem Driver ZGGEV' ) + 9962 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem Expert Driver ZGGEVX' ) + 9961 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4, + $ ', INMIN=', I4, + $ ', INWIN =', I4, ', INIBL =', I4, ', ISHFTS =', I4, + $ ', IACC22 =', I4) + 9960 FORMAT( / ' Tests of the CS Decomposition routines' ) +* +* End of ZCHKEE +* + END From a5ab891292052b5c6ea58ba47e3f58efc5043ce3 Mon Sep 17 00:00:00 2001 From: Martin Kroeker Date: Sun, 28 Feb 2021 18:49:50 +0100 Subject: [PATCH 08/17] Add rewritten schkee.F from Reference-LAPACK PR335 --- lapack-netlib/TESTING/EIG/schkee.F | 2541 ++++++++++++++++++++++++++++ 1 file changed, 2541 insertions(+) create mode 100644 lapack-netlib/TESTING/EIG/schkee.F diff --git a/lapack-netlib/TESTING/EIG/schkee.F b/lapack-netlib/TESTING/EIG/schkee.F new file mode 100644 index 000000000..a063c18b5 --- /dev/null +++ b/lapack-netlib/TESTING/EIG/schkee.F @@ -0,0 +1,2541 @@ +*> \brief \b SCHKEE +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +* Definition: +* =========== +* +* PROGRAM SCHKEE +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> SCHKEE tests the REAL LAPACK subroutines for the matrix +*> eigenvalue problem. The test paths in this version are +*> +*> NEP (Nonsymmetric Eigenvalue Problem): +*> Test SGEHRD, SORGHR, SHSEQR, STREVC, SHSEIN, and SORMHR +*> +*> SEP (Symmetric Eigenvalue Problem): +*> Test SSYTRD, SORGTR, SSTEQR, SSTERF, SSTEIN, SSTEDC, +*> and drivers SSYEV(X), SSBEV(X), SSPEV(X), SSTEV(X), +*> SSYEVD, SSBEVD, SSPEVD, SSTEVD +*> +*> SVD (Singular Value Decomposition): +*> Test SGEBRD, SORGBR, SBDSQR, SBDSDC +*> and the drivers SGESVD, SGESDD +*> +*> SEV (Nonsymmetric Eigenvalue/eigenvector Driver): +*> Test SGEEV +*> +*> SES (Nonsymmetric Schur form Driver): +*> Test SGEES +*> +*> SVX (Nonsymmetric Eigenvalue/eigenvector Expert Driver): +*> Test SGEEVX +*> +*> SSX (Nonsymmetric Schur form Expert Driver): +*> Test SGEESX +*> +*> SGG (Generalized Nonsymmetric Eigenvalue Problem): +*> Test SGGHD3, SGGBAL, SGGBAK, SHGEQZ, and STGEVC +*> +*> SGS (Generalized Nonsymmetric Schur form Driver): +*> Test SGGES +*> +*> SGV (Generalized Nonsymmetric Eigenvalue/eigenvector Driver): +*> Test SGGEV +*> +*> SGX (Generalized Nonsymmetric Schur form Expert Driver): +*> Test SGGESX +*> +*> SXV (Generalized Nonsymmetric Eigenvalue/eigenvector Expert Driver): +*> Test SGGEVX +*> +*> SSG (Symmetric Generalized Eigenvalue Problem): +*> Test SSYGST, SSYGV, SSYGVD, SSYGVX, SSPGST, SSPGV, SSPGVD, +*> SSPGVX, SSBGST, SSBGV, SSBGVD, and SSBGVX +*> +*> SSB (Symmetric Band Eigenvalue Problem): +*> Test SSBTRD +*> +*> SBB (Band Singular Value Decomposition): +*> Test SGBBRD +*> +*> SEC (Eigencondition estimation): +*> Test SLALN2, SLASY2, SLAEQU, SLAEXC, STRSYL, STREXC, STRSNA, +*> STRSEN, and SLAQTR +*> +*> SBL (Balancing a general matrix) +*> Test SGEBAL +*> +*> SBK (Back transformation on a balanced matrix) +*> Test SGEBAK +*> +*> SGL (Balancing a matrix pair) +*> Test SGGBAL +*> +*> SGK (Back transformation on a matrix pair) +*> Test SGGBAK +*> +*> GLM (Generalized Linear Regression Model): +*> Tests SGGGLM +*> +*> GQR (Generalized QR and RQ factorizations): +*> Tests SGGQRF and SGGRQF +*> +*> GSV (Generalized Singular Value Decomposition): +*> Tests SGGSVD, SGGSVP, STGSJA, SLAGS2, SLAPLL, and SLAPMT +*> +*> CSD (CS decomposition): +*> Tests SORCSD +*> +*> LSE (Constrained Linear Least Squares): +*> Tests SGGLSE +*> +*> Each test path has a different set of inputs, but the data sets for +*> the driver routines xEV, xES, xVX, and xSX can be concatenated in a +*> single input file. The first line of input should contain one of the +*> 3-character path names in columns 1-3. The number of remaining lines +*> depends on what is found on the first line. +*> +*> The number of matrix types used in testing is often controllable from +*> the input file. The number of matrix types for each path, and the +*> test routine that describes them, is as follows: +*> +*> Path name(s) Types Test routine +*> +*> SHS or NEP 21 SCHKHS +*> SST or SEP 21 SCHKST (routines) +*> 18 SDRVST (drivers) +*> SBD or SVD 16 SCHKBD (routines) +*> 5 SDRVBD (drivers) +*> SEV 21 SDRVEV +*> SES 21 SDRVES +*> SVX 21 SDRVVX +*> SSX 21 SDRVSX +*> SGG 26 SCHKGG (routines) +*> SGS 26 SDRGES +*> SGX 5 SDRGSX +*> SGV 26 SDRGEV +*> SXV 2 SDRGVX +*> SSG 21 SDRVSG +*> SSB 15 SCHKSB +*> SBB 15 SCHKBB +*> SEC - SCHKEC +*> SBL - SCHKBL +*> SBK - SCHKBK +*> SGL - SCHKGL +*> SGK - SCHKGK +*> GLM 8 SCKGLM +*> GQR 8 SCKGQR +*> GSV 8 SCKGSV +*> CSD 3 SCKCSD +*> LSE 8 SCKLSE +*> +*>----------------------------------------------------------------------- +*> +*> NEP input file: +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix dimension N. +*> +*> line 4: NPARMS, INTEGER +*> Number of values of the parameters NB, NBMIN, NX, NS, and +*> MAXB. +*> +*> line 5: NBVAL, INTEGER array, dimension (NPARMS) +*> The values for the blocksize NB. +*> +*> line 6: NBMIN, INTEGER array, dimension (NPARMS) +*> The values for the minimum blocksize NBMIN. +*> +*> line 7: NXVAL, INTEGER array, dimension (NPARMS) +*> The values for the crossover point NX. +*> +*> line 8: INMIN, INTEGER array, dimension (NPARMS) +*> LAHQR vs TTQRE crossover point, >= 11 +*> +*> line 9: INWIN, INTEGER array, dimension (NPARMS) +*> recommended deflation window size +*> +*> line 10: INIBL, INTEGER array, dimension (NPARMS) +*> nibble crossover point +*> +*> line 11: ISHFTS, INTEGER array, dimension (NPARMS) +*> number of simultaneous shifts) +*> +*> line 12: IACC22, INTEGER array, dimension (NPARMS) +*> select structured matrix multiply: 0, 1 or 2) +*> +*> line 13: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. To have all of the test +*> ratios printed, use THRESH = 0.0 . +*> +*> line 14: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 14 was 2: +*> +*> line 15: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 15-EOF: The remaining lines occur in sets of 1 or 2 and allow +*> the user to specify the matrix types. Each line contains +*> a 3-character path name in columns 1-3, and the number +*> of matrix types must be the first nonblank item in columns +*> 4-80. If the number of matrix types is at least 1 but is +*> less than the maximum number of possible types, a second +*> line will be read to get the numbers of the matrix types to +*> be used. For example, +*> NEP 21 +*> requests all of the matrix types for the nonsymmetric +*> eigenvalue problem, while +*> NEP 4 +*> 9 10 11 12 +*> requests only matrices of type 9, 10, 11, and 12. +*> +*> The valid 3-character path names are 'NEP' or 'SHS' for the +*> nonsymmetric eigenvalue routines. +*> +*>----------------------------------------------------------------------- +*> +*> SEP or SSG input file: +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix dimension N. +*> +*> line 4: NPARMS, INTEGER +*> Number of values of the parameters NB, NBMIN, and NX. +*> +*> line 5: NBVAL, INTEGER array, dimension (NPARMS) +*> The values for the blocksize NB. +*> +*> line 6: NBMIN, INTEGER array, dimension (NPARMS) +*> The values for the minimum blocksize NBMIN. +*> +*> line 7: NXVAL, INTEGER array, dimension (NPARMS) +*> The values for the crossover point NX. +*> +*> line 8: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 9: TSTCHK, LOGICAL +*> Flag indicating whether or not to test the LAPACK routines. +*> +*> line 10: TSTDRV, LOGICAL +*> Flag indicating whether or not to test the driver routines. +*> +*> line 11: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 12: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 12 was 2: +*> +*> line 13: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 13-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path names are 'SEP' or 'SST' for the +*> symmetric eigenvalue routines and driver routines, and +*> 'SSG' for the routines for the symmetric generalized +*> eigenvalue problem. +*> +*>----------------------------------------------------------------------- +*> +*> SVD input file: +*> +*> line 2: NN, INTEGER +*> Number of values of M and N. +*> +*> line 3: MVAL, INTEGER array, dimension (NN) +*> The values for the matrix row dimension M. +*> +*> line 4: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix column dimension N. +*> +*> line 5: NPARMS, INTEGER +*> Number of values of the parameter NB, NBMIN, NX, and NRHS. +*> +*> line 6: NBVAL, INTEGER array, dimension (NPARMS) +*> The values for the blocksize NB. +*> +*> line 7: NBMIN, INTEGER array, dimension (NPARMS) +*> The values for the minimum blocksize NBMIN. +*> +*> line 8: NXVAL, INTEGER array, dimension (NPARMS) +*> The values for the crossover point NX. +*> +*> line 9: NSVAL, INTEGER array, dimension (NPARMS) +*> The values for the number of right hand sides NRHS. +*> +*> line 10: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 11: TSTCHK, LOGICAL +*> Flag indicating whether or not to test the LAPACK routines. +*> +*> line 12: TSTDRV, LOGICAL +*> Flag indicating whether or not to test the driver routines. +*> +*> line 13: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 14: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 14 was 2: +*> +*> line 15: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 15-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path names are 'SVD' or 'SBD' for both the +*> SVD routines and the SVD driver routines. +*> +*>----------------------------------------------------------------------- +*> +*> SEV and SES data files: +*> +*> line 1: 'SEV' or 'SES' in columns 1 to 3. +*> +*> line 2: NSIZES, INTEGER +*> Number of sizes of matrices to use. Should be at least 0 +*> and at most 20. If NSIZES = 0, no testing is done +*> (although the remaining 3 lines are still read). +*> +*> line 3: NN, INTEGER array, dimension(NSIZES) +*> Dimensions of matrices to be tested. +*> +*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> These integer parameters determine how blocking is done +*> (see ILAENV for details) +*> NB : block size +*> NBMIN : minimum block size +*> NX : minimum dimension for blocking +*> NS : number of shifts in xHSEQR +*> NBCOL : minimum column dimension for blocking +*> +*> line 5: THRESH, REAL +*> The test threshold against which computed residuals are +*> compared. Should generally be in the range from 10. to 20. +*> If it is 0., all test case data will be printed. +*> +*> line 6: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits. +*> +*> line 7: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 7 was 2: +*> +*> line 8: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9 and following: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'SEV' to test SGEEV, or +*> 'SES' to test SGEES. +*> +*>----------------------------------------------------------------------- +*> +*> The SVX data has two parts. The first part is identical to SEV, +*> and the second part consists of test matrices with precomputed +*> solutions. +*> +*> line 1: 'SVX' in columns 1-3. +*> +*> line 2: NSIZES, INTEGER +*> If NSIZES = 0, no testing of randomly generated examples +*> is done, but any precomputed examples are tested. +*> +*> line 3: NN, INTEGER array, dimension(NSIZES) +*> +*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> +*> line 5: THRESH, REAL +*> +*> line 6: TSTERR, LOGICAL +*> +*> line 7: NEWSD, INTEGER +*> +*> If line 7 was 2: +*> +*> line 8: INTEGER array, dimension (4) +*> +*> lines 9 and following: The first line contains 'SVX' in columns 1-3 +*> followed by the number of matrix types, possibly with +*> a second line to specify certain matrix types. +*> If the number of matrix types = 0, no testing of randomly +*> generated examples is done, but any precomputed examples +*> are tested. +*> +*> remaining lines : Each matrix is stored on 1+2*N lines, where N is +*> its dimension. The first line contains the dimension (a +*> single integer). The next N lines contain the matrix, one +*> row per line. The last N lines correspond to each +*> eigenvalue. Each of these last N lines contains 4 real +*> values: the real part of the eigenvalue, the imaginary +*> part of the eigenvalue, the reciprocal condition number of +*> the eigenvalues, and the reciprocal condition number of the +*> eigenvector. The end of data is indicated by dimension N=0. +*> Even if no data is to be tested, there must be at least one +*> line containing N=0. +*> +*>----------------------------------------------------------------------- +*> +*> The SSX data is like SVX. The first part is identical to SEV, and the +*> second part consists of test matrices with precomputed solutions. +*> +*> line 1: 'SSX' in columns 1-3. +*> +*> line 2: NSIZES, INTEGER +*> If NSIZES = 0, no testing of randomly generated examples +*> is done, but any precomputed examples are tested. +*> +*> line 3: NN, INTEGER array, dimension(NSIZES) +*> +*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> +*> line 5: THRESH, REAL +*> +*> line 6: TSTERR, LOGICAL +*> +*> line 7: NEWSD, INTEGER +*> +*> If line 7 was 2: +*> +*> line 8: INTEGER array, dimension (4) +*> +*> lines 9 and following: The first line contains 'SSX' in columns 1-3 +*> followed by the number of matrix types, possibly with +*> a second line to specify certain matrix types. +*> If the number of matrix types = 0, no testing of randomly +*> generated examples is done, but any precomputed examples +*> are tested. +*> +*> remaining lines : Each matrix is stored on 3+N lines, where N is its +*> dimension. The first line contains the dimension N and the +*> dimension M of an invariant subspace. The second line +*> contains M integers, identifying the eigenvalues in the +*> invariant subspace (by their position in a list of +*> eigenvalues ordered by increasing real part). The next N +*> lines contain the matrix. The last line contains the +*> reciprocal condition number for the average of the selected +*> eigenvalues, and the reciprocal condition number for the +*> corresponding right invariant subspace. The end of data is +*> indicated by a line containing N=0 and M=0. Even if no data +*> is to be tested, there must be at least one line containing +*> N=0 and M=0. +*> +*>----------------------------------------------------------------------- +*> +*> SGG input file: +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix dimension N. +*> +*> line 4: NPARMS, INTEGER +*> Number of values of the parameters NB, NBMIN, NS, MAXB, and +*> NBCOL. +*> +*> line 5: NBVAL, INTEGER array, dimension (NPARMS) +*> The values for the blocksize NB. +*> +*> line 6: NBMIN, INTEGER array, dimension (NPARMS) +*> The values for NBMIN, the minimum row dimension for blocks. +*> +*> line 7: NSVAL, INTEGER array, dimension (NPARMS) +*> The values for the number of shifts. +*> +*> line 8: MXBVAL, INTEGER array, dimension (NPARMS) +*> The values for MAXB, used in determining minimum blocksize. +*> +*> line 9: IACC22, INTEGER array, dimension (NPARMS) +*> select structured matrix multiply: 1 or 2) +*> +*> line 10: NBCOL, INTEGER array, dimension (NPARMS) +*> The values for NBCOL, the minimum column dimension for +*> blocks. +*> +*> line 11: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 12: TSTCHK, LOGICAL +*> Flag indicating whether or not to test the LAPACK routines. +*> +*> line 13: TSTDRV, LOGICAL +*> Flag indicating whether or not to test the driver routines. +*> +*> line 14: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 15: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 15 was 2: +*> +*> line 16: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 17-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'SGG' for the generalized +*> eigenvalue problem routines and driver routines. +*> +*>----------------------------------------------------------------------- +*> +*> SGS and SGV input files: +*> +*> line 1: 'SGS' or 'SGV' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension(NN) +*> Dimensions of matrices to be tested. +*> +*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> These integer parameters determine how blocking is done +*> (see ILAENV for details) +*> NB : block size +*> NBMIN : minimum block size +*> NX : minimum dimension for blocking +*> NS : number of shifts in xHGEQR +*> NBCOL : minimum column dimension for blocking +*> +*> line 5: THRESH, REAL +*> The test threshold against which computed residuals are +*> compared. Should generally be in the range from 10. to 20. +*> If it is 0., all test case data will be printed. +*> +*> line 6: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits. +*> +*> line 7: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 17 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 7-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'SGS' for the generalized +*> eigenvalue problem routines and driver routines. +*> +*>----------------------------------------------------------------------- +*> +*> SXV input files: +*> +*> line 1: 'SXV' in columns 1 to 3. +*> +*> line 2: N, INTEGER +*> Value of N. +*> +*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> These integer parameters determine how blocking is done +*> (see ILAENV for details) +*> NB : block size +*> NBMIN : minimum block size +*> NX : minimum dimension for blocking +*> NS : number of shifts in xHGEQR +*> NBCOL : minimum column dimension for blocking +*> +*> line 4: THRESH, REAL +*> The test threshold against which computed residuals are +*> compared. Should generally be in the range from 10. to 20. +*> Information will be printed about each test for which the +*> test ratio is greater than or equal to the threshold. +*> +*> line 5: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 6: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 6 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> If line 2 was 0: +*> +*> line 7-EOF: Precomputed examples are tested. +*> +*> remaining lines : Each example is stored on 3+2*N lines, where N is +*> its dimension. The first line contains the dimension (a +*> single integer). The next N lines contain the matrix A, one +*> row per line. The next N lines contain the matrix B. The +*> next line contains the reciprocals of the eigenvalue +*> condition numbers. The last line contains the reciprocals of +*> the eigenvector condition numbers. The end of data is +*> indicated by dimension N=0. Even if no data is to be tested, +*> there must be at least one line containing N=0. +*> +*>----------------------------------------------------------------------- +*> +*> SGX input files: +*> +*> line 1: 'SGX' in columns 1 to 3. +*> +*> line 2: N, INTEGER +*> Value of N. +*> +*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> These integer parameters determine how blocking is done +*> (see ILAENV for details) +*> NB : block size +*> NBMIN : minimum block size +*> NX : minimum dimension for blocking +*> NS : number of shifts in xHGEQR +*> NBCOL : minimum column dimension for blocking +*> +*> line 4: THRESH, REAL +*> The test threshold against which computed residuals are +*> compared. Should generally be in the range from 10. to 20. +*> Information will be printed about each test for which the +*> test ratio is greater than or equal to the threshold. +*> +*> line 5: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 6: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 6 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> If line 2 was 0: +*> +*> line 7-EOF: Precomputed examples are tested. +*> +*> remaining lines : Each example is stored on 3+2*N lines, where N is +*> its dimension. The first line contains the dimension (a +*> single integer). The next line contains an integer k such +*> that only the last k eigenvalues will be selected and appear +*> in the leading diagonal blocks of $A$ and $B$. The next N +*> lines contain the matrix A, one row per line. The next N +*> lines contain the matrix B. The last line contains the +*> reciprocal of the eigenvalue cluster condition number and the +*> reciprocal of the deflating subspace (associated with the +*> selected eigencluster) condition number. The end of data is +*> indicated by dimension N=0. Even if no data is to be tested, +*> there must be at least one line containing N=0. +*> +*>----------------------------------------------------------------------- +*> +*> SSB input file: +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix dimension N. +*> +*> line 4: NK, INTEGER +*> Number of values of K. +*> +*> line 5: KVAL, INTEGER array, dimension (NK) +*> The values for the matrix dimension K. +*> +*> line 6: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 7 was 2: +*> +*> line 8: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 8-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'SSB'. +*> +*>----------------------------------------------------------------------- +*> +*> SBB input file: +*> +*> line 2: NN, INTEGER +*> Number of values of M and N. +*> +*> line 3: MVAL, INTEGER array, dimension (NN) +*> The values for the matrix row dimension M. +*> +*> line 4: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix column dimension N. +*> +*> line 4: NK, INTEGER +*> Number of values of K. +*> +*> line 5: KVAL, INTEGER array, dimension (NK) +*> The values for the matrix bandwidth K. +*> +*> line 6: NPARMS, INTEGER +*> Number of values of the parameter NRHS +*> +*> line 7: NSVAL, INTEGER array, dimension (NPARMS) +*> The values for the number of right hand sides NRHS. +*> +*> line 8: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 9: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 9 was 2: +*> +*> line 10: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 10-EOF: Lines specifying matrix types, as for SVD. +*> The 3-character path name is 'SBB'. +*> +*>----------------------------------------------------------------------- +*> +*> SEC input file: +*> +*> line 2: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> lines 3-EOF: +*> +*> Input for testing the eigencondition routines consists of a set of +*> specially constructed test cases and their solutions. The data +*> format is not intended to be modified by the user. +*> +*>----------------------------------------------------------------------- +*> +*> SBL and SBK input files: +*> +*> line 1: 'SBL' in columns 1-3 to test SGEBAL, or 'SBK' in +*> columns 1-3 to test SGEBAK. +*> +*> The remaining lines consist of specially constructed test cases. +*> +*>----------------------------------------------------------------------- +*> +*> SGL and SGK input files: +*> +*> line 1: 'SGL' in columns 1-3 to test SGGBAL, or 'SGK' in +*> columns 1-3 to test SGGBAK. +*> +*> The remaining lines consist of specially constructed test cases. +*> +*>----------------------------------------------------------------------- +*> +*> GLM data file: +*> +*> line 1: 'GLM' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NN) +*> Values of M (row dimension). +*> +*> line 4: PVAL, INTEGER array, dimension(NN) +*> Values of P (row dimension). +*> +*> line 5: NVAL, INTEGER array, dimension(NN) +*> Values of N (column dimension), note M <= N <= M+P. +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'GLM' for the generalized +*> linear regression model routines. +*> +*>----------------------------------------------------------------------- +*> +*> GQR data file: +*> +*> line 1: 'GQR' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NN) +*> Values of M. +*> +*> line 4: PVAL, INTEGER array, dimension(NN) +*> Values of P. +*> +*> line 5: NVAL, INTEGER array, dimension(NN) +*> Values of N. +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'GQR' for the generalized +*> QR and RQ routines. +*> +*>----------------------------------------------------------------------- +*> +*> GSV data file: +*> +*> line 1: 'GSV' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NN) +*> Values of M (row dimension). +*> +*> line 4: PVAL, INTEGER array, dimension(NN) +*> Values of P (row dimension). +*> +*> line 5: NVAL, INTEGER array, dimension(NN) +*> Values of N (column dimension). +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'GSV' for the generalized +*> SVD routines. +*> +*>----------------------------------------------------------------------- +*> +*> CSD data file: +*> +*> line 1: 'CSD' in columns 1 to 3. +*> +*> line 2: NM, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NM) +*> Values of M (row and column dimension of orthogonal matrix). +*> +*> line 4: PVAL, INTEGER array, dimension(NM) +*> Values of P (row dimension of top-left block). +*> +*> line 5: NVAL, INTEGER array, dimension(NM) +*> Values of N (column dimension of top-left block). +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'CSD' for the CSD routine. +*> +*>----------------------------------------------------------------------- +*> +*> LSE data file: +*> +*> line 1: 'LSE' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NN) +*> Values of M. +*> +*> line 4: PVAL, INTEGER array, dimension(NN) +*> Values of P. +*> +*> line 5: NVAL, INTEGER array, dimension(NN) +*> Values of N, note P <= N <= P+M. +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'GSV' for the generalized +*> SVD routines. +*> +*>----------------------------------------------------------------------- +*> +*> NMAX is currently set to 132 and must be at least 12 for some of the +*> precomputed examples, and LWORK = NMAX*(5*NMAX+5)+1 in the parameter +*> statements below. For SVD, we assume NRHS may be as big as N. The +*> parameter NEED is set to 14 to allow for 14 N-by-N matrices for SGG. +*> \endverbatim +* +* Arguments: +* ========== +* +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date June 2016 +* +*> \ingroup single_eig +* +* ===================================================================== + PROGRAM SCHKEE +* +#if defined(_OPENMP) + use omp_lib +#endif +* +* -- LAPACK test routine (version 3.7.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* June 2016 +* +* ===================================================================== +* +* .. Parameters .. + INTEGER NMAX + PARAMETER ( NMAX = 132 ) + INTEGER NCMAX + PARAMETER ( NCMAX = 20 ) + INTEGER NEED + PARAMETER ( NEED = 14 ) + INTEGER LWORK + PARAMETER ( LWORK = NMAX*( 5*NMAX+5 )+1 ) + INTEGER LIWORK + PARAMETER ( LIWORK = NMAX*( 5*NMAX+20 ) ) + INTEGER MAXIN + PARAMETER ( MAXIN = 20 ) + INTEGER MAXT + PARAMETER ( MAXT = 30 ) + INTEGER NIN, NOUT + PARAMETER ( NIN = 5, NOUT = 6 ) +* .. +* .. Local Scalars .. + LOGICAL CSD, FATAL, GLM, GQR, GSV, LSE, NEP, SBB, SBK, + $ SBL, SEP, SES, SEV, SGG, SGK, SGL, SGS, SGV, + $ SGX, SSB, SSX, SVD, SVX, SXV, TSTCHK, TSTDIF, + $ TSTDRV, TSTERR + CHARACTER C1 + CHARACTER*3 C3, PATH + CHARACTER*32 VNAME + CHARACTER*10 INTSTR + CHARACTER*80 LINE + INTEGER I, I1, IC, INFO, ITMP, K, LENP, MAXTYP, NEWSD, + $ NK, NN, NPARMS, NRHS, NTYPES, + $ VERS_MAJOR, VERS_MINOR, VERS_PATCH, N_THREADS + REAL EPS, S1, S2, THRESH, THRSHN +* .. +* .. Local Arrays .. + LOGICAL DOTYPE( MAXT ), LOGWRK( NMAX ) + INTEGER IOLDSD( 4 ), ISEED( 4 ), IWORK( LIWORK ), + $ KVAL( MAXIN ), MVAL( MAXIN ), MXBVAL( MAXIN ), + $ NBCOL( MAXIN ), NBMIN( MAXIN ), NBVAL( MAXIN ), + $ NSVAL( MAXIN ), NVAL( MAXIN ), NXVAL( MAXIN ), + $ PVAL( MAXIN ) + INTEGER INMIN( MAXIN ), INWIN( MAXIN ), INIBL( MAXIN ), + $ ISHFTS( MAXIN ), IACC22( MAXIN ) + REAL D( NMAX, 12 ), RESULT( 500 ), TAUA( NMAX ), + $ TAUB( NMAX ), X( 5*NMAX ) +* .. +* .. Allocatable Arrays .. + INTEGER AllocateStatus + REAL, DIMENSION(:), ALLOCATABLE :: WORK + REAL, DIMENSION(:,:), ALLOCATABLE :: A, B, C +* .. +* .. External Functions .. + LOGICAL LSAMEN + REAL SECOND, SLAMCH + EXTERNAL LSAMEN, SECOND, SLAMCH +* .. +* .. External Subroutines .. + EXTERNAL ALAREQ, SCHKBB, SCHKBD, SCHKBK, SCHKBL, SCHKEC, + $ SCHKGG, SCHKGK, SCHKGL, SCHKHS, SCHKSB, SCHKST, + $ SCKCSD, SCKGLM, SCKGQR, SCKGSV, SCKLSE, SDRGES, + $ SDRGEV, SDRGSX, SDRGVX, SDRVBD, SDRVES, SDRVEV, + $ SDRVSG, SDRVST, SDRVSX, SDRVVX, SERRBD, + $ SERRED, SERRGG, SERRHS, SERRST, ILAVER, XLAENV, + $ SDRGES3, SDRGEV3, + $ SCHKST2STG, SDRVST2STG, SCHKSB2STG, SDRVSG2STG +* .. +* .. Intrinsic Functions .. + INTRINSIC LEN, MIN +* .. +* .. Scalars in Common .. + LOGICAL LERR, OK + CHARACTER*32 SRNAMT + INTEGER INFOT, MAXB, NPROC, NSHIFT, NUNIT, SELDIM, + $ SELOPT +* .. +* .. Arrays in Common .. + LOGICAL SELVAL( 20 ) + INTEGER IPARMS( 100 ) + REAL SELWI( 20 ), SELWR( 20 ) +* .. +* .. Common blocks .. + COMMON / CENVIR / NPROC, NSHIFT, MAXB + COMMON / CLAENV / IPARMS + COMMON / INFOC / INFOT, NUNIT, OK, LERR + COMMON / SRNAMC / SRNAMT + COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI +* .. +* .. Data statements .. + DATA INTSTR / '0123456789' / + DATA IOLDSD / 0, 0, 0, 1 / +* .. +* .. Allocate memory dynamically .. +* + ALLOCATE ( A(NMAX*NMAX,NEED), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" + ALLOCATE ( B(NMAX*NMAX,5), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" + ALLOCATE ( C(NCMAX*NCMAX,NCMAX*NCMAX), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" + ALLOCATE ( WORK(LWORK), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" +* .. +* .. Executable Statements .. +* + A = 0.0 + B = 0.0 + C = 0.0 + D = 0.0 + S1 = SECOND( ) + FATAL = .FALSE. + NUNIT = NOUT +* +* Return to here to read multiple sets of data +* + 10 CONTINUE +* +* Read the first line and set the 3-character test path +* + READ( NIN, FMT = '(A80)', END = 380 )LINE + PATH = LINE( 1: 3 ) + NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'SHS' ) + SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'SST' ) .OR. + $ LSAMEN( 3, PATH, 'SSG' ) .OR. LSAMEN( 3, PATH, 'SE2' ) + SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'DBD' ) + SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'SBD' ) + SEV = LSAMEN( 3, PATH, 'SEV' ) + SES = LSAMEN( 3, PATH, 'SES' ) + SVX = LSAMEN( 3, PATH, 'SVX' ) + SSX = LSAMEN( 3, PATH, 'SSX' ) + SGG = LSAMEN( 3, PATH, 'SGG' ) + SGS = LSAMEN( 3, PATH, 'SGS' ) + SGX = LSAMEN( 3, PATH, 'SGX' ) + SGV = LSAMEN( 3, PATH, 'SGV' ) + SXV = LSAMEN( 3, PATH, 'SXV' ) + SSB = LSAMEN( 3, PATH, 'SSB' ) + SBB = LSAMEN( 3, PATH, 'SBB' ) + GLM = LSAMEN( 3, PATH, 'GLM' ) + GQR = LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' ) + GSV = LSAMEN( 3, PATH, 'GSV' ) + CSD = LSAMEN( 3, PATH, 'CSD' ) + LSE = LSAMEN( 3, PATH, 'LSE' ) + SBL = LSAMEN( 3, PATH, 'SBL' ) + SBK = LSAMEN( 3, PATH, 'SBK' ) + SGL = LSAMEN( 3, PATH, 'SGL' ) + SGK = LSAMEN( 3, PATH, 'SGK' ) +* +* Report values of parameters. +* + IF( PATH.EQ.' ' ) THEN + GO TO 10 + ELSE IF( NEP ) THEN + WRITE( NOUT, FMT = 9987 ) + ELSE IF( SEP ) THEN + WRITE( NOUT, FMT = 9986 ) + ELSE IF( SVD ) THEN + WRITE( NOUT, FMT = 9985 ) + ELSE IF( SEV ) THEN + WRITE( NOUT, FMT = 9979 ) + ELSE IF( SES ) THEN + WRITE( NOUT, FMT = 9978 ) + ELSE IF( SVX ) THEN + WRITE( NOUT, FMT = 9977 ) + ELSE IF( SSX ) THEN + WRITE( NOUT, FMT = 9976 ) + ELSE IF( SGG ) THEN + WRITE( NOUT, FMT = 9975 ) + ELSE IF( SGS ) THEN + WRITE( NOUT, FMT = 9964 ) + ELSE IF( SGX ) THEN + WRITE( NOUT, FMT = 9965 ) + ELSE IF( SGV ) THEN + WRITE( NOUT, FMT = 9963 ) + ELSE IF( SXV ) THEN + WRITE( NOUT, FMT = 9962 ) + ELSE IF( SSB ) THEN + WRITE( NOUT, FMT = 9974 ) + ELSE IF( SBB ) THEN + WRITE( NOUT, FMT = 9967 ) + ELSE IF( GLM ) THEN + WRITE( NOUT, FMT = 9971 ) + ELSE IF( GQR ) THEN + WRITE( NOUT, FMT = 9970 ) + ELSE IF( GSV ) THEN + WRITE( NOUT, FMT = 9969 ) + ELSE IF( CSD ) THEN + WRITE( NOUT, FMT = 9960 ) + ELSE IF( LSE ) THEN + WRITE( NOUT, FMT = 9968 ) + ELSE IF( SBL ) THEN +* +* SGEBAL: Balancing +* + CALL SCHKBL( NIN, NOUT ) + GO TO 10 + ELSE IF( SBK ) THEN +* +* SGEBAK: Back transformation +* + CALL SCHKBK( NIN, NOUT ) + GO TO 10 + ELSE IF( SGL ) THEN +* +* SGGBAL: Balancing +* + CALL SCHKGL( NIN, NOUT ) + GO TO 10 + ELSE IF( SGK ) THEN +* +* SGGBAK: Back transformation +* + CALL SCHKGK( NIN, NOUT ) + GO TO 10 + ELSE IF( LSAMEN( 3, PATH, 'SEC' ) ) THEN +* +* SEC: Eigencondition estimation +* + READ( NIN, FMT = * )THRESH + CALL XLAENV( 1, 1 ) + CALL XLAENV( 12, 11 ) + CALL XLAENV( 13, 2 ) + CALL XLAENV( 14, 0 ) + CALL XLAENV( 15, 2 ) + CALL XLAENV( 16, 2 ) + TSTERR = .TRUE. + CALL SCHKEC( THRESH, TSTERR, NIN, NOUT ) + GO TO 10 + ELSE + WRITE( NOUT, FMT = 9992 )PATH + GO TO 10 + END IF + CALL ILAVER( VERS_MAJOR, VERS_MINOR, VERS_PATCH ) + WRITE( NOUT, FMT = 9972 ) VERS_MAJOR, VERS_MINOR, VERS_PATCH + WRITE( NOUT, FMT = 9984 ) +* +* Read the number of values of M, P, and N. +* + READ( NIN, FMT = * )NN + IF( NN.LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' NN ', NN, 1 + NN = 0 + FATAL = .TRUE. + ELSE IF( NN.GT.MAXIN ) THEN + WRITE( NOUT, FMT = 9988 )' NN ', NN, MAXIN + NN = 0 + FATAL = .TRUE. + END IF +* +* Read the values of M +* + IF( .NOT.( SGX .OR. SXV ) ) THEN + READ( NIN, FMT = * )( MVAL( I ), I = 1, NN ) + IF( SVD ) THEN + VNAME = ' M ' + ELSE + VNAME = ' N ' + END IF + DO 20 I = 1, NN + IF( MVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )VNAME, MVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( MVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )VNAME, MVAL( I ), NMAX + FATAL = .TRUE. + END IF + 20 CONTINUE + WRITE( NOUT, FMT = 9983 )'M: ', ( MVAL( I ), I = 1, NN ) + END IF +* +* Read the values of P +* + IF( GLM .OR. GQR .OR. GSV .OR. CSD .OR. LSE ) THEN + READ( NIN, FMT = * )( PVAL( I ), I = 1, NN ) + DO 30 I = 1, NN + IF( PVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' P ', PVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( PVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' P ', PVAL( I ), NMAX + FATAL = .TRUE. + END IF + 30 CONTINUE + WRITE( NOUT, FMT = 9983 )'P: ', ( PVAL( I ), I = 1, NN ) + END IF +* +* Read the values of N +* + IF( SVD .OR. SBB .OR. GLM .OR. GQR .OR. GSV .OR. CSD .OR. + $ LSE ) THEN + READ( NIN, FMT = * )( NVAL( I ), I = 1, NN ) + DO 40 I = 1, NN + IF( NVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' N ', NVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( NVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' N ', NVAL( I ), NMAX + FATAL = .TRUE. + END IF + 40 CONTINUE + ELSE + DO 50 I = 1, NN + NVAL( I ) = MVAL( I ) + 50 CONTINUE + END IF + IF( .NOT.( SGX .OR. SXV ) ) THEN + WRITE( NOUT, FMT = 9983 )'N: ', ( NVAL( I ), I = 1, NN ) + ELSE + WRITE( NOUT, FMT = 9983 )'N: ', NN + END IF +* +* Read the number of values of K, followed by the values of K +* + IF( SSB .OR. SBB ) THEN + READ( NIN, FMT = * )NK + READ( NIN, FMT = * )( KVAL( I ), I = 1, NK ) + DO 60 I = 1, NK + IF( KVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' K ', KVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( KVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' K ', KVAL( I ), NMAX + FATAL = .TRUE. + END IF + 60 CONTINUE + WRITE( NOUT, FMT = 9983 )'K: ', ( KVAL( I ), I = 1, NK ) + END IF +* + IF( SEV .OR. SES .OR. SVX .OR. SSX ) THEN +* +* For the nonsymmetric QR driver routines, only one set of +* parameters is allowed. +* + READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ), + $ INMIN( 1 ), INWIN( 1 ), INIBL(1), ISHFTS(1), IACC22(1) + IF( NBVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NBMIN( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NXVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( INMIN( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( 1 ), 1 + FATAL = .TRUE. + ELSE IF( INWIN( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( 1 ), 1 + FATAL = .TRUE. + ELSE IF( INIBL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( ISHFTS( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( 1 ), 1 + FATAL = .TRUE. + ELSE IF( IACC22( 1 ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( 1 ), 0 + FATAL = .TRUE. + END IF + CALL XLAENV( 1, NBVAL( 1 ) ) + CALL XLAENV( 2, NBMIN( 1 ) ) + CALL XLAENV( 3, NXVAL( 1 ) ) + CALL XLAENV(12, MAX( 11, INMIN( 1 ) ) ) + CALL XLAENV(13, INWIN( 1 ) ) + CALL XLAENV(14, INIBL( 1 ) ) + CALL XLAENV(15, ISHFTS( 1 ) ) + CALL XLAENV(16, IACC22( 1 ) ) + WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 ) + WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'INMIN: ', INMIN( 1 ) + WRITE( NOUT, FMT = 9983 )'INWIN: ', INWIN( 1 ) + WRITE( NOUT, FMT = 9983 )'INIBL: ', INIBL( 1 ) + WRITE( NOUT, FMT = 9983 )'ISHFTS: ', ISHFTS( 1 ) + WRITE( NOUT, FMT = 9983 )'IACC22: ', IACC22( 1 ) +* + ELSE IF( SGS .OR. SGX .OR. SGV .OR. SXV ) THEN +* +* For the nonsymmetric generalized driver routines, only one set +* of parameters is allowed. +* + READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ), + $ NSVAL( 1 ), MXBVAL( 1 ) + IF( NBVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NBMIN( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NXVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NSVAL( 1 ).LT.2 ) THEN + WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( 1 ), 2 + FATAL = .TRUE. + ELSE IF( MXBVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( 1 ), 1 + FATAL = .TRUE. + END IF + CALL XLAENV( 1, NBVAL( 1 ) ) + CALL XLAENV( 2, NBMIN( 1 ) ) + CALL XLAENV( 3, NXVAL( 1 ) ) + CALL XLAENV( 4, NSVAL( 1 ) ) + CALL XLAENV( 8, MXBVAL( 1 ) ) + WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 ) + WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'NS: ', NSVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'MAXB: ', MXBVAL( 1 ) +* + ELSE IF( .NOT.SSB .AND. .NOT.GLM .AND. .NOT.GQR .AND. .NOT. + $ GSV .AND. .NOT.CSD .AND. .NOT.LSE ) THEN +* +* For the other paths, the number of parameters can be varied +* from the input file. Read the number of parameter values. +* + READ( NIN, FMT = * )NPARMS + IF( NPARMS.LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )'NPARMS', NPARMS, 1 + NPARMS = 0 + FATAL = .TRUE. + ELSE IF( NPARMS.GT.MAXIN ) THEN + WRITE( NOUT, FMT = 9988 )'NPARMS', NPARMS, MAXIN + NPARMS = 0 + FATAL = .TRUE. + END IF +* +* Read the values of NB +* + IF( .NOT.SBB ) THEN + READ( NIN, FMT = * )( NBVAL( I ), I = 1, NPARMS ) + DO 70 I = 1, NPARMS + IF( NBVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( NBVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' NB ', NBVAL( I ), NMAX + FATAL = .TRUE. + END IF + 70 CONTINUE + WRITE( NOUT, FMT = 9983 )'NB: ', + $ ( NBVAL( I ), I = 1, NPARMS ) + END IF +* +* Read the values of NBMIN +* + IF( NEP .OR. SEP .OR. SVD .OR. SGG ) THEN + READ( NIN, FMT = * )( NBMIN( I ), I = 1, NPARMS ) + DO 80 I = 1, NPARMS + IF( NBMIN( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( I ), 0 + FATAL = .TRUE. + ELSE IF( NBMIN( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )'NBMIN ', NBMIN( I ), NMAX + FATAL = .TRUE. + END IF + 80 CONTINUE + WRITE( NOUT, FMT = 9983 )'NBMIN:', + $ ( NBMIN( I ), I = 1, NPARMS ) + ELSE + DO 90 I = 1, NPARMS + NBMIN( I ) = 1 + 90 CONTINUE + END IF +* +* Read the values of NX +* + IF( NEP .OR. SEP .OR. SVD ) THEN + READ( NIN, FMT = * )( NXVAL( I ), I = 1, NPARMS ) + DO 100 I = 1, NPARMS + IF( NXVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( NXVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' NX ', NXVAL( I ), NMAX + FATAL = .TRUE. + END IF + 100 CONTINUE + WRITE( NOUT, FMT = 9983 )'NX: ', + $ ( NXVAL( I ), I = 1, NPARMS ) + ELSE + DO 110 I = 1, NPARMS + NXVAL( I ) = 1 + 110 CONTINUE + END IF +* +* Read the values of NSHIFT (if SGG) or NRHS (if SVD +* or SBB). +* + IF( SVD .OR. SBB .OR. SGG ) THEN + READ( NIN, FMT = * )( NSVAL( I ), I = 1, NPARMS ) + DO 120 I = 1, NPARMS + IF( NSVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( NSVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' NS ', NSVAL( I ), NMAX + FATAL = .TRUE. + END IF + 120 CONTINUE + WRITE( NOUT, FMT = 9983 )'NS: ', + $ ( NSVAL( I ), I = 1, NPARMS ) + ELSE + DO 130 I = 1, NPARMS + NSVAL( I ) = 1 + 130 CONTINUE + END IF +* +* Read the values for MAXB. +* + IF( SGG ) THEN + READ( NIN, FMT = * )( MXBVAL( I ), I = 1, NPARMS ) + DO 140 I = 1, NPARMS + IF( MXBVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( MXBVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' MAXB ', MXBVAL( I ), NMAX + FATAL = .TRUE. + END IF + 140 CONTINUE + WRITE( NOUT, FMT = 9983 )'MAXB: ', + $ ( MXBVAL( I ), I = 1, NPARMS ) + ELSE + DO 150 I = 1, NPARMS + MXBVAL( I ) = 1 + 150 CONTINUE + END IF +* +* Read the values for INMIN. +* + IF( NEP ) THEN + READ( NIN, FMT = * )( INMIN( I ), I = 1, NPARMS ) + DO 540 I = 1, NPARMS + IF( INMIN( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( I ), 0 + FATAL = .TRUE. + END IF + 540 CONTINUE + WRITE( NOUT, FMT = 9983 )'INMIN: ', + $ ( INMIN( I ), I = 1, NPARMS ) + ELSE + DO 550 I = 1, NPARMS + INMIN( I ) = 1 + 550 CONTINUE + END IF +* +* Read the values for INWIN. +* + IF( NEP ) THEN + READ( NIN, FMT = * )( INWIN( I ), I = 1, NPARMS ) + DO 560 I = 1, NPARMS + IF( INWIN( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( I ), 0 + FATAL = .TRUE. + END IF + 560 CONTINUE + WRITE( NOUT, FMT = 9983 )'INWIN: ', + $ ( INWIN( I ), I = 1, NPARMS ) + ELSE + DO 570 I = 1, NPARMS + INWIN( I ) = 1 + 570 CONTINUE + END IF +* +* Read the values for INIBL. +* + IF( NEP ) THEN + READ( NIN, FMT = * )( INIBL( I ), I = 1, NPARMS ) + DO 580 I = 1, NPARMS + IF( INIBL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( I ), 0 + FATAL = .TRUE. + END IF + 580 CONTINUE + WRITE( NOUT, FMT = 9983 )'INIBL: ', + $ ( INIBL( I ), I = 1, NPARMS ) + ELSE + DO 590 I = 1, NPARMS + INIBL( I ) = 1 + 590 CONTINUE + END IF +* +* Read the values for ISHFTS. +* + IF( NEP ) THEN + READ( NIN, FMT = * )( ISHFTS( I ), I = 1, NPARMS ) + DO 600 I = 1, NPARMS + IF( ISHFTS( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( I ), 0 + FATAL = .TRUE. + END IF + 600 CONTINUE + WRITE( NOUT, FMT = 9983 )'ISHFTS: ', + $ ( ISHFTS( I ), I = 1, NPARMS ) + ELSE + DO 610 I = 1, NPARMS + ISHFTS( I ) = 1 + 610 CONTINUE + END IF +* +* Read the values for IACC22. +* + IF( NEP .OR. SGG ) THEN + READ( NIN, FMT = * )( IACC22( I ), I = 1, NPARMS ) + DO 620 I = 1, NPARMS + IF( IACC22( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( I ), 0 + FATAL = .TRUE. + END IF + 620 CONTINUE + WRITE( NOUT, FMT = 9983 )'IACC22: ', + $ ( IACC22( I ), I = 1, NPARMS ) + ELSE + DO 630 I = 1, NPARMS + IACC22( I ) = 1 + 630 CONTINUE + END IF +* +* Read the values for NBCOL. +* + IF( SGG ) THEN + READ( NIN, FMT = * )( NBCOL( I ), I = 1, NPARMS ) + DO 160 I = 1, NPARMS + IF( NBCOL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )'NBCOL ', NBCOL( I ), 0 + FATAL = .TRUE. + ELSE IF( NBCOL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )'NBCOL ', NBCOL( I ), NMAX + FATAL = .TRUE. + END IF + 160 CONTINUE + WRITE( NOUT, FMT = 9983 )'NBCOL:', + $ ( NBCOL( I ), I = 1, NPARMS ) + ELSE + DO 170 I = 1, NPARMS + NBCOL( I ) = 1 + 170 CONTINUE + END IF + END IF +* +* Calculate and print the machine dependent constants. +* + WRITE( NOUT, FMT = * ) + EPS = SLAMCH( 'Underflow threshold' ) + WRITE( NOUT, FMT = 9981 )'underflow', EPS + EPS = SLAMCH( 'Overflow threshold' ) + WRITE( NOUT, FMT = 9981 )'overflow ', EPS + EPS = SLAMCH( 'Epsilon' ) + WRITE( NOUT, FMT = 9981 )'precision', EPS +* +* Read the threshold value for the test ratios. +* + READ( NIN, FMT = * )THRESH + WRITE( NOUT, FMT = 9982 )THRESH + IF( SEP .OR. SVD .OR. SGG ) THEN +* +* Read the flag that indicates whether to test LAPACK routines. +* + READ( NIN, FMT = * )TSTCHK +* +* Read the flag that indicates whether to test driver routines. +* + READ( NIN, FMT = * )TSTDRV + END IF +* +* Read the flag that indicates whether to test the error exits. +* + READ( NIN, FMT = * )TSTERR +* +* Read the code describing how to set the random number seed. +* + READ( NIN, FMT = * )NEWSD +* +* If NEWSD = 2, read another line with 4 integers for the seed. +* + IF( NEWSD.EQ.2 ) + $ READ( NIN, FMT = * )( IOLDSD( I ), I = 1, 4 ) +* + DO 180 I = 1, 4 + ISEED( I ) = IOLDSD( I ) + 180 CONTINUE +* + IF( FATAL ) THEN + WRITE( NOUT, FMT = 9999 ) + STOP + END IF +* +* Read the input lines indicating the test path and its parameters. +* The first three characters indicate the test path, and the number +* of test matrix types must be the first nonblank item in columns +* 4-80. +* + 190 CONTINUE +* + IF( .NOT.( SGX .OR. SXV ) ) THEN +* + 200 CONTINUE + READ( NIN, FMT = '(A80)', END = 380 )LINE + C3 = LINE( 1: 3 ) + LENP = LEN( LINE ) + I = 3 + ITMP = 0 + I1 = 0 + 210 CONTINUE + I = I + 1 + IF( I.GT.LENP ) THEN + IF( I1.GT.0 ) THEN + GO TO 240 + ELSE + NTYPES = MAXT + GO TO 240 + END IF + END IF + IF( LINE( I: I ).NE.' ' .AND. LINE( I: I ).NE.',' ) THEN + I1 = I + C1 = LINE( I1: I1 ) +* +* Check that a valid integer was read +* + DO 220 K = 1, 10 + IF( C1.EQ.INTSTR( K: K ) ) THEN + IC = K - 1 + GO TO 230 + END IF + 220 CONTINUE + WRITE( NOUT, FMT = 9991 )I, LINE + GO TO 200 + 230 CONTINUE + ITMP = 10*ITMP + IC + GO TO 210 + ELSE IF( I1.GT.0 ) THEN + GO TO 240 + ELSE + GO TO 210 + END IF + 240 CONTINUE + NTYPES = ITMP +* +* Skip the tests if NTYPES is <= 0. +* + IF( .NOT.( SEV .OR. SES .OR. SVX .OR. SSX .OR. SGV .OR. + $ SGS ) .AND. NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + GO TO 200 + END IF +* + ELSE + IF( SXV ) + $ C3 = 'SXV' + IF( SGX ) + $ C3 = 'SGX' + END IF +* +* Reset the random number seed. +* + IF( NEWSD.EQ.0 ) THEN + DO 250 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 250 CONTINUE + END IF +* + IF( LSAMEN( 3, C3, 'SHS' ) .OR. LSAMEN( 3, C3, 'NEP' ) ) THEN +* +* ------------------------------------- +* NEP: Nonsymmetric Eigenvalue Problem +* ------------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NX = crossover point +* NS = number of shifts +* MAXB = minimum submatrix size +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 1, 1 ) + IF( TSTERR ) + $ CALL SERRHS( 'SHSEQR', NOUT ) + DO 270 I = 1, NPARMS + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 3, NXVAL( I ) ) + CALL XLAENV(12, MAX( 11, INMIN( I ) ) ) + CALL XLAENV(13, INWIN( I ) ) + CALL XLAENV(14, INIBL( I ) ) + CALL XLAENV(15, ISHFTS( I ) ) + CALL XLAENV(16, IACC22( I ) ) +* + IF( NEWSD.EQ.0 ) THEN + DO 260 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 260 CONTINUE + END IF + WRITE( NOUT, FMT = 9961 )C3, NBVAL( I ), NBMIN( I ), + $ NXVAL( I ), MAX( 11, INMIN(I)), + $ INWIN( I ), INIBL( I ), ISHFTS( I ), IACC22( I ) + CALL SCHKHS( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 5 ), NMAX, A( 1, 6 ), + $ A( 1, 7 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), + $ D( 1, 4 ), D( 1, 5 ), D( 1, 6 ), A( 1, 8 ), + $ A( 1, 9 ), A( 1, 10 ), A( 1, 11 ), A( 1, 12 ), + $ D( 1, 7 ), WORK, LWORK, IWORK, LOGWRK, RESULT, + $ INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'SCHKHS', INFO + 270 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'SST' ) .OR. LSAMEN( 3, C3, 'SEP' ) + $ .OR. LSAMEN( 3, C3, 'SE2' ) ) THEN +* +* ---------------------------------- +* SEP: Symmetric Eigenvalue Problem +* ---------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NX = crossover point +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 1, 1 ) + CALL XLAENV( 9, 25 ) + IF( TSTERR ) THEN +#if defined(_OPENMP) + N_THREADS = OMP_GET_NUM_THREADS() + CALL OMP_SET_NUM_THREADS(1) +#endif + CALL SERRST( 'SST', NOUT ) +#if defined(_OPENMP) + CALL OMP_SET_NUM_THREADS(N_THREADS) +#endif + END IF + DO 290 I = 1, NPARMS + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 3, NXVAL( I ) ) +* + IF( NEWSD.EQ.0 ) THEN + DO 280 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 280 CONTINUE + END IF + WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ), + $ NXVAL( I ) + IF( TSTCHK ) THEN + IF( LSAMEN( 3, C3, 'SE2' ) ) THEN + CALL SCHKST2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ), + $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), + $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ), + $ D( 1, 10 ), D( 1, 11 ), A( 1, 3 ), NMAX, + $ A( 1, 4 ), A( 1, 5 ), D( 1, 12 ), A( 1, 6 ), + $ WORK, LWORK, IWORK, LIWORK, RESULT, INFO ) + ELSE + CALL SCHKST( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ), + $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), + $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ), + $ D( 1, 10 ), D( 1, 11 ), A( 1, 3 ), NMAX, + $ A( 1, 4 ), A( 1, 5 ), D( 1, 12 ), A( 1, 6 ), + $ WORK, LWORK, IWORK, LIWORK, RESULT, INFO ) + ENDIF + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'SCHKST', INFO + END IF + IF( TSTDRV ) THEN + IF( LSAMEN( 3, C3, 'SE2' ) ) THEN + CALL SDRVST2STG( NN, NVAL, 18, DOTYPE, ISEED, THRESH, + $ NOUT, A( 1, 1 ), NMAX, D( 1, 3 ), D( 1, 4 ), + $ D( 1, 5 ), D( 1, 6 ), D( 1, 8 ), D( 1, 9 ), + $ D( 1, 10 ), D( 1, 11), A( 1, 2 ), NMAX, + $ A( 1, 3 ), D( 1, 12 ), A( 1, 4 ), WORK, + $ LWORK, IWORK, LIWORK, RESULT, INFO ) + ELSE + CALL SDRVST( NN, NVAL, 18, DOTYPE, ISEED, THRESH, + $ NOUT, A( 1, 1 ), NMAX, D( 1, 3 ), D( 1, 4 ), + $ D( 1, 5 ), D( 1, 6 ), D( 1, 8 ), D( 1, 9 ), + $ D( 1, 10 ), D( 1, 11), A( 1, 2 ), NMAX, + $ A( 1, 3 ), D( 1, 12 ), A( 1, 4 ), WORK, + $ LWORK, IWORK, LIWORK, RESULT, INFO ) + ENDIF + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'SDRVST', INFO + END IF + 290 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'SSG' ) ) THEN +* +* ---------------------------------------------- +* SSG: Symmetric Generalized Eigenvalue Problem +* ---------------------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NX = crossover point +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 9, 25 ) + DO 310 I = 1, NPARMS + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 3, NXVAL( I ) ) +* + IF( NEWSD.EQ.0 ) THEN + DO 300 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 300 CONTINUE + END IF + WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ), + $ NXVAL( I ) + IF( TSTCHK ) THEN +* CALL SDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, +* $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, +* $ D( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ), +* $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK, +* $ LWORK, IWORK, LIWORK, RESULT, INFO ) + CALL SDRVSG2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, + $ D( 1, 3 ), D( 1, 3 ), A( 1, 3 ), NMAX, + $ A( 1, 4 ), A( 1, 5 ), A( 1, 6 ), + $ A( 1, 7 ), WORK, LWORK, IWORK, LIWORK, + $ RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'SDRVSG', INFO + END IF + 310 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'SBD' ) .OR. LSAMEN( 3, C3, 'SVD' ) ) THEN +* +* ---------------------------------- +* SVD: Singular Value Decomposition +* ---------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NX = crossover point +* NRHS = number of right hand sides +* + MAXTYP = 16 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 1, 1 ) + CALL XLAENV( 9, 25 ) +* +* Test the error exits +* + IF( TSTERR .AND. TSTCHK ) + $ CALL SERRBD( 'SBD', NOUT ) + IF( TSTERR .AND. TSTDRV ) + $ CALL SERRED( 'SBD', NOUT ) +* + DO 330 I = 1, NPARMS + NRHS = NSVAL( I ) + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 3, NXVAL( I ) ) + IF( NEWSD.EQ.0 ) THEN + DO 320 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 320 CONTINUE + END IF + WRITE( NOUT, FMT = 9995 )C3, NBVAL( I ), NBMIN( I ), + $ NXVAL( I ), NRHS + IF( TSTCHK ) THEN + CALL SCHKBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, NRHS, ISEED, + $ THRESH, A( 1, 1 ), NMAX, D( 1, 1 ), + $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 2 ), + $ NMAX, A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), NMAX, + $ A( 1, 6 ), NMAX, A( 1, 7 ), A( 1, 8 ), WORK, + $ LWORK, IWORK, NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'SCHKBD', INFO + END IF + IF( TSTDRV ) + $ CALL SDRVBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, ISEED, + $ THRESH, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, + $ A( 1, 3 ), NMAX, A( 1, 4 ), A( 1, 5 ), + $ A( 1, 6 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), + $ WORK, LWORK, IWORK, NOUT, INFO ) + 330 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'SEV' ) ) THEN +* +* -------------------------------------------- +* SEV: Nonsymmetric Eigenvalue Problem Driver +* SGEEV (eigenvalues and eigenvectors) +* -------------------------------------------- +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL SERRED( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL SDRVEV( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ), + $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 3 ), + $ NMAX, A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, RESULT, + $ WORK, LWORK, IWORK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'SGEEV', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'SES' ) ) THEN +* +* -------------------------------------------- +* SES: Nonsymmetric Eigenvalue Problem Driver +* SGEES (Schur form) +* -------------------------------------------- +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL SERRED( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL SDRVES( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), + $ A( 1, 4 ), NMAX, RESULT, WORK, LWORK, IWORK, + $ LOGWRK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'SGEES', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'SVX' ) ) THEN +* +* -------------------------------------------------------------- +* SVX: Nonsymmetric Eigenvalue Problem Expert Driver +* SGEEVX (eigenvalues, eigenvectors and condition numbers) +* -------------------------------------------------------------- +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LT.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL SERRED( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL SDRVVX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ), + $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 3 ), + $ NMAX, A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, + $ D( 1, 5 ), D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), + $ D( 1, 9 ), D( 1, 10 ), D( 1, 11 ), D( 1, 12 ), + $ RESULT, WORK, LWORK, IWORK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'SGEEVX', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'SSX' ) ) THEN +* +* --------------------------------------------------- +* SSX: Nonsymmetric Eigenvalue Problem Expert Driver +* SGEESX (Schur form and condition numbers) +* --------------------------------------------------- +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LT.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL SERRED( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL SDRVSX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), + $ D( 1, 5 ), D( 1, 6 ), A( 1, 4 ), NMAX, + $ A( 1, 5 ), RESULT, WORK, LWORK, IWORK, LOGWRK, + $ INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'SGEESX', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'SGG' ) ) THEN +* +* ------------------------------------------------- +* SGG: Generalized Nonsymmetric Eigenvalue Problem +* ------------------------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NS = number of shifts +* MAXB = minimum submatrix size +* IACC22: structured matrix multiply +* NBCOL = minimum column dimension for blocks +* + MAXTYP = 26 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV(1,1) + IF( TSTCHK .AND. TSTERR ) + & CALL SERRGG( C3, NOUT ) + DO 350 I = 1, NPARMS + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 4, NSVAL( I ) ) + CALL XLAENV( 8, MXBVAL( I ) ) + CALL XLAENV( 16, IACC22( I ) ) + CALL XLAENV( 5, NBCOL( I ) ) +* + IF( NEWSD.EQ.0 ) THEN + DO 340 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 340 CONTINUE + END IF + WRITE( NOUT, FMT = 9996 )C3, NBVAL( I ), NBMIN( I ), + $ NSVAL( I ), MXBVAL( I ), IACC22( I ), NBCOL( I ) + TSTDIF = .FALSE. + THRSHN = 10. + IF( TSTCHK ) THEN + CALL SCHKGG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, + $ TSTDIF, THRSHN, NOUT, A( 1, 1 ), NMAX, + $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), + $ A( 1, 6 ), A( 1, 7 ), A( 1, 8 ), A( 1, 9 ), + $ NMAX, A( 1, 10 ), A( 1, 11 ), A( 1, 12 ), + $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), + $ D( 1, 5 ), D( 1, 6 ), A( 1, 13 ), + $ A( 1, 14 ), WORK, LWORK, LOGWRK, RESULT, + $ INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'SCHKGG', INFO + END IF + 350 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'SGS' ) ) THEN +* +* ------------------------------------------------- +* SGS: Generalized Nonsymmetric Eigenvalue Problem +* SGGES (Schur form) +* ------------------------------------------------- +* + MAXTYP = 26 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL SERRGG( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL SDRGES( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), + $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), WORK, LWORK, + $ RESULT, LOGWRK, INFO ) +* + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'SDRGES', INFO +* +* Blocked version +* + CALL XLAENV(16,1) + CALL SDRGES3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), + $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), WORK, LWORK, + $ RESULT, LOGWRK, INFO ) +* + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'SDRGES3', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( SGX ) THEN +* +* ------------------------------------------------- +* SGX: Generalized Nonsymmetric Eigenvalue Problem +* SGGESX (Schur form and condition numbers) +* ------------------------------------------------- +* + MAXTYP = 5 + NTYPES = MAXTYP + IF( NN.LT.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL SERRGG( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 5, 2 ) + CALL SDRGSX( NN, NCMAX, THRESH, NIN, NOUT, A( 1, 1 ), NMAX, + $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), + $ A( 1, 6 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), + $ C( 1, 1 ), NCMAX*NCMAX, A( 1, 12 ), WORK, + $ LWORK, IWORK, LIWORK, LOGWRK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'SDRGSX', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'SGV' ) ) THEN +* +* ------------------------------------------------- +* SGV: Generalized Nonsymmetric Eigenvalue Problem +* SGGEV (Eigenvalue/vector form) +* ------------------------------------------------- +* + MAXTYP = 26 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL SERRGG( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL SDRGEV( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), + $ A( 1, 9 ), NMAX, D( 1, 1 ), D( 1, 2 ), + $ D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), D( 1, 6 ), + $ WORK, LWORK, RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'SDRGEV', INFO +* +* Blocked version +* + CALL SDRGEV3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), + $ A( 1, 9 ), NMAX, D( 1, 1 ), D( 1, 2 ), + $ D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), D( 1, 6 ), + $ WORK, LWORK, RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'SDRGEV3', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( SXV ) THEN +* +* ------------------------------------------------- +* SXV: Generalized Nonsymmetric Eigenvalue Problem +* SGGEVX (eigenvalue/vector with condition numbers) +* ------------------------------------------------- +* + MAXTYP = 2 + NTYPES = MAXTYP + IF( NN.LT.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL SERRGG( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL SDRGVX( NN, THRESH, NIN, NOUT, A( 1, 1 ), NMAX, + $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), D( 1, 1 ), + $ D( 1, 2 ), D( 1, 3 ), A( 1, 5 ), A( 1, 6 ), + $ IWORK( 1 ), IWORK( 2 ), D( 1, 4 ), D( 1, 5 ), + $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ), + $ WORK, LWORK, IWORK( 3 ), LIWORK-2, RESULT, + $ LOGWRK, INFO ) +* + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'SDRGVX', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'SSB' ) ) THEN +* +* ------------------------------ +* SSB: Symmetric Band Reduction +* ------------------------------ +* + MAXTYP = 15 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + IF( TSTERR ) + $ CALL SERRST( 'SSB', NOUT ) +* CALL SCHKSB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH, +* $ NOUT, A( 1, 1 ), NMAX, D( 1, 1 ), D( 1, 2 ), +* $ A( 1, 2 ), NMAX, WORK, LWORK, RESULT, INFO ) + CALL SCHKSB2STG( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, + $ THRESH, NOUT, A( 1, 1 ), NMAX, D( 1, 1 ), + $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), + $ A( 1, 2 ), NMAX, WORK, LWORK, RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'SCHKSB', INFO +* + ELSE IF( LSAMEN( 3, C3, 'SBB' ) ) THEN +* +* ------------------------------ +* SBB: General Band Reduction +* ------------------------------ +* + MAXTYP = 15 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + DO 370 I = 1, NPARMS + NRHS = NSVAL( I ) +* + IF( NEWSD.EQ.0 ) THEN + DO 360 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 360 CONTINUE + END IF + WRITE( NOUT, FMT = 9966 )C3, NRHS + CALL SCHKBB( NN, MVAL, NVAL, NK, KVAL, MAXTYP, DOTYPE, NRHS, + $ ISEED, THRESH, NOUT, A( 1, 1 ), NMAX, + $ A( 1, 2 ), 2*NMAX, D( 1, 1 ), D( 1, 2 ), + $ A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, A( 1, 6 ), + $ NMAX, A( 1, 7 ), WORK, LWORK, RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'SCHKBB', INFO + 370 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'GLM' ) ) THEN +* +* ----------------------------------------- +* GLM: Generalized Linear Regression Model +* ----------------------------------------- +* + CALL XLAENV( 1, 1 ) + IF( TSTERR ) + $ CALL SERRGG( 'GLM', NOUT ) + CALL SCKGLM( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, + $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X, + $ WORK, D( 1, 1 ), NIN, NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'SCKGLM', INFO +* + ELSE IF( LSAMEN( 3, C3, 'GQR' ) ) THEN +* +* ------------------------------------------ +* GQR: Generalized QR and RQ factorizations +* ------------------------------------------ +* + CALL XLAENV( 1, 1 ) + IF( TSTERR ) + $ CALL SERRGG( 'GQR', NOUT ) + CALL SCKGQR( NN, MVAL, NN, PVAL, NN, NVAL, NTYPES, ISEED, + $ THRESH, NMAX, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), TAUA, B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), + $ B( 1, 4 ), B( 1, 5 ), TAUB, WORK, D( 1, 1 ), NIN, + $ NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'SCKGQR', INFO +* + ELSE IF( LSAMEN( 3, C3, 'GSV' ) ) THEN +* +* ---------------------------------------------- +* GSV: Generalized Singular Value Decomposition +* ---------------------------------------------- +* + CALL XLAENV( 1, 1 ) + IF( TSTERR ) + $ CALL SERRGG( 'GSV', NOUT ) + CALL SCKGSV( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, + $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), + $ A( 1, 3 ), B( 1, 3 ), A( 1, 4 ), TAUA, TAUB, + $ B( 1, 4 ), IWORK, WORK, D( 1, 1 ), NIN, NOUT, + $ INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'SCKGSV', INFO +* + ELSE IF( LSAMEN( 3, C3, 'CSD' ) ) THEN +* +* ---------------------------------------------- +* CSD: CS Decomposition +* ---------------------------------------------- +* + CALL XLAENV(1,1) + IF( TSTERR ) + $ CALL SERRGG( 'CSD', NOUT ) + CALL SCKCSD( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, + $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), + $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), IWORK, WORK, + $ D( 1, 1 ), NIN, NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'SCKCSD', INFO +* + ELSE IF( LSAMEN( 3, C3, 'LSE' ) ) THEN +* +* -------------------------------------- +* LSE: Constrained Linear Least Squares +* -------------------------------------- +* + CALL XLAENV( 1, 1 ) + IF( TSTERR ) + $ CALL SERRGG( 'LSE', NOUT ) + CALL SCKLSE( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, + $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X, + $ WORK, D( 1, 1 ), NIN, NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'SCKLSE', INFO +* + ELSE + WRITE( NOUT, FMT = * ) + WRITE( NOUT, FMT = * ) + WRITE( NOUT, FMT = 9992 )C3 + END IF + IF( .NOT.( SGX .OR. SXV ) ) + $ GO TO 190 + 380 CONTINUE + WRITE( NOUT, FMT = 9994 ) + S2 = SECOND( ) + WRITE( NOUT, FMT = 9993 )S2 - S1 +* + DEALLOCATE (A, STAT = AllocateStatus) + DEALLOCATE (B, STAT = AllocateStatus) + DEALLOCATE (C, STAT = AllocateStatus) + DEALLOCATE (WORK, STAT = AllocateStatus) +* + 9999 FORMAT( / ' Execution not attempted due to input errors' ) + 9997 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4 ) + 9996 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NS =', I4, + $ ', MAXB =', I4, ', IACC22 =', I4, ', NBCOL =', I4 ) + 9995 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4, + $ ', NRHS =', I4 ) + 9994 FORMAT( / / ' End of tests' ) + 9993 FORMAT( ' Total time used = ', F12.2, ' seconds', / ) + 9992 FORMAT( 1X, A3, ': Unrecognized path name' ) + 9991 FORMAT( / / ' *** Invalid integer value in column ', I2, + $ ' of input', ' line:', / A79 ) + 9990 FORMAT( / / 1X, A3, ' routines were not tested' ) + 9989 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be >=', + $ I6 ) + 9988 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be <=', + $ I6 ) + 9987 FORMAT( ' Tests of the Nonsymmetric Eigenvalue Problem routines' ) + 9986 FORMAT( ' Tests of the Symmetric Eigenvalue Problem routines' ) + 9985 FORMAT( ' Tests of the Singular Value Decomposition routines' ) + 9984 FORMAT( / ' The following parameter values will be used:' ) + 9983 FORMAT( 4X, A, 10I6, / 10X, 10I6 ) + 9982 FORMAT( / ' Routines pass computational tests if test ratio is ', + $ 'less than', F8.2, / ) + 9981 FORMAT( ' Relative machine ', A, ' is taken to be', E16.6 ) + 9980 FORMAT( ' *** Error code from ', A, ' = ', I4 ) + 9979 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver', + $ / ' SGEEV (eigenvalues and eigevectors)' ) + 9978 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver', + $ / ' SGEES (Schur form)' ) + 9977 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert', + $ ' Driver', / ' SGEEVX (eigenvalues, eigenvectors and', + $ ' condition numbers)' ) + 9976 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert', + $ ' Driver', / ' SGEESX (Schur form and condition', + $ ' numbers)' ) + 9975 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem routines' ) + 9974 FORMAT( ' Tests of SSBTRD', / ' (reduction of a symmetric band ', + $ 'matrix to tridiagonal form)' ) + 9973 FORMAT( / 1X, 71( '-' ) ) + 9972 FORMAT( / ' LAPACK VERSION ', I1, '.', I1, '.', I1 ) + 9971 FORMAT( / ' Tests of the Generalized Linear Regression Model ', + $ 'routines' ) + 9970 FORMAT( / ' Tests of the Generalized QR and RQ routines' ) + 9969 FORMAT( / ' Tests of the Generalized Singular Value', + $ ' Decomposition routines' ) + 9968 FORMAT( / ' Tests of the Linear Least Squares routines' ) + 9967 FORMAT( ' Tests of SGBBRD', / ' (reduction of a general band ', + $ 'matrix to real bidiagonal form)' ) + 9966 FORMAT( / / 1X, A3, ': NRHS =', I4 ) + 9965 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem Expert Driver SGGESX' ) + 9964 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem Driver SGGES' ) + 9963 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem Driver SGGEV' ) + 9962 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem Expert Driver SGGEVX' ) + 9961 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4, + $ ', INMIN=', I4, + $ ', INWIN =', I4, ', INIBL =', I4, ', ISHFTS =', I4, + $ ', IACC22 =', I4) + 9960 FORMAT( / ' Tests of the CS Decomposition routines' ) +* +* End of SCHKEE +* + END From 9b7b1da133a6c9c6d77d36dc37247044551ccd75 Mon Sep 17 00:00:00 2001 From: Martin Kroeker Date: Sun, 28 Feb 2021 18:50:26 +0100 Subject: [PATCH 09/17] Add rewritten dchkee.F from Reference-LAPACK PR335 --- lapack-netlib/TESTING/EIG/dchkee.F | 2538 ++++++++++++++++++++++++++++ 1 file changed, 2538 insertions(+) create mode 100644 lapack-netlib/TESTING/EIG/dchkee.F diff --git a/lapack-netlib/TESTING/EIG/dchkee.F b/lapack-netlib/TESTING/EIG/dchkee.F new file mode 100644 index 000000000..ee22ce33d --- /dev/null +++ b/lapack-netlib/TESTING/EIG/dchkee.F @@ -0,0 +1,2538 @@ +*> \brief \b DCHKEE +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +* Definition: +* =========== +* +* PROGRAM DCHKEE +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DCHKEE tests the DOUBLE PRECISION LAPACK subroutines for the matrix +*> eigenvalue problem. The test paths in this version are +*> +*> NEP (Nonsymmetric Eigenvalue Problem): +*> Test DGEHRD, DORGHR, DHSEQR, DTREVC, DHSEIN, and DORMHR +*> +*> SEP (Symmetric Eigenvalue Problem): +*> Test DSYTRD, DORGTR, DSTEQR, DSTERF, DSTEIN, DSTEDC, +*> and drivers DSYEV(X), DSBEV(X), DSPEV(X), DSTEV(X), +*> DSYEVD, DSBEVD, DSPEVD, DSTEVD +*> +*> SVD (Singular Value Decomposition): +*> Test DGEBRD, DORGBR, DBDSQR, DBDSDC +*> and the drivers DGESVD, DGESDD +*> +*> DEV (Nonsymmetric Eigenvalue/eigenvector Driver): +*> Test DGEEV +*> +*> DES (Nonsymmetric Schur form Driver): +*> Test DGEES +*> +*> DVX (Nonsymmetric Eigenvalue/eigenvector Expert Driver): +*> Test DGEEVX +*> +*> DSX (Nonsymmetric Schur form Expert Driver): +*> Test DGEESX +*> +*> DGG (Generalized Nonsymmetric Eigenvalue Problem): +*> Test DGGHD3, DGGBAL, DGGBAK, DHGEQZ, and DTGEVC +*> +*> DGS (Generalized Nonsymmetric Schur form Driver): +*> Test DGGES +*> +*> DGV (Generalized Nonsymmetric Eigenvalue/eigenvector Driver): +*> Test DGGEV +*> +*> DGX (Generalized Nonsymmetric Schur form Expert Driver): +*> Test DGGESX +*> +*> DXV (Generalized Nonsymmetric Eigenvalue/eigenvector Expert Driver): +*> Test DGGEVX +*> +*> DSG (Symmetric Generalized Eigenvalue Problem): +*> Test DSYGST, DSYGV, DSYGVD, DSYGVX, DSPGST, DSPGV, DSPGVD, +*> DSPGVX, DSBGST, DSBGV, DSBGVD, and DSBGVX +*> +*> DSB (Symmetric Band Eigenvalue Problem): +*> Test DSBTRD +*> +*> DBB (Band Singular Value Decomposition): +*> Test DGBBRD +*> +*> DEC (Eigencondition estimation): +*> Test DLALN2, DLASY2, DLAEQU, DLAEXC, DTRSYL, DTREXC, DTRSNA, +*> DTRSEN, and DLAQTR +*> +*> DBL (Balancing a general matrix) +*> Test DGEBAL +*> +*> DBK (Back transformation on a balanced matrix) +*> Test DGEBAK +*> +*> DGL (Balancing a matrix pair) +*> Test DGGBAL +*> +*> DGK (Back transformation on a matrix pair) +*> Test DGGBAK +*> +*> GLM (Generalized Linear Regression Model): +*> Tests DGGGLM +*> +*> GQR (Generalized QR and RQ factorizations): +*> Tests DGGQRF and DGGRQF +*> +*> GSV (Generalized Singular Value Decomposition): +*> Tests DGGSVD, DGGSVP, DTGSJA, DLAGS2, DLAPLL, and DLAPMT +*> +*> CSD (CS decomposition): +*> Tests DORCSD +*> +*> LSE (Constrained Linear Least Squares): +*> Tests DGGLSE +*> +*> Each test path has a different set of inputs, but the data sets for +*> the driver routines xEV, xES, xVX, and xSX can be concatenated in a +*> single input file. The first line of input should contain one of the +*> 3-character path names in columns 1-3. The number of remaining lines +*> depends on what is found on the first line. +*> +*> The number of matrix types used in testing is often controllable from +*> the input file. The number of matrix types for each path, and the +*> test routine that describes them, is as follows: +*> +*> Path name(s) Types Test routine +*> +*> DHS or NEP 21 DCHKHS +*> DST or SEP 21 DCHKST (routines) +*> 18 DDRVST (drivers) +*> DBD or SVD 16 DCHKBD (routines) +*> 5 DDRVBD (drivers) +*> DEV 21 DDRVEV +*> DES 21 DDRVES +*> DVX 21 DDRVVX +*> DSX 21 DDRVSX +*> DGG 26 DCHKGG (routines) +*> DGS 26 DDRGES +*> DGX 5 DDRGSX +*> DGV 26 DDRGEV +*> DXV 2 DDRGVX +*> DSG 21 DDRVSG +*> DSB 15 DCHKSB +*> DBB 15 DCHKBB +*> DEC - DCHKEC +*> DBL - DCHKBL +*> DBK - DCHKBK +*> DGL - DCHKGL +*> DGK - DCHKGK +*> GLM 8 DCKGLM +*> GQR 8 DCKGQR +*> GSV 8 DCKGSV +*> CSD 3 DCKCSD +*> LSE 8 DCKLSE +*> +*>----------------------------------------------------------------------- +*> +*> NEP input file: +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix dimension N. +*> +*> line 4: NPARMS, INTEGER +*> Number of values of the parameters NB, NBMIN, NX, NS, and +*> MAXB. +*> +*> line 5: NBVAL, INTEGER array, dimension (NPARMS) +*> The values for the blocksize NB. +*> +*> line 6: NBMIN, INTEGER array, dimension (NPARMS) +*> The values for the minimum blocksize NBMIN. +*> +*> line 7: NXVAL, INTEGER array, dimension (NPARMS) +*> The values for the crossover point NX. +*> +*> line 8: INMIN, INTEGER array, dimension (NPARMS) +*> LAHQR vs TTQRE crossover point, >= 11 +*> +*> line 9: INWIN, INTEGER array, dimension (NPARMS) +*> recommended deflation window size +*> +*> line 10: INIBL, INTEGER array, dimension (NPARMS) +*> nibble crossover point +*> +*> line 11: ISHFTS, INTEGER array, dimension (NPARMS) +*> number of simultaneous shifts) +*> +*> line 12: IACC22, INTEGER array, dimension (NPARMS) +*> select structured matrix multiply: 0, 1 or 2) +*> +*> line 13: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. To have all of the test +*> ratios printed, use THRESH = 0.0 . +*> +*> line 14: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 14 was 2: +*> +*> line 15: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 15-EOF: The remaining lines occur in sets of 1 or 2 and allow +*> the user to specify the matrix types. Each line contains +*> a 3-character path name in columns 1-3, and the number +*> of matrix types must be the first nonblank item in columns +*> 4-80. If the number of matrix types is at least 1 but is +*> less than the maximum number of possible types, a second +*> line will be read to get the numbers of the matrix types to +*> be used. For example, +*> NEP 21 +*> requests all of the matrix types for the nonsymmetric +*> eigenvalue problem, while +*> NEP 4 +*> 9 10 11 12 +*> requests only matrices of type 9, 10, 11, and 12. +*> +*> The valid 3-character path names are 'NEP' or 'SHS' for the +*> nonsymmetric eigenvalue routines. +*> +*>----------------------------------------------------------------------- +*> +*> SEP or DSG input file: +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix dimension N. +*> +*> line 4: NPARMS, INTEGER +*> Number of values of the parameters NB, NBMIN, and NX. +*> +*> line 5: NBVAL, INTEGER array, dimension (NPARMS) +*> The values for the blocksize NB. +*> +*> line 6: NBMIN, INTEGER array, dimension (NPARMS) +*> The values for the minimum blocksize NBMIN. +*> +*> line 7: NXVAL, INTEGER array, dimension (NPARMS) +*> The values for the crossover point NX. +*> +*> line 8: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 9: TSTCHK, LOGICAL +*> Flag indicating whether or not to test the LAPACK routines. +*> +*> line 10: TSTDRV, LOGICAL +*> Flag indicating whether or not to test the driver routines. +*> +*> line 11: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 12: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 12 was 2: +*> +*> line 13: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 13-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path names are 'SEP' or 'SST' for the +*> symmetric eigenvalue routines and driver routines, and +*> 'DSG' for the routines for the symmetric generalized +*> eigenvalue problem. +*> +*>----------------------------------------------------------------------- +*> +*> SVD input file: +*> +*> line 2: NN, INTEGER +*> Number of values of M and N. +*> +*> line 3: MVAL, INTEGER array, dimension (NN) +*> The values for the matrix row dimension M. +*> +*> line 4: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix column dimension N. +*> +*> line 5: NPARMS, INTEGER +*> Number of values of the parameter NB, NBMIN, NX, and NRHS. +*> +*> line 6: NBVAL, INTEGER array, dimension (NPARMS) +*> The values for the blocksize NB. +*> +*> line 7: NBMIN, INTEGER array, dimension (NPARMS) +*> The values for the minimum blocksize NBMIN. +*> +*> line 8: NXVAL, INTEGER array, dimension (NPARMS) +*> The values for the crossover point NX. +*> +*> line 9: NSVAL, INTEGER array, dimension (NPARMS) +*> The values for the number of right hand sides NRHS. +*> +*> line 10: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 11: TSTCHK, LOGICAL +*> Flag indicating whether or not to test the LAPACK routines. +*> +*> line 12: TSTDRV, LOGICAL +*> Flag indicating whether or not to test the driver routines. +*> +*> line 13: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 14: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 14 was 2: +*> +*> line 15: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 15-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path names are 'SVD' or 'SBD' for both the +*> SVD routines and the SVD driver routines. +*> +*>----------------------------------------------------------------------- +*> +*> DEV and DES data files: +*> +*> line 1: 'DEV' or 'DES' in columns 1 to 3. +*> +*> line 2: NSIZES, INTEGER +*> Number of sizes of matrices to use. Should be at least 0 +*> and at most 20. If NSIZES = 0, no testing is done +*> (although the remaining 3 lines are still read). +*> +*> line 3: NN, INTEGER array, dimension(NSIZES) +*> Dimensions of matrices to be tested. +*> +*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> These integer parameters determine how blocking is done +*> (see ILAENV for details) +*> NB : block size +*> NBMIN : minimum block size +*> NX : minimum dimension for blocking +*> NS : number of shifts in xHSEQR +*> NBCOL : minimum column dimension for blocking +*> +*> line 5: THRESH, REAL +*> The test threshold against which computed residuals are +*> compared. Should generally be in the range from 10. to 20. +*> If it is 0., all test case data will be printed. +*> +*> line 6: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits. +*> +*> line 7: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 7 was 2: +*> +*> line 8: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9 and following: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'DEV' to test SGEEV, or +*> 'DES' to test SGEES. +*> +*>----------------------------------------------------------------------- +*> +*> The DVX data has two parts. The first part is identical to DEV, +*> and the second part consists of test matrices with precomputed +*> solutions. +*> +*> line 1: 'DVX' in columns 1-3. +*> +*> line 2: NSIZES, INTEGER +*> If NSIZES = 0, no testing of randomly generated examples +*> is done, but any precomputed examples are tested. +*> +*> line 3: NN, INTEGER array, dimension(NSIZES) +*> +*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> +*> line 5: THRESH, REAL +*> +*> line 6: TSTERR, LOGICAL +*> +*> line 7: NEWSD, INTEGER +*> +*> If line 7 was 2: +*> +*> line 8: INTEGER array, dimension (4) +*> +*> lines 9 and following: The first line contains 'DVX' in columns 1-3 +*> followed by the number of matrix types, possibly with +*> a second line to specify certain matrix types. +*> If the number of matrix types = 0, no testing of randomly +*> generated examples is done, but any precomputed examples +*> are tested. +*> +*> remaining lines : Each matrix is stored on 1+2*N lines, where N is +*> its dimension. The first line contains the dimension (a +*> single integer). The next N lines contain the matrix, one +*> row per line. The last N lines correspond to each +*> eigenvalue. Each of these last N lines contains 4 real +*> values: the real part of the eigenvalue, the imaginary +*> part of the eigenvalue, the reciprocal condition number of +*> the eigenvalues, and the reciprocal condition number of the +*> eigenvector. The end of data is indicated by dimension N=0. +*> Even if no data is to be tested, there must be at least one +*> line containing N=0. +*> +*>----------------------------------------------------------------------- +*> +*> The DSX data is like DVX. The first part is identical to DEV, and the +*> second part consists of test matrices with precomputed solutions. +*> +*> line 1: 'DSX' in columns 1-3. +*> +*> line 2: NSIZES, INTEGER +*> If NSIZES = 0, no testing of randomly generated examples +*> is done, but any precomputed examples are tested. +*> +*> line 3: NN, INTEGER array, dimension(NSIZES) +*> +*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> +*> line 5: THRESH, REAL +*> +*> line 6: TSTERR, LOGICAL +*> +*> line 7: NEWSD, INTEGER +*> +*> If line 7 was 2: +*> +*> line 8: INTEGER array, dimension (4) +*> +*> lines 9 and following: The first line contains 'DSX' in columns 1-3 +*> followed by the number of matrix types, possibly with +*> a second line to specify certain matrix types. +*> If the number of matrix types = 0, no testing of randomly +*> generated examples is done, but any precomputed examples +*> are tested. +*> +*> remaining lines : Each matrix is stored on 3+N lines, where N is its +*> dimension. The first line contains the dimension N and the +*> dimension M of an invariant subspace. The second line +*> contains M integers, identifying the eigenvalues in the +*> invariant subspace (by their position in a list of +*> eigenvalues ordered by increasing real part). The next N +*> lines contain the matrix. The last line contains the +*> reciprocal condition number for the average of the selected +*> eigenvalues, and the reciprocal condition number for the +*> corresponding right invariant subspace. The end of data is +*> indicated by a line containing N=0 and M=0. Even if no data +*> is to be tested, there must be at least one line containing +*> N=0 and M=0. +*> +*>----------------------------------------------------------------------- +*> +*> DGG input file: +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix dimension N. +*> +*> line 4: NPARMS, INTEGER +*> Number of values of the parameters NB, NBMIN, NS, MAXB, and +*> NBCOL. +*> +*> line 5: NBVAL, INTEGER array, dimension (NPARMS) +*> The values for the blocksize NB. +*> +*> line 6: NBMIN, INTEGER array, dimension (NPARMS) +*> The values for NBMIN, the minimum row dimension for blocks. +*> +*> line 7: NSVAL, INTEGER array, dimension (NPARMS) +*> The values for the number of shifts. +*> +*> line 8: MXBVAL, INTEGER array, dimension (NPARMS) +*> The values for MAXB, used in determining minimum blocksize. +*> +*> line 9: IACC22, INTEGER array, dimension (NPARMS) +*> select structured matrix multiply: 1 or 2) +*> +*> line 10: NBCOL, INTEGER array, dimension (NPARMS) +*> The values for NBCOL, the minimum column dimension for +*> blocks. +*> +*> line 11: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 12: TSTCHK, LOGICAL +*> Flag indicating whether or not to test the LAPACK routines. +*> +*> line 13: TSTDRV, LOGICAL +*> Flag indicating whether or not to test the driver routines. +*> +*> line 14: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 15: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 15 was 2: +*> +*> line 16: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 17-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'DGG' for the generalized +*> eigenvalue problem routines and driver routines. +*> +*>----------------------------------------------------------------------- +*> +*> DGS and DGV input files: +*> +*> line 1: 'DGS' or 'DGV' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension(NN) +*> Dimensions of matrices to be tested. +*> +*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> These integer parameters determine how blocking is done +*> (see ILAENV for details) +*> NB : block size +*> NBMIN : minimum block size +*> NX : minimum dimension for blocking +*> NS : number of shifts in xHGEQR +*> NBCOL : minimum column dimension for blocking +*> +*> line 5: THRESH, REAL +*> The test threshold against which computed residuals are +*> compared. Should generally be in the range from 10. to 20. +*> If it is 0., all test case data will be printed. +*> +*> line 6: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits. +*> +*> line 7: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 17 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 7-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'DGS' for the generalized +*> eigenvalue problem routines and driver routines. +*> +*>----------------------------------------------------------------------- +*> +*> DXV input files: +*> +*> line 1: 'DXV' in columns 1 to 3. +*> +*> line 2: N, INTEGER +*> Value of N. +*> +*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> These integer parameters determine how blocking is done +*> (see ILAENV for details) +*> NB : block size +*> NBMIN : minimum block size +*> NX : minimum dimension for blocking +*> NS : number of shifts in xHGEQR +*> NBCOL : minimum column dimension for blocking +*> +*> line 4: THRESH, REAL +*> The test threshold against which computed residuals are +*> compared. Should generally be in the range from 10. to 20. +*> Information will be printed about each test for which the +*> test ratio is greater than or equal to the threshold. +*> +*> line 5: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 6: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 6 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> If line 2 was 0: +*> +*> line 7-EOF: Precomputed examples are tested. +*> +*> remaining lines : Each example is stored on 3+2*N lines, where N is +*> its dimension. The first line contains the dimension (a +*> single integer). The next N lines contain the matrix A, one +*> row per line. The next N lines contain the matrix B. The +*> next line contains the reciprocals of the eigenvalue +*> condition numbers. The last line contains the reciprocals of +*> the eigenvector condition numbers. The end of data is +*> indicated by dimension N=0. Even if no data is to be tested, +*> there must be at least one line containing N=0. +*> +*>----------------------------------------------------------------------- +*> +*> DGX input files: +*> +*> line 1: 'DGX' in columns 1 to 3. +*> +*> line 2: N, INTEGER +*> Value of N. +*> +*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> These integer parameters determine how blocking is done +*> (see ILAENV for details) +*> NB : block size +*> NBMIN : minimum block size +*> NX : minimum dimension for blocking +*> NS : number of shifts in xHGEQR +*> NBCOL : minimum column dimension for blocking +*> +*> line 4: THRESH, REAL +*> The test threshold against which computed residuals are +*> compared. Should generally be in the range from 10. to 20. +*> Information will be printed about each test for which the +*> test ratio is greater than or equal to the threshold. +*> +*> line 5: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 6: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 6 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> If line 2 was 0: +*> +*> line 7-EOF: Precomputed examples are tested. +*> +*> remaining lines : Each example is stored on 3+2*N lines, where N is +*> its dimension. The first line contains the dimension (a +*> single integer). The next line contains an integer k such +*> that only the last k eigenvalues will be selected and appear +*> in the leading diagonal blocks of $A$ and $B$. The next N +*> lines contain the matrix A, one row per line. The next N +*> lines contain the matrix B. The last line contains the +*> reciprocal of the eigenvalue cluster condition number and the +*> reciprocal of the deflating subspace (associated with the +*> selected eigencluster) condition number. The end of data is +*> indicated by dimension N=0. Even if no data is to be tested, +*> there must be at least one line containing N=0. +*> +*>----------------------------------------------------------------------- +*> +*> DSB input file: +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix dimension N. +*> +*> line 4: NK, INTEGER +*> Number of values of K. +*> +*> line 5: KVAL, INTEGER array, dimension (NK) +*> The values for the matrix dimension K. +*> +*> line 6: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 7 was 2: +*> +*> line 8: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 8-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'DSB'. +*> +*>----------------------------------------------------------------------- +*> +*> DBB input file: +*> +*> line 2: NN, INTEGER +*> Number of values of M and N. +*> +*> line 3: MVAL, INTEGER array, dimension (NN) +*> The values for the matrix row dimension M. +*> +*> line 4: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix column dimension N. +*> +*> line 4: NK, INTEGER +*> Number of values of K. +*> +*> line 5: KVAL, INTEGER array, dimension (NK) +*> The values for the matrix bandwidth K. +*> +*> line 6: NPARMS, INTEGER +*> Number of values of the parameter NRHS +*> +*> line 7: NSVAL, INTEGER array, dimension (NPARMS) +*> The values for the number of right hand sides NRHS. +*> +*> line 8: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 9: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 9 was 2: +*> +*> line 10: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 10-EOF: Lines specifying matrix types, as for SVD. +*> The 3-character path name is 'DBB'. +*> +*>----------------------------------------------------------------------- +*> +*> DEC input file: +*> +*> line 2: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> lines 3-EOF: +*> +*> Input for testing the eigencondition routines consists of a set of +*> specially constructed test cases and their solutions. The data +*> format is not intended to be modified by the user. +*> +*>----------------------------------------------------------------------- +*> +*> DBL and DBK input files: +*> +*> line 1: 'DBL' in columns 1-3 to test SGEBAL, or 'DBK' in +*> columns 1-3 to test SGEBAK. +*> +*> The remaining lines consist of specially constructed test cases. +*> +*>----------------------------------------------------------------------- +*> +*> DGL and DGK input files: +*> +*> line 1: 'DGL' in columns 1-3 to test DGGBAL, or 'DGK' in +*> columns 1-3 to test DGGBAK. +*> +*> The remaining lines consist of specially constructed test cases. +*> +*>----------------------------------------------------------------------- +*> +*> GLM data file: +*> +*> line 1: 'GLM' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NN) +*> Values of M (row dimension). +*> +*> line 4: PVAL, INTEGER array, dimension(NN) +*> Values of P (row dimension). +*> +*> line 5: NVAL, INTEGER array, dimension(NN) +*> Values of N (column dimension), note M <= N <= M+P. +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'GLM' for the generalized +*> linear regression model routines. +*> +*>----------------------------------------------------------------------- +*> +*> GQR data file: +*> +*> line 1: 'GQR' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NN) +*> Values of M. +*> +*> line 4: PVAL, INTEGER array, dimension(NN) +*> Values of P. +*> +*> line 5: NVAL, INTEGER array, dimension(NN) +*> Values of N. +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'GQR' for the generalized +*> QR and RQ routines. +*> +*>----------------------------------------------------------------------- +*> +*> GSV data file: +*> +*> line 1: 'GSV' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NN) +*> Values of M (row dimension). +*> +*> line 4: PVAL, INTEGER array, dimension(NN) +*> Values of P (row dimension). +*> +*> line 5: NVAL, INTEGER array, dimension(NN) +*> Values of N (column dimension). +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'GSV' for the generalized +*> SVD routines. +*> +*>----------------------------------------------------------------------- +*> +*> CSD data file: +*> +*> line 1: 'CSD' in columns 1 to 3. +*> +*> line 2: NM, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NM) +*> Values of M (row and column dimension of orthogonal matrix). +*> +*> line 4: PVAL, INTEGER array, dimension(NM) +*> Values of P (row dimension of top-left block). +*> +*> line 5: NVAL, INTEGER array, dimension(NM) +*> Values of N (column dimension of top-left block). +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'CSD' for the CSD routine. +*> +*>----------------------------------------------------------------------- +*> +*> LSE data file: +*> +*> line 1: 'LSE' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NN) +*> Values of M. +*> +*> line 4: PVAL, INTEGER array, dimension(NN) +*> Values of P. +*> +*> line 5: NVAL, INTEGER array, dimension(NN) +*> Values of N, note P <= N <= P+M. +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'GSV' for the generalized +*> SVD routines. +*> +*>----------------------------------------------------------------------- +*> +*> NMAX is currently set to 132 and must be at least 12 for some of the +*> precomputed examples, and LWORK = NMAX*(5*NMAX+5)+1 in the parameter +*> statements below. For SVD, we assume NRHS may be as big as N. The +*> parameter NEED is set to 14 to allow for 14 N-by-N matrices for DGG. +*> \endverbatim +* +* Arguments: +* ========== +* +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date June 2016 +* +*> \ingroup double_eig +* +* ===================================================================== + PROGRAM DCHKEE +* +#if defined(_OPENMP) + use omp_lib +#endif +* +* -- LAPACK test routine (version 3.7.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* June 2016 +* +* ===================================================================== +* +* .. Parameters .. + INTEGER NMAX + PARAMETER ( NMAX = 132 ) + INTEGER NCMAX + PARAMETER ( NCMAX = 20 ) + INTEGER NEED + PARAMETER ( NEED = 14 ) + INTEGER LWORK + PARAMETER ( LWORK = NMAX*( 5*NMAX+5 )+1 ) + INTEGER LIWORK + PARAMETER ( LIWORK = NMAX*( 5*NMAX+20 ) ) + INTEGER MAXIN + PARAMETER ( MAXIN = 20 ) + INTEGER MAXT + PARAMETER ( MAXT = 30 ) + INTEGER NIN, NOUT + PARAMETER ( NIN = 5, NOUT = 6 ) +* .. +* .. Local Scalars .. + LOGICAL CSD, DBB, DGG, DSB, FATAL, GLM, GQR, GSV, LSE, + $ NEP, DBK, DBL, SEP, DES, DEV, DGK, DGL, DGS, + $ DGV, DGX, DSX, SVD, DVX, DXV, TSTCHK, TSTDIF, + $ TSTDRV, TSTERR + CHARACTER C1 + CHARACTER*3 C3, PATH + CHARACTER*32 VNAME + CHARACTER*10 INTSTR + CHARACTER*80 LINE + INTEGER I, I1, IC, INFO, ITMP, K, LENP, MAXTYP, NEWSD, + $ NK, NN, NPARMS, NRHS, NTYPES, + $ VERS_MAJOR, VERS_MINOR, VERS_PATCH, N_THREADS + DOUBLE PRECISION EPS, S1, S2, THRESH, THRSHN +* .. +* .. Local Arrays .. + LOGICAL DOTYPE( MAXT ), LOGWRK( NMAX ) + INTEGER IOLDSD( 4 ), ISEED( 4 ), IWORK( LIWORK ), + $ KVAL( MAXIN ), MVAL( MAXIN ), MXBVAL( MAXIN ), + $ NBCOL( MAXIN ), NBMIN( MAXIN ), NBVAL( MAXIN ), + $ NSVAL( MAXIN ), NVAL( MAXIN ), NXVAL( MAXIN ), + $ PVAL( MAXIN ) + INTEGER INMIN( MAXIN ), INWIN( MAXIN ), INIBL( MAXIN ), + $ ISHFTS( MAXIN ), IACC22( MAXIN ) + DOUBLE PRECISION D( NMAX, 12 ), RESULT( 500 ), TAUA( NMAX ), + $ TAUB( NMAX ), X( 5*NMAX ) +* .. +* .. Allocatable Arrays .. + INTEGER AllocateStatus + DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: WORK + DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: A, B, C +* .. +* .. External Functions .. + LOGICAL LSAMEN + DOUBLE PRECISION DLAMCH, DSECND + EXTERNAL LSAMEN, DLAMCH, DSECND +* .. +* .. External Subroutines .. + EXTERNAL ALAREQ, DCHKBB, DCHKBD, DCHKBK, DCHKBL, DCHKEC, + $ DCHKGG, DCHKGK, DCHKGL, DCHKHS, DCHKSB, DCHKST, + $ DCKCSD, DCKGLM, DCKGQR, DCKGSV, DCKLSE, DDRGES, + $ DDRGEV, DDRGSX, DDRGVX, DDRVBD, DDRVES, DDRVEV, + $ DDRVSG, DDRVST, DDRVSX, DDRVVX, DERRBD, + $ DERRED, DERRGG, DERRHS, DERRST, ILAVER, XLAENV, + $ DDRGES3, DDRGEV3, + $ DCHKST2STG, DDRVST2STG, DCHKSB2STG, DDRVSG2STG +* .. +* .. Intrinsic Functions .. + INTRINSIC LEN, MIN +* .. +* .. Scalars in Common .. + LOGICAL LERR, OK + CHARACTER*32 SRNAMT + INTEGER INFOT, MAXB, NPROC, NSHIFT, NUNIT, SELDIM, + $ SELOPT +* .. +* .. Arrays in Common .. + LOGICAL SELVAL( 20 ) + INTEGER IPARMS( 100 ) + DOUBLE PRECISION SELWI( 20 ), SELWR( 20 ) +* .. +* .. Common blocks .. + COMMON / CENVIR / NPROC, NSHIFT, MAXB + COMMON / INFOC / INFOT, NUNIT, OK, LERR + COMMON / SRNAMC / SRNAMT + COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI + COMMON / CLAENV / IPARMS +* .. +* .. Data statements .. + DATA INTSTR / '0123456789' / + DATA IOLDSD / 0, 0, 0, 1 / +* .. +* .. Allocate memory dynamically .. +* + ALLOCATE ( A(NMAX*NMAX,NEED), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" + ALLOCATE ( B(NMAX*NMAX,5), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" + ALLOCATE ( C(NCMAX*NCMAX,NCMAX*NCMAX), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" + ALLOCATE ( WORK(LWORK), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" +* .. +* .. Executable Statements .. +* + A = 0.0 + B = 0.0 + C = 0.0 + D = 0.0 + S1 = DSECND( ) + FATAL = .FALSE. + NUNIT = NOUT +* +* Return to here to read multiple sets of data +* + 10 CONTINUE +* +* Read the first line and set the 3-character test path +* + READ( NIN, FMT = '(A80)', END = 380 )LINE + PATH = LINE( 1: 3 ) + NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'DHS' ) + SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'DST' ) .OR. + $ LSAMEN( 3, PATH, 'DSG' ) .OR. LSAMEN( 3, PATH, 'SE2' ) + SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'DBD' ) + DEV = LSAMEN( 3, PATH, 'DEV' ) + DES = LSAMEN( 3, PATH, 'DES' ) + DVX = LSAMEN( 3, PATH, 'DVX' ) + DSX = LSAMEN( 3, PATH, 'DSX' ) + DGG = LSAMEN( 3, PATH, 'DGG' ) + DGS = LSAMEN( 3, PATH, 'DGS' ) + DGX = LSAMEN( 3, PATH, 'DGX' ) + DGV = LSAMEN( 3, PATH, 'DGV' ) + DXV = LSAMEN( 3, PATH, 'DXV' ) + DSB = LSAMEN( 3, PATH, 'DSB' ) + DBB = LSAMEN( 3, PATH, 'DBB' ) + GLM = LSAMEN( 3, PATH, 'GLM' ) + GQR = LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' ) + GSV = LSAMEN( 3, PATH, 'GSV' ) + CSD = LSAMEN( 3, PATH, 'CSD' ) + LSE = LSAMEN( 3, PATH, 'LSE' ) + DBL = LSAMEN( 3, PATH, 'DBL' ) + DBK = LSAMEN( 3, PATH, 'DBK' ) + DGL = LSAMEN( 3, PATH, 'DGL' ) + DGK = LSAMEN( 3, PATH, 'DGK' ) +* +* Report values of parameters. +* + IF( PATH.EQ.' ' ) THEN + GO TO 10 + ELSE IF( NEP ) THEN + WRITE( NOUT, FMT = 9987 ) + ELSE IF( SEP ) THEN + WRITE( NOUT, FMT = 9986 ) + ELSE IF( SVD ) THEN + WRITE( NOUT, FMT = 9985 ) + ELSE IF( DEV ) THEN + WRITE( NOUT, FMT = 9979 ) + ELSE IF( DES ) THEN + WRITE( NOUT, FMT = 9978 ) + ELSE IF( DVX ) THEN + WRITE( NOUT, FMT = 9977 ) + ELSE IF( DSX ) THEN + WRITE( NOUT, FMT = 9976 ) + ELSE IF( DGG ) THEN + WRITE( NOUT, FMT = 9975 ) + ELSE IF( DGS ) THEN + WRITE( NOUT, FMT = 9964 ) + ELSE IF( DGX ) THEN + WRITE( NOUT, FMT = 9965 ) + ELSE IF( DGV ) THEN + WRITE( NOUT, FMT = 9963 ) + ELSE IF( DXV ) THEN + WRITE( NOUT, FMT = 9962 ) + ELSE IF( DSB ) THEN + WRITE( NOUT, FMT = 9974 ) + ELSE IF( DBB ) THEN + WRITE( NOUT, FMT = 9967 ) + ELSE IF( GLM ) THEN + WRITE( NOUT, FMT = 9971 ) + ELSE IF( GQR ) THEN + WRITE( NOUT, FMT = 9970 ) + ELSE IF( GSV ) THEN + WRITE( NOUT, FMT = 9969 ) + ELSE IF( CSD ) THEN + WRITE( NOUT, FMT = 9960 ) + ELSE IF( LSE ) THEN + WRITE( NOUT, FMT = 9968 ) + ELSE IF( DBL ) THEN +* +* DGEBAL: Balancing +* + CALL DCHKBL( NIN, NOUT ) + GO TO 10 + ELSE IF( DBK ) THEN +* +* DGEBAK: Back transformation +* + CALL DCHKBK( NIN, NOUT ) + GO TO 10 + ELSE IF( DGL ) THEN +* +* DGGBAL: Balancing +* + CALL DCHKGL( NIN, NOUT ) + GO TO 10 + ELSE IF( DGK ) THEN +* +* DGGBAK: Back transformation +* + CALL DCHKGK( NIN, NOUT ) + GO TO 10 + ELSE IF( LSAMEN( 3, PATH, 'DEC' ) ) THEN +* +* DEC: Eigencondition estimation +* + READ( NIN, FMT = * )THRESH + CALL XLAENV( 1, 1 ) + CALL XLAENV( 12, 11 ) + CALL XLAENV( 13, 2 ) + CALL XLAENV( 14, 0 ) + CALL XLAENV( 15, 2 ) + CALL XLAENV( 16, 2 ) + TSTERR = .TRUE. + CALL DCHKEC( THRESH, TSTERR, NIN, NOUT ) + GO TO 10 + ELSE + WRITE( NOUT, FMT = 9992 )PATH + GO TO 10 + END IF + CALL ILAVER( VERS_MAJOR, VERS_MINOR, VERS_PATCH ) + WRITE( NOUT, FMT = 9972 ) VERS_MAJOR, VERS_MINOR, VERS_PATCH + WRITE( NOUT, FMT = 9984 ) +* +* Read the number of values of M, P, and N. +* + READ( NIN, FMT = * )NN + IF( NN.LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' NN ', NN, 1 + NN = 0 + FATAL = .TRUE. + ELSE IF( NN.GT.MAXIN ) THEN + WRITE( NOUT, FMT = 9988 )' NN ', NN, MAXIN + NN = 0 + FATAL = .TRUE. + END IF +* +* Read the values of M +* + IF( .NOT.( DGX .OR. DXV ) ) THEN + READ( NIN, FMT = * )( MVAL( I ), I = 1, NN ) + IF( SVD ) THEN + VNAME = ' M ' + ELSE + VNAME = ' N ' + END IF + DO 20 I = 1, NN + IF( MVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )VNAME, MVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( MVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )VNAME, MVAL( I ), NMAX + FATAL = .TRUE. + END IF + 20 CONTINUE + WRITE( NOUT, FMT = 9983 )'M: ', ( MVAL( I ), I = 1, NN ) + END IF +* +* Read the values of P +* + IF( GLM .OR. GQR .OR. GSV .OR. CSD .OR. LSE ) THEN + READ( NIN, FMT = * )( PVAL( I ), I = 1, NN ) + DO 30 I = 1, NN + IF( PVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' P ', PVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( PVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' P ', PVAL( I ), NMAX + FATAL = .TRUE. + END IF + 30 CONTINUE + WRITE( NOUT, FMT = 9983 )'P: ', ( PVAL( I ), I = 1, NN ) + END IF +* +* Read the values of N +* + IF( SVD .OR. DBB .OR. GLM .OR. GQR .OR. GSV .OR. CSD .OR. + $ LSE ) THEN + READ( NIN, FMT = * )( NVAL( I ), I = 1, NN ) + DO 40 I = 1, NN + IF( NVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' N ', NVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( NVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' N ', NVAL( I ), NMAX + FATAL = .TRUE. + END IF + 40 CONTINUE + ELSE + DO 50 I = 1, NN + NVAL( I ) = MVAL( I ) + 50 CONTINUE + END IF + IF( .NOT.( DGX .OR. DXV ) ) THEN + WRITE( NOUT, FMT = 9983 )'N: ', ( NVAL( I ), I = 1, NN ) + ELSE + WRITE( NOUT, FMT = 9983 )'N: ', NN + END IF +* +* Read the number of values of K, followed by the values of K +* + IF( DSB .OR. DBB ) THEN + READ( NIN, FMT = * )NK + READ( NIN, FMT = * )( KVAL( I ), I = 1, NK ) + DO 60 I = 1, NK + IF( KVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' K ', KVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( KVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' K ', KVAL( I ), NMAX + FATAL = .TRUE. + END IF + 60 CONTINUE + WRITE( NOUT, FMT = 9983 )'K: ', ( KVAL( I ), I = 1, NK ) + END IF +* + IF( DEV .OR. DES .OR. DVX .OR. DSX ) THEN +* +* For the nonsymmetric QR driver routines, only one set of +* parameters is allowed. +* + READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ), + $ INMIN( 1 ), INWIN( 1 ), INIBL(1), ISHFTS(1), IACC22(1) + IF( NBVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NBMIN( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NXVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( INMIN( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( 1 ), 1 + FATAL = .TRUE. + ELSE IF( INWIN( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( 1 ), 1 + FATAL = .TRUE. + ELSE IF( INIBL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( ISHFTS( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( 1 ), 1 + FATAL = .TRUE. + ELSE IF( IACC22( 1 ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( 1 ), 0 + FATAL = .TRUE. + END IF + CALL XLAENV( 1, NBVAL( 1 ) ) + CALL XLAENV( 2, NBMIN( 1 ) ) + CALL XLAENV( 3, NXVAL( 1 ) ) + CALL XLAENV(12, MAX( 11, INMIN( 1 ) ) ) + CALL XLAENV(13, INWIN( 1 ) ) + CALL XLAENV(14, INIBL( 1 ) ) + CALL XLAENV(15, ISHFTS( 1 ) ) + CALL XLAENV(16, IACC22( 1 ) ) + WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 ) + WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'INMIN: ', INMIN( 1 ) + WRITE( NOUT, FMT = 9983 )'INWIN: ', INWIN( 1 ) + WRITE( NOUT, FMT = 9983 )'INIBL: ', INIBL( 1 ) + WRITE( NOUT, FMT = 9983 )'ISHFTS: ', ISHFTS( 1 ) + WRITE( NOUT, FMT = 9983 )'IACC22: ', IACC22( 1 ) +* + ELSEIF( DGS .OR. DGX .OR. DGV .OR. DXV ) THEN +* +* For the nonsymmetric generalized driver routines, only one set +* of parameters is allowed. +* + READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ), + $ NSVAL( 1 ), MXBVAL( 1 ) + IF( NBVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NBMIN( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NXVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NSVAL( 1 ).LT.2 ) THEN + WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( 1 ), 2 + FATAL = .TRUE. + ELSE IF( MXBVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( 1 ), 1 + FATAL = .TRUE. + END IF + CALL XLAENV( 1, NBVAL( 1 ) ) + CALL XLAENV( 2, NBMIN( 1 ) ) + CALL XLAENV( 3, NXVAL( 1 ) ) + CALL XLAENV( 4, NSVAL( 1 ) ) + CALL XLAENV( 8, MXBVAL( 1 ) ) + WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 ) + WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'NS: ', NSVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'MAXB: ', MXBVAL( 1 ) +* + ELSE IF( .NOT.DSB .AND. .NOT.GLM .AND. .NOT.GQR .AND. .NOT. + $ GSV .AND. .NOT.CSD .AND. .NOT.LSE ) THEN +* +* For the other paths, the number of parameters can be varied +* from the input file. Read the number of parameter values. +* + READ( NIN, FMT = * )NPARMS + IF( NPARMS.LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )'NPARMS', NPARMS, 1 + NPARMS = 0 + FATAL = .TRUE. + ELSE IF( NPARMS.GT.MAXIN ) THEN + WRITE( NOUT, FMT = 9988 )'NPARMS', NPARMS, MAXIN + NPARMS = 0 + FATAL = .TRUE. + END IF +* +* Read the values of NB +* + IF( .NOT.DBB ) THEN + READ( NIN, FMT = * )( NBVAL( I ), I = 1, NPARMS ) + DO 70 I = 1, NPARMS + IF( NBVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( NBVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' NB ', NBVAL( I ), NMAX + FATAL = .TRUE. + END IF + 70 CONTINUE + WRITE( NOUT, FMT = 9983 )'NB: ', + $ ( NBVAL( I ), I = 1, NPARMS ) + END IF +* +* Read the values of NBMIN +* + IF( NEP .OR. SEP .OR. SVD .OR. DGG ) THEN + READ( NIN, FMT = * )( NBMIN( I ), I = 1, NPARMS ) + DO 80 I = 1, NPARMS + IF( NBMIN( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( I ), 0 + FATAL = .TRUE. + ELSE IF( NBMIN( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )'NBMIN ', NBMIN( I ), NMAX + FATAL = .TRUE. + END IF + 80 CONTINUE + WRITE( NOUT, FMT = 9983 )'NBMIN:', + $ ( NBMIN( I ), I = 1, NPARMS ) + ELSE + DO 90 I = 1, NPARMS + NBMIN( I ) = 1 + 90 CONTINUE + END IF +* +* Read the values of NX +* + IF( NEP .OR. SEP .OR. SVD ) THEN + READ( NIN, FMT = * )( NXVAL( I ), I = 1, NPARMS ) + DO 100 I = 1, NPARMS + IF( NXVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( NXVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' NX ', NXVAL( I ), NMAX + FATAL = .TRUE. + END IF + 100 CONTINUE + WRITE( NOUT, FMT = 9983 )'NX: ', + $ ( NXVAL( I ), I = 1, NPARMS ) + ELSE + DO 110 I = 1, NPARMS + NXVAL( I ) = 1 + 110 CONTINUE + END IF +* +* Read the values of NSHIFT (if DGG) or NRHS (if SVD +* or DBB). +* + IF( SVD .OR. DBB .OR. DGG ) THEN + READ( NIN, FMT = * )( NSVAL( I ), I = 1, NPARMS ) + DO 120 I = 1, NPARMS + IF( NSVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( NSVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' NS ', NSVAL( I ), NMAX + FATAL = .TRUE. + END IF + 120 CONTINUE + WRITE( NOUT, FMT = 9983 )'NS: ', + $ ( NSVAL( I ), I = 1, NPARMS ) + ELSE + DO 130 I = 1, NPARMS + NSVAL( I ) = 1 + 130 CONTINUE + END IF +* +* Read the values for MAXB. +* + IF( DGG ) THEN + READ( NIN, FMT = * )( MXBVAL( I ), I = 1, NPARMS ) + DO 140 I = 1, NPARMS + IF( MXBVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( MXBVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' MAXB ', MXBVAL( I ), NMAX + FATAL = .TRUE. + END IF + 140 CONTINUE + WRITE( NOUT, FMT = 9983 )'MAXB: ', + $ ( MXBVAL( I ), I = 1, NPARMS ) + ELSE + DO 150 I = 1, NPARMS + MXBVAL( I ) = 1 + 150 CONTINUE + END IF +* +* Read the values for INMIN. +* + IF( NEP ) THEN + READ( NIN, FMT = * )( INMIN( I ), I = 1, NPARMS ) + DO 540 I = 1, NPARMS + IF( INMIN( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( I ), 0 + FATAL = .TRUE. + END IF + 540 CONTINUE + WRITE( NOUT, FMT = 9983 )'INMIN: ', + $ ( INMIN( I ), I = 1, NPARMS ) + ELSE + DO 550 I = 1, NPARMS + INMIN( I ) = 1 + 550 CONTINUE + END IF +* +* Read the values for INWIN. +* + IF( NEP ) THEN + READ( NIN, FMT = * )( INWIN( I ), I = 1, NPARMS ) + DO 560 I = 1, NPARMS + IF( INWIN( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( I ), 0 + FATAL = .TRUE. + END IF + 560 CONTINUE + WRITE( NOUT, FMT = 9983 )'INWIN: ', + $ ( INWIN( I ), I = 1, NPARMS ) + ELSE + DO 570 I = 1, NPARMS + INWIN( I ) = 1 + 570 CONTINUE + END IF +* +* Read the values for INIBL. +* + IF( NEP ) THEN + READ( NIN, FMT = * )( INIBL( I ), I = 1, NPARMS ) + DO 580 I = 1, NPARMS + IF( INIBL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( I ), 0 + FATAL = .TRUE. + END IF + 580 CONTINUE + WRITE( NOUT, FMT = 9983 )'INIBL: ', + $ ( INIBL( I ), I = 1, NPARMS ) + ELSE + DO 590 I = 1, NPARMS + INIBL( I ) = 1 + 590 CONTINUE + END IF +* +* Read the values for ISHFTS. +* + IF( NEP ) THEN + READ( NIN, FMT = * )( ISHFTS( I ), I = 1, NPARMS ) + DO 600 I = 1, NPARMS + IF( ISHFTS( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( I ), 0 + FATAL = .TRUE. + END IF + 600 CONTINUE + WRITE( NOUT, FMT = 9983 )'ISHFTS: ', + $ ( ISHFTS( I ), I = 1, NPARMS ) + ELSE + DO 610 I = 1, NPARMS + ISHFTS( I ) = 1 + 610 CONTINUE + END IF +* +* Read the values for IACC22. +* + IF( NEP .OR. DGG ) THEN + READ( NIN, FMT = * )( IACC22( I ), I = 1, NPARMS ) + DO 620 I = 1, NPARMS + IF( IACC22( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( I ), 0 + FATAL = .TRUE. + END IF + 620 CONTINUE + WRITE( NOUT, FMT = 9983 )'IACC22: ', + $ ( IACC22( I ), I = 1, NPARMS ) + ELSE + DO 630 I = 1, NPARMS + IACC22( I ) = 1 + 630 CONTINUE + END IF +* +* Read the values for NBCOL. +* + IF( DGG ) THEN + READ( NIN, FMT = * )( NBCOL( I ), I = 1, NPARMS ) + DO 160 I = 1, NPARMS + IF( NBCOL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )'NBCOL ', NBCOL( I ), 0 + FATAL = .TRUE. + ELSE IF( NBCOL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )'NBCOL ', NBCOL( I ), NMAX + FATAL = .TRUE. + END IF + 160 CONTINUE + WRITE( NOUT, FMT = 9983 )'NBCOL:', + $ ( NBCOL( I ), I = 1, NPARMS ) + ELSE + DO 170 I = 1, NPARMS + NBCOL( I ) = 1 + 170 CONTINUE + END IF + END IF +* +* Calculate and print the machine dependent constants. +* + WRITE( NOUT, FMT = * ) + EPS = DLAMCH( 'Underflow threshold' ) + WRITE( NOUT, FMT = 9981 )'underflow', EPS + EPS = DLAMCH( 'Overflow threshold' ) + WRITE( NOUT, FMT = 9981 )'overflow ', EPS + EPS = DLAMCH( 'Epsilon' ) + WRITE( NOUT, FMT = 9981 )'precision', EPS +* +* Read the threshold value for the test ratios. +* + READ( NIN, FMT = * )THRESH + WRITE( NOUT, FMT = 9982 )THRESH + IF( SEP .OR. SVD .OR. DGG ) THEN +* +* Read the flag that indicates whether to test LAPACK routines. +* + READ( NIN, FMT = * )TSTCHK +* +* Read the flag that indicates whether to test driver routines. +* + READ( NIN, FMT = * )TSTDRV + END IF +* +* Read the flag that indicates whether to test the error exits. +* + READ( NIN, FMT = * )TSTERR +* +* Read the code describing how to set the random number seed. +* + READ( NIN, FMT = * )NEWSD +* +* If NEWSD = 2, read another line with 4 integers for the seed. +* + IF( NEWSD.EQ.2 ) + $ READ( NIN, FMT = * )( IOLDSD( I ), I = 1, 4 ) +* + DO 180 I = 1, 4 + ISEED( I ) = IOLDSD( I ) + 180 CONTINUE +* + IF( FATAL ) THEN + WRITE( NOUT, FMT = 9999 ) + STOP + END IF +* +* Read the input lines indicating the test path and its parameters. +* The first three characters indicate the test path, and the number +* of test matrix types must be the first nonblank item in columns +* 4-80. +* + 190 CONTINUE +* + IF( .NOT.( DGX .OR. DXV ) ) THEN +* + 200 CONTINUE + READ( NIN, FMT = '(A80)', END = 380 )LINE + C3 = LINE( 1: 3 ) + LENP = LEN( LINE ) + I = 3 + ITMP = 0 + I1 = 0 + 210 CONTINUE + I = I + 1 + IF( I.GT.LENP ) THEN + IF( I1.GT.0 ) THEN + GO TO 240 + ELSE + NTYPES = MAXT + GO TO 240 + END IF + END IF + IF( LINE( I: I ).NE.' ' .AND. LINE( I: I ).NE.',' ) THEN + I1 = I + C1 = LINE( I1: I1 ) +* +* Check that a valid integer was read +* + DO 220 K = 1, 10 + IF( C1.EQ.INTSTR( K: K ) ) THEN + IC = K - 1 + GO TO 230 + END IF + 220 CONTINUE + WRITE( NOUT, FMT = 9991 )I, LINE + GO TO 200 + 230 CONTINUE + ITMP = 10*ITMP + IC + GO TO 210 + ELSE IF( I1.GT.0 ) THEN + GO TO 240 + ELSE + GO TO 210 + END IF + 240 CONTINUE + NTYPES = ITMP +* +* Skip the tests if NTYPES is <= 0. +* + IF( .NOT.( DEV .OR. DES .OR. DVX .OR. DSX .OR. DGV .OR. + $ DGS ) .AND. NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + GO TO 200 + END IF +* + ELSE + IF( DXV ) + $ C3 = 'DXV' + IF( DGX ) + $ C3 = 'DGX' + END IF +* +* Reset the random number seed. +* + IF( NEWSD.EQ.0 ) THEN + DO 250 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 250 CONTINUE + END IF +* + IF( LSAMEN( 3, C3, 'DHS' ) .OR. LSAMEN( 3, C3, 'NEP' ) ) THEN +* +* ------------------------------------- +* NEP: Nonsymmetric Eigenvalue Problem +* ------------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NX = crossover point +* NS = number of shifts +* MAXB = minimum submatrix size +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 1, 1 ) + IF( TSTERR ) + $ CALL DERRHS( 'DHSEQR', NOUT ) + DO 270 I = 1, NPARMS + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 3, NXVAL( I ) ) + CALL XLAENV(12, MAX( 11, INMIN( I ) ) ) + CALL XLAENV(13, INWIN( I ) ) + CALL XLAENV(14, INIBL( I ) ) + CALL XLAENV(15, ISHFTS( I ) ) + CALL XLAENV(16, IACC22( I ) ) +* + IF( NEWSD.EQ.0 ) THEN + DO 260 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 260 CONTINUE + END IF + WRITE( NOUT, FMT = 9961 )C3, NBVAL( I ), NBMIN( I ), + $ NXVAL( I ), MAX( 11, INMIN(I)), + $ INWIN( I ), INIBL( I ), ISHFTS( I ), IACC22( I ) + CALL DCHKHS( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 5 ), NMAX, A( 1, 6 ), + $ A( 1, 7 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), + $ D( 1, 4 ), D( 1, 5 ), D( 1, 6 ), A( 1, 8 ), + $ A( 1, 9 ), A( 1, 10 ), A( 1, 11 ), A( 1, 12 ), + $ D( 1, 7 ), WORK, LWORK, IWORK, LOGWRK, RESULT, + $ INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DCHKHS', INFO + 270 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'DST' ) .OR. LSAMEN( 3, C3, 'SEP' ) + $ .OR. LSAMEN( 3, C3, 'SE2' ) ) THEN +* +* ---------------------------------- +* SEP: Symmetric Eigenvalue Problem +* ---------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NX = crossover point +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 1, 1 ) + CALL XLAENV( 9, 25 ) + IF( TSTERR ) THEN +#if defined(_OPENMP) + N_THREADS = OMP_GET_NUM_THREADS() + CALL OMP_SET_NUM_THREADS(1) +#endif + CALL DERRST( 'DST', NOUT ) +#if defined(_OPENMP) + CALL OMP_SET_NUM_THREADS(N_THREADS) +#endif + END IF + DO 290 I = 1, NPARMS + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 3, NXVAL( I ) ) +* + IF( NEWSD.EQ.0 ) THEN + DO 280 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 280 CONTINUE + END IF + WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ), + $ NXVAL( I ) + IF( TSTCHK ) THEN + IF( LSAMEN( 3, C3, 'SE2' ) ) THEN + CALL DCHKST2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ), + $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), + $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ), + $ D( 1, 10 ), D( 1, 11 ), A( 1, 3 ), NMAX, + $ A( 1, 4 ), A( 1, 5 ), D( 1, 12 ), A( 1, 6 ), + $ WORK, LWORK, IWORK, LIWORK, RESULT, INFO ) + ELSE + CALL DCHKST( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ), + $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), + $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ), + $ D( 1, 10 ), D( 1, 11 ), A( 1, 3 ), NMAX, + $ A( 1, 4 ), A( 1, 5 ), D( 1, 12 ), A( 1, 6 ), + $ WORK, LWORK, IWORK, LIWORK, RESULT, INFO ) + ENDIF + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DCHKST', INFO + END IF + IF( TSTDRV ) THEN + IF( LSAMEN( 3, C3, 'SE2' ) ) THEN + CALL DDRVST2STG( NN, NVAL, 18, DOTYPE, ISEED, THRESH, + $ NOUT, A( 1, 1 ), NMAX, D( 1, 3 ), D( 1, 4 ), + $ D( 1, 5 ), D( 1, 6 ), D( 1, 8 ), D( 1, 9 ), + $ D( 1, 10 ), D( 1, 11 ), A( 1, 2 ), NMAX, + $ A( 1, 3 ), D( 1, 12 ), A( 1, 4 ), WORK, + $ LWORK, IWORK, LIWORK, RESULT, INFO ) + ELSE + CALL DDRVST( NN, NVAL, 18, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, D( 1, 3 ), D( 1, 4 ), + $ D( 1, 5 ), D( 1, 6 ), D( 1, 8 ), D( 1, 9 ), + $ D( 1, 10 ), D( 1, 11 ), A( 1, 2 ), NMAX, + $ A( 1, 3 ), D( 1, 12 ), A( 1, 4 ), WORK, + $ LWORK, IWORK, LIWORK, RESULT, INFO ) + ENDIF + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DDRVST', INFO + END IF + 290 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'DSG' ) ) THEN +* +* ---------------------------------------------- +* DSG: Symmetric Generalized Eigenvalue Problem +* ---------------------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NX = crossover point +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 9, 25 ) + DO 310 I = 1, NPARMS + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 3, NXVAL( I ) ) +* + IF( NEWSD.EQ.0 ) THEN + DO 300 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 300 CONTINUE + END IF + WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ), + $ NXVAL( I ) + IF( TSTCHK ) THEN +* CALL DDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, +* $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, +* $ D( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ), +* $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK, +* $ LWORK, IWORK, LIWORK, RESULT, INFO ) + CALL DDRVSG2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, + $ D( 1, 3 ), D( 1, 3 ), A( 1, 3 ), NMAX, + $ A( 1, 4 ), A( 1, 5 ), A( 1, 6 ), + $ A( 1, 7 ), WORK, LWORK, IWORK, LIWORK, + $ RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DDRVSG', INFO + END IF + 310 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'DBD' ) .OR. LSAMEN( 3, C3, 'SVD' ) ) THEN +* +* ---------------------------------- +* SVD: Singular Value Decomposition +* ---------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NX = crossover point +* NRHS = number of right hand sides +* + MAXTYP = 16 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 1, 1 ) + CALL XLAENV( 9, 25 ) +* +* Test the error exits +* + IF( TSTERR .AND. TSTCHK ) + $ CALL DERRBD( 'DBD', NOUT ) + IF( TSTERR .AND. TSTDRV ) + $ CALL DERRED( 'DBD', NOUT ) +* + DO 330 I = 1, NPARMS + NRHS = NSVAL( I ) + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 3, NXVAL( I ) ) + IF( NEWSD.EQ.0 ) THEN + DO 320 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 320 CONTINUE + END IF + WRITE( NOUT, FMT = 9995 )C3, NBVAL( I ), NBMIN( I ), + $ NXVAL( I ), NRHS + IF( TSTCHK ) THEN + CALL DCHKBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, NRHS, ISEED, + $ THRESH, A( 1, 1 ), NMAX, D( 1, 1 ), + $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 2 ), + $ NMAX, A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), NMAX, + $ A( 1, 6 ), NMAX, A( 1, 7 ), A( 1, 8 ), WORK, + $ LWORK, IWORK, NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DCHKBD', INFO + END IF + IF( TSTDRV ) + $ CALL DDRVBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, ISEED, + $ THRESH, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, + $ A( 1, 3 ), NMAX, A( 1, 4 ), A( 1, 5 ), + $ A( 1, 6 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), + $ WORK, LWORK, IWORK, NOUT, INFO ) + 330 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'DEV' ) ) THEN +* +* -------------------------------------------- +* DEV: Nonsymmetric Eigenvalue Problem Driver +* DGEEV (eigenvalues and eigenvectors) +* -------------------------------------------- +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL DERRED( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL DDRVEV( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ), + $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 3 ), + $ NMAX, A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, RESULT, + $ WORK, LWORK, IWORK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DGEEV', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'DES' ) ) THEN +* +* -------------------------------------------- +* DES: Nonsymmetric Eigenvalue Problem Driver +* DGEES (Schur form) +* -------------------------------------------- +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL DERRED( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL DDRVES( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), + $ A( 1, 4 ), NMAX, RESULT, WORK, LWORK, IWORK, + $ LOGWRK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DGEES', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'DVX' ) ) THEN +* +* -------------------------------------------------------------- +* DVX: Nonsymmetric Eigenvalue Problem Expert Driver +* DGEEVX (eigenvalues, eigenvectors and condition numbers) +* -------------------------------------------------------------- +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LT.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL DERRED( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL DDRVVX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ), + $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 3 ), + $ NMAX, A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, + $ D( 1, 5 ), D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), + $ D( 1, 9 ), D( 1, 10 ), D( 1, 11 ), D( 1, 12 ), + $ RESULT, WORK, LWORK, IWORK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DGEEVX', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'DSX' ) ) THEN +* +* --------------------------------------------------- +* DSX: Nonsymmetric Eigenvalue Problem Expert Driver +* DGEESX (Schur form and condition numbers) +* --------------------------------------------------- +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LT.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL DERRED( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL DDRVSX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), + $ D( 1, 5 ), D( 1, 6 ), A( 1, 4 ), NMAX, + $ A( 1, 5 ), RESULT, WORK, LWORK, IWORK, LOGWRK, + $ INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DGEESX', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'DGG' ) ) THEN +* +* ------------------------------------------------- +* DGG: Generalized Nonsymmetric Eigenvalue Problem +* ------------------------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NS = number of shifts +* MAXB = minimum submatrix size +* IACC22: structured matrix multiply +* NBCOL = minimum column dimension for blocks +* + MAXTYP = 26 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV(1,1) + IF( TSTCHK .AND. TSTERR ) + $ CALL DERRGG( C3, NOUT ) + DO 350 I = 1, NPARMS + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 4, NSVAL( I ) ) + CALL XLAENV( 8, MXBVAL( I ) ) + CALL XLAENV( 16, IACC22( I ) ) + CALL XLAENV( 5, NBCOL( I ) ) +* + IF( NEWSD.EQ.0 ) THEN + DO 340 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 340 CONTINUE + END IF + WRITE( NOUT, FMT = 9996 )C3, NBVAL( I ), NBMIN( I ), + $ NSVAL( I ), MXBVAL( I ), IACC22( I ), NBCOL( I ) + TSTDIF = .FALSE. + THRSHN = 10.D0 + IF( TSTCHK ) THEN + CALL DCHKGG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, + $ TSTDIF, THRSHN, NOUT, A( 1, 1 ), NMAX, + $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), + $ A( 1, 6 ), A( 1, 7 ), A( 1, 8 ), A( 1, 9 ), + $ NMAX, A( 1, 10 ), A( 1, 11 ), A( 1, 12 ), + $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), + $ D( 1, 5 ), D( 1, 6 ), A( 1, 13 ), + $ A( 1, 14 ), WORK, LWORK, LOGWRK, RESULT, + $ INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DCHKGG', INFO + END IF + 350 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'DGS' ) ) THEN +* +* ------------------------------------------------- +* DGS: Generalized Nonsymmetric Eigenvalue Problem +* DGGES (Schur form) +* ------------------------------------------------- +* + MAXTYP = 26 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL DERRGG( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL DDRGES( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), + $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), WORK, LWORK, + $ RESULT, LOGWRK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DDRGES', INFO +* +* Blocked version +* + CALL XLAENV(16, 2) + CALL DDRGES3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), + $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), WORK, LWORK, + $ RESULT, LOGWRK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DDRGES3', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( DGX ) THEN +* +* ------------------------------------------------- +* DGX: Generalized Nonsymmetric Eigenvalue Problem +* DGGESX (Schur form and condition numbers) +* ------------------------------------------------- +* + MAXTYP = 5 + NTYPES = MAXTYP + IF( NN.LT.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL DERRGG( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 5, 2 ) + CALL DDRGSX( NN, NCMAX, THRESH, NIN, NOUT, A( 1, 1 ), NMAX, + $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), + $ A( 1, 6 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), + $ C( 1, 1 ), NCMAX*NCMAX, A( 1, 12 ), WORK, + $ LWORK, IWORK, LIWORK, LOGWRK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DDRGSX', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'DGV' ) ) THEN +* +* ------------------------------------------------- +* DGV: Generalized Nonsymmetric Eigenvalue Problem +* DGGEV (Eigenvalue/vector form) +* ------------------------------------------------- +* + MAXTYP = 26 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL DERRGG( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL DDRGEV( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), + $ A( 1, 9 ), NMAX, D( 1, 1 ), D( 1, 2 ), + $ D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), D( 1, 6 ), + $ WORK, LWORK, RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DDRGEV', INFO +* +* Blocked version +* + CALL DDRGEV3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), + $ A( 1, 9 ), NMAX, D( 1, 1 ), D( 1, 2 ), + $ D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), D( 1, 6 ), + $ WORK, LWORK, RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DDRGEV3', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( DXV ) THEN +* +* ------------------------------------------------- +* DXV: Generalized Nonsymmetric Eigenvalue Problem +* DGGEVX (eigenvalue/vector with condition numbers) +* ------------------------------------------------- +* + MAXTYP = 2 + NTYPES = MAXTYP + IF( NN.LT.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL DERRGG( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL DDRGVX( NN, THRESH, NIN, NOUT, A( 1, 1 ), NMAX, + $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), D( 1, 1 ), + $ D( 1, 2 ), D( 1, 3 ), A( 1, 5 ), A( 1, 6 ), + $ IWORK( 1 ), IWORK( 2 ), D( 1, 4 ), D( 1, 5 ), + $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ), + $ WORK, LWORK, IWORK( 3 ), LIWORK-2, RESULT, + $ LOGWRK, INFO ) +* + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DDRGVX', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'DSB' ) ) THEN +* +* ------------------------------ +* DSB: Symmetric Band Reduction +* ------------------------------ +* + MAXTYP = 15 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + IF( TSTERR ) + $ CALL DERRST( 'DSB', NOUT ) +* CALL DCHKSB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH, +* $ NOUT, A( 1, 1 ), NMAX, D( 1, 1 ), D( 1, 2 ), +* $ A( 1, 2 ), NMAX, WORK, LWORK, RESULT, INFO ) + CALL DCHKSB2STG( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, + $ THRESH, NOUT, A( 1, 1 ), NMAX, D( 1, 1 ), + $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), + $ A( 1, 2 ), NMAX, WORK, LWORK, RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DCHKSB', INFO +* + ELSE IF( LSAMEN( 3, C3, 'DBB' ) ) THEN +* +* ------------------------------ +* DBB: General Band Reduction +* ------------------------------ +* + MAXTYP = 15 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + DO 370 I = 1, NPARMS + NRHS = NSVAL( I ) +* + IF( NEWSD.EQ.0 ) THEN + DO 360 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 360 CONTINUE + END IF + WRITE( NOUT, FMT = 9966 )C3, NRHS + CALL DCHKBB( NN, MVAL, NVAL, NK, KVAL, MAXTYP, DOTYPE, NRHS, + $ ISEED, THRESH, NOUT, A( 1, 1 ), NMAX, + $ A( 1, 2 ), 2*NMAX, D( 1, 1 ), D( 1, 2 ), + $ A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, A( 1, 6 ), + $ NMAX, A( 1, 7 ), WORK, LWORK, RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DCHKBB', INFO + 370 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'GLM' ) ) THEN +* +* ----------------------------------------- +* GLM: Generalized Linear Regression Model +* ----------------------------------------- +* + CALL XLAENV( 1, 1 ) + IF( TSTERR ) + $ CALL DERRGG( 'GLM', NOUT ) + CALL DCKGLM( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, + $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X, + $ WORK, D( 1, 1 ), NIN, NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DCKGLM', INFO +* + ELSE IF( LSAMEN( 3, C3, 'GQR' ) ) THEN +* +* ------------------------------------------ +* GQR: Generalized QR and RQ factorizations +* ------------------------------------------ +* + CALL XLAENV( 1, 1 ) + IF( TSTERR ) + $ CALL DERRGG( 'GQR', NOUT ) + CALL DCKGQR( NN, MVAL, NN, PVAL, NN, NVAL, NTYPES, ISEED, + $ THRESH, NMAX, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), TAUA, B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), + $ B( 1, 4 ), B( 1, 5 ), TAUB, WORK, D( 1, 1 ), NIN, + $ NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DCKGQR', INFO +* + ELSE IF( LSAMEN( 3, C3, 'GSV' ) ) THEN +* +* ---------------------------------------------- +* GSV: Generalized Singular Value Decomposition +* ---------------------------------------------- +* + CALL XLAENV(1,1) + IF( TSTERR ) + $ CALL DERRGG( 'GSV', NOUT ) + CALL DCKGSV( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, + $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), + $ A( 1, 3 ), B( 1, 3 ), A( 1, 4 ), TAUA, TAUB, + $ B( 1, 4 ), IWORK, WORK, D( 1, 1 ), NIN, NOUT, + $ INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DCKGSV', INFO +* + ELSE IF( LSAMEN( 3, C3, 'CSD' ) ) THEN +* +* ---------------------------------------------- +* CSD: CS Decomposition +* ---------------------------------------------- +* + CALL XLAENV(1,1) + IF( TSTERR ) + $ CALL DERRGG( 'CSD', NOUT ) + CALL DCKCSD( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, + $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), + $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), IWORK, WORK, + $ D( 1, 1 ), NIN, NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DCKCSD', INFO +* + ELSE IF( LSAMEN( 3, C3, 'LSE' ) ) THEN +* +* -------------------------------------- +* LSE: Constrained Linear Least Squares +* -------------------------------------- +* + CALL XLAENV( 1, 1 ) + IF( TSTERR ) + $ CALL DERRGG( 'LSE', NOUT ) + CALL DCKLSE( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, + $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X, + $ WORK, D( 1, 1 ), NIN, NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DCKLSE', INFO +* + ELSE + WRITE( NOUT, FMT = * ) + WRITE( NOUT, FMT = * ) + WRITE( NOUT, FMT = 9992 )C3 + END IF + IF( .NOT.( DGX .OR. DXV ) ) + $ GO TO 190 + 380 CONTINUE + WRITE( NOUT, FMT = 9994 ) + S2 = DSECND( ) + WRITE( NOUT, FMT = 9993 )S2 - S1 +* + DEALLOCATE (A, STAT = AllocateStatus) + DEALLOCATE (B, STAT = AllocateStatus) + DEALLOCATE (C, STAT = AllocateStatus) + DEALLOCATE (WORK, STAT = AllocateStatus) +* + 9999 FORMAT( / ' Execution not attempted due to input errors' ) + 9997 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4 ) + 9996 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NS =', I4, + $ ', MAXB =', I4, ', IACC22 =', I4, ', NBCOL =', I4 ) + 9995 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4, + $ ', NRHS =', I4 ) + 9994 FORMAT( / / ' End of tests' ) + 9993 FORMAT( ' Total time used = ', F12.2, ' seconds', / ) + 9992 FORMAT( 1X, A3, ': Unrecognized path name' ) + 9991 FORMAT( / / ' *** Invalid integer value in column ', I2, + $ ' of input', ' line:', / A79 ) + 9990 FORMAT( / / 1X, A3, ' routines were not tested' ) + 9989 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be >=', + $ I6 ) + 9988 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be <=', + $ I6 ) + 9987 FORMAT( ' Tests of the Nonsymmetric Eigenvalue Problem routines' ) + 9986 FORMAT( ' Tests of the Symmetric Eigenvalue Problem routines' ) + 9985 FORMAT( ' Tests of the Singular Value Decomposition routines' ) + 9984 FORMAT( / ' The following parameter values will be used:' ) + 9983 FORMAT( 4X, A, 10I6, / 10X, 10I6 ) + 9982 FORMAT( / ' Routines pass computational tests if test ratio is ', + $ 'less than', F8.2, / ) + 9981 FORMAT( ' Relative machine ', A, ' is taken to be', D16.6 ) + 9980 FORMAT( ' *** Error code from ', A, ' = ', I4 ) + 9979 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver', + $ / ' DGEEV (eigenvalues and eigevectors)' ) + 9978 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver', + $ / ' DGEES (Schur form)' ) + 9977 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert', + $ ' Driver', / ' DGEEVX (eigenvalues, eigenvectors and', + $ ' condition numbers)' ) + 9976 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert', + $ ' Driver', / ' DGEESX (Schur form and condition', + $ ' numbers)' ) + 9975 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem routines' ) + 9974 FORMAT( ' Tests of DSBTRD', / ' (reduction of a symmetric band ', + $ 'matrix to tridiagonal form)' ) + 9973 FORMAT( / 1X, 71( '-' ) ) + 9972 FORMAT( / ' LAPACK VERSION ', I1, '.', I1, '.', I1 ) + 9971 FORMAT( / ' Tests of the Generalized Linear Regression Model ', + $ 'routines' ) + 9970 FORMAT( / ' Tests of the Generalized QR and RQ routines' ) + 9969 FORMAT( / ' Tests of the Generalized Singular Value', + $ ' Decomposition routines' ) + 9968 FORMAT( / ' Tests of the Linear Least Squares routines' ) + 9967 FORMAT( ' Tests of DGBBRD', / ' (reduction of a general band ', + $ 'matrix to real bidiagonal form)' ) + 9966 FORMAT( / / 1X, A3, ': NRHS =', I4 ) + 9965 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem Expert Driver DGGESX' ) + 9964 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem Driver DGGES' ) + 9963 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem Driver DGGEV' ) + 9962 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem Expert Driver DGGEVX' ) + 9961 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4, + $ ', INMIN=', I4, + $ ', INWIN =', I4, ', INIBL =', I4, ', ISHFTS =', I4, + $ ', IACC22 =', I4) + 9960 FORMAT( / ' Tests of the CS Decomposition routines' ) +* +* End of DCHKEE +* + END From 9cf861e8faf21cbd623ef762127767d241a86088 Mon Sep 17 00:00:00 2001 From: Martin Kroeker Date: Sun, 28 Feb 2021 18:51:03 +0100 Subject: [PATCH 10/17] Add rewritten cchkee.F from Reference-LAPACK PR335 --- lapack-netlib/TESTING/EIG/cchkee.F | 2553 ++++++++++++++++++++++++++++ 1 file changed, 2553 insertions(+) create mode 100644 lapack-netlib/TESTING/EIG/cchkee.F diff --git a/lapack-netlib/TESTING/EIG/cchkee.F b/lapack-netlib/TESTING/EIG/cchkee.F new file mode 100644 index 000000000..0d3d7493c --- /dev/null +++ b/lapack-netlib/TESTING/EIG/cchkee.F @@ -0,0 +1,2553 @@ +*> \brief \b CCHKEE +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +* Definition: +* =========== +* +* PROGRAM CCHKEE +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> CCHKEE tests the COMPLEX LAPACK subroutines for the matrix +*> eigenvalue problem. The test paths in this version are +*> +*> NEP (Nonsymmetric Eigenvalue Problem): +*> Test CGEHRD, CUNGHR, CHSEQR, CTREVC, CHSEIN, and CUNMHR +*> +*> SEP (Hermitian Eigenvalue Problem): +*> Test CHETRD, CUNGTR, CSTEQR, CSTERF, CSTEIN, CSTEDC, +*> and drivers CHEEV(X), CHBEV(X), CHPEV(X), +*> CHEEVD, CHBEVD, CHPEVD +*> +*> SVD (Singular Value Decomposition): +*> Test CGEBRD, CUNGBR, and CBDSQR +*> and the drivers CGESVD, CGESDD +*> +*> CEV (Nonsymmetric Eigenvalue/eigenvector Driver): +*> Test CGEEV +*> +*> CES (Nonsymmetric Schur form Driver): +*> Test CGEES +*> +*> CVX (Nonsymmetric Eigenvalue/eigenvector Expert Driver): +*> Test CGEEVX +*> +*> CSX (Nonsymmetric Schur form Expert Driver): +*> Test CGEESX +*> +*> CGG (Generalized Nonsymmetric Eigenvalue Problem): +*> Test CGGHD3, CGGBAL, CGGBAK, CHGEQZ, and CTGEVC +*> +*> CGS (Generalized Nonsymmetric Schur form Driver): +*> Test CGGES +*> +*> CGV (Generalized Nonsymmetric Eigenvalue/eigenvector Driver): +*> Test CGGEV +*> +*> CGX (Generalized Nonsymmetric Schur form Expert Driver): +*> Test CGGESX +*> +*> CXV (Generalized Nonsymmetric Eigenvalue/eigenvector Expert Driver): +*> Test CGGEVX +*> +*> CSG (Hermitian Generalized Eigenvalue Problem): +*> Test CHEGST, CHEGV, CHEGVD, CHEGVX, CHPGST, CHPGV, CHPGVD, +*> CHPGVX, CHBGST, CHBGV, CHBGVD, and CHBGVX +*> +*> CHB (Hermitian Band Eigenvalue Problem): +*> Test CHBTRD +*> +*> CBB (Band Singular Value Decomposition): +*> Test CGBBRD +*> +*> CEC (Eigencondition estimation): +*> Test CTRSYL, CTREXC, CTRSNA, and CTRSEN +*> +*> CBL (Balancing a general matrix) +*> Test CGEBAL +*> +*> CBK (Back transformation on a balanced matrix) +*> Test CGEBAK +*> +*> CGL (Balancing a matrix pair) +*> Test CGGBAL +*> +*> CGK (Back transformation on a matrix pair) +*> Test CGGBAK +*> +*> GLM (Generalized Linear Regression Model): +*> Tests CGGGLM +*> +*> GQR (Generalized QR and RQ factorizations): +*> Tests CGGQRF and CGGRQF +*> +*> GSV (Generalized Singular Value Decomposition): +*> Tests CGGSVD, CGGSVP, CTGSJA, CLAGS2, CLAPLL, and CLAPMT +*> +*> CSD (CS decomposition): +*> Tests CUNCSD +*> +*> LSE (Constrained Linear Least Squares): +*> Tests CGGLSE +*> +*> Each test path has a different set of inputs, but the data sets for +*> the driver routines xEV, xES, xVX, and xSX can be concatenated in a +*> single input file. The first line of input should contain one of the +*> 3-character path names in columns 1-3. The number of remaining lines +*> depends on what is found on the first line. +*> +*> The number of matrix types used in testing is often controllable from +*> the input file. The number of matrix types for each path, and the +*> test routine that describes them, is as follows: +*> +*> Path name(s) Types Test routine +*> +*> CHS or NEP 21 CCHKHS +*> CST or SEP 21 CCHKST (routines) +*> 18 CDRVST (drivers) +*> CBD or SVD 16 CCHKBD (routines) +*> 5 CDRVBD (drivers) +*> CEV 21 CDRVEV +*> CES 21 CDRVES +*> CVX 21 CDRVVX +*> CSX 21 CDRVSX +*> CGG 26 CCHKGG (routines) +*> CGS 26 CDRGES +*> CGX 5 CDRGSX +*> CGV 26 CDRGEV +*> CXV 2 CDRGVX +*> CSG 21 CDRVSG +*> CHB 15 CCHKHB +*> CBB 15 CCHKBB +*> CEC - CCHKEC +*> CBL - CCHKBL +*> CBK - CCHKBK +*> CGL - CCHKGL +*> CGK - CCHKGK +*> GLM 8 CCKGLM +*> GQR 8 CCKGQR +*> GSV 8 CCKGSV +*> CSD 3 CCKCSD +*> LSE 8 CCKLSE +*> +*>----------------------------------------------------------------------- +*> +*> NEP input file: +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix dimension N. +*> +*> line 4: NPARMS, INTEGER +*> Number of values of the parameters NB, NBMIN, NX, NS, and +*> MAXB. +*> +*> line 5: NBVAL, INTEGER array, dimension (NPARMS) +*> The values for the blocksize NB. +*> +*> line 6: NBMIN, INTEGER array, dimension (NPARMS) +*> The values for the minimum blocksize NBMIN. +*> +*> line 7: NXVAL, INTEGER array, dimension (NPARMS) +*> The values for the crossover point NX. +*> +*> line 8: INMIN, INTEGER array, dimension (NPARMS) +*> LAHQR vs TTQRE crossover point, >= 11 +*> +*> line 9: INWIN, INTEGER array, dimension (NPARMS) +*> recommended deflation window size +*> +*> line 10: INIBL, INTEGER array, dimension (NPARMS) +*> nibble crossover point +*> +*> line 11: ISHFTS, INTEGER array, dimension (NPARMS) +*> number of simultaneous shifts) +*> +*> line 12: IACC22, INTEGER array, dimension (NPARMS) +*> select structured matrix multiply: 0, 1 or 2) +*> +*> line 13: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. To have all of the test +*> ratios printed, use THRESH = 0.0 . +*> +*> line 14: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 14 was 2: +*> +*> line 15: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 15-EOF: The remaining lines occur in sets of 1 or 2 and allow +*> the user to specify the matrix types. Each line contains +*> a 3-character path name in columns 1-3, and the number +*> of matrix types must be the first nonblank item in columns +*> 4-80. If the number of matrix types is at least 1 but is +*> less than the maximum number of possible types, a second +*> line will be read to get the numbers of the matrix types to +*> be used. For example, +*> NEP 21 +*> requests all of the matrix types for the nonsymmetric +*> eigenvalue problem, while +*> NEP 4 +*> 9 10 11 12 +*> requests only matrices of type 9, 10, 11, and 12. +*> +*> The valid 3-character path names are 'NEP' or 'CHS' for the +*> nonsymmetric eigenvalue routines. +*> +*>----------------------------------------------------------------------- +*> +*> SEP or CSG input file: +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix dimension N. +*> +*> line 4: NPARMS, INTEGER +*> Number of values of the parameters NB, NBMIN, and NX. +*> +*> line 5: NBVAL, INTEGER array, dimension (NPARMS) +*> The values for the blocksize NB. +*> +*> line 6: NBMIN, INTEGER array, dimension (NPARMS) +*> The values for the minimum blocksize NBMIN. +*> +*> line 7: NXVAL, INTEGER array, dimension (NPARMS) +*> The values for the crossover point NX. +*> +*> line 8: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 9: TSTCHK, LOGICAL +*> Flag indicating whether or not to test the LAPACK routines. +*> +*> line 10: TSTDRV, LOGICAL +*> Flag indicating whether or not to test the driver routines. +*> +*> line 11: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 12: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 12 was 2: +*> +*> line 13: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 13-EOF: Lines specifying matrix types, as for NEP. +*> The valid 3-character path names are 'SEP' or 'CST' for the +*> Hermitian eigenvalue routines and driver routines, and +*> 'CSG' for the routines for the Hermitian generalized +*> eigenvalue problem. +*> +*>----------------------------------------------------------------------- +*> +*> SVD input file: +*> +*> line 2: NN, INTEGER +*> Number of values of M and N. +*> +*> line 3: MVAL, INTEGER array, dimension (NN) +*> The values for the matrix row dimension M. +*> +*> line 4: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix column dimension N. +*> +*> line 5: NPARMS, INTEGER +*> Number of values of the parameter NB, NBMIN, NX, and NRHS. +*> +*> line 6: NBVAL, INTEGER array, dimension (NPARMS) +*> The values for the blocksize NB. +*> +*> line 7: NBMIN, INTEGER array, dimension (NPARMS) +*> The values for the minimum blocksize NBMIN. +*> +*> line 8: NXVAL, INTEGER array, dimension (NPARMS) +*> The values for the crossover point NX. +*> +*> line 9: NSVAL, INTEGER array, dimension (NPARMS) +*> The values for the number of right hand sides NRHS. +*> +*> line 10: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 11: TSTCHK, LOGICAL +*> Flag indicating whether or not to test the LAPACK routines. +*> +*> line 12: TSTDRV, LOGICAL +*> Flag indicating whether or not to test the driver routines. +*> +*> line 13: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 14: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 14 was 2: +*> +*> line 15: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 15-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path names are 'SVD' or 'CBD' for both the +*> SVD routines and the SVD driver routines. +*> +*>----------------------------------------------------------------------- +*> +*> CEV and CES data files: +*> +*> line 1: 'CEV' or 'CES' in columns 1 to 3. +*> +*> line 2: NSIZES, INTEGER +*> Number of sizes of matrices to use. Should be at least 0 +*> and at most 20. If NSIZES = 0, no testing is done +*> (although the remaining 3 lines are still read). +*> +*> line 3: NN, INTEGER array, dimension(NSIZES) +*> Dimensions of matrices to be tested. +*> +*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> These integer parameters determine how blocking is done +*> (see ILAENV for details) +*> NB : block size +*> NBMIN : minimum block size +*> NX : minimum dimension for blocking +*> NS : number of shifts in xHSEQR +*> NBCOL : minimum column dimension for blocking +*> +*> line 5: THRESH, REAL +*> The test threshold against which computed residuals are +*> compared. Should generally be in the range from 10. to 20. +*> If it is 0., all test case data will be printed. +*> +*> line 6: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 6 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 8 and following: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'CEV' to test CGEEV, or +*> 'CES' to test CGEES. +*> +*>----------------------------------------------------------------------- +*> +*> The CVX data has two parts. The first part is identical to CEV, +*> and the second part consists of test matrices with precomputed +*> solutions. +*> +*> line 1: 'CVX' in columns 1-3. +*> +*> line 2: NSIZES, INTEGER +*> If NSIZES = 0, no testing of randomly generated examples +*> is done, but any precomputed examples are tested. +*> +*> line 3: NN, INTEGER array, dimension(NSIZES) +*> +*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> +*> line 5: THRESH, REAL +*> +*> line 6: NEWSD, INTEGER +*> +*> If line 6 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> +*> lines 8 and following: The first line contains 'CVX' in columns 1-3 +*> followed by the number of matrix types, possibly with +*> a second line to specify certain matrix types. +*> If the number of matrix types = 0, no testing of randomly +*> generated examples is done, but any precomputed examples +*> are tested. +*> +*> remaining lines : Each matrix is stored on 1+N+N**2 lines, where N is +*> its dimension. The first line contains the dimension N and +*> ISRT (two integers). ISRT indicates whether the last N lines +*> are sorted by increasing real part of the eigenvalue +*> (ISRT=0) or by increasing imaginary part (ISRT=1). The next +*> N**2 lines contain the matrix rowwise, one entry per line. +*> The last N lines correspond to each eigenvalue. Each of +*> these last N lines contains 4 real values: the real part of +*> the eigenvalues, the imaginary part of the eigenvalue, the +*> reciprocal condition number of the eigenvalues, and the +*> reciprocal condition number of the vector eigenvector. The +*> end of data is indicated by dimension N=0. Even if no data +*> is to be tested, there must be at least one line containing +*> N=0. +*> +*>----------------------------------------------------------------------- +*> +*> The CSX data is like CVX. The first part is identical to CEV, and the +*> second part consists of test matrices with precomputed solutions. +*> +*> line 1: 'CSX' in columns 1-3. +*> +*> line 2: NSIZES, INTEGER +*> If NSIZES = 0, no testing of randomly generated examples +*> is done, but any precomputed examples are tested. +*> +*> line 3: NN, INTEGER array, dimension(NSIZES) +*> +*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> +*> line 5: THRESH, REAL +*> +*> line 6: NEWSD, INTEGER +*> +*> If line 6 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> +*> lines 8 and following: The first line contains 'CSX' in columns 1-3 +*> followed by the number of matrix types, possibly with +*> a second line to specify certain matrix types. +*> If the number of matrix types = 0, no testing of randomly +*> generated examples is done, but any precomputed examples +*> are tested. +*> +*> remaining lines : Each matrix is stored on 3+N**2 lines, where N is +*> its dimension. The first line contains the dimension N, the +*> dimension M of an invariant subspace, and ISRT. The second +*> line contains M integers, identifying the eigenvalues in the +*> invariant subspace (by their position in a list of +*> eigenvalues ordered by increasing real part (if ISRT=0) or +*> by increasing imaginary part (if ISRT=1)). The next N**2 +*> lines contain the matrix rowwise. The last line contains the +*> reciprocal condition number for the average of the selected +*> eigenvalues, and the reciprocal condition number for the +*> corresponding right invariant subspace. The end of data in +*> indicated by a line containing N=0, M=0, and ISRT = 0. Even +*> if no data is to be tested, there must be at least one line +*> containing N=0, M=0 and ISRT=0. +*> +*>----------------------------------------------------------------------- +*> +*> CGG input file: +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix dimension N. +*> +*> line 4: NPARMS, INTEGER +*> Number of values of the parameters NB, NBMIN, NBCOL, NS, and +*> MAXB. +*> +*> line 5: NBVAL, INTEGER array, dimension (NPARMS) +*> The values for the blocksize NB. +*> +*> line 6: NBMIN, INTEGER array, dimension (NPARMS) +*> The values for NBMIN, the minimum row dimension for blocks. +*> +*> line 7: NSVAL, INTEGER array, dimension (NPARMS) +*> The values for the number of shifts. +*> +*> line 8: MXBVAL, INTEGER array, dimension (NPARMS) +*> The values for MAXB, used in determining minimum blocksize. +*> +*> line 9: IACC22, INTEGER array, dimension (NPARMS) +*> select structured matrix multiply: 1 or 2) +*> +*> line 10: NBCOL, INTEGER array, dimension (NPARMS) +*> The values for NBCOL, the minimum column dimension for +*> blocks. +*> +*> line 11: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 12: TSTCHK, LOGICAL +*> Flag indicating whether or not to test the LAPACK routines. +*> +*> line 13: TSTDRV, LOGICAL +*> Flag indicating whether or not to test the driver routines. +*> +*> line 14: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 15: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 15 was 2: +*> +*> line 16: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 17-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'CGG' for the generalized +*> eigenvalue problem routines and driver routines. +*> +*>----------------------------------------------------------------------- +*> +*> CGS and CGV input files: +*> +*> line 1: 'CGS' or 'CGV' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension(NN) +*> Dimensions of matrices to be tested. +*> +*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> These integer parameters determine how blocking is done +*> (see ILAENV for details) +*> NB : block size +*> NBMIN : minimum block size +*> NX : minimum dimension for blocking +*> NS : number of shifts in xHGEQR +*> NBCOL : minimum column dimension for blocking +*> +*> line 5: THRESH, REAL +*> The test threshold against which computed residuals are +*> compared. Should generally be in the range from 10. to 20. +*> If it is 0., all test case data will be printed. +*> +*> line 6: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits. +*> +*> line 7: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 17 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 7-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'CGS' for the generalized +*> eigenvalue problem routines and driver routines. +*> +*>----------------------------------------------------------------------- +*> +*> CGX input file: +*> line 1: 'CGX' in columns 1 to 3. +*> +*> line 2: N, INTEGER +*> Value of N. +*> +*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> These integer parameters determine how blocking is done +*> (see ILAENV for details) +*> NB : block size +*> NBMIN : minimum block size +*> NX : minimum dimension for blocking +*> NS : number of shifts in xHGEQR +*> NBCOL : minimum column dimension for blocking +*> +*> line 4: THRESH, REAL +*> The test threshold against which computed residuals are +*> compared. Should generally be in the range from 10. to 20. +*> Information will be printed about each test for which the +*> test ratio is greater than or equal to the threshold. +*> +*> line 5: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 6: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 6 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> If line 2 was 0: +*> +*> line 7-EOF: Precomputed examples are tested. +*> +*> remaining lines : Each example is stored on 3+2*N*N lines, where N is +*> its dimension. The first line contains the dimension (a +*> single integer). The next line contains an integer k such +*> that only the last k eigenvalues will be selected and appear +*> in the leading diagonal blocks of $A$ and $B$. The next N*N +*> lines contain the matrix A, one element per line. The next N*N +*> lines contain the matrix B. The last line contains the +*> reciprocal of the eigenvalue cluster condition number and the +*> reciprocal of the deflating subspace (associated with the +*> selected eigencluster) condition number. The end of data is +*> indicated by dimension N=0. Even if no data is to be tested, +*> there must be at least one line containing N=0. +*> +*>----------------------------------------------------------------------- +*> +*> CXV input files: +*> line 1: 'CXV' in columns 1 to 3. +*> +*> line 2: N, INTEGER +*> Value of N. +*> +*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> These integer parameters determine how blocking is done +*> (see ILAENV for details) +*> NB : block size +*> NBMIN : minimum block size +*> NX : minimum dimension for blocking +*> NS : number of shifts in xHGEQR +*> NBCOL : minimum column dimension for blocking +*> +*> line 4: THRESH, REAL +*> The test threshold against which computed residuals are +*> compared. Should generally be in the range from 10. to 20. +*> Information will be printed about each test for which the +*> test ratio is greater than or equal to the threshold. +*> +*> line 5: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 6: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 6 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> If line 2 was 0: +*> +*> line 7-EOF: Precomputed examples are tested. +*> +*> remaining lines : Each example is stored on 3+2*N*N lines, where N is +*> its dimension. The first line contains the dimension (a +*> single integer). The next N*N lines contain the matrix A, one +*> element per line. The next N*N lines contain the matrix B. +*> The next line contains the reciprocals of the eigenvalue +*> condition numbers. The last line contains the reciprocals of +*> the eigenvector condition numbers. The end of data is +*> indicated by dimension N=0. Even if no data is to be tested, +*> there must be at least one line containing N=0. +*> +*>----------------------------------------------------------------------- +*> +*> CHB input file: +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix dimension N. +*> +*> line 4: NK, INTEGER +*> Number of values of K. +*> +*> line 5: KVAL, INTEGER array, dimension (NK) +*> The values for the matrix dimension K. +*> +*> line 6: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 7 was 2: +*> +*> line 8: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 8-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'CHB'. +*> +*>----------------------------------------------------------------------- +*> +*> CBB input file: +*> +*> line 2: NN, INTEGER +*> Number of values of M and N. +*> +*> line 3: MVAL, INTEGER array, dimension (NN) +*> The values for the matrix row dimension M. +*> +*> line 4: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix column dimension N. +*> +*> line 4: NK, INTEGER +*> Number of values of K. +*> +*> line 5: KVAL, INTEGER array, dimension (NK) +*> The values for the matrix bandwidth K. +*> +*> line 6: NPARMS, INTEGER +*> Number of values of the parameter NRHS +*> +*> line 7: NSVAL, INTEGER array, dimension (NPARMS) +*> The values for the number of right hand sides NRHS. +*> +*> line 8: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 9: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 9 was 2: +*> +*> line 10: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 10-EOF: Lines specifying matrix types, as for SVD. +*> The 3-character path name is 'CBB'. +*> +*>----------------------------------------------------------------------- +*> +*> CEC input file: +*> +*> line 2: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> lines 3-EOF: +*> +*> Input for testing the eigencondition routines consists of a set of +*> specially constructed test cases and their solutions. The data +*> format is not intended to be modified by the user. +*> +*>----------------------------------------------------------------------- +*> +*> CBL and CBK input files: +*> +*> line 1: 'CBL' in columns 1-3 to test CGEBAL, or 'CBK' in +*> columns 1-3 to test CGEBAK. +*> +*> The remaining lines consist of specially constructed test cases. +*> +*>----------------------------------------------------------------------- +*> +*> CGL and CGK input files: +*> +*> line 1: 'CGL' in columns 1-3 to test CGGBAL, or 'CGK' in +*> columns 1-3 to test CGGBAK. +*> +*> The remaining lines consist of specially constructed test cases. +*> +*>----------------------------------------------------------------------- +*> +*> GLM data file: +*> +*> line 1: 'GLM' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NN) +*> Values of M (row dimension). +*> +*> line 4: PVAL, INTEGER array, dimension(NN) +*> Values of P (row dimension). +*> +*> line 5: NVAL, INTEGER array, dimension(NN) +*> Values of N (column dimension), note M <= N <= M+P. +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'GLM' for the generalized +*> linear regression model routines. +*> +*>----------------------------------------------------------------------- +*> +*> GQR data file: +*> +*> line 1: 'GQR' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NN) +*> Values of M. +*> +*> line 4: PVAL, INTEGER array, dimension(NN) +*> Values of P. +*> +*> line 5: NVAL, INTEGER array, dimension(NN) +*> Values of N. +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'GQR' for the generalized +*> QR and RQ routines. +*> +*>----------------------------------------------------------------------- +*> +*> GSV data file: +*> +*> line 1: 'GSV' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NN) +*> Values of M (row dimension). +*> +*> line 4: PVAL, INTEGER array, dimension(NN) +*> Values of P (row dimension). +*> +*> line 5: NVAL, INTEGER array, dimension(NN) +*> Values of N (column dimension). +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'GSV' for the generalized +*> SVD routines. +*> +*>----------------------------------------------------------------------- +*> +*> CSD data file: +*> +*> line 1: 'CSD' in columns 1 to 3. +*> +*> line 2: NM, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NM) +*> Values of M (row and column dimension of orthogonal matrix). +*> +*> line 4: PVAL, INTEGER array, dimension(NM) +*> Values of P (row dimension of top-left block). +*> +*> line 5: NVAL, INTEGER array, dimension(NM) +*> Values of N (column dimension of top-left block). +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'CSD' for the CSD routine. +*> +*>----------------------------------------------------------------------- +*> +*> LSE data file: +*> +*> line 1: 'LSE' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NN) +*> Values of M. +*> +*> line 4: PVAL, INTEGER array, dimension(NN) +*> Values of P. +*> +*> line 5: NVAL, INTEGER array, dimension(NN) +*> Values of N, note P <= N <= P+M. +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'GSV' for the generalized +*> SVD routines. +*> +*>----------------------------------------------------------------------- +*> +*> NMAX is currently set to 132 and must be at least 12 for some of the +*> precomputed examples, and LWORK = NMAX*(5*NMAX+20) in the parameter +*> statements below. For SVD, we assume NRHS may be as big as N. The +*> parameter NEED is set to 14 to allow for 14 N-by-N matrices for CGG. +*> \endverbatim +* +* Arguments: +* ========== +* +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date June 2016 +* +*> \ingroup complex_eig +* +* ===================================================================== + PROGRAM CCHKEE +* +#if defined(_OPENMP) + use omp_lib +#endif +* +* -- LAPACK test routine (version 3.7.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* June 2016 +* +* ===================================================================== +* +* .. Parameters .. + INTEGER NMAX + PARAMETER ( NMAX = 132 ) + INTEGER NCMAX + PARAMETER ( NCMAX = 20 ) + INTEGER NEED + PARAMETER ( NEED = 14 ) + INTEGER LWORK + PARAMETER ( LWORK = NMAX*( 5*NMAX+20 ) ) + INTEGER LIWORK + PARAMETER ( LIWORK = NMAX*( NMAX+20 ) ) + INTEGER MAXIN + PARAMETER ( MAXIN = 20 ) + INTEGER MAXT + PARAMETER ( MAXT = 30 ) + INTEGER NIN, NOUT + PARAMETER ( NIN = 5, NOUT = 6 ) +* .. +* .. Local Scalars .. + LOGICAL CBB, CBK, CBL, CES, CEV, CGG, CGK, CGL, CGS, + $ CGV, CGX, CHB, CSD, CSX, CVX, CXV, FATAL, GLM, + $ GQR, GSV, LSE, NEP, SEP, SVD, TSTCHK, TSTDIF, + $ TSTDRV, TSTERR + CHARACTER C1 + CHARACTER*3 C3, PATH + CHARACTER*32 VNAME + CHARACTER*10 INTSTR + CHARACTER*80 LINE + INTEGER I, I1, IC, INFO, ITMP, K, LENP, MAXTYP, NEWSD, + $ NK, NN, NPARMS, NRHS, NTYPES, + $ VERS_MAJOR, VERS_MINOR, VERS_PATCH, N_THREADS + REAL EPS, S1, S2, THRESH, THRSHN +* .. +* .. Local Arrays .. + LOGICAL DOTYPE( MAXT ), LOGWRK( NMAX ) + INTEGER IOLDSD( 4 ), ISEED( 4 ), IWORK( LIWORK ), + $ KVAL( MAXIN ), MVAL( MAXIN ), MXBVAL( MAXIN ), + $ NBCOL( MAXIN ), NBMIN( MAXIN ), NBVAL( MAXIN ), + $ NSVAL( MAXIN ), NVAL( MAXIN ), NXVAL( MAXIN ), + $ PVAL( MAXIN ) + INTEGER INMIN( MAXIN ), INWIN( MAXIN ), INIBL( MAXIN ), + $ ISHFTS( MAXIN ), IACC22( MAXIN ) + REAL ALPHA( NMAX ), BETA( NMAX ), DR( NMAX, 12 ), + $ RESULT( 500 ) + COMPLEX DC( NMAX, 6 ), TAUA( NMAX ), TAUB( NMAX ), + $ X( 5*NMAX ) +* .. +* .. Allocatable Arrays .. + INTEGER AllocateStatus + REAL, DIMENSION(:), ALLOCATABLE :: RWORK, S + COMPLEX, DIMENSION(:), ALLOCATABLE :: WORK + COMPLEX, DIMENSION(:,:), ALLOCATABLE :: A, B, C +* .. +* .. External Functions .. + LOGICAL LSAMEN + REAL SECOND, SLAMCH + EXTERNAL LSAMEN, SECOND, SLAMCH +* .. +* .. External Subroutines .. + EXTERNAL ALAREQ, CCHKBB, CCHKBD, CCHKBK, CCHKBL, CCHKEC, + $ CCHKGG, CCHKGK, CCHKGL, CCHKHB, CCHKHS, CCHKST, + $ CCKCSD, CCKGLM, CCKGQR, CCKGSV, CCKLSE, CDRGES, + $ CDRGEV, CDRGSX, CDRGVX, CDRVBD, CDRVES, CDRVEV, + $ CDRVSG, CDRVST, CDRVSX, CDRVVX, CERRBD, + $ CERRED, CERRGG, CERRHS, CERRST, ILAVER, XLAENV, + $ CDRGES3, CDRGEV3, + $ CCHKST2STG, CDRVST2STG, CCHKHB2STG +* .. +* .. Intrinsic Functions .. + INTRINSIC LEN, MIN +* .. +* .. Scalars in Common .. + LOGICAL LERR, OK + CHARACTER*32 SRNAMT + INTEGER INFOT, MAXB, NPROC, NSHIFT, NUNIT, SELDIM, + $ SELOPT +* .. +* .. Arrays in Common .. + LOGICAL SELVAL( 20 ) + INTEGER IPARMS( 100 ) + REAL SELWI( 20 ), SELWR( 20 ) +* .. +* .. Common blocks .. + COMMON / CENVIR / NPROC, NSHIFT, MAXB + COMMON / CLAENV / IPARMS + COMMON / INFOC / INFOT, NUNIT, OK, LERR + COMMON / SRNAMC / SRNAMT + COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI +* .. +* .. Data statements .. + DATA INTSTR / '0123456789' / + DATA IOLDSD / 0, 0, 0, 1 / +* .. +* .. Allocate memory dynamically .. +* + ALLOCATE ( S(NMAX*NMAX), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" + ALLOCATE ( A(NMAX*NMAX,NEED), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" + ALLOCATE ( B(NMAX*NMAX,5), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" + ALLOCATE ( C(NCMAX*NCMAX,NCMAX*NCMAX), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" + ALLOCATE ( RWORK(LWORK), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" + ALLOCATE ( WORK(LWORK), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" +* .. +* .. Executable Statements .. +* + A = 0.0 + B = 0.0 + C = 0.0 + DC = 0.0 + S1 = SECOND( ) + FATAL = .FALSE. + NUNIT = NOUT +* +* Return to here to read multiple sets of data +* + 10 CONTINUE +* +* Read the first line and set the 3-character test path +* + READ( NIN, FMT = '(A80)', END = 380 )LINE + PATH = LINE( 1: 3 ) + NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'CHS' ) + SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'CST' ) .OR. + $ LSAMEN( 3, PATH, 'CSG' ) .OR. LSAMEN( 3, PATH, 'SE2' ) + SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'CBD' ) + CEV = LSAMEN( 3, PATH, 'CEV' ) + CES = LSAMEN( 3, PATH, 'CES' ) + CVX = LSAMEN( 3, PATH, 'CVX' ) + CSX = LSAMEN( 3, PATH, 'CSX' ) + CGG = LSAMEN( 3, PATH, 'CGG' ) + CGS = LSAMEN( 3, PATH, 'CGS' ) + CGX = LSAMEN( 3, PATH, 'CGX' ) + CGV = LSAMEN( 3, PATH, 'CGV' ) + CXV = LSAMEN( 3, PATH, 'CXV' ) + CHB = LSAMEN( 3, PATH, 'CHB' ) + CBB = LSAMEN( 3, PATH, 'CBB' ) + GLM = LSAMEN( 3, PATH, 'GLM' ) + GQR = LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' ) + GSV = LSAMEN( 3, PATH, 'GSV' ) + CSD = LSAMEN( 3, PATH, 'CSD' ) + LSE = LSAMEN( 3, PATH, 'LSE' ) + CBL = LSAMEN( 3, PATH, 'CBL' ) + CBK = LSAMEN( 3, PATH, 'CBK' ) + CGL = LSAMEN( 3, PATH, 'CGL' ) + CGK = LSAMEN( 3, PATH, 'CGK' ) +* +* Report values of parameters. +* + IF( PATH.EQ.' ' ) THEN + GO TO 10 + ELSE IF( NEP ) THEN + WRITE( NOUT, FMT = 9987 ) + ELSE IF( SEP ) THEN + WRITE( NOUT, FMT = 9986 ) + ELSE IF( SVD ) THEN + WRITE( NOUT, FMT = 9985 ) + ELSE IF( CEV ) THEN + WRITE( NOUT, FMT = 9979 ) + ELSE IF( CES ) THEN + WRITE( NOUT, FMT = 9978 ) + ELSE IF( CVX ) THEN + WRITE( NOUT, FMT = 9977 ) + ELSE IF( CSX ) THEN + WRITE( NOUT, FMT = 9976 ) + ELSE IF( CGG ) THEN + WRITE( NOUT, FMT = 9975 ) + ELSE IF( CGS ) THEN + WRITE( NOUT, FMT = 9964 ) + ELSE IF( CGX ) THEN + WRITE( NOUT, FMT = 9965 ) + ELSE IF( CGV ) THEN + WRITE( NOUT, FMT = 9963 ) + ELSE IF( CXV ) THEN + WRITE( NOUT, FMT = 9962 ) + ELSE IF( CHB ) THEN + WRITE( NOUT, FMT = 9974 ) + ELSE IF( CBB ) THEN + WRITE( NOUT, FMT = 9967 ) + ELSE IF( GLM ) THEN + WRITE( NOUT, FMT = 9971 ) + ELSE IF( GQR ) THEN + WRITE( NOUT, FMT = 9970 ) + ELSE IF( GSV ) THEN + WRITE( NOUT, FMT = 9969 ) + ELSE IF( CSD ) THEN + WRITE( NOUT, FMT = 9960 ) + ELSE IF( LSE ) THEN + WRITE( NOUT, FMT = 9968 ) + ELSE IF( CBL ) THEN +* +* CGEBAL: Balancing +* + CALL CCHKBL( NIN, NOUT ) + GO TO 380 + ELSE IF( CBK ) THEN +* +* CGEBAK: Back transformation +* + CALL CCHKBK( NIN, NOUT ) + GO TO 380 + ELSE IF( CGL ) THEN +* +* CGGBAL: Balancing +* + CALL CCHKGL( NIN, NOUT ) + GO TO 380 + ELSE IF( CGK ) THEN +* +* CGGBAK: Back transformation +* + CALL CCHKGK( NIN, NOUT ) + GO TO 380 + ELSE IF( LSAMEN( 3, PATH, 'CEC' ) ) THEN +* +* CEC: Eigencondition estimation +* + READ( NIN, FMT = * )THRESH + CALL XLAENV( 1, 1 ) + CALL XLAENV( 12, 1 ) + TSTERR = .TRUE. + CALL CCHKEC( THRESH, TSTERR, NIN, NOUT ) + GO TO 380 + ELSE + WRITE( NOUT, FMT = 9992 )PATH + GO TO 380 + END IF + CALL ILAVER( VERS_MAJOR, VERS_MINOR, VERS_PATCH ) + WRITE( NOUT, FMT = 9972 ) VERS_MAJOR, VERS_MINOR, VERS_PATCH + WRITE( NOUT, FMT = 9984 ) +* +* Read the number of values of M, P, and N. +* + READ( NIN, FMT = * )NN + IF( NN.LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' NN ', NN, 1 + NN = 0 + FATAL = .TRUE. + ELSE IF( NN.GT.MAXIN ) THEN + WRITE( NOUT, FMT = 9988 )' NN ', NN, MAXIN + NN = 0 + FATAL = .TRUE. + END IF +* +* Read the values of M +* + IF( .NOT.( CGX .OR. CXV ) ) THEN + READ( NIN, FMT = * )( MVAL( I ), I = 1, NN ) + IF( SVD ) THEN + VNAME = ' M ' + ELSE + VNAME = ' N ' + END IF + DO 20 I = 1, NN + IF( MVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )VNAME, MVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( MVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )VNAME, MVAL( I ), NMAX + FATAL = .TRUE. + END IF + 20 CONTINUE + WRITE( NOUT, FMT = 9983 )'M: ', ( MVAL( I ), I = 1, NN ) + END IF +* +* Read the values of P +* + IF( GLM .OR. GQR .OR. GSV .OR. CSD .OR. LSE ) THEN + READ( NIN, FMT = * )( PVAL( I ), I = 1, NN ) + DO 30 I = 1, NN + IF( PVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' P ', PVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( PVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' P ', PVAL( I ), NMAX + FATAL = .TRUE. + END IF + 30 CONTINUE + WRITE( NOUT, FMT = 9983 )'P: ', ( PVAL( I ), I = 1, NN ) + END IF +* +* Read the values of N +* + IF( SVD .OR. CBB .OR. GLM .OR. GQR .OR. GSV .OR. CSD .OR. + $ LSE ) THEN + READ( NIN, FMT = * )( NVAL( I ), I = 1, NN ) + DO 40 I = 1, NN + IF( NVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' N ', NVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( NVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' N ', NVAL( I ), NMAX + FATAL = .TRUE. + END IF + 40 CONTINUE + ELSE + DO 50 I = 1, NN + NVAL( I ) = MVAL( I ) + 50 CONTINUE + END IF + IF( .NOT.( CGX .OR. CXV ) ) THEN + WRITE( NOUT, FMT = 9983 )'N: ', ( NVAL( I ), I = 1, NN ) + ELSE + WRITE( NOUT, FMT = 9983 )'N: ', NN + END IF +* +* Read the number of values of K, followed by the values of K +* + IF( CHB .OR. CBB ) THEN + READ( NIN, FMT = * )NK + READ( NIN, FMT = * )( KVAL( I ), I = 1, NK ) + DO 60 I = 1, NK + IF( KVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' K ', KVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( KVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' K ', KVAL( I ), NMAX + FATAL = .TRUE. + END IF + 60 CONTINUE + WRITE( NOUT, FMT = 9983 )'K: ', ( KVAL( I ), I = 1, NK ) + END IF +* + IF( CEV .OR. CES .OR. CVX .OR. CSX ) THEN +* +* For the nonsymmetric QR driver routines, only one set of +* parameters is allowed. +* + READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ), + $ INMIN( 1 ), INWIN( 1 ), INIBL(1), ISHFTS(1), IACC22(1) + IF( NBVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NBMIN( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NXVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( INMIN( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( 1 ), 1 + FATAL = .TRUE. + ELSE IF( INWIN( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( 1 ), 1 + FATAL = .TRUE. + ELSE IF( INIBL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( ISHFTS( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( 1 ), 1 + FATAL = .TRUE. + ELSE IF( IACC22( 1 ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( 1 ), 0 + FATAL = .TRUE. + END IF + CALL XLAENV( 1, NBVAL( 1 ) ) + CALL XLAENV( 2, NBMIN( 1 ) ) + CALL XLAENV( 3, NXVAL( 1 ) ) + CALL XLAENV(12, MAX( 11, INMIN( 1 ) ) ) + CALL XLAENV(13, INWIN( 1 ) ) + CALL XLAENV(14, INIBL( 1 ) ) + CALL XLAENV(15, ISHFTS( 1 ) ) + CALL XLAENV(16, IACC22( 1 ) ) + WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 ) + WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'INMIN: ', INMIN( 1 ) + WRITE( NOUT, FMT = 9983 )'INWIN: ', INWIN( 1 ) + WRITE( NOUT, FMT = 9983 )'INIBL: ', INIBL( 1 ) + WRITE( NOUT, FMT = 9983 )'ISHFTS: ', ISHFTS( 1 ) + WRITE( NOUT, FMT = 9983 )'IACC22: ', IACC22( 1 ) +* + ELSE IF( CGS .OR. CGX .OR. CGV .OR. CXV ) THEN +* +* For the nonsymmetric generalized driver routines, only one set of +* parameters is allowed. +* + READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ), + $ NSVAL( 1 ), MXBVAL( 1 ) + IF( NBVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NBMIN( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NXVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NSVAL( 1 ).LT.2 ) THEN + WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( 1 ), 2 + FATAL = .TRUE. + ELSE IF( MXBVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( 1 ), 1 + FATAL = .TRUE. + END IF + CALL XLAENV( 1, NBVAL( 1 ) ) + CALL XLAENV( 2, NBMIN( 1 ) ) + CALL XLAENV( 3, NXVAL( 1 ) ) + CALL XLAENV( 4, NSVAL( 1 ) ) + CALL XLAENV( 8, MXBVAL( 1 ) ) + WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 ) + WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'NS: ', NSVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'MAXB: ', MXBVAL( 1 ) + ELSE IF( .NOT.CHB .AND. .NOT.GLM .AND. .NOT.GQR .AND. .NOT. + $ GSV .AND. .NOT.CSD .AND. .NOT.LSE ) THEN +* +* For the other paths, the number of parameters can be varied +* from the input file. Read the number of parameter values. +* + READ( NIN, FMT = * )NPARMS + IF( NPARMS.LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )'NPARMS', NPARMS, 1 + NPARMS = 0 + FATAL = .TRUE. + ELSE IF( NPARMS.GT.MAXIN ) THEN + WRITE( NOUT, FMT = 9988 )'NPARMS', NPARMS, MAXIN + NPARMS = 0 + FATAL = .TRUE. + END IF +* +* Read the values of NB +* + IF( .NOT.CBB ) THEN + READ( NIN, FMT = * )( NBVAL( I ), I = 1, NPARMS ) + DO 70 I = 1, NPARMS + IF( NBVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( NBVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' NB ', NBVAL( I ), NMAX + FATAL = .TRUE. + END IF + 70 CONTINUE + WRITE( NOUT, FMT = 9983 )'NB: ', + $ ( NBVAL( I ), I = 1, NPARMS ) + END IF +* +* Read the values of NBMIN +* + IF( NEP .OR. SEP .OR. SVD .OR. CGG ) THEN + READ( NIN, FMT = * )( NBMIN( I ), I = 1, NPARMS ) + DO 80 I = 1, NPARMS + IF( NBMIN( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( I ), 0 + FATAL = .TRUE. + ELSE IF( NBMIN( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )'NBMIN ', NBMIN( I ), NMAX + FATAL = .TRUE. + END IF + 80 CONTINUE + WRITE( NOUT, FMT = 9983 )'NBMIN:', + $ ( NBMIN( I ), I = 1, NPARMS ) + ELSE + DO 90 I = 1, NPARMS + NBMIN( I ) = 1 + 90 CONTINUE + END IF +* +* Read the values of NX +* + IF( NEP .OR. SEP .OR. SVD ) THEN + READ( NIN, FMT = * )( NXVAL( I ), I = 1, NPARMS ) + DO 100 I = 1, NPARMS + IF( NXVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( NXVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' NX ', NXVAL( I ), NMAX + FATAL = .TRUE. + END IF + 100 CONTINUE + WRITE( NOUT, FMT = 9983 )'NX: ', + $ ( NXVAL( I ), I = 1, NPARMS ) + ELSE + DO 110 I = 1, NPARMS + NXVAL( I ) = 1 + 110 CONTINUE + END IF +* +* Read the values of NSHIFT (if CGG) or NRHS (if SVD +* or CBB). +* + IF( SVD .OR. CBB .OR. CGG ) THEN + READ( NIN, FMT = * )( NSVAL( I ), I = 1, NPARMS ) + DO 120 I = 1, NPARMS + IF( NSVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( NSVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' NS ', NSVAL( I ), NMAX + FATAL = .TRUE. + END IF + 120 CONTINUE + WRITE( NOUT, FMT = 9983 )'NS: ', + $ ( NSVAL( I ), I = 1, NPARMS ) + ELSE + DO 130 I = 1, NPARMS + NSVAL( I ) = 1 + 130 CONTINUE + END IF +* +* Read the values for MAXB. +* + IF( CGG ) THEN + READ( NIN, FMT = * )( MXBVAL( I ), I = 1, NPARMS ) + DO 140 I = 1, NPARMS + IF( MXBVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( MXBVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' MAXB ', MXBVAL( I ), NMAX + FATAL = .TRUE. + END IF + 140 CONTINUE + WRITE( NOUT, FMT = 9983 )'MAXB: ', + $ ( MXBVAL( I ), I = 1, NPARMS ) + ELSE + DO 150 I = 1, NPARMS + MXBVAL( I ) = 1 + 150 CONTINUE + END IF +* +* Read the values for INMIN. +* + IF( NEP ) THEN + READ( NIN, FMT = * )( INMIN( I ), I = 1, NPARMS ) + DO 540 I = 1, NPARMS + IF( INMIN( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( I ), 0 + FATAL = .TRUE. + END IF + 540 CONTINUE + WRITE( NOUT, FMT = 9983 )'INMIN: ', + $ ( INMIN( I ), I = 1, NPARMS ) + ELSE + DO 550 I = 1, NPARMS + INMIN( I ) = 1 + 550 CONTINUE + END IF +* +* Read the values for INWIN. +* + IF( NEP ) THEN + READ( NIN, FMT = * )( INWIN( I ), I = 1, NPARMS ) + DO 560 I = 1, NPARMS + IF( INWIN( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( I ), 0 + FATAL = .TRUE. + END IF + 560 CONTINUE + WRITE( NOUT, FMT = 9983 )'INWIN: ', + $ ( INWIN( I ), I = 1, NPARMS ) + ELSE + DO 570 I = 1, NPARMS + INWIN( I ) = 1 + 570 CONTINUE + END IF +* +* Read the values for INIBL. +* + IF( NEP ) THEN + READ( NIN, FMT = * )( INIBL( I ), I = 1, NPARMS ) + DO 580 I = 1, NPARMS + IF( INIBL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( I ), 0 + FATAL = .TRUE. + END IF + 580 CONTINUE + WRITE( NOUT, FMT = 9983 )'INIBL: ', + $ ( INIBL( I ), I = 1, NPARMS ) + ELSE + DO 590 I = 1, NPARMS + INIBL( I ) = 1 + 590 CONTINUE + END IF +* +* Read the values for ISHFTS. +* + IF( NEP ) THEN + READ( NIN, FMT = * )( ISHFTS( I ), I = 1, NPARMS ) + DO 600 I = 1, NPARMS + IF( ISHFTS( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( I ), 0 + FATAL = .TRUE. + END IF + 600 CONTINUE + WRITE( NOUT, FMT = 9983 )'ISHFTS: ', + $ ( ISHFTS( I ), I = 1, NPARMS ) + ELSE + DO 610 I = 1, NPARMS + ISHFTS( I ) = 1 + 610 CONTINUE + END IF +* +* Read the values for IACC22. +* + IF( NEP .OR. CGG ) THEN + READ( NIN, FMT = * )( IACC22( I ), I = 1, NPARMS ) + DO 620 I = 1, NPARMS + IF( IACC22( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( I ), 0 + FATAL = .TRUE. + END IF + 620 CONTINUE + WRITE( NOUT, FMT = 9983 )'IACC22: ', + $ ( IACC22( I ), I = 1, NPARMS ) + ELSE + DO 630 I = 1, NPARMS + IACC22( I ) = 1 + 630 CONTINUE + END IF +* +* Read the values for NBCOL. +* + IF( CGG ) THEN + READ( NIN, FMT = * )( NBCOL( I ), I = 1, NPARMS ) + DO 160 I = 1, NPARMS + IF( NBCOL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )'NBCOL ', NBCOL( I ), 0 + FATAL = .TRUE. + ELSE IF( NBCOL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )'NBCOL ', NBCOL( I ), NMAX + FATAL = .TRUE. + END IF + 160 CONTINUE + WRITE( NOUT, FMT = 9983 )'NBCOL:', + $ ( NBCOL( I ), I = 1, NPARMS ) + ELSE + DO 170 I = 1, NPARMS + NBCOL( I ) = 1 + 170 CONTINUE + END IF + END IF +* +* Calculate and print the machine dependent constants. +* + WRITE( NOUT, FMT = * ) + EPS = SLAMCH( 'Underflow threshold' ) + WRITE( NOUT, FMT = 9981 )'underflow', EPS + EPS = SLAMCH( 'Overflow threshold' ) + WRITE( NOUT, FMT = 9981 )'overflow ', EPS + EPS = SLAMCH( 'Epsilon' ) + WRITE( NOUT, FMT = 9981 )'precision', EPS +* +* Read the threshold value for the test ratios. +* + READ( NIN, FMT = * )THRESH + WRITE( NOUT, FMT = 9982 )THRESH + IF( SEP .OR. SVD .OR. CGG ) THEN +* +* Read the flag that indicates whether to test LAPACK routines. +* + READ( NIN, FMT = * )TSTCHK +* +* Read the flag that indicates whether to test driver routines. +* + READ( NIN, FMT = * )TSTDRV + END IF +* +* Read the flag that indicates whether to test the error exits. +* + READ( NIN, FMT = * )TSTERR +* +* Read the code describing how to set the random number seed. +* + READ( NIN, FMT = * )NEWSD +* +* If NEWSD = 2, read another line with 4 integers for the seed. +* + IF( NEWSD.EQ.2 ) + $ READ( NIN, FMT = * )( IOLDSD( I ), I = 1, 4 ) +* + DO 180 I = 1, 4 + ISEED( I ) = IOLDSD( I ) + 180 CONTINUE +* + IF( FATAL ) THEN + WRITE( NOUT, FMT = 9999 ) + STOP + END IF +* +* Read the input lines indicating the test path and its parameters. +* The first three characters indicate the test path, and the number +* of test matrix types must be the first nonblank item in columns +* 4-80. +* + 190 CONTINUE +* + IF( .NOT.( CGX .OR. CXV ) ) THEN +* + 200 CONTINUE + READ( NIN, FMT = '(A80)', END = 380 )LINE + C3 = LINE( 1: 3 ) + LENP = LEN( LINE ) + I = 3 + ITMP = 0 + I1 = 0 + 210 CONTINUE + I = I + 1 + IF( I.GT.LENP ) THEN + IF( I1.GT.0 ) THEN + GO TO 240 + ELSE + NTYPES = MAXT + GO TO 240 + END IF + END IF + IF( LINE( I: I ).NE.' ' .AND. LINE( I: I ).NE.',' ) THEN + I1 = I + C1 = LINE( I1: I1 ) +* +* Check that a valid integer was read +* + DO 220 K = 1, 10 + IF( C1.EQ.INTSTR( K: K ) ) THEN + IC = K - 1 + GO TO 230 + END IF + 220 CONTINUE + WRITE( NOUT, FMT = 9991 )I, LINE + GO TO 200 + 230 CONTINUE + ITMP = 10*ITMP + IC + GO TO 210 + ELSE IF( I1.GT.0 ) THEN + GO TO 240 + ELSE + GO TO 210 + END IF + 240 CONTINUE + NTYPES = ITMP +* +* Skip the tests if NTYPES is <= 0. +* + IF( .NOT.( CEV .OR. CES .OR. CVX .OR. CSX .OR. CGV .OR. + $ CGS ) .AND. NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + GO TO 200 + END IF +* + ELSE + IF( CGX ) + $ C3 = 'CGX' + IF( CXV ) + $ C3 = 'CXV' + END IF +* +* Reset the random number seed. +* + IF( NEWSD.EQ.0 ) THEN + DO 250 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 250 CONTINUE + END IF +* + IF( LSAMEN( 3, C3, 'CHS' ) .OR. LSAMEN( 3, C3, 'NEP' ) ) THEN +* +* ------------------------------------- +* NEP: Nonsymmetric Eigenvalue Problem +* ------------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NX = crossover point +* NS = number of shifts +* MAXB = minimum submatrix size +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 1, 1 ) + IF( TSTERR ) + $ CALL CERRHS( 'CHSEQR', NOUT ) + DO 270 I = 1, NPARMS + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 3, NXVAL( I ) ) + CALL XLAENV(12, MAX( 11, INMIN( I ) ) ) + CALL XLAENV(13, INWIN( I ) ) + CALL XLAENV(14, INIBL( I ) ) + CALL XLAENV(15, ISHFTS( I ) ) + CALL XLAENV(16, IACC22( I ) ) +* + IF( NEWSD.EQ.0 ) THEN + DO 260 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 260 CONTINUE + END IF + WRITE( NOUT, FMT = 9961 )C3, NBVAL( I ), NBMIN( I ), + $ NXVAL( I ), MAX( 11, INMIN(I)), + $ INWIN( I ), INIBL( I ), ISHFTS( I ), IACC22( I ) + CALL CCHKHS( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 5 ), NMAX, A( 1, 6 ), + $ A( 1, 7 ), DC( 1, 1 ), DC( 1, 2 ), A( 1, 8 ), + $ A( 1, 9 ), A( 1, 10 ), A( 1, 11 ), A( 1, 12 ), + $ DC( 1, 3 ), WORK, LWORK, RWORK, IWORK, LOGWRK, + $ RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CCHKHS', INFO + 270 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'CST' ) .OR. LSAMEN( 3, C3, 'SEP' ) + $ .OR. LSAMEN( 3, C3, 'SE2' ) ) THEN +* +* ---------------------------------- +* SEP: Symmetric Eigenvalue Problem +* ---------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NX = crossover point +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 1, 1 ) + CALL XLAENV( 9, 25 ) + IF( TSTERR ) THEN +#if defined(_OPENMP) + N_THREADS = OMP_GET_NUM_THREADS() + CALL OMP_SET_NUM_THREADS(1) +#endif + CALL CERRST( 'CST', NOUT ) +#if defined(_OPENMP) + CALL OMP_SET_NUM_THREADS(N_THREADS) +#endif + END IF + DO 290 I = 1, NPARMS + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 3, NXVAL( I ) ) +* + IF( NEWSD.EQ.0 ) THEN + DO 280 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 280 CONTINUE + END IF + WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ), + $ NXVAL( I ) + IF( TSTCHK ) THEN + IF( LSAMEN( 3, C3, 'SE2' ) ) THEN + CALL CCHKST2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), + $ DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ), + $ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), + $ DR( 1, 7 ), DR( 1, 8 ), DR( 1, 9 ), + $ DR( 1, 10 ), DR( 1, 11 ), A( 1, 3 ), NMAX, + $ A( 1, 4 ), A( 1, 5 ), DC( 1, 1 ), A( 1, 6 ), + $ WORK, LWORK, RWORK, LWORK, IWORK, LIWORK, + $ RESULT, INFO ) + ELSE + CALL CCHKST( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), + $ DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ), + $ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), + $ DR( 1, 7 ), DR( 1, 8 ), DR( 1, 9 ), + $ DR( 1, 10 ), DR( 1, 11 ), A( 1, 3 ), NMAX, + $ A( 1, 4 ), A( 1, 5 ), DC( 1, 1 ), A( 1, 6 ), + $ WORK, LWORK, RWORK, LWORK, IWORK, LIWORK, + $ RESULT, INFO ) + ENDIF + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CCHKST', INFO + END IF + IF( TSTDRV ) THEN + IF( LSAMEN( 3, C3, 'SE2' ) ) THEN + CALL CDRVST2STG( NN, NVAL, 18, DOTYPE, ISEED, THRESH, + $ NOUT, A( 1, 1 ), NMAX, DR( 1, 3 ), DR( 1, 4 ), + $ DR( 1, 5 ), DR( 1, 8 ), DR( 1, 9 ), + $ DR( 1, 10 ), A( 1, 2 ), NMAX, A( 1, 3 ), + $ DC( 1, 1 ), A( 1, 4 ), WORK, LWORK, RWORK, + $ LWORK, IWORK, LIWORK, RESULT, INFO ) + ELSE + CALL CDRVST( NN, NVAL, 18, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, DR( 1, 3 ), DR( 1, 4 ), + $ DR( 1, 5 ), DR( 1, 8 ), DR( 1, 9 ), + $ DR( 1, 10 ), A( 1, 2 ), NMAX, A( 1, 3 ), + $ DC( 1, 1 ), A( 1, 4 ), WORK, LWORK, RWORK, + $ LWORK, IWORK, LIWORK, RESULT, INFO ) + ENDIF + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CDRVST', INFO + END IF + 290 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'CSG' ) ) THEN +* +* ---------------------------------------------- +* CSG: Hermitian Generalized Eigenvalue Problem +* ---------------------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NX = crossover point +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 9, 25 ) + DO 310 I = 1, NPARMS + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 3, NXVAL( I ) ) +* + IF( NEWSD.EQ.0 ) THEN + DO 300 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 300 CONTINUE + END IF + WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ), + $ NXVAL( I ) + IF( TSTCHK ) THEN +* CALL CDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, +* $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, +* $ DR( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ), +* $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK, +* $ LWORK, RWORK, LWORK, IWORK, LIWORK, RESULT, +* $ INFO ) + CALL CDRVSG2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, + $ DR( 1, 3 ), DR( 1, 4 ), A( 1, 3 ), NMAX, + $ A( 1, 4 ), A( 1, 5 ), A( 1, 6 ), + $ A( 1, 7 ), WORK, LWORK, RWORK, LWORK, + $ IWORK, LIWORK, RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CDRVSG', INFO + END IF + 310 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'CBD' ) .OR. LSAMEN( 3, C3, 'SVD' ) ) THEN +* +* ---------------------------------- +* SVD: Singular Value Decomposition +* ---------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NX = crossover point +* NRHS = number of right hand sides +* + MAXTYP = 16 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 9, 25 ) +* +* Test the error exits +* + CALL XLAENV( 1, 1 ) + IF( TSTERR .AND. TSTCHK ) + $ CALL CERRBD( 'CBD', NOUT ) + IF( TSTERR .AND. TSTDRV ) + $ CALL CERRED( 'CBD', NOUT ) +* + DO 330 I = 1, NPARMS + NRHS = NSVAL( I ) + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 3, NXVAL( I ) ) + IF( NEWSD.EQ.0 ) THEN + DO 320 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 320 CONTINUE + END IF + WRITE( NOUT, FMT = 9995 )C3, NBVAL( I ), NBMIN( I ), + $ NXVAL( I ), NRHS + IF( TSTCHK ) THEN + CALL CCHKBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, NRHS, ISEED, + $ THRESH, A( 1, 1 ), NMAX, DR( 1, 1 ), + $ DR( 1, 2 ), DR( 1, 3 ), DR( 1, 4 ), + $ A( 1, 2 ), NMAX, A( 1, 3 ), A( 1, 4 ), + $ A( 1, 5 ), NMAX, A( 1, 6 ), NMAX, A( 1, 7 ), + $ A( 1, 8 ), WORK, LWORK, RWORK, NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CCHKBD', INFO + END IF + IF( TSTDRV ) + $ CALL CDRVBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, ISEED, + $ THRESH, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, + $ A( 1, 3 ), NMAX, A( 1, 4 ), A( 1, 5 ), + $ A( 1, 6 ), DR( 1, 1 ), DR( 1, 2 ), + $ DR( 1, 3 ), WORK, LWORK, RWORK, IWORK, NOUT, + $ INFO ) + 330 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'CEV' ) ) THEN +* +* -------------------------------------------- +* CEV: Nonsymmetric Eigenvalue Problem Driver +* CGEEV (eigenvalues and eigenvectors) +* -------------------------------------------- +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL CERRED( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL CDRVEV( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), DC( 1, 1 ), + $ DC( 1, 2 ), A( 1, 3 ), NMAX, A( 1, 4 ), NMAX, + $ A( 1, 5 ), NMAX, RESULT, WORK, LWORK, RWORK, + $ IWORK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CGEEV', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'CES' ) ) THEN +* +* -------------------------------------------- +* CES: Nonsymmetric Eigenvalue Problem Driver +* CGEES (Schur form) +* -------------------------------------------- +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL CERRED( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL CDRVES( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ DC( 1, 1 ), DC( 1, 2 ), A( 1, 4 ), NMAX, + $ RESULT, WORK, LWORK, RWORK, IWORK, LOGWRK, + $ INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CGEES', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'CVX' ) ) THEN +* +* -------------------------------------------------------------- +* CVX: Nonsymmetric Eigenvalue Problem Expert Driver +* CGEEVX (eigenvalues, eigenvectors and condition numbers) +* -------------------------------------------------------------- +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LT.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL CERRED( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL CDRVVX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), DC( 1, 1 ), + $ DC( 1, 2 ), A( 1, 3 ), NMAX, A( 1, 4 ), NMAX, + $ A( 1, 5 ), NMAX, DR( 1, 1 ), DR( 1, 2 ), + $ DR( 1, 3 ), DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), + $ DR( 1, 7 ), DR( 1, 8 ), RESULT, WORK, LWORK, + $ RWORK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CGEEVX', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'CSX' ) ) THEN +* +* --------------------------------------------------- +* CSX: Nonsymmetric Eigenvalue Problem Expert Driver +* CGEESX (Schur form and condition numbers) +* --------------------------------------------------- +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LT.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL CERRED( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL CDRVSX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ DC( 1, 1 ), DC( 1, 2 ), DC( 1, 3 ), A( 1, 4 ), + $ NMAX, A( 1, 5 ), RESULT, WORK, LWORK, RWORK, + $ LOGWRK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CGEESX', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'CGG' ) ) THEN +* +* ------------------------------------------------- +* CGG: Generalized Nonsymmetric Eigenvalue Problem +* ------------------------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NS = number of shifts +* MAXB = minimum submatrix size +* IACC22: structured matrix multiply +* NBCOL = minimum column dimension for blocks +* + MAXTYP = 26 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV(1,1) + IF( TSTCHK .AND. TSTERR ) + $ CALL CERRGG( C3, NOUT ) + DO 350 I = 1, NPARMS + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 4, NSVAL( I ) ) + CALL XLAENV( 8, MXBVAL( I ) ) + CALL XLAENV( 16, IACC22( I ) ) + CALL XLAENV( 5, NBCOL( I ) ) +* + IF( NEWSD.EQ.0 ) THEN + DO 340 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 340 CONTINUE + END IF + WRITE( NOUT, FMT = 9996 )C3, NBVAL( I ), NBMIN( I ), + $ NSVAL( I ), MXBVAL( I ), IACC22( I ), NBCOL( I ) + TSTDIF = .FALSE. + THRSHN = 10. + IF( TSTCHK ) THEN + CALL CCHKGG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, + $ TSTDIF, THRSHN, NOUT, A( 1, 1 ), NMAX, + $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), + $ A( 1, 6 ), A( 1, 7 ), A( 1, 8 ), A( 1, 9 ), + $ NMAX, A( 1, 10 ), A( 1, 11 ), A( 1, 12 ), + $ DC( 1, 1 ), DC( 1, 2 ), DC( 1, 3 ), + $ DC( 1, 4 ), A( 1, 13 ), A( 1, 14 ), WORK, + $ LWORK, RWORK, LOGWRK, RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CCHKGG', INFO + END IF + 350 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'CGS' ) ) THEN +* +* ------------------------------------------------- +* CGS: Generalized Nonsymmetric Eigenvalue Problem +* CGGES (Schur form) +* ------------------------------------------------- +* + MAXTYP = 26 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL CERRGG( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL CDRGES( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), + $ DC( 1, 1 ), DC( 1, 2 ), WORK, LWORK, RWORK, + $ RESULT, LOGWRK, INFO ) +* + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CDRGES', INFO +* +* Blocked version +* + CALL XLAENV(16,2) + CALL CDRGES3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), + $ DC( 1, 1 ), DC( 1, 2 ), WORK, LWORK, RWORK, + $ RESULT, LOGWRK, INFO ) +* + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CDRGES3', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + + GO TO 10 +* + ELSE IF( CGX ) THEN +* +* ------------------------------------------------- +* CGX Generalized Nonsymmetric Eigenvalue Problem +* CGGESX (Schur form and condition numbers) +* ------------------------------------------------- +* + MAXTYP = 5 + NTYPES = MAXTYP + IF( NN.LT.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL CERRGG( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 5, 2 ) + CALL CDRGSX( NN, NCMAX, THRESH, NIN, NOUT, A( 1, 1 ), NMAX, + $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), + $ A( 1, 6 ), DC( 1, 1 ), DC( 1, 2 ), C, + $ NCMAX*NCMAX, S, WORK, LWORK, RWORK, IWORK, + $ LIWORK, LOGWRK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CDRGSX', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'CGV' ) ) THEN +* +* ------------------------------------------------- +* CGV: Generalized Nonsymmetric Eigenvalue Problem +* CGGEV (Eigenvalue/vector form) +* ------------------------------------------------- +* + MAXTYP = 26 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL CERRGG( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL CDRGEV( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), + $ A( 1, 9 ), NMAX, DC( 1, 1 ), DC( 1, 2 ), + $ DC( 1, 3 ), DC( 1, 4 ), WORK, LWORK, RWORK, + $ RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CDRGEV', INFO +* +* Blocked version +* + CALL XLAENV(16,2) + CALL CDRGEV3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), + $ A( 1, 9 ), NMAX, DC( 1, 1 ), DC( 1, 2 ), + $ DC( 1, 3 ), DC( 1, 4 ), WORK, LWORK, RWORK, + $ RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CDRGEV3', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( CXV ) THEN +* +* ------------------------------------------------- +* CXV: Generalized Nonsymmetric Eigenvalue Problem +* CGGEVX (eigenvalue/vector with condition numbers) +* ------------------------------------------------- +* + MAXTYP = 2 + NTYPES = MAXTYP + IF( NN.LT.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL CERRGG( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL CDRGVX( NN, THRESH, NIN, NOUT, A( 1, 1 ), NMAX, + $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), DC( 1, 1 ), + $ DC( 1, 2 ), A( 1, 5 ), A( 1, 6 ), IWORK( 1 ), + $ IWORK( 2 ), DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ), + $ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), WORK, + $ LWORK, RWORK, IWORK( 3 ), LIWORK-2, RESULT, + $ LOGWRK, INFO ) +* + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CDRGVX', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'CHB' ) ) THEN +* +* ------------------------------ +* CHB: Hermitian Band Reduction +* ------------------------------ +* + MAXTYP = 15 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + IF( TSTERR ) THEN +#if defined(_OPENMP) + N_THREADS = OMP_GET_NUM_THREADS() + CALL OMP_SET_NUM_THREADS(1) +#endif + CALL CERRST( 'CHB', NOUT ) +#if defined(_OPENMP) + CALL OMP_SET_NUM_THREADS(N_THREADS) +#endif + END IF +* CALL CCHKHB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH, +* $ NOUT, A( 1, 1 ), NMAX, DR( 1, 1 ), DR( 1, 2 ), +* $ A( 1, 2 ), NMAX, WORK, LWORK, RWORK, RESULT, +* $ INFO ) + CALL CCHKHB2STG( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, + $ THRESH, NOUT, A( 1, 1 ), NMAX, DR( 1, 1 ), + $ DR( 1, 2 ), DR( 1, 3 ), DR( 1, 4 ), DR( 1, 5 ), + $ A( 1, 2 ), NMAX, WORK, LWORK, RWORK, RESULT, + $ INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CCHKHB', INFO +* + ELSE IF( LSAMEN( 3, C3, 'CBB' ) ) THEN +* +* ------------------------------ +* CBB: General Band Reduction +* ------------------------------ +* + MAXTYP = 15 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + DO 370 I = 1, NPARMS + NRHS = NSVAL( I ) +* + IF( NEWSD.EQ.0 ) THEN + DO 360 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 360 CONTINUE + END IF + WRITE( NOUT, FMT = 9966 )C3, NRHS + CALL CCHKBB( NN, MVAL, NVAL, NK, KVAL, MAXTYP, DOTYPE, NRHS, + $ ISEED, THRESH, NOUT, A( 1, 1 ), NMAX, + $ A( 1, 2 ), 2*NMAX, DR( 1, 1 ), DR( 1, 2 ), + $ A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, A( 1, 6 ), + $ NMAX, A( 1, 7 ), WORK, LWORK, RWORK, RESULT, + $ INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CCHKBB', INFO + 370 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'GLM' ) ) THEN +* +* ----------------------------------------- +* GLM: Generalized Linear Regression Model +* ----------------------------------------- +* + CALL XLAENV( 1, 1 ) + IF( TSTERR ) + $ CALL CERRGG( 'GLM', NOUT ) + CALL CCKGLM( NN, NVAL, MVAL, PVAL, NTYPES, ISEED, THRESH, NMAX, + $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X, + $ WORK, DR( 1, 1 ), NIN, NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CCKGLM', INFO +* + ELSE IF( LSAMEN( 3, C3, 'GQR' ) ) THEN +* +* ------------------------------------------ +* GQR: Generalized QR and RQ factorizations +* ------------------------------------------ +* + CALL XLAENV( 1, 1 ) + IF( TSTERR ) + $ CALL CERRGG( 'GQR', NOUT ) + CALL CCKGQR( NN, MVAL, NN, PVAL, NN, NVAL, NTYPES, ISEED, + $ THRESH, NMAX, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), TAUA, B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), + $ B( 1, 4 ), B( 1, 5 ), TAUB, WORK, DR( 1, 1 ), NIN, + $ NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CCKGQR', INFO +* + ELSE IF( LSAMEN( 3, C3, 'GSV' ) ) THEN +* +* ---------------------------------------------- +* GSV: Generalized Singular Value Decomposition +* ---------------------------------------------- +* + CALL XLAENV(1,1) + IF( TSTERR ) + $ CALL CERRGG( 'GSV', NOUT ) + CALL CCKGSV( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, + $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), + $ A( 1, 3 ), B( 1, 3 ), A( 1, 4 ), ALPHA, BETA, + $ B( 1, 4 ), IWORK, WORK, DR( 1, 1 ), NIN, NOUT, + $ INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CCKGSV', INFO +* + ELSE IF( LSAMEN( 3, C3, 'CSD' ) ) THEN +* +* ---------------------------------------------- +* CSD: CS Decomposition +* ---------------------------------------------- +* + CALL XLAENV(1,1) + IF( TSTERR ) + $ CALL CERRGG( 'CSD', NOUT ) + CALL CCKCSD( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, + $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), + $ A( 1, 5 ), A( 1, 6 ), RWORK, IWORK, WORK, + $ DR( 1, 1 ), NIN, NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CCKCSD', INFO +* + ELSE IF( LSAMEN( 3, C3, 'LSE' ) ) THEN +* +* -------------------------------------- +* LSE: Constrained Linear Least Squares +* -------------------------------------- +* + CALL XLAENV( 1, 1 ) + IF( TSTERR ) + $ CALL CERRGG( 'LSE', NOUT ) + CALL CCKLSE( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, + $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X, + $ WORK, DR( 1, 1 ), NIN, NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CCKLSE', INFO + ELSE + WRITE( NOUT, FMT = * ) + WRITE( NOUT, FMT = * ) + WRITE( NOUT, FMT = 9992 )C3 + END IF + IF( .NOT.( CGX .OR. CXV ) ) + $ GO TO 190 + 380 CONTINUE + WRITE( NOUT, FMT = 9994 ) + S2 = SECOND( ) + WRITE( NOUT, FMT = 9993 )S2 - S1 +* + DEALLOCATE (S, STAT = AllocateStatus) + DEALLOCATE (A, STAT = AllocateStatus) + DEALLOCATE (B, STAT = AllocateStatus) + DEALLOCATE (C, STAT = AllocateStatus) + DEALLOCATE (RWORK, STAT = AllocateStatus) + DEALLOCATE (WORK, STAT = AllocateStatus) +* + 9999 FORMAT( / ' Execution not attempted due to input errors' ) + 9997 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4 ) + 9996 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NS =', I4, + $ ', MAXB =', I4, ', IACC22 =', I4, ', NBCOL =', I4 ) + 9995 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4, + $ ', NRHS =', I4 ) + 9994 FORMAT( / / ' End of tests' ) + 9993 FORMAT( ' Total time used = ', F12.2, ' seconds', / ) + 9992 FORMAT( 1X, A3, ': Unrecognized path name' ) + 9991 FORMAT( / / ' *** Invalid integer value in column ', I2, + $ ' of input', ' line:', / A79 ) + 9990 FORMAT( / / 1X, A3, ' routines were not tested' ) + 9989 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be >=', + $ I6 ) + 9988 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be <=', + $ I6 ) + 9987 FORMAT( ' Tests of the Nonsymmetric Eigenvalue Problem routines' ) + 9986 FORMAT( ' Tests of the Hermitian Eigenvalue Problem routines' ) + 9985 FORMAT( ' Tests of the Singular Value Decomposition routines' ) + 9984 FORMAT( / ' The following parameter values will be used:' ) + 9983 FORMAT( 4X, A, 10I6, / 10X, 10I6 ) + 9982 FORMAT( / ' Routines pass computational tests if test ratio is ', + $ 'less than', F8.2, / ) + 9981 FORMAT( ' Relative machine ', A, ' is taken to be', E16.6 ) + 9980 FORMAT( ' *** Error code from ', A, ' = ', I4 ) + 9979 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver', + $ / ' CGEEV (eigenvalues and eigevectors)' ) + 9978 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver', + $ / ' CGEES (Schur form)' ) + 9977 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert', + $ ' Driver', / ' CGEEVX (eigenvalues, eigenvectors and', + $ ' condition numbers)' ) + 9976 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert', + $ ' Driver', / ' CGEESX (Schur form and condition', + $ ' numbers)' ) + 9975 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem routines' ) + 9974 FORMAT( ' Tests of CHBTRD', / ' (reduction of a Hermitian band ', + $ 'matrix to real tridiagonal form)' ) + 9973 FORMAT( / 1X, 71( '-' ) ) + 9972 FORMAT( / ' LAPACK VERSION ', I1, '.', I1, '.', I1 ) + 9971 FORMAT( / ' Tests of the Generalized Linear Regression Model ', + $ 'routines' ) + 9970 FORMAT( / ' Tests of the Generalized QR and RQ routines' ) + 9969 FORMAT( / ' Tests of the Generalized Singular Value', + $ ' Decomposition routines' ) + 9968 FORMAT( / ' Tests of the Linear Least Squares routines' ) + 9967 FORMAT( ' Tests of CGBBRD', / ' (reduction of a general band ', + $ 'matrix to real bidiagonal form)' ) + 9966 FORMAT( / / 1X, A3, ': NRHS =', I4 ) + 9965 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem Expert Driver CGGESX' ) + 9964 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem Driver CGGES' ) + 9963 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem Driver CGGEV' ) + 9962 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem Expert Driver CGGEVX' ) + 9961 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4, + $ ', INMIN=', I4, + $ ', INWIN =', I4, ', INIBL =', I4, ', ISHFTS =', I4, + $ ', IACC22 =', I4) + 9960 FORMAT( / ' Tests of the CS Decomposition routines' ) +* +* End of CCHKEE +* + END From 90c1776c86339dfcd61ae07935f448a8b10346a4 Mon Sep 17 00:00:00 2001 From: Martin Kroeker Date: Sun, 28 Feb 2021 18:53:20 +0100 Subject: [PATCH 11/17] Adjust build rules for ?chkee.F --- lapack-netlib/TESTING/EIG/Makefile | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/lapack-netlib/TESTING/EIG/Makefile b/lapack-netlib/TESTING/EIG/Makefile index b3efebcd0..a292e4496 100644 --- a/lapack-netlib/TESTING/EIG/Makefile +++ b/lapack-netlib/TESTING/EIG/Makefile @@ -157,11 +157,11 @@ cleanobj: cleanexe: rm -f xeigtst* -schkee.o: schkee.f +schkee.o: schkee.F $(FC) $(FFLAGS_DRV) -c -o $@ $< -dchkee.o: dchkee.f +dchkee.o: dchkee.F $(FC) $(FFLAGS_DRV) -c -o $@ $< -cchkee.o: cchkee.f +cchkee.o: cchkee.F $(FC) $(FFLAGS_DRV) -c -o $@ $< -zchkee.o: zchkee.f +zchkee.o: zchkee.F $(FC) $(FFLAGS_DRV) -c -o $@ $< From 9564f688c490bf0dabfa8226d3643d749f7ffff5 Mon Sep 17 00:00:00 2001 From: Martin Kroeker Date: Sun, 28 Feb 2021 18:57:05 +0100 Subject: [PATCH 12/17] Adjust build rules for ?chkee.F --- lapack-netlib/TESTING/EIG/CMakeLists.txt | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/lapack-netlib/TESTING/EIG/CMakeLists.txt b/lapack-netlib/TESTING/EIG/CMakeLists.txt index e877b1422..10c25a446 100644 --- a/lapack-netlib/TESTING/EIG/CMakeLists.txt +++ b/lapack-netlib/TESTING/EIG/CMakeLists.txt @@ -25,7 +25,7 @@ set(AEIGTST set(SCIGTST slafts.f slahd2.f slasum.f slatb9.f sstech.f sstect.f ssvdch.f ssvdct.f ssxt1.f) -set(SEIGTST schkee.f +set(SEIGTST schkee.F sbdt01.f sbdt02.f sbdt03.f sbdt04.f sbdt05.f schkbb.f schkbd.f schkbk.f schkbl.f schkec.f schkgg.f schkgk.f schkgl.f schkhs.f schksb.f schkst.f schkst2stg.f schksb2stg.f @@ -42,7 +42,7 @@ set(SEIGTST schkee.f sort03.f ssbt21.f ssgt01.f sslect.f sspt21.f sstt21.f sstt22.f ssyt21.f ssyt22.f) -set(CEIGTST cchkee.f +set(CEIGTST cchkee.F cbdt01.f cbdt02.f cbdt03.f cbdt05.f cchkbb.f cchkbd.f cchkbk.f cchkbl.f cchkec.f cchkgg.f cchkgk.f cchkgl.f cchkhb.f cchkhs.f cchkst.f cchkst2stg.f cchkhb2stg.f @@ -62,7 +62,7 @@ set(CEIGTST cchkee.f set(DZIGTST dlafts.f dlahd2.f dlasum.f dlatb9.f dstech.f dstect.f dsvdch.f dsvdct.f dsxt1.f) -set(DEIGTST dchkee.f +set(DEIGTST dchkee.F dbdt01.f dbdt02.f dbdt03.f dbdt04.f dbdt05.f dchkbb.f dchkbd.f dchkbk.f dchkbl.f dchkec.f dchkgg.f dchkgk.f dchkgl.f dchkhs.f dchksb.f dchkst.f dchkst2stg.f dchksb2stg.f @@ -79,7 +79,7 @@ set(DEIGTST dchkee.f dort03.f dsbt21.f dsgt01.f dslect.f dspt21.f dstt21.f dstt22.f dsyt21.f dsyt22.f) -set(ZEIGTST zchkee.f +set(ZEIGTST zchkee.F zbdt01.f zbdt02.f zbdt03.f zbdt05.f zchkbb.f zchkbd.f zchkbk.f zchkbl.f zchkec.f zchkgg.f zchkgk.f zchkgl.f zchkhb.f zchkhs.f zchkst.f zchkst2stg.f zchkhb2stg.f From 20f492c2984913b6b278be2ae6bbb057026bfc52 Mon Sep 17 00:00:00 2001 From: Martin Kroeker Date: Mon, 1 Mar 2021 21:00:10 +0100 Subject: [PATCH 13/17] Fix AMD AOCC compiler detection --- Makefile.system | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/Makefile.system b/Makefile.system index 848c38797..91a078565 100644 --- a/Makefile.system +++ b/Makefile.system @@ -904,8 +904,8 @@ CCOMMON_OPT += -DF_INTERFACE_FLANG FCOMMON_OPT += -Mrecursive -Kieee ifeq ($(OSNAME), Linux) ifeq ($(ARCH), x86_64) -FLANG_VENDOR := $(shell `$(FC) --version|cut -f 1 -d "."|head -1`) -ifeq ($(FLANG_VENDOR),AOCC) +FLANG_VENDOR := $(shell $(FC) --version|head -1 |cut -f 1 -d " ") +ifeq ($(FLANG_VENDOR), AMD) FCOMMON_OPT += -fno-unroll-loops endif endif From 38dcf3454bf4d3a4b5b470791277904c025d7369 Mon Sep 17 00:00:00 2001 From: Martin Kroeker Date: Tue, 2 Mar 2021 17:50:55 +0100 Subject: [PATCH 14/17] Support timing Apple M1 --- benchmark/bench.h | 12 +++++++++++- 1 file changed, 11 insertions(+), 1 deletion(-) diff --git a/benchmark/bench.h b/benchmark/bench.h index 1f9b8986c..83de8ab2b 100644 --- a/benchmark/bench.h +++ b/benchmark/bench.h @@ -74,6 +74,9 @@ static void *huge_malloc(BLASLONG size){ #if defined(__WIN32__) || defined(__WIN64__) || !defined(_POSIX_TIMERS) struct timeval start, stop; +#elif defined(__APPLE__) + mach_timebase_info_data_t info; + uint64_t start = 0, stop = 0; #else struct timespec start = { 0, 0 }, stop = { 0, 0 }; #endif @@ -82,6 +85,9 @@ double getsec() { #if defined(__WIN32__) || defined(__WIN64__) || !defined(_POSIX_TIMERS) return (double)(stop.tv_sec - start.tv_sec) + (double)((stop.tv_usec - start.tv_usec)) * 1.e-6; +#elif defined(__APPLE__) + mach_timebase_info(&info); + return (double)(((stop - start) * info.numer)/info.denom) * 1.e-9; #else return (double)(stop.tv_sec - start.tv_sec) + (double)((stop.tv_nsec - start.tv_nsec)) * 1.e-9; #endif @@ -90,6 +96,8 @@ double getsec() void begin() { #if defined(__WIN32__) || defined(__WIN64__) || !defined(_POSIX_TIMERS) gettimeofday( &start, (struct timezone *)0); +#elif defined(__APPLE__) + start = clock_gettime_nsec_np(CLOCK_UPTIME_RAW); #else clock_gettime(CLOCK_REALTIME, &start); #endif @@ -98,7 +106,9 @@ void begin() { void end() { #if defined(__WIN32__) || defined(__WIN64__) || !defined(_POSIX_TIMERS) gettimeofday( &stop, (struct timezone *)0); +#elif defined(__APPLE__) + stop = clock_gettime_nsec_np(CLOCK_UPTIME_RAW); #else clock_gettime(CLOCK_REALTIME, &stop); #endif -} \ No newline at end of file +} From 41646ed006b25167417a5b56ad37e20c9632851c Mon Sep 17 00:00:00 2001 From: Rajalakshmi Srinivasaraghavan Date: Fri, 5 Mar 2021 16:22:36 -0600 Subject: [PATCH 15/17] Optimize s/dasum function for POWER10 This patch makes use of new POWER10 vector pair instructions for loads and stores. --- kernel/power/dasum.c | 20 +++- kernel/power/dasum_microk_power10.c | 152 +++++++++++++++++++++++++++ kernel/power/sasum.c | 20 +++- kernel/power/sasum_microk_power10.c | 153 ++++++++++++++++++++++++++++ 4 files changed, 343 insertions(+), 2 deletions(-) create mode 100644 kernel/power/dasum_microk_power10.c create mode 100644 kernel/power/sasum_microk_power10.c diff --git a/kernel/power/dasum.c b/kernel/power/dasum.c index 999dc677a..0cdec3292 100644 --- a/kernel/power/dasum.c +++ b/kernel/power/dasum.c @@ -46,9 +46,11 @@ USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #endif -#if defined(POWER8) || defined(POWER9) || defined(POWER10) #if defined(__VEC__) || defined(__ALTIVEC__) +#if defined(POWER8) || defined(POWER9) #include "dasum_microk_power8.c" +#elif defined(POWER10) +#include "dasum_microk_power10.c" #endif #endif @@ -110,6 +112,21 @@ FLOAT CNAME(BLASLONG n, FLOAT *x, BLASLONG inc_x) if ( inc_x == 1 ) { +#if defined(POWER10) + if ( n >= 16 ) + { + BLASLONG align = ((32 - ((uintptr_t)x & (uintptr_t)0x1F)) >> 3) & 0x3; + for (i = 0; i < align; i++) { + sumf += ABS(x[i]); + } + } + n1 = (n-i) & -16; + if ( n1 > 0 ) + { + sumf += dasum_kernel_16(n1, &x[i]); + i+=n1; + } +#else n1 = n & -16; if ( n1 > 0 ) { @@ -117,6 +134,7 @@ FLOAT CNAME(BLASLONG n, FLOAT *x, BLASLONG inc_x) sumf = dasum_kernel_16(n1, x); i=n1; } +#endif while(i < n) { diff --git a/kernel/power/dasum_microk_power10.c b/kernel/power/dasum_microk_power10.c new file mode 100644 index 000000000..d1a21b4d1 --- /dev/null +++ b/kernel/power/dasum_microk_power10.c @@ -0,0 +1,152 @@ +/*************************************************************************** +Copyright (c) 2021, The OpenBLAS Project +All rights reserved. +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are +met: +1. Redistributions of source code must retain the above copyright +notice, this list of conditions and the following disclaimer. +2. Redistributions in binary form must reproduce the above copyright +notice, this list of conditions and the following disclaimer in +the documentation and/or other materials provided with the +distribution. +3. Neither the name of the OpenBLAS project nor the names of +its contributors may be used to endorse or promote products +derived from this software without specific prior written permission. +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE +USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +*****************************************************************************/ + +#define HAVE_KERNEL_16 1 + +static double dasum_kernel_16 (long n, double *x) +{ + double sum; + __vector double t0; + __vector double t1; + __vector double t2; + __vector double t3; + + __asm__ + ( + "dcbt 0, %2 \n\t" + + "xxlxor 32, 32, 32 \n\t" + "xxlxor 33, 33, 33 \n\t" + "xxlxor 34, 34, 34 \n\t" + "xxlxor 35, 35, 35 \n\t" + "xxlxor 36, 36, 36 \n\t" + "xxlxor 37, 37, 37 \n\t" + "xxlxor 38, 38, 38 \n\t" + "xxlxor 39, 39, 39 \n\t" + + "lxvp 40, 0(%2) \n\t" + "lxvp 42, 32(%2) \n\t" + "lxvp 44, 64(%2) \n\t" + "lxvp 46, 96(%2) \n\t" + + "addi %2, %2, 128 \n\t" + + "addic. %1, %1, -16 \n\t" + "ble two%= \n\t" + + ".align 5 \n" + "one%=: \n\t" + + "xvabsdp 48, 40 \n\t" + "xvabsdp 49, 41 \n\t" + "xvabsdp 50, 42 \n\t" + "xvabsdp 51, 43 \n\t" + "lxvp 40, 0(%2) \n\t" + + + "xvabsdp %x3, 44 \n\t" + "xvabsdp %x4, 45 \n\t" + "lxvp 42, 32(%2) \n\t" + + + "xvabsdp %x5, 46 \n\t" + "xvabsdp %x6, 47 \n\t" + "lxvp 44, 64(%2) \n\t" + + + "xvadddp 32, 32, 48 \n\t" + "xvadddp 33, 33, 49 \n\t" + + "lxvp 46, 96(%2) \n\t" + + "xvadddp 34, 34, 50 \n\t" + "xvadddp 35, 35, 51 \n\t" + "addi %2, %2, 128 \n\t" + "xvadddp 36, 36, %x3 \n\t" + "xvadddp 37, 37, %x4 \n\t" + "addic. %1, %1, -16 \n\t" + "xvadddp 38, 38, %x5 \n\t" + "xvadddp 39, 39, %x6 \n\t" + + "bgt one%= \n" + + "two%=: \n\t" + + "xvabsdp 48, 40 \n\t" + "xvabsdp 49, 41 \n\t" + "xvabsdp 50, 42 \n\t" + "xvabsdp 51, 43 \n\t" + "xvabsdp %x3, 44 \n\t" + "xvabsdp %x4, 45 \n\t" + "xvabsdp %x5, 46 \n\t" + "xvabsdp %x6, 47 \n\t" + + "xvadddp 32, 32, 48 \n\t" + "xvadddp 33, 33, 49 \n\t" + "xvadddp 34, 34, 50 \n\t" + "xvadddp 35, 35, 51 \n\t" + "xvadddp 36, 36, %x3 \n\t" + "xvadddp 37, 37, %x4 \n\t" + "xvadddp 38, 38, %x5 \n\t" + "xvadddp 39, 39, %x6 \n\t" + + "xvadddp 32, 32, 33 \n\t" + "xvadddp 34, 34, 35 \n\t" + "xvadddp 36, 36, 37 \n\t" + "xvadddp 38, 38, 39 \n\t" + + "xvadddp 32, 32, 34 \n\t" + "xvadddp 36, 36, 38 \n\t" + + "xvadddp 32, 32, 36 \n\t" + + XXSWAPD_S(33,32) + "xsadddp %x0, 32, 33 \n" + + "#n=%1 x=%3=%2 sum=%0\n" + "#t0=%x3 t1=%x4 t2=%x5 t3=%x6" + : + "=d" (sum), // 0 + "+r" (n), // 1 + "+b" (x), // 2 + "=wa" (t0), // 3 + "=wa" (t1), // 4 + "=wa" (t2), // 5 + "=wa" (t3) // 6 + : + "m" (*x) + : + "cr0", + "vs32","vs33","vs34","vs35","vs36","vs37","vs38","vs39", + "vs40","vs41","vs42","vs43","vs44","vs45","vs46","vs47", + "vs48","vs49","vs50","vs51" + ); + + return sum; +} + + diff --git a/kernel/power/sasum.c b/kernel/power/sasum.c index 733137012..af692a7fa 100644 --- a/kernel/power/sasum.c +++ b/kernel/power/sasum.c @@ -46,9 +46,11 @@ USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #endif -#if defined(POWER8) || defined(POWER9) || defined(POWER10) #if defined(__VEC__) || defined(__ALTIVEC__) +#if defined(POWER8) || defined(POWER9) #include "sasum_microk_power8.c" +#elif defined(POWER10) +#include "sasum_microk_power10.c" #endif #endif @@ -110,6 +112,21 @@ FLOAT CNAME(BLASLONG n, FLOAT *x, BLASLONG inc_x) if ( inc_x == 1 ) { +#if defined(POWER10) + if ( n >= 32 ) + { + BLASLONG align = ((32 - ((uintptr_t)x & (uintptr_t)0x1F)) >> 2) & 0x7; + for (i = 0; i < align; i++) { + sumf += ABS(x[i]); + } + } + n1 = (n-i) & -32; + if ( n1 > 0 ) + { + sumf += sasum_kernel_32(n1, &x[i]); + i+=n1; + } +#else n1 = n & -32; if ( n1 > 0 ) { @@ -117,6 +134,7 @@ FLOAT CNAME(BLASLONG n, FLOAT *x, BLASLONG inc_x) sumf = sasum_kernel_32(n1, x); i=n1; } +#endif while(i < n) { diff --git a/kernel/power/sasum_microk_power10.c b/kernel/power/sasum_microk_power10.c new file mode 100644 index 000000000..ea12a4264 --- /dev/null +++ b/kernel/power/sasum_microk_power10.c @@ -0,0 +1,153 @@ +/*************************************************************************** +Copyright (c) 2021, The OpenBLAS Project +All rights reserved. +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are +met: +1. Redistributions of source code must retain the above copyright +notice, this list of conditions and the following disclaimer. +2. Redistributions in binary form must reproduce the above copyright +notice, this list of conditions and the following disclaimer in +the documentation and/or other materials provided with the +distribution. +3. Neither the name of the OpenBLAS project nor the names of +its contributors may be used to endorse or promote products +derived from this software without specific prior written permission. +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE +USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +*****************************************************************************/ + + +#define HAVE_KERNEL_32 1 + +static float sasum_kernel_32 (long n, float *x) +{ + float sum; + __vector float t0; + __vector float t1; + __vector float t2; + __vector float t3; + + __asm__ + ( + "dcbt 0, %2 \n\t" + + "xxlxor 32, 32, 32 \n\t" + "xxlxor 33, 33, 33 \n\t" + "xxlxor 34, 34, 34 \n\t" + "xxlxor 35, 35, 35 \n\t" + "xxlxor 36, 36, 36 \n\t" + "xxlxor 37, 37, 37 \n\t" + "xxlxor 38, 38, 38 \n\t" + "xxlxor 39, 39, 39 \n\t" + + "lxvp 40, 0(%2) \n\t" + "lxvp 42, 32(%2) \n\t" + "lxvp 44, 64(%2) \n\t" + "lxvp 46, 96(%2) \n\t" + + "addi %2, %2, 128 \n\t" + + "addic. %1, %1, -32 \n\t" + "ble two%= \n\t" + + ".align 5 \n" + "one%=: \n\t" + + "xvabssp 48, 40 \n\t" + "xvabssp 49, 41 \n\t" + "xvabssp 50, 42 \n\t" + "xvabssp 51, 43 \n\t" + "lxvp 40, 0(%2) \n\t" + + "xvabssp %x3, 44 \n\t" + "xvabssp %x4, 45 \n\t" + "lxvp 42, 32(%2) \n\t" + + "xvabssp %x5, 46 \n\t" + "xvabssp %x6, 47 \n\t" + "lxvp 44, 64(%2) \n\t" + + "xvaddsp 32, 32, 48 \n\t" + "xvaddsp 33, 33, 49 \n\t" + + "lxvp 46, 96(%2) \n\t" + + "xvaddsp 34, 34, 50 \n\t" + "xvaddsp 35, 35, 51 \n\t" + "addi %2, %2, 128 \n\t" + "xvaddsp 36, 36, %x3 \n\t" + "xvaddsp 37, 37, %x4 \n\t" + "addic. %1, %1, -32 \n\t" + "xvaddsp 38, 38, %x5 \n\t" + "xvaddsp 39, 39, %x6 \n\t" + + "bgt one%= \n" + + "two%=: \n\t" + + "xvabssp 48, 40 \n\t" + "xvabssp 49, 41 \n\t" + "xvabssp 50, 42 \n\t" + "xvabssp 51, 43 \n\t" + "xvabssp %x3, 44 \n\t" + "xvabssp %x4, 45 \n\t" + "xvabssp %x5, 46 \n\t" + "xvabssp %x6, 47 \n\t" + + "xvaddsp 32, 32, 48 \n\t" + "xvaddsp 33, 33, 49 \n\t" + "xvaddsp 34, 34, 50 \n\t" + "xvaddsp 35, 35, 51 \n\t" + "xvaddsp 36, 36, %x3 \n\t" + "xvaddsp 37, 37, %x4 \n\t" + "xvaddsp 38, 38, %x5 \n\t" + "xvaddsp 39, 39, %x6 \n\t" + + "xvaddsp 32, 32, 33 \n\t" + "xvaddsp 34, 34, 35 \n\t" + "xvaddsp 36, 36, 37 \n\t" + "xvaddsp 38, 38, 39 \n\t" + + "xvaddsp 32, 32, 34 \n\t" + "xvaddsp 36, 36, 38 \n\t" + + "xvaddsp 32, 32, 36 \n\t" + + "xxsldwi 33, 32, 32, 2 \n\t" + "xvaddsp 32, 32, 33 \n\t" + + "xxsldwi 33, 32, 32, 1 \n\t" + "xvaddsp 32, 32, 33 \n\t" + + "xscvspdp %x0, 32 \n" + + "#n=%1 x=%3=%2 sum=%0\n" + "#t0=%x3 t1=%x4 t2=%x5 t3=%x6" + : + "=f" (sum), // 0 + "+r" (n), // 1 + "+b" (x), // 2 + "=wa" (t0), // 3 + "=wa" (t1), // 4 + "=wa" (t2), // 5 + "=wa" (t3) // 6 + : + "m" (*x) + : + "cr0", + "vs32","vs33","vs34","vs35","vs36","vs37","vs38","vs39", + "vs40","vs41","vs42","vs43","vs44","vs45","vs46","vs47", + "vs48","vs49","vs50","vs51" + ); + + return sum; +} From a9f6f7ad390fea938c45a0e4b3b8feb2c1841edf Mon Sep 17 00:00:00 2001 From: Martin Kroeker Date: Sat, 6 Mar 2021 14:35:49 +0100 Subject: [PATCH 16/17] Remove spurious AVX512 requirement and add AVX2/FMA3 guard --- kernel/x86_64/srot_microk_haswell-2.c | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/kernel/x86_64/srot_microk_haswell-2.c b/kernel/x86_64/srot_microk_haswell-2.c index 8e245cc8f..b5545726e 100644 --- a/kernel/x86_64/srot_microk_haswell-2.c +++ b/kernel/x86_64/srot_microk_haswell-2.c @@ -1,5 +1,4 @@ -/* need a new enough GCC for avx512 support */ -#if (( defined(__GNUC__) && __GNUC__ > 6 && defined(__AVX512CD__)) || (defined(__clang__) && __clang_major__ >= 9)) +#if defined(HAVE_FMA3) && defined(HAVE_AVX2) #define HAVE_SROT_KERNEL 1 From 09d47af2c0451b7d5868e9aeec200b565a6bf25f Mon Sep 17 00:00:00 2001 From: Rajalakshmi Srinivasaraghavan Date: Wed, 10 Mar 2021 17:15:33 -0600 Subject: [PATCH 17/17] Optimize zscal function for POWER10 This patch makes use of new POWER10 vector pair instructions for loads and stores. --- kernel/power/zscal.c | 2 +- kernel/power/zscal_microk_power10.c | 195 ++++++++++++++++++++++++++++ 2 files changed, 196 insertions(+), 1 deletion(-) create mode 100644 kernel/power/zscal_microk_power10.c diff --git a/kernel/power/zscal.c b/kernel/power/zscal.c index 31b3682b9..0068138e8 100644 --- a/kernel/power/zscal.c +++ b/kernel/power/zscal.c @@ -45,7 +45,7 @@ USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #endif #elif defined(POWER10) #if defined(DOUBLE) -#include "zscal_microk_power8.c" +#include "zscal_microk_power10.c" #else #include "cscal_microk_power10.c" #endif diff --git a/kernel/power/zscal_microk_power10.c b/kernel/power/zscal_microk_power10.c new file mode 100644 index 000000000..15b8323f4 --- /dev/null +++ b/kernel/power/zscal_microk_power10.c @@ -0,0 +1,195 @@ +/*************************************************************************** +Copyright (c) 2021, The OpenBLAS Project +All rights reserved. +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are +met: +1. Redistributions of source code must retain the above copyright +notice, this list of conditions and the following disclaimer. +2. Redistributions in binary form must reproduce the above copyright +notice, this list of conditions and the following disclaimer in +the documentation and/or other materials provided with the +distribution. +3. Neither the name of the OpenBLAS project nor the names of +its contributors may be used to endorse or promote products +derived from this software without specific prior written permission. +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE +USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +*****************************************************************************/ + +#define HAVE_KERNEL_8 1 + +static void zscal_kernel_8 (long n, double *x, double alpha_r, double alpha_i) +{ + __vector double t0; + __vector double t1; + __vector double t2; + __vector double t3; + __vector double t4; + __vector double t5; + + __asm__ + ( + "dcbt 0, %2 \n\t" + + "xsnegdp 33, %x10 \n\t" // -alpha_i + XXSPLTD_S(32,%x9,0) // alpha_r , alpha_r + XXMRGHD_S(33,%x10, 33) // -alpha_i , alpha_i + + "lxvp 40, 0(%2) \n\t" + "lxvp 42, 32(%2) \n\t" + "lxvp 44, 64(%2) \n\t" + "lxvp 46, 96(%2) \n\t" + + "addic. %1, %1, -8 \n\t" + "ble two%= \n\t" + + ".align 5 \n" + "one%=: \n\t" + + "xvmuldp 48, 40, 32 \n\t" // x0_r * alpha_r, x0_i * alpha_r + "xvmuldp 49, 41, 32 \n\t" + "xvmuldp 50, 42, 32 \n\t" + "xvmuldp 51, 43, 32 \n\t" + "xvmuldp 34, 44, 32 \n\t" + "xvmuldp 35, 45, 32 \n\t" + "xvmuldp 36, 46, 32 \n\t" + "xvmuldp 37, 47, 32 \n\t" + + XXSWAPD_S(38,40) + XXSWAPD_S(39,41) + XXSWAPD_S(%x3,42) + XXSWAPD_S(%x4,43) + XXSWAPD_S(%x5,44) + XXSWAPD_S(%x6,45) + XXSWAPD_S(%x7,46) + XXSWAPD_S(%x8,47) + + "xvmuldp 38, 38, 33 \n\t" // x0_i * -alpha_i, x0_r * alpha_i + "xvmuldp 39, 39, 33 \n\t" + + + "xvmuldp %x3, %x3, 33 \n\t" + "xvmuldp %x4, %x4, 33 \n\t" + + + "lxvp 40, 128(%2) \n\t" + "lxvp 42, 160(%2) \n\t" + "xvmuldp %x5, %x5, 33 \n\t" + "xvmuldp %x6, %x6, 33 \n\t" + + + "xvmuldp %x7, %x7, 33 \n\t" + "xvmuldp %x8, %x8, 33 \n\t" + "lxvp 44, 192(%2) \n\t" + "lxvp 46, 224(%2) \n\t" + + + "xvadddp 48, 48, 38 \n\t" + "xvadddp 49, 49, 39 \n\t" + "xvadddp 50, 50, %x3 \n\t" + "xvadddp 51, 51, %x4 \n\t" + "stxv 49, 0(%2) \n\t" + "stxv 48, 16(%2) \n\t" + "stxv 51, 32(%2) \n\t" + "stxv 50, 48(%2) \n\t" + + + "xvadddp 34, 34, %x5 \n\t" + "xvadddp 35, 35, %x6 \n\t" + + + "xvadddp 36, 36, %x7 \n\t" + "xvadddp 37, 37, %x8 \n\t" + + "stxv 35, 64(%2) \n\t" + "stxv 34, 80(%2) \n\t" + "stxv 37, 96(%2) \n\t" + "stxv 36, 112(%2) \n\t" + + "addi %2, %2, 128 \n\t" + + "addic. %1, %1, -8 \n\t" + "bgt one%= \n" + + "two%=: \n\t" + + "xvmuldp 48, 40, 32 \n\t" // x0_r * alpha_r, x0_i * alpha_r + "xvmuldp 49, 41, 32 \n\t" + "xvmuldp 50, 42, 32 \n\t" + "xvmuldp 51, 43, 32 \n\t" + "xvmuldp 34, 44, 32 \n\t" + "xvmuldp 35, 45, 32 \n\t" + "xvmuldp 36, 46, 32 \n\t" + "xvmuldp 37, 47, 32 \n\t" + + XXSWAPD_S(38,40) + XXSWAPD_S(39,41) + XXSWAPD_S(%x3,42) + XXSWAPD_S(%x4,43) + XXSWAPD_S(%x5,44) + XXSWAPD_S(%x6,45) + XXSWAPD_S(%x7,46) + XXSWAPD_S(%x8,47) + + + "xvmuldp 38, 38, 33 \n\t" // x0_i * -alpha_i, x0_r * alpha_i + "xvmuldp 39, 39, 33 \n\t" + "xvmuldp %x3, %x3, 33 \n\t" + "xvmuldp %x4, %x4, 33 \n\t" + "xvmuldp %x5, %x5, 33 \n\t" + "xvmuldp %x6, %x6, 33 \n\t" + "xvmuldp %x7, %x7, 33 \n\t" + "xvmuldp %x8, %x8, 33 \n\t" + + "xvadddp 48, 48, 38 \n\t" + "xvadddp 49, 49, 39 \n\t" + + "xvadddp 50, 50, %x3 \n\t" + "xvadddp 51, 51, %x4 \n\t" + "stxv 49, 0(%2) \n\t" + "stxv 48, 16(%2) \n\t" + "stxv 51, 32(%2) \n\t" + "stxv 50, 48(%2) \n\t" + + "xvadddp 34, 34, %x5 \n\t" + "xvadddp 35, 35, %x6 \n\t" + + + "xvadddp 36, 36, %x7 \n\t" + "xvadddp 37, 37, %x8 \n\t" + + "stxv 35, 64(%2) \n\t" + "stxv 34, 80(%2) \n\t" + "stxv 37, 96(%2) \n\t" + "stxv 36, 112(%2) \n\t" + + "#n=%1 x=%0=%2 alpha=(%9,%10) \n" + : + "+m" (*x), + "+r" (n), // 1 + "+b" (x), // 2 + "=wa" (t0), // 3 + "=wa" (t1), // 4 + "=wa" (t2), // 5 + "=wa" (t3), // 6 + "=wa" (t4), // 7 + "=wa" (t5) // 8 + : + "d" (alpha_r), // 9 + "d" (alpha_i) // 10 + : + "cr0", + "vs32","vs33","vs34","vs35","vs36","vs37","vs38","vs39", + "vs40","vs41","vs42","vs43","vs44","vs45","vs46","vs47", + "vs48","vs49","vs50","vs51" + ); +}