Merge pull request #4094 from martin-frbg/lapack736

Add Dynamic Mode Decomposition (Reference-LAPACK PR 736)
This commit is contained in:
Martin Kroeker 2023-06-22 07:21:09 +02:00 committed by GitHub
commit 9487046fe0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
40 changed files with 21709 additions and 22 deletions

View File

@ -115,7 +115,7 @@ jobs:
mkdir build
cd build
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
cmake -G "Ninja" -DCMAKE_C_COMPILER=clang-cl -DCMAKE_CXX_COMPILER=clang-cl -DCMAKE_Fortran_COMPILER=flang -DBUILD_TESTING=OFF -DCMAKE_MT=mt -DCMAKE_BUILD_TYPE=Release -DMSVC_STATIC_CRT=ON ..
cmake -G "Ninja" -DCMAKE_C_COMPILER=clang-cl -DCMAKE_CXX_COMPILER=clang-cl -DCMAKE_Fortran_COMPILER="flang -I C:\Miniconda\Library\include\flang" -DBUILD_TESTING=OFF -DCMAKE_MT=mt -DCMAKE_BUILD_TYPE=Release -DMSVC_STATIC_CRT=ON ..
cmake --build . --config Release
ctest

View File

@ -124,7 +124,7 @@ set(SLASRC
ssbev_2stage.f ssbevx_2stage.f ssbevd_2stage.f ssygv_2stage.f
sgesvdq.f slaorhr_col_getrfnp.f
slaorhr_col_getrfnp2.f sorgtsqr.f sorgtsqr_row.f sorhr_col.f
slatrs3.f strsyl3.f sgelst.f)
slatrs3.f strsyl3.f sgelst.f sgedmd.f90 sgedmdq.f90)
set(SXLASRC sgesvxx.f sgerfsx.f sla_gerfsx_extended.f sla_geamv.f
sla_gercond.f sla_gerpvgrw.f ssysvxx.f ssyrfsx.f
@ -223,7 +223,7 @@ set(CLASRC
chbev_2stage.f chbevx_2stage.f chbevd_2stage.f chegv_2stage.f
cgesvdq.f claunhr_col_getrfnp.f claunhr_col_getrfnp2.f
cungtsqr.f cungtsqr_row.f cunhr_col.f
clatrs3.f ctrsyl3.f cgelst.f)
clatrs3.f ctrsyl3.f cgelst.f cgedmd.f90 cgedmdq.f90)
set(CXLASRC cgesvxx.f cgerfsx.f cla_gerfsx_extended.f cla_geamv.f
cla_gercond_c.f cla_gercond_x.f cla_gerpvgrw.f
@ -316,7 +316,7 @@ set(DLASRC
dsbev_2stage.f dsbevx_2stage.f dsbevd_2stage.f dsygv_2stage.f
dcombssq.f dgesvdq.f dlaorhr_col_getrfnp.f
dlaorhr_col_getrfnp2.f dorgtsqr.f dorgtsqr_row.f dorhr_col.f
dlatrs3.f dtrsyl3.f dgelst.f)
dlatrs3.f dtrsyl3.f dgelst.f dgedmd.f90 dgedmdq.f90)
set(DXLASRC dgesvxx.f dgerfsx.f dla_gerfsx_extended.f dla_geamv.f
dla_gercond.f dla_gerpvgrw.f dsysvxx.f dsyrfsx.f
@ -419,7 +419,7 @@ set(ZLASRC
zhbev_2stage.f zhbevx_2stage.f zhbevd_2stage.f zhegv_2stage.f
zgesvdq.f zlaunhr_col_getrfnp.f zlaunhr_col_getrfnp2.f
zungtsqr.f zungtsqr_row.f zunhr_col.f
zlatrs3.f ztrsyl3.f zgelst.f)
zlatrs3.f ztrsyl3.f zgelst.f zgedmd.f90 zgedmdq.f90)
set(ZXLASRC zgesvxx.f zgerfsx.f zla_gerfsx_extended.f zla_geamv.f
zla_gercond_c.f zla_gercond_x.f zla_gerpvgrw.f zsysvxx.f zsyrfsx.f
@ -624,7 +624,7 @@ set(SLASRC
ssbev_2stage.c ssbevx_2stage.c ssbevd_2stage.c ssygv_2stage.c
sgesvdq.c slaorhr_col_getrfnp.c
slaorhr_col_getrfnp2.c sorgtsqr.c sorgtsqr_row.c sorhr_col.c
slatrs3.c strsyl3.c sgelst.c)
slatrs3.c strsyl3.c sgelst.c sgedmd.c sgedmdq.c)
set(SXLASRC sgesvxx.c sgerfsx.c sla_gerfsx_extended.c sla_geamv.c
sla_gercond.c sla_gerpvgrw.c ssysvxx.c ssyrfsx.c
@ -722,7 +722,7 @@ set(CLASRC
chbev_2stage.c chbevx_2stage.c chbevd_2stage.c chegv_2stage.c
cgesvdq.c claunhr_col_getrfnp.c claunhr_col_getrfnp2.c
cungtsqr.c cungtsqr_row.c cunhr_col.c
clatrs3.c ctrsyl3.c cgelst.c)
clatrs3.c ctrsyl3.c cgelst.c cgedmd.c cgedmdq.c)
set(CXLASRC cgesvxx.c cgerfsx.c cla_gerfsx_extended.c cla_geamv.c
cla_gercond_c.c cla_gercond_x.c cla_gerpvgrw.c
@ -814,7 +814,7 @@ set(DLASRC
dsbev_2stage.c dsbevx_2stage.c dsbevd_2stage.c dsygv_2stage.c
dcombssq.c dgesvdq.c dlaorhr_col_getrfnp.c
dlaorhr_col_getrfnp2.c dorgtsqr.c dorgtsqr_row.c dorhr_col.c
dlatrs3.c dtrsyl3.c dgelst.c)
dlatrs3.c dtrsyl3.c dgelst.c dgedmd.c dgedmdq.c)
set(DXLASRC dgesvxx.c dgerfsx.c dla_gerfsx_extended.c dla_geamv.c
dla_gercond.c dla_gerpvgrw.c dsysvxx.c dsyrfsx.c
@ -915,7 +915,8 @@ set(ZLASRC
zheevd_2stage.c zheev_2stage.c zheevx_2stage.c zheevr_2stage.c
zhbev_2stage.c zhbevx_2stage.c zhbevd_2stage.c zhegv_2stage.c
zgesvdq.c zlaunhr_col_getrfnp.c zlaunhr_col_getrfnp2.c
zungtsqr.c zungtsqr_row.c zunhr_col.c zlatrs3.c ztrsyl3.c zgelst.c)
zungtsqr.c zungtsqr_row.c zunhr_col.c zlatrs3.c ztrsyl3.c zgelst.c
zgedmd.c zgedmdq.c)
set(ZXLASRC zgesvxx.c zgerfsx.c zla_gerfsx_extended.c zla_geamv.c
zla_gercond_c.c zla_gercond_x.c zla_gerpvgrw.c zsysvxx.c zsyrfsx.c

View File

@ -90,6 +90,10 @@ set(CSRC
lapacke_cgerqf_work.c
lapacke_cgesdd.c
lapacke_cgesdd_work.c
lapacke_cgedmd.c
lapacke_cgedmd_work.c
lapacke_cgedmdq.c
lapacke_cgedmdq_work.c
lapacke_cgesv.c
lapacke_cgesv_work.c
lapacke_cgesvd.c
@ -713,6 +717,10 @@ set(DSRC
lapacke_dgerqf_work.c
lapacke_dgesdd.c
lapacke_dgesdd_work.c
lapacke_dgedmd.c
lapacke_dgedmd_work.c
lapacke_dgedmdq.c
lapacke_dgedmdq_work.c
lapacke_dgesv.c
lapacke_dgesv_work.c
lapacke_dgesvd.c
@ -1291,6 +1299,10 @@ set(SSRC
lapacke_sgerqf_work.c
lapacke_sgesdd.c
lapacke_sgesdd_work.c
lapacke_sgedmd.c
lapacke_sgedmd_work.c
lapacke_sgedmdq.c
lapacke_sgedmdq_work.c
lapacke_sgesv.c
lapacke_sgesv_work.c
lapacke_sgesvd.c
@ -1863,6 +1875,10 @@ set(ZSRC
lapacke_zgerqf_work.c
lapacke_zgesdd.c
lapacke_zgesdd_work.c
lapacke_zgedmd.c
lapacke_zgedmd_work.c
lapacke_zgedmdq.c
lapacke_zgedmdq_work.c
lapacke_zgesv.c
lapacke_zgesv_work.c
lapacke_zgesvd.c

View File

@ -844,6 +844,23 @@ lapackobjs2z="$lapackobjs2z
zungtsqr_row
"
#functions added for lapack-3.11
lapackobjs2c="$lapackobjs2c
cgedmd
cgedmdq
"
lapackobjs2d="$lapackobjs2d
dgedmd
dgedmdq
"
lapackobjs2s="$lapackobjs2s
sgedmd
sgedmdq
"
lapackobjs2z="$lapackobjs2z
zgedmd
zgedmdq
"
lapack_extendedprecision_objs="
zposvxx clagge clatms chesvxx cposvxx cgesvxx ssyrfssx csyrfsx
dlagsy dsysvxx sporfsx slatms zlatms zherfsx csysvxx
@ -1013,6 +1030,10 @@ lapackeobjsc="
LAPACKE_cgebrd_work
LAPACKE_cgecon
LAPACKE_cgecon_work
LAPACKE_cgedmd
LAPACKE_cgedmd_work
LAPACKE_cgedmdq
LAPACKE_cgedmdq_work
LAPACKE_cgeequ
LAPACKE_cgeequ_work
LAPACKE_cgeequb
@ -1672,6 +1693,10 @@ lapackeobjsd="
LAPACKE_dgebrd_work
LAPACKE_dgecon
LAPACKE_dgecon_work
LAPACKE_dgedmd
LAPACKE_dgedmd_work
LAPACKE_dgedmdq
LAPACKE_dgedmdq_work
LAPACKE_dgeequ
LAPACKE_dgeequ_work
LAPACKE_dgeequb
@ -2285,6 +2310,10 @@ lapackeobjss="
LAPACKE_sgebrd_work
LAPACKE_sgecon
LAPACKE_sgecon_work
LAPACKE_sgedmd
LAPACKE_sgedmd_work
LAPACKE_sgedmdq
LAPACKE_sgedmdq_work
LAPACKE_sgeequ
LAPACKE_sgeequ_work
LAPACKE_sgeequb
@ -2894,6 +2923,10 @@ lapackeobjsz="
LAPACKE_zgebrd_work
LAPACKE_zgecon
LAPACKE_zgecon_work
LAPACKE_zgedmd
LAPACKE_zgedmd_work
LAPACKE_zgedmdq
LAPACKE_zgedmdq_work
LAPACKE_zgeequ
LAPACKE_zgeequ_work
LAPACKE_zgeequb

View File

@ -3323,6 +3323,138 @@ void LAPACK_zgesdd_base(
#define LAPACK_zgesdd(...) LAPACK_zgesdd_base(__VA_ARGS__)
#endif
#define LAPACK_cgedmd LAPACK_GLOBAL(cgedmd,CGEDMD)
void LAPACK_cgedmd(
char const* jobs, char const* jobz, char const* jobf,
lapack_int const* whtsvd, lapack_int const* m, lapack_int const* n,
lapack_complex_float* x, lapack_int const* ldx,
lapack_complex_float* y, lapack_int const* ldy, lapack_int const* k,
lapack_complex_float* reig, lapack_complex_float* imeig,
lapack_complex_float* z, lapack_int const* ldz, lapack_complex_float* res,
lapack_complex_float* b, lapack_int const* ldb,
lapack_complex_float* w, lapack_int const* ldw,
lapack_complex_float* s, lapack_int const* lds,
lapack_complex_float* work, lapack_int const* lwork,
lapack_int* iwork, lapack_int const* liwork,
lapack_int* info );
#define LAPACK_dgedmd LAPACK_GLOBAL(dgedmd,DGEDMD)
void LAPACK_dgedmd(
char const* jobs, char const* jobz, char const* jobf,
lapack_int const* whtsvd, lapack_int const* m, lapack_int const* n,
double* x, lapack_int const* ldx,
double* y, lapack_int const* ldy, lapack_int const* k,
double* reig, double* imeig,
double* z, lapack_int const* ldz, double* res,
double* b, lapack_int const* ldb,
double* w, lapack_int const* ldw,
double* s, lapack_int const* lds,
double* work, lapack_int const* lwork,
lapack_int* iwork, lapack_int const* liwork,
lapack_int* info );
#define LAPACK_sgedmd LAPACK_GLOBAL(sgedmd,SGEDMD)
void LAPACK_sgedmd(
char const* jobs, char const* jobz, char const* jobf,
lapack_int const* whtsvd, lapack_int const* m, lapack_int const* n,
float* x, lapack_int const* ldx,
float* y, lapack_int const* ldy, lapack_int const* k,
float* reig, float* imeig,
float* z, lapack_int const* ldz, float* res,
float* b, lapack_int const* ldb,
float* w, lapack_int const* ldw,
float* s, lapack_int const* lds,
float* work, lapack_int const* lwork,
lapack_int* iwork, lapack_int const* liwork,
lapack_int* info );
#define LAPACK_zgedmd LAPACK_GLOBAL(zgedmd,ZGEDMD)
void LAPACK_zgedmd(
char const* jobs, char const* jobz, char const* jobf,
lapack_int const* whtsvd, lapack_int const* m, lapack_int const* n,
lapack_complex_double* x, lapack_int const* ldx,
lapack_complex_double* y, lapack_int const* ldy, lapack_int const* k,
lapack_complex_double* reig, lapack_complex_double* imeig,
lapack_complex_double* z, lapack_int const* ldz, lapack_complex_double* res,
lapack_complex_double* b, lapack_int const* ldb,
lapack_complex_double* w, lapack_int const* ldw,
lapack_complex_double* s, lapack_int const* lds,
lapack_complex_double* work, lapack_int const* lwork,
lapack_int* iwork, lapack_int const* liwork,
lapack_int* info );
#define LAPACK_cgedmdq LAPACK_GLOBAL(cgedmdq,CGEDMDQ)
void LAPACK_cgedmdq(
char const* jobs, char const* jobz, char const* jobr, char const* jobq,
char const* jobt, char const* jobf, lapack_int const* whtsvd,
lapack_int const* m, lapack_int const* n,
lapack_complex_float* f, lapack_int const* ldf,
lapack_complex_float* x, lapack_int const* ldx,
lapack_complex_float* y, lapack_int const* ldy, lapack_int const* nrnk,
float const* tol, lapack_int const* k,
lapack_complex_float* reig, lapack_complex_float* imeig,
lapack_complex_float* z, lapack_int const* ldz, lapack_complex_float* res,
lapack_complex_float* b, lapack_int const* ldb,
lapack_complex_float* v, lapack_int const* ldv,
lapack_complex_float* s, lapack_int const* lds,
lapack_complex_float* work, lapack_int const* lwork,
lapack_int* iwork, lapack_int const* liwork,
lapack_int* info );
#define LAPACK_dgedmdq LAPACK_GLOBAL(dgedmdq,DGEDMDQ)
void LAPACK_dgedmdq(
char const* jobs, char const* jobz, char const* jobr, char const* jobq,
char const* jobt, char const* jobf, lapack_int const* whtsvd,
lapack_int const* m, lapack_int const* n,
double* f, lapack_int const* ldf,
double* x, lapack_int const* ldx,
double* y, lapack_int const* ldy, lapack_int const* nrnk,
double const* tol, lapack_int const* k,
double* reig, double* imeig,
double* z, lapack_int const* ldz, double* res,
double* b, lapack_int const* ldb,
double* v, lapack_int const* ldv,
double* s, lapack_int const* lds,
double* work, lapack_int const* lwork,
lapack_int* iwork, lapack_int const* liwork,
lapack_int* info );
#define LAPACK_sgedmdq LAPACK_GLOBAL(sgedmdq,SGEDMDQ)
void LAPACK_sgedmdq(
char const* jobs, char const* jobz, char const* jobr, char const* jobq,
char const* jobt, char const* jobf, lapack_int const* whtsvd,
lapack_int const* m, lapack_int const* n,
float* f, lapack_int const* ldf,
float* x, lapack_int const* ldx,
float* y, lapack_int const* ldy, lapack_int const* nrnk,
float const* tol, lapack_int const* k,
float* reig, float* imeig,
float* z, lapack_int const* ldz, float* res,
float* b, lapack_int const* ldb,
float* v, lapack_int const* ldv,
float* s, lapack_int const* lds,
float* work, lapack_int const* lwork,
lapack_int* iwork, lapack_int const* liwork,
lapack_int* info );
#define LAPACK_zgedmdq LAPACK_GLOBAL(zgedmdq,ZGEDMDQ)
void LAPACK_zgedmdq(
char const* jobs, char const* jobz, char const* jobr, char const* jobq,
char const* jobt, char const* jobf, lapack_int const* whtsvd,
lapack_int const* m, lapack_int const* n,
lapack_complex_double* f, lapack_int const* ldf,
lapack_complex_double* x, lapack_int const* ldx,
lapack_complex_double* y, lapack_int const* ldy, lapack_int const* nrnk,
double const* tol, lapack_int const* k,
lapack_complex_double* reig, lapack_complex_double* imeig,
lapack_complex_double* z, lapack_int const* ldz, lapack_complex_double* res,
lapack_complex_double* b, lapack_int const* ldb,
lapack_complex_double* v, lapack_int const* ldv,
lapack_complex_double* s, lapack_int const* lds,
lapack_complex_double* work, lapack_int const* lwork,
lapack_int* iwork, lapack_int const* liwork,
lapack_int* info );
#define LAPACK_cgesv LAPACK_GLOBAL(cgesv,CGESV)
lapack_int LAPACK_cgesv(
lapack_int const* n, lapack_int const* nrhs,

View File

@ -5712,6 +5712,120 @@ lapack_int LAPACKE_zgesdd_work( int matrix_layout, char jobz, lapack_int m,
lapack_complex_double* work, lapack_int lwork,
double* rwork, lapack_int* iwork );
lapack_int LAPACKE_sgedmd_work( int matrix_layout, char jobs, char jobz,
char jobf, lapack_int whtsvd, lapack_int m,
lapack_int n, float* x, lapack_int ldx,
float* y, lapack_int ldy, lapack_int k,
float* reig, float* imeig, float* z,
lapack_int ldz, float* res, float* b,
lapack_int ldb, float* w, lapack_int ldw,
float* s, lapack_int lds, float* work,
lapack_int lwork, lapack_int* iwork,
lapack_int liwork );
lapack_int LAPACKE_dgedmd_work( int matrix_layout, char jobs, char jobz,
char jobf, lapack_int whtsvd, lapack_int m,
lapack_int n, double* x, lapack_int ldx,
double* y, lapack_int ldy, lapack_int k,
double* reig, double* imeig, double* z,
lapack_int ldz, double* res, double* b,
lapack_int ldb, double* w, lapack_int ldw,
double* s, lapack_int lds, double* work,
lapack_int lwork, lapack_int* iwork,
lapack_int liwork );
lapack_int LAPACKE_cgedmd_work( int matrix_layout, char jobs, char jobz,
char jobf, lapack_int whtsvd, lapack_int m,
lapack_int n, lapack_complex_float* x,
lapack_int ldx, lapack_complex_float* y,
lapack_int ldy, lapack_int k,
lapack_complex_float* reig,
lapack_complex_float* imeig,
lapack_complex_float* z, lapack_int ldz,
lapack_complex_float* res,
lapack_complex_float* b, lapack_int ldb,
lapack_complex_float* w, lapack_int ldw,
lapack_complex_float* s, lapack_int lds,
lapack_complex_float* work, lapack_int lwork,
lapack_int* iwork, lapack_int liwork );
lapack_int LAPACKE_zgedmd_work( int matrix_layout, char jobs, char jobz,
char jobf, lapack_int whtsvd, lapack_int m,
lapack_int n, lapack_complex_double* x,
lapack_int ldx, lapack_complex_double* y,
lapack_int ldy, lapack_int k,
lapack_complex_double* reig,
lapack_complex_double* imeig,
lapack_complex_double* z, lapack_int ldz,
lapack_complex_double* res,
lapack_complex_double* b, lapack_int ldb,
lapack_complex_double* w, lapack_int ldw,
lapack_complex_double* s, lapack_int lds,
lapack_complex_double* work, lapack_int lwork,
lapack_int* iwork, lapack_int liwork );
lapack_int LAPACKE_sgedmdq_work( int matrix_layout, char jobs, char jobz,
char jobr, char jobq, char jobt, char jobf,
lapack_int whtsvd, lapack_int m, lapack_int n,
float* f, lapack_int ldf, float* x,
lapack_int ldx, float* y, lapack_int ldy,
lapack_int nrnk, float tol, lapack_int k,
float* reig, float* imeig, float* z,
lapack_int ldz, float* res, float* b,
lapack_int ldb, float* v, lapack_int ldv,
float* s, lapack_int lds, float* work,
lapack_int lwork, lapack_int* iwork,
lapack_int liwork );
lapack_int LAPACKE_dgedmdq_work( int matrix_layout, char jobs, char jobz,
char jobr, char jobq, char jobt, char jobf,
lapack_int whtsvd, lapack_int m, lapack_int n,
double* f, lapack_int ldf, double* x,
lapack_int ldx, double* y, lapack_int ldy,
lapack_int nrnk, double tol, lapack_int k,
double* reig, double* imeig, double* z,
lapack_int ldz, double* res, double* b,
lapack_int ldb, double* v, lapack_int ldv,
double* s, lapack_int lds, double* work,
lapack_int lwork, lapack_int* iwork,
lapack_int liwork );
lapack_int LAPACKE_cgedmdq_work( int matrix_layout, char jobs, char jobz,
char jobr, char jobq, char jobt, char jobf,
lapack_int whtsvd, lapack_int m, lapack_int n,
lapack_complex_float* f, lapack_int ldf,
lapack_complex_float* x, lapack_int ldx,
lapack_complex_float* y, lapack_int ldy,
lapack_int nrnk, float tol, lapack_int k,
lapack_complex_float* reig,
lapack_complex_float* imeig,
lapack_complex_float* z, lapack_int ldz,
lapack_complex_float* res,
lapack_complex_float* b, lapack_int ldb,
lapack_complex_float* v, lapack_int ldv,
lapack_complex_float* s, lapack_int lds,
lapack_complex_float* work, lapack_int lwork,
lapack_int* iwork,
lapack_int liwork );
lapack_int LAPACKE_zgedmdq_work( int matrix_layout, char jobs, char jobz,
char jobr, char jobq, char jobt, char jobf,
lapack_int whtsvd, lapack_int m, lapack_int n,
lapack_complex_double* f, lapack_int ldf,
lapack_complex_double* x, lapack_int ldx,
lapack_complex_double* y, lapack_int ldy,
lapack_int nrnk, double tol, lapack_int k,
lapack_complex_double* reig,
lapack_complex_double* imeig,
lapack_complex_double* z, lapack_int ldz,
lapack_complex_double* res,
lapack_complex_double* b, lapack_int ldb,
lapack_complex_double* v, lapack_int ldv,
lapack_complex_double* s, lapack_int lds,
lapack_complex_double* work, lapack_int lwork,
lapack_int* iwork,
lapack_int liwork );
lapack_int LAPACKE_sgesv_work( int matrix_layout, lapack_int n, lapack_int nrhs,
float* a, lapack_int lda, lapack_int* ipiv,
float* b, lapack_int ldb );
@ -12727,7 +12841,6 @@ lapack_int LAPACKE_zhetrs_aa_2stage_work( int matrix_layout, char uplo, lapack_i
lapack_int lda, lapack_complex_double* tb,
lapack_int ltb, lapack_int* ipiv, lapack_int* ipiv2,
lapack_complex_double* b, lapack_int ldb );
//LAPACK 3.10.0
lapack_int LAPACKE_sorhr_col( int matrix_layout, lapack_int m, lapack_int n,
lapack_int nb, float* a,

View File

@ -137,6 +137,10 @@ lapacke_cgerqf.o \
lapacke_cgerqf_work.o \
lapacke_cgesdd.o \
lapacke_cgesdd_work.o \
lapacke_cgedmd.o \
lapacke_cgedmd_work.o \
lapacke_cgedmdq.o \
lapacke_cgedmdq_work.o \
lapacke_cgesv.o \
lapacke_cgesv_work.o \
lapacke_cgesvd.o \
@ -763,6 +767,10 @@ lapacke_dgerqf.o \
lapacke_dgerqf_work.o \
lapacke_dgesdd.o \
lapacke_dgesdd_work.o \
lapacke_dgedmd.o \
lapacke_dgedmd_work.o \
lapacke_dgedmdq.o \
lapacke_dgedmdq_work.o \
lapacke_dgesv.o \
lapacke_dgesv_work.o \
lapacke_dgesvd.o \
@ -1343,6 +1351,10 @@ lapacke_sgerqf.o \
lapacke_sgerqf_work.o \
lapacke_sgesdd.o \
lapacke_sgesdd_work.o \
lapacke_sgedmd.o \
lapacke_sgedmd_work.o \
lapacke_sgedmdq.o \
lapacke_sgedmdq_work.o \
lapacke_sgesv.o \
lapacke_sgesv_work.o \
lapacke_sgesvd.o \
@ -1913,6 +1925,10 @@ lapacke_zgerqf.o \
lapacke_zgerqf_work.o \
lapacke_zgesdd.o \
lapacke_zgesdd_work.o \
lapacke_zgedmd.o \
lapacke_zgedmd_work.o \
lapacke_zgedmdq.o \
lapacke_zgedmdq_work.o \
lapacke_zgesv.o \
lapacke_zgesv_work.o \
lapacke_zgesvd.o \

View File

@ -0,0 +1,115 @@
/*****************************************************************************
Copyright (c) 2014, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************
* Contents: Native high-level C interface to LAPACK function cgedmd
* Author: Intel Corporation
*****************************************************************************/
#include "lapacke_utils.h"
lapack_int LAPACKE_cgedmd( int matrix_layout, char jobs, char jobz, char jobf,
lapack_int whtsvd, lapack_int m, lapack_int n,
lapack_complex_float* x, lapack_int ldx,
lapack_complex_float* y, lapack_int ldy, lapack_int k,
lapack_complex_float* reig, lapack_complex_float* imeig,
lapack_complex_float* z, lapack_int ldz,
lapack_complex_float* res, lapack_complex_float* b,
lapack_int ldb, lapack_complex_float* w,
lapack_int ldw, lapack_complex_float* s, lapack_int lds)
{
lapack_int info = 0;
lapack_int lwork = -1;
lapack_int liwork = -1;
lapack_complex_float* work = NULL;
lapack_int* iwork = NULL;
lapack_complex_float work_query;
lapack_int iwork_query;
if( matrix_layout != LAPACK_COL_MAJOR && matrix_layout != LAPACK_ROW_MAJOR ) {
LAPACKE_xerbla( "LAPACKE_cgedmd", -1 );
return -1;
}
#ifndef LAPACK_DISABLE_NAN_CHECK
if( LAPACKE_get_nancheck() ) {
/* Optionally check input matrices for NaNs */
if( LAPACKE_cge_nancheck( matrix_layout, m, n, x, ldx ) ) {
return -8;
}
if( LAPACKE_cge_nancheck( matrix_layout, m, n, y, ldy ) ) {
return -10;
}
if( LAPACKE_cge_nancheck( matrix_layout, m, n, z, ldz ) ) {
return -15;
}
if( LAPACKE_cge_nancheck( matrix_layout, m, n, b, ldb ) ) {
return -18;
}
if( LAPACKE_cge_nancheck( matrix_layout, m, n, w, ldw ) ) {
return -20;
}
if( LAPACKE_cge_nancheck( matrix_layout, m, n, s, lds ) ) {
return -22;
}
}
#endif
/* Query optimal working array(s) size */
info = LAPACKE_cgedmd_work( matrix_layout, jobs, jobz, jobf, whtsvd, m, n,
x, ldx, y, ldy, k, reig, imeig, z, ldz, res,
b, ldb, w, ldw, s, lds, &work_query, lwork,
&iwork_query, liwork );
if( info != 0 ) {
goto exit_level_0;
}
lwork = LAPACK_C2INT( work_query );
liwork = iwork_query;
/* Allocate memory for work arrays */
work = (lapack_complex_float*)LAPACKE_malloc( sizeof(lapack_complex_float) * lwork );
if( work == NULL ) {
info = LAPACK_WORK_MEMORY_ERROR;
goto exit_level_0;
}
iwork = (lapack_int*)LAPACKE_malloc( sizeof(lapack_int) * liwork );
if( iwork == NULL ) {
info = LAPACK_WORK_MEMORY_ERROR;
goto exit_level_1;
}
/* Call middle-level interface */
info = LAPACKE_cgedmd_work( matrix_layout, jobs, jobz, jobf, whtsvd, m, n,
x, ldx, y, ldy, k, reig, imeig, z, ldz, res,
b, ldb, w, ldw, s, lds, work, lwork, iwork,
liwork );
/* Release memory and exit */
LAPACKE_free( iwork );
exit_level_1:
LAPACKE_free( work );
exit_level_0:
if( info == LAPACK_WORK_MEMORY_ERROR ) {
LAPACKE_xerbla( "LAPACKE_cgedmd", info );
}
return info;
}

View File

@ -0,0 +1,180 @@
/*****************************************************************************
Copyright (c) 2014, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************
* Contents: Native middle-level C interface to LAPACK function cgedmd
* Author: Intel Corporation
*****************************************************************************/
#include "lapacke_utils.h"
lapack_int LAPACKE_cgedmd_work( int matrix_layout, char jobs, char jobz,
char jobf, lapack_int whtsvd, lapack_int m,
lapack_int n, lapack_complex_float* x, lapack_int ldx,
lapack_complex_float* y, lapack_int ldy, lapack_int k,
lapack_complex_float* reig, lapack_complex_float* imeig,
lapack_complex_float* z, lapack_int ldz,
lapack_complex_float* res, lapack_complex_float* b,
lapack_int ldb, lapack_complex_float* w,
lapack_int ldw, lapack_complex_float* s, lapack_int lds,
lapack_complex_float* work, lapack_int lwork,
lapack_int* iwork, lapack_int liwork )
{
lapack_int info = 0;
if( matrix_layout == LAPACK_COL_MAJOR ) {
/* Call LAPACK function and adjust info */
LAPACK_cgedmd( &jobs, &jobz, &jobf, &whtsvd, &m, &n, x, &ldx, y, &ldy,
&k, reig, imeig, z, &ldz, res, b, &ldb, w, &ldw, s, &lds,
work, &lwork, iwork, &liwork, &info );
if( info < 0 ) {
info = info - 1;
}
} else if( matrix_layout == LAPACK_ROW_MAJOR ) {
lapack_int ldx_t = MAX(1,m);
lapack_int ldy_t = MAX(1,m);
lapack_int ldz_t = MAX(1,m);
lapack_int ldb_t = MAX(1,m);
lapack_int ldw_t = MAX(1,m);
lapack_int lds_t = MAX(1,m);
lapack_complex_float* x_t = NULL;
lapack_complex_float* y_t = NULL;
lapack_complex_float* z_t = NULL;
lapack_complex_float* b_t = NULL;
lapack_complex_float* w_t = NULL;
lapack_complex_float* s_t = NULL;
/* Check leading dimension(s) */
if( ldx < n ) {
info = -9;
LAPACKE_xerbla( "LAPACKE_cgedmd_work", info );
return info;
}
if( ldy < n ) {
info = -11;
LAPACKE_xerbla( "LAPACKE_cgedmd_work", info );
return info;
}
if( ldz < n ) {
info = -16;
LAPACKE_xerbla( "LAPACKE_cgedmd_work", info );
return info;
}
if( ldb < n ) {
info = -19;
LAPACKE_xerbla( "LAPACKE_cgedmd_work", info );
return info;
}
if( ldw < n ) {
info = -21;
LAPACKE_xerbla( "LAPACKE_cgedmd_work", info );
return info;
}
if( lds < n ) {
info = -23;
LAPACKE_xerbla( "LAPACKE_cgedmd_work", info );
return info;
}
/* Query optimal working array(s) size if requested */
if( lwork == -1 ) {
LAPACK_cgedmd( &jobs, &jobz, &jobf, &whtsvd, &m, &n, x, &ldx, y, &ldy,
&k, reig, imeig, z, &ldz, res, b, &ldb, w, &ldw, s, &lds,
work, &lwork, iwork, &liwork, &info );
return (info < 0) ? (info - 1) : info;
}
/* Allocate memory for temporary array(s) */
x_t = (lapack_complex_float*)LAPACKE_malloc( sizeof(lapack_complex_float) * ldx_t * MAX(1,n) );
if( x_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_0;
}
y_t = (lapack_complex_float*)LAPACKE_malloc( sizeof(lapack_complex_float) * ldy_t * MAX(1,n) );
if( y_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_1;
}
z_t = (lapack_complex_float*)LAPACKE_malloc( sizeof(lapack_complex_float) * ldz_t * MAX(1,n) );
if( z_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_2;
}
b_t = (lapack_complex_float*)LAPACKE_malloc( sizeof(lapack_complex_float) * ldb_t * MAX(1,n) );
if( b_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_3;
}
w_t = (lapack_complex_float*)LAPACKE_malloc( sizeof(lapack_complex_float) * ldw_t * MAX(1,n) );
if( w_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_4;
}
s_t = (lapack_complex_float*)LAPACKE_malloc( sizeof(lapack_complex_float) * lds_t * MAX(1,n) );
if( s_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_5;
}
/* Transpose input matrices */
LAPACKE_cge_trans( matrix_layout, m, n, x, ldx, x_t, ldx_t );
LAPACKE_cge_trans( matrix_layout, m, n, y, ldy, y_t, ldy_t );
LAPACKE_cge_trans( matrix_layout, m, n, z, ldz, z_t, ldz_t );
LAPACKE_cge_trans( matrix_layout, m, n, b, ldb, b_t, ldb_t );
LAPACKE_cge_trans( matrix_layout, m, n, w, ldw, w_t, ldw_t );
LAPACKE_cge_trans( matrix_layout, m, n, s, lds, s_t, lds_t );
/* Call LAPACK function and adjust info */
LAPACK_cgedmd( &jobs, &jobz, &jobf, &whtsvd, &m, &n, x_t, &ldx_t, y_t,
&ldy_t, &k, reig, imeig, z_t, &ldz_t, res, b_t, &ldb_t,
w_t, &ldw_t, s_t, &lds_t, work, &lwork, iwork, &liwork, &info );
if( info < 0 ) {
info = info - 1;
}
/* Transpose output matrices */
LAPACKE_cge_trans( LAPACK_COL_MAJOR, m, n, x_t, ldx_t, x, ldx );
LAPACKE_cge_trans( LAPACK_COL_MAJOR, m, n, y_t, ldy_t, y, ldy );
LAPACKE_cge_trans( LAPACK_COL_MAJOR, m, n, z_t, ldz_t, z, ldz );
LAPACKE_cge_trans( LAPACK_COL_MAJOR, m, n, b_t, ldb_t, b, ldb );
LAPACKE_cge_trans( LAPACK_COL_MAJOR, m, n, w_t, ldw_t, w, ldw );
LAPACKE_cge_trans( LAPACK_COL_MAJOR, m, n, s_t, lds_t, s, lds );
/* Release memory and exit */
LAPACKE_free( s_t );
exit_level_5:
LAPACKE_free( w_t );
exit_level_4:
LAPACKE_free( b_t );
exit_level_3:
LAPACKE_free( z_t );
exit_level_2:
LAPACKE_free( y_t );
exit_level_1:
LAPACKE_free( x_t );
exit_level_0:
if( info == LAPACK_TRANSPOSE_MEMORY_ERROR ) {
LAPACKE_xerbla( "LAPACKE_cgedmd_work", info );
}
} else {
info = -1;
LAPACKE_xerbla( "LAPACKE_cgedmd_work", info );
}
return info;
}

View File

@ -0,0 +1,123 @@
/*****************************************************************************
Copyright (c) 2014, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************
* Contents: Native high-level C interface to LAPACK function cgedmdq
* Author: Intel Corporation
*****************************************************************************/
#include "lapacke_utils.h"
lapack_int LAPACKE_cgedmdq( int matrix_layout, char jobs, char jobz, char jobr,
char jobq, char jobt, char jobf, lapack_int whtsvd,
lapack_int m, lapack_int n, lapack_complex_float* f,
lapack_int ldf, lapack_complex_float* x,
lapack_int ldx, lapack_complex_float* y,
lapack_int ldy, lapack_int nrnk, float tol,
lapack_int k, lapack_complex_float* reig,
lapack_complex_float* imeig,
lapack_complex_float* z, lapack_int ldz,
lapack_complex_float* res, lapack_complex_float* b,
lapack_int ldb, lapack_complex_float* v,
lapack_int ldv, lapack_complex_float* s, lapack_int lds)
{
lapack_int info = 0;
lapack_int lwork = -1;
lapack_int liwork = -1;
lapack_complex_float* work = NULL;
lapack_int* iwork = NULL;
lapack_complex_float work_query;
lapack_int iwork_query;
if( matrix_layout != LAPACK_COL_MAJOR && matrix_layout != LAPACK_ROW_MAJOR ) {
LAPACKE_xerbla( "LAPACKE_cgedmdq", -1 );
return -1;
}
#ifndef LAPACK_DISABLE_NAN_CHECK
if( LAPACKE_get_nancheck() ) {
/* Optionally check input matrices for NaNs */
if( LAPACKE_cge_nancheck( matrix_layout, m, n, f, ldf ) ) {
return -11;
}
if( LAPACKE_cge_nancheck( matrix_layout, m, n, x, ldx ) ) {
return -13;
}
if( LAPACKE_cge_nancheck( matrix_layout, m, n, y, ldy ) ) {
return -15;
}
if( LAPACKE_cge_nancheck( matrix_layout, m, n, z, ldz ) ) {
return -22;
}
if( LAPACKE_cge_nancheck( matrix_layout, m, n, b, ldb ) ) {
return -25;
}
if( LAPACKE_cge_nancheck( matrix_layout, m, n, v, ldv ) ) {
return -27;
}
if( LAPACKE_cge_nancheck( matrix_layout, m, n, s, lds ) ) {
return -29;
}
}
#endif
/* Query optimal working array(s) size */
info = LAPACKE_cgedmdq_work( matrix_layout, jobs, jobz, jobr, jobq, jobt,
jobf, whtsvd, m, n, f, ldf, x, ldx, y, ldy,
nrnk, tol, k, reig, imeig, z, ldz, res,
b, ldb, v, ldv, s, lds, &work_query, lwork,
&iwork_query, liwork );
if( info != 0 ) {
goto exit_level_0;
}
lwork = LAPACK_C2INT( work_query );
liwork = iwork_query;
/* Allocate memory for work arrays */
work = (lapack_complex_float*)LAPACKE_malloc( sizeof(lapack_complex_float) * lwork );
if( work == NULL ) {
info = LAPACK_WORK_MEMORY_ERROR;
goto exit_level_0;
}
iwork = (lapack_int*)LAPACKE_malloc( sizeof(lapack_int) * liwork );
if( iwork == NULL ) {
info = LAPACK_WORK_MEMORY_ERROR;
goto exit_level_1;
}
/* Call middle-level interface */
info = LAPACKE_cgedmdq_work( matrix_layout, jobs, jobz, jobr, jobq, jobt,
jobf, whtsvd, m, n, f, ldf, x, ldx, y, ldy,
nrnk, tol, k, reig, imeig, z, ldz, res,
b, ldb, v, ldv, s, lds, work, lwork, iwork,
liwork );
/* Release memory and exit */
LAPACKE_free( iwork );
exit_level_1:
LAPACKE_free( work );
exit_level_0:
if( info == LAPACK_WORK_MEMORY_ERROR ) {
LAPACKE_xerbla( "LAPACKE_cgedmdq", info );
}
return info;
}

View File

@ -0,0 +1,205 @@
/*****************************************************************************
Copyright (c) 2014, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************
* Contents: Native middle-level C interface to LAPACK function cgedmdq
* Author: Intel Corporation
*****************************************************************************/
#include "lapacke_utils.h"
lapack_int LAPACKE_cgedmdq_work( int matrix_layout, char jobs, char jobz,
char jobr, char jobq, char jobt, char jobf,
lapack_int whtsvd, lapack_int m, lapack_int n,
lapack_complex_float* f, lapack_int ldf,
lapack_complex_float* x, lapack_int ldx,
lapack_complex_float* y, lapack_int ldy,
lapack_int nrnk, float tol, lapack_int k,
lapack_complex_float* reig,
lapack_complex_float* imeig,
lapack_complex_float* z,
lapack_int ldz, lapack_complex_float* res,
lapack_complex_float* b,
lapack_int ldb, lapack_complex_float* v,
lapack_int ldv, lapack_complex_float* s,
lapack_int lds, lapack_complex_float* work,
lapack_int lwork, lapack_int* iwork,
lapack_int liwork )
{
lapack_int info = 0;
if( matrix_layout == LAPACK_COL_MAJOR ) {
/* Call LAPACK function and adjust info */
LAPACK_cgedmdq( &jobs, &jobz, &jobr, &jobq, &jobt, &jobf, &whtsvd, &m,
&n, f, &ldf, x, &ldx, y, &ldy, &nrnk, &tol, &k, reig,
imeig, z, &ldz, res, b, &ldb, v, &ldv, s, &lds,
work, &lwork, iwork, &liwork, &info );
if( info < 0 ) {
info = info - 1;
}
} else if( matrix_layout == LAPACK_ROW_MAJOR ) {
lapack_int ldf_t = MAX(1,m);
lapack_int ldx_t = MAX(1,m);
lapack_int ldy_t = MAX(1,m);
lapack_int ldz_t = MAX(1,m);
lapack_int ldb_t = MAX(1,m);
lapack_int ldv_t = MAX(1,m);
lapack_int lds_t = MAX(1,m);
lapack_complex_float* f_t = NULL;
lapack_complex_float* x_t = NULL;
lapack_complex_float* y_t = NULL;
lapack_complex_float* z_t = NULL;
lapack_complex_float* b_t = NULL;
lapack_complex_float* v_t = NULL;
lapack_complex_float* s_t = NULL;
/* Check leading dimension(s) */
if( ldf < n ) {
info = -12;
LAPACKE_xerbla( "LAPACKE_cgedmdq_work", info );
return info;
}
if( ldx < n ) {
info = -14;
LAPACKE_xerbla( "LAPACKE_cgedmdq_work", info );
return info;
}
if( ldy < n ) {
info = -16;
LAPACKE_xerbla( "LAPACKE_cgedmdq_work", info );
return info;
}
if( ldz < n ) {
info = -23;
LAPACKE_xerbla( "LAPACKE_cgedmdq_work", info );
return info;
}
if( ldb < n ) {
info = -26;
LAPACKE_xerbla( "LAPACKE_cgedmdq_work", info );
return info;
}
if( ldv < n ) {
info = -28;
LAPACKE_xerbla( "LAPACKE_cgedmdq_work", info );
return info;
}
if( lds < n ) {
info = -30;
LAPACKE_xerbla( "LAPACKE_cgedmdq_work", info );
return info;
}
/* Query optimal working array(s) size if requested */
if( lwork == -1 || liwork == -1 ) {
LAPACK_cgedmdq( &jobs, &jobz, &jobr, &jobq, &jobt, &jobf, &whtsvd, &m,
&n, f, &ldf, x, &ldx, y, &ldy, &nrnk, &tol, &k, reig,
imeig, z, &ldz, res, b, &ldb, v, &ldv, s, &lds,
work, &lwork, iwork, &liwork, &info );
return (info < 0) ? (info - 1) : info;
}
/* Allocate memory for temporary array(s) */
f_t = (lapack_complex_float*)LAPACKE_malloc( sizeof(lapack_complex_float) * ldf_t * MAX(1,n) );
if( f_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_0;
}
x_t = (lapack_complex_float*)LAPACKE_malloc( sizeof(lapack_complex_float) * ldx_t * MAX(1,n) );
if( x_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_1;
}
y_t = (lapack_complex_float*)LAPACKE_malloc( sizeof(lapack_complex_float) * ldy_t * MAX(1,n) );
if( y_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_2;
}
z_t = (lapack_complex_float*)LAPACKE_malloc( sizeof(lapack_complex_float) * ldz_t * MAX(1,n) );
if( z_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_3;
}
b_t = (lapack_complex_float*)LAPACKE_malloc( sizeof(lapack_complex_float) * ldb_t * MAX(1,n) );
if( b_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_4;
}
v_t = (lapack_complex_float*)LAPACKE_malloc( sizeof(lapack_complex_float) * ldv_t * MAX(1,n) );
if( v_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_5;
}
s_t = (lapack_complex_float*)LAPACKE_malloc( sizeof(lapack_complex_float) * lds_t * MAX(1,n) );
if( s_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_6;
}
/* Transpose input matrices */
LAPACKE_cge_trans( matrix_layout, m, n, f, ldf, f_t, ldf_t );
LAPACKE_cge_trans( matrix_layout, m, n, x, ldx, x_t, ldx_t );
LAPACKE_cge_trans( matrix_layout, m, n, y, ldy, y_t, ldy_t );
LAPACKE_cge_trans( matrix_layout, m, n, z, ldz, z_t, ldz_t );
LAPACKE_cge_trans( matrix_layout, m, n, b, ldb, b_t, ldb_t );
LAPACKE_cge_trans( matrix_layout, m, n, v, ldv, v_t, ldv_t );
LAPACKE_cge_trans( matrix_layout, m, n, s, lds, s_t, lds_t );
/* Call LAPACK function and adjust info */
LAPACK_cgedmdq( &jobs, &jobz, &jobr, &jobq, &jobt, &jobf, &whtsvd, &m,
&n, f, &ldf, x, &ldx, y, &ldy, &nrnk, &tol, &k, reig,
imeig, z, &ldz, res, b, &ldb, v, &ldv, s, &lds,
work, &lwork, iwork, &liwork, &info );
if( info < 0 ) {
info = info - 1;
}
/* Transpose output matrices */
LAPACKE_cge_trans( LAPACK_COL_MAJOR, m, n, f_t, ldf_t, f, ldf );
LAPACKE_cge_trans( LAPACK_COL_MAJOR, m, n, x_t, ldx_t, x, ldx );
LAPACKE_cge_trans( LAPACK_COL_MAJOR, m, n, y_t, ldy_t, y, ldy );
LAPACKE_cge_trans( LAPACK_COL_MAJOR, m, n, z_t, ldz_t, z, ldz );
LAPACKE_cge_trans( LAPACK_COL_MAJOR, m, n, b_t, ldb_t, b, ldb );
LAPACKE_cge_trans( LAPACK_COL_MAJOR, m, n, v_t, ldv_t, v, ldv );
LAPACKE_cge_trans( LAPACK_COL_MAJOR, m, n, s_t, lds_t, s, lds );
/* Release memory and exit */
LAPACKE_free( s_t );
exit_level_6:
LAPACKE_free( v_t );
exit_level_5:
LAPACKE_free( b_t );
exit_level_4:
LAPACKE_free( z_t );
exit_level_3:
LAPACKE_free( y_t );
exit_level_2:
LAPACKE_free( x_t );
exit_level_1:
LAPACKE_free( f_t );
exit_level_0:
if( info == LAPACK_TRANSPOSE_MEMORY_ERROR ) {
LAPACKE_xerbla( "LAPACKE_cgedmdq_work", info );
}
} else {
info = -1;
LAPACKE_xerbla( "LAPACKE_cgedmdq_work", info );
}
return info;
}

View File

@ -0,0 +1,112 @@
/*****************************************************************************
Copyright (c) 2014, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************
* Contents: Native high-level C interface to LAPACK function dgedmd
* Author: Intel Corporation
*****************************************************************************/
#include "lapacke_utils.h"
lapack_int LAPACKE_dgedmd( int matrix_layout, char jobs, char jobz, char jobf,
lapack_int whtsvd, lapack_int m, lapack_int n,
double* x, lapack_int ldx, double* y, lapack_int ldy,
lapack_int k, double* reig, double* imeig, double* z,
lapack_int ldz, double* res, double* b, lapack_int ldb,
double* w, lapack_int ldw, double* s, lapack_int lds)
{
lapack_int info = 0;
lapack_int lwork = -1;
lapack_int liwork = -1;
double* work = NULL;
lapack_int* iwork = NULL;
double work_query;
lapack_int iwork_query;
if( matrix_layout != LAPACK_COL_MAJOR && matrix_layout != LAPACK_ROW_MAJOR ) {
LAPACKE_xerbla( "LAPACKE_dgedmd", -1 );
return -1;
}
#ifndef LAPACK_DISABLE_NAN_CHECK
if( LAPACKE_get_nancheck() ) {
/* Optionally check input matrices for NaNs */
if( LAPACKE_dge_nancheck( matrix_layout, m, n, x, ldx ) ) {
return -8;
}
if( LAPACKE_dge_nancheck( matrix_layout, m, n, y, ldy ) ) {
return -10;
}
if( LAPACKE_dge_nancheck( matrix_layout, m, n, z, ldz ) ) {
return -15;
}
if( LAPACKE_dge_nancheck( matrix_layout, m, n, b, ldb ) ) {
return -18;
}
if( LAPACKE_dge_nancheck( matrix_layout, m, n, s, lds ) ) {
return -20;
}
if( LAPACKE_dge_nancheck( matrix_layout, m, n, w, ldw ) ) {
return -22;
}
}
#endif
/* Query optimal working array(s) size */
info = LAPACKE_dgedmd_work( matrix_layout, jobs, jobz, jobf, whtsvd, m, n,
x, ldx, y, ldy, k, reig, imeig, z, ldz, res,
b, ldb, w, ldw, s, lds, &work_query, lwork,
&iwork_query, liwork );
if( info != 0 ) {
goto exit_level_0;
}
lwork = (lapack_int) work_query;
liwork = iwork_query;
/* Allocate memory for work arrays */
work = (double*)LAPACKE_malloc( sizeof(double) * lwork );
if( work == NULL ) {
info = LAPACK_WORK_MEMORY_ERROR;
goto exit_level_0;
}
iwork = (lapack_int*)LAPACKE_malloc( sizeof(lapack_int) * liwork );
if( iwork == NULL ) {
info = LAPACK_WORK_MEMORY_ERROR;
goto exit_level_1;
}
/* Call middle-level interface */
info = LAPACKE_dgedmd_work( matrix_layout, jobs, jobz, jobf, whtsvd, m, n,
x, ldx, y, ldy, k, reig, imeig, z, ldz, res,
b, ldb, w, ldw, s, lds, work, lwork, iwork,
liwork );
/* Release memory and exit */
LAPACKE_free( iwork );
exit_level_1:
LAPACKE_free( work );
exit_level_0:
if( info == LAPACK_WORK_MEMORY_ERROR ) {
LAPACKE_xerbla( "LAPACKE_dgedmd", info );
}
return info;
}

View File

@ -0,0 +1,179 @@
/*****************************************************************************
Copyright (c) 2014, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************
* Contents: Native middle-level C interface to LAPACK function dgedmd
* Author: Intel Corporation
*****************************************************************************/
#include "lapacke_utils.h"
lapack_int LAPACKE_dgedmd_work( int matrix_layout, char jobs, char jobz,
char jobf, lapack_int whtsvd, lapack_int m,
lapack_int n, double* x, lapack_int ldx,
double* y, lapack_int ldy, lapack_int k,
double* reig, double* imeig, double* z,
lapack_int ldz, double* res, double* b,
lapack_int ldb, double* w, lapack_int ldw,
double* s, lapack_int lds, double* work,
lapack_int lwork, lapack_int* iwork,
lapack_int liwork )
{
lapack_int info = 0;
if( matrix_layout == LAPACK_COL_MAJOR ) {
/* Call LAPACK function and adjust info */
LAPACK_dgedmd( &jobs, &jobz, &jobf, &whtsvd, &m, &n, x, &ldx, y, &ldy,
&k, reig, imeig, z, &ldz, res, b, &ldb, w, &ldw, s, &lds,
work, &lwork, iwork, &liwork, &info );
if( info < 0 ) {
info = info - 1;
}
} else if( matrix_layout == LAPACK_ROW_MAJOR ) {
lapack_int ldx_t = MAX(1,m);
lapack_int ldy_t = MAX(1,m);
lapack_int ldz_t = MAX(1,m);
lapack_int ldb_t = MAX(1,m);
lapack_int ldw_t = MAX(1,m);
lapack_int lds_t = MAX(1,m);
double* x_t = NULL;
double* y_t = NULL;
double* z_t = NULL;
double* b_t = NULL;
double* w_t = NULL;
double* s_t = NULL;
/* Check leading dimension(s) */
if( ldx < n ) {
info = -9;
LAPACKE_xerbla( "LAPACKE_dgedmd_work", info );
return info;
}
if( ldy < n ) {
info = -11;
LAPACKE_xerbla( "LAPACKE_dgedmd_work", info );
return info;
}
if( ldz < n ) {
info = -16;
LAPACKE_xerbla( "LAPACKE_dgedmd_work", info );
return info;
}
if( ldb < n ) {
info = -19;
LAPACKE_xerbla( "LAPACKE_dgedmd_work", info );
return info;
}
if( ldw < n ) {
info = -21;
LAPACKE_xerbla( "LAPACKE_dgedmd_work", info );
return info;
}
if( lds < n ) {
info = -23;
LAPACKE_xerbla( "LAPACKE_dgedmd_work", info );
return info;
}
/* Query optimal working array(s) size if requested */
if( lwork == -1 ) {
LAPACK_dgedmd( &jobs, &jobz, &jobf, &whtsvd, &m, &n, x, &ldx, y, &ldy,
&k, reig, imeig, z, &ldz, res, b, &ldb, w, &ldw, s, &lds,
work, &lwork, iwork, &liwork, &info );
return (info < 0) ? (info - 1) : info;
}
/* Allocate memory for temporary array(s) */
x_t = (double*)LAPACKE_malloc( sizeof(double) * ldx_t * MAX(1,n) );
if( x_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_0;
}
y_t = (double*)LAPACKE_malloc( sizeof(double) * ldy_t * MAX(1,n) );
if( y_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_1;
}
z_t = (double*)LAPACKE_malloc( sizeof(double) * ldz_t * MAX(1,n) );
if( z_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_2;
}
b_t = (double*)LAPACKE_malloc( sizeof(double) * ldb_t * MAX(1,n) );
if( b_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_3;
}
w_t = (double*)LAPACKE_malloc( sizeof(double) * ldw_t * MAX(1,n) );
if( w_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_4;
}
s_t = (double*)LAPACKE_malloc( sizeof(double) * lds_t * MAX(1,n) );
if( s_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_5;
}
/* Transpose input matrices */
LAPACKE_dge_trans( matrix_layout, m, n, x, ldx, x_t, ldx_t );
LAPACKE_dge_trans( matrix_layout, m, n, y, ldy, y_t, ldy_t );
LAPACKE_dge_trans( matrix_layout, m, n, z, ldz, z_t, ldz_t );
LAPACKE_dge_trans( matrix_layout, m, n, b, ldb, b_t, ldb_t );
LAPACKE_dge_trans( matrix_layout, m, n, w, ldw, w_t, ldw_t );
LAPACKE_dge_trans( matrix_layout, m, n, s, lds, s_t, lds_t );
/* Call LAPACK function and adjust info */
LAPACK_dgedmd( &jobs, &jobz, &jobf, &whtsvd, &m, &n, x_t, &ldx_t, y_t,
&ldy_t, &k, reig, imeig, z_t, &ldz_t, res, b_t, &ldb_t,
w_t, &ldw_t, s_t, &lds_t, work, &lwork, iwork, &liwork, &info );
if( info < 0 ) {
info = info - 1;
}
/* Transpose output matrices */
LAPACKE_dge_trans( LAPACK_COL_MAJOR, m, n, x_t, ldx_t, x, ldx );
LAPACKE_dge_trans( LAPACK_COL_MAJOR, m, n, y_t, ldy_t, y, ldy );
LAPACKE_dge_trans( LAPACK_COL_MAJOR, m, n, z_t, ldz_t, z, ldz );
LAPACKE_dge_trans( LAPACK_COL_MAJOR, m, n, b_t, ldb_t, b, ldb );
LAPACKE_dge_trans( LAPACK_COL_MAJOR, m, n, w_t, ldw_t, w, ldw );
LAPACKE_dge_trans( LAPACK_COL_MAJOR, m, n, s_t, lds_t, s, lds );
/* Release memory and exit */
LAPACKE_free( s_t );
exit_level_5:
LAPACKE_free( w_t );
exit_level_4:
LAPACKE_free( b_t );
exit_level_3:
LAPACKE_free( z_t );
exit_level_2:
LAPACKE_free( y_t );
exit_level_1:
LAPACKE_free( x_t );
exit_level_0:
if( info == LAPACK_TRANSPOSE_MEMORY_ERROR ) {
LAPACKE_xerbla( "LAPACKE_dgedmd_work", info );
}
} else {
info = -1;
LAPACKE_xerbla( "LAPACKE_dgedmd_work", info );
}
return info;
}

View File

@ -0,0 +1,119 @@
/*****************************************************************************
Copyright (c) 2014, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************
* Contents: Native high-level C interface to LAPACK function dgedmdq
* Author: Intel Corporation
*****************************************************************************/
#include "lapacke_utils.h"
lapack_int LAPACKE_dgedmdq( int matrix_layout, char jobs, char jobz, char jobr,
char jobq, char jobt, char jobf, lapack_int whtsvd,
lapack_int m, lapack_int n, double* f, lapack_int ldf,
double* x, lapack_int ldx, double* y, lapack_int ldy,
lapack_int nrnk, double tol, lapack_int k,
double* reig, double* imeig, double* z,
lapack_int ldz, double* res, double* b, lapack_int ldb,
double* v, lapack_int ldv, double* s, lapack_int lds)
{
lapack_int info = 0;
lapack_int lwork = -1;
lapack_int liwork = -1;
double* work = NULL;
lapack_int* iwork = NULL;
double work_query;
lapack_int iwork_query;
if( matrix_layout != LAPACK_COL_MAJOR && matrix_layout != LAPACK_ROW_MAJOR ) {
LAPACKE_xerbla( "LAPACKE_dgedmdq", -1 );
return -1;
}
#ifndef LAPACK_DISABLE_NAN_CHECK
if( LAPACKE_get_nancheck() ) {
/* Optionally check input matrices for NaNs */
if( LAPACKE_dge_nancheck( matrix_layout, m, n, f, ldf ) ) {
return -11;
}
if( LAPACKE_dge_nancheck( matrix_layout, m, n, x, ldx ) ) {
return -13;
}
if( LAPACKE_dge_nancheck( matrix_layout, m, n, y, ldy ) ) {
return -15;
}
if( LAPACKE_dge_nancheck( matrix_layout, m, n, z, ldz ) ) {
return -22;
}
if( LAPACKE_dge_nancheck( matrix_layout, m, n, b, ldb ) ) {
return -25;
}
if( LAPACKE_dge_nancheck( matrix_layout, m, n, v, ldv ) ) {
return -27;
}
if( LAPACKE_dge_nancheck( matrix_layout, m, n, s, lds ) ) {
return -29;
}
}
#endif
/* Query optimal working array(s) size */
info = LAPACKE_dgedmdq_work( matrix_layout, jobs, jobz, jobr, jobq, jobt,
jobf, whtsvd, m, n, f, ldf, x, ldx, y, ldy,
nrnk, tol, k, reig, imeig, z, ldz, res,
b, ldb, v, ldv, s, lds, &work_query, lwork,
&iwork_query, liwork );
if( info != 0 ) {
goto exit_level_0;
}
lwork = (lapack_int) work_query;
liwork = iwork_query;
/* Allocate memory for work arrays */
work = (double*)LAPACKE_malloc( sizeof(double) * lwork );
if( work == NULL ) {
info = LAPACK_WORK_MEMORY_ERROR;
goto exit_level_0;
}
iwork = (lapack_int*)LAPACKE_malloc( sizeof(lapack_int) * liwork );
if( iwork == NULL ) {
info = LAPACK_WORK_MEMORY_ERROR;
goto exit_level_1;
}
/* Call middle-level interface */
info = LAPACKE_dgedmdq_work( matrix_layout, jobs, jobz, jobr, jobq, jobt,
jobf, whtsvd, m, n, f, ldf, x, ldx, y, ldy,
nrnk, tol, k, reig, imeig, z, ldz, res,
b, ldb, v, ldv, s, lds, work, lwork, iwork,
liwork );
/* Release memory and exit */
LAPACKE_free( iwork );
exit_level_1:
LAPACKE_free( work );
exit_level_0:
if( info == LAPACK_WORK_MEMORY_ERROR ) {
LAPACKE_xerbla( "LAPACKE_dgedmdq", info );
}
return info;
}

View File

@ -0,0 +1,200 @@
/*****************************************************************************
Copyright (c) 2014, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************
* Contents: Native middle-level C interface to LAPACK function dgedmdq
* Author: Intel Corporation
*****************************************************************************/
#include "lapacke_utils.h"
lapack_int LAPACKE_dgedmdq_work( int matrix_layout, char jobs, char jobz,
char jobr, char jobq, char jobt, char jobf,
lapack_int whtsvd, lapack_int m, lapack_int n,
double* f, lapack_int ldf, double* x,
lapack_int ldx, double* y, lapack_int ldy,
lapack_int nrnk, double tol, lapack_int k,
double* reig, double* imeig, double* z,
lapack_int ldz, double* res, double* b,
lapack_int ldb, double* v, lapack_int ldv,
double* s, lapack_int lds, double* work,
lapack_int lwork, lapack_int* iwork,
lapack_int liwork )
{
lapack_int info = 0;
if( matrix_layout == LAPACK_COL_MAJOR ) {
/* Call LAPACK function and adjust info */
LAPACK_dgedmdq( &jobs, &jobz, &jobr, &jobq, &jobt, &jobf, &whtsvd, &m,
&n, f, &ldf, x, &ldx, y, &ldy, &nrnk, &tol, &k, reig,
imeig, z, &ldz, res, b, &ldb, v, &ldv, s, &lds,
work, &lwork, iwork, &liwork, &info );
if( info < 0 ) {
info = info - 1;
}
} else if( matrix_layout == LAPACK_ROW_MAJOR ) {
lapack_int ldf_t = MAX(1,m);
lapack_int ldx_t = MAX(1,m);
lapack_int ldy_t = MAX(1,m);
lapack_int ldz_t = MAX(1,m);
lapack_int ldb_t = MAX(1,m);
lapack_int ldv_t = MAX(1,m);
lapack_int lds_t = MAX(1,m);
double* f_t = NULL;
double* x_t = NULL;
double* y_t = NULL;
double* z_t = NULL;
double* b_t = NULL;
double* v_t = NULL;
double* s_t = NULL;
/* Check leading dimension(s) */
if( ldf < n ) {
info = -12;
LAPACKE_xerbla( "LAPACKE_dgedmdq_work", info );
return info;
}
if( ldx < n ) {
info = -14;
LAPACKE_xerbla( "LAPACKE_dgedmdq_work", info );
return info;
}
if( ldy < n ) {
info = -16;
LAPACKE_xerbla( "LAPACKE_dgedmdq_work", info );
return info;
}
if( ldz < n ) {
info = -23;
LAPACKE_xerbla( "LAPACKE_dgedmdq_work", info );
return info;
}
if( ldb < n ) {
info = -26;
LAPACKE_xerbla( "LAPACKE_dgedmdq_work", info );
return info;
}
if( ldv < n ) {
info = -28;
LAPACKE_xerbla( "LAPACKE_dgedmdq_work", info );
return info;
}
if( lds < n ) {
info = -30;
LAPACKE_xerbla( "LAPACKE_dgedmdq_work", info );
return info;
}
/* Query optimal working array(s) size if requested */
if( lwork == -1 || liwork == -1 ) {
LAPACK_dgedmdq( &jobs, &jobz, &jobr, &jobq, &jobt, &jobf, &whtsvd, &m,
&n, f, &ldf, x, &ldx, y, &ldy, &nrnk, &tol, &k, reig,
imeig, z, &ldz, res, b, &ldb, v, &ldv, s, &lds,
work, &lwork, iwork, &liwork, &info );
return (info < 0) ? (info - 1) : info;
}
/* Allocate memory for temporary array(s) */
f_t = (double*)LAPACKE_malloc( sizeof(double) * ldf_t * MAX(1,n) );
if( f_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_0;
}
x_t = (double*)LAPACKE_malloc( sizeof(double) * ldx_t * MAX(1,n) );
if( x_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_1;
}
y_t = (double*)LAPACKE_malloc( sizeof(double) * ldy_t * MAX(1,n) );
if( y_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_2;
}
z_t = (double*)LAPACKE_malloc( sizeof(double) * ldz_t * MAX(1,n) );
if( z_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_3;
}
b_t = (double*)LAPACKE_malloc( sizeof(double) * ldb_t * MAX(1,n) );
if( b_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_4;
}
v_t = (double*)LAPACKE_malloc( sizeof(double) * ldv_t * MAX(1,n) );
if( v_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_5;
}
s_t = (double*)LAPACKE_malloc( sizeof(double) * lds_t * MAX(1,n) );
if( s_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_6;
}
/* Transpose input matrices */
LAPACKE_dge_trans( matrix_layout, m, n, f, ldf, f_t, ldf_t );
LAPACKE_dge_trans( matrix_layout, m, n, x, ldx, x_t, ldx_t );
LAPACKE_dge_trans( matrix_layout, m, n, y, ldy, y_t, ldy_t );
LAPACKE_dge_trans( matrix_layout, m, n, z, ldz, z_t, ldz_t );
LAPACKE_dge_trans( matrix_layout, m, n, b, ldb, b_t, ldb_t );
LAPACKE_dge_trans( matrix_layout, m, n, v, ldv, v_t, ldv_t );
LAPACKE_dge_trans( matrix_layout, m, n, s, lds, s_t, lds_t );
/* Call LAPACK function and adjust info */
LAPACK_dgedmdq( &jobs, &jobz, &jobr, &jobq, &jobt, &jobf, &whtsvd, &m,
&n, f, &ldf, x, &ldx, y, &ldy, &nrnk, &tol, &k, reig,
imeig, z, &ldz, res, b, &ldb, v, &ldv, s, &lds,
work, &lwork, iwork, &liwork, &info );
if( info < 0 ) {
info = info - 1;
}
/* Transpose output matrices */
LAPACKE_dge_trans( LAPACK_COL_MAJOR, m, n, f_t, ldf_t, f, ldf );
LAPACKE_dge_trans( LAPACK_COL_MAJOR, m, n, x_t, ldx_t, x, ldx );
LAPACKE_dge_trans( LAPACK_COL_MAJOR, m, n, y_t, ldy_t, y, ldy );
LAPACKE_dge_trans( LAPACK_COL_MAJOR, m, n, z_t, ldz_t, z, ldz );
LAPACKE_dge_trans( LAPACK_COL_MAJOR, m, n, b_t, ldb_t, b, ldb );
LAPACKE_dge_trans( LAPACK_COL_MAJOR, m, n, v_t, ldv_t, v, ldv );
LAPACKE_dge_trans( LAPACK_COL_MAJOR, m, n, s_t, lds_t, s, lds );
/* Release memory and exit */
LAPACKE_free( s_t );
exit_level_6:
LAPACKE_free( v_t );
exit_level_5:
LAPACKE_free( b_t );
exit_level_4:
LAPACKE_free( z_t );
exit_level_3:
LAPACKE_free( y_t );
exit_level_2:
LAPACKE_free( x_t );
exit_level_1:
LAPACKE_free( f_t );
exit_level_0:
if( info == LAPACK_TRANSPOSE_MEMORY_ERROR ) {
LAPACKE_xerbla( "LAPACKE_dgedmdq_work", info );
}
} else {
info = -1;
LAPACKE_xerbla( "LAPACKE_dgedmdq_work", info );
}
return info;
}

View File

@ -0,0 +1,112 @@
/*****************************************************************************
Copyright (c) 2014, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************
* Contents: Native high-level C interface to LAPACK function sgedmd
* Author: Intel Corporation
*****************************************************************************/
#include "lapacke_utils.h"
lapack_int LAPACKE_sgedmd( int matrix_layout, char jobs, char jobz, char jobf,
lapack_int whtsvd, lapack_int m, lapack_int n,
float* x, lapack_int ldx, float* y, lapack_int ldy,
lapack_int k, float* reig, float* imeig, float* z,
lapack_int ldz, float* res, float* b, lapack_int ldb,
float* w, lapack_int ldw, float* s, lapack_int lds)
{
lapack_int info = 0;
lapack_int lwork = -1;
lapack_int liwork = -1;
float* work = NULL;
lapack_int* iwork = NULL;
float work_query;
lapack_int iwork_query;
if( matrix_layout != LAPACK_COL_MAJOR && matrix_layout != LAPACK_ROW_MAJOR ) {
LAPACKE_xerbla( "LAPACKE_sgedmd", -1 );
return -1;
}
#ifndef LAPACK_DISABLE_NAN_CHECK
if( LAPACKE_get_nancheck() ) {
/* Optionally check input matrices for NaNs */
if( LAPACKE_sge_nancheck( matrix_layout, m, n, x, ldx ) ) {
return -8;
}
if( LAPACKE_sge_nancheck( matrix_layout, m, n, y, ldy ) ) {
return -10;
}
if( LAPACKE_sge_nancheck( matrix_layout, m, n, z, ldz ) ) {
return -15;
}
if( LAPACKE_sge_nancheck( matrix_layout, m, n, b, ldb ) ) {
return -18;
}
if( LAPACKE_sge_nancheck( matrix_layout, m, n, s, lds ) ) {
return -20;
}
if( LAPACKE_sge_nancheck( matrix_layout, m, n, w, ldw ) ) {
return -22;
}
}
#endif
/* Query optimal working array(s) size */
info = LAPACKE_sgedmd_work( matrix_layout, jobs, jobz, jobf, whtsvd, m, n,
x, ldx, y, ldy, k, reig, imeig, z, ldz, res,
b, ldb, w, ldw, s, lds, &work_query, lwork,
&iwork_query, liwork );
if( info != 0 ) {
goto exit_level_0;
}
lwork = (lapack_int) work_query;
liwork = iwork_query;
/* Allocate memory for work arrays */
work = (float*)LAPACKE_malloc( sizeof(float) * lwork );
if( work == NULL ) {
info = LAPACK_WORK_MEMORY_ERROR;
goto exit_level_0;
}
iwork = (lapack_int*)LAPACKE_malloc( sizeof(lapack_int) * liwork );
if( iwork == NULL ) {
info = LAPACK_WORK_MEMORY_ERROR;
goto exit_level_1;
}
/* Call middle-level interface */
info = LAPACKE_sgedmd_work( matrix_layout, jobs, jobz, jobf, whtsvd, m, n,
x, ldx, y, ldy, k, reig, imeig, z, ldz, res,
b, ldb, w, ldw, s, lds, work, lwork, iwork,
liwork );
/* Release memory and exit */
LAPACKE_free( iwork );
exit_level_1:
LAPACKE_free( work );
exit_level_0:
if( info == LAPACK_WORK_MEMORY_ERROR ) {
LAPACKE_xerbla( "LAPACKE_sgedmd", info );
}
return info;
}

View File

@ -0,0 +1,179 @@
/*****************************************************************************
Copyright (c) 2014, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************
* Contents: Native middle-level C interface to LAPACK function sgedmd
* Author: Intel Corporation
*****************************************************************************/
#include "lapacke_utils.h"
lapack_int LAPACKE_sgedmd_work( int matrix_layout, char jobs, char jobz,
char jobf, lapack_int whtsvd, lapack_int m,
lapack_int n, float* x, lapack_int ldx,
float* y, lapack_int ldy, lapack_int k,
float* reig, float* imeig, float* z,
lapack_int ldz, float* res, float* b,
lapack_int ldb, float* w, lapack_int ldw,
float* s, lapack_int lds, float* work,
lapack_int lwork, lapack_int* iwork,
lapack_int liwork )
{
lapack_int info = 0;
if( matrix_layout == LAPACK_COL_MAJOR ) {
/* Call LAPACK function and adjust info */
LAPACK_sgedmd( &jobs, &jobz, &jobf, &whtsvd, &m, &n, x, &ldx, y, &ldy,
&k, reig, imeig, z, &ldz, res, b, &ldb, w, &ldw, s, &lds,
work, &lwork, iwork, &liwork, &info );
if( info < 0 ) {
info = info - 1;
}
} else if( matrix_layout == LAPACK_ROW_MAJOR ) {
lapack_int ldx_t = MAX(1,m);
lapack_int ldy_t = MAX(1,m);
lapack_int ldz_t = MAX(1,m);
lapack_int ldb_t = MAX(1,m);
lapack_int ldw_t = MAX(1,m);
lapack_int lds_t = MAX(1,m);
float* x_t = NULL;
float* y_t = NULL;
float* z_t = NULL;
float* b_t = NULL;
float* w_t = NULL;
float* s_t = NULL;
/* Check leading dimension(s) */
if( ldx < n ) {
info = -9;
LAPACKE_xerbla( "LAPACKE_sgedmd_work", info );
return info;
}
if( ldy < n ) {
info = -11;
LAPACKE_xerbla( "LAPACKE_sgedmd_work", info );
return info;
}
if( ldz < n ) {
info = -16;
LAPACKE_xerbla( "LAPACKE_sgedmd_work", info );
return info;
}
if( ldb < n ) {
info = -19;
LAPACKE_xerbla( "LAPACKE_sgedmd_work", info );
return info;
}
if( ldw < n ) {
info = -21;
LAPACKE_xerbla( "LAPACKE_sgedmd_work", info );
return info;
}
if( lds < n ) {
info = -23;
LAPACKE_xerbla( "LAPACKE_sgedmd_work", info );
return info;
}
/* Query optimal working array(s) size if requested */
if( lwork == -1 ) {
LAPACK_sgedmd( &jobs, &jobz, &jobf, &whtsvd, &m, &n, x, &ldx, y, &ldy,
&k, reig, imeig, z, &ldz, res, b, &ldb, w, &ldw, s, &lds,
work, &lwork, iwork, &liwork, &info );
return (info < 0) ? (info - 1) : info;
}
/* Allocate memory for temporary array(s) */
x_t = (float*)LAPACKE_malloc( sizeof(float) * ldx_t * MAX(1,n) );
if( x_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_0;
}
y_t = (float*)LAPACKE_malloc( sizeof(float) * ldy_t * MAX(1,n) );
if( y_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_1;
}
z_t = (float*)LAPACKE_malloc( sizeof(float) * ldz_t * MAX(1,n) );
if( z_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_2;
}
b_t = (float*)LAPACKE_malloc( sizeof(float) * ldb_t * MAX(1,n) );
if( b_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_3;
}
w_t = (float*)LAPACKE_malloc( sizeof(float) * ldw_t * MAX(1,n) );
if( w_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_4;
}
s_t = (float*)LAPACKE_malloc( sizeof(float) * lds_t * MAX(1,n) );
if( s_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_5;
}
/* Transpose input matrices */
LAPACKE_sge_trans( matrix_layout, m, n, x, ldx, x_t, ldx_t );
LAPACKE_sge_trans( matrix_layout, m, n, y, ldy, y_t, ldy_t );
LAPACKE_sge_trans( matrix_layout, m, n, z, ldz, z_t, ldz_t );
LAPACKE_sge_trans( matrix_layout, m, n, b, ldb, b_t, ldb_t );
LAPACKE_sge_trans( matrix_layout, m, n, w, ldw, w_t, ldw_t );
LAPACKE_sge_trans( matrix_layout, m, n, s, lds, s_t, lds_t );
/* Call LAPACK function and adjust info */
LAPACK_sgedmd( &jobs, &jobz, &jobf, &whtsvd, &m, &n, x_t, &ldx_t, y_t,
&ldy_t, &k, reig, imeig, z_t, &ldz_t, res, b_t, &ldb_t,
w_t, &ldw_t, s_t, &lds_t, work, &lwork, iwork, &liwork, &info );
if( info < 0 ) {
info = info - 1;
}
/* Transpose output matrices */
LAPACKE_sge_trans( LAPACK_COL_MAJOR, m, n, x_t, ldx_t, x, ldx );
LAPACKE_sge_trans( LAPACK_COL_MAJOR, m, n, y_t, ldy_t, y, ldy );
LAPACKE_sge_trans( LAPACK_COL_MAJOR, m, n, z_t, ldz_t, z, ldz );
LAPACKE_sge_trans( LAPACK_COL_MAJOR, m, n, b_t, ldb_t, b, ldb );
LAPACKE_sge_trans( LAPACK_COL_MAJOR, m, n, w_t, ldw_t, w, ldw );
LAPACKE_sge_trans( LAPACK_COL_MAJOR, m, n, s_t, lds_t, s, lds );
/* Release memory and exit */
LAPACKE_free( s_t );
exit_level_5:
LAPACKE_free( w_t );
exit_level_4:
LAPACKE_free( b_t );
exit_level_3:
LAPACKE_free( z_t );
exit_level_2:
LAPACKE_free( y_t );
exit_level_1:
LAPACKE_free( x_t );
exit_level_0:
if( info == LAPACK_TRANSPOSE_MEMORY_ERROR ) {
LAPACKE_xerbla( "LAPACKE_sgedmd_work", info );
}
} else {
info = -1;
LAPACKE_xerbla( "LAPACKE_sgedmd_work", info );
}
return info;
}

View File

@ -0,0 +1,119 @@
/*****************************************************************************
Copyright (c) 2014, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************
* Contents: Native high-level C interface to LAPACK function sgedmdq
* Author: Intel Corporation
*****************************************************************************/
#include "lapacke_utils.h"
lapack_int LAPACKE_sgedmdq( int matrix_layout, char jobs, char jobz, char jobr,
char jobq, char jobt, char jobf, lapack_int whtsvd,
lapack_int m, lapack_int n, float* f, lapack_int ldf,
float* x, lapack_int ldx, float* y, lapack_int ldy,
lapack_int nrnk, float tol, lapack_int k,
float* reig, float* imeig, float* z,
lapack_int ldz, float* res, float* b, lapack_int ldb,
float* v, lapack_int ldv, float* s, lapack_int lds)
{
lapack_int info = 0;
lapack_int lwork = -1;
lapack_int liwork = -1;
float* work = NULL;
lapack_int* iwork = NULL;
float work_query;
lapack_int iwork_query;
if( matrix_layout != LAPACK_COL_MAJOR && matrix_layout != LAPACK_ROW_MAJOR ) {
LAPACKE_xerbla( "LAPACKE_sgedmdq", -1 );
return -1;
}
#ifndef LAPACK_DISABLE_NAN_CHECK
if( LAPACKE_get_nancheck() ) {
/* Optionally check input matrices for NaNs */
if( LAPACKE_sge_nancheck( matrix_layout, m, n, f, ldf ) ) {
return -11;
}
if( LAPACKE_sge_nancheck( matrix_layout, m, n, x, ldx ) ) {
return -13;
}
if( LAPACKE_sge_nancheck( matrix_layout, m, n, y, ldy ) ) {
return -15;
}
if( LAPACKE_sge_nancheck( matrix_layout, m, n, z, ldz ) ) {
return -22;
}
if( LAPACKE_sge_nancheck( matrix_layout, m, n, b, ldb ) ) {
return -25;
}
if( LAPACKE_sge_nancheck( matrix_layout, m, n, v, ldv ) ) {
return -27;
}
if( LAPACKE_sge_nancheck( matrix_layout, m, n, s, lds ) ) {
return -29;
}
}
#endif
/* Query optimal working array(s) size */
info = LAPACKE_sgedmdq_work( matrix_layout, jobs, jobz, jobr, jobq, jobt,
jobf, whtsvd, m, n, f, ldf, x, ldx, y, ldy,
nrnk, tol, k, reig, imeig, z, ldz, res,
b, ldb, v, ldv, s, lds, &work_query, lwork,
&iwork_query, liwork );
if( info != 0 ) {
goto exit_level_0;
}
lwork = (lapack_int) work_query;
liwork = iwork_query;
/* Allocate memory for work arrays */
work = (float*)LAPACKE_malloc( sizeof(float) * lwork );
if( work == NULL ) {
info = LAPACK_WORK_MEMORY_ERROR;
goto exit_level_0;
}
iwork = (lapack_int*)LAPACKE_malloc( sizeof(lapack_int) * liwork );
if( iwork == NULL ) {
info = LAPACK_WORK_MEMORY_ERROR;
goto exit_level_1;
}
/* Call middle-level interface */
info = LAPACKE_sgedmdq_work( matrix_layout, jobs, jobz, jobr, jobq, jobt,
jobf, whtsvd, m, n, f, ldf, x, ldx, y, ldy,
nrnk, tol, k, reig, imeig, z, ldz, res,
b, ldb, v, ldv, s, lds, work, lwork, iwork,
liwork );
/* Release memory and exit */
LAPACKE_free( iwork );
exit_level_1:
LAPACKE_free( work );
exit_level_0:
if( info == LAPACK_WORK_MEMORY_ERROR ) {
LAPACKE_xerbla( "LAPACKE_sgedmdq", info );
}
return info;
}

View File

@ -0,0 +1,200 @@
/*****************************************************************************
Copyright (c) 2014, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************
* Contents: Native middle-level C interface to LAPACK function sgedmdq
* Author: Intel Corporation
*****************************************************************************/
#include "lapacke_utils.h"
lapack_int LAPACKE_sgedmdq_work( int matrix_layout, char jobs, char jobz,
char jobr, char jobq, char jobt, char jobf,
lapack_int whtsvd, lapack_int m, lapack_int n,
float* f, lapack_int ldf, float* x,
lapack_int ldx, float* y, lapack_int ldy,
lapack_int nrnk, float tol, lapack_int k,
float* reig, float* imeig, float* z,
lapack_int ldz, float* res, float* b,
lapack_int ldb, float* v, lapack_int ldv,
float* s, lapack_int lds, float* work,
lapack_int lwork, lapack_int* iwork,
lapack_int liwork )
{
lapack_int info = 0;
if( matrix_layout == LAPACK_COL_MAJOR ) {
/* Call LAPACK function and adjust info */
LAPACK_sgedmdq( &jobs, &jobz, &jobr, &jobq, &jobt, &jobf, &whtsvd, &m,
&n, f, &ldf, x, &ldx, y, &ldy, &nrnk, &tol, &k, reig,
imeig, z, &ldz, res, b, &ldb, v, &ldv, s, &lds,
work, &lwork, iwork, &liwork, &info );
if( info < 0 ) {
info = info - 1;
}
} else if( matrix_layout == LAPACK_ROW_MAJOR ) {
lapack_int ldf_t = MAX(1,m);
lapack_int ldx_t = MAX(1,m);
lapack_int ldy_t = MAX(1,m);
lapack_int ldz_t = MAX(1,m);
lapack_int ldb_t = MAX(1,m);
lapack_int ldv_t = MAX(1,m);
lapack_int lds_t = MAX(1,m);
float* f_t = NULL;
float* x_t = NULL;
float* y_t = NULL;
float* z_t = NULL;
float* b_t = NULL;
float* v_t = NULL;
float* s_t = NULL;
/* Check leading dimension(s) */
if( ldf < n ) {
info = -12;
LAPACKE_xerbla( "LAPACKE_sgedmdq_work", info );
return info;
}
if( ldx < n ) {
info = -14;
LAPACKE_xerbla( "LAPACKE_sgedmdq_work", info );
return info;
}
if( ldy < n ) {
info = -16;
LAPACKE_xerbla( "LAPACKE_sgedmdq_work", info );
return info;
}
if( ldz < n ) {
info = -23;
LAPACKE_xerbla( "LAPACKE_sgedmdq_work", info );
return info;
}
if( ldb < n ) {
info = -26;
LAPACKE_xerbla( "LAPACKE_sgedmdq_work", info );
return info;
}
if( ldv < n ) {
info = -28;
LAPACKE_xerbla( "LAPACKE_sgedmdq_work", info );
return info;
}
if( lds < n ) {
info = -30;
LAPACKE_xerbla( "LAPACKE_sgedmdq_work", info );
return info;
}
/* Query optimal working array(s) size if requested */
if( lwork == -1 || liwork == -1 ) {
LAPACK_sgedmdq( &jobs, &jobz, &jobr, &jobq, &jobt, &jobf, &whtsvd, &m,
&n, f, &ldf, x, &ldx, y, &ldy, &nrnk, &tol, &k, reig,
imeig, z, &ldz, res, b, &ldb, v, &ldv, s, &lds,
work, &lwork, iwork, &liwork, &info );
return (info < 0) ? (info - 1) : info;
}
/* Allocate memory for temporary array(s) */
f_t = (float*)LAPACKE_malloc( sizeof(float) * ldf_t * MAX(1,n) );
if( f_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_0;
}
x_t = (float*)LAPACKE_malloc( sizeof(float) * ldx_t * MAX(1,n) );
if( x_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_1;
}
y_t = (float*)LAPACKE_malloc( sizeof(float) * ldy_t * MAX(1,n) );
if( y_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_2;
}
z_t = (float*)LAPACKE_malloc( sizeof(float) * ldz_t * MAX(1,n) );
if( z_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_3;
}
b_t = (float*)LAPACKE_malloc( sizeof(float) * ldb_t * MAX(1,n) );
if( b_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_4;
}
v_t = (float*)LAPACKE_malloc( sizeof(float) * ldv_t * MAX(1,n) );
if( v_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_5;
}
s_t = (float*)LAPACKE_malloc( sizeof(float) * lds_t * MAX(1,n) );
if( s_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_6;
}
/* Transpose input matrices */
LAPACKE_sge_trans( matrix_layout, m, n, f, ldf, f_t, ldf_t );
LAPACKE_sge_trans( matrix_layout, m, n, x, ldx, x_t, ldx_t );
LAPACKE_sge_trans( matrix_layout, m, n, y, ldy, y_t, ldy_t );
LAPACKE_sge_trans( matrix_layout, m, n, z, ldz, z_t, ldz_t );
LAPACKE_sge_trans( matrix_layout, m, n, b, ldb, b_t, ldb_t );
LAPACKE_sge_trans( matrix_layout, m, n, v, ldv, v_t, ldv_t );
LAPACKE_sge_trans( matrix_layout, m, n, s, lds, s_t, lds_t );
/* Call LAPACK function and adjust info */
LAPACK_sgedmdq( &jobs, &jobz, &jobr, &jobq, &jobt, &jobf, &whtsvd, &m,
&n, f, &ldf, x, &ldx, y, &ldy, &nrnk, &tol, &k, reig,
imeig, z, &ldz, res, b, &ldb, v, &ldv, s, &lds,
work, &lwork, iwork, &liwork, &info );
if( info < 0 ) {
info = info - 1;
}
/* Transpose output matrices */
LAPACKE_sge_trans( LAPACK_COL_MAJOR, m, n, f_t, ldf_t, f, ldf );
LAPACKE_sge_trans( LAPACK_COL_MAJOR, m, n, x_t, ldx_t, x, ldx );
LAPACKE_sge_trans( LAPACK_COL_MAJOR, m, n, y_t, ldy_t, y, ldy );
LAPACKE_sge_trans( LAPACK_COL_MAJOR, m, n, z_t, ldz_t, z, ldz );
LAPACKE_sge_trans( LAPACK_COL_MAJOR, m, n, b_t, ldb_t, b, ldb );
LAPACKE_sge_trans( LAPACK_COL_MAJOR, m, n, v_t, ldv_t, v, ldv );
LAPACKE_sge_trans( LAPACK_COL_MAJOR, m, n, s_t, lds_t, s, lds );
/* Release memory and exit */
LAPACKE_free( s_t );
exit_level_6:
LAPACKE_free( v_t );
exit_level_5:
LAPACKE_free( b_t );
exit_level_4:
LAPACKE_free( z_t );
exit_level_3:
LAPACKE_free( y_t );
exit_level_2:
LAPACKE_free( x_t );
exit_level_1:
LAPACKE_free( f_t );
exit_level_0:
if( info == LAPACK_TRANSPOSE_MEMORY_ERROR ) {
LAPACKE_xerbla( "LAPACKE_sgedmdq_work", info );
}
} else {
info = -1;
LAPACKE_xerbla( "LAPACKE_sgedmdq_work", info );
}
return info;
}

View File

@ -0,0 +1,116 @@
/*****************************************************************************
Copyright (c) 2014, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************
* Contents: Native high-level C interface to LAPACK function zgedmd
* Author: Intel Corporation
*****************************************************************************/
#include "lapacke_utils.h"
lapack_int LAPACKE_zgedmd( int matrix_layout, char jobs, char jobz, char jobf,
lapack_int whtsvd, lapack_int m, lapack_int n,
lapack_complex_double* x, lapack_int ldx,
lapack_complex_double* y, lapack_int ldy,
lapack_int k, lapack_complex_double* reig,
lapack_complex_double* imeig, lapack_complex_double* z,
lapack_int ldz, lapack_complex_double* res,
lapack_complex_double* b, lapack_int ldb,
lapack_complex_double* w, lapack_int ldw,
lapack_complex_double* s, lapack_int lds)
{
lapack_int info = 0;
lapack_int lwork = -1;
lapack_int liwork = -1;
lapack_complex_double* work = NULL;
lapack_int* iwork = NULL;
lapack_complex_double work_query;
lapack_int iwork_query;
if( matrix_layout != LAPACK_COL_MAJOR && matrix_layout != LAPACK_ROW_MAJOR ) {
LAPACKE_xerbla( "LAPACKE_zgedmd", -1 );
return -1;
}
#ifndef LAPACK_DISABLE_NAN_CHECK
if( LAPACKE_get_nancheck() ) {
/* Optionally check input matrices for NaNs */
if( LAPACKE_zge_nancheck( matrix_layout, m, n, x, ldx ) ) {
return -8;
}
if( LAPACKE_zge_nancheck( matrix_layout, m, n, y, ldy ) ) {
return -10;
}
if( LAPACKE_zge_nancheck( matrix_layout, m, n, z, ldz ) ) {
return -15;
}
if( LAPACKE_zge_nancheck( matrix_layout, m, n, b, ldb ) ) {
return -18;
}
if( LAPACKE_zge_nancheck( matrix_layout, m, n, s, lds ) ) {
return -20;
}
if( LAPACKE_zge_nancheck( matrix_layout, m, n, w, ldw ) ) {
return -22;
}
}
#endif
/* Query optimal working array(s) size */
info = LAPACKE_zgedmd_work( matrix_layout, jobs, jobz, jobf, whtsvd, m, n,
x, ldx, y, ldy, k, reig, imeig, z, ldz, res,
b, ldb, w, ldw, s, lds, &work_query, lwork,
&iwork_query, liwork );
if( info != 0 ) {
goto exit_level_0;
}
lwork = LAPACK_Z2INT( work_query );
liwork = iwork_query;
/* Allocate memory for work arrays */
work = (lapack_complex_double*)LAPACKE_malloc( sizeof(lapack_complex_double) * lwork );
if( work == NULL ) {
info = LAPACK_WORK_MEMORY_ERROR;
goto exit_level_0;
}
iwork = (lapack_int*)LAPACKE_malloc( sizeof(lapack_int) * liwork );
if( iwork == NULL ) {
info = LAPACK_WORK_MEMORY_ERROR;
goto exit_level_1;
}
/* Call middle-level interface */
info = LAPACKE_zgedmd_work( matrix_layout, jobs, jobz, jobf, whtsvd, m, n,
x, ldx, y, ldy, k, reig, imeig, z, ldz, res,
b, ldb, w, ldw, s, lds, work, lwork, iwork,
liwork );
/* Release memory and exit */
LAPACKE_free( iwork );
exit_level_1:
LAPACKE_free( work );
exit_level_0:
if( info == LAPACK_WORK_MEMORY_ERROR ) {
LAPACKE_xerbla( "LAPACKE_zgedmd", info );
}
return info;
}

View File

@ -0,0 +1,182 @@
/*****************************************************************************
Copyright (c) 2014, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************
* Contents: Native middle-level C interface to LAPACK function zgedmd
* Author: Intel Corporation
*****************************************************************************/
#include "lapacke_utils.h"
lapack_int LAPACKE_zgedmd_work( int matrix_layout, char jobs, char jobz,
char jobf, lapack_int whtsvd, lapack_int m,
lapack_int n, lapack_complex_double* x,
lapack_int ldx, lapack_complex_double* y,
lapack_int ldy, lapack_int k,
lapack_complex_double* reig,
lapack_complex_double* imeig, lapack_complex_double* z,
lapack_int ldz, lapack_complex_double* res,
lapack_complex_double* b, lapack_int ldb,
lapack_complex_double* w, lapack_int ldw,
lapack_complex_double* s, lapack_int lds,
lapack_complex_double* work, lapack_int lwork,
lapack_int* iwork, lapack_int liwork )
{
lapack_int info = 0;
if( matrix_layout == LAPACK_COL_MAJOR ) {
/* Call LAPACK function and adjust info */
LAPACK_zgedmd( &jobs, &jobz, &jobf, &whtsvd, &m, &n, x, &ldx, y, &ldy,
&k, reig, imeig, z, &ldz, res, b, &ldb, w, &ldw, s, &lds,
work, &lwork, iwork, &liwork, &info );
if( info < 0 ) {
info = info - 1;
}
} else if( matrix_layout == LAPACK_ROW_MAJOR ) {
lapack_int ldx_t = MAX(1,m);
lapack_int ldy_t = MAX(1,m);
lapack_int ldz_t = MAX(1,m);
lapack_int ldb_t = MAX(1,m);
lapack_int ldw_t = MAX(1,m);
lapack_int lds_t = MAX(1,m);
lapack_complex_double* x_t = NULL;
lapack_complex_double* y_t = NULL;
lapack_complex_double* z_t = NULL;
lapack_complex_double* b_t = NULL;
lapack_complex_double* w_t = NULL;
lapack_complex_double* s_t = NULL;
/* Check leading dimension(s) */
if( ldx < n ) {
info = -9;
LAPACKE_xerbla( "LAPACKE_zgedmd_work", info );
return info;
}
if( ldy < n ) {
info = -11;
LAPACKE_xerbla( "LAPACKE_zgedmd_work", info );
return info;
}
if( ldz < n ) {
info = -16;
LAPACKE_xerbla( "LAPACKE_zgedmd_work", info );
return info;
}
if( ldb < n ) {
info = -19;
LAPACKE_xerbla( "LAPACKE_zgedmd_work", info );
return info;
}
if( ldw < n ) {
info = -21;
LAPACKE_xerbla( "LAPACKE_zgedmd_work", info );
return info;
}
if( lds < n ) {
info = -23;
LAPACKE_xerbla( "LAPACKE_zgedmd_work", info );
return info;
}
/* Query optimal working array(s) size if requested */
if( lwork == -1 ) {
LAPACK_zgedmd( &jobs, &jobz, &jobf, &whtsvd, &m, &n, x, &ldx, y, &ldy,
&k, reig, imeig, z, &ldz, res, b, &ldb, w, &ldw, s, &lds,
work, &lwork, iwork, &liwork, &info );
return (info < 0) ? (info - 1) : info;
}
/* Allocate memory for temporary array(s) */
x_t = (lapack_complex_double*)LAPACKE_malloc( sizeof(lapack_complex_double) * ldx_t * MAX(1,n) );
if( x_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_0;
}
y_t = (lapack_complex_double*)LAPACKE_malloc( sizeof(lapack_complex_double) * ldy_t * MAX(1,n) );
if( y_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_1;
}
z_t = (lapack_complex_double*)LAPACKE_malloc( sizeof(lapack_complex_double) * ldz_t * MAX(1,n) );
if( z_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_2;
}
b_t = (lapack_complex_double*)LAPACKE_malloc( sizeof(lapack_complex_double) * ldb_t * MAX(1,n) );
if( b_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_3;
}
w_t = (lapack_complex_double*)LAPACKE_malloc( sizeof(lapack_complex_double) * ldw_t * MAX(1,n) );
if( w_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_4;
}
s_t = (lapack_complex_double*)LAPACKE_malloc( sizeof(lapack_complex_double) * lds_t * MAX(1,n) );
if( s_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_5;
}
/* Transpose input matrices */
LAPACKE_zge_trans( matrix_layout, m, n, x, ldx, x_t, ldx_t );
LAPACKE_zge_trans( matrix_layout, m, n, y, ldy, y_t, ldy_t );
LAPACKE_zge_trans( matrix_layout, m, n, z, ldz, z_t, ldz_t );
LAPACKE_zge_trans( matrix_layout, m, n, b, ldb, b_t, ldb_t );
LAPACKE_zge_trans( matrix_layout, m, n, w, ldw, w_t, ldw_t );
LAPACKE_zge_trans( matrix_layout, m, n, s, lds, s_t, lds_t );
/* Call LAPACK function and adjust info */
LAPACK_zgedmd( &jobs, &jobz, &jobf, &whtsvd, &m, &n, x_t, &ldx_t, y_t,
&ldy_t, &k, reig, imeig, z_t, &ldz_t, res, b_t, &ldb_t,
w_t, &ldw_t, s_t, &lds_t, work, &lwork, iwork, &liwork, &info );
if( info < 0 ) {
info = info - 1;
}
/* Transpose output matrices */
LAPACKE_zge_trans( LAPACK_COL_MAJOR, m, n, x_t, ldx_t, x, ldx );
LAPACKE_zge_trans( LAPACK_COL_MAJOR, m, n, y_t, ldy_t, y, ldy );
LAPACKE_zge_trans( LAPACK_COL_MAJOR, m, n, z_t, ldz_t, z, ldz );
LAPACKE_zge_trans( LAPACK_COL_MAJOR, m, n, b_t, ldb_t, b, ldb );
LAPACKE_zge_trans( LAPACK_COL_MAJOR, m, n, w_t, ldw_t, w, ldw );
LAPACKE_zge_trans( LAPACK_COL_MAJOR, m, n, s_t, lds_t, s, lds );
/* Release memory and exit */
LAPACKE_free( s_t );
exit_level_5:
LAPACKE_free( w_t );
exit_level_4:
LAPACKE_free( b_t );
exit_level_3:
LAPACKE_free( z_t );
exit_level_2:
LAPACKE_free( y_t );
exit_level_1:
LAPACKE_free( x_t );
exit_level_0:
if( info == LAPACK_TRANSPOSE_MEMORY_ERROR ) {
LAPACKE_xerbla( "LAPACKE_zgedmd_work", info );
}
} else {
info = -1;
LAPACKE_xerbla( "LAPACKE_zgedmd_work", info );
}
return info;
}

View File

@ -0,0 +1,123 @@
/*****************************************************************************
Copyright (c) 2014, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************
* Contents: Native high-level C interface to LAPACK function zgedmdq
* Author: Intel Corporation
*****************************************************************************/
#include "lapacke_utils.h"
lapack_int LAPACKE_zgedmdq( int matrix_layout, char jobs, char jobz, char jobr,
char jobq, char jobt, char jobf, lapack_int whtsvd,
lapack_int m, lapack_int n, lapack_complex_double* f,
lapack_int ldf, lapack_complex_double* x,
lapack_int ldx, lapack_complex_double* y,
lapack_int ldy, lapack_int nrnk, double tol,
lapack_int k, lapack_complex_double* reig,
lapack_complex_double* imeig,
lapack_complex_double* z, lapack_int ldz,
lapack_complex_double* res, lapack_complex_double* b,
lapack_int ldb, lapack_complex_double* v,
lapack_int ldv, lapack_complex_double* s, lapack_int lds)
{
lapack_int info = 0;
lapack_int lwork = -1;
lapack_int liwork = -1;
lapack_complex_double* work = NULL;
lapack_int* iwork = NULL;
lapack_complex_double work_query;
lapack_int iwork_query;
if( matrix_layout != LAPACK_COL_MAJOR && matrix_layout != LAPACK_ROW_MAJOR ) {
LAPACKE_xerbla( "LAPACKE_cgedmdq", -1 );
return -1;
}
#ifndef LAPACK_DISABLE_NAN_CHECK
if( LAPACKE_get_nancheck() ) {
/* Optionally check input matrices for NaNs */
if( LAPACKE_zge_nancheck( matrix_layout, m, n, f, ldf ) ) {
return -11;
}
if( LAPACKE_zge_nancheck( matrix_layout, m, n, x, ldx ) ) {
return -13;
}
if( LAPACKE_zge_nancheck( matrix_layout, m, n, y, ldy ) ) {
return -15;
}
if( LAPACKE_zge_nancheck( matrix_layout, m, n, z, ldz ) ) {
return -22;
}
if( LAPACKE_zge_nancheck( matrix_layout, m, n, b, ldb ) ) {
return -25;
}
if( LAPACKE_zge_nancheck( matrix_layout, m, n, v, ldv ) ) {
return -27;
}
if( LAPACKE_zge_nancheck( matrix_layout, m, n, s, lds ) ) {
return -29;
}
}
#endif
/* Query optimal working array(s) size */
info = LAPACKE_zgedmdq_work( matrix_layout, jobs, jobz, jobr, jobq, jobt,
jobf, whtsvd, m, n, f, ldf, x, ldx, y, ldy,
nrnk, tol, k, reig, imeig, z, ldz, res,
b, ldb, v, ldv, s, lds, &work_query, lwork,
&iwork_query, liwork );
if( info != 0 ) {
goto exit_level_0;
}
lwork = LAPACK_Z2INT( work_query );
liwork = iwork_query;
/* Allocate memory for work arrays */
work = (lapack_complex_double*)LAPACKE_malloc( sizeof(lapack_complex_double) * lwork );
if( work == NULL ) {
info = LAPACK_WORK_MEMORY_ERROR;
goto exit_level_0;
}
iwork = (lapack_int*)LAPACKE_malloc( sizeof(lapack_int) * liwork );
if( iwork == NULL ) {
info = LAPACK_WORK_MEMORY_ERROR;
goto exit_level_1;
}
/* Call middle-level interface */
info = LAPACKE_zgedmdq_work( matrix_layout, jobs, jobz, jobr, jobq, jobt,
jobf, whtsvd, m, n, f, ldf, x, ldx, y, ldy,
nrnk, tol, k, reig, imeig, z, ldz, res,
b, ldb, v, ldv, s, lds, work, lwork, iwork,
liwork );
/* Release memory and exit */
LAPACKE_free( iwork );
exit_level_1:
LAPACKE_free( work );
exit_level_0:
if( info == LAPACK_WORK_MEMORY_ERROR ) {
LAPACKE_xerbla( "LAPACKE_zgedmdq", info );
}
return info;
}

View File

@ -0,0 +1,205 @@
/*****************************************************************************
Copyright (c) 2014, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************
* Contents: Native middle-level C interface to LAPACK function zgedmdq
* Author: Intel Corporation
*****************************************************************************/
#include "lapacke_utils.h"
lapack_int LAPACKE_zgedmdq_work( int matrix_layout, char jobs, char jobz,
char jobr, char jobq, char jobt, char jobf,
lapack_int whtsvd, lapack_int m, lapack_int n,
lapack_complex_double* f, lapack_int ldf,
lapack_complex_double* x, lapack_int ldx,
lapack_complex_double* y, lapack_int ldy,
lapack_int nrnk, double tol, lapack_int k,
lapack_complex_double* reig,
lapack_complex_double* imeig,
lapack_complex_double* z,
lapack_int ldz, lapack_complex_double* res,
lapack_complex_double* b,
lapack_int ldb, lapack_complex_double* v,
lapack_int ldv, lapack_complex_double* s,
lapack_int lds, lapack_complex_double* work,
lapack_int lwork, lapack_int* iwork,
lapack_int liwork )
{
lapack_int info = 0;
if( matrix_layout == LAPACK_COL_MAJOR ) {
/* Call LAPACK function and adjust info */
LAPACK_zgedmdq( &jobs, &jobz, &jobr, &jobq, &jobt, &jobf, &whtsvd, &m,
&n, f, &ldf, x, &ldx, y, &ldy, &nrnk, &tol, &k, reig,
imeig, z, &ldz, res, b, &ldb, v, &ldv, s, &lds,
work, &lwork, iwork, &liwork, &info );
if( info < 0 ) {
info = info - 1;
}
} else if( matrix_layout == LAPACK_ROW_MAJOR ) {
lapack_int ldf_t = MAX(1,m);
lapack_int ldx_t = MAX(1,m);
lapack_int ldy_t = MAX(1,m);
lapack_int ldz_t = MAX(1,m);
lapack_int ldb_t = MAX(1,m);
lapack_int ldv_t = MAX(1,m);
lapack_int lds_t = MAX(1,m);
lapack_complex_double* f_t = NULL;
lapack_complex_double* x_t = NULL;
lapack_complex_double* y_t = NULL;
lapack_complex_double* z_t = NULL;
lapack_complex_double* b_t = NULL;
lapack_complex_double* v_t = NULL;
lapack_complex_double* s_t = NULL;
/* Check leading dimension(s) */
if( ldf < n ) {
info = -12;
LAPACKE_xerbla( "LAPACKE_zgedmdq_work", info );
return info;
}
if( ldx < n ) {
info = -14;
LAPACKE_xerbla( "LAPACKE_zgedmdq_work", info );
return info;
}
if( ldy < n ) {
info = -16;
LAPACKE_xerbla( "LAPACKE_zgedmdq_work", info );
return info;
}
if( ldz < n ) {
info = -23;
LAPACKE_xerbla( "LAPACKE_zgedmdq_work", info );
return info;
}
if( ldb < n ) {
info = -26;
LAPACKE_xerbla( "LAPACKE_zgedmdq_work", info );
return info;
}
if( ldv < n ) {
info = -28;
LAPACKE_xerbla( "LAPACKE_zgedmdq_work", info );
return info;
}
if( lds < n ) {
info = -30;
LAPACKE_xerbla( "LAPACKE_zgedmdq_work", info );
return info;
}
/* Query optimal working array(s) size if requested */
if( lwork == -1 || liwork == -1 ) {
LAPACK_zgedmdq( &jobs, &jobz, &jobr, &jobq, &jobt, &jobf, &whtsvd, &m,
&n, f, &ldf, x, &ldx, y, &ldy, &nrnk, &tol, &k, reig,
imeig, z, &ldz, res, b, &ldb, v, &ldv, s, &lds,
work, &lwork, iwork, &liwork, &info );
return (info < 0) ? (info - 1) : info;
}
/* Allocate memory for temporary array(s) */
f_t = (lapack_complex_double*)LAPACKE_malloc( sizeof(lapack_complex_double) * ldf_t * MAX(1,n) );
if( f_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_0;
}
x_t = (lapack_complex_double*)LAPACKE_malloc( sizeof(lapack_complex_double) * ldx_t * MAX(1,n) );
if( x_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_1;
}
y_t = (lapack_complex_double*)LAPACKE_malloc( sizeof(lapack_complex_double) * ldy_t * MAX(1,n) );
if( y_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_2;
}
z_t = (lapack_complex_double*)LAPACKE_malloc( sizeof(lapack_complex_double) * ldz_t * MAX(1,n) );
if( z_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_3;
}
b_t = (lapack_complex_double*)LAPACKE_malloc( sizeof(lapack_complex_double) * ldb_t * MAX(1,n) );
if( b_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_4;
}
v_t = (lapack_complex_double*)LAPACKE_malloc( sizeof(lapack_complex_double) * ldv_t * MAX(1,n) );
if( v_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_5;
}
s_t = (lapack_complex_double*)LAPACKE_malloc( sizeof(lapack_complex_double) * lds_t * MAX(1,n) );
if( s_t == NULL ) {
info = LAPACK_TRANSPOSE_MEMORY_ERROR;
goto exit_level_6;
}
/* Transpose input matrices */
LAPACKE_zge_trans( matrix_layout, m, n, f, ldf, f_t, ldf_t );
LAPACKE_zge_trans( matrix_layout, m, n, x, ldx, x_t, ldx_t );
LAPACKE_zge_trans( matrix_layout, m, n, y, ldy, y_t, ldy_t );
LAPACKE_zge_trans( matrix_layout, m, n, z, ldz, z_t, ldz_t );
LAPACKE_zge_trans( matrix_layout, m, n, b, ldb, b_t, ldb_t );
LAPACKE_zge_trans( matrix_layout, m, n, v, ldv, v_t, ldv_t );
LAPACKE_zge_trans( matrix_layout, m, n, s, lds, s_t, lds_t );
/* Call LAPACK function and adjust info */
LAPACK_zgedmdq( &jobs, &jobz, &jobr, &jobq, &jobt, &jobf, &whtsvd, &m,
&n, f, &ldf, x, &ldx, y, &ldy, &nrnk, &tol, &k, reig,
imeig, z, &ldz, res, b, &ldb, v, &ldv, s, &lds,
work, &lwork, iwork, &liwork, &info );
if( info < 0 ) {
info = info - 1;
}
/* Transpose output matrices */
LAPACKE_zge_trans( LAPACK_COL_MAJOR, m, n, f_t, ldf_t, f, ldf );
LAPACKE_zge_trans( LAPACK_COL_MAJOR, m, n, x_t, ldx_t, x, ldx );
LAPACKE_zge_trans( LAPACK_COL_MAJOR, m, n, y_t, ldy_t, y, ldy );
LAPACKE_zge_trans( LAPACK_COL_MAJOR, m, n, z_t, ldz_t, z, ldz );
LAPACKE_zge_trans( LAPACK_COL_MAJOR, m, n, b_t, ldb_t, b, ldb );
LAPACKE_zge_trans( LAPACK_COL_MAJOR, m, n, v_t, ldv_t, v, ldv );
LAPACKE_zge_trans( LAPACK_COL_MAJOR, m, n, s_t, lds_t, s, lds );
/* Release memory and exit */
LAPACKE_free( s_t );
exit_level_6:
LAPACKE_free( v_t );
exit_level_5:
LAPACKE_free( b_t );
exit_level_4:
LAPACKE_free( z_t );
exit_level_3:
LAPACKE_free( y_t );
exit_level_2:
LAPACKE_free( x_t );
exit_level_1:
LAPACKE_free( f_t );
exit_level_0:
if( info == LAPACK_TRANSPOSE_MEMORY_ERROR ) {
LAPACKE_xerbla( "LAPACKE_zgedmdq_work", info );
}
} else {
info = -1;
LAPACKE_xerbla( "LAPACKE_zgedmdq_work", info );
}
return info;
}

View File

@ -207,7 +207,7 @@ SLASRC_O = \
ssytrd_2stage.o ssytrd_sy2sb.o ssytrd_sb2st.o ssb2st_kernels.o \
ssyevd_2stage.o ssyev_2stage.o ssyevx_2stage.o ssyevr_2stage.o \
ssbev_2stage.o ssbevx_2stage.o ssbevd_2stage.o ssygv_2stage.o \
sgesvdq.o slatrs3.o strsyl3.o sgelst.o
sgesvdq.o slatrs3.o strsyl3.o sgelst.o sgedmd.o sgedmdq.o
endif
@ -316,7 +316,7 @@ CLASRC_O = \
chetrd_2stage.o chetrd_he2hb.o chetrd_hb2st.o chb2st_kernels.o \
cheevd_2stage.o cheev_2stage.o cheevx_2stage.o cheevr_2stage.o \
chbev_2stage.o chbevx_2stage.o chbevd_2stage.o chegv_2stage.o \
cgesvdq.o clatrs3.o ctrsyl3.o cgelst.o
cgesvdq.o clatrs3.o ctrsyl3.o cgelst.o cgedmd.o cgedmdq.o
endif
ifdef USEXBLAS
@ -417,7 +417,7 @@ DLASRC_O = \
dsytrd_2stage.o dsytrd_sy2sb.o dsytrd_sb2st.o dsb2st_kernels.o \
dsyevd_2stage.o dsyev_2stage.o dsyevx_2stage.o dsyevr_2stage.o \
dsbev_2stage.o dsbevx_2stage.o dsbevd_2stage.o dsygv_2stage.o \
dgesvdq.o dlatrs3.o dtrsyl3.o dgelst.o
dgesvdq.o dlatrs3.o dtrsyl3.o dgelst.o dgedmd.o dgedmdq.o
endif
ifdef USEXBLAS
@ -526,7 +526,7 @@ ZLASRC_O = \
zhetrd_2stage.o zhetrd_he2hb.o zhetrd_hb2st.o zhb2st_kernels.o \
zheevd_2stage.o zheev_2stage.o zheevx_2stage.o zheevr_2stage.o \
zhbev_2stage.o zhbevx_2stage.o zhbevd_2stage.o zhegv_2stage.o \
zgesvdq.o zlatrs3.o ztrsyl3.o zgelst.o
zgesvdq.o zlatrs3.o ztrsyl3.o zgelst.o zgedmd.o zgedmdq.o
endif
ifdef USEXBLAS

1670
lapack-netlib/SRC/cgedmd.c Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,995 @@
SUBROUTINE CGEDMD( JOBS, JOBZ, JOBR, JOBF, WHTSVD, &
M, N, X, LDX, Y, LDY, NRNK, TOL, &
K, EIGS, Z, LDZ, RES, B, LDB, &
W, LDW, S, LDS, ZWORK, LZWORK, &
RWORK, LRWORK, IWORK, LIWORK, INFO )
! March 2023
!.....
USE iso_fortran_env
IMPLICIT NONE
INTEGER, PARAMETER :: WP = real32
!.....
! Scalar arguments
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBF
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDX, LDY, &
NRNK, LDZ, LDB, LDW, LDS, &
LIWORK, LRWORK, LZWORK
INTEGER, INTENT(OUT) :: K, INFO
REAL(KIND=WP), INTENT(IN) :: TOL
! Array arguments
COMPLEX(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*)
COMPLEX(KIND=WP), INTENT(OUT) :: Z(LDZ,*), B(LDB,*), &
W(LDW,*), S(LDS,*)
COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*)
COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*)
REAL(KIND=WP), INTENT(OUT) :: RES(*)
REAL(KIND=WP), INTENT(OUT) :: RWORK(*)
INTEGER, INTENT(OUT) :: IWORK(*)
!............................................................
! Purpose
! =======
! CGEDMD computes the Dynamic Mode Decomposition (DMD) for
! a pair of data snapshot matrices. For the input matrices
! X and Y such that Y = A*X with an unaccessible matrix
! A, CGEDMD computes a certain number of Ritz pairs of A using
! the standard Rayleigh-Ritz extraction from a subspace of
! range(X) that is determined using the leading left singular
! vectors of X. Optionally, CGEDMD returns the residuals
! of the computed Ritz pairs, the information needed for
! a refinement of the Ritz vectors, or the eigenvectors of
! the Exact DMD.
! For further details see the references listed
! below. For more details of the implementation see [3].
!
! References
! ==========
! [1] P. Schmid: Dynamic mode decomposition of numerical
! and experimental data,
! Journal of Fluid Mechanics 656, 5-28, 2010.
! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
! decompositions: analysis and enhancements,
! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
! [3] Z. Drmac: A LAPACK implementation of the Dynamic
! Mode Decomposition I. Technical report. AIMDyn Inc.
! and LAPACK Working Note 298.
! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
! Brunton, N. Kutz: On Dynamic Mode Decomposition:
! Theory and Applications, Journal of Computational
! Dynamics 1(2), 391 -421, 2014.
!
!......................................................................
! Developed and supported by:
! ===========================
! Developed and coded by Zlatko Drmac, Faculty of Science,
! University of Zagreb; drmac@math.hr
! In cooperation with
! AIMdyn Inc., Santa Barbara, CA.
! and supported by
! - DARPA SBIR project "Koopman Operator-Based Forecasting
! for Nonstationary Processes from Near-Term, Limited
! Observational Data" Contract No: W31P4Q-21-C-0007
! - DARPA PAI project "Physics-Informed Machine Learning
! Methodologies" Contract No: HR0011-18-9-0033
! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
! Framework for Space-Time Analysis of Process Dynamics"
! Contract No: HR0011-16-C-0116
! Any opinions, findings and conclusions or recommendations
! expressed in this material are those of the author and
! do not necessarily reflect the views of the DARPA SBIR
! Program Office
!============================================================
! Distribution Statement A:
! Approved for Public Release, Distribution Unlimited.
! Cleared by DARPA on September 29, 2022
!============================================================
!......................................................................
! Arguments
! =========
! JOBS (input) CHARACTER*1
! Determines whether the initial data snapshots are scaled
! by a diagonal matrix.
! 'S' :: The data snapshots matrices X and Y are multiplied
! with a diagonal matrix D so that X*D has unit
! nonzero columns (in the Euclidean 2-norm)
! 'C' :: The snapshots are scaled as with the 'S' option.
! If it is found that an i-th column of X is zero
! vector and the corresponding i-th column of Y is
! non-zero, then the i-th column of Y is set to
! zero and a warning flag is raised.
! 'Y' :: The data snapshots matrices X and Y are multiplied
! by a diagonal matrix D so that Y*D has unit
! nonzero columns (in the Euclidean 2-norm)
! 'N' :: No data scaling.
!.....
! JOBZ (input) CHARACTER*1
! Determines whether the eigenvectors (Koopman modes) will
! be computed.
! 'V' :: The eigenvectors (Koopman modes) will be computed
! and returned in the matrix Z.
! See the description of Z.
! 'F' :: The eigenvectors (Koopman modes) will be returned
! in factored form as the product X(:,1:K)*W, where X
! contains a POD basis (leading left singular vectors
! of the data matrix X) and W contains the eigenvectors
! of the corresponding Rayleigh quotient.
! See the descriptions of K, X, W, Z.
! 'N' :: The eigenvectors are not computed.
!.....
! JOBR (input) CHARACTER*1
! Determines whether to compute the residuals.
! 'R' :: The residuals for the computed eigenpairs will be
! computed and stored in the array RES.
! See the description of RES.
! For this option to be legal, JOBZ must be 'V'.
! 'N' :: The residuals are not computed.
!.....
! JOBF (input) CHARACTER*1
! Specifies whether to store information needed for post-
! processing (e.g. computing refined Ritz vectors)
! 'R' :: The matrix needed for the refinement of the Ritz
! vectors is computed and stored in the array B.
! See the description of B.
! 'E' :: The unscaled eigenvectors of the Exact DMD are
! computed and returned in the array B. See the
! description of B.
! 'N' :: No eigenvector refinement data is computed.
!.....
! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
! Allows for a selection of the SVD algorithm from the
! LAPACK library.
! 1 :: CGESVD (the QR SVD algorithm)
! 2 :: CGESDD (the Divide and Conquer algorithm; if enough
! workspace available, this is the fastest option)
! 3 :: CGESVDQ (the preconditioned QR SVD ; this and 4
! are the most accurate options)
! 4 :: CGEJSV (the preconditioned Jacobi SVD; this and 3
! are the most accurate options)
! For the four methods above, a significant difference in
! the accuracy of small singular values is possible if
! the snapshots vary in norm so that X is severely
! ill-conditioned. If small (smaller than EPS*||X||)
! singular values are of interest and JOBS=='N', then
! the options (3, 4) give the most accurate results, where
! the option 4 is slightly better and with stronger
! theoretical background.
! If JOBS=='S', i.e. the columns of X will be normalized,
! then all methods give nearly equally accurate results.
!.....
! M (input) INTEGER, M>= 0
! The state space dimension (the row dimension of X, Y).
!.....
! N (input) INTEGER, 0 <= N <= M
! The number of data snapshot pairs
! (the number of columns of X and Y).
!.....
! X (input/output) COMPLEX(KIND=WP) M-by-N array
! > On entry, X contains the data snapshot matrix X. It is
! assumed that the column norms of X are in the range of
! the normalized floating point numbers.
! < On exit, the leading K columns of X contain a POD basis,
! i.e. the leading K left singular vectors of the input
! data matrix X, U(:,1:K). All N columns of X contain all
! left singular vectors of the input matrix X.
! See the descriptions of K, Z and W.
!.....
! LDX (input) INTEGER, LDX >= M
! The leading dimension of the array X.
!.....
! Y (input/workspace/output) COMPLEX(KIND=WP) M-by-N array
! > On entry, Y contains the data snapshot matrix Y
! < On exit,
! If JOBR == 'R', the leading K columns of Y contain
! the residual vectors for the computed Ritz pairs.
! See the description of RES.
! If JOBR == 'N', Y contains the original input data,
! scaled according to the value of JOBS.
!.....
! LDY (input) INTEGER , LDY >= M
! The leading dimension of the array Y.
!.....
! NRNK (input) INTEGER
! Determines the mode how to compute the numerical rank,
! i.e. how to truncate small singular values of the input
! matrix X. On input, if
! NRNK = -1 :: i-th singular value sigma(i) is truncated
! if sigma(i) <= TOL*sigma(1)
! This option is recommended.
! NRNK = -2 :: i-th singular value sigma(i) is truncated
! if sigma(i) <= TOL*sigma(i-1)
! This option is included for R&D purposes.
! It requires highly accurate SVD, which
! may not be feasible.
! The numerical rank can be enforced by using positive
! value of NRNK as follows:
! 0 < NRNK <= N :: at most NRNK largest singular values
! will be used. If the number of the computed nonzero
! singular values is less than NRNK, then only those
! nonzero values will be used and the actually used
! dimension is less than NRNK. The actual number of
! the nonzero singular values is returned in the variable
! K. See the descriptions of TOL and K.
!.....
! TOL (input) REAL(KIND=WP), 0 <= TOL < 1
! The tolerance for truncating small singular values.
! See the description of NRNK.
!.....
! K (output) INTEGER, 0 <= K <= N
! The dimension of the POD basis for the data snapshot
! matrix X and the number of the computed Ritz pairs.
! The value of K is determined according to the rule set
! by the parameters NRNK and TOL.
! See the descriptions of NRNK and TOL.
!.....
! EIGS (output) COMPLEX(KIND=WP) N-by-1 array
! The leading K (K<=N) entries of EIGS contain
! the computed eigenvalues (Ritz values).
! See the descriptions of K, and Z.
!.....
! Z (workspace/output) COMPLEX(KIND=WP) M-by-N array
! If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i)
! is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1.
! If JOBZ == 'F', then the Z(:,i)'s are given implicitly as
! the columns of X(:,1:K)*W(1:K,1:K), i.e. X(:,1:K)*W(:,i)
! is an eigenvector corresponding to EIGS(i). The columns
! of W(1:k,1:K) are the computed eigenvectors of the
! K-by-K Rayleigh quotient.
! See the descriptions of EIGS, X and W.
!.....
! LDZ (input) INTEGER , LDZ >= M
! The leading dimension of the array Z.
!.....
! RES (output) REAL(KIND=WP) N-by-1 array
! RES(1:K) contains the residuals for the K computed
! Ritz pairs,
! RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2.
! See the description of EIGS and Z.
!.....
! B (output) COMPLEX(KIND=WP) M-by-N array.
! IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can
! be used for computing the refined vectors; see further
! details in the provided references.
! If JOBF == 'E', B(1:M,1:K) contains
! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
! Exact DMD, up to scaling by the inverse eigenvalues.
! If JOBF =='N', then B is not referenced.
! See the descriptions of X, W, K.
!.....
! LDB (input) INTEGER, LDB >= M
! The leading dimension of the array B.
!.....
! W (workspace/output) COMPLEX(KIND=WP) N-by-N array
! On exit, W(1:K,1:K) contains the K computed
! eigenvectors of the matrix Rayleigh quotient.
! The Ritz vectors (returned in Z) are the
! product of X (containing a POD basis for the input
! matrix X) and W. See the descriptions of K, S, X and Z.
! W is also used as a workspace to temporarily store the
! right singular vectors of X.
!.....
! LDW (input) INTEGER, LDW >= N
! The leading dimension of the array W.
!.....
! S (workspace/output) COMPLEX(KIND=WP) N-by-N array
! The array S(1:K,1:K) is used for the matrix Rayleigh
! quotient. This content is overwritten during
! the eigenvalue decomposition by CGEEV.
! See the description of K.
!.....
! LDS (input) INTEGER, LDS >= N
! The leading dimension of the array S.
!.....
! ZWORK (workspace/output) COMPLEX(KIND=WP) LZWORK-by-1 array
! ZWORK is used as complex workspace in the complex SVD, as
! specified by WHTSVD (1,2, 3 or 4) and for CGEEV for computing
! the eigenvalues of a Rayleigh quotient.
! If the call to CGEDMD is only workspace query, then
! ZWORK(1) contains the minimal complex workspace length and
! ZWORK(2) is the optimal complex workspace length.
! Hence, the length of work is at least 2.
! See the description of LZWORK.
!.....
! LZWORK (input) INTEGER
! The minimal length of the workspace vector ZWORK.
! LZWORK is calculated as MAX(LZWORK_SVD, LZWORK_CGEEV),
! where LZWORK_CGEEV = MAX( 1, 2*N ) and the minimal
! LZWORK_SVD is calculated as follows
! If WHTSVD == 1 :: CGESVD ::
! LZWORK_SVD = MAX(1,2*MIN(M,N)+MAX(M,N))
! If WHTSVD == 2 :: CGESDD ::
! LZWORK_SVD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N)
! If WHTSVD == 3 :: CGESVDQ ::
! LZWORK_SVD = obtainable by a query
! If WHTSVD == 4 :: CGEJSV ::
! LZWORK_SVD = obtainable by a query
! If on entry LZWORK = -1, then a workspace query is
! assumed and the procedure only computes the minimal
! and the optimal workspace lengths and returns them in
! LZWORK(1) and LZWORK(2), respectively.
!.....
! RWORK (workspace/output) REAL(KIND=WP) LRWORK-by-1 array
! On exit, RWORK(1:N) contains the singular values of
! X (for JOBS=='N') or column scaled X (JOBS=='S', 'C').
! If WHTSVD==4, then RWORK(N+1) and RWORK(N+2) contain
! scaling factor RWORK(N+2)/RWORK(N+1) used to scale X
! and Y to avoid overflow in the SVD of X.
! This may be of interest if the scaling option is off
! and as many as possible smallest eigenvalues are
! desired to the highest feasible accuracy.
! If the call to CGEDMD is only workspace query, then
! RWORK(1) contains the minimal workspace length.
! See the description of LRWORK.
!.....
! LRWORK (input) INTEGER
! The minimal length of the workspace vector RWORK.
! LRWORK is calculated as follows:
! LRWORK = MAX(1, N+LRWORK_SVD,N+LRWORK_CGEEV), where
! LRWORK_CGEEV = MAX(1,2*N) and RWORK_SVD is the real workspace
! for the SVD subroutine determined by the input parameter
! WHTSVD.
! If WHTSVD == 1 :: CGESVD ::
! LRWORK_SVD = 5*MIN(M,N)
! If WHTSVD == 2 :: CGESDD ::
! LRWORK_SVD = MAX(5*MIN(M,N)*MIN(M,N)+7*MIN(M,N),
! 2*MAX(M,N)*MIN(M,N)+2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) )
! If WHTSVD == 3 :: CGESVDQ ::
! LRWORK_SVD = obtainable by a query
! If WHTSVD == 4 :: CGEJSV ::
! LRWORK_SVD = obtainable by a query
! If on entry LRWORK = -1, then a workspace query is
! assumed and the procedure only computes the minimal
! real workspace length and returns it in RWORK(1).
!.....
! IWORK (workspace/output) INTEGER LIWORK-by-1 array
! Workspace that is required only if WHTSVD equals
! 2 , 3 or 4. (See the description of WHTSVD).
! If on entry LWORK =-1 or LIWORK=-1, then the
! minimal length of IWORK is computed and returned in
! IWORK(1). See the description of LIWORK.
!.....
! LIWORK (input) INTEGER
! The minimal length of the workspace vector IWORK.
! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N))
! If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1)
! If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N)
! If on entry LIWORK = -1, then a workspace query is
! assumed and the procedure only computes the minimal
! and the optimal workspace lengths for ZWORK, RWORK and
! IWORK. See the descriptions of ZWORK, RWORK and IWORK.
!.....
! INFO (output) INTEGER
! -i < 0 :: On entry, the i-th argument had an
! illegal value
! = 0 :: Successful return.
! = 1 :: Void input. Quick exit (M=0 or N=0).
! = 2 :: The SVD computation of X did not converge.
! Suggestion: Check the input data and/or
! repeat with different WHTSVD.
! = 3 :: The computation of the eigenvalues did not
! converge.
! = 4 :: If data scaling was requested on input and
! the procedure found inconsistency in the data
! such that for some column index i,
! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
! to zero if JOBS=='C'. The computation proceeds
! with original or modified data and warning
! flag is set with INFO=4.
!.............................................................
!.............................................................
! Parameters
! ~~~~~~~~~~
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP
COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP )
COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP )
! Local scalars
! ~~~~~~~~~~~~~
REAL(KIND=WP) :: OFL, ROOTSC, SCALE, SMALL, &
SSUM, XSCL1, XSCL2
INTEGER :: i, j, IMINWR, INFO1, INFO2, &
LWRKEV, LWRSDD, LWRSVD, LWRSVJ, &
LWRSVQ, MLWORK, MWRKEV, MWRSDD, &
MWRSVD, MWRSVJ, MWRSVQ, NUMRNK, &
OLWORK, MLRWRK
LOGICAL :: BADXY, LQUERY, SCCOLX, SCCOLY, &
WNTEX, WNTREF, WNTRES, WNTVEC
CHARACTER :: JOBZL, T_OR_N
CHARACTER :: JSVOPT
!
! Local arrays
! ~~~~~~~~~~~~
REAL(KIND=WP) :: RDUMMY(2)
! External functions (BLAS and LAPACK)
! ~~~~~~~~~~~~~~~~~
REAL(KIND=WP) CLANGE, SLAMCH, SCNRM2
EXTERNAL CLANGE, SLAMCH, SCNRM2, ICAMAX
INTEGER ICAMAX
LOGICAL SISNAN, LSAME
EXTERNAL SISNAN, LSAME
! External subroutines (BLAS and LAPACK)
! ~~~~~~~~~~~~~~~~~~~~
EXTERNAL CAXPY, CGEMM, CSSCAL
EXTERNAL CGEEV, CGEJSV, CGESDD, CGESVD, CGESVDQ, &
CLACPY, CLASCL, CLASSQ, XERBLA
! Intrinsic functions
! ~~~~~~~~~~~~~~~~~~~
INTRINSIC FLOAT, INT, MAX, SQRT
!............................................................
!
! Test the input arguments
!
WNTRES = LSAME(JOBR,'R')
SCCOLX = LSAME(JOBS,'S') .OR. LSAME(JOBS,'C')
SCCOLY = LSAME(JOBS,'Y')
WNTVEC = LSAME(JOBZ,'V')
WNTREF = LSAME(JOBF,'R')
WNTEX = LSAME(JOBF,'E')
INFO = 0
LQUERY = ( ( LZWORK == -1 ) .OR. ( LIWORK == -1 ) &
.OR. ( LRWORK == -1 ) )
!
IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. &
LSAME(JOBS,'N')) ) THEN
INFO = -1
ELSE IF ( .NOT. (WNTVEC .OR. LSAME(JOBZ,'N') &
.OR. LSAME(JOBZ,'F')) ) THEN
INFO = -2
ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. &
( WNTRES .AND. (.NOT.WNTVEC) ) ) THEN
INFO = -3
ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. &
LSAME(JOBF,'N') ) ) THEN
INFO = -4
ELSE IF ( .NOT.((WHTSVD == 1) .OR. (WHTSVD == 2) .OR. &
(WHTSVD == 3) .OR. (WHTSVD == 4) )) THEN
INFO = -5
ELSE IF ( M < 0 ) THEN
INFO = -6
ELSE IF ( ( N < 0 ) .OR. ( N > M ) ) THEN
INFO = -7
ELSE IF ( LDX < M ) THEN
INFO = -9
ELSE IF ( LDY < M ) THEN
INFO = -11
ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. &
((NRNK >= 1).AND.(NRNK <=N ))) ) THEN
INFO = -12
ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN
INFO = -13
ELSE IF ( LDZ < M ) THEN
INFO = -17
ELSE IF ( (WNTREF .OR. WNTEX ) .AND. ( LDB < M ) ) THEN
INFO = -20
ELSE IF ( LDW < N ) THEN
INFO = -22
ELSE IF ( LDS < N ) THEN
INFO = -24
END IF
!
IF ( INFO == 0 ) THEN
! Compute the minimal and the optimal workspace
! requirements. Simulate running the code and
! determine minimal and optimal sizes of the
! workspace at any moment of the run.
IF ( N == 0 ) THEN
! Quick return. All output except K is void.
! INFO=1 signals the void input.
! In case of a workspace query, the default
! minimal workspace lengths are returned.
IF ( LQUERY ) THEN
IWORK(1) = 1
RWORK(1) = 1
ZWORK(1) = 2
ZWORK(2) = 2
ELSE
K = 0
END IF
INFO = 1
RETURN
END IF
IMINWR = 1
MLRWRK = MAX(1,N)
MLWORK = 2
OLWORK = 2
SELECT CASE ( WHTSVD )
CASE (1)
! The following is specified as the minimal
! length of WORK in the definition of CGESVD:
! MWRSVD = MAX(1,2*MIN(M,N)+MAX(M,N))
MWRSVD = MAX(1,2*MIN(M,N)+MAX(M,N))
MLWORK = MAX(MLWORK,MWRSVD)
MLRWRK = MAX(MLRWRK,N + 5*MIN(M,N))
IF ( LQUERY ) THEN
CALL CGESVD( 'O', 'S', M, N, X, LDX, RWORK, &
B, LDB, W, LDW, ZWORK, -1, RDUMMY, INFO1 )
LWRSVD = INT( ZWORK(1) )
OLWORK = MAX(OLWORK,LWRSVD)
END IF
CASE (2)
! The following is specified as the minimal
! length of WORK in the definition of CGESDD:
! MWRSDD = 2*min(M,N)*min(M,N)+2*min(M,N)+max(M,N).
! RWORK length: 5*MIN(M,N)*MIN(M,N)+7*MIN(M,N)
! In LAPACK 3.10.1 RWORK is defined differently.
! Below we take max over the two versions.
! IMINWR = 8*MIN(M,N)
MWRSDD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N)
MLWORK = MAX(MLWORK,MWRSDD)
IMINWR = 8*MIN(M,N)
MLRWRK = MAX( MLRWRK, N + &
MAX( 5*MIN(M,N)*MIN(M,N)+7*MIN(M,N), &
5*MIN(M,N)*MIN(M,N)+5*MIN(M,N), &
2*MAX(M,N)*MIN(M,N)+ &
2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) )
IF ( LQUERY ) THEN
CALL CGESDD( 'O', M, N, X, LDX, RWORK, B, &
LDB, W, LDW, ZWORK, -1, RDUMMY, IWORK, INFO1 )
LWRSDD = MAX(MWRSDD,INT( ZWORK(1) ))
OLWORK = MAX(OLWORK,LWRSDD)
END IF
CASE (3)
CALL CGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, &
X, LDX, RWORK, Z, LDZ, W, LDW, NUMRNK, &
IWORK, -1, ZWORK, -1, RDUMMY, -1, INFO1 )
IMINWR = IWORK(1)
MWRSVQ = INT(ZWORK(2))
MLWORK = MAX(MLWORK,MWRSVQ)
MLRWRK = MAX(MLRWRK,N + INT(RDUMMY(1)))
IF ( LQUERY ) THEN
LWRSVQ = INT(ZWORK(1))
OLWORK = MAX(OLWORK,LWRSVQ)
END IF
CASE (4)
JSVOPT = 'J'
CALL CGEJSV( 'F', 'U', JSVOPT, 'N', 'N', 'P', M, &
N, X, LDX, RWORK, Z, LDZ, W, LDW, &
ZWORK, -1, RDUMMY, -1, IWORK, INFO1 )
IMINWR = IWORK(1)
MWRSVJ = INT(ZWORK(2))
MLWORK = MAX(MLWORK,MWRSVJ)
MLRWRK = MAX(MLRWRK,N + MAX(7,INT(RDUMMY(1))))
IF ( LQUERY ) THEN
LWRSVJ = INT(ZWORK(1))
OLWORK = MAX(OLWORK,LWRSVJ)
END IF
END SELECT
IF ( WNTVEC .OR. WNTEX .OR. LSAME(JOBZ,'F') ) THEN
JOBZL = 'V'
ELSE
JOBZL = 'N'
END IF
! Workspace calculation to the CGEEV call
MWRKEV = MAX( 1, 2*N )
MLWORK = MAX(MLWORK,MWRKEV)
MLRWRK = MAX(MLRWRK,N+2*N)
IF ( LQUERY ) THEN
CALL CGEEV( 'N', JOBZL, N, S, LDS, EIGS, &
W, LDW, W, LDW, ZWORK, -1, RWORK, INFO1 ) ! LAPACK CALL
LWRKEV = INT(ZWORK(1))
OLWORK = MAX( OLWORK, LWRKEV )
OLWORK = MAX( 2, OLWORK )
END IF
!
IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -30
IF ( LRWORK < MLRWRK .AND. (.NOT.LQUERY) ) INFO = -28
IF ( LZWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -26
END IF
!
IF( INFO /= 0 ) THEN
CALL XERBLA( 'CGEDMD', -INFO )
RETURN
ELSE IF ( LQUERY ) THEN
! Return minimal and optimal workspace sizes
IWORK(1) = IMINWR
RWORK(1) = MLRWRK
ZWORK(1) = MLWORK
ZWORK(2) = OLWORK
RETURN
END IF
!............................................................
!
OFL = SLAMCH('O')*SLAMCH('P')
SMALL = SLAMCH('S')
BADXY = .FALSE.
!
! <1> Optional scaling of the snapshots (columns of X, Y)
! ==========================================================
IF ( SCCOLX ) THEN
! The columns of X will be normalized.
! To prevent overflows, the column norms of X are
! carefully computed using CLASSQ.
K = 0
DO i = 1, N
!WORK(i) = SCNRM2( M, X(1,i), 1 )
SCALE = ZERO
CALL CLASSQ( M, X(1,i), 1, SCALE, SSUM )
IF ( SISNAN(SCALE) .OR. SISNAN(SSUM) ) THEN
K = 0
INFO = -8
CALL XERBLA('CGEDMD',-INFO)
END IF
IF ( (SCALE /= ZERO) .AND. (SSUM /= ZERO) ) THEN
ROOTSC = SQRT(SSUM)
IF ( SCALE .GE. (OFL / ROOTSC) ) THEN
! Norm of X(:,i) overflows. First, X(:,i)
! is scaled by
! ( ONE / ROOTSC ) / SCALE = 1/||X(:,i)||_2.
! Next, the norm of X(:,i) is stored without
! overflow as WORK(i) = - SCALE * (ROOTSC/M),
! the minus sign indicating the 1/M factor.
! Scaling is performed without overflow, and
! underflow may occur in the smallest entries
! of X(:,i). The relative backward and forward
! errors are small in the ell_2 norm.
CALL CLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, &
M, 1, X(1,i), LDX, INFO2 )
RWORK(i) = - SCALE * ( ROOTSC / FLOAT(M) )
ELSE
! X(:,i) will be scaled to unit 2-norm
RWORK(i) = SCALE * ROOTSC
CALL CLASCL( 'G',0, 0, RWORK(i), ONE, M, 1, &
X(1,i), LDX, INFO2 ) ! LAPACK CALL
! X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i) ! INTRINSIC
END IF
ELSE
RWORK(i) = ZERO
K = K + 1
END IF
END DO
IF ( K == N ) THEN
! All columns of X are zero. Return error code -8.
! (the 8th input variable had an illegal value)
K = 0
INFO = -8
CALL XERBLA('CGEDMD',-INFO)
RETURN
END IF
DO i = 1, N
! Now, apply the same scaling to the columns of Y.
IF ( RWORK(i) > ZERO ) THEN
CALL CSSCAL( M, ONE/RWORK(i), Y(1,i), 1 ) ! BLAS CALL
! Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i) ! INTRINSIC
ELSE IF ( RWORK(i) < ZERO ) THEN
CALL CLASCL( 'G', 0, 0, -RWORK(i), &
ONE/FLOAT(M), M, 1, Y(1,i), LDY, INFO2 ) ! LAPACK CALL
ELSE IF ( ABS(Y(ICAMAX(M, Y(1,i),1),i )) &
/= ZERO ) THEN
! X(:,i) is zero vector. For consistency,
! Y(:,i) should also be zero. If Y(:,i) is not
! zero, then the data might be inconsistent or
! corrupted. If JOBS == 'C', Y(:,i) is set to
! zero and a warning flag is raised.
! The computation continues but the
! situation will be reported in the output.
BADXY = .TRUE.
IF ( LSAME(JOBS,'C')) &
CALL CSSCAL( M, ZERO, Y(1,i), 1 ) ! BLAS CALL
END IF
END DO
END IF
!
IF ( SCCOLY ) THEN
! The columns of Y will be normalized.
! To prevent overflows, the column norms of Y are
! carefully computed using CLASSQ.
DO i = 1, N
!RWORK(i) = SCNRM2( M, Y(1,i), 1 )
SCALE = ZERO
CALL CLASSQ( M, Y(1,i), 1, SCALE, SSUM )
IF ( SISNAN(SCALE) .OR. SISNAN(SSUM) ) THEN
K = 0
INFO = -10
CALL XERBLA('CGEDMD',-INFO)
END IF
IF ( SCALE /= ZERO .AND. (SSUM /= ZERO) ) THEN
ROOTSC = SQRT(SSUM)
IF ( SCALE .GE. (OFL / ROOTSC) ) THEN
! Norm of Y(:,i) overflows. First, Y(:,i)
! is scaled by
! ( ONE / ROOTSC ) / SCALE = 1/||Y(:,i)||_2.
! Next, the norm of Y(:,i) is stored without
! overflow as RWORK(i) = - SCALE * (ROOTSC/M),
! the minus sign indicating the 1/M factor.
! Scaling is performed without overflow, and
! underflow may occur in the smallest entries
! of Y(:,i). The relative backward and forward
! errors are small in the ell_2 norm.
CALL CLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, &
M, 1, Y(1,i), LDY, INFO2 )
RWORK(i) = - SCALE * ( ROOTSC / FLOAT(M) )
ELSE
! Y(:,i) will be scaled to unit 2-norm
RWORK(i) = SCALE * ROOTSC
CALL CLASCL( 'G',0, 0, RWORK(i), ONE, M, 1, &
Y(1,i), LDY, INFO2 ) ! LAPACK CALL
! Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i) ! INTRINSIC
END IF
ELSE
RWORK(i) = ZERO
END IF
END DO
DO i = 1, N
! Now, apply the same scaling to the columns of X.
IF ( RWORK(i) > ZERO ) THEN
CALL CSSCAL( M, ONE/RWORK(i), X(1,i), 1 ) ! BLAS CALL
! X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i) ! INTRINSIC
ELSE IF ( RWORK(i) < ZERO ) THEN
CALL CLASCL( 'G', 0, 0, -RWORK(i), &
ONE/FLOAT(M), M, 1, X(1,i), LDX, INFO2 ) ! LAPACK CALL
ELSE IF ( ABS(X(ICAMAX(M, X(1,i),1),i )) &
/= ZERO ) THEN
! Y(:,i) is zero vector. If X(:,i) is not
! zero, then a warning flag is raised.
! The computation continues but the
! situation will be reported in the output.
BADXY = .TRUE.
END IF
END DO
END IF
!
! <2> SVD of the data snapshot matrix X.
! =====================================
! The left singular vectors are stored in the array X.
! The right singular vectors are in the array W.
! The array W will later on contain the eigenvectors
! of a Rayleigh quotient.
NUMRNK = N
SELECT CASE ( WHTSVD )
CASE (1)
CALL CGESVD( 'O', 'S', M, N, X, LDX, RWORK, B, &
LDB, W, LDW, ZWORK, LZWORK, RWORK(N+1), INFO1 ) ! LAPACK CALL
T_OR_N = 'C'
CASE (2)
CALL CGESDD( 'O', M, N, X, LDX, RWORK, B, LDB, W, &
LDW, ZWORK, LZWORK, RWORK(N+1), IWORK, INFO1 ) ! LAPACK CALL
T_OR_N = 'C'
CASE (3)
CALL CGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, &
X, LDX, RWORK, Z, LDZ, W, LDW, &
NUMRNK, IWORK, LIWORK, ZWORK, &
LZWORK, RWORK(N+1), LRWORK-N, INFO1) ! LAPACK CALL
CALL CLACPY( 'A', M, NUMRNK, Z, LDZ, X, LDX ) ! LAPACK CALL
T_OR_N = 'C'
CASE (4)
CALL CGEJSV( 'F', 'U', JSVOPT, 'N', 'N', 'P', M, &
N, X, LDX, RWORK, Z, LDZ, W, LDW, &
ZWORK, LZWORK, RWORK(N+1), LRWORK-N, IWORK, INFO1 ) ! LAPACK CALL
CALL CLACPY( 'A', M, N, Z, LDZ, X, LDX ) ! LAPACK CALL
T_OR_N = 'N'
XSCL1 = RWORK(N+1)
XSCL2 = RWORK(N+2)
IF ( XSCL1 /= XSCL2 ) THEN
! This is an exceptional situation. If the
! data matrices are not scaled and the
! largest singular value of X overflows.
! In that case CGEJSV can return the SVD
! in scaled form. The scaling factor can be used
! to rescale the data (X and Y).
CALL CLASCL( 'G', 0, 0, XSCL1, XSCL2, M, N, Y, LDY, INFO2 )
END IF
END SELECT
!
IF ( INFO1 > 0 ) THEN
! The SVD selected subroutine did not converge.
! Return with an error code.
INFO = 2
RETURN
END IF
!
IF ( RWORK(1) == ZERO ) THEN
! The largest computed singular value of (scaled)
! X is zero. Return error code -8
! (the 8th input variable had an illegal value).
K = 0
INFO = -8
CALL XERBLA('CGEDMD',-INFO)
RETURN
END IF
!
!<3> Determine the numerical rank of the data
! snapshots matrix X. This depends on the
! parameters NRNK and TOL.
SELECT CASE ( NRNK )
CASE ( -1 )
K = 1
DO i = 2, NUMRNK
IF ( ( RWORK(i) <= RWORK(1)*TOL ) .OR. &
( RWORK(i) <= SMALL ) ) EXIT
K = K + 1
END DO
CASE ( -2 )
K = 1
DO i = 1, NUMRNK-1
IF ( ( RWORK(i+1) <= RWORK(i)*TOL ) .OR. &
( RWORK(i) <= SMALL ) ) EXIT
K = K + 1
END DO
CASE DEFAULT
K = 1
DO i = 2, NRNK
IF ( RWORK(i) <= SMALL ) EXIT
K = K + 1
END DO
END SELECT
! Now, U = X(1:M,1:K) is the SVD/POD basis for the
! snapshot data in the input matrix X.
!<4> Compute the Rayleigh quotient S = U^H * A * U.
! Depending on the requested outputs, the computation
! is organized to compute additional auxiliary
! matrices (for the residuals and refinements).
!
! In all formulas below, we need V_k*Sigma_k^(-1)
! where either V_k is in W(1:N,1:K), or V_k^H is in
! W(1:K,1:N). Here Sigma_k=diag(WORK(1:K)).
IF ( LSAME(T_OR_N, 'N') ) THEN
DO i = 1, K
CALL CSSCAL( N, ONE/RWORK(i), W(1,i), 1 ) ! BLAS CALL
! W(1:N,i) = (ONE/RWORK(i)) * W(1:N,i) ! INTRINSIC
END DO
ELSE
! This non-unit stride access is due to the fact
! that CGESVD, CGESVDQ and CGESDD return the
! adjoint matrix of the right singular vectors.
!DO i = 1, K
! CALL DSCAL( N, ONE/RWORK(i), W(i,1), LDW ) ! BLAS CALL
! ! W(i,1:N) = (ONE/RWORK(i)) * W(i,1:N) ! INTRINSIC
!END DO
DO i = 1, K
RWORK(N+i) = ONE/RWORK(i)
END DO
DO j = 1, N
DO i = 1, K
W(i,j) = CMPLX(RWORK(N+i),ZERO,KIND=WP)*W(i,j)
END DO
END DO
END IF
!
IF ( WNTREF ) THEN
!
! Need A*U(:,1:K)=Y*V_k*inv(diag(WORK(1:K)))
! for computing the refined Ritz vectors
! (optionally, outside CGEDMD).
CALL CGEMM( 'N', T_OR_N, M, K, N, ZONE, Y, LDY, W, &
LDW, ZZERO, Z, LDZ ) ! BLAS CALL
! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),TRANSPOSE(W(1:K,1:N))) ! INTRINSIC, for T_OR_N=='T'
! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),W(1:N,1:K)) ! INTRINSIC, for T_OR_N=='N'
!
! At this point Z contains
! A * U(:,1:K) = Y * V_k * Sigma_k^(-1), and
! this is needed for computing the residuals.
! This matrix is returned in the array B and
! it can be used to compute refined Ritz vectors.
CALL CLACPY( 'A', M, K, Z, LDZ, B, LDB ) ! BLAS CALL
! B(1:M,1:K) = Z(1:M,1:K) ! INTRINSIC
CALL CGEMM( 'C', 'N', K, K, M, ZONE, X, LDX, Z, &
LDZ, ZZERO, S, LDS ) ! BLAS CALL
! S(1:K,1:K) = MATMUL(TANSPOSE(X(1:M,1:K)),Z(1:M,1:K)) ! INTRINSIC
! At this point S = U^H * A * U is the Rayleigh quotient.
ELSE
! A * U(:,1:K) is not explicitly needed and the
! computation is organized differently. The Rayleigh
! quotient is computed more efficiently.
CALL CGEMM( 'C', 'N', K, N, M, ZONE, X, LDX, Y, LDY, &
ZZERO, Z, LDZ ) ! BLAS CALL
! Z(1:K,1:N) = MATMUL( TRANSPOSE(X(1:M,1:K)), Y(1:M,1:N) ) ! INTRINSIC
!
CALL CGEMM( 'N', T_OR_N, K, K, N, ZONE, Z, LDZ, W, &
LDW, ZZERO, S, LDS ) ! BLAS CALL
! S(1:K,1:K) = MATMUL(Z(1:K,1:N),TRANSPOSE(W(1:K,1:N))) ! INTRINSIC, for T_OR_N=='T'
! S(1:K,1:K) = MATMUL(Z(1:K,1:N),(W(1:N,1:K))) ! INTRINSIC, for T_OR_N=='N'
! At this point S = U^H * A * U is the Rayleigh quotient.
! If the residuals are requested, save scaled V_k into Z.
! Recall that V_k or V_k^H is stored in W.
IF ( WNTRES .OR. WNTEX ) THEN
IF ( LSAME(T_OR_N, 'N') ) THEN
CALL CLACPY( 'A', N, K, W, LDW, Z, LDZ )
ELSE
CALL CLACPY( 'A', K, N, W, LDW, Z, LDZ )
END IF
END IF
END IF
!
!<5> Compute the Ritz values and (if requested) the
! right eigenvectors of the Rayleigh quotient.
!
CALL CGEEV( 'N', JOBZL, K, S, LDS, EIGS, W, &
LDW, W, LDW, ZWORK, LZWORK, RWORK(N+1), INFO1 ) ! LAPACK CALL
!
! W(1:K,1:K) contains the eigenvectors of the Rayleigh
! quotient. See the description of Z.
! Also, see the description of CGEEV.
IF ( INFO1 > 0 ) THEN
! CGEEV failed to compute the eigenvalues and
! eigenvectors of the Rayleigh quotient.
INFO = 3
RETURN
END IF
!
! <6> Compute the eigenvectors (if requested) and,
! the residuals (if requested).
!
IF ( WNTVEC .OR. WNTEX ) THEN
IF ( WNTRES ) THEN
IF ( WNTREF ) THEN
! Here, if the refinement is requested, we have
! A*U(:,1:K) already computed and stored in Z.
! For the residuals, need Y = A * U(:,1;K) * W.
CALL CGEMM( 'N', 'N', M, K, K, ZONE, Z, LDZ, W, &
LDW, ZZERO, Y, LDY ) ! BLAS CALL
! Y(1:M,1:K) = Z(1:M,1:K) * W(1:K,1:K) ! INTRINSIC
! This frees Z; Y contains A * U(:,1:K) * W.
ELSE
! Compute S = V_k * Sigma_k^(-1) * W, where
! V_k * Sigma_k^(-1) (or its adjoint) is stored in Z
CALL CGEMM( T_OR_N, 'N', N, K, K, ZONE, Z, LDZ, &
W, LDW, ZZERO, S, LDS)
! Then, compute Z = Y * S =
! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) =
! = A * U(:,1:K) * W(1:K,1:K)
CALL CGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, &
LDS, ZZERO, Z, LDZ)
! Save a copy of Z into Y and free Z for holding
! the Ritz vectors.
CALL CLACPY( 'A', M, K, Z, LDZ, Y, LDY )
IF ( WNTEX ) CALL CLACPY( 'A', M, K, Z, LDZ, B, LDB )
END IF
ELSE IF ( WNTEX ) THEN
! Compute S = V_k * Sigma_k^(-1) * W, where
! V_k * Sigma_k^(-1) is stored in Z
CALL CGEMM( T_OR_N, 'N', N, K, K, ZONE, Z, LDZ, &
W, LDW, ZZERO, S, LDS)
! Then, compute Z = Y * S =
! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) =
! = A * U(:,1:K) * W(1:K,1:K)
CALL CGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, &
LDS, ZZERO, B, LDB)
! The above call replaces the following two calls
! that were used in the developing-testing phase.
! CALL CGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, &
! LDS, ZZERO, Z, LDZ)
! Save a copy of Z into Y and free Z for holding
! the Ritz vectors.
! CALL CLACPY( 'A', M, K, Z, LDZ, B, LDB )
END IF
!
! Compute the Ritz vectors
IF ( WNTVEC ) CALL CGEMM( 'N', 'N', M, K, K, ZONE, X, LDX, W, LDW, &
ZZERO, Z, LDZ ) ! BLAS CALL
! Z(1:M,1:K) = MATMUL(X(1:M,1:K), W(1:K,1:K)) ! INTRINSIC
!
IF ( WNTRES ) THEN
DO i = 1, K
CALL CAXPY( M, -EIGS(i), Z(1,i), 1, Y(1,i), 1 ) ! BLAS CALL
! Y(1:M,i) = Y(1:M,i) - EIGS(i) * Z(1:M,i) ! INTRINSIC
RES(i) = SCNRM2( M, Y(1,i), 1) ! BLAS CALL
END DO
END IF
END IF
!
IF ( WHTSVD == 4 ) THEN
RWORK(N+1) = XSCL1
RWORK(N+2) = XSCL2
END IF
!
! Successful exit.
IF ( .NOT. BADXY ) THEN
INFO = 0
ELSE
! A warning on possible data inconsistency.
! This should be a rare event.
INFO = 4
END IF
!............................................................
RETURN
! ......
END SUBROUTINE CGEDMD

1289
lapack-netlib/SRC/cgedmdq.c Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,689 @@
SUBROUTINE CGEDMDQ( JOBS, JOBZ, JOBR, JOBQ, JOBT, JOBF, &
WHTSVD, M, N, F, LDF, X, LDX, Y, &
LDY, NRNK, TOL, K, EIGS, &
Z, LDZ, RES, B, LDB, V, LDV, &
S, LDS, ZWORK, LZWORK, WORK, LWORK, &
IWORK, LIWORK, INFO )
! March 2023
!.....
USE iso_fortran_env
IMPLICIT NONE
INTEGER, PARAMETER :: WP = real32
!.....
! Scalar arguments
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBQ, &
JOBT, JOBF
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDF, LDX, &
LDY, NRNK, LDZ, LDB, LDV, &
LDS, LZWORK, LWORK, LIWORK
INTEGER, INTENT(OUT) :: INFO, K
REAL(KIND=WP), INTENT(IN) :: TOL
! Array arguments
COMPLEX(KIND=WP), INTENT(INOUT) :: F(LDF,*)
COMPLEX(KIND=WP), INTENT(OUT) :: X(LDX,*), Y(LDY,*), &
Z(LDZ,*), B(LDB,*), &
V(LDV,*), S(LDS,*)
COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*)
COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*)
REAL(KIND=WP), INTENT(OUT) :: RES(*)
REAL(KIND=WP), INTENT(OUT) :: WORK(*)
INTEGER, INTENT(OUT) :: IWORK(*)
!.....
! Purpose
! =======
! CGEDMDQ computes the Dynamic Mode Decomposition (DMD) for
! a pair of data snapshot matrices, using a QR factorization
! based compression of the data. For the input matrices
! X and Y such that Y = A*X with an unaccessible matrix
! A, CGEDMDQ computes a certain number of Ritz pairs of A using
! the standard Rayleigh-Ritz extraction from a subspace of
! range(X) that is determined using the leading left singular
! vectors of X. Optionally, CGEDMDQ returns the residuals
! of the computed Ritz pairs, the information needed for
! a refinement of the Ritz vectors, or the eigenvectors of
! the Exact DMD.
! For further details see the references listed
! below. For more details of the implementation see [3].
!
! References
! ==========
! [1] P. Schmid: Dynamic mode decomposition of numerical
! and experimental data,
! Journal of Fluid Mechanics 656, 5-28, 2010.
! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
! decompositions: analysis and enhancements,
! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
! [3] Z. Drmac: A LAPACK implementation of the Dynamic
! Mode Decomposition I. Technical report. AIMDyn Inc.
! and LAPACK Working Note 298.
! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
! Brunton, N. Kutz: On Dynamic Mode Decomposition:
! Theory and Applications, Journal of Computational
! Dynamics 1(2), 391 -421, 2014.
!
! Developed and supported by:
! ===========================
! Developed and coded by Zlatko Drmac, Faculty of Science,
! University of Zagreb; drmac@math.hr
! In cooperation with
! AIMdyn Inc., Santa Barbara, CA.
! and supported by
! - DARPA SBIR project "Koopman Operator-Based Forecasting
! for Nonstationary Processes from Near-Term, Limited
! Observational Data" Contract No: W31P4Q-21-C-0007
! - DARPA PAI project "Physics-Informed Machine Learning
! Methodologies" Contract No: HR0011-18-9-0033
! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
! Framework for Space-Time Analysis of Process Dynamics"
! Contract No: HR0011-16-C-0116
! Any opinions, findings and conclusions or recommendations
! expressed in this material are those of the author and
! do not necessarily reflect the views of the DARPA SBIR
! Program Office.
!============================================================
! Distribution Statement A:
! Approved for Public Release, Distribution Unlimited.
! Cleared by DARPA on September 29, 2022
!============================================================
!......................................................................
! Arguments
! =========
! JOBS (input) CHARACTER*1
! Determines whether the initial data snapshots are scaled
! by a diagonal matrix. The data snapshots are the columns
! of F. The leading N-1 columns of F are denoted X and the
! trailing N-1 columns are denoted Y.
! 'S' :: The data snapshots matrices X and Y are multiplied
! with a diagonal matrix D so that X*D has unit
! nonzero columns (in the Euclidean 2-norm)
! 'C' :: The snapshots are scaled as with the 'S' option.
! If it is found that an i-th column of X is zero
! vector and the corresponding i-th column of Y is
! non-zero, then the i-th column of Y is set to
! zero and a warning flag is raised.
! 'Y' :: The data snapshots matrices X and Y are multiplied
! by a diagonal matrix D so that Y*D has unit
! nonzero columns (in the Euclidean 2-norm)
! 'N' :: No data scaling.
!.....
! JOBZ (input) CHARACTER*1
! Determines whether the eigenvectors (Koopman modes) will
! be computed.
! 'V' :: The eigenvectors (Koopman modes) will be computed
! and returned in the matrix Z.
! See the description of Z.
! 'F' :: The eigenvectors (Koopman modes) will be returned
! in factored form as the product Z*V, where Z
! is orthonormal and V contains the eigenvectors
! of the corresponding Rayleigh quotient.
! See the descriptions of F, V, Z.
! 'Q' :: The eigenvectors (Koopman modes) will be returned
! in factored form as the product Q*Z, where Z
! contains the eigenvectors of the compression of the
! underlying discretised operator onto the span of
! the data snapshots. See the descriptions of F, V, Z.
! Q is from the inital QR facorization.
! 'N' :: The eigenvectors are not computed.
!.....
! JOBR (input) CHARACTER*1
! Determines whether to compute the residuals.
! 'R' :: The residuals for the computed eigenpairs will
! be computed and stored in the array RES.
! See the description of RES.
! For this option to be legal, JOBZ must be 'V'.
! 'N' :: The residuals are not computed.
!.....
! JOBQ (input) CHARACTER*1
! Specifies whether to explicitly compute and return the
! unitary matrix from the QR factorization.
! 'Q' :: The matrix Q of the QR factorization of the data
! snapshot matrix is computed and stored in the
! array F. See the description of F.
! 'N' :: The matrix Q is not explicitly computed.
!.....
! JOBT (input) CHARACTER*1
! Specifies whether to return the upper triangular factor
! from the QR factorization.
! 'R' :: The matrix R of the QR factorization of the data
! snapshot matrix F is returned in the array Y.
! See the description of Y and Further details.
! 'N' :: The matrix R is not returned.
!.....
! JOBF (input) CHARACTER*1
! Specifies whether to store information needed for post-
! processing (e.g. computing refined Ritz vectors)
! 'R' :: The matrix needed for the refinement of the Ritz
! vectors is computed and stored in the array B.
! See the description of B.
! 'E' :: The unscaled eigenvectors of the Exact DMD are
! computed and returned in the array B. See the
! description of B.
! 'N' :: No eigenvector refinement data is computed.
! To be useful on exit, this option needs JOBQ='Q'.
!.....
! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
! Allows for a selection of the SVD algorithm from the
! LAPACK library.
! 1 :: CGESVD (the QR SVD algorithm)
! 2 :: CGESDD (the Divide and Conquer algorithm; if enough
! workspace available, this is the fastest option)
! 3 :: CGESVDQ (the preconditioned QR SVD ; this and 4
! are the most accurate options)
! 4 :: CGEJSV (the preconditioned Jacobi SVD; this and 3
! are the most accurate options)
! For the four methods above, a significant difference in
! the accuracy of small singular values is possible if
! the snapshots vary in norm so that X is severely
! ill-conditioned. If small (smaller than EPS*||X||)
! singular values are of interest and JOBS=='N', then
! the options (3, 4) give the most accurate results, where
! the option 4 is slightly better and with stronger
! theoretical background.
! If JOBS=='S', i.e. the columns of X will be normalized,
! then all methods give nearly equally accurate results.
!.....
! M (input) INTEGER, M >= 0
! The state space dimension (the number of rows of F).
!.....
! N (input) INTEGER, 0 <= N <= M
! The number of data snapshots from a single trajectory,
! taken at equidistant discrete times. This is the
! number of columns of F.
!.....
! F (input/output) COMPLEX(KIND=WP) M-by-N array
! > On entry,
! the columns of F are the sequence of data snapshots
! from a single trajectory, taken at equidistant discrete
! times. It is assumed that the column norms of F are
! in the range of the normalized floating point numbers.
! < On exit,
! If JOBQ == 'Q', the array F contains the orthogonal
! matrix/factor of the QR factorization of the initial
! data snapshots matrix F. See the description of JOBQ.
! If JOBQ == 'N', the entries in F strictly below the main
! diagonal contain, column-wise, the information on the
! Householder vectors, as returned by CGEQRF. The
! remaining information to restore the orthogonal matrix
! of the initial QR factorization is stored in ZWORK(1:MIN(M,N)).
! See the description of ZWORK.
!.....
! LDF (input) INTEGER, LDF >= M
! The leading dimension of the array F.
!.....
! X (workspace/output) COMPLEX(KIND=WP) MIN(M,N)-by-(N-1) array
! X is used as workspace to hold representations of the
! leading N-1 snapshots in the orthonormal basis computed
! in the QR factorization of F.
! On exit, the leading K columns of X contain the leading
! K left singular vectors of the above described content
! of X. To lift them to the space of the left singular
! vectors U(:,1:K) of the input data, pre-multiply with the
! Q factor from the initial QR factorization.
! See the descriptions of F, K, V and Z.
!.....
! LDX (input) INTEGER, LDX >= N
! The leading dimension of the array X.
!.....
! Y (workspace/output) COMPLEX(KIND=WP) MIN(M,N)-by-(N) array
! Y is used as workspace to hold representations of the
! trailing N-1 snapshots in the orthonormal basis computed
! in the QR factorization of F.
! On exit,
! If JOBT == 'R', Y contains the MIN(M,N)-by-N upper
! triangular factor from the QR factorization of the data
! snapshot matrix F.
!.....
! LDY (input) INTEGER , LDY >= N
! The leading dimension of the array Y.
!.....
! NRNK (input) INTEGER
! Determines the mode how to compute the numerical rank,
! i.e. how to truncate small singular values of the input
! matrix X. On input, if
! NRNK = -1 :: i-th singular value sigma(i) is truncated
! if sigma(i) <= TOL*sigma(1)
! This option is recommended.
! NRNK = -2 :: i-th singular value sigma(i) is truncated
! if sigma(i) <= TOL*sigma(i-1)
! This option is included for R&D purposes.
! It requires highly accurate SVD, which
! may not be feasible.
! The numerical rank can be enforced by using positive
! value of NRNK as follows:
! 0 < NRNK <= N-1 :: at most NRNK largest singular values
! will be used. If the number of the computed nonzero
! singular values is less than NRNK, then only those
! nonzero values will be used and the actually used
! dimension is less than NRNK. The actual number of
! the nonzero singular values is returned in the variable
! K. See the description of K.
!.....
! TOL (input) REAL(KIND=WP), 0 <= TOL < 1
! The tolerance for truncating small singular values.
! See the description of NRNK.
!.....
! K (output) INTEGER, 0 <= K <= N
! The dimension of the SVD/POD basis for the leading N-1
! data snapshots (columns of F) and the number of the
! computed Ritz pairs. The value of K is determined
! according to the rule set by the parameters NRNK and
! TOL. See the descriptions of NRNK and TOL.
!.....
! EIGS (output) COMPLEX(KIND=WP) (N-1)-by-1 array
! The leading K (K<=N-1) entries of EIGS contain
! the computed eigenvalues (Ritz values).
! See the descriptions of K, and Z.
!.....
! Z (workspace/output) COMPLEX(KIND=WP) M-by-(N-1) array
! If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i)
! is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1.
! If JOBZ == 'F', then the Z(:,i)'s are given implicitly as
! Z*V, where Z contains orthonormal matrix (the product of
! Q from the initial QR factorization and the SVD/POD_basis
! returned by CGEDMD in X) and the second factor (the
! eigenvectors of the Rayleigh quotient) is in the array V,
! as returned by CGEDMD. That is, X(:,1:K)*V(:,i)
! is an eigenvector corresponding to EIGS(i). The columns
! of V(1:K,1:K) are the computed eigenvectors of the
! K-by-K Rayleigh quotient.
! See the descriptions of EIGS, X and V.
!.....
! LDZ (input) INTEGER , LDZ >= M
! The leading dimension of the array Z.
!.....
! RES (output) REAL(KIND=WP) (N-1)-by-1 array
! RES(1:K) contains the residuals for the K computed
! Ritz pairs,
! RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2.
! See the description of EIGS and Z.
!.....
! B (output) COMPLEX(KIND=WP) MIN(M,N)-by-(N-1) array.
! IF JOBF =='R', B(1:N,1:K) contains A*U(:,1:K), and can
! be used for computing the refined vectors; see further
! details in the provided references.
! If JOBF == 'E', B(1:N,1;K) contains
! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
! Exact DMD, up to scaling by the inverse eigenvalues.
! In both cases, the content of B can be lifted to the
! original dimension of the input data by pre-multiplying
! with the Q factor from the initial QR factorization.
! Here A denotes a compression of the underlying operator.
! See the descriptions of F and X.
! If JOBF =='N', then B is not referenced.
!.....
! LDB (input) INTEGER, LDB >= MIN(M,N)
! The leading dimension of the array B.
!.....
! V (workspace/output) COMPLEX(KIND=WP) (N-1)-by-(N-1) array
! On exit, V(1:K,1:K) V contains the K eigenvectors of
! the Rayleigh quotient. The Ritz vectors
! (returned in Z) are the product of Q from the initial QR
! factorization (see the description of F) X (see the
! description of X) and V.
!.....
! LDV (input) INTEGER, LDV >= N-1
! The leading dimension of the array V.
!.....
! S (output) COMPLEX(KIND=WP) (N-1)-by-(N-1) array
! The array S(1:K,1:K) is used for the matrix Rayleigh
! quotient. This content is overwritten during
! the eigenvalue decomposition by CGEEV.
! See the description of K.
!.....
! LDS (input) INTEGER, LDS >= N-1
! The leading dimension of the array S.
!.....
! ZWORK (workspace/output) COMPLEX(KIND=WP) LWORK-by-1 array
! On exit,
! ZWORK(1:MIN(M,N)) contains the scalar factors of the
! elementary reflectors as returned by CGEQRF of the
! M-by-N input matrix F.
! If the call to CGEDMDQ is only workspace query, then
! ZWORK(1) contains the minimal complex workspace length and
! ZWORK(2) is the optimal complex workspace length.
! Hence, the length of work is at least 2.
! See the description of LZWORK.
!.....
! LZWORK (input) INTEGER
! The minimal length of the workspace vector ZWORK.
! LZWORK is calculated as follows:
! Let MLWQR = N (minimal workspace for CGEQRF[M,N])
! MLWDMD = minimal workspace for CGEDMD (see the
! description of LWORK in CGEDMD)
! MLWMQR = N (minimal workspace for
! ZUNMQR['L','N',M,N,N])
! MLWGQR = N (minimal workspace for ZUNGQR[M,N,N])
! MINMN = MIN(M,N)
! Then
! LZWORK = MAX(2, MIN(M,N)+MLWQR, MINMN+MLWDMD)
! is further updated as follows:
! if JOBZ == 'V' or JOBZ == 'F' THEN
! LZWORK = MAX( LZWORK, MINMN+MLWMQR )
! if JOBQ == 'Q' THEN
! LZWORK = MAX( ZLWORK, MINMN+MLWGQR)
!
!.....
! WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array
! On exit,
! WORK(1:N-1) contains the singular values of
! the input submatrix F(1:M,1:N-1).
! If the call to CGEDMDQ is only workspace query, then
! WORK(1) contains the minimal workspace length and
! WORK(2) is the optimal workspace length. hence, the
! length of work is at least 2.
! See the description of LWORK.
!.....
! LWORK (input) INTEGER
! The minimal length of the workspace vector WORK.
! LWORK is the same as in CGEDMD, because in CGEDMDQ
! only CGEDMD requires real workspace for snapshots
! of dimensions MIN(M,N)-by-(N-1).
! If on entry LWORK = -1, then a workspace query is
! assumed and the procedure only computes the minimal
! and the optimal workspace lengths for both WORK and
! IWORK. See the descriptions of WORK and IWORK.
!.....
! IWORK (workspace/output) INTEGER LIWORK-by-1 array
! Workspace that is required only if WHTSVD equals
! 2 , 3 or 4. (See the description of WHTSVD).
! If on entry LWORK =-1 or LIWORK=-1, then the
! minimal length of IWORK is computed and returned in
! IWORK(1). See the description of LIWORK.
!.....
! LIWORK (input) INTEGER
! The minimal length of the workspace vector IWORK.
! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
! Let M1=MIN(M,N), N1=N-1. Then
! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N))
! If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1)
! If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N)
! If on entry LIWORK = -1, then a workspace query is
! assumed and the procedure only computes the minimal
! and the optimal workspace lengths for both WORK and
! IWORK. See the descriptions of WORK and IWORK.
!.....
! INFO (output) INTEGER
! -i < 0 :: On entry, the i-th argument had an
! illegal value
! = 0 :: Successful return.
! = 1 :: Void input. Quick exit (M=0 or N=0).
! = 2 :: The SVD computation of X did not converge.
! Suggestion: Check the input data and/or
! repeat with different WHTSVD.
! = 3 :: The computation of the eigenvalues did not
! converge.
! = 4 :: If data scaling was requested on input and
! the procedure found inconsistency in the data
! such that for some column index i,
! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
! to zero if JOBS=='C'. The computation proceeds
! with original or modified data and warning
! flag is set with INFO=4.
!.............................................................
!.............................................................
! Parameters
! ~~~~~~~~~~
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP
! COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP )
COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP )
!
! Local scalars
! ~~~~~~~~~~~~~
INTEGER :: IMINWR, INFO1, MINMN, MLRWRK, &
MLWDMD, MLWGQR, MLWMQR, MLWORK, &
MLWQR, OLWDMD, OLWGQR, OLWMQR, &
OLWORK, OLWQR
LOGICAL :: LQUERY, SCCOLX, SCCOLY, WANTQ, &
WNTTRF, WNTRES, WNTVEC, WNTVCF, &
WNTVCQ, WNTREF, WNTEX
CHARACTER(LEN=1) :: JOBVL
!
! External functions (BLAS and LAPACK)
! ~~~~~~~~~~~~~~~~~
LOGICAL LSAME
EXTERNAL LSAME
!
! External subroutines (BLAS and LAPACK)
! ~~~~~~~~~~~~~~~~~~~~
EXTERNAL CGEQRF, CLACPY, CLASET, CUNGQR, &
CUNMQR, XERBLA
! External subroutines
! ~~~~~~~~~~~~~~~~~~~~
EXTERNAL CGEDMD
! Intrinsic functions
! ~~~~~~~~~~~~~~~~~~~
INTRINSIC MAX, MIN, INT
!..........................................................
!
! Test the input arguments
WNTRES = LSAME(JOBR,'R')
SCCOLX = LSAME(JOBS,'S') .OR. LSAME( JOBS, 'C' )
SCCOLY = LSAME(JOBS,'Y')
WNTVEC = LSAME(JOBZ,'V')
WNTVCF = LSAME(JOBZ,'F')
WNTVCQ = LSAME(JOBZ,'Q')
WNTREF = LSAME(JOBF,'R')
WNTEX = LSAME(JOBF,'E')
WANTQ = LSAME(JOBQ,'Q')
WNTTRF = LSAME(JOBT,'R')
MINMN = MIN(M,N)
INFO = 0
LQUERY = ( ( LWORK == -1 ) .OR. ( LIWORK == -1 ) )
!
IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. &
LSAME(JOBS,'N')) ) THEN
INFO = -1
ELSE IF ( .NOT. (WNTVEC .OR. WNTVCF .OR. WNTVCQ &
.OR. LSAME(JOBZ,'N')) ) THEN
INFO = -2
ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. &
( WNTRES .AND. LSAME(JOBZ,'N') ) ) THEN
INFO = -3
ELSE IF ( .NOT. (WANTQ .OR. LSAME(JOBQ,'N')) ) THEN
INFO = -4
ELSE IF ( .NOT. ( WNTTRF .OR. LSAME(JOBT,'N') ) ) THEN
INFO = -5
ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. &
LSAME(JOBF,'N') ) ) THEN
INFO = -6
ELSE IF ( .NOT. ((WHTSVD == 1).OR.(WHTSVD == 2).OR. &
(WHTSVD == 3).OR.(WHTSVD == 4)) ) THEN
INFO = -7
ELSE IF ( M < 0 ) THEN
INFO = -8
ELSE IF ( ( N < 0 ) .OR. ( N > M+1 ) ) THEN
INFO = -9
ELSE IF ( LDF < M ) THEN
INFO = -11
ELSE IF ( LDX < MINMN ) THEN
INFO = -13
ELSE IF ( LDY < MINMN ) THEN
INFO = -15
ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. &
((NRNK >= 1).AND.(NRNK <=N ))) ) THEN
INFO = -16
ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN
INFO = -17
ELSE IF ( LDZ < M ) THEN
INFO = -21
ELSE IF ( (WNTREF.OR.WNTEX ).AND.( LDB < MINMN ) ) THEN
INFO = -24
ELSE IF ( LDV < N-1 ) THEN
INFO = -26
ELSE IF ( LDS < N-1 ) THEN
INFO = -28
END IF
!
IF ( WNTVEC .OR. WNTVCF .OR. WNTVCQ ) THEN
JOBVL = 'V'
ELSE
JOBVL = 'N'
END IF
IF ( INFO == 0 ) THEN
! Compute the minimal and the optimal workspace
! requirements. Simulate running the code and
! determine minimal and optimal sizes of the
! workspace at any moment of the run.
IF ( ( N == 0 ) .OR. ( N == 1 ) ) THEN
! All output except K is void. INFO=1 signals
! the void input. In case of a workspace query,
! the minimal workspace lengths are returned.
IF ( LQUERY ) THEN
IWORK(1) = 1
WORK(1) = 2
WORK(2) = 2
ELSE
K = 0
END IF
INFO = 1
RETURN
END IF
MLRWRK = 2
MLWORK = 2
OLWORK = 2
IMINWR = 1
MLWQR = MAX(1,N) ! Minimal workspace length for CGEQRF.
MLWORK = MAX(MLWORK,MINMN + MLWQR)
IF ( LQUERY ) THEN
CALL CGEQRF( M, N, F, LDF, ZWORK, ZWORK, -1, &
INFO1 )
OLWQR = INT(ZWORK(1))
OLWORK = MAX(OLWORK,MINMN + OLWQR)
END IF
CALL CGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN,&
N-1, X, LDX, Y, LDY, NRNK, TOL, K, &
EIGS, Z, LDZ, RES, B, LDB, V, LDV, &
S, LDS, ZWORK, LZWORK, WORK, -1, IWORK,&
LIWORK, INFO1 )
MLWDMD = INT(ZWORK(1))
MLWORK = MAX(MLWORK, MINMN + MLWDMD)
MLRWRK = MAX(MLRWRK, INT(WORK(1)))
IMINWR = MAX(IMINWR, IWORK(1))
IF ( LQUERY ) THEN
OLWDMD = INT(ZWORK(2))
OLWORK = MAX(OLWORK, MINMN+OLWDMD)
END IF
IF ( WNTVEC .OR. WNTVCF ) THEN
MLWMQR = MAX(1,N)
MLWORK = MAX(MLWORK, MINMN+MLWMQR)
IF ( LQUERY ) THEN
CALL CUNMQR( 'L','N', M, N, MINMN, F, LDF, &
ZWORK, Z, LDZ, ZWORK, -1, INFO1 )
OLWMQR = INT(ZWORK(1))
OLWORK = MAX(OLWORK, MINMN+OLWMQR)
END IF
END IF
IF ( WANTQ ) THEN
MLWGQR = MAX(1,N)
MLWORK = MAX(MLWORK, MINMN+MLWGQR)
IF ( LQUERY ) THEN
CALL CUNGQR( M, MINMN, MINMN, F, LDF, ZWORK, &
ZWORK, -1, INFO1 )
OLWGQR = INT(ZWORK(1))
OLWORK = MAX(OLWORK, MINMN+OLWGQR)
END IF
END IF
IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -34
IF ( LWORK < MLRWRK .AND. (.NOT.LQUERY) ) INFO = -32
IF ( LZWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -30
END IF
IF( INFO /= 0 ) THEN
CALL XERBLA( 'CGEDMDQ', -INFO )
RETURN
ELSE IF ( LQUERY ) THEN
! Return minimal and optimal workspace sizes
IWORK(1) = IMINWR
ZWORK(1) = MLWORK
ZWORK(2) = OLWORK
WORK(1) = MLRWRK
WORK(2) = MLRWRK
RETURN
END IF
!.....
! Initial QR factorization that is used to represent the
! snapshots as elements of lower dimensional subspace.
! For large scale computation with M >>N , at this place
! one can use an out of core QRF.
!
CALL CGEQRF( M, N, F, LDF, ZWORK, &
ZWORK(MINMN+1), LZWORK-MINMN, INFO1 )
!
! Define X and Y as the snapshots representations in the
! orthogonal basis computed in the QR factorization.
! X corresponds to the leading N-1 and Y to the trailing
! N-1 snapshots.
CALL CLASET( 'L', MINMN, N-1, ZZERO, ZZERO, X, LDX )
CALL CLACPY( 'U', MINMN, N-1, F, LDF, X, LDX )
CALL CLACPY( 'A', MINMN, N-1, F(1,2), LDF, Y, LDY )
IF ( M >= 3 ) THEN
CALL CLASET( 'L', MINMN-2, N-2, ZZERO, ZZERO, &
Y(3,1), LDY )
END IF
!
! Compute the DMD of the projected snapshot pairs (X,Y)
CALL CGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN, &
N-1, X, LDX, Y, LDY, NRNK, TOL, K, &
EIGS, Z, LDZ, RES, B, LDB, V, LDV, &
S, LDS, ZWORK(MINMN+1), LZWORK-MINMN, &
WORK, LWORK, IWORK, LIWORK, INFO1 )
IF ( INFO1 == 2 .OR. INFO1 == 3 ) THEN
! Return with error code. See CGEDMD for details.
INFO = INFO1
RETURN
ELSE
INFO = INFO1
END IF
!
! The Ritz vectors (Koopman modes) can be explicitly
! formed or returned in factored form.
IF ( WNTVEC ) THEN
! Compute the eigenvectors explicitly.
IF ( M > MINMN ) CALL CLASET( 'A', M-MINMN, K, ZZERO, &
ZZERO, Z(MINMN+1,1), LDZ )
CALL CUNMQR( 'L','N', M, K, MINMN, F, LDF, ZWORK, Z, &
LDZ, ZWORK(MINMN+1), LZWORK-MINMN, INFO1 )
ELSE IF ( WNTVCF ) THEN
! Return the Ritz vectors (eigenvectors) in factored
! form Z*V, where Z contains orthonormal matrix (the
! product of Q from the initial QR factorization and
! the SVD/POD_basis returned by CGEDMD in X) and the
! second factor (the eigenvectors of the Rayleigh
! quotient) is in the array V, as returned by CGEDMD.
CALL CLACPY( 'A', N, K, X, LDX, Z, LDZ )
IF ( M > N ) CALL CLASET( 'A', M-N, K, ZZERO, ZZERO, &
Z(N+1,1), LDZ )
CALL CUNMQR( 'L','N', M, K, MINMN, F, LDF, ZWORK, Z, &
LDZ, ZWORK(MINMN+1), LZWORK-MINMN, INFO1 )
END IF
!
! Some optional output variables:
!
! The upper triangular factor R in the initial QR
! factorization is optionally returned in the array Y.
! This is useful if this call to CGEDMDQ is to be
! followed by a streaming DMD that is implemented in a
! QR compressed form.
IF ( WNTTRF ) THEN ! Return the upper triangular R in Y
CALL CLASET( 'A', MINMN, N, ZZERO, ZZERO, Y, LDY )
CALL CLACPY( 'U', MINMN, N, F, LDF, Y, LDY )
END IF
!
! The orthonormal/unitary factor Q in the initial QR
! factorization is optionally returned in the array F.
! Same as with the triangular factor above, this is
! useful in a streaming DMD.
IF ( WANTQ ) THEN ! Q overwrites F
CALL CUNGQR( M, MINMN, MINMN, F, LDF, ZWORK, &
ZWORK(MINMN+1), LZWORK-MINMN, INFO1 )
END IF
!
RETURN
!
END SUBROUTINE CGEDMDQ

1753
lapack-netlib/SRC/dgedmd.c Normal file

File diff suppressed because it is too large Load Diff

1054
lapack-netlib/SRC/dgedmd.f90 Normal file

File diff suppressed because it is too large Load Diff

1300
lapack-netlib/SRC/dgedmdq.c Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,704 @@
SUBROUTINE DGEDMDQ( JOBS, JOBZ, JOBR, JOBQ, JOBT, JOBF, &
WHTSVD, M, N, F, LDF, X, LDX, Y, &
LDY, NRNK, TOL, K, REIG, IMEIG, &
Z, LDZ, RES, B, LDB, V, LDV, &
S, LDS, WORK, LWORK, IWORK, LIWORK, INFO )
! March 2023
!.....
USE iso_fortran_env
IMPLICIT NONE
INTEGER, PARAMETER :: WP = real64
!.....
! Scalar arguments
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBQ, &
JOBT, JOBF
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDF, LDX, &
LDY, NRNK, LDZ, LDB, LDV, &
LDS, LWORK, LIWORK
INTEGER, INTENT(OUT) :: INFO, K
REAL(KIND=WP), INTENT(IN) :: TOL
! Array arguments
REAL(KIND=WP), INTENT(INOUT) :: F(LDF,*)
REAL(KIND=WP), INTENT(OUT) :: X(LDX,*), Y(LDY,*), &
Z(LDZ,*), B(LDB,*), &
V(LDV,*), S(LDS,*)
REAL(KIND=WP), INTENT(OUT) :: REIG(*), IMEIG(*), &
RES(*)
REAL(KIND=WP), INTENT(OUT) :: WORK(*)
INTEGER, INTENT(OUT) :: IWORK(*)
!.....
! Purpose
! =======
! DGEDMDQ computes the Dynamic Mode Decomposition (DMD) for
! a pair of data snapshot matrices, using a QR factorization
! based compression of the data. For the input matrices
! X and Y such that Y = A*X with an unaccessible matrix
! A, DGEDMDQ computes a certain number of Ritz pairs of A using
! the standard Rayleigh-Ritz extraction from a subspace of
! range(X) that is determined using the leading left singular
! vectors of X. Optionally, DGEDMDQ returns the residuals
! of the computed Ritz pairs, the information needed for
! a refinement of the Ritz vectors, or the eigenvectors of
! the Exact DMD.
! For further details see the references listed
! below. For more details of the implementation see [3].
!
! References
! ==========
! [1] P. Schmid: Dynamic mode decomposition of numerical
! and experimental data,
! Journal of Fluid Mechanics 656, 5-28, 2010.
! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
! decompositions: analysis and enhancements,
! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
! [3] Z. Drmac: A LAPACK implementation of the Dynamic
! Mode Decomposition I. Technical report. AIMDyn Inc.
! and LAPACK Working Note 298.
! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
! Brunton, N. Kutz: On Dynamic Mode Decomposition:
! Theory and Applications, Journal of Computational
! Dynamics 1(2), 391 -421, 2014.
!
! Developed and supported by:
! ===========================
! Developed and coded by Zlatko Drmac, Faculty of Science,
! University of Zagreb; drmac@math.hr
! In cooperation with
! AIMdyn Inc., Santa Barbara, CA.
! and supported by
! - DARPA SBIR project "Koopman Operator-Based Forecasting
! for Nonstationary Processes from Near-Term, Limited
! Observational Data" Contract No: W31P4Q-21-C-0007
! - DARPA PAI project "Physics-Informed Machine Learning
! Methodologies" Contract No: HR0011-18-9-0033
! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
! Framework for Space-Time Analysis of Process Dynamics"
! Contract No: HR0011-16-C-0116
! Any opinions, findings and conclusions or recommendations
! expressed in this material are those of the author and
! do not necessarily reflect the views of the DARPA SBIR
! Program Office.
!============================================================
! Distribution Statement A:
! Approved for Public Release, Distribution Unlimited.
! Cleared by DARPA on September 29, 2022
!============================================================
!......................................................................
! Arguments
! =========
! JOBS (input) CHARACTER*1
! Determines whether the initial data snapshots are scaled
! by a diagonal matrix. The data snapshots are the columns
! of F. The leading N-1 columns of F are denoted X and the
! trailing N-1 columns are denoted Y.
! 'S' :: The data snapshots matrices X and Y are multiplied
! with a diagonal matrix D so that X*D has unit
! nonzero columns (in the Euclidean 2-norm)
! 'C' :: The snapshots are scaled as with the 'S' option.
! If it is found that an i-th column of X is zero
! vector and the corresponding i-th column of Y is
! non-zero, then the i-th column of Y is set to
! zero and a warning flag is raised.
! 'Y' :: The data snapshots matrices X and Y are multiplied
! by a diagonal matrix D so that Y*D has unit
! nonzero columns (in the Euclidean 2-norm)
! 'N' :: No data scaling.
!.....
! JOBZ (input) CHARACTER*1
! Determines whether the eigenvectors (Koopman modes) will
! be computed.
! 'V' :: The eigenvectors (Koopman modes) will be computed
! and returned in the matrix Z.
! See the description of Z.
! 'F' :: The eigenvectors (Koopman modes) will be returned
! in factored form as the product Z*V, where Z
! is orthonormal and V contains the eigenvectors
! of the corresponding Rayleigh quotient.
! See the descriptions of F, V, Z.
! 'Q' :: The eigenvectors (Koopman modes) will be returned
! in factored form as the product Q*Z, where Z
! contains the eigenvectors of the compression of the
! underlying discretized operator onto the span of
! the data snapshots. See the descriptions of F, V, Z.
! Q is from the initial QR factorization.
! 'N' :: The eigenvectors are not computed.
!.....
! JOBR (input) CHARACTER*1
! Determines whether to compute the residuals.
! 'R' :: The residuals for the computed eigenpairs will
! be computed and stored in the array RES.
! See the description of RES.
! For this option to be legal, JOBZ must be 'V'.
! 'N' :: The residuals are not computed.
!.....
! JOBQ (input) CHARACTER*1
! Specifies whether to explicitly compute and return the
! orthogonal matrix from the QR factorization.
! 'Q' :: The matrix Q of the QR factorization of the data
! snapshot matrix is computed and stored in the
! array F. See the description of F.
! 'N' :: The matrix Q is not explicitly computed.
!.....
! JOBT (input) CHARACTER*1
! Specifies whether to return the upper triangular factor
! from the QR factorization.
! 'R' :: The matrix R of the QR factorization of the data
! snapshot matrix F is returned in the array Y.
! See the description of Y and Further details.
! 'N' :: The matrix R is not returned.
!.....
! JOBF (input) CHARACTER*1
! Specifies whether to store information needed for post-
! processing (e.g. computing refined Ritz vectors)
! 'R' :: The matrix needed for the refinement of the Ritz
! vectors is computed and stored in the array B.
! See the description of B.
! 'E' :: The unscaled eigenvectors of the Exact DMD are
! computed and returned in the array B. See the
! description of B.
! 'N' :: No eigenvector refinement data is computed.
! To be useful on exit, this option needs JOBQ='Q'.
!.....
! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
! Allows for a selection of the SVD algorithm from the
! LAPACK library.
! 1 :: DGESVD (the QR SVD algorithm)
! 2 :: DGESDD (the Divide and Conquer algorithm; if enough
! workspace available, this is the fastest option)
! 3 :: DGESVDQ (the preconditioned QR SVD ; this and 4
! are the most accurate options)
! 4 :: DGEJSV (the preconditioned Jacobi SVD; this and 3
! are the most accurate options)
! For the four methods above, a significant difference in
! the accuracy of small singular values is possible if
! the snapshots vary in norm so that X is severely
! ill-conditioned. If small (smaller than EPS*||X||)
! singular values are of interest and JOBS=='N', then
! the options (3, 4) give the most accurate results, where
! the option 4 is slightly better and with stronger
! theoretical background.
! If JOBS=='S', i.e. the columns of X will be normalized,
! then all methods give nearly equally accurate results.
!.....
! M (input) INTEGER, M >= 0
! The state space dimension (the number of rows of F).
!.....
! N (input) INTEGER, 0 <= N <= M
! The number of data snapshots from a single trajectory,
! taken at equidistant discrete times. This is the
! number of columns of F.
!.....
! F (input/output) REAL(KIND=WP) M-by-N array
! > On entry,
! the columns of F are the sequence of data snapshots
! from a single trajectory, taken at equidistant discrete
! times. It is assumed that the column norms of F are
! in the range of the normalized floating point numbers.
! < On exit,
! If JOBQ == 'Q', the array F contains the orthogonal
! matrix/factor of the QR factorization of the initial
! data snapshots matrix F. See the description of JOBQ.
! If JOBQ == 'N', the entries in F strictly below the main
! diagonal contain, column-wise, the information on the
! Householder vectors, as returned by DGEQRF. The
! remaining information to restore the orthogonal matrix
! of the initial QR factorization is stored in WORK(1:N).
! See the description of WORK.
!.....
! LDF (input) INTEGER, LDF >= M
! The leading dimension of the array F.
!.....
! X (workspace/output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array
! X is used as workspace to hold representations of the
! leading N-1 snapshots in the orthonormal basis computed
! in the QR factorization of F.
! On exit, the leading K columns of X contain the leading
! K left singular vectors of the above described content
! of X. To lift them to the space of the left singular
! vectors U(:,1:K)of the input data, pre-multiply with the
! Q factor from the initial QR factorization.
! See the descriptions of F, K, V and Z.
!.....
! LDX (input) INTEGER, LDX >= N
! The leading dimension of the array X.
!.....
! Y (workspace/output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array
! Y is used as workspace to hold representations of the
! trailing N-1 snapshots in the orthonormal basis computed
! in the QR factorization of F.
! On exit,
! If JOBT == 'R', Y contains the MIN(M,N)-by-N upper
! triangular factor from the QR factorization of the data
! snapshot matrix F.
!.....
! LDY (input) INTEGER , LDY >= N
! The leading dimension of the array Y.
!.....
! NRNK (input) INTEGER
! Determines the mode how to compute the numerical rank,
! i.e. how to truncate small singular values of the input
! matrix X. On input, if
! NRNK = -1 :: i-th singular value sigma(i) is truncated
! if sigma(i) <= TOL*sigma(1)
! This option is recommended.
! NRNK = -2 :: i-th singular value sigma(i) is truncated
! if sigma(i) <= TOL*sigma(i-1)
! This option is included for R&D purposes.
! It requires highly accurate SVD, which
! may not be feasible.
! The numerical rank can be enforced by using positive
! value of NRNK as follows:
! 0 < NRNK <= N-1 :: at most NRNK largest singular values
! will be used. If the number of the computed nonzero
! singular values is less than NRNK, then only those
! nonzero values will be used and the actually used
! dimension is less than NRNK. The actual number of
! the nonzero singular values is returned in the variable
! K. See the description of K.
!.....
! TOL (input) REAL(KIND=WP), 0 <= TOL < 1
! The tolerance for truncating small singular values.
! See the description of NRNK.
!.....
! K (output) INTEGER, 0 <= K <= N
! The dimension of the SVD/POD basis for the leading N-1
! data snapshots (columns of F) and the number of the
! computed Ritz pairs. The value of K is determined
! according to the rule set by the parameters NRNK and
! TOL. See the descriptions of NRNK and TOL.
!.....
! REIG (output) REAL(KIND=WP) (N-1)-by-1 array
! The leading K (K<=N) entries of REIG contain
! the real parts of the computed eigenvalues
! REIG(1:K) + sqrt(-1)*IMEIG(1:K).
! See the descriptions of K, IMEIG, Z.
!.....
! IMEIG (output) REAL(KIND=WP) (N-1)-by-1 array
! The leading K (K<N) entries of REIG contain
! the imaginary parts of the computed eigenvalues
! REIG(1:K) + sqrt(-1)*IMEIG(1:K).
! The eigenvalues are determined as follows:
! If IMEIG(i) == 0, then the corresponding eigenvalue is
! real, LAMBDA(i) = REIG(i).
! If IMEIG(i)>0, then the corresponding complex
! conjugate pair of eigenvalues reads
! LAMBDA(i) = REIG(i) + sqrt(-1)*IMAG(i)
! LAMBDA(i+1) = REIG(i) - sqrt(-1)*IMAG(i)
! That is, complex conjugate pairs have consequtive
! indices (i,i+1), with the positive imaginary part
! listed first.
! See the descriptions of K, REIG, Z.
!.....
! Z (workspace/output) REAL(KIND=WP) M-by-(N-1) array
! If JOBZ =='V' then
! Z contains real Ritz vectors as follows:
! If IMEIG(i)=0, then Z(:,i) is an eigenvector of
! the i-th Ritz value.
! If IMEIG(i) > 0 (and IMEIG(i+1) < 0) then
! [Z(:,i) Z(:,i+1)] span an invariant subspace and
! the Ritz values extracted from this subspace are
! REIG(i) + sqrt(-1)*IMEIG(i) and
! REIG(i) - sqrt(-1)*IMEIG(i).
! The corresponding eigenvectors are
! Z(:,i) + sqrt(-1)*Z(:,i+1) and
! Z(:,i) - sqrt(-1)*Z(:,i+1), respectively.
! If JOBZ == 'F', then the above descriptions hold for
! the columns of Z*V, where the columns of V are the
! eigenvectors of the K-by-K Rayleigh quotient, and Z is
! orthonormal. The columns of V are similarly structured:
! If IMEIG(i) == 0 then Z*V(:,i) is an eigenvector, and if
! IMEIG(i) > 0 then Z*V(:,i)+sqrt(-1)*Z*V(:,i+1) and
! Z*V(:,i)-sqrt(-1)*Z*V(:,i+1)
! are the eigenvectors of LAMBDA(i), LAMBDA(i+1).
! See the descriptions of REIG, IMEIG, X and V.
!.....
! LDZ (input) INTEGER , LDZ >= M
! The leading dimension of the array Z.
!.....
! RES (output) REAL(KIND=WP) (N-1)-by-1 array
! RES(1:K) contains the residuals for the K computed
! Ritz pairs.
! If LAMBDA(i) is real, then
! RES(i) = || A * Z(:,i) - LAMBDA(i)*Z(:,i))||_2.
! If [LAMBDA(i), LAMBDA(i+1)] is a complex conjugate pair
! then
! RES(i)=RES(i+1) = || A * Z(:,i:i+1) - Z(:,i:i+1) *B||_F
! where B = [ real(LAMBDA(i)) imag(LAMBDA(i)) ]
! [-imag(LAMBDA(i)) real(LAMBDA(i)) ].
! It holds that
! RES(i) = || A*ZC(:,i) - LAMBDA(i) *ZC(:,i) ||_2
! RES(i+1) = || A*ZC(:,i+1) - LAMBDA(i+1)*ZC(:,i+1) ||_2
! where ZC(:,i) = Z(:,i) + sqrt(-1)*Z(:,i+1)
! ZC(:,i+1) = Z(:,i) - sqrt(-1)*Z(:,i+1)
! See the description of Z.
!.....
! B (output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array.
! IF JOBF =='R', B(1:N,1:K) contains A*U(:,1:K), and can
! be used for computing the refined vectors; see further
! details in the provided references.
! If JOBF == 'E', B(1:N,1;K) contains
! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
! Exact DMD, up to scaling by the inverse eigenvalues.
! In both cases, the content of B can be lifted to the
! original dimension of the input data by pre-multiplying
! with the Q factor from the initial QR factorization.
! Here A denotes a compression of the underlying operator.
! See the descriptions of F and X.
! If JOBF =='N', then B is not referenced.
!.....
! LDB (input) INTEGER, LDB >= MIN(M,N)
! The leading dimension of the array B.
!.....
! V (workspace/output) REAL(KIND=WP) (N-1)-by-(N-1) array
! On exit, V(1:K,1:K) contains the K eigenvectors of
! the Rayleigh quotient. The eigenvectors of a complex
! conjugate pair of eigenvalues are returned in real form
! as explained in the description of Z. The Ritz vectors
! (returned in Z) are the product of X and V; see
! the descriptions of X and Z.
!.....
! LDV (input) INTEGER, LDV >= N-1
! The leading dimension of the array V.
!.....
! S (output) REAL(KIND=WP) (N-1)-by-(N-1) array
! The array S(1:K,1:K) is used for the matrix Rayleigh
! quotient. This content is overwritten during
! the eigenvalue decomposition by DGEEV.
! See the description of K.
!.....
! LDS (input) INTEGER, LDS >= N-1
! The leading dimension of the array S.
!.....
! WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array
! On exit,
! WORK(1:MIN(M,N)) contains the scalar factors of the
! elementary reflectors as returned by DGEQRF of the
! M-by-N input matrix F.
! WORK(MIN(M,N)+1:MIN(M,N)+N-1) contains the singular values of
! the input submatrix F(1:M,1:N-1).
! If the call to DGEDMDQ is only workspace query, then
! WORK(1) contains the minimal workspace length and
! WORK(2) is the optimal workspace length. Hence, the
! length of work is at least 2.
! See the description of LWORK.
!.....
! LWORK (input) INTEGER
! The minimal length of the workspace vector WORK.
! LWORK is calculated as follows:
! Let MLWQR = N (minimal workspace for DGEQRF[M,N])
! MLWDMD = minimal workspace for DGEDMD (see the
! description of LWORK in DGEDMD) for
! snapshots of dimensions MIN(M,N)-by-(N-1)
! MLWMQR = N (minimal workspace for
! DORMQR['L','N',M,N,N])
! MLWGQR = N (minimal workspace for DORGQR[M,N,N])
! Then
! LWORK = MAX(N+MLWQR, N+MLWDMD)
! is updated as follows:
! if JOBZ == 'V' or JOBZ == 'F' THEN
! LWORK = MAX( LWORK, MIN(M,N)+N-1+MLWMQR )
! if JOBQ == 'Q' THEN
! LWORK = MAX( LWORK, MIN(M,N)+N-1+MLWGQR)
! If on entry LWORK = -1, then a workspace query is
! assumed and the procedure only computes the minimal
! and the optimal workspace lengths for both WORK and
! IWORK. See the descriptions of WORK and IWORK.
!.....
! IWORK (workspace/output) INTEGER LIWORK-by-1 array
! Workspace that is required only if WHTSVD equals
! 2 , 3 or 4. (See the description of WHTSVD).
! If on entry LWORK =-1 or LIWORK=-1, then the
! minimal length of IWORK is computed and returned in
! IWORK(1). See the description of LIWORK.
!.....
! LIWORK (input) INTEGER
! The minimal length of the workspace vector IWORK.
! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
! Let M1=MIN(M,N), N1=N-1. Then
! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M1,N1))
! If WHTSVD == 3, then LIWORK >= MAX(1,M1+N1-1)
! If WHTSVD == 4, then LIWORK >= MAX(3,M1+3*N1)
! If on entry LIWORK = -1, then a workspace query is
! assumed and the procedure only computes the minimal
! and the optimal workspace lengths for both WORK and
! IWORK. See the descriptions of WORK and IWORK.
!.....
! INFO (output) INTEGER
! -i < 0 :: On entry, the i-th argument had an
! illegal value
! = 0 :: Successful return.
! = 1 :: Void input. Quick exit (M=0 or N=0).
! = 2 :: The SVD computation of X did not converge.
! Suggestion: Check the input data and/or
! repeat with different WHTSVD.
! = 3 :: The computation of the eigenvalues did not
! converge.
! = 4 :: If data scaling was requested on input and
! the procedure found inconsistency in the data
! such that for some column index i,
! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
! to zero if JOBS=='C'. The computation proceeds
! with original or modified data and warning
! flag is set with INFO=4.
!.............................................................
!.............................................................
! Parameters
! ~~~~~~~~~~
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP
!
! Local scalars
! ~~~~~~~~~~~~~
INTEGER :: IMINWR, INFO1, MLWDMD, MLWGQR, &
MLWMQR, MLWORK, MLWQR, MINMN, &
OLWDMD, OLWGQR, OLWMQR, OLWORK, &
OLWQR
LOGICAL :: LQUERY, SCCOLX, SCCOLY, WANTQ, &
WNTTRF, WNTRES, WNTVEC, WNTVCF, &
WNTVCQ, WNTREF, WNTEX
CHARACTER(LEN=1) :: JOBVL
!
! Local array
! ~~~~~~~~~~~
REAL(KIND=WP) :: RDUMMY(2)
!
! External functions (BLAS and LAPACK)
! ~~~~~~~~~~~~~~~~~
LOGICAL LSAME
EXTERNAL LSAME
!
! External subroutines (BLAS and LAPACK)
! ~~~~~~~~~~~~~~~~~~~~
EXTERNAL DGEMM
EXTERNAL DGEQRF, DLACPY, DLASET, DORGQR, &
DORMQR, XERBLA
! External subroutines
! ~~~~~~~~~~~~~~~~~~~~
EXTERNAL DGEDMD
! Intrinsic functions
! ~~~~~~~~~~~~~~~~~~~
INTRINSIC MAX, MIN, INT
!..........................................................
!
! Test the input arguments
WNTRES = LSAME(JOBR,'R')
SCCOLX = LSAME(JOBS,'S') .OR. LSAME( JOBS, 'C' )
SCCOLY = LSAME(JOBS,'Y')
WNTVEC = LSAME(JOBZ,'V')
WNTVCF = LSAME(JOBZ,'F')
WNTVCQ = LSAME(JOBZ,'Q')
WNTREF = LSAME(JOBF,'R')
WNTEX = LSAME(JOBF,'E')
WANTQ = LSAME(JOBQ,'Q')
WNTTRF = LSAME(JOBT,'R')
MINMN = MIN(M,N)
INFO = 0
LQUERY = ( ( LWORK == -1 ) .OR. ( LIWORK == -1 ) )
!
IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. &
LSAME(JOBS,'N')) ) THEN
INFO = -1
ELSE IF ( .NOT. (WNTVEC .OR. WNTVCF .OR. WNTVCQ &
.OR. LSAME(JOBZ,'N')) ) THEN
INFO = -2
ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. &
( WNTRES .AND. LSAME(JOBZ,'N') ) ) THEN
INFO = -3
ELSE IF ( .NOT. (WANTQ .OR. LSAME(JOBQ,'N')) ) THEN
INFO = -4
ELSE IF ( .NOT. ( WNTTRF .OR. LSAME(JOBT,'N') ) ) THEN
INFO = -5
ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. &
LSAME(JOBF,'N') ) ) THEN
INFO = -6
ELSE IF ( .NOT. ((WHTSVD == 1).OR.(WHTSVD == 2).OR. &
(WHTSVD == 3).OR.(WHTSVD == 4)) ) THEN
INFO = -7
ELSE IF ( M < 0 ) THEN
INFO = -8
ELSE IF ( ( N < 0 ) .OR. ( N > M+1 ) ) THEN
INFO = -9
ELSE IF ( LDF < M ) THEN
INFO = -11
ELSE IF ( LDX < MINMN ) THEN
INFO = -13
ELSE IF ( LDY < MINMN ) THEN
INFO = -15
ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. &
((NRNK >= 1).AND.(NRNK <=N ))) ) THEN
INFO = -16
ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN
INFO = -17
ELSE IF ( LDZ < M ) THEN
INFO = -22
ELSE IF ( (WNTREF.OR.WNTEX ).AND.( LDB < MINMN ) ) THEN
INFO = -25
ELSE IF ( LDV < N-1 ) THEN
INFO = -27
ELSE IF ( LDS < N-1 ) THEN
INFO = -29
END IF
!
IF ( WNTVEC .OR. WNTVCF .OR. WNTVCQ ) THEN
JOBVL = 'V'
ELSE
JOBVL = 'N'
END IF
IF ( INFO == 0 ) THEN
! Compute the minimal and the optimal workspace
! requirements. Simulate running the code and
! determine minimal and optimal sizes of the
! workspace at any moment of the run.
IF ( ( N == 0 ) .OR. ( N == 1 ) ) THEN
! All output except K is void. INFO=1 signals
! the void input. In case of a workspace query,
! the minimal workspace lengths are returned.
IF ( LQUERY ) THEN
IWORK(1) = 1
WORK(1) = 2
WORK(2) = 2
ELSE
K = 0
END IF
INFO = 1
RETURN
END IF
MLWQR = MAX(1,N) ! Minimal workspace length for DGEQRF.
MLWORK = MINMN + MLWQR
IF ( LQUERY ) THEN
CALL DGEQRF( M, N, F, LDF, WORK, RDUMMY, -1, &
INFO1 )
OLWQR = INT(RDUMMY(1))
OLWORK = MIN(M,N) + OLWQR
END IF
CALL DGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN,&
N-1, X, LDX, Y, LDY, NRNK, TOL, K, &
REIG, IMEIG, Z, LDZ, RES, B, LDB, &
V, LDV, S, LDS, WORK, -1, IWORK, &
LIWORK, INFO1 )
MLWDMD = INT(WORK(1))
MLWORK = MAX(MLWORK, MINMN + MLWDMD)
IMINWR = IWORK(1)
IF ( LQUERY ) THEN
OLWDMD = INT(WORK(2))
OLWORK = MAX(OLWORK, MINMN+OLWDMD)
END IF
IF ( WNTVEC .OR. WNTVCF ) THEN
MLWMQR = MAX(1,N)
MLWORK = MAX(MLWORK,MINMN+N-1+MLWMQR)
IF ( LQUERY ) THEN
CALL DORMQR( 'L','N', M, N, MINMN, F, LDF, &
WORK, Z, LDZ, WORK, -1, INFO1 )
OLWMQR = INT(WORK(1))
OLWORK = MAX(OLWORK,MINMN+N-1+OLWMQR)
END IF
END IF
IF ( WANTQ ) THEN
MLWGQR = N
MLWORK = MAX(MLWORK,MINMN+N-1+MLWGQR)
IF ( LQUERY ) THEN
CALL DORGQR( M, MINMN, MINMN, F, LDF, WORK, &
WORK, -1, INFO1 )
OLWGQR = INT(WORK(1))
OLWORK = MAX(OLWORK,MINMN+N-1+OLWGQR)
END IF
END IF
IMINWR = MAX( 1, IMINWR )
MLWORK = MAX( 2, MLWORK )
IF ( LWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -31
IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -33
END IF
IF( INFO /= 0 ) THEN
CALL XERBLA( 'DGEDMDQ', -INFO )
RETURN
ELSE IF ( LQUERY ) THEN
! Return minimal and optimal workspace sizes
IWORK(1) = IMINWR
WORK(1) = MLWORK
WORK(2) = OLWORK
RETURN
END IF
!.....
! Initial QR factorization that is used to represent the
! snapshots as elements of lower dimensional subspace.
! For large scale computation with M >>N , at this place
! one can use an out of core QRF.
!
CALL DGEQRF( M, N, F, LDF, WORK, &
WORK(MINMN+1), LWORK-MINMN, INFO1 )
!
! Define X and Y as the snapshots representations in the
! orthogonal basis computed in the QR factorization.
! X corresponds to the leading N-1 and Y to the trailing
! N-1 snapshots.
CALL DLASET( 'L', MINMN, N-1, ZERO, ZERO, X, LDX )
CALL DLACPY( 'U', MINMN, N-1, F, LDF, X, LDX )
CALL DLACPY( 'A', MINMN, N-1, F(1,2), LDF, Y, LDY )
IF ( M >= 3 ) THEN
CALL DLASET( 'L', MINMN-2, N-2, ZERO, ZERO, &
Y(3,1), LDY )
END IF
!
! Compute the DMD of the projected snapshot pairs (X,Y)
CALL DGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN, &
N-1, X, LDX, Y, LDY, NRNK, TOL, K, &
REIG, IMEIG, Z, LDZ, RES, B, LDB, V, &
LDV, S, LDS, WORK(MINMN+1), LWORK-MINMN, &
IWORK, LIWORK, INFO1 )
IF ( INFO1 == 2 .OR. INFO1 == 3 ) THEN
! Return with error code. See DGEDMD for details.
INFO = INFO1
RETURN
ELSE
INFO = INFO1
END IF
!
! The Ritz vectors (Koopman modes) can be explicitly
! formed or returned in factored form.
IF ( WNTVEC ) THEN
! Compute the eigenvectors explicitly.
IF ( M > MINMN ) CALL DLASET( 'A', M-MINMN, K, ZERO, &
ZERO, Z(MINMN+1,1), LDZ )
CALL DORMQR( 'L','N', M, K, MINMN, F, LDF, WORK, Z, &
LDZ, WORK(MINMN+N), LWORK-(MINMN+N-1), INFO1 )
ELSE IF ( WNTVCF ) THEN
! Return the Ritz vectors (eigenvectors) in factored
! form Z*V, where Z contains orthonormal matrix (the
! product of Q from the initial QR factorization and
! the SVD/POD_basis returned by DGEDMD in X) and the
! second factor (the eigenvectors of the Rayleigh
! quotient) is in the array V, as returned by DGEDMD.
CALL DLACPY( 'A', N, K, X, LDX, Z, LDZ )
IF ( M > N ) CALL DLASET( 'A', M-N, K, ZERO, ZERO, &
Z(N+1,1), LDZ )
CALL DORMQR( 'L','N', M, K, MINMN, F, LDF, WORK, Z, &
LDZ, WORK(MINMN+N), LWORK-(MINMN+N-1), INFO1 )
END IF
!
! Some optional output variables:
!
! The upper triangular factor R in the initial QR
! factorization is optionally returned in the array Y.
! This is useful if this call to DGEDMDQ is to be
! followed by a streaming DMD that is implemented in a
! QR compressed form.
IF ( WNTTRF ) THEN ! Return the upper triangular R in Y
CALL DLASET( 'A', MINMN, N, ZERO, ZERO, Y, LDY )
CALL DLACPY( 'U', MINMN, N, F, LDF, Y, LDY )
END IF
!
! The orthonormal/orthogonal factor Q in the initial QR
! factorization is optionally returned in the array F.
! Same as with the triangular factor above, this is
! useful in a streaming DMD.
IF ( WANTQ ) THEN ! Q overwrites F
CALL DORGQR( M, MINMN, MINMN, F, LDF, WORK, &
WORK(MINMN+N), LWORK-(MINMN+N-1), INFO1 )
END IF
!
RETURN
!
END SUBROUTINE DGEDMDQ

1746
lapack-netlib/SRC/sgedmd.c Normal file

File diff suppressed because it is too large Load Diff

1054
lapack-netlib/SRC/sgedmd.f90 Normal file

File diff suppressed because it is too large Load Diff

1296
lapack-netlib/SRC/sgedmdq.c Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,703 @@
SUBROUTINE SGEDMDQ( JOBS, JOBZ, JOBR, JOBQ, JOBT, JOBF, &
WHTSVD, M, N, F, LDF, X, LDX, Y, &
LDY, NRNK, TOL, K, REIG, IMEIG, &
Z, LDZ, RES, B, LDB, V, LDV, &
S, LDS, WORK, LWORK, IWORK, LIWORK, INFO )
! March 2023
!.....
USE iso_fortran_env
IMPLICIT NONE
INTEGER, PARAMETER :: WP = real32
!.....
! Scalar arguments
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBQ, &
JOBT, JOBF
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDF, LDX, &
LDY, NRNK, LDZ, LDB, LDV, &
LDS, LWORK, LIWORK
INTEGER, INTENT(OUT) :: INFO, K
REAL(KIND=WP), INTENT(IN) :: TOL
! Array arguments
REAL(KIND=WP), INTENT(INOUT) :: F(LDF,*)
REAL(KIND=WP), INTENT(OUT) :: X(LDX,*), Y(LDY,*), &
Z(LDZ,*), B(LDB,*), &
V(LDV,*), S(LDS,*)
REAL(KIND=WP), INTENT(OUT) :: REIG(*), IMEIG(*), &
RES(*)
REAL(KIND=WP), INTENT(OUT) :: WORK(*)
INTEGER, INTENT(OUT) :: IWORK(*)
!.....
! Purpose
! =======
! SGEDMDQ computes the Dynamic Mode Decomposition (DMD) for
! a pair of data snapshot matrices, using a QR factorization
! based compression of the data. For the input matrices
! X and Y such that Y = A*X with an unaccessible matrix
! A, SGEDMDQ computes a certain number of Ritz pairs of A using
! the standard Rayleigh-Ritz extraction from a subspace of
! range(X) that is determined using the leading left singular
! vectors of X. Optionally, SGEDMDQ returns the residuals
! of the computed Ritz pairs, the information needed for
! a refinement of the Ritz vectors, or the eigenvectors of
! the Exact DMD.
! For further details see the references listed
! below. For more details of the implementation see [3].
!
! References
! ==========
! [1] P. Schmid: Dynamic mode decomposition of numerical
! and experimental data,
! Journal of Fluid Mechanics 656, 5-28, 2010.
! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
! decompositions: analysis and enhancements,
! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
! [3] Z. Drmac: A LAPACK implementation of the Dynamic
! Mode Decomposition I. Technical report. AIMDyn Inc.
! and LAPACK Working Note 298.
! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
! Brunton, N. Kutz: On Dynamic Mode Decomposition:
! Theory and Applications, Journal of Computational
! Dynamics 1(2), 391 -421, 2014.
!
! Developed and supported by:
! ===========================
! Developed and coded by Zlatko Drmac, Faculty of Science,
! University of Zagreb; drmac@math.hr
! In cooperation with
! AIMdyn Inc., Santa Barbara, CA.
! and supported by
! - DARPA SBIR project "Koopman Operator-Based Forecasting
! for Nonstationary Processes from Near-Term, Limited
! Observational Data" Contract No: W31P4Q-21-C-0007
! - DARPA PAI project "Physics-Informed Machine Learning
! Methodologies" Contract No: HR0011-18-9-0033
! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
! Framework for Space-Time Analysis of Process Dynamics"
! Contract No: HR0011-16-C-0116
! Any opinions, findings and conclusions or recommendations
! expressed in this material are those of the author and
! do not necessarily reflect the views of the DARPA SBIR
! Program Office.
!============================================================
! Distribution Statement A:
! Approved for Public Release, Distribution Unlimited.
! Cleared by DARPA on September 29, 2022
!============================================================
!......................................................................
! Arguments
! =========
! JOBS (input) CHARACTER*1
! Determines whether the initial data snapshots are scaled
! by a diagonal matrix. The data snapshots are the columns
! of F. The leading N-1 columns of F are denoted X and the
! trailing N-1 columns are denoted Y.
! 'S' :: The data snapshots matrices X and Y are multiplied
! with a diagonal matrix D so that X*D has unit
! nonzero columns (in the Euclidean 2-norm)
! 'C' :: The snapshots are scaled as with the 'S' option.
! If it is found that an i-th column of X is zero
! vector and the corresponding i-th column of Y is
! non-zero, then the i-th column of Y is set to
! zero and a warning flag is raised.
! 'Y' :: The data snapshots matrices X and Y are multiplied
! by a diagonal matrix D so that Y*D has unit
! nonzero columns (in the Euclidean 2-norm)
! 'N' :: No data scaling.
!.....
! JOBZ (input) CHARACTER*1
! Determines whether the eigenvectors (Koopman modes) will
! be computed.
! 'V' :: The eigenvectors (Koopman modes) will be computed
! and returned in the matrix Z.
! See the description of Z.
! 'F' :: The eigenvectors (Koopman modes) will be returned
! in factored form as the product Z*V, where Z
! is orthonormal and V contains the eigenvectors
! of the corresponding Rayleigh quotient.
! See the descriptions of F, V, Z.
! 'Q' :: The eigenvectors (Koopman modes) will be returned
! in factored form as the product Q*Z, where Z
! contains the eigenvectors of the compression of the
! underlying discretized operator onto the span of
! the data snapshots. See the descriptions of F, V, Z.
! Q is from the initial QR factorization.
! 'N' :: The eigenvectors are not computed.
!.....
! JOBR (input) CHARACTER*1
! Determines whether to compute the residuals.
! 'R' :: The residuals for the computed eigenpairs will
! be computed and stored in the array RES.
! See the description of RES.
! For this option to be legal, JOBZ must be 'V'.
! 'N' :: The residuals are not computed.
!.....
! JOBQ (input) CHARACTER*1
! Specifies whether to explicitly compute and return the
! orthogonal matrix from the QR factorization.
! 'Q' :: The matrix Q of the QR factorization of the data
! snapshot matrix is computed and stored in the
! array F. See the description of F.
! 'N' :: The matrix Q is not explicitly computed.
!.....
! JOBT (input) CHARACTER*1
! Specifies whether to return the upper triangular factor
! from the QR factorization.
! 'R' :: The matrix R of the QR factorization of the data
! snapshot matrix F is returned in the array Y.
! See the description of Y and Further details.
! 'N' :: The matrix R is not returned.
!.....
! JOBF (input) CHARACTER*1
! Specifies whether to store information needed for post-
! processing (e.g. computing refined Ritz vectors)
! 'R' :: The matrix needed for the refinement of the Ritz
! vectors is computed and stored in the array B.
! See the description of B.
! 'E' :: The unscaled eigenvectors of the Exact DMD are
! computed and returned in the array B. See the
! description of B.
! 'N' :: No eigenvector refinement data is computed.
! To be useful on exit, this option needs JOBQ='Q'.
!.....
! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
! Allows for a selection of the SVD algorithm from the
! LAPACK library.
! 1 :: SGESVD (the QR SVD algorithm)
! 2 :: SGESDD (the Divide and Conquer algorithm; if enough
! workspace available, this is the fastest option)
! 3 :: SGESVDQ (the preconditioned QR SVD ; this and 4
! are the most accurate options)
! 4 :: SGEJSV (the preconditioned Jacobi SVD; this and 3
! are the most accurate options)
! For the four methods above, a significant difference in
! the accuracy of small singular values is possible if
! the snapshots vary in norm so that X is severely
! ill-conditioned. If small (smaller than EPS*||X||)
! singular values are of interest and JOBS=='N', then
! the options (3, 4) give the most accurate results, where
! the option 4 is slightly better and with stronger
! theoretical background.
! If JOBS=='S', i.e. the columns of X will be normalized,
! then all methods give nearly equally accurate results.
!.....
! M (input) INTEGER, M >= 0
! The state space dimension (the number of rows of F)
!.....
! N (input) INTEGER, 0 <= N <= M
! The number of data snapshots from a single trajectory,
! taken at equidistant discrete times. This is the
! number of columns of F.
!.....
! F (input/output) REAL(KIND=WP) M-by-N array
! > On entry,
! the columns of F are the sequence of data snapshots
! from a single trajectory, taken at equidistant discrete
! times. It is assumed that the column norms of F are
! in the range of the normalized floating point numbers.
! < On exit,
! If JOBQ == 'Q', the array F contains the orthogonal
! matrix/factor of the QR factorization of the initial
! data snapshots matrix F. See the description of JOBQ.
! If JOBQ == 'N', the entries in F strictly below the main
! diagonal contain, column-wise, the information on the
! Householder vectors, as returned by SGEQRF. The
! remaining information to restore the orthogonal matrix
! of the initial QR factorization is stored in WORK(1:N).
! See the description of WORK.
!.....
! LDF (input) INTEGER, LDF >= M
! The leading dimension of the array F.
!.....
! X (workspace/output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array
! X is used as workspace to hold representations of the
! leading N-1 snapshots in the orthonormal basis computed
! in the QR factorization of F.
! On exit, the leading K columns of X contain the leading
! K left singular vectors of the above described content
! of X. To lift them to the space of the left singular
! vectors U(:,1:K)of the input data, pre-multiply with the
! Q factor from the initial QR factorization.
! See the descriptions of F, K, V and Z.
!.....
! LDX (input) INTEGER, LDX >= N
! The leading dimension of the array X
!.....
! Y (workspace/output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array
! Y is used as workspace to hold representations of the
! trailing N-1 snapshots in the orthonormal basis computed
! in the QR factorization of F.
! On exit,
! If JOBT == 'R', Y contains the MIN(M,N)-by-N upper
! triangular factor from the QR factorization of the data
! snapshot matrix F.
!.....
! LDY (input) INTEGER , LDY >= N
! The leading dimension of the array Y
!.....
! NRNK (input) INTEGER
! Determines the mode how to compute the numerical rank,
! i.e. how to truncate small singular values of the input
! matrix X. On input, if
! NRNK = -1 :: i-th singular value sigma(i) is truncated
! if sigma(i) <= TOL*sigma(1)
! This option is recommended.
! NRNK = -2 :: i-th singular value sigma(i) is truncated
! if sigma(i) <= TOL*sigma(i-1)
! This option is included for R&D purposes.
! It requires highly accurate SVD, which
! may not be feasible.
! The numerical rank can be enforced by using positive
! value of NRNK as follows:
! 0 < NRNK <= N-1 :: at most NRNK largest singular values
! will be used. If the number of the computed nonzero
! singular values is less than NRNK, then only those
! nonzero values will be used and the actually used
! dimension is less than NRNK. The actual number of
! the nonzero singular values is returned in the variable
! K. See the description of K.
!.....
! TOL (input) REAL(KIND=WP), 0 <= TOL < 1
! The tolerance for truncating small singular values.
! See the description of NRNK.
!.....
! K (output) INTEGER, 0 <= K <= N
! The dimension of the SVD/POD basis for the leading N-1
! data snapshots (columns of F) and the number of the
! computed Ritz pairs. The value of K is determined
! according to the rule set by the parameters NRNK and
! TOL. See the descriptions of NRNK and TOL.
!.....
! REIG (output) REAL(KIND=WP) (N-1)-by-1 array
! The leading K (K<=N) entries of REIG contain
! the real parts of the computed eigenvalues
! REIG(1:K) + sqrt(-1)*IMEIG(1:K).
! See the descriptions of K, IMEIG, Z.
!.....
! IMEIG (output) REAL(KIND=WP) (N-1)-by-1 array
! The leading K (K<N) entries of REIG contain
! the imaginary parts of the computed eigenvalues
! REIG(1:K) + sqrt(-1)*IMEIG(1:K).
! The eigenvalues are determined as follows:
! If IMEIG(i) == 0, then the corresponding eigenvalue is
! real, LAMBDA(i) = REIG(i).
! If IMEIG(i)>0, then the corresponding complex
! conjugate pair of eigenvalues reads
! LAMBDA(i) = REIG(i) + sqrt(-1)*IMAG(i)
! LAMBDA(i+1) = REIG(i) - sqrt(-1)*IMAG(i)
! That is, complex conjugate pairs have consecutive
! indices (i,i+1), with the positive imaginary part
! listed first.
! See the descriptions of K, REIG, Z.
!.....
! Z (workspace/output) REAL(KIND=WP) M-by-(N-1) array
! If JOBZ =='V' then
! Z contains real Ritz vectors as follows:
! If IMEIG(i)=0, then Z(:,i) is an eigenvector of
! the i-th Ritz value.
! If IMEIG(i) > 0 (and IMEIG(i+1) < 0) then
! [Z(:,i) Z(:,i+1)] span an invariant subspace and
! the Ritz values extracted from this subspace are
! REIG(i) + sqrt(-1)*IMEIG(i) and
! REIG(i) - sqrt(-1)*IMEIG(i).
! The corresponding eigenvectors are
! Z(:,i) + sqrt(-1)*Z(:,i+1) and
! Z(:,i) - sqrt(-1)*Z(:,i+1), respectively.
! If JOBZ == 'F', then the above descriptions hold for
! the columns of Z*V, where the columns of V are the
! eigenvectors of the K-by-K Rayleigh quotient, and Z is
! orthonormal. The columns of V are similarly structured:
! If IMEIG(i) == 0 then Z*V(:,i) is an eigenvector, and if
! IMEIG(i) > 0 then Z*V(:,i)+sqrt(-1)*Z*V(:,i+1) and
! Z*V(:,i)-sqrt(-1)*Z*V(:,i+1)
! are the eigenvectors of LAMBDA(i), LAMBDA(i+1).
! See the descriptions of REIG, IMEIG, X and V.
!.....
! LDZ (input) INTEGER , LDZ >= M
! The leading dimension of the array Z.
!.....
! RES (output) REAL(KIND=WP) (N-1)-by-1 array
! RES(1:K) contains the residuals for the K computed
! Ritz pairs.
! If LAMBDA(i) is real, then
! RES(i) = || A * Z(:,i) - LAMBDA(i)*Z(:,i))||_2.
! If [LAMBDA(i), LAMBDA(i+1)] is a complex conjugate pair
! then
! RES(i)=RES(i+1) = || A * Z(:,i:i+1) - Z(:,i:i+1) *B||_F
! where B = [ real(LAMBDA(i)) imag(LAMBDA(i)) ]
! [-imag(LAMBDA(i)) real(LAMBDA(i)) ].
! It holds that
! RES(i) = || A*ZC(:,i) - LAMBDA(i) *ZC(:,i) ||_2
! RES(i+1) = || A*ZC(:,i+1) - LAMBDA(i+1)*ZC(:,i+1) ||_2
! where ZC(:,i) = Z(:,i) + sqrt(-1)*Z(:,i+1)
! ZC(:,i+1) = Z(:,i) - sqrt(-1)*Z(:,i+1)
! See the description of Z.
!.....
! B (output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array.
! IF JOBF =='R', B(1:N,1:K) contains A*U(:,1:K), and can
! be used for computing the refined vectors; see further
! details in the provided references.
! If JOBF == 'E', B(1:N,1;K) contains
! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
! Exact DMD, up to scaling by the inverse eigenvalues.
! In both cases, the content of B can be lifted to the
! original dimension of the input data by pre-multiplying
! with the Q factor from the initial QR factorization.
! Here A denotes a compression of the underlying operator.
! See the descriptions of F and X.
! If JOBF =='N', then B is not referenced.
!.....
! LDB (input) INTEGER, LDB >= MIN(M,N)
! The leading dimension of the array B.
!.....
! V (workspace/output) REAL(KIND=WP) (N-1)-by-(N-1) array
! On exit, V(1:K,1:K) contains the K eigenvectors of
! the Rayleigh quotient. The eigenvectors of a complex
! conjugate pair of eigenvalues are returned in real form
! as explained in the description of Z. The Ritz vectors
! (returned in Z) are the product of X and V; see
! the descriptions of X and Z.
!.....
! LDV (input) INTEGER, LDV >= N-1
! The leading dimension of the array V.
!.....
! S (output) REAL(KIND=WP) (N-1)-by-(N-1) array
! The array S(1:K,1:K) is used for the matrix Rayleigh
! quotient. This content is overwritten during
! the eigenvalue decomposition by SGEEV.
! See the description of K.
!.....
! LDS (input) INTEGER, LDS >= N-1
! The leading dimension of the array S.
!.....
! WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array
! On exit,
! WORK(1:MIN(M,N)) contains the scalar factors of the
! elementary reflectors as returned by SGEQRF of the
! M-by-N input matrix F.
! WORK(MIN(M,N)+1:MIN(M,N)+N-1) contains the singular values of
! the input submatrix F(1:M,1:N-1).
! If the call to SGEDMDQ is only workspace query, then
! WORK(1) contains the minimal workspace length and
! WORK(2) is the optimal workspace length. Hence, the
! length of work is at least 2.
! See the description of LWORK.
!.....
! LWORK (input) INTEGER
! The minimal length of the workspace vector WORK.
! LWORK is calculated as follows:
! Let MLWQR = N (minimal workspace for SGEQRF[M,N])
! MLWDMD = minimal workspace for SGEDMD (see the
! description of LWORK in SGEDMD) for
! snapshots of dimensions MIN(M,N)-by-(N-1)
! MLWMQR = N (minimal workspace for
! SORMQR['L','N',M,N,N])
! MLWGQR = N (minimal workspace for SORGQR[M,N,N])
! Then
! LWORK = MAX(N+MLWQR, N+MLWDMD)
! is updated as follows:
! if JOBZ == 'V' or JOBZ == 'F' THEN
! LWORK = MAX( LWORK,MIN(M,N)+N-1 +MLWMQR )
! if JOBQ == 'Q' THEN
! LWORK = MAX( LWORK,MIN(M,N)+N-1+MLWGQR)
! If on entry LWORK = -1, then a workspace query is
! assumed and the procedure only computes the minimal
! and the optimal workspace lengths for both WORK and
! IWORK. See the descriptions of WORK and IWORK.
!.....
! IWORK (workspace/output) INTEGER LIWORK-by-1 array
! Workspace that is required only if WHTSVD equals
! 2 , 3 or 4. (See the description of WHTSVD).
! If on entry LWORK =-1 or LIWORK=-1, then the
! minimal length of IWORK is computed and returned in
! IWORK(1). See the description of LIWORK.
!.....
! LIWORK (input) INTEGER
! The minimal length of the workspace vector IWORK.
! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
! Let M1=MIN(M,N), N1=N-1. Then
! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M1,N1))
! If WHTSVD == 3, then LIWORK >= MAX(1,M1+N1-1)
! If WHTSVD == 4, then LIWORK >= MAX(3,M1+3*N1)
! If on entry LIWORK = -1, then a worskpace query is
! assumed and the procedure only computes the minimal
! and the optimal workspace lengths for both WORK and
! IWORK. See the descriptions of WORK and IWORK.
!.....
! INFO (output) INTEGER
! -i < 0 :: On entry, the i-th argument had an
! illegal value
! = 0 :: Successful return.
! = 1 :: Void input. Quick exit (M=0 or N=0).
! = 2 :: The SVD computation of X did not converge.
! Suggestion: Check the input data and/or
! repeat with different WHTSVD.
! = 3 :: The computation of the eigenvalues did not
! converge.
! = 4 :: If data scaling was requested on input and
! the procedure found inconsistency in the data
! such that for some column index i,
! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
! to zero if JOBS=='C'. The computation proceeds
! with original or modified data and warning
! flag is set with INFO=4.
!.............................................................
!.............................................................
! Parameters
! ~~~~~~~~~~
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP
!
! Local scalars
! ~~~~~~~~~~~~~
INTEGER :: IMINWR, INFO1, MLWDMD, MLWGQR, &
MLWMQR, MLWORK, MLWQR, MINMN, &
OLWDMD, OLWGQR, OLWMQR, OLWORK, &
OLWQR
LOGICAL :: LQUERY, SCCOLX, SCCOLY, WANTQ, &
WNTTRF, WNTRES, WNTVEC, WNTVCF, &
WNTVCQ, WNTREF, WNTEX
CHARACTER(LEN=1) :: JOBVL
!
! Local array
! ~~~~~~~~~~~
REAL(KIND=WP) :: RDUMMY(2)
!
! External functions (BLAS and LAPACK)
! ~~~~~~~~~~~~~~~~~
LOGICAL LSAME
EXTERNAL LSAME
!
! External subroutines (BLAS and LAPACK)
! ~~~~~~~~~~~~~~~~~~~~
EXTERNAL SGEMM
EXTERNAL SGEQRF, SLACPY, SLASET, SORGQR, &
SORMQR, XERBLA
! External subroutines
! ~~~~~~~~~~~~~~~~~~~~
EXTERNAL SGEDMD
! Intrinsic functions
! ~~~~~~~~~~~~~~~~~~~
INTRINSIC MAX, MIN, INT
!..........................................................
!
! Test the input arguments
WNTRES = LSAME(JOBR,'R')
SCCOLX = LSAME(JOBS,'S') .OR. LSAME( JOBS, 'C' )
SCCOLY = LSAME(JOBS,'Y')
WNTVEC = LSAME(JOBZ,'V')
WNTVCF = LSAME(JOBZ,'F')
WNTVCQ = LSAME(JOBZ,'Q')
WNTREF = LSAME(JOBF,'R')
WNTEX = LSAME(JOBF,'E')
WANTQ = LSAME(JOBQ,'Q')
WNTTRF = LSAME(JOBT,'R')
MINMN = MIN(M,N)
INFO = 0
LQUERY = ( ( LWORK == -1 ) .OR. ( LIWORK == -1 ) )
!
IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. LSAME(JOBS,'N')) ) THEN
INFO = -1
ELSE IF ( .NOT. (WNTVEC .OR. WNTVCF .OR. WNTVCQ &
.OR. LSAME(JOBZ,'N')) ) THEN
INFO = -2
ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. &
( WNTRES .AND. LSAME(JOBZ,'N') ) ) THEN
INFO = -3
ELSE IF ( .NOT. (WANTQ .OR. LSAME(JOBQ,'N')) ) THEN
INFO = -4
ELSE IF ( .NOT. ( WNTTRF .OR. LSAME(JOBT,'N') ) ) THEN
INFO = -5
ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. &
LSAME(JOBF,'N') ) ) THEN
INFO = -6
ELSE IF ( .NOT. ((WHTSVD == 1).OR.(WHTSVD == 2).OR. &
(WHTSVD == 3).OR.(WHTSVD == 4)) ) THEN
INFO = -7
ELSE IF ( M < 0 ) THEN
INFO = -8
ELSE IF ( ( N < 0 ) .OR. ( N > M+1 ) ) THEN
INFO = -9
ELSE IF ( LDF < M ) THEN
INFO = -11
ELSE IF ( LDX < MINMN ) THEN
INFO = -13
ELSE IF ( LDY < MINMN ) THEN
INFO = -15
ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. &
((NRNK >= 1).AND.(NRNK <=N ))) ) THEN
INFO = -16
ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN
INFO = -17
ELSE IF ( LDZ < M ) THEN
INFO = -22
ELSE IF ( (WNTREF.OR.WNTEX ).AND.( LDB < MINMN ) ) THEN
INFO = -25
ELSE IF ( LDV < N-1 ) THEN
INFO = -27
ELSE IF ( LDS < N-1 ) THEN
INFO = -29
END IF
!
IF ( WNTVEC .OR. WNTVCF ) THEN
JOBVL = 'V'
ELSE
JOBVL = 'N'
END IF
IF ( INFO == 0 ) THEN
! Compute the minimal and the optimal workspace
! requirements. Simulate running the code and
! determine minimal and optimal sizes of the
! workspace at any moment of the run.
IF ( ( N == 0 ) .OR. ( N == 1 ) ) THEN
! All output except K is void. INFO=1 signals
! the void input. In case of a workspace query,
! the minimal workspace lengths are returned.
IF ( LQUERY ) THEN
IWORK(1) = 1
WORK(1) = 2
WORK(2) = 2
ELSE
K = 0
END IF
INFO = 1
RETURN
END IF
MLWQR = MAX(1,N) ! Minimal workspace length for SGEQRF.
MLWORK = MIN(M,N) + MLWQR
IF ( LQUERY ) THEN
CALL SGEQRF( M, N, F, LDF, WORK, RDUMMY, -1, &
INFO1 )
OLWQR = INT(RDUMMY(1))
OLWORK = MIN(M,N) + OLWQR
END IF
CALL SGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN,&
N-1, X, LDX, Y, LDY, NRNK, TOL, K, &
REIG, IMEIG, Z, LDZ, RES, B, LDB, &
V, LDV, S, LDS, WORK, -1, IWORK, &
LIWORK, INFO1 )
MLWDMD = INT(WORK(1))
MLWORK = MAX(MLWORK, MINMN + MLWDMD)
IMINWR = IWORK(1)
IF ( LQUERY ) THEN
OLWDMD = INT(WORK(2))
OLWORK = MAX(OLWORK, MINMN+OLWDMD)
END IF
IF ( WNTVEC .OR. WNTVCF ) THEN
MLWMQR = MAX(1,N)
MLWORK = MAX(MLWORK,MINMN+N-1+MLWMQR)
IF ( LQUERY ) THEN
CALL SORMQR( 'L','N', M, N, MINMN, F, LDF, &
WORK, Z, LDZ, WORK, -1, INFO1 )
OLWMQR = INT(WORK(1))
OLWORK = MAX(OLWORK,MINMN+N-1+OLWMQR)
END IF
END IF
IF ( WANTQ ) THEN
MLWGQR = N
MLWORK = MAX(MLWORK,MINMN+N-1+MLWGQR)
IF ( LQUERY ) THEN
CALL SORGQR( M, MINMN, MINMN, F, LDF, WORK, &
WORK, -1, INFO1 )
OLWGQR = INT(WORK(1))
OLWORK = MAX(OLWORK,MINMN+N-1+OLWGQR)
END IF
END IF
IMINWR = MAX( 1, IMINWR )
MLWORK = MAX( 2, MLWORK )
IF ( LWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -31
IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -33
END IF
IF( INFO /= 0 ) THEN
CALL XERBLA( 'SGEDMDQ', -INFO )
RETURN
ELSE IF ( LQUERY ) THEN
! Return minimal and optimal workspace sizes
IWORK(1) = IMINWR
WORK(1) = MLWORK
WORK(2) = OLWORK
RETURN
END IF
!.....
! Initial QR factorization that is used to represent the
! snapshots as elements of lower dimensional subspace.
! For large scale computation with M >>N , at this place
! one can use an out of core QRF.
!
CALL SGEQRF( M, N, F, LDF, WORK, &
WORK(MINMN+1), LWORK-MINMN, INFO1 )
!
! Define X and Y as the snapshots representations in the
! orthogonal basis computed in the QR factorization.
! X corresponds to the leading N-1 and Y to the trailing
! N-1 snapshots.
CALL SLASET( 'L', MINMN, N-1, ZERO, ZERO, X, LDX )
CALL SLACPY( 'U', MINMN, N-1, F, LDF, X, LDX )
CALL SLACPY( 'A', MINMN, N-1, F(1,2), LDF, Y, LDY )
IF ( M >= 3 ) THEN
CALL SLASET( 'L', MINMN-2, N-2, ZERO, ZERO, &
Y(3,1), LDY )
END IF
!
! Compute the DMD of the projected snapshot pairs (X,Y)
CALL SGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN, &
N-1, X, LDX, Y, LDY, NRNK, TOL, K, &
REIG, IMEIG, Z, LDZ, RES, B, LDB, V, &
LDV, S, LDS, WORK(MINMN+1), LWORK-MINMN, IWORK, &
LIWORK, INFO1 )
IF ( INFO1 == 2 .OR. INFO1 == 3 ) THEN
! Return with error code.
INFO = INFO1
RETURN
ELSE
INFO = INFO1
END IF
!
! The Ritz vectors (Koopman modes) can be explicitly
! formed or returned in factored form.
IF ( WNTVEC ) THEN
! Compute the eigenvectors explicitly.
IF ( M > MINMN ) CALL SLASET( 'A', M-MINMN, K, ZERO, &
ZERO, Z(MINMN+1,1), LDZ )
CALL SORMQR( 'L','N', M, K, MINMN, F, LDF, WORK, Z, &
LDZ, WORK(MINMN+N), LWORK-(MINMN+N-1), INFO1 )
ELSE IF ( WNTVCF ) THEN
! Return the Ritz vectors (eigenvectors) in factored
! form Z*V, where Z contains orthonormal matrix (the
! product of Q from the initial QR factorization and
! the SVD/POD_basis returned by SGEDMD in X) and the
! second factor (the eigenvectors of the Rayleigh
! quotient) is in the array V, as returned by SGEDMD.
CALL SLACPY( 'A', N, K, X, LDX, Z, LDZ )
IF ( M > N ) CALL SLASET( 'A', M-N, K, ZERO, ZERO, &
Z(N+1,1), LDZ )
CALL SORMQR( 'L','N', M, K, MINMN, F, LDF, WORK, Z, &
LDZ, WORK(MINMN+N), LWORK-(MINMN+N-1), INFO1 )
END IF
!
! Some optional output variables:
!
! The upper triangular factor in the initial QR
! factorization is optionally returned in the array Y.
! This is useful if this call to SGEDMDQ is to be
! followed by a streaming DMD that is implemented in a
! QR compressed form.
IF ( WNTTRF ) THEN ! Return the upper triangular R in Y
CALL SLASET( 'A', MINMN, N, ZERO, ZERO, Y, LDY )
CALL SLACPY( 'U', MINMN, N, F, LDF, Y, LDY )
END IF
!
! The orthonormal/orthogonal factor in the initial QR
! factorization is optionally returned in the array F.
! Same as with the triangular factor above, this is
! useful in a streaming DMD.
IF ( WANTQ ) THEN ! Q overwrites F
CALL SORGQR( M, MINMN, MINMN, F, LDF, WORK, &
WORK(MINMN+N), LWORK-(MINMN+N-1), INFO1 )
END IF
!
RETURN
!
END SUBROUTINE SGEDMDQ

1676
lapack-netlib/SRC/zgedmd.c Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,996 @@
SUBROUTINE ZGEDMD( JOBS, JOBZ, JOBR, JOBF, WHTSVD, &
M, N, X, LDX, Y, LDY, NRNK, TOL, &
K, EIGS, Z, LDZ, RES, B, LDB, &
W, LDW, S, LDS, ZWORK, LZWORK, &
RWORK, LRWORK, IWORK, LIWORK, INFO )
! March 2023
!.....
USE iso_fortran_env
IMPLICIT NONE
INTEGER, PARAMETER :: WP = real64
!.....
! Scalar arguments
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBF
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDX, LDY, &
NRNK, LDZ, LDB, LDW, LDS, &
LIWORK, LRWORK, LZWORK
INTEGER, INTENT(OUT) :: K, INFO
REAL(KIND=WP), INTENT(IN) :: TOL
! Array arguments
COMPLEX(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*)
COMPLEX(KIND=WP), INTENT(OUT) :: Z(LDZ,*), B(LDB,*), &
W(LDW,*), S(LDS,*)
COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*)
COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*)
REAL(KIND=WP), INTENT(OUT) :: RES(*)
REAL(KIND=WP), INTENT(OUT) :: RWORK(*)
INTEGER, INTENT(OUT) :: IWORK(*)
!............................................................
! Purpose
! =======
! ZGEDMD computes the Dynamic Mode Decomposition (DMD) for
! a pair of data snapshot matrices. For the input matrices
! X and Y such that Y = A*X with an unaccessible matrix
! A, ZGEDMD computes a certain number of Ritz pairs of A using
! the standard Rayleigh-Ritz extraction from a subspace of
! range(X) that is determined using the leading left singular
! vectors of X. Optionally, ZGEDMD returns the residuals
! of the computed Ritz pairs, the information needed for
! a refinement of the Ritz vectors, or the eigenvectors of
! the Exact DMD.
! For further details see the references listed
! below. For more details of the implementation see [3].
!
! References
! ==========
! [1] P. Schmid: Dynamic mode decomposition of numerical
! and experimental data,
! Journal of Fluid Mechanics 656, 5-28, 2010.
! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
! decompositions: analysis and enhancements,
! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
! [3] Z. Drmac: A LAPACK implementation of the Dynamic
! Mode Decomposition I. Technical report. AIMDyn Inc.
! and LAPACK Working Note 298.
! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
! Brunton, N. Kutz: On Dynamic Mode Decomposition:
! Theory and Applications, Journal of Computational
! Dynamics 1(2), 391 -421, 2014.
!
!......................................................................
! Developed and supported by:
! ===========================
! Developed and coded by Zlatko Drmac, Faculty of Science,
! University of Zagreb; drmac@math.hr
! In cooperation with
! AIMdyn Inc., Santa Barbara, CA.
! and supported by
! - DARPA SBIR project "Koopman Operator-Based Forecasting
! for Nonstationary Processes from Near-Term, Limited
! Observational Data" Contract No: W31P4Q-21-C-0007
! - DARPA PAI project "Physics-Informed Machine Learning
! Methodologies" Contract No: HR0011-18-9-0033
! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
! Framework for Space-Time Analysis of Process Dynamics"
! Contract No: HR0011-16-C-0116
! Any opinions, findings and conclusions or recommendations
! expressed in this material are those of the author and
! do not necessarily reflect the views of the DARPA SBIR
! Program Office
!============================================================
! Distribution Statement A:
! Approved for Public Release, Distribution Unlimited.
! Cleared by DARPA on September 29, 2022
!============================================================
!............................................................
! Arguments
! =========
! JOBS (input) CHARACTER*1
! Determines whether the initial data snapshots are scaled
! by a diagonal matrix.
! 'S' :: The data snapshots matrices X and Y are multiplied
! with a diagonal matrix D so that X*D has unit
! nonzero columns (in the Euclidean 2-norm)
! 'C' :: The snapshots are scaled as with the 'S' option.
! If it is found that an i-th column of X is zero
! vector and the corresponding i-th column of Y is
! non-zero, then the i-th column of Y is set to
! zero and a warning flag is raised.
! 'Y' :: The data snapshots matrices X and Y are multiplied
! by a diagonal matrix D so that Y*D has unit
! nonzero columns (in the Euclidean 2-norm)
! 'N' :: No data scaling.
!.....
! JOBZ (input) CHARACTER*1
! Determines whether the eigenvectors (Koopman modes) will
! be computed.
! 'V' :: The eigenvectors (Koopman modes) will be computed
! and returned in the matrix Z.
! See the description of Z.
! 'F' :: The eigenvectors (Koopman modes) will be returned
! in factored form as the product X(:,1:K)*W, where X
! contains a POD basis (leading left singular vectors
! of the data matrix X) and W contains the eigenvectors
! of the corresponding Rayleigh quotient.
! See the descriptions of K, X, W, Z.
! 'N' :: The eigenvectors are not computed.
!.....
! JOBR (input) CHARACTER*1
! Determines whether to compute the residuals.
! 'R' :: The residuals for the computed eigenpairs will be
! computed and stored in the array RES.
! See the description of RES.
! For this option to be legal, JOBZ must be 'V'.
! 'N' :: The residuals are not computed.
!.....
! JOBF (input) CHARACTER*1
! Specifies whether to store information needed for post-
! processing (e.g. computing refined Ritz vectors)
! 'R' :: The matrix needed for the refinement of the Ritz
! vectors is computed and stored in the array B.
! See the description of B.
! 'E' :: The unscaled eigenvectors of the Exact DMD are
! computed and returned in the array B. See the
! description of B.
! 'N' :: No eigenvector refinement data is computed.
!.....
! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
! Allows for a selection of the SVD algorithm from the
! LAPACK library.
! 1 :: ZGESVD (the QR SVD algorithm)
! 2 :: ZGESDD (the Divide and Conquer algorithm; if enough
! workspace available, this is the fastest option)
! 3 :: ZGESVDQ (the preconditioned QR SVD ; this and 4
! are the most accurate options)
! 4 :: ZGEJSV (the preconditioned Jacobi SVD; this and 3
! are the most accurate options)
! For the four methods above, a significant difference in
! the accuracy of small singular values is possible if
! the snapshots vary in norm so that X is severely
! ill-conditioned. If small (smaller than EPS*||X||)
! singular values are of interest and JOBS=='N', then
! the options (3, 4) give the most accurate results, where
! the option 4 is slightly better and with stronger
! theoretical background.
! If JOBS=='S', i.e. the columns of X will be normalized,
! then all methods give nearly equally accurate results.
!.....
! M (input) INTEGER, M>= 0
! The state space dimension (the row dimension of X, Y).
!.....
! N (input) INTEGER, 0 <= N <= M
! The number of data snapshot pairs
! (the number of columns of X and Y).
!.....
! X (input/output) COMPLEX(KIND=WP) M-by-N array
! > On entry, X contains the data snapshot matrix X. It is
! assumed that the column norms of X are in the range of
! the normalized floating point numbers.
! < On exit, the leading K columns of X contain a POD basis,
! i.e. the leading K left singular vectors of the input
! data matrix X, U(:,1:K). All N columns of X contain all
! left singular vectors of the input matrix X.
! See the descriptions of K, Z and W.
!.....
! LDX (input) INTEGER, LDX >= M
! The leading dimension of the array X.
!.....
! Y (input/workspace/output) COMPLEX(KIND=WP) M-by-N array
! > On entry, Y contains the data snapshot matrix Y
! < On exit,
! If JOBR == 'R', the leading K columns of Y contain
! the residual vectors for the computed Ritz pairs.
! See the description of RES.
! If JOBR == 'N', Y contains the original input data,
! scaled according to the value of JOBS.
!.....
! LDY (input) INTEGER , LDY >= M
! The leading dimension of the array Y.
!.....
! NRNK (input) INTEGER
! Determines the mode how to compute the numerical rank,
! i.e. how to truncate small singular values of the input
! matrix X. On input, if
! NRNK = -1 :: i-th singular value sigma(i) is truncated
! if sigma(i) <= TOL*sigma(1)
! This option is recommended.
! NRNK = -2 :: i-th singular value sigma(i) is truncated
! if sigma(i) <= TOL*sigma(i-1)
! This option is included for R&D purposes.
! It requires highly accurate SVD, which
! may not be feasible.
! The numerical rank can be enforced by using positive
! value of NRNK as follows:
! 0 < NRNK <= N :: at most NRNK largest singular values
! will be used. If the number of the computed nonzero
! singular values is less than NRNK, then only those
! nonzero values will be used and the actually used
! dimension is less than NRNK. The actual number of
! the nonzero singular values is returned in the variable
! K. See the descriptions of TOL and K.
!.....
! TOL (input) REAL(KIND=WP), 0 <= TOL < 1
! The tolerance for truncating small singular values.
! See the description of NRNK.
!.....
! K (output) INTEGER, 0 <= K <= N
! The dimension of the POD basis for the data snapshot
! matrix X and the number of the computed Ritz pairs.
! The value of K is determined according to the rule set
! by the parameters NRNK and TOL.
! See the descriptions of NRNK and TOL.
!.....
! EIGS (output) COMPLEX(KIND=WP) N-by-1 array
! The leading K (K<=N) entries of EIGS contain
! the computed eigenvalues (Ritz values).
! See the descriptions of K, and Z.
!.....
! Z (workspace/output) COMPLEX(KIND=WP) M-by-N array
! If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i)
! is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1.
! If JOBZ == 'F', then the Z(:,i)'s are given implicitly as
! the columns of X(:,1:K)*W(1:K,1:K), i.e. X(:,1:K)*W(:,i)
! is an eigenvector corresponding to EIGS(i). The columns
! of W(1:k,1:K) are the computed eigenvectors of the
! K-by-K Rayleigh quotient.
! See the descriptions of EIGS, X and W.
!.....
! LDZ (input) INTEGER , LDZ >= M
! The leading dimension of the array Z.
!.....
! RES (output) REAL(KIND=WP) N-by-1 array
! RES(1:K) contains the residuals for the K computed
! Ritz pairs,
! RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2.
! See the description of EIGS and Z.
!.....
! B (output) COMPLEX(KIND=WP) M-by-N array.
! IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can
! be used for computing the refined vectors; see further
! details in the provided references.
! If JOBF == 'E', B(1:M,1:K) contains
! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
! Exact DMD, up to scaling by the inverse eigenvalues.
! If JOBF =='N', then B is not referenced.
! See the descriptions of X, W, K.
!.....
! LDB (input) INTEGER, LDB >= M
! The leading dimension of the array B.
!.....
! W (workspace/output) COMPLEX(KIND=WP) N-by-N array
! On exit, W(1:K,1:K) contains the K computed
! eigenvectors of the matrix Rayleigh quotient.
! The Ritz vectors (returned in Z) are the
! product of X (containing a POD basis for the input
! matrix X) and W. See the descriptions of K, S, X and Z.
! W is also used as a workspace to temporarily store the
! right singular vectors of X.
!.....
! LDW (input) INTEGER, LDW >= N
! The leading dimension of the array W.
!.....
! S (workspace/output) COMPLEX(KIND=WP) N-by-N array
! The array S(1:K,1:K) is used for the matrix Rayleigh
! quotient. This content is overwritten during
! the eigenvalue decomposition by ZGEEV.
! See the description of K.
!.....
! LDS (input) INTEGER, LDS >= N
! The leading dimension of the array S.
!.....
! ZWORK (workspace/output) COMPLEX(KIND=WP) LZWORK-by-1 array
! ZWORK is used as complex workspace in the complex SVD, as
! specified by WHTSVD (1,2, 3 or 4) and for ZGEEV for computing
! the eigenvalues of a Rayleigh quotient.
! If the call to ZGEDMD is only workspace query, then
! ZWORK(1) contains the minimal complex workspace length and
! ZWORK(2) is the optimal complex workspace length.
! Hence, the length of work is at least 2.
! See the description of LZWORK.
!.....
! LZWORK (input) INTEGER
! The minimal length of the workspace vector ZWORK.
! LZWORK is calculated as MAX(LZWORK_SVD, LZWORK_ZGEEV),
! where LZWORK_ZGEEV = MAX( 1, 2*N ) and the minimal
! LZWORK_SVD is calculated as follows
! If WHTSVD == 1 :: ZGESVD ::
! LZWORK_SVD = MAX(1,2*MIN(M,N)+MAX(M,N))
! If WHTSVD == 2 :: ZGESDD ::
! LZWORK_SVD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N)
! If WHTSVD == 3 :: ZGESVDQ ::
! LZWORK_SVD = obtainable by a query
! If WHTSVD == 4 :: ZGEJSV ::
! LZWORK_SVD = obtainable by a query
! If on entry LZWORK = -1, then a workspace query is
! assumed and the procedure only computes the minimal
! and the optimal workspace lengths and returns them in
! LZWORK(1) and LZWORK(2), respectively.
!.....
! RWORK (workspace/output) REAL(KIND=WP) LRWORK-by-1 array
! On exit, RWORK(1:N) contains the singular values of
! X (for JOBS=='N') or column scaled X (JOBS=='S', 'C').
! If WHTSVD==4, then RWORK(N+1) and RWORK(N+2) contain
! scaling factor RWORK(N+2)/RWORK(N+1) used to scale X
! and Y to avoid overflow in the SVD of X.
! This may be of interest if the scaling option is off
! and as many as possible smallest eigenvalues are
! desired to the highest feasible accuracy.
! If the call to ZGEDMD is only workspace query, then
! RWORK(1) contains the minimal workspace length.
! See the description of LRWORK.
!.....
! LRWORK (input) INTEGER
! The minimal length of the workspace vector RWORK.
! LRWORK is calculated as follows:
! LRWORK = MAX(1, N+LRWORK_SVD,N+LRWORK_ZGEEV), where
! LRWORK_ZGEEV = MAX(1,2*N) and RWORK_SVD is the real workspace
! for the SVD subroutine determined by the input parameter
! WHTSVD.
! If WHTSVD == 1 :: ZGESVD ::
! LRWORK_SVD = 5*MIN(M,N)
! If WHTSVD == 2 :: ZGESDD ::
! LRWORK_SVD = MAX(5*MIN(M,N)*MIN(M,N)+7*MIN(M,N),
! 2*MAX(M,N)*MIN(M,N)+2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) )
! If WHTSVD == 3 :: ZGESVDQ ::
! LRWORK_SVD = obtainable by a query
! If WHTSVD == 4 :: ZGEJSV ::
! LRWORK_SVD = obtainable by a query
! If on entry LRWORK = -1, then a workspace query is
! assumed and the procedure only computes the minimal
! real workspace length and returns it in RWORK(1).
!.....
! IWORK (workspace/output) INTEGER LIWORK-by-1 array
! Workspace that is required only if WHTSVD equals
! 2 , 3 or 4. (See the description of WHTSVD).
! If on entry LWORK =-1 or LIWORK=-1, then the
! minimal length of IWORK is computed and returned in
! IWORK(1). See the description of LIWORK.
!.....
! LIWORK (input) INTEGER
! The minimal length of the workspace vector IWORK.
! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N))
! If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1)
! If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N)
! If on entry LIWORK = -1, then a workspace query is
! assumed and the procedure only computes the minimal
! and the optimal workspace lengths for ZWORK, RWORK and
! IWORK. See the descriptions of ZWORK, RWORK and IWORK.
!.....
! INFO (output) INTEGER
! -i < 0 :: On entry, the i-th argument had an
! illegal value
! = 0 :: Successful return.
! = 1 :: Void input. Quick exit (M=0 or N=0).
! = 2 :: The SVD computation of X did not converge.
! Suggestion: Check the input data and/or
! repeat with different WHTSVD.
! = 3 :: The computation of the eigenvalues did not
! converge.
! = 4 :: If data scaling was requested on input and
! the procedure found inconsistency in the data
! such that for some column index i,
! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
! to zero if JOBS=='C'. The computation proceeds
! with original or modified data and warning
! flag is set with INFO=4.
!.............................................................
!.............................................................
! Parameters
! ~~~~~~~~~~
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP
COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP )
COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP )
! Local scalars
! ~~~~~~~~~~~~~
REAL(KIND=WP) :: OFL, ROOTSC, SCALE, SMALL, &
SSUM, XSCL1, XSCL2
INTEGER :: i, j, IMINWR, INFO1, INFO2, &
LWRKEV, LWRSDD, LWRSVD, LWRSVJ, &
LWRSVQ, MLWORK, MWRKEV, MWRSDD, &
MWRSVD, MWRSVJ, MWRSVQ, NUMRNK, &
OLWORK, MLRWRK
LOGICAL :: BADXY, LQUERY, SCCOLX, SCCOLY, &
WNTEX, WNTREF, WNTRES, WNTVEC
CHARACTER :: JOBZL, T_OR_N
CHARACTER :: JSVOPT
!
! Local arrays
! ~~~~~~~~~~~~
REAL(KIND=WP) :: RDUMMY(2)
! External functions (BLAS and LAPACK)
! ~~~~~~~~~~~~~~~~~
REAL(KIND=WP) ZLANGE, DLAMCH, DZNRM2
EXTERNAL ZLANGE, DLAMCH, DZNRM2, IZAMAX
INTEGER IZAMAX
LOGICAL DISNAN, LSAME
EXTERNAL DISNAN, LSAME
! External subroutines (BLAS and LAPACK)
! ~~~~~~~~~~~~~~~~~~~~
EXTERNAL ZAXPY, ZGEMM, ZDSCAL
EXTERNAL ZGEEV, ZGEJSV, ZGESDD, ZGESVD, ZGESVDQ, &
ZLACPY, ZLASCL, ZLASSQ, XERBLA
! Intrinsic functions
! ~~~~~~~~~~~~~~~~~~~
INTRINSIC DBLE, INT, MAX, SQRT
!............................................................
!
! Test the input arguments
!
WNTRES = LSAME(JOBR,'R')
SCCOLX = LSAME(JOBS,'S') .OR. LSAME(JOBS,'C')
SCCOLY = LSAME(JOBS,'Y')
WNTVEC = LSAME(JOBZ,'V')
WNTREF = LSAME(JOBF,'R')
WNTEX = LSAME(JOBF,'E')
INFO = 0
LQUERY = ( ( LZWORK == -1 ) .OR. ( LIWORK == -1 ) &
.OR. ( LRWORK == -1 ) )
!
IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. &
LSAME(JOBS,'N')) ) THEN
INFO = -1
ELSE IF ( .NOT. (WNTVEC .OR. LSAME(JOBZ,'N') &
.OR. LSAME(JOBZ,'F')) ) THEN
INFO = -2
ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. &
( WNTRES .AND. (.NOT.WNTVEC) ) ) THEN
INFO = -3
ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. &
LSAME(JOBF,'N') ) ) THEN
INFO = -4
ELSE IF ( .NOT.((WHTSVD == 1) .OR. (WHTSVD == 2) .OR. &
(WHTSVD == 3) .OR. (WHTSVD == 4) )) THEN
INFO = -5
ELSE IF ( M < 0 ) THEN
INFO = -6
ELSE IF ( ( N < 0 ) .OR. ( N > M ) ) THEN
INFO = -7
ELSE IF ( LDX < M ) THEN
INFO = -9
ELSE IF ( LDY < M ) THEN
INFO = -11
ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. &
((NRNK >= 1).AND.(NRNK <=N ))) ) THEN
INFO = -12
ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN
INFO = -13
ELSE IF ( LDZ < M ) THEN
INFO = -17
ELSE IF ( (WNTREF .OR. WNTEX ) .AND. ( LDB < M ) ) THEN
INFO = -20
ELSE IF ( LDW < N ) THEN
INFO = -22
ELSE IF ( LDS < N ) THEN
INFO = -24
END IF
!
IF ( INFO == 0 ) THEN
! Compute the minimal and the optimal workspace
! requirements. Simulate running the code and
! determine minimal and optimal sizes of the
! workspace at any moment of the run.
IF ( N == 0 ) THEN
! Quick return. All output except K is void.
! INFO=1 signals the void input.
! In case of a workspace query, the default
! minimal workspace lengths are returned.
IF ( LQUERY ) THEN
IWORK(1) = 1
RWORK(1) = 1
ZWORK(1) = 2
ZWORK(2) = 2
ELSE
K = 0
END IF
INFO = 1
RETURN
END IF
IMINWR = 1
MLRWRK = MAX(1,N)
MLWORK = 2
OLWORK = 2
SELECT CASE ( WHTSVD )
CASE (1)
! The following is specified as the minimal
! length of WORK in the definition of ZGESVD:
! MWRSVD = MAX(1,2*MIN(M,N)+MAX(M,N))
MWRSVD = MAX(1,2*MIN(M,N)+MAX(M,N))
MLWORK = MAX(MLWORK,MWRSVD)
MLRWRK = MAX(MLRWRK,N + 5*MIN(M,N))
IF ( LQUERY ) THEN
CALL ZGESVD( 'O', 'S', M, N, X, LDX, RWORK, &
B, LDB, W, LDW, ZWORK, -1, RDUMMY, INFO1 )
LWRSVD = INT( ZWORK(1) )
OLWORK = MAX(OLWORK,LWRSVD)
END IF
CASE (2)
! The following is specified as the minimal
! length of WORK in the definition of ZGESDD:
! MWRSDD = 2*min(M,N)*min(M,N)+2*min(M,N)+max(M,N).
! RWORK length: 5*MIN(M,N)*MIN(M,N)+7*MIN(M,N)
! In LAPACK 3.10.1 RWORK is defined differently.
! Below we take max over the two versions.
! IMINWR = 8*MIN(M,N)
MWRSDD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N)
MLWORK = MAX(MLWORK,MWRSDD)
IMINWR = 8*MIN(M,N)
MLRWRK = MAX( MLRWRK, N + &
MAX( 5*MIN(M,N)*MIN(M,N)+7*MIN(M,N), &
5*MIN(M,N)*MIN(M,N)+5*MIN(M,N), &
2*MAX(M,N)*MIN(M,N)+ &
2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) )
IF ( LQUERY ) THEN
CALL ZGESDD( 'O', M, N, X, LDX, RWORK, B,LDB,&
W, LDW, ZWORK, -1, RDUMMY, IWORK, INFO1 )
LWRSDD = MAX( MWRSDD,INT( ZWORK(1) ))
! Possible bug in ZGESDD optimal workspace size.
OLWORK = MAX(OLWORK,LWRSDD)
END IF
CASE (3)
CALL ZGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, &
X, LDX, RWORK, Z, LDZ, W, LDW, NUMRNK, &
IWORK, -1, ZWORK, -1, RDUMMY, -1, INFO1 )
IMINWR = IWORK(1)
MWRSVQ = INT(ZWORK(2))
MLWORK = MAX(MLWORK,MWRSVQ)
MLRWRK = MAX(MLRWRK,N + INT(RDUMMY(1)))
IF ( LQUERY ) THEN
LWRSVQ = INT(ZWORK(1))
OLWORK = MAX(OLWORK,LWRSVQ)
END IF
CASE (4)
JSVOPT = 'J'
CALL ZGEJSV( 'F', 'U', JSVOPT, 'R', 'N', 'P', M, &
N, X, LDX, RWORK, Z, LDZ, W, LDW, &
ZWORK, -1, RDUMMY, -1, IWORK, INFO1 )
IMINWR = IWORK(1)
MWRSVJ = INT(ZWORK(2))
MLWORK = MAX(MLWORK,MWRSVJ)
MLRWRK = MAX(MLRWRK,N + MAX(7,INT(RDUMMY(1))))
IF ( LQUERY ) THEN
LWRSVJ = INT(ZWORK(1))
OLWORK = MAX(OLWORK,LWRSVJ)
END IF
END SELECT
IF ( WNTVEC .OR. WNTEX .OR. LSAME(JOBZ,'F') ) THEN
JOBZL = 'V'
ELSE
JOBZL = 'N'
END IF
! Workspace calculation to the ZGEEV call
MWRKEV = MAX( 1, 2*N )
MLWORK = MAX(MLWORK,MWRKEV)
MLRWRK = MAX(MLRWRK,N+2*N)
IF ( LQUERY ) THEN
CALL ZGEEV( 'N', JOBZL, N, S, LDS, EIGS, &
W, LDW, W, LDW, ZWORK, -1, RWORK, INFO1 )
LWRKEV = INT(ZWORK(1))
OLWORK = MAX( OLWORK, LWRKEV )
END IF
!
IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -30
IF ( LRWORK < MLRWRK .AND. (.NOT.LQUERY) ) INFO = -28
IF ( LZWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -26
END IF
!
IF( INFO /= 0 ) THEN
CALL XERBLA( 'ZGEDMD', -INFO )
RETURN
ELSE IF ( LQUERY ) THEN
! Return minimal and optimal workspace sizes
IWORK(1) = IMINWR
RWORK(1) = MLRWRK
ZWORK(1) = MLWORK
ZWORK(2) = OLWORK
RETURN
END IF
!............................................................
!
OFL = DLAMCH('O')
SMALL = DLAMCH('S')
BADXY = .FALSE.
!
! <1> Optional scaling of the snapshots (columns of X, Y)
! ==========================================================
IF ( SCCOLX ) THEN
! The columns of X will be normalized.
! To prevent overflows, the column norms of X are
! carefully computed using ZLASSQ.
K = 0
DO i = 1, N
!WORK(i) = DZNRM2( M, X(1,i), 1 )
SCALE = ZERO
CALL ZLASSQ( M, X(1,i), 1, SCALE, SSUM )
IF ( DISNAN(SCALE) .OR. DISNAN(SSUM) ) THEN
K = 0
INFO = -8
CALL XERBLA('ZGEDMD',-INFO)
END IF
IF ( (SCALE /= ZERO) .AND. (SSUM /= ZERO) ) THEN
ROOTSC = SQRT(SSUM)
IF ( SCALE .GE. (OFL / ROOTSC) ) THEN
! Norm of X(:,i) overflows. First, X(:,i)
! is scaled by
! ( ONE / ROOTSC ) / SCALE = 1/||X(:,i)||_2.
! Next, the norm of X(:,i) is stored without
! overflow as RWORK(i) = - SCALE * (ROOTSC/M),
! the minus sign indicating the 1/M factor.
! Scaling is performed without overflow, and
! underflow may occur in the smallest entries
! of X(:,i). The relative backward and forward
! errors are small in the ell_2 norm.
CALL ZLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, &
M, 1, X(1,i), LDX, INFO2 )
RWORK(i) = - SCALE * ( ROOTSC / DBLE(M) )
ELSE
! X(:,i) will be scaled to unit 2-norm
RWORK(i) = SCALE * ROOTSC
CALL ZLASCL( 'G',0, 0, RWORK(i), ONE, M, 1, &
X(1,i), LDX, INFO2 ) ! LAPACK CALL
! X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i) ! INTRINSIC
END IF
ELSE
RWORK(i) = ZERO
K = K + 1
END IF
END DO
IF ( K == N ) THEN
! All columns of X are zero. Return error code -8.
! (the 8th input variable had an illegal value)
K = 0
INFO = -8
CALL XERBLA('ZGEDMD',-INFO)
RETURN
END IF
DO i = 1, N
! Now, apply the same scaling to the columns of Y.
IF ( RWORK(i) > ZERO ) THEN
CALL ZDSCAL( M, ONE/RWORK(i), Y(1,i), 1 ) ! BLAS CALL
! Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i) ! INTRINSIC
ELSE IF ( RWORK(i) < ZERO ) THEN
CALL ZLASCL( 'G', 0, 0, -RWORK(i), &
ONE/DBLE(M), M, 1, Y(1,i), LDY, INFO2 ) ! LAPACK CALL
ELSE IF ( ABS(Y(IZAMAX(M, Y(1,i),1),i )) &
/= ZERO ) THEN
! X(:,i) is zero vector. For consistency,
! Y(:,i) should also be zero. If Y(:,i) is not
! zero, then the data might be inconsistent or
! corrupted. If JOBS == 'C', Y(:,i) is set to
! zero and a warning flag is raised.
! The computation continues but the
! situation will be reported in the output.
BADXY = .TRUE.
IF ( LSAME(JOBS,'C')) &
CALL ZDSCAL( M, ZERO, Y(1,i), 1 ) ! BLAS CALL
END IF
END DO
END IF
!
IF ( SCCOLY ) THEN
! The columns of Y will be normalized.
! To prevent overflows, the column norms of Y are
! carefully computed using ZLASSQ.
DO i = 1, N
!RWORK(i) = DZNRM2( M, Y(1,i), 1 )
SCALE = ZERO
CALL ZLASSQ( M, Y(1,i), 1, SCALE, SSUM )
IF ( DISNAN(SCALE) .OR. DISNAN(SSUM) ) THEN
K = 0
INFO = -10
CALL XERBLA('ZGEDMD',-INFO)
END IF
IF ( SCALE /= ZERO .AND. (SSUM /= ZERO) ) THEN
ROOTSC = SQRT(SSUM)
IF ( SCALE .GE. (OFL / ROOTSC) ) THEN
! Norm of Y(:,i) overflows. First, Y(:,i)
! is scaled by
! ( ONE / ROOTSC ) / SCALE = 1/||Y(:,i)||_2.
! Next, the norm of Y(:,i) is stored without
! overflow as RWORK(i) = - SCALE * (ROOTSC/M),
! the minus sign indicating the 1/M factor.
! Scaling is performed without overflow, and
! underflow may occur in the smallest entries
! of Y(:,i). The relative backward and forward
! errors are small in the ell_2 norm.
CALL ZLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, &
M, 1, Y(1,i), LDY, INFO2 )
RWORK(i) = - SCALE * ( ROOTSC / DBLE(M) )
ELSE
! Y(:,i) will be scaled to unit 2-norm
RWORK(i) = SCALE * ROOTSC
CALL ZLASCL( 'G',0, 0, RWORK(i), ONE, M, 1, &
Y(1,i), LDY, INFO2 ) ! LAPACK CALL
! Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i) ! INTRINSIC
END IF
ELSE
RWORK(i) = ZERO
END IF
END DO
DO i = 1, N
! Now, apply the same scaling to the columns of X.
IF ( RWORK(i) > ZERO ) THEN
CALL ZDSCAL( M, ONE/RWORK(i), X(1,i), 1 ) ! BLAS CALL
! X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i) ! INTRINSIC
ELSE IF ( RWORK(i) < ZERO ) THEN
CALL ZLASCL( 'G', 0, 0, -RWORK(i), &
ONE/DBLE(M), M, 1, X(1,i), LDX, INFO2 ) ! LAPACK CALL
ELSE IF ( ABS(X(IZAMAX(M, X(1,i),1),i )) &
/= ZERO ) THEN
! Y(:,i) is zero vector. If X(:,i) is not
! zero, then a warning flag is raised.
! The computation continues but the
! situation will be reported in the output.
BADXY = .TRUE.
END IF
END DO
END IF
!
! <2> SVD of the data snapshot matrix X.
! =====================================
! The left singular vectors are stored in the array X.
! The right singular vectors are in the array W.
! The array W will later on contain the eigenvectors
! of a Rayleigh quotient.
NUMRNK = N
SELECT CASE ( WHTSVD )
CASE (1)
CALL ZGESVD( 'O', 'S', M, N, X, LDX, RWORK, B, &
LDB, W, LDW, ZWORK, LZWORK, RWORK(N+1), INFO1 ) ! LAPACK CALL
T_OR_N = 'C'
CASE (2)
CALL ZGESDD( 'O', M, N, X, LDX, RWORK, B, LDB, W, &
LDW, ZWORK, LZWORK, RWORK(N+1), IWORK, INFO1 ) ! LAPACK CALL
T_OR_N = 'C'
CASE (3)
CALL ZGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, &
X, LDX, RWORK, Z, LDZ, W, LDW, &
NUMRNK, IWORK, LIWORK, ZWORK, &
LZWORK, RWORK(N+1), LRWORK-N, INFO1) ! LAPACK CALL
CALL ZLACPY( 'A', M, NUMRNK, Z, LDZ, X, LDX ) ! LAPACK CALL
T_OR_N = 'C'
CASE (4)
CALL ZGEJSV( 'F', 'U', JSVOPT, 'R', 'N', 'P', M, &
N, X, LDX, RWORK, Z, LDZ, W, LDW, &
ZWORK, LZWORK, RWORK(N+1), LRWORK-N, IWORK, INFO1 ) ! LAPACK CALL
CALL ZLACPY( 'A', M, N, Z, LDZ, X, LDX ) ! LAPACK CALL
T_OR_N = 'N'
XSCL1 = RWORK(N+1)
XSCL2 = RWORK(N+2)
IF ( XSCL1 /= XSCL2 ) THEN
! This is an exceptional situation. If the
! data matrices are not scaled and the
! largest singular value of X overflows.
! In that case ZGEJSV can return the SVD
! in scaled form. The scaling factor can be used
! to rescale the data (X and Y).
CALL ZLASCL( 'G', 0, 0, XSCL1, XSCL2, M, N, Y, LDY, INFO2 )
END IF
END SELECT
!
IF ( INFO1 > 0 ) THEN
! The SVD selected subroutine did not converge.
! Return with an error code.
INFO = 2
RETURN
END IF
!
IF ( RWORK(1) == ZERO ) THEN
! The largest computed singular value of (scaled)
! X is zero. Return error code -8
! (the 8th input variable had an illegal value).
K = 0
INFO = -8
CALL XERBLA('ZGEDMD',-INFO)
RETURN
END IF
!
!<3> Determine the numerical rank of the data
! snapshots matrix X. This depends on the
! parameters NRNK and TOL.
SELECT CASE ( NRNK )
CASE ( -1 )
K = 1
DO i = 2, NUMRNK
IF ( ( RWORK(i) <= RWORK(1)*TOL ) .OR. &
( RWORK(i) <= SMALL ) ) EXIT
K = K + 1
END DO
CASE ( -2 )
K = 1
DO i = 1, NUMRNK-1
IF ( ( RWORK(i+1) <= RWORK(i)*TOL ) .OR. &
( RWORK(i) <= SMALL ) ) EXIT
K = K + 1
END DO
CASE DEFAULT
K = 1
DO i = 2, NRNK
IF ( RWORK(i) <= SMALL ) EXIT
K = K + 1
END DO
END SELECT
! Now, U = X(1:M,1:K) is the SVD/POD basis for the
! snapshot data in the input matrix X.
!<4> Compute the Rayleigh quotient S = U^H * A * U.
! Depending on the requested outputs, the computation
! is organized to compute additional auxiliary
! matrices (for the residuals and refinements).
!
! In all formulas below, we need V_k*Sigma_k^(-1)
! where either V_k is in W(1:N,1:K), or V_k^H is in
! W(1:K,1:N). Here Sigma_k=diag(WORK(1:K)).
IF ( LSAME(T_OR_N, 'N') ) THEN
DO i = 1, K
CALL ZDSCAL( N, ONE/RWORK(i), W(1,i), 1 ) ! BLAS CALL
! W(1:N,i) = (ONE/RWORK(i)) * W(1:N,i) ! INTRINSIC
END DO
ELSE
! This non-unit stride access is due to the fact
! that ZGESVD, ZGESVDQ and ZGESDD return the
! adjoint matrix of the right singular vectors.
!DO i = 1, K
! CALL ZDSCAL( N, ONE/RWORK(i), W(i,1), LDW ) ! BLAS CALL
! ! W(i,1:N) = (ONE/RWORK(i)) * W(i,1:N) ! INTRINSIC
!END DO
DO i = 1, K
RWORK(N+i) = ONE/RWORK(i)
END DO
DO j = 1, N
DO i = 1, K
W(i,j) = CMPLX(RWORK(N+i),ZERO,KIND=WP)*W(i,j)
END DO
END DO
END IF
!
IF ( WNTREF ) THEN
!
! Need A*U(:,1:K)=Y*V_k*inv(diag(WORK(1:K)))
! for computing the refined Ritz vectors
! (optionally, outside ZGEDMD).
CALL ZGEMM( 'N', T_OR_N, M, K, N, ZONE, Y, LDY, W, &
LDW, ZZERO, Z, LDZ ) ! BLAS CALL
! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),TRANSPOSE(CONJG(W(1:K,1:N)))) ! INTRINSIC, for T_OR_N=='C'
! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),W(1:N,1:K)) ! INTRINSIC, for T_OR_N=='N'
!
! At this point Z contains
! A * U(:,1:K) = Y * V_k * Sigma_k^(-1), and
! this is needed for computing the residuals.
! This matrix is returned in the array B and
! it can be used to compute refined Ritz vectors.
CALL ZLACPY( 'A', M, K, Z, LDZ, B, LDB ) ! BLAS CALL
! B(1:M,1:K) = Z(1:M,1:K) ! INTRINSIC
CALL ZGEMM( 'C', 'N', K, K, M, ZONE, X, LDX, Z, &
LDZ, ZZERO, S, LDS ) ! BLAS CALL
! S(1:K,1:K) = MATMUL(TRANSPOSE(CONJG(X(1:M,1:K))),Z(1:M,1:K)) ! INTRINSIC
! At this point S = U^H * A * U is the Rayleigh quotient.
ELSE
! A * U(:,1:K) is not explicitly needed and the
! computation is organized differently. The Rayleigh
! quotient is computed more efficiently.
CALL ZGEMM( 'C', 'N', K, N, M, ZONE, X, LDX, Y, LDY, &
ZZERO, Z, LDZ ) ! BLAS CALL
! Z(1:K,1:N) = MATMUL( TRANSPOSE(CONJG(X(1:M,1:K))), Y(1:M,1:N) ) ! INTRINSIC
!
CALL ZGEMM( 'N', T_OR_N, K, K, N, ZONE, Z, LDZ, W, &
LDW, ZZERO, S, LDS ) ! BLAS CALL
! S(1:K,1:K) = MATMUL(Z(1:K,1:N),TRANSPOSE(CONJG(W(1:K,1:N)))) ! INTRINSIC, for T_OR_N=='T'
! S(1:K,1:K) = MATMUL(Z(1:K,1:N),(W(1:N,1:K))) ! INTRINSIC, for T_OR_N=='N'
! At this point S = U^H * A * U is the Rayleigh quotient.
! If the residuals are requested, save scaled V_k into Z.
! Recall that V_k or V_k^H is stored in W.
IF ( WNTRES .OR. WNTEX ) THEN
IF ( LSAME(T_OR_N, 'N') ) THEN
CALL ZLACPY( 'A', N, K, W, LDW, Z, LDZ )
ELSE
CALL ZLACPY( 'A', K, N, W, LDW, Z, LDZ )
END IF
END IF
END IF
!
!<5> Compute the Ritz values and (if requested) the
! right eigenvectors of the Rayleigh quotient.
!
CALL ZGEEV( 'N', JOBZL, K, S, LDS, EIGS, W, LDW, &
W, LDW, ZWORK, LZWORK, RWORK(N+1), INFO1 ) ! LAPACK CALL
!
! W(1:K,1:K) contains the eigenvectors of the Rayleigh
! quotient. See the description of Z.
! Also, see the description of ZGEEV.
IF ( INFO1 > 0 ) THEN
! ZGEEV failed to compute the eigenvalues and
! eigenvectors of the Rayleigh quotient.
INFO = 3
RETURN
END IF
!
! <6> Compute the eigenvectors (if requested) and,
! the residuals (if requested).
!
IF ( WNTVEC .OR. WNTEX ) THEN
IF ( WNTRES ) THEN
IF ( WNTREF ) THEN
! Here, if the refinement is requested, we have
! A*U(:,1:K) already computed and stored in Z.
! For the residuals, need Y = A * U(:,1;K) * W.
CALL ZGEMM( 'N', 'N', M, K, K, ZONE, Z, LDZ, W, &
LDW, ZZERO, Y, LDY ) ! BLAS CALL
! Y(1:M,1:K) = Z(1:M,1:K) * W(1:K,1:K) ! INTRINSIC
! This frees Z; Y contains A * U(:,1:K) * W.
ELSE
! Compute S = V_k * Sigma_k^(-1) * W, where
! V_k * Sigma_k^(-1) (or its adjoint) is stored in Z
CALL ZGEMM( T_OR_N, 'N', N, K, K, ZONE, Z, LDZ, &
W, LDW, ZZERO, S, LDS )
! Then, compute Z = Y * S =
! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) =
! = A * U(:,1:K) * W(1:K,1:K)
CALL ZGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, &
LDS, ZZERO, Z, LDZ )
! Save a copy of Z into Y and free Z for holding
! the Ritz vectors.
CALL ZLACPY( 'A', M, K, Z, LDZ, Y, LDY )
IF ( WNTEX ) CALL ZLACPY( 'A', M, K, Z, LDZ, B, LDB )
END IF
ELSE IF ( WNTEX ) THEN
! Compute S = V_k * Sigma_k^(-1) * W, where
! V_k * Sigma_k^(-1) is stored in Z
CALL ZGEMM( T_OR_N, 'N', N, K, K, ZONE, Z, LDZ, &
W, LDW, ZZERO, S, LDS )
! Then, compute Z = Y * S =
! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) =
! = A * U(:,1:K) * W(1:K,1:K)
CALL ZGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, &
LDS, ZZERO, B, LDB )
! The above call replaces the following two calls
! that were used in the developing-testing phase.
! CALL ZGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, &
! LDS, ZZERO, Z, LDZ)
! Save a copy of Z into B and free Z for holding
! the Ritz vectors.
! CALL ZLACPY( 'A', M, K, Z, LDZ, B, LDB )
END IF
!
! Compute the Ritz vectors
IF ( WNTVEC ) CALL ZGEMM( 'N', 'N', M, K, K, ZONE, X, LDX, W, LDW, &
ZZERO, Z, LDZ ) ! BLAS CALL
! Z(1:M,1:K) = MATMUL(X(1:M,1:K), W(1:K,1:K)) ! INTRINSIC
!
IF ( WNTRES ) THEN
DO i = 1, K
CALL ZAXPY( M, -EIGS(i), Z(1,i), 1, Y(1,i), 1 ) ! BLAS CALL
! Y(1:M,i) = Y(1:M,i) - EIGS(i) * Z(1:M,i) ! INTRINSIC
RES(i) = DZNRM2( M, Y(1,i), 1 ) ! BLAS CALL
END DO
END IF
END IF
!
IF ( WHTSVD == 4 ) THEN
RWORK(N+1) = XSCL1
RWORK(N+2) = XSCL2
END IF
!
! Successful exit.
IF ( .NOT. BADXY ) THEN
INFO = 0
ELSE
! A warning on possible data inconsistency.
! This should be a rare event.
INFO = 4
END IF
!............................................................
RETURN
! ......
END SUBROUTINE ZGEDMD

1293
lapack-netlib/SRC/zgedmdq.c Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,689 @@
SUBROUTINE ZGEDMDQ( JOBS, JOBZ, JOBR, JOBQ, JOBT, JOBF, &
WHTSVD, M, N, F, LDF, X, LDX, Y, &
LDY, NRNK, TOL, K, EIGS, &
Z, LDZ, RES, B, LDB, V, LDV, &
S, LDS, ZWORK, LZWORK, WORK, LWORK, &
IWORK, LIWORK, INFO )
! March 2023
!.....
USE iso_fortran_env
IMPLICIT NONE
INTEGER, PARAMETER :: WP = real64
!.....
! Scalar arguments
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBQ, &
JOBT, JOBF
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDF, LDX, &
LDY, NRNK, LDZ, LDB, LDV, &
LDS, LZWORK, LWORK, LIWORK
INTEGER, INTENT(OUT) :: INFO, K
REAL(KIND=WP), INTENT(IN) :: TOL
! Array arguments
COMPLEX(KIND=WP), INTENT(INOUT) :: F(LDF,*)
COMPLEX(KIND=WP), INTENT(OUT) :: X(LDX,*), Y(LDY,*), &
Z(LDZ,*), B(LDB,*), &
V(LDV,*), S(LDS,*)
COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*)
COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*)
REAL(KIND=WP), INTENT(OUT) :: RES(*)
REAL(KIND=WP), INTENT(OUT) :: WORK(*)
INTEGER, INTENT(OUT) :: IWORK(*)
!.....
! Purpose
! =======
! ZGEDMDQ computes the Dynamic Mode Decomposition (DMD) for
! a pair of data snapshot matrices, using a QR factorization
! based compression of the data. For the input matrices
! X and Y such that Y = A*X with an unaccessible matrix
! A, ZGEDMDQ computes a certain number of Ritz pairs of A using
! the standard Rayleigh-Ritz extraction from a subspace of
! range(X) that is determined using the leading left singular
! vectors of X. Optionally, ZGEDMDQ returns the residuals
! of the computed Ritz pairs, the information needed for
! a refinement of the Ritz vectors, or the eigenvectors of
! the Exact DMD.
! For further details see the references listed
! below. For more details of the implementation see [3].
!
! References
! ==========
! [1] P. Schmid: Dynamic mode decomposition of numerical
! and experimental data,
! Journal of Fluid Mechanics 656, 5-28, 2010.
! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
! decompositions: analysis and enhancements,
! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
! [3] Z. Drmac: A LAPACK implementation of the Dynamic
! Mode Decomposition I. Technical report. AIMDyn Inc.
! and LAPACK Working Note 298.
! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
! Brunton, N. Kutz: On Dynamic Mode Decomposition:
! Theory and Applications, Journal of Computational
! Dynamics 1(2), 391 -421, 2014.
!
! Developed and supported by:
! ===========================
! Developed and coded by Zlatko Drmac, Faculty of Science,
! University of Zagreb; drmac@math.hr
! In cooperation with
! AIMdyn Inc., Santa Barbara, CA.
! and supported by
! - DARPA SBIR project "Koopman Operator-Based Forecasting
! for Nonstationary Processes from Near-Term, Limited
! Observational Data" Contract No: W31P4Q-21-C-0007
! - DARPA PAI project "Physics-Informed Machine Learning
! Methodologies" Contract No: HR0011-18-9-0033
! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
! Framework for Space-Time Analysis of Process Dynamics"
! Contract No: HR0011-16-C-0116
! Any opinions, findings and conclusions or recommendations
! expressed in this material are those of the author and
! do not necessarily reflect the views of the DARPA SBIR
! Program Office.
!============================================================
! Distribution Statement A:
! Approved for Public Release, Distribution Unlimited.
! Cleared by DARPA on September 29, 2022
!============================================================
!......................................................................
! Arguments
! =========
! JOBS (input) CHARACTER*1
! Determines whether the initial data snapshots are scaled
! by a diagonal matrix. The data snapshots are the columns
! of F. The leading N-1 columns of F are denoted X and the
! trailing N-1 columns are denoted Y.
! 'S' :: The data snapshots matrices X and Y are multiplied
! with a diagonal matrix D so that X*D has unit
! nonzero columns (in the Euclidean 2-norm)
! 'C' :: The snapshots are scaled as with the 'S' option.
! If it is found that an i-th column of X is zero
! vector and the corresponding i-th column of Y is
! non-zero, then the i-th column of Y is set to
! zero and a warning flag is raised.
! 'Y' :: The data snapshots matrices X and Y are multiplied
! by a diagonal matrix D so that Y*D has unit
! nonzero columns (in the Euclidean 2-norm)
! 'N' :: No data scaling.
!.....
! JOBZ (input) CHARACTER*1
! Determines whether the eigenvectors (Koopman modes) will
! be computed.
! 'V' :: The eigenvectors (Koopman modes) will be computed
! and returned in the matrix Z.
! See the description of Z.
! 'F' :: The eigenvectors (Koopman modes) will be returned
! in factored form as the product Z*V, where Z
! is orthonormal and V contains the eigenvectors
! of the corresponding Rayleigh quotient.
! See the descriptions of F, V, Z.
! 'Q' :: The eigenvectors (Koopman modes) will be returned
! in factored form as the product Q*Z, where Z
! contains the eigenvectors of the compression of the
! underlying discretized operator onto the span of
! the data snapshots. See the descriptions of F, V, Z.
! Q is from the initial QR factorization.
! 'N' :: The eigenvectors are not computed.
!.....
! JOBR (input) CHARACTER*1
! Determines whether to compute the residuals.
! 'R' :: The residuals for the computed eigenpairs will
! be computed and stored in the array RES.
! See the description of RES.
! For this option to be legal, JOBZ must be 'V'.
! 'N' :: The residuals are not computed.
!.....
! JOBQ (input) CHARACTER*1
! Specifies whether to explicitly compute and return the
! unitary matrix from the QR factorization.
! 'Q' :: The matrix Q of the QR factorization of the data
! snapshot matrix is computed and stored in the
! array F. See the description of F.
! 'N' :: The matrix Q is not explicitly computed.
!.....
! JOBT (input) CHARACTER*1
! Specifies whether to return the upper triangular factor
! from the QR factorization.
! 'R' :: The matrix R of the QR factorization of the data
! snapshot matrix F is returned in the array Y.
! See the description of Y and Further details.
! 'N' :: The matrix R is not returned.
!.....
! JOBF (input) CHARACTER*1
! Specifies whether to store information needed for post-
! processing (e.g. computing refined Ritz vectors)
! 'R' :: The matrix needed for the refinement of the Ritz
! vectors is computed and stored in the array B.
! See the description of B.
! 'E' :: The unscaled eigenvectors of the Exact DMD are
! computed and returned in the array B. See the
! description of B.
! 'N' :: No eigenvector refinement data is computed.
! To be useful on exit, this option needs JOBQ='Q'.
!.....
! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
! Allows for a selection of the SVD algorithm from the
! LAPACK library.
! 1 :: ZGESVD (the QR SVD algorithm)
! 2 :: ZGESDD (the Divide and Conquer algorithm; if enough
! workspace available, this is the fastest option)
! 3 :: ZGESVDQ (the preconditioned QR SVD ; this and 4
! are the most accurate options)
! 4 :: ZGEJSV (the preconditioned Jacobi SVD; this and 3
! are the most accurate options)
! For the four methods above, a significant difference in
! the accuracy of small singular values is possible if
! the snapshots vary in norm so that X is severely
! ill-conditioned. If small (smaller than EPS*||X||)
! singular values are of interest and JOBS=='N', then
! the options (3, 4) give the most accurate results, where
! the option 4 is slightly better and with stronger
! theoretical background.
! If JOBS=='S', i.e. the columns of X will be normalized,
! then all methods give nearly equally accurate results.
!.....
! M (input) INTEGER, M >= 0
! The state space dimension (the number of rows of F).
!.....
! N (input) INTEGER, 0 <= N <= M
! The number of data snapshots from a single trajectory,
! taken at equidistant discrete times. This is the
! number of columns of F.
!.....
! F (input/output) COMPLEX(KIND=WP) M-by-N array
! > On entry,
! the columns of F are the sequence of data snapshots
! from a single trajectory, taken at equidistant discrete
! times. It is assumed that the column norms of F are
! in the range of the normalized floating point numbers.
! < On exit,
! If JOBQ == 'Q', the array F contains the orthogonal
! matrix/factor of the QR factorization of the initial
! data snapshots matrix F. See the description of JOBQ.
! If JOBQ == 'N', the entries in F strictly below the main
! diagonal contain, column-wise, the information on the
! Householder vectors, as returned by ZGEQRF. The
! remaining information to restore the orthogonal matrix
! of the initial QR factorization is stored in ZWORK(1:MIN(M,N)).
! See the description of ZWORK.
!.....
! LDF (input) INTEGER, LDF >= M
! The leading dimension of the array F.
!.....
! X (workspace/output) COMPLEX(KIND=WP) MIN(M,N)-by-(N-1) array
! X is used as workspace to hold representations of the
! leading N-1 snapshots in the orthonormal basis computed
! in the QR factorization of F.
! On exit, the leading K columns of X contain the leading
! K left singular vectors of the above described content
! of X. To lift them to the space of the left singular
! vectors U(:,1:K) of the input data, pre-multiply with the
! Q factor from the initial QR factorization.
! See the descriptions of F, K, V and Z.
!.....
! LDX (input) INTEGER, LDX >= N
! The leading dimension of the array X.
!.....
! Y (workspace/output) COMPLEX(KIND=WP) MIN(M,N)-by-(N) array
! Y is used as workspace to hold representations of the
! trailing N-1 snapshots in the orthonormal basis computed
! in the QR factorization of F.
! On exit,
! If JOBT == 'R', Y contains the MIN(M,N)-by-N upper
! triangular factor from the QR factorization of the data
! snapshot matrix F.
!.....
! LDY (input) INTEGER , LDY >= N
! The leading dimension of the array Y.
!.....
! NRNK (input) INTEGER
! Determines the mode how to compute the numerical rank,
! i.e. how to truncate small singular values of the input
! matrix X. On input, if
! NRNK = -1 :: i-th singular value sigma(i) is truncated
! if sigma(i) <= TOL*sigma(1)
! This option is recommended.
! NRNK = -2 :: i-th singular value sigma(i) is truncated
! if sigma(i) <= TOL*sigma(i-1)
! This option is included for R&D purposes.
! It requires highly accurate SVD, which
! may not be feasible.
! The numerical rank can be enforced by using positive
! value of NRNK as follows:
! 0 < NRNK <= N-1 :: at most NRNK largest singular values
! will be used. If the number of the computed nonzero
! singular values is less than NRNK, then only those
! nonzero values will be used and the actually used
! dimension is less than NRNK. The actual number of
! the nonzero singular values is returned in the variable
! K. See the description of K.
!.....
! TOL (input) REAL(KIND=WP), 0 <= TOL < 1
! The tolerance for truncating small singular values.
! See the description of NRNK.
!.....
! K (output) INTEGER, 0 <= K <= N
! The dimension of the SVD/POD basis for the leading N-1
! data snapshots (columns of F) and the number of the
! computed Ritz pairs. The value of K is determined
! according to the rule set by the parameters NRNK and
! TOL. See the descriptions of NRNK and TOL.
!.....
! EIGS (output) COMPLEX(KIND=WP) (N-1)-by-1 array
! The leading K (K<=N-1) entries of EIGS contain
! the computed eigenvalues (Ritz values).
! See the descriptions of K, and Z.
!.....
! Z (workspace/output) COMPLEX(KIND=WP) M-by-(N-1) array
! If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i)
! is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1.
! If JOBZ == 'F', then the Z(:,i)'s are given implicitly as
! Z*V, where Z contains orthonormal matrix (the product of
! Q from the initial QR factorization and the SVD/POD_basis
! returned by ZGEDMD in X) and the second factor (the
! eigenvectors of the Rayleigh quotient) is in the array V,
! as returned by ZGEDMD. That is, X(:,1:K)*V(:,i)
! is an eigenvector corresponding to EIGS(i). The columns
! of V(1:K,1:K) are the computed eigenvectors of the
! K-by-K Rayleigh quotient.
! See the descriptions of EIGS, X and V.
!.....
! LDZ (input) INTEGER , LDZ >= M
! The leading dimension of the array Z.
!.....
! RES (output) REAL(KIND=WP) (N-1)-by-1 array
! RES(1:K) contains the residuals for the K computed
! Ritz pairs,
! RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2.
! See the description of EIGS and Z.
!.....
! B (output) COMPLEX(KIND=WP) MIN(M,N)-by-(N-1) array.
! IF JOBF =='R', B(1:N,1:K) contains A*U(:,1:K), and can
! be used for computing the refined vectors; see further
! details in the provided references.
! If JOBF == 'E', B(1:N,1;K) contains
! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
! Exact DMD, up to scaling by the inverse eigenvalues.
! In both cases, the content of B can be lifted to the
! original dimension of the input data by pre-multiplying
! with the Q factor from the initial QR factorization.
! Here A denotes a compression of the underlying operator.
! See the descriptions of F and X.
! If JOBF =='N', then B is not referenced.
!.....
! LDB (input) INTEGER, LDB >= MIN(M,N)
! The leading dimension of the array B.
!.....
! V (workspace/output) COMPLEX(KIND=WP) (N-1)-by-(N-1) array
! On exit, V(1:K,1:K) V contains the K eigenvectors of
! the Rayleigh quotient. The Ritz vectors
! (returned in Z) are the product of Q from the initial QR
! factorization (see the description of F) X (see the
! description of X) and V.
!.....
! LDV (input) INTEGER, LDV >= N-1
! The leading dimension of the array V.
!.....
! S (output) COMPLEX(KIND=WP) (N-1)-by-(N-1) array
! The array S(1:K,1:K) is used for the matrix Rayleigh
! quotient. This content is overwritten during
! the eigenvalue decomposition by ZGEEV.
! See the description of K.
!.....
! LDS (input) INTEGER, LDS >= N-1
! The leading dimension of the array S.
!.....
! ZWORK (workspace/output) COMPLEX(KIND=WP) LWORK-by-1 array
! On exit,
! ZWORK(1:MIN(M,N)) contains the scalar factors of the
! elementary reflectors as returned by ZGEQRF of the
! M-by-N input matrix F.
! If the call to ZGEDMDQ is only workspace query, then
! ZWORK(1) contains the minimal complex workspace length and
! ZWORK(2) is the optimal complex workspace length.
! Hence, the length of work is at least 2.
! See the description of LZWORK.
!.....
! LZWORK (input) INTEGER
! The minimal length of the workspace vector ZWORK.
! LZWORK is calculated as follows:
! Let MLWQR = N (minimal workspace for ZGEQRF[M,N])
! MLWDMD = minimal workspace for ZGEDMD (see the
! description of LWORK in ZGEDMD)
! MLWMQR = N (minimal workspace for
! ZUNMQR['L','N',M,N,N])
! MLWGQR = N (minimal workspace for ZUNGQR[M,N,N])
! MINMN = MIN(M,N)
! Then
! LZWORK = MAX(2, MIN(M,N)+MLWQR, MINMN+MLWDMD)
! is further updated as follows:
! if JOBZ == 'V' or JOBZ == 'F' THEN
! LZWORK = MAX(LZWORK, MINMN+MLWMQR)
! if JOBQ == 'Q' THEN
! LZWORK = MAX(ZLWORK, MINMN+MLWGQR)
!
!.....
! WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array
! On exit,
! WORK(1:N-1) contains the singular values of
! the input submatrix F(1:M,1:N-1).
! If the call to ZGEDMDQ is only workspace query, then
! WORK(1) contains the minimal workspace length and
! WORK(2) is the optimal workspace length. hence, the
! length of work is at least 2.
! See the description of LWORK.
!.....
! LWORK (input) INTEGER
! The minimal length of the workspace vector WORK.
! LWORK is the same as in ZGEDMD, because in ZGEDMDQ
! only ZGEDMD requires real workspace for snapshots
! of dimensions MIN(M,N)-by-(N-1).
! If on entry LWORK = -1, then a workspace query is
! assumed and the procedure only computes the minimal
! and the optimal workspace length for WORK.
!.....
! IWORK (workspace/output) INTEGER LIWORK-by-1 array
! Workspace that is required only if WHTSVD equals
! 2 , 3 or 4. (See the description of WHTSVD).
! If on entry LWORK =-1 or LIWORK=-1, then the
! minimal length of IWORK is computed and returned in
! IWORK(1). See the description of LIWORK.
!.....
! LIWORK (input) INTEGER
! The minimal length of the workspace vector IWORK.
! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
! Let M1=MIN(M,N), N1=N-1. Then
! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M1,N1))
! If WHTSVD == 3, then LIWORK >= MAX(1,M1+N1-1)
! If WHTSVD == 4, then LIWORK >= MAX(3,M1+3*N1)
! If on entry LIWORK = -1, then a workspace query is
! assumed and the procedure only computes the minimal
! and the optimal workspace lengths for both WORK and
! IWORK. See the descriptions of WORK and IWORK.
!.....
! INFO (output) INTEGER
! -i < 0 :: On entry, the i-th argument had an
! illegal value
! = 0 :: Successful return.
! = 1 :: Void input. Quick exit (M=0 or N=0).
! = 2 :: The SVD computation of X did not converge.
! Suggestion: Check the input data and/or
! repeat with different WHTSVD.
! = 3 :: The computation of the eigenvalues did not
! converge.
! = 4 :: If data scaling was requested on input and
! the procedure found inconsistency in the data
! such that for some column index i,
! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
! to zero if JOBS=='C'. The computation proceeds
! with original or modified data and warning
! flag is set with INFO=4.
!.............................................................
!.............................................................
! Parameters
! ~~~~~~~~~~
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP
! COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP )
COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP )
!
! Local scalars
! ~~~~~~~~~~~~~
INTEGER :: IMINWR, INFO1, MINMN, MLRWRK, &
MLWDMD, MLWGQR, MLWMQR, MLWORK, &
MLWQR, OLWDMD, OLWGQR, OLWMQR, &
OLWORK, OLWQR
LOGICAL :: LQUERY, SCCOLX, SCCOLY, WANTQ, &
WNTTRF, WNTRES, WNTVEC, WNTVCF, &
WNTVCQ, WNTREF, WNTEX
CHARACTER(LEN=1) :: JOBVL
!
! External functions (BLAS and LAPACK)
! ~~~~~~~~~~~~~~~~~
LOGICAL LSAME
EXTERNAL LSAME
!
! External subroutines (BLAS and LAPACK)
! ~~~~~~~~~~~~~~~~~~~~
EXTERNAL ZGEQRF, ZLACPY, ZLASET, ZUNGQR, &
ZUNMQR, XERBLA
! External subroutines
! ~~~~~~~~~~~~~~~~~~~~
EXTERNAL ZGEDMD
! Intrinsic functions
! ~~~~~~~~~~~~~~~~~~~
INTRINSIC MAX, MIN, INT
!..........................................................
!
! Test the input arguments
WNTRES = LSAME(JOBR,'R')
SCCOLX = LSAME(JOBS,'S') .OR. LSAME( JOBS, 'C' )
SCCOLY = LSAME(JOBS,'Y')
WNTVEC = LSAME(JOBZ,'V')
WNTVCF = LSAME(JOBZ,'F')
WNTVCQ = LSAME(JOBZ,'Q')
WNTREF = LSAME(JOBF,'R')
WNTEX = LSAME(JOBF,'E')
WANTQ = LSAME(JOBQ,'Q')
WNTTRF = LSAME(JOBT,'R')
MINMN = MIN(M,N)
INFO = 0
LQUERY = ( (LZWORK == -1) .OR. (LWORK == -1) .OR. (LIWORK == -1) )
!
IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. &
LSAME(JOBS,'N')) ) THEN
INFO = -1
ELSE IF ( .NOT. (WNTVEC .OR. WNTVCF .OR. WNTVCQ &
.OR. LSAME(JOBZ,'N')) ) THEN
INFO = -2
ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. &
( WNTRES .AND. LSAME(JOBZ,'N') ) ) THEN
INFO = -3
ELSE IF ( .NOT. (WANTQ .OR. LSAME(JOBQ,'N')) ) THEN
INFO = -4
ELSE IF ( .NOT. ( WNTTRF .OR. LSAME(JOBT,'N') ) ) THEN
INFO = -5
ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. &
LSAME(JOBF,'N') ) ) THEN
INFO = -6
ELSE IF ( .NOT. ((WHTSVD == 1).OR.(WHTSVD == 2).OR. &
(WHTSVD == 3).OR.(WHTSVD == 4)) ) THEN
INFO = -7
ELSE IF ( M < 0 ) THEN
INFO = -8
ELSE IF ( ( N < 0 ) .OR. ( N > M+1 ) ) THEN
INFO = -9
ELSE IF ( LDF < M ) THEN
INFO = -11
ELSE IF ( LDX < MINMN ) THEN
INFO = -13
ELSE IF ( LDY < MINMN ) THEN
INFO = -15
ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. &
((NRNK >= 1).AND.(NRNK <=N ))) ) THEN
INFO = -16
ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN
INFO = -17
ELSE IF ( LDZ < M ) THEN
INFO = -21
ELSE IF ( (WNTREF.OR.WNTEX ).AND.( LDB < MINMN ) ) THEN
INFO = -24
ELSE IF ( LDV < N-1 ) THEN
INFO = -26
ELSE IF ( LDS < N-1 ) THEN
INFO = -28
END IF
!
IF ( WNTVEC .OR. WNTVCF .OR. WNTVCQ ) THEN
JOBVL = 'V'
ELSE
JOBVL = 'N'
END IF
IF ( INFO == 0 ) THEN
! Compute the minimal and the optimal workspace
! requirements. Simulate running the code and
! determine minimal and optimal sizes of the
! workspace at any moment of the run.
IF ( ( N == 0 ) .OR. ( N == 1 ) ) THEN
! All output except K is void. INFO=1 signals
! the void input. In case of a workspace query,
! the minimal workspace lengths are returned.
IF ( LQUERY ) THEN
IWORK(1) = 1
ZWORK(1) = 2
ZWORK(2) = 2
WORK(1) = 2
WORK(2) = 2
ELSE
K = 0
END IF
INFO = 1
RETURN
END IF
MLRWRK = 2
MLWORK = 2
OLWORK = 2
IMINWR = 1
MLWQR = MAX(1,N) ! Minimal workspace length for ZGEQRF.
MLWORK = MAX(MLWORK,MINMN + MLWQR)
IF ( LQUERY ) THEN
CALL ZGEQRF( M, N, F, LDF, ZWORK, ZWORK, -1, &
INFO1 )
OLWQR = INT(ZWORK(1))
OLWORK = MAX(OLWORK,MINMN + OLWQR)
END IF
CALL ZGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN,&
N-1, X, LDX, Y, LDY, NRNK, TOL, K, &
EIGS, Z, LDZ, RES, B, LDB, V, LDV, &
S, LDS, ZWORK, -1, WORK, -1, IWORK,&
-1, INFO1 )
MLWDMD = INT(ZWORK(1))
MLWORK = MAX(MLWORK, MINMN + MLWDMD)
MLRWRK = MAX(MLRWRK, INT(WORK(1)))
IMINWR = MAX(IMINWR, IWORK(1))
IF ( LQUERY ) THEN
OLWDMD = INT(ZWORK(2))
OLWORK = MAX(OLWORK, MINMN+OLWDMD)
END IF
IF ( WNTVEC .OR. WNTVCF ) THEN
MLWMQR = MAX(1,N)
MLWORK = MAX(MLWORK,MINMN+MLWMQR)
IF ( LQUERY ) THEN
CALL ZUNMQR( 'L','N', M, N, MINMN, F, LDF, &
ZWORK, Z, LDZ, ZWORK, -1, INFO1 )
OLWMQR = INT(ZWORK(1))
OLWORK = MAX(OLWORK,MINMN+OLWMQR)
END IF
END IF
IF ( WANTQ ) THEN
MLWGQR = MAX(1,N)
MLWORK = MAX(MLWORK,MINMN+MLWGQR)
IF ( LQUERY ) THEN
CALL ZUNGQR( M, MINMN, MINMN, F, LDF, ZWORK, &
ZWORK, -1, INFO1 )
OLWGQR = INT(ZWORK(1))
OLWORK = MAX(OLWORK,MINMN+OLWGQR)
END IF
END IF
IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -34
IF ( LWORK < MLRWRK .AND. (.NOT.LQUERY) ) INFO = -32
IF ( LZWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -30
END IF
IF( INFO /= 0 ) THEN
CALL XERBLA( 'ZGEDMDQ', -INFO )
RETURN
ELSE IF ( LQUERY ) THEN
! Return minimal and optimal workspace sizes
IWORK(1) = IMINWR
ZWORK(1) = MLWORK
ZWORK(2) = OLWORK
WORK(1) = MLRWRK
WORK(2) = MLRWRK
RETURN
END IF
!.....
! Initial QR factorization that is used to represent the
! snapshots as elements of lower dimensional subspace.
! For large scale computation with M >> N, at this place
! one can use an out of core QRF.
!
CALL ZGEQRF( M, N, F, LDF, ZWORK, &
ZWORK(MINMN+1), LZWORK-MINMN, INFO1 )
!
! Define X and Y as the snapshots representations in the
! orthogonal basis computed in the QR factorization.
! X corresponds to the leading N-1 and Y to the trailing
! N-1 snapshots.
CALL ZLASET( 'L', MINMN, N-1, ZZERO, ZZERO, X, LDX )
CALL ZLACPY( 'U', MINMN, N-1, F, LDF, X, LDX )
CALL ZLACPY( 'A', MINMN, N-1, F(1,2), LDF, Y, LDY )
IF ( M >= 3 ) THEN
CALL ZLASET( 'L', MINMN-2, N-2, ZZERO, ZZERO, &
Y(3,1), LDY )
END IF
!
! Compute the DMD of the projected snapshot pairs (X,Y)
CALL ZGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN, &
N-1, X, LDX, Y, LDY, NRNK, TOL, K, &
EIGS, Z, LDZ, RES, B, LDB, V, LDV, &
S, LDS, ZWORK(MINMN+1), LZWORK-MINMN, &
WORK, LWORK, IWORK, LIWORK, INFO1 )
IF ( INFO1 == 2 .OR. INFO1 == 3 ) THEN
! Return with error code. See ZGEDMD for details.
INFO = INFO1
RETURN
ELSE
INFO = INFO1
END IF
!
! The Ritz vectors (Koopman modes) can be explicitly
! formed or returned in factored form.
IF ( WNTVEC ) THEN
! Compute the eigenvectors explicitly.
IF ( M > MINMN ) CALL ZLASET( 'A', M-MINMN, K, ZZERO, &
ZZERO, Z(MINMN+1,1), LDZ )
CALL ZUNMQR( 'L','N', M, K, MINMN, F, LDF, ZWORK, Z, &
LDZ, ZWORK(MINMN+1), LZWORK-MINMN, INFO1 )
ELSE IF ( WNTVCF ) THEN
! Return the Ritz vectors (eigenvectors) in factored
! form Z*V, where Z contains orthonormal matrix (the
! product of Q from the initial QR factorization and
! the SVD/POD_basis returned by ZGEDMD in X) and the
! second factor (the eigenvectors of the Rayleigh
! quotient) is in the array V, as returned by ZGEDMD.
CALL ZLACPY( 'A', N, K, X, LDX, Z, LDZ )
IF ( M > N ) CALL ZLASET( 'A', M-N, K, ZZERO, ZZERO, &
Z(N+1,1), LDZ )
CALL ZUNMQR( 'L','N', M, K, MINMN, F, LDF, ZWORK, Z, &
LDZ, ZWORK(MINMN+1), LZWORK-MINMN, INFO1 )
END IF
!
! Some optional output variables:
!
! The upper triangular factor R in the initial QR
! factorization is optionally returned in the array Y.
! This is useful if this call to ZGEDMDQ is to be
! followed by a streaming DMD that is implemented in a
! QR compressed form.
IF ( WNTTRF ) THEN ! Return the upper triangular R in Y
CALL ZLASET( 'A', MINMN, N, ZZERO, ZZERO, Y, LDY )
CALL ZLACPY( 'U', MINMN, N, F, LDF, Y, LDY )
END IF
!
! The orthonormal/unitary factor Q in the initial QR
! factorization is optionally returned in the array F.
! Same as with the triangular factor above, this is
! useful in a streaming DMD.
IF ( WANTQ ) THEN ! Q overwrites F
CALL ZUNGQR( M, MINMN, MINMN, F, LDF, ZWORK, &
ZWORK(MINMN+1), LZWORK-MINMN, INFO1 )
END IF
!
RETURN
!
END SUBROUTINE ZGEDMDQ