Cleaning up and documenting multi-threaded GEMM code.
This commit is contained in:
parent
860dcfc703
commit
9de52b489a
|
@ -97,21 +97,21 @@ typedef struct {
|
|||
|
||||
#ifndef BETA_OPERATION
|
||||
#ifndef COMPLEX
|
||||
#define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
|
||||
GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
|
||||
BETA[0], NULL, 0, NULL, 0, \
|
||||
(FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
|
||||
#define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
|
||||
GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
|
||||
BETA[0], NULL, 0, NULL, 0, \
|
||||
(FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
|
||||
#else
|
||||
#define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
|
||||
GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
|
||||
BETA[0], BETA[1], NULL, 0, NULL, 0, \
|
||||
(FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
|
||||
#define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
|
||||
GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
|
||||
BETA[0], BETA[1], NULL, 0, NULL, 0, \
|
||||
(FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef ICOPY_OPERATION
|
||||
#if defined(NN) || defined(NT) || defined(NC) || defined(NR) || \
|
||||
defined(RN) || defined(RT) || defined(RC) || defined(RR)
|
||||
defined(RN) || defined(RT) || defined(RC) || defined(RR)
|
||||
#define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
|
||||
#else
|
||||
#define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
|
||||
|
@ -120,7 +120,7 @@ typedef struct {
|
|||
|
||||
#ifndef OCOPY_OPERATION
|
||||
#if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
|
||||
defined(NR) || defined(TR) || defined(CR) || defined(RR)
|
||||
defined(NR) || defined(TR) || defined(CR) || defined(RR)
|
||||
#define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
|
||||
#else
|
||||
#define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
|
||||
|
@ -144,36 +144,36 @@ typedef struct {
|
|||
|
||||
#ifndef KERNEL_OPERATION
|
||||
#ifndef COMPLEX
|
||||
#define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
|
||||
KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
|
||||
#define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
|
||||
KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
|
||||
#else
|
||||
#define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
|
||||
KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
|
||||
#define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
|
||||
KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef FUSED_KERNEL_OPERATION
|
||||
#if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
|
||||
defined(NR) || defined(TR) || defined(CR) || defined(RR)
|
||||
defined(NR) || defined(TR) || defined(CR) || defined(RR)
|
||||
#ifndef COMPLEX
|
||||
#define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
|
||||
FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], SA, SB, \
|
||||
(FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
|
||||
FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], SA, SB, \
|
||||
(FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
|
||||
#else
|
||||
#define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
|
||||
FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \
|
||||
(FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
|
||||
FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \
|
||||
(FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
|
||||
|
||||
#endif
|
||||
#else
|
||||
#ifndef COMPLEX
|
||||
#define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
|
||||
FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], SA, SB, \
|
||||
(FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
|
||||
FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], SA, SB, \
|
||||
(FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
|
||||
#else
|
||||
#define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
|
||||
FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \
|
||||
(FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
|
||||
FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \
|
||||
(FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
@ -224,12 +224,12 @@ static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n,
|
|||
FLOAT *alpha, *beta;
|
||||
FLOAT *a, *b, *c;
|
||||
job_t *job = (job_t *)args -> common;
|
||||
|
||||
BLASLONG nthreads_m;
|
||||
BLASLONG xxx, bufferside;
|
||||
BLASLONG mypos_m, mypos_n;
|
||||
|
||||
BLASLONG ls, min_l, jjs, min_jj;
|
||||
BLASLONG is, min_i, div_n;
|
||||
BLASLONG is, js, ls, bufferside, jjs;
|
||||
BLASLONG min_i, min_l, div_n, min_jj;
|
||||
|
||||
BLASLONG i, current;
|
||||
BLASLONG l1stride;
|
||||
|
@ -261,30 +261,29 @@ static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n,
|
|||
alpha = (FLOAT *)args -> alpha;
|
||||
beta = (FLOAT *)args -> beta;
|
||||
|
||||
/* Initialize 2D CPU distribution */
|
||||
nthreads_m = args -> nthreads;
|
||||
if (range_m) {
|
||||
nthreads_m = range_m[-1];
|
||||
}
|
||||
mypos_n = blas_quickdivide(mypos, nthreads_m); /* mypos_n = mypos / nthreads_m */
|
||||
mypos_m = mypos - mypos_n * nthreads_m; /* mypos_m = mypos % nthreads_m */
|
||||
|
||||
mypos_m = mypos % nthreads_m;
|
||||
mypos_n = mypos / nthreads_m;
|
||||
|
||||
/* Initialize m and n */
|
||||
m_from = 0;
|
||||
m_to = M;
|
||||
|
||||
if (range_m) {
|
||||
m_from = range_m[mypos_m + 0];
|
||||
m_to = range_m[mypos_m + 1];
|
||||
}
|
||||
|
||||
n_from = 0;
|
||||
n_to = N;
|
||||
|
||||
if (range_n) {
|
||||
n_from = range_n[mypos + 0];
|
||||
n_to = range_n[mypos + 1];
|
||||
}
|
||||
|
||||
/* Multiply C by beta if needed */
|
||||
if (beta) {
|
||||
#ifndef COMPLEX
|
||||
if (beta[0] != ONE)
|
||||
|
@ -294,43 +293,37 @@ static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n,
|
|||
BETA_OPERATION(m_from, m_to, range_n[mypos_n * nthreads_m], range_n[(mypos_n + 1) * nthreads_m], beta, c, ldc);
|
||||
}
|
||||
|
||||
/* Return early if no more computation is needed */
|
||||
if ((k == 0) || (alpha == NULL)) return 0;
|
||||
|
||||
if ((alpha[0] == ZERO)
|
||||
#ifdef COMPLEX
|
||||
&& (alpha[1] == ZERO)
|
||||
#endif
|
||||
) return 0;
|
||||
|
||||
#if 0
|
||||
fprintf(stderr, "Thread[%ld] m_from : %ld m_to : %ld n_from : %ld n_to : %ld\n",
|
||||
mypos, m_from, m_to, n_from, n_to);
|
||||
|
||||
fprintf(stderr, "GEMM: P = %4ld Q = %4ld R = %4ld\n", (BLASLONG)GEMM_P, (BLASLONG)GEMM_Q, (BLASLONG)GEMM_R);
|
||||
|
||||
#endif
|
||||
|
||||
/* Initialize workspace for local region of B */
|
||||
div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE;
|
||||
|
||||
buffer[0] = sb;
|
||||
for (i = 1; i < DIVIDE_RATE; i++) {
|
||||
buffer[i] = buffer[i - 1] + GEMM_Q * ((div_n + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N * COMPSIZE;
|
||||
}
|
||||
|
||||
|
||||
/* Iterate through steps of k */
|
||||
for(ls = 0; ls < k; ls += min_l){
|
||||
|
||||
/* Determine step size in k */
|
||||
min_l = k - ls;
|
||||
|
||||
if (min_l >= GEMM_Q * 2) {
|
||||
min_l = GEMM_Q;
|
||||
} else {
|
||||
if (min_l > GEMM_Q) min_l = (min_l + 1) / 2;
|
||||
}
|
||||
|
||||
/* Determine step size in m
|
||||
* Note: We are currently on the first step in m
|
||||
*/
|
||||
l1stride = 1;
|
||||
min_i = m_to - m_from;
|
||||
|
||||
if (min_i >= GEMM_P * 2) {
|
||||
min_i = GEMM_P;
|
||||
} else {
|
||||
|
@ -341,109 +334,106 @@ static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n,
|
|||
}
|
||||
}
|
||||
|
||||
/* Copy local region of A into workspace */
|
||||
START_RPCC();
|
||||
|
||||
ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_from, sa);
|
||||
|
||||
STOP_RPCC(copy_A);
|
||||
|
||||
/* Copy local region of B into workspace and apply kernel */
|
||||
div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE;
|
||||
for (js = n_from, bufferside = 0; js < n_to; js += div_n, bufferside ++) {
|
||||
|
||||
for (xxx = n_from, bufferside = 0; xxx < n_to; xxx += div_n, bufferside ++) {
|
||||
|
||||
/* Make sure if no one is using workspace */
|
||||
START_RPCC();
|
||||
|
||||
/* Make sure if no one is using buffer */
|
||||
for (i = 0; i < args -> nthreads; i++)
|
||||
while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {YIELDING;};
|
||||
|
||||
STOP_RPCC(waiting1);
|
||||
|
||||
#if defined(FUSED_GEMM) && !defined(TIMING)
|
||||
|
||||
FUSED_KERNEL_OPERATION(min_i, MIN(n_to, xxx + div_n) - xxx, min_l, alpha,
|
||||
sa, buffer[bufferside], b, ldb, c, ldc, m_from, xxx, ls);
|
||||
/* Fused operation to copy region of B into workspace and apply kernel */
|
||||
FUSED_KERNEL_OPERATION(min_i, MIN(n_to, js + div_n) - js, min_l, alpha,
|
||||
sa, buffer[bufferside], b, ldb, c, ldc, m_from, js, ls);
|
||||
|
||||
#else
|
||||
|
||||
for(jjs = xxx; jjs < MIN(n_to, xxx + div_n); jjs += min_jj){
|
||||
min_jj = MIN(n_to, xxx + div_n) - jjs;
|
||||
|
||||
/* Split local region of B into parts */
|
||||
for(jjs = js; jjs < MIN(n_to, js + div_n); jjs += min_jj){
|
||||
min_jj = MIN(n_to, js + div_n) - jjs;
|
||||
if (min_jj >= 3*GEMM_UNROLL_N) min_jj = 3*GEMM_UNROLL_N;
|
||||
else
|
||||
if (min_jj >= 2*GEMM_UNROLL_N) min_jj = 2*GEMM_UNROLL_N;
|
||||
else
|
||||
if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
|
||||
|
||||
if (min_jj >= 2*GEMM_UNROLL_N) min_jj = 2*GEMM_UNROLL_N;
|
||||
else
|
||||
if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
|
||||
|
||||
/* Copy part of local region of B into workspace */
|
||||
START_RPCC();
|
||||
|
||||
OCOPY_OPERATION(min_l, min_jj, b, ldb, ls, jjs,
|
||||
buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE * l1stride);
|
||||
|
||||
buffer[bufferside] + min_l * (jjs - js) * COMPSIZE * l1stride);
|
||||
STOP_RPCC(copy_B);
|
||||
|
||||
/* Apply kernel with local region of A and part of local region of B */
|
||||
START_RPCC();
|
||||
|
||||
KERNEL_OPERATION(min_i, min_jj, min_l, alpha,
|
||||
sa, buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE * l1stride,
|
||||
sa, buffer[bufferside] + min_l * (jjs - js) * COMPSIZE * l1stride,
|
||||
c, ldc, m_from, jjs);
|
||||
|
||||
STOP_RPCC(kernel);
|
||||
|
||||
#ifdef TIMING
|
||||
ops += 2 * min_i * min_jj * min_l;
|
||||
ops += 2 * min_i * min_jj * min_l;
|
||||
#endif
|
||||
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Set flag so other threads can access local region of B */
|
||||
for (i = mypos_n * nthreads_m; i < (mypos_n + 1) * nthreads_m; i++)
|
||||
job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
|
||||
WMB;
|
||||
}
|
||||
|
||||
/* Get regions of B from other threads and apply kernel */
|
||||
current = mypos;
|
||||
|
||||
do {
|
||||
|
||||
/* This thread accesses regions of B from threads in the range
|
||||
* [ mypos_n * nthreads_m, (mypos_n+1) * nthreads_m ) */
|
||||
current ++;
|
||||
if (current >= (mypos_n + 1) * nthreads_m) current = mypos_n * nthreads_m;
|
||||
|
||||
/* Split other region of B into parts */
|
||||
div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE;
|
||||
for (js = range_n[current], bufferside = 0; js < range_n[current + 1]; js += div_n, bufferside ++) {
|
||||
if (current != mypos) {
|
||||
|
||||
for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
|
||||
|
||||
if (current != mypos) {
|
||||
|
||||
/* Wait until other region of B is initialized */
|
||||
START_RPCC();
|
||||
|
||||
/* thread has to wait */
|
||||
while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {YIELDING;};
|
||||
|
||||
STOP_RPCC(waiting2);
|
||||
|
||||
/* Apply kernel with local region of A and part of other region of B */
|
||||
START_RPCC();
|
||||
|
||||
KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha,
|
||||
KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - js, div_n), min_l, alpha,
|
||||
sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
|
||||
c, ldc, m_from, xxx);
|
||||
c, ldc, m_from, js);
|
||||
STOP_RPCC(kernel);
|
||||
|
||||
STOP_RPCC(kernel);
|
||||
#ifdef TIMING
|
||||
ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l;
|
||||
ops += 2 * min_i * MIN(range_n[current + 1] - js, div_n) * min_l;
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Clear synchronization flag if this thread is done with other region of B */
|
||||
if (m_to - m_from == min_i) {
|
||||
job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
|
||||
}
|
||||
}
|
||||
} while (current != mypos);
|
||||
|
||||
|
||||
/* Iterate through steps of m
|
||||
* Note: First step has already been finished */
|
||||
for(is = m_from + min_i; is < m_to; is += min_i){
|
||||
min_i = m_to - is;
|
||||
|
||||
if (min_i >= GEMM_P * 2) {
|
||||
min_i = GEMM_P;
|
||||
} else
|
||||
|
@ -451,38 +441,39 @@ static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n,
|
|||
min_i = (((min_i + 1) / 2 + GEMM_UNROLL_M - 1)/GEMM_UNROLL_M) * GEMM_UNROLL_M;
|
||||
}
|
||||
|
||||
/* Copy local region of A into workspace */
|
||||
START_RPCC();
|
||||
|
||||
ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa);
|
||||
|
||||
STOP_RPCC(copy_A);
|
||||
|
||||
/* Get regions of B and apply kernel */
|
||||
current = mypos;
|
||||
do {
|
||||
|
||||
/* Split region of B into parts and apply kernel */
|
||||
div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE;
|
||||
for (js = range_n[current], bufferside = 0; js < range_n[current + 1]; js += div_n, bufferside ++) {
|
||||
|
||||
for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
|
||||
|
||||
/* Apply kernel with local region of A and part of region of B */
|
||||
START_RPCC();
|
||||
|
||||
KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha,
|
||||
KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - js, div_n), min_l, alpha,
|
||||
sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
|
||||
c, ldc, is, xxx);
|
||||
|
||||
STOP_RPCC(kernel);
|
||||
|
||||
c, ldc, is, js);
|
||||
STOP_RPCC(kernel);
|
||||
|
||||
#ifdef TIMING
|
||||
ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l;
|
||||
ops += 2 * min_i * MIN(range_n[current + 1] - js, div_n) * min_l;
|
||||
#endif
|
||||
|
||||
if (is + min_i >= m_to) {
|
||||
/* Thread doesn't need this buffer any more */
|
||||
job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
|
||||
WMB;
|
||||
}
|
||||
|
||||
/* Clear synchronization flag if this thread is done with region of B */
|
||||
if (is + min_i >= m_to) {
|
||||
job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
|
||||
WMB;
|
||||
}
|
||||
}
|
||||
|
||||
/* This thread accesses regions of B from threads in the range
|
||||
* [ mypos_n * nthreads_m, (mypos_n+1) * nthreads_m ) */
|
||||
current ++;
|
||||
if (current >= (mypos_n + 1) * nthreads_m) current = mypos_n * nthreads_m;
|
||||
|
||||
|
@ -492,14 +483,13 @@ static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n,
|
|||
|
||||
}
|
||||
|
||||
/* Wait until all other threads are done with local region of B */
|
||||
START_RPCC();
|
||||
|
||||
for (i = 0; i < args -> nthreads; i++) {
|
||||
for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
|
||||
while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {YIELDING;};
|
||||
for (js = 0; js < DIVIDE_RATE; js++) {
|
||||
while (job[mypos].working[i][CACHE_LINE_SIZE * js] ) {YIELDING;};
|
||||
}
|
||||
}
|
||||
|
||||
STOP_RPCC(waiting3);
|
||||
|
||||
#ifdef TIMING
|
||||
|
@ -512,17 +502,6 @@ static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n,
|
|||
(double)waiting2 /(double)total * 100.,
|
||||
(double)waiting3 /(double)total * 100.,
|
||||
(double)ops/(double)kernel / 4. * 100.);
|
||||
|
||||
#if 0
|
||||
fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2ld Copy_B : %6.2ld Wait : %6.2ld\n",
|
||||
mypos, copy_A, copy_B, waiting);
|
||||
|
||||
fprintf(stderr, "Waiting[%2ld] %6.2f %6.2f %6.2f\n",
|
||||
mypos,
|
||||
(double)waiting1/(double)waiting * 100.,
|
||||
(double)waiting2/(double)waiting * 100.,
|
||||
(double)waiting3/(double)waiting * 100.);
|
||||
#endif
|
||||
fprintf(stderr, "\n");
|
||||
#endif
|
||||
|
||||
|
@ -545,17 +524,16 @@ static int gemm_driver(blas_arg_t *args, BLASLONG *range_m, BLASLONG
|
|||
|
||||
BLASLONG range_M_buffer[MAX_CPU_NUMBER + 2];
|
||||
BLASLONG range_N_buffer[MAX_CPU_NUMBER + 2];
|
||||
BLASLONG *range_M = range_M_buffer + 1;
|
||||
BLASLONG *range_N = range_N_buffer + 1;
|
||||
|
||||
BLASLONG *range_M, *range_N;
|
||||
BLASLONG num_cpu_m, num_cpu_n;
|
||||
|
||||
BLASLONG nthreads = args -> nthreads;
|
||||
|
||||
BLASLONG width, i, j, k, js;
|
||||
BLASLONG m, n, n_from, n_to;
|
||||
int mode;
|
||||
int mode;
|
||||
|
||||
/* Get execution mode */
|
||||
#ifndef COMPLEX
|
||||
#ifdef XDOUBLE
|
||||
mode = BLAS_XDOUBLE | BLAS_REAL | BLAS_NODE;
|
||||
|
@ -574,6 +552,16 @@ static int gemm_driver(blas_arg_t *args, BLASLONG *range_m, BLASLONG
|
|||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef USE_ALLOC_HEAP
|
||||
/* Dynamically allocate workspace */
|
||||
job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t));
|
||||
if(job==NULL){
|
||||
fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__);
|
||||
exit(1);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Initialize struct for arguments */
|
||||
newarg.m = args -> m;
|
||||
newarg.n = args -> n;
|
||||
newarg.k = args -> k;
|
||||
|
@ -586,26 +574,19 @@ static int gemm_driver(blas_arg_t *args, BLASLONG *range_m, BLASLONG
|
|||
newarg.alpha = args -> alpha;
|
||||
newarg.beta = args -> beta;
|
||||
newarg.nthreads = args -> nthreads;
|
||||
|
||||
#ifdef USE_ALLOC_HEAP
|
||||
job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t));
|
||||
if(job==NULL){
|
||||
fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__);
|
||||
exit(1);
|
||||
}
|
||||
#endif
|
||||
|
||||
newarg.common = (void *)job;
|
||||
|
||||
#ifdef PARAMTEST
|
||||
newarg.gemm_p = args -> gemm_p;
|
||||
newarg.gemm_q = args -> gemm_q;
|
||||
newarg.gemm_r = args -> gemm_r;
|
||||
newarg.gemm_p = args -> gemm_p;
|
||||
newarg.gemm_q = args -> gemm_q;
|
||||
newarg.gemm_r = args -> gemm_r;
|
||||
#endif
|
||||
|
||||
/* Initialize partitions in m and n
|
||||
* Note: The number of CPU partitions is stored in the -1 entry */
|
||||
range_M = &range_M_buffer[1];
|
||||
range_N = &range_N_buffer[1];
|
||||
range_M[-1] = nthreads_m;
|
||||
range_N[-1] = nthreads_n;
|
||||
|
||||
if (!range_m) {
|
||||
range_M[0] = 0;
|
||||
m = args -> m;
|
||||
|
@ -614,24 +595,20 @@ static int gemm_driver(blas_arg_t *args, BLASLONG *range_m, BLASLONG
|
|||
m = range_m[1] - range_m[0];
|
||||
}
|
||||
|
||||
/* Partition m into nthreads_m regions */
|
||||
num_cpu_m = 0;
|
||||
|
||||
while (m > 0){
|
||||
|
||||
width = blas_quickdivide(m + nthreads_m - num_cpu_m - 1, nthreads_m - num_cpu_m);
|
||||
|
||||
width = blas_quickdivide(m + nthreads_m - num_cpu_m - 1, nthreads_m - num_cpu_m);
|
||||
m -= width;
|
||||
if (m < 0) width = width + m;
|
||||
|
||||
range_M[num_cpu_m + 1] = range_M[num_cpu_m] + width;
|
||||
|
||||
num_cpu_m ++;
|
||||
}
|
||||
|
||||
for (i = num_cpu_m; i < MAX_CPU_NUMBER; i++) {
|
||||
range_M[i + 1] = range_M[num_cpu_m];
|
||||
}
|
||||
|
||||
/* Initialize parameters for parallel execution */
|
||||
for (i = 0; i < nthreads; i++) {
|
||||
queue[i].mode = mode;
|
||||
queue[i].routine = inner_thread;
|
||||
|
@ -642,10 +619,11 @@ static int gemm_driver(blas_arg_t *args, BLASLONG *range_m, BLASLONG
|
|||
queue[i].sb = NULL;
|
||||
queue[i].next = &queue[i + 1];
|
||||
}
|
||||
|
||||
queue[0].sa = sa;
|
||||
queue[0].sb = sb;
|
||||
queue[nthreads - 1].next = NULL;
|
||||
|
||||
/* Iterate through steps of n */
|
||||
if (!range_n) {
|
||||
n_from = 0;
|
||||
n_to = args -> n;
|
||||
|
@ -653,41 +631,34 @@ static int gemm_driver(blas_arg_t *args, BLASLONG *range_m, BLASLONG
|
|||
n_from = range_n[0];
|
||||
n_to = range_n[1];
|
||||
}
|
||||
|
||||
for(js = n_from; js < n_to; js += GEMM_R * nthreads){
|
||||
n = n_to - js;
|
||||
if (n > GEMM_R * nthreads) n = GEMM_R * nthreads;
|
||||
|
||||
/* Partition (a step of) n into nthreads regions */
|
||||
range_N[0] = js;
|
||||
|
||||
num_cpu_n = 0;
|
||||
|
||||
while (n > 0){
|
||||
|
||||
width = blas_quickdivide(n + nthreads - num_cpu_n - 1, nthreads - num_cpu_n);
|
||||
|
||||
width = blas_quickdivide(n + nthreads - num_cpu_n - 1, nthreads - num_cpu_n);
|
||||
n -= width;
|
||||
if (n < 0) width = width + n;
|
||||
|
||||
range_N[num_cpu_n + 1] = range_N[num_cpu_n] + width;
|
||||
|
||||
num_cpu_n ++;
|
||||
}
|
||||
|
||||
for (j = num_cpu_n; j < MAX_CPU_NUMBER; j++) {
|
||||
range_N[j + 1] = range_N[num_cpu_n];
|
||||
}
|
||||
|
||||
for (j = 0; j < MAX_CPU_NUMBER; j++) {
|
||||
for (i = 0; i < MAX_CPU_NUMBER; i++) {
|
||||
/* Clear synchronization flags */
|
||||
for (i = 0; i < MAX_CPU_NUMBER; i++) {
|
||||
for (j = 0; j < MAX_CPU_NUMBER; j++) {
|
||||
for (k = 0; k < DIVIDE_RATE; k++) {
|
||||
job[j].working[i][CACHE_LINE_SIZE * k] = 0;
|
||||
job[i].working[j][CACHE_LINE_SIZE * k] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
queue[nthreads - 1].next = NULL;
|
||||
|
||||
/* Execute parallel computation */
|
||||
exec_blas(nthreads, queue);
|
||||
}
|
||||
|
||||
|
@ -702,53 +673,43 @@ int CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLO
|
|||
|
||||
BLASLONG m = args -> m;
|
||||
BLASLONG n = args -> n;
|
||||
BLASLONG nthreads = args -> nthreads;
|
||||
BLASLONG nthreads_m, nthreads_n;
|
||||
|
||||
if (nthreads == 1) {
|
||||
GEMM_LOCAL(args, range_m, range_n, sa, sb, 0);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Get dimensions from index ranges if available */
|
||||
if (range_m) {
|
||||
BLASLONG m_from = *(((BLASLONG *)range_m) + 0);
|
||||
BLASLONG m_to = *(((BLASLONG *)range_m) + 1);
|
||||
|
||||
m = m_to - m_from;
|
||||
m = range_m[1] - range_m[0];
|
||||
}
|
||||
|
||||
if (range_n) {
|
||||
BLASLONG n_from = *(((BLASLONG *)range_n) + 0);
|
||||
BLASLONG n_to = *(((BLASLONG *)range_n) + 1);
|
||||
|
||||
n = n_to - n_from;
|
||||
n = range_n[1] - range_n[0];
|
||||
}
|
||||
|
||||
nthreads_m = nthreads;
|
||||
while (m < nthreads_m * SWITCH_RATIO) {
|
||||
nthreads_m = nthreads_m / 2;
|
||||
/* CPU partitions in m should have at least SWITCH_RATIO rows */
|
||||
if (m < 2 * SWITCH_RATIO) {
|
||||
nthreads_m = 1;
|
||||
} else {
|
||||
nthreads_m = args -> nthreads;
|
||||
while (m < nthreads_m * SWITCH_RATIO) {
|
||||
nthreads_m = nthreads_m / 2;
|
||||
}
|
||||
}
|
||||
|
||||
if (nthreads_m < 1) {
|
||||
/* At most one CPU partition in n should have less than nthreads_m columns */
|
||||
if (n < nthreads_m) {
|
||||
nthreads_n = 1;
|
||||
} else {
|
||||
nthreads_n = blas_quickdivide(n + nthreads_m - 1, nthreads_m);
|
||||
if (nthreads_m * nthreads_n > args -> nthreads) {
|
||||
nthreads_n = blas_quickdivide(args -> nthreads, nthreads_m);
|
||||
}
|
||||
}
|
||||
|
||||
/* Execute serial or parallel computation */
|
||||
if (nthreads_m * nthreads_n <= 1) {
|
||||
GEMM_LOCAL(args, range_m, range_n, sa, sb, 0);
|
||||
return 0;
|
||||
} else {
|
||||
args -> nthreads = nthreads_m * nthreads_n;
|
||||
gemm_driver(args, range_m, range_n, sa, sb, nthreads_m, nthreads_n);
|
||||
}
|
||||
|
||||
nthreads_n = nthreads / nthreads_m;
|
||||
if (n < nthreads_m * (nthreads_n - 1)) {
|
||||
nthreads_n = (n + nthreads_m - 1) / nthreads_m;
|
||||
}
|
||||
|
||||
nthreads = nthreads_m * nthreads_n;
|
||||
|
||||
if (nthreads <= 1) {
|
||||
GEMM_LOCAL(args, range_m, range_n, sa, sb, 0);
|
||||
return 0;
|
||||
}
|
||||
|
||||
args -> nthreads = nthreads;
|
||||
|
||||
gemm_driver(args, range_m, range_n, sa, sb, nthreads_m, nthreads_n);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue