Merge pull request #3817 from martin-frbg/lapack738742

Add NaN check functions for trapezoidal matrices to LAPACKE (Reference-LAPACK PR 738+742)
This commit is contained in:
Martin Kroeker 2022-11-13 23:49:15 +01:00 committed by GitHub
commit 92411dfecb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
24 changed files with 1421 additions and 400 deletions

View File

@ -2481,6 +2481,8 @@ set(Utils_SRC
lapacke_ctp_nancheck.c lapacke_dtr_trans.c lapacke_str_trans.c lapacke_ztp_trans.c
lapacke_ctp_trans.c lapacke_lsame.c lapacke_xerbla.c lapacke_ztr_nancheck.c
lapacke_ctr_nancheck.c lapacke_make_complex_double.c lapacke_z_nancheck.c lapacke_ztr_trans.c
lapacke_ctz_nancheck.c lapacke_ctz_trans.c lapacke_dtz_nancheck.c lapacke_dtz_trans.c
lapacke_stz_nancheck.c lapacke_stz_trans.c lapacke_ztz_nancheck.c lapacke_ztz_trans.c
)
set(LAPACKE_REL_SRC "")

View File

@ -68,7 +68,7 @@ void LAPACKE_xerbla( const char *name, lapack_int info );
/* Compare two chars (case-insensitive) */
lapack_logical LAPACKE_lsame( char ca, char cb )
#if defined __GNUC__
__attribute__((const))
__attribute__((const))
#endif
;
@ -128,6 +128,10 @@ void LAPACKE_ctp_trans( int matrix_layout, char uplo, char diag,
void LAPACKE_ctr_trans( int matrix_layout, char uplo, char diag, lapack_int n,
const lapack_complex_float *in, lapack_int ldin,
lapack_complex_float *out, lapack_int ldout );
void LAPACKE_ctz_trans( int matrix_layout, char direct, char uplo,
char diag, lapack_int m, lapack_int n,
const lapack_complex_float *in, lapack_int ldin,
lapack_complex_float *out, lapack_int ldout );
void LAPACKE_dgb_trans( int matrix_layout, lapack_int m, lapack_int n,
lapack_int kl, lapack_int ku,
@ -178,6 +182,10 @@ void LAPACKE_dtp_trans( int matrix_layout, char uplo, char diag,
void LAPACKE_dtr_trans( int matrix_layout, char uplo, char diag, lapack_int n,
const double *in, lapack_int ldin,
double *out, lapack_int ldout );
void LAPACKE_dtz_trans( int matrix_layout, char direct, char uplo,
char diag, lapack_int m, lapack_int n,
const double *in, lapack_int ldin,
double *out, lapack_int ldout );
void LAPACKE_sgb_trans( int matrix_layout, lapack_int m, lapack_int n,
lapack_int kl, lapack_int ku,
@ -228,6 +236,10 @@ void LAPACKE_stp_trans( int matrix_layout, char uplo, char diag,
void LAPACKE_str_trans( int matrix_layout, char uplo, char diag, lapack_int n,
const float *in, lapack_int ldin,
float *out, lapack_int ldout );
void LAPACKE_stz_trans( int matrix_layout, char direct, char uplo,
char diag, lapack_int m, lapack_int n,
const float *in, lapack_int ldin,
float *out, lapack_int ldout );
void LAPACKE_zgb_trans( int matrix_layout, lapack_int m, lapack_int n,
lapack_int kl, lapack_int ku,
@ -284,6 +296,10 @@ void LAPACKE_ztp_trans( int matrix_layout, char uplo, char diag,
void LAPACKE_ztr_trans( int matrix_layout, char uplo, char diag, lapack_int n,
const lapack_complex_double *in, lapack_int ldin,
lapack_complex_double *out, lapack_int ldout );
void LAPACKE_ztz_trans( int matrix_layout, char direct, char uplo,
char diag, lapack_int m, lapack_int n,
const lapack_complex_double *in, lapack_int ldin,
lapack_complex_double *out, lapack_int ldout );
/* NaN checkers */
#define LAPACK_SISNAN( x ) ( x != x )
@ -376,6 +392,10 @@ lapack_logical LAPACKE_ctr_nancheck( int matrix_layout, char uplo, char diag,
lapack_int n,
const lapack_complex_float *a,
lapack_int lda );
lapack_logical LAPACKE_ctz_nancheck( int matrix_layout, char direct, char uplo,
char diag, lapack_int m, lapack_int n,
const lapack_complex_float *a,
lapack_int lda );
lapack_logical LAPACKE_dgb_nancheck( int matrix_layout, lapack_int m,
lapack_int n, lapack_int kl,
@ -440,6 +460,9 @@ lapack_logical LAPACKE_dtr_nancheck( int matrix_layout, char uplo, char diag,
lapack_int n,
const double *a,
lapack_int lda );
lapack_logical LAPACKE_dtz_nancheck( int matrix_layout, char direct, char uplo,
char diag, lapack_int m, lapack_int n,
const double *a, lapack_int lda );
lapack_logical LAPACKE_sgb_nancheck( int matrix_layout, lapack_int m,
lapack_int n, lapack_int kl,
@ -504,6 +527,9 @@ lapack_logical LAPACKE_str_nancheck( int matrix_layout, char uplo, char diag,
lapack_int n,
const float *a,
lapack_int lda );
lapack_logical LAPACKE_stz_nancheck( int matrix_layout, char direct, char uplo,
char diag, lapack_int m, lapack_int n,
const float *a, lapack_int lda );
lapack_logical LAPACKE_zgb_nancheck( int matrix_layout, lapack_int m,
lapack_int n, lapack_int kl,
@ -574,6 +600,10 @@ lapack_logical LAPACKE_ztr_nancheck( int matrix_layout, char uplo, char diag,
lapack_int n,
const lapack_complex_double *a,
lapack_int lda );
lapack_logical LAPACKE_ztz_nancheck( int matrix_layout, char direct, char uplo,
char diag, lapack_int m, lapack_int n,
const lapack_complex_double *a,
lapack_int lda );
#ifdef __cplusplus
}

View File

@ -33,8 +33,8 @@
#include "lapacke_utils.h"
float LAPACKE_clantr( int matrix_layout, char norm, char uplo, char diag,
lapack_int m, lapack_int n, const lapack_complex_float* a,
lapack_int lda )
lapack_int m, lapack_int n, const lapack_complex_float* a,
lapack_int lda )
{
lapack_int info = 0;
float res = 0.;
@ -46,7 +46,7 @@ float LAPACKE_clantr( int matrix_layout, char norm, char uplo, char diag,
#ifndef LAPACK_DISABLE_NAN_CHECK
if( LAPACKE_get_nancheck() ) {
/* Optionally check input matrices for NaNs */
if( LAPACKE_ctr_nancheck( matrix_layout, uplo, diag, MIN(m,n), a, lda ) ) {
if( LAPACKE_ctz_nancheck( matrix_layout, 'f', uplo, diag, m, n, a, lda ) ) {
return -7;
}
}

View File

@ -42,7 +42,9 @@ lapack_int LAPACKE_clarfb( int matrix_layout, char side, char trans, char direct
lapack_int info = 0;
lapack_int ldwork;
lapack_complex_float* work = NULL;
lapack_int ncols_v, nrows_v;
lapack_int nrows_v, ncols_v;
lapack_logical left, col, forward;
char uplo;
if( matrix_layout != LAPACK_COL_MAJOR && matrix_layout != LAPACK_ROW_MAJOR ) {
LAPACKE_xerbla( "LAPACKE_clarfb", -1 );
return -1;
@ -50,59 +52,27 @@ lapack_int LAPACKE_clarfb( int matrix_layout, char side, char trans, char direct
#ifndef LAPACK_DISABLE_NAN_CHECK
if( LAPACKE_get_nancheck() ) {
/* Optionally check input matrices for NaNs */
lapack_int lrv, lcv; /* row, column stride */
if( matrix_layout == LAPACK_COL_MAJOR ) {
lrv = 1;
lcv = ldv;
} else {
lrv = ldv;
lcv = 1;
}
ncols_v = LAPACKE_lsame( storev, 'c' ) ? k :
( ( LAPACKE_lsame( storev, 'r' ) && LAPACKE_lsame( side, 'l' ) ) ? m :
( ( LAPACKE_lsame( storev, 'r' ) && LAPACKE_lsame( side, 'r' ) ) ? n : 1) );
left = LAPACKE_lsame( side, 'l' );
col = LAPACKE_lsame( storev, 'c' );
forward = LAPACKE_lsame( direct, 'f' );
nrows_v = ( LAPACKE_lsame( storev, 'c' ) && LAPACKE_lsame( side, 'l' ) ) ? m :
( ( LAPACKE_lsame( storev, 'c' ) && LAPACKE_lsame( side, 'r' ) ) ? n :
( LAPACKE_lsame( storev, 'r' ) ? k : 1) );
if( LAPACKE_cge_nancheck( matrix_layout, m, n, c, ldc ) ) {
return -13;
nrows_v = ( col && left ) ? m : ( ( col && !left ) ? n : ( !col ? k : 1) );
ncols_v = ( !col && left ) ? m : ( ( !col && !left ) ? n : ( col ? k : 1 ) );
uplo = ( ( left && col ) || !( left || col ) ) ? 'l' : 'u';
if( !forward && ( col && k > nrows_v ) || ( !col && k > ncols_v )) {
LAPACKE_xerbla( "LAPACKE_clarfb", -8 );
return -8;
}
if( LAPACKE_ctz_nancheck( matrix_layout, direct, uplo, 'u',
nrows_v, ncols_v, v, ldv ) ) {
return -9;
}
if( LAPACKE_cge_nancheck( matrix_layout, k, k, t, ldt ) ) {
return -11;
}
if( LAPACKE_lsame( storev, 'c' ) && LAPACKE_lsame( direct, 'f' ) ) {
if( LAPACKE_ctr_nancheck( matrix_layout, 'l', 'u', k, v, ldv ) )
return -9;
if( LAPACKE_cge_nancheck( matrix_layout, nrows_v-k, ncols_v,
&v[k*lrv], ldv ) )
return -9;
} else if( LAPACKE_lsame( storev, 'c' ) && LAPACKE_lsame( direct, 'b' ) ) {
if( k > nrows_v ) {
LAPACKE_xerbla( "LAPACKE_clarfb", -8 );
return -8;
}
if( LAPACKE_ctr_nancheck( matrix_layout, 'u', 'u', k,
&v[(nrows_v-k)*lrv], ldv ) )
return -9;
if( LAPACKE_cge_nancheck( matrix_layout, nrows_v-k, ncols_v, v, ldv ) )
return -9;
} else if( LAPACKE_lsame( storev, 'r' ) && LAPACKE_lsame( direct, 'f' ) ) {
if( LAPACKE_ctr_nancheck( matrix_layout, 'u', 'u', k, v, ldv ) )
return -9;
if( LAPACKE_cge_nancheck( matrix_layout, nrows_v, ncols_v-k,
&v[k*lrv], ldv ) )
return -9;
} else if( LAPACKE_lsame( storev, 'r' ) && LAPACKE_lsame( direct, 'b' ) ) {
if( k > ncols_v ) {
LAPACKE_xerbla( "LAPACKE_clarfb", -8 );
return -8;
}
if( LAPACKE_ctr_nancheck( matrix_layout, 'l', 'u', k,
&v[(ncols_v-k)*lcv], ldv ) )
return -9;
if( LAPACKE_cge_nancheck( matrix_layout, nrows_v, ncols_v-k, v, ldv ) )
return -9;
if( LAPACKE_cge_nancheck( matrix_layout, m, n, c, ldc ) ) {
return -13;
}
}
#endif

View File

@ -42,6 +42,8 @@ lapack_int LAPACKE_clarfb_work( int matrix_layout, char side, char trans,
{
lapack_int info = 0;
lapack_int nrows_v, ncols_v;
lapack_logical left, col, forward;
char uplo;
lapack_int ldc_t, ldt_t, ldv_t;
lapack_complex_float *v_t = NULL, *t_t = NULL, *c_t = NULL;
if( matrix_layout == LAPACK_COL_MAJOR ) {
@ -52,16 +54,14 @@ lapack_int LAPACKE_clarfb_work( int matrix_layout, char side, char trans,
info = info - 1;
}
} else if( matrix_layout == LAPACK_ROW_MAJOR ) {
nrows_v = ( LAPACKE_lsame( storev, 'c' ) &&
LAPACKE_lsame( side, 'l' ) ) ? m :
( ( LAPACKE_lsame( storev, 'c' ) &&
LAPACKE_lsame( side, 'r' ) ) ? n :
( LAPACKE_lsame( storev, 'r' ) ? k : 1) );
ncols_v = LAPACKE_lsame( storev, 'c' ) ? k :
( ( LAPACKE_lsame( storev, 'r' ) &&
LAPACKE_lsame( side, 'l' ) ) ? m :
( ( LAPACKE_lsame( storev, 'r' ) &&
LAPACKE_lsame( side, 'r' ) ) ? n : 1) );
left = LAPACKE_lsame( side, 'l' );
col = LAPACKE_lsame( storev, 'c' );
forward = LAPACKE_lsame( direct, 'f' );
nrows_v = ( col && left ) ? m : ( ( col && !left ) ? n : ( !col ? k : 1) );
ncols_v = ( !col && left ) ? m : ( ( !col && !left ) ? n : ( col ? k : 1 ) );
uplo = ( ( left && col ) || !( left || col ) ) ? 'l' : 'u';
ldc_t = MAX(1,m);
ldt_t = MAX(1,k);
ldv_t = MAX(1,nrows_v);
@ -81,6 +81,11 @@ lapack_int LAPACKE_clarfb_work( int matrix_layout, char side, char trans,
LAPACKE_xerbla( "LAPACKE_clarfb_work", info );
return info;
}
if( !forward && ( col && k > nrows_v ) || ( !col && k > ncols_v )) {
info = -8;
LAPACKE_xerbla( "LAPACKE_clarfb_work", info );
return info;
}
/* Allocate memory for temporary array(s) */
v_t = (lapack_complex_float*)
LAPACKE_malloc( sizeof(lapack_complex_float) *
@ -102,36 +107,8 @@ lapack_int LAPACKE_clarfb_work( int matrix_layout, char side, char trans,
goto exit_level_2;
}
/* Transpose input matrices */
if( LAPACKE_lsame( storev, 'c' ) && LAPACKE_lsame( direct, 'f' ) ) {
LAPACKE_ctr_trans( matrix_layout, 'l', 'u', k, v, ldv, v_t, ldv_t );
LAPACKE_cge_trans( matrix_layout, nrows_v-k, ncols_v, &v[k*ldv], ldv,
&v_t[k], ldv_t );
} else if( LAPACKE_lsame( storev, 'c' ) &&
LAPACKE_lsame( direct, 'b' ) ) {
if( k > nrows_v ) {
LAPACKE_xerbla( "LAPACKE_clarfb_work", -8 );
return -8;
}
LAPACKE_ctr_trans( matrix_layout, 'u', 'u', k, &v[(nrows_v-k)*ldv],
ldv, &v_t[nrows_v-k], ldv_t );
LAPACKE_cge_trans( matrix_layout, nrows_v-k, ncols_v, v, ldv, v_t,
ldv_t );
} else if( LAPACKE_lsame( storev, 'r' ) &&
LAPACKE_lsame( direct, 'f' ) ) {
LAPACKE_ctr_trans( matrix_layout, 'u', 'u', k, v, ldv, v_t, ldv_t );
LAPACKE_cge_trans( matrix_layout, nrows_v, ncols_v-k, &v[k], ldv,
&v_t[k*ldv_t], ldv_t );
} else if( LAPACKE_lsame( storev, 'r' ) &&
LAPACKE_lsame( direct, 'b' ) ) {
if( k > ncols_v ) {
LAPACKE_xerbla( "LAPACKE_clarfb_work", -8 );
return -8;
}
LAPACKE_ctr_trans( matrix_layout, 'l', 'u', k, &v[ncols_v-k], ldv,
&v_t[(ncols_v-k)*ldv_t], ldv_t );
LAPACKE_cge_trans( matrix_layout, nrows_v, ncols_v-k, v, ldv, v_t,
ldv_t );
}
LAPACKE_ctz_trans( matrix_layout, direct, uplo, 'u', nrows_v, ncols_v,
v, ldv, v_t, ldv_t );
LAPACKE_cge_trans( matrix_layout, k, k, t, ldt, t_t, ldt_t );
LAPACKE_cge_trans( matrix_layout, m, n, c, ldc, c_t, ldc_t );
/* Call LAPACK function and adjust info */

View File

@ -46,7 +46,7 @@ double LAPACKE_dlantr( int matrix_layout, char norm, char uplo, char diag,
#ifndef LAPACK_DISABLE_NAN_CHECK
if( LAPACKE_get_nancheck() ) {
/* Optionally check input matrices for NaNs */
if( LAPACKE_dtr_nancheck( matrix_layout, uplo, diag, MIN(m,n), a, lda ) ) {
if( LAPACKE_dtz_nancheck( matrix_layout, 'f', uplo, diag, m, n, a, lda ) ) {
return -7;
}
}

View File

@ -41,7 +41,9 @@ lapack_int LAPACKE_dlarfb( int matrix_layout, char side, char trans, char direct
lapack_int info = 0;
lapack_int ldwork;
double* work = NULL;
lapack_int ncols_v, nrows_v;
lapack_int nrows_v, ncols_v;
lapack_logical left, col, forward;
char uplo;
if( matrix_layout != LAPACK_COL_MAJOR && matrix_layout != LAPACK_ROW_MAJOR ) {
LAPACKE_xerbla( "LAPACKE_dlarfb", -1 );
return -1;
@ -49,59 +51,27 @@ lapack_int LAPACKE_dlarfb( int matrix_layout, char side, char trans, char direct
#ifndef LAPACK_DISABLE_NAN_CHECK
if( LAPACKE_get_nancheck() ) {
/* Optionally check input matrices for NaNs */
lapack_int lrv, lcv; /* row, column stride */
if( matrix_layout == LAPACK_COL_MAJOR ) {
lrv = 1;
lcv = ldv;
} else {
lrv = ldv;
lcv = 1;
}
ncols_v = LAPACKE_lsame( storev, 'c' ) ? k :
( ( LAPACKE_lsame( storev, 'r' ) && LAPACKE_lsame( side, 'l' ) ) ? m :
( ( LAPACKE_lsame( storev, 'r' ) && LAPACKE_lsame( side, 'r' ) ) ? n : 1) );
left = LAPACKE_lsame( side, 'l' );
col = LAPACKE_lsame( storev, 'c' );
forward = LAPACKE_lsame( direct, 'f' );
nrows_v = ( LAPACKE_lsame( storev, 'c' ) && LAPACKE_lsame( side, 'l' ) ) ? m :
( ( LAPACKE_lsame( storev, 'c' ) && LAPACKE_lsame( side, 'r' ) ) ? n :
( LAPACKE_lsame( storev, 'r' ) ? k : 1) );
if( LAPACKE_dge_nancheck( matrix_layout, m, n, c, ldc ) ) {
return -13;
nrows_v = ( col && left ) ? m : ( ( col && !left ) ? n : ( !col ? k : 1) );
ncols_v = ( !col && left ) ? m : ( ( !col && !left ) ? n : ( col ? k : 1 ) );
uplo = ( ( left && col ) || !( left || col ) ) ? 'l' : 'u';
if( !forward && ( col && k > nrows_v ) || ( !col && k > ncols_v )) {
LAPACKE_xerbla( "LAPACKE_dlarfb", -8 );
return -8;
}
if( LAPACKE_dtz_nancheck( matrix_layout, direct, uplo, 'u',
nrows_v, ncols_v, v, ldv ) ) {
return -9;
}
if( LAPACKE_dge_nancheck( matrix_layout, k, k, t, ldt ) ) {
return -11;
}
if( LAPACKE_lsame( storev, 'c' ) && LAPACKE_lsame( direct, 'f' ) ) {
if( LAPACKE_dtr_nancheck( matrix_layout, 'l', 'u', k, v, ldv ) )
return -9;
if( LAPACKE_dge_nancheck( matrix_layout, nrows_v-k, ncols_v,
&v[k*lrv], ldv ) )
return -9;
} else if( LAPACKE_lsame( storev, 'c' ) && LAPACKE_lsame( direct, 'b' ) ) {
if( k > nrows_v ) {
LAPACKE_xerbla( "LAPACKE_dlarfb", -8 );
return -8;
}
if( LAPACKE_dtr_nancheck( matrix_layout, 'u', 'u', k,
&v[(nrows_v-k)*lrv], ldv ) )
return -9;
if( LAPACKE_dge_nancheck( matrix_layout, nrows_v-k, ncols_v, v, ldv ) )
return -9;
} else if( LAPACKE_lsame( storev, 'r' ) && LAPACKE_lsame( direct, 'f' ) ) {
if( LAPACKE_dtr_nancheck( matrix_layout, 'u', 'u', k, v, ldv ) )
return -9;
if( LAPACKE_dge_nancheck( matrix_layout, nrows_v, ncols_v-k,
&v[k*lrv], ldv ) )
return -9;
} else if( LAPACKE_lsame( storev, 'r' ) && LAPACKE_lsame( direct, 'b' ) ) {
if( k > ncols_v ) {
LAPACKE_xerbla( "LAPACKE_dlarfb", -8 );
return -8;
}
if( LAPACKE_dtr_nancheck( matrix_layout, 'l', 'u', k,
&v[(ncols_v-k)*lcv], ldv ) )
return -9;
if( LAPACKE_dge_nancheck( matrix_layout, nrows_v, ncols_v-k, v, ldv ) )
return -9;
if( LAPACKE_dge_nancheck( matrix_layout, m, n, c, ldc ) ) {
return -13;
}
}
#endif

View File

@ -41,6 +41,8 @@ lapack_int LAPACKE_dlarfb_work( int matrix_layout, char side, char trans,
{
lapack_int info = 0;
lapack_int nrows_v, ncols_v;
lapack_logical left, col, forward;
char uplo;
lapack_int ldc_t, ldt_t, ldv_t;
double *v_t = NULL, *t_t = NULL, *c_t = NULL;
if( matrix_layout == LAPACK_COL_MAJOR ) {
@ -51,16 +53,14 @@ lapack_int LAPACKE_dlarfb_work( int matrix_layout, char side, char trans,
info = info - 1;
}
} else if( matrix_layout == LAPACK_ROW_MAJOR ) {
nrows_v = ( LAPACKE_lsame( storev, 'c' ) &&
LAPACKE_lsame( side, 'l' ) ) ? m :
( ( LAPACKE_lsame( storev, 'c' ) &&
LAPACKE_lsame( side, 'r' ) ) ? n :
( LAPACKE_lsame( storev, 'r' ) ? k : 1) );
ncols_v = LAPACKE_lsame( storev, 'c' ) ? k :
( ( LAPACKE_lsame( storev, 'r' ) &&
LAPACKE_lsame( side, 'l' ) ) ? m :
( ( LAPACKE_lsame( storev, 'r' ) &&
LAPACKE_lsame( side, 'r' ) ) ? n : 1) );
left = LAPACKE_lsame( side, 'l' );
col = LAPACKE_lsame( storev, 'c' );
forward = LAPACKE_lsame( direct, 'f' );
nrows_v = ( col && left ) ? m : ( ( col && !left ) ? n : ( !col ? k : 1) );
ncols_v = ( !col && left ) ? m : ( ( !col && !left ) ? n : ( col ? k : 1 ) );
uplo = ( ( left && col ) || !( left || col ) ) ? 'l' : 'u';
ldc_t = MAX(1,m);
ldt_t = MAX(1,k);
ldv_t = MAX(1,nrows_v);
@ -80,6 +80,11 @@ lapack_int LAPACKE_dlarfb_work( int matrix_layout, char side, char trans,
LAPACKE_xerbla( "LAPACKE_dlarfb_work", info );
return info;
}
if( !forward && ( col && k > nrows_v ) || ( !col && k > ncols_v )) {
info = -8;
LAPACKE_xerbla( "LAPACKE_dlarfb_work", info );
return info;
}
/* Allocate memory for temporary array(s) */
v_t = (double*)
LAPACKE_malloc( sizeof(double) * ldv_t * MAX(1,ncols_v) );
@ -98,36 +103,8 @@ lapack_int LAPACKE_dlarfb_work( int matrix_layout, char side, char trans,
goto exit_level_2;
}
/* Transpose input matrices */
if( LAPACKE_lsame( storev, 'c' ) && LAPACKE_lsame( direct, 'f' ) ) {
LAPACKE_dtr_trans( matrix_layout, 'l', 'u', k, v, ldv, v_t, ldv_t );
LAPACKE_dge_trans( matrix_layout, nrows_v-k, ncols_v, &v[k*ldv], ldv,
&v_t[k], ldv_t );
} else if( LAPACKE_lsame( storev, 'c' ) &&
LAPACKE_lsame( direct, 'b' ) ) {
if( k > nrows_v ) {
LAPACKE_xerbla( "LAPACKE_dlarfb_work", -8 );
return -8;
}
LAPACKE_dtr_trans( matrix_layout, 'u', 'u', k, &v[(nrows_v-k)*ldv],
ldv, &v_t[nrows_v-k], ldv_t );
LAPACKE_dge_trans( matrix_layout, nrows_v-k, ncols_v, v, ldv, v_t,
ldv_t );
} else if( LAPACKE_lsame( storev, 'r' ) &&
LAPACKE_lsame( direct, 'f' ) ) {
LAPACKE_dtr_trans( matrix_layout, 'u', 'u', k, v, ldv, v_t, ldv_t );
LAPACKE_dge_trans( matrix_layout, nrows_v, ncols_v-k, &v[k], ldv,
&v_t[k*ldv_t], ldv_t );
} else if( LAPACKE_lsame( storev, 'r' ) &&
LAPACKE_lsame( direct, 'b' ) ) {
if( k > ncols_v ) {
LAPACKE_xerbla( "LAPACKE_dlarfb_work", -8 );
return -8;
}
LAPACKE_dtr_trans( matrix_layout, 'l', 'u', k, &v[ncols_v-k], ldv,
&v_t[(ncols_v-k)*ldv_t], ldv_t );
LAPACKE_dge_trans( matrix_layout, nrows_v, ncols_v-k, v, ldv, v_t,
ldv_t );
}
LAPACKE_dtz_trans( matrix_layout, direct, uplo, 'u', nrows_v, ncols_v,
v, ldv, v_t, ldv_t );
LAPACKE_dge_trans( matrix_layout, k, k, t, ldt, t_t, ldt_t );
LAPACKE_dge_trans( matrix_layout, m, n, c, ldc, c_t, ldc_t );
/* Call LAPACK function and adjust info */

View File

@ -46,7 +46,7 @@ float LAPACKE_slantr( int matrix_layout, char norm, char uplo, char diag,
#ifndef LAPACK_DISABLE_NAN_CHECK
if( LAPACKE_get_nancheck() ) {
/* Optionally check input matrices for NaNs */
if( LAPACKE_str_nancheck( matrix_layout, uplo, diag, MIN(m,n), a, lda ) ) {
if( LAPACKE_stz_nancheck( matrix_layout, 'f', uplo, diag, m, n, a, lda ) ) {
return -7;
}
}

View File

@ -41,7 +41,9 @@ lapack_int LAPACKE_slarfb( int matrix_layout, char side, char trans, char direct
lapack_int info = 0;
lapack_int ldwork;
float* work = NULL;
lapack_int ncols_v, nrows_v;
lapack_int nrows_v, ncols_v;
lapack_logical left, col, forward;
char uplo;
if( matrix_layout != LAPACK_COL_MAJOR && matrix_layout != LAPACK_ROW_MAJOR ) {
LAPACKE_xerbla( "LAPACKE_slarfb", -1 );
return -1;
@ -49,59 +51,27 @@ lapack_int LAPACKE_slarfb( int matrix_layout, char side, char trans, char direct
#ifndef LAPACK_DISABLE_NAN_CHECK
if( LAPACKE_get_nancheck() ) {
/* Optionally check input matrices for NaNs */
lapack_int lrv, lcv; /* row, column stride */
if( matrix_layout == LAPACK_COL_MAJOR ) {
lrv = 1;
lcv = ldv;
} else {
lrv = ldv;
lcv = 1;
}
ncols_v = LAPACKE_lsame( storev, 'c' ) ? k :
( ( LAPACKE_lsame( storev, 'r' ) && LAPACKE_lsame( side, 'l' ) ) ? m :
( ( LAPACKE_lsame( storev, 'r' ) && LAPACKE_lsame( side, 'r' ) ) ? n : 1) );
left = LAPACKE_lsame( side, 'l' );
col = LAPACKE_lsame( storev, 'c' );
forward = LAPACKE_lsame( direct, 'f' );
nrows_v = ( LAPACKE_lsame( storev, 'c' ) && LAPACKE_lsame( side, 'l' ) ) ? m :
( ( LAPACKE_lsame( storev, 'c' ) && LAPACKE_lsame( side, 'r' ) ) ? n :
( LAPACKE_lsame( storev, 'r' ) ? k : 1) );
if( LAPACKE_sge_nancheck( matrix_layout, m, n, c, ldc ) ) {
return -13;
nrows_v = ( col && left ) ? m : ( ( col && !left ) ? n : ( !col ? k : 1) );
ncols_v = ( !col && left ) ? m : ( ( !col && !left ) ? n : ( col ? k : 1 ) );
uplo = ( ( left && col ) || !( left || col ) ) ? 'l' : 'u';
if( !forward && ( col && k > nrows_v ) || ( !col && k > ncols_v )) {
LAPACKE_xerbla( "LAPACKE_slarfb", -8 );
return -8;
}
if( LAPACKE_stz_nancheck( matrix_layout, direct, uplo, 'u',
nrows_v, ncols_v, v, ldv ) ) {
return -9;
}
if( LAPACKE_sge_nancheck( matrix_layout, k, k, t, ldt ) ) {
return -11;
}
if( LAPACKE_lsame( storev, 'c' ) && LAPACKE_lsame( direct, 'f' ) ) {
if( LAPACKE_str_nancheck( matrix_layout, 'l', 'u', k, v, ldv ) )
return -9;
if( LAPACKE_sge_nancheck( matrix_layout, nrows_v-k, ncols_v,
&v[k*lrv], ldv ) )
return -9;
} else if( LAPACKE_lsame( storev, 'c' ) && LAPACKE_lsame( direct, 'b' ) ) {
if( k > nrows_v ) {
LAPACKE_xerbla( "LAPACKE_slarfb", -8 );
return -8;
}
if( LAPACKE_str_nancheck( matrix_layout, 'u', 'u', k,
&v[(nrows_v-k)*lrv], ldv ) )
return -9;
if( LAPACKE_sge_nancheck( matrix_layout, nrows_v-k, ncols_v, v, ldv ) )
return -9;
} else if( LAPACKE_lsame( storev, 'r' ) && LAPACKE_lsame( direct, 'f' ) ) {
if( LAPACKE_str_nancheck( matrix_layout, 'u', 'u', k, v, ldv ) )
return -9;
if( LAPACKE_sge_nancheck( matrix_layout, nrows_v, ncols_v-k,
&v[k*lrv], ldv ) )
return -9;
} else if( LAPACKE_lsame( storev, 'r' ) && LAPACKE_lsame( direct, 'b' ) ) {
if( k > ncols_v ) {
LAPACKE_xerbla( "LAPACKE_slarfb", -8 );
return -8;
}
if( LAPACKE_str_nancheck( matrix_layout, 'l', 'u', k,
&v[(ncols_v-k)*lcv], ldv ) )
return -9;
if( LAPACKE_sge_nancheck( matrix_layout, nrows_v, ncols_v-k, v, ldv ) )
return -9;
if( LAPACKE_sge_nancheck( matrix_layout, m, n, c, ldc ) ) {
return -13;
}
}
#endif

View File

@ -41,6 +41,8 @@ lapack_int LAPACKE_slarfb_work( int matrix_layout, char side, char trans,
{
lapack_int info = 0;
lapack_int nrows_v, ncols_v;
lapack_logical left, col, forward;
char uplo;
lapack_int ldc_t, ldt_t, ldv_t;
float *v_t = NULL, *t_t = NULL, *c_t = NULL;
if( matrix_layout == LAPACK_COL_MAJOR ) {
@ -51,16 +53,14 @@ lapack_int LAPACKE_slarfb_work( int matrix_layout, char side, char trans,
info = info - 1;
}
} else if( matrix_layout == LAPACK_ROW_MAJOR ) {
nrows_v = ( LAPACKE_lsame( storev, 'c' ) &&
LAPACKE_lsame( side, 'l' ) ) ? m :
( ( LAPACKE_lsame( storev, 'c' ) &&
LAPACKE_lsame( side, 'r' ) ) ? n :
( LAPACKE_lsame( storev, 'r' ) ? k : 1) );
ncols_v = LAPACKE_lsame( storev, 'c' ) ? k :
( ( LAPACKE_lsame( storev, 'r' ) &&
LAPACKE_lsame( side, 'l' ) ) ? m :
( ( LAPACKE_lsame( storev, 'r' ) &&
LAPACKE_lsame( side, 'r' ) ) ? n : 1) );
left = LAPACKE_lsame( side, 'l' );
col = LAPACKE_lsame( storev, 'c' );
forward = LAPACKE_lsame( direct, 'f' );
nrows_v = ( col && left ) ? m : ( ( col && !left ) ? n : ( !col ? k : 1) );
ncols_v = ( !col && left ) ? m : ( ( !col && !left ) ? n : ( col ? k : 1 ) );
uplo = ( ( left && col ) || !( left || col ) ) ? 'l' : 'u';
ldc_t = MAX(1,m);
ldt_t = MAX(1,k);
ldv_t = MAX(1,nrows_v);
@ -80,6 +80,11 @@ lapack_int LAPACKE_slarfb_work( int matrix_layout, char side, char trans,
LAPACKE_xerbla( "LAPACKE_slarfb_work", info );
return info;
}
if( !forward && ( col && k > nrows_v ) || ( !col && k > ncols_v )) {
info = -8;
LAPACKE_xerbla( "LAPACKE_slarfb_work", info );
return info;
}
/* Allocate memory for temporary array(s) */
v_t = (float*)LAPACKE_malloc( sizeof(float) * ldv_t * MAX(1,ncols_v) );
if( v_t == NULL ) {
@ -97,36 +102,8 @@ lapack_int LAPACKE_slarfb_work( int matrix_layout, char side, char trans,
goto exit_level_2;
}
/* Transpose input matrices */
if( LAPACKE_lsame( storev, 'c' ) && LAPACKE_lsame( direct, 'f' ) ) {
LAPACKE_str_trans( matrix_layout, 'l', 'u', k, v, ldv, v_t, ldv_t );
LAPACKE_sge_trans( matrix_layout, nrows_v-k, ncols_v, &v[k*ldv], ldv,
&v_t[k], ldv_t );
} else if( LAPACKE_lsame( storev, 'c' ) &&
LAPACKE_lsame( direct, 'b' ) ) {
if( k > nrows_v ) {
LAPACKE_xerbla( "LAPACKE_slarfb_work", -8 );
return -8;
}
LAPACKE_str_trans( matrix_layout, 'u', 'u', k, &v[(nrows_v-k)*ldv],
ldv, &v_t[nrows_v-k], ldv_t );
LAPACKE_sge_trans( matrix_layout, nrows_v-k, ncols_v, v, ldv, v_t,
ldv_t );
} else if( LAPACKE_lsame( storev, 'r' ) &&
LAPACKE_lsame( direct, 'f' ) ) {
LAPACKE_str_trans( matrix_layout, 'u', 'u', k, v, ldv, v_t, ldv_t );
LAPACKE_sge_trans( matrix_layout, nrows_v, ncols_v-k, &v[k], ldv,
&v_t[k*ldv_t], ldv_t );
} else if( LAPACKE_lsame( storev, 'r' ) &&
LAPACKE_lsame( direct, 'b' ) ) {
if( k > ncols_v ) {
LAPACKE_xerbla( "LAPACKE_slarfb_work", -8 );
return -8;
}
LAPACKE_str_trans( matrix_layout, 'l', 'u', k, &v[ncols_v-k], ldv,
&v_t[(ncols_v-k)*ldv_t], ldv_t );
LAPACKE_sge_trans( matrix_layout, nrows_v, ncols_v-k, v, ldv, v_t,
ldv_t );
}
LAPACKE_stz_trans( matrix_layout, direct, uplo, 'u', nrows_v, ncols_v,
v, ldv, v_t, ldv_t );
LAPACKE_sge_trans( matrix_layout, k, k, t, ldt, t_t, ldt_t );
LAPACKE_sge_trans( matrix_layout, m, n, c, ldc, c_t, ldc_t );
/* Call LAPACK function and adjust info */

View File

@ -46,7 +46,7 @@ double LAPACKE_zlantr( int matrix_layout, char norm, char uplo, char diag,
#ifndef LAPACK_DISABLE_NAN_CHECK
if( LAPACKE_get_nancheck() ) {
/* Optionally check input matrices for NaNs */
if( LAPACKE_ztr_nancheck( matrix_layout, uplo, diag, MIN(m,n), a, lda ) ) {
if( LAPACKE_ztz_nancheck( matrix_layout, 'f', uplo, diag, m, n, a, lda ) ) {
return -7;
}
}

View File

@ -42,7 +42,9 @@ lapack_int LAPACKE_zlarfb( int matrix_layout, char side, char trans, char direct
lapack_int info = 0;
lapack_int ldwork;
lapack_complex_double* work = NULL;
lapack_int ncols_v, nrows_v;
lapack_int nrows_v, ncols_v;
lapack_logical left, col, forward;
char uplo;
if( matrix_layout != LAPACK_COL_MAJOR && matrix_layout != LAPACK_ROW_MAJOR ) {
LAPACKE_xerbla( "LAPACKE_zlarfb", -1 );
return -1;
@ -50,59 +52,27 @@ lapack_int LAPACKE_zlarfb( int matrix_layout, char side, char trans, char direct
#ifndef LAPACK_DISABLE_NAN_CHECK
if( LAPACKE_get_nancheck() ) {
/* Optionally check input matrices for NaNs */
lapack_int lrv, lcv; /* row, column stride */
if( matrix_layout == LAPACK_COL_MAJOR ) {
lrv = 1;
lcv = ldv;
} else {
lrv = ldv;
lcv = 1;
}
ncols_v = LAPACKE_lsame( storev, 'c' ) ? k :
( ( LAPACKE_lsame( storev, 'r' ) && LAPACKE_lsame( side, 'l' ) ) ? m :
( ( LAPACKE_lsame( storev, 'r' ) && LAPACKE_lsame( side, 'r' ) ) ? n : 1) );
left = LAPACKE_lsame( side, 'l' );
col = LAPACKE_lsame( storev, 'c' );
forward = LAPACKE_lsame( direct, 'f' );
nrows_v = ( LAPACKE_lsame( storev, 'c' ) && LAPACKE_lsame( side, 'l' ) ) ? m :
( ( LAPACKE_lsame( storev, 'c' ) && LAPACKE_lsame( side, 'r' ) ) ? n :
( LAPACKE_lsame( storev, 'r' ) ? k : 1) );
if( LAPACKE_zge_nancheck( matrix_layout, m, n, c, ldc ) ) {
return -13;
nrows_v = ( col && left ) ? m : ( ( col && !left ) ? n : ( !col ? k : 1) );
ncols_v = ( !col && left ) ? m : ( ( !col && !left ) ? n : ( col ? k : 1 ) );
uplo = ( ( left && col ) || !( left || col ) ) ? 'l' : 'u';
if( !forward && ( col && k > nrows_v ) || ( !col && k > ncols_v )) {
LAPACKE_xerbla( "LAPACKE_zlarfb", -8 );
return -8;
}
if( LAPACKE_ztz_nancheck( matrix_layout, direct, uplo, 'u',
nrows_v, ncols_v, v, ldv ) ) {
return -9;
}
if( LAPACKE_zge_nancheck( matrix_layout, k, k, t, ldt ) ) {
return -11;
}
if( LAPACKE_lsame( storev, 'c' ) && LAPACKE_lsame( direct, 'f' ) ) {
if( LAPACKE_ztr_nancheck( matrix_layout, 'l', 'u', k, v, ldv ) )
return -9;
if( LAPACKE_zge_nancheck( matrix_layout, nrows_v-k, ncols_v,
&v[k*lrv], ldv ) )
return -9;
} else if( LAPACKE_lsame( storev, 'c' ) && LAPACKE_lsame( direct, 'b' ) ) {
if( k > nrows_v ) {
LAPACKE_xerbla( "LAPACKE_zlarfb", -8 );
return -8;
}
if( LAPACKE_ztr_nancheck( matrix_layout, 'u', 'u', k,
&v[(nrows_v-k)*lrv], ldv ) )
return -9;
if( LAPACKE_zge_nancheck( matrix_layout, nrows_v-k, ncols_v, v, ldv ) )
return -9;
} else if( LAPACKE_lsame( storev, 'r' ) && LAPACKE_lsame( direct, 'f' ) ) {
if( LAPACKE_ztr_nancheck( matrix_layout, 'u', 'u', k, v, ldv ) )
return -9;
if( LAPACKE_zge_nancheck( matrix_layout, nrows_v, ncols_v-k,
&v[k*lrv], ldv ) )
return -9;
} else if( LAPACKE_lsame( storev, 'r' ) && LAPACKE_lsame( direct, 'b' ) ) {
if( k > ncols_v ) {
LAPACKE_xerbla( "LAPACKE_zlarfb", -8 );
return -8;
}
if( LAPACKE_ztr_nancheck( matrix_layout, 'l', 'u', k,
&v[(ncols_v-k)*lcv], ldv ) )
return -9;
if( LAPACKE_zge_nancheck( matrix_layout, nrows_v, ncols_v-k, v, ldv ) )
return -9;
if( LAPACKE_zge_nancheck( matrix_layout, m, n, c, ldc ) ) {
return -13;
}
}
#endif

View File

@ -42,6 +42,8 @@ lapack_int LAPACKE_zlarfb_work( int matrix_layout, char side, char trans,
{
lapack_int info = 0;
lapack_int nrows_v, ncols_v;
lapack_logical left, col, forward;
char uplo;
lapack_int ldc_t, ldt_t, ldv_t;
lapack_complex_double *v_t = NULL, *t_t = NULL, *c_t = NULL;
if( matrix_layout == LAPACK_COL_MAJOR ) {
@ -52,16 +54,14 @@ lapack_int LAPACKE_zlarfb_work( int matrix_layout, char side, char trans,
info = info - 1;
}
} else if( matrix_layout == LAPACK_ROW_MAJOR ) {
nrows_v = ( LAPACKE_lsame( storev, 'c' ) &&
LAPACKE_lsame( side, 'l' ) ) ? m :
( ( LAPACKE_lsame( storev, 'c' ) &&
LAPACKE_lsame( side, 'r' ) ) ? n :
( LAPACKE_lsame( storev, 'r' ) ? k : 1) );
ncols_v = LAPACKE_lsame( storev, 'c' ) ? k :
( ( LAPACKE_lsame( storev, 'r' ) &&
LAPACKE_lsame( side, 'l' ) ) ? m :
( ( LAPACKE_lsame( storev, 'r' ) &&
LAPACKE_lsame( side, 'r' ) ) ? n : 1) );
left = LAPACKE_lsame( side, 'l' );
col = LAPACKE_lsame( storev, 'c' );
forward = LAPACKE_lsame( direct, 'f' );
nrows_v = ( col && left ) ? m : ( ( col && !left ) ? n : ( !col ? k : 1) );
ncols_v = ( !col && left ) ? m : ( ( !col && !left ) ? n : ( col ? k : 1 ) );
uplo = ( ( left && col ) || !( left || col ) ) ? 'l' : 'u';
ldc_t = MAX(1,m);
ldt_t = MAX(1,k);
ldv_t = MAX(1,nrows_v);
@ -81,6 +81,11 @@ lapack_int LAPACKE_zlarfb_work( int matrix_layout, char side, char trans,
LAPACKE_xerbla( "LAPACKE_zlarfb_work", info );
return info;
}
if( !forward && ( col && k > nrows_v ) || ( !col && k > ncols_v )) {
info = -8;
LAPACKE_xerbla( "LAPACKE_zlarfb_work", info );
return info;
}
/* Allocate memory for temporary array(s) */
v_t = (lapack_complex_double*)
LAPACKE_malloc( sizeof(lapack_complex_double) *
@ -102,36 +107,8 @@ lapack_int LAPACKE_zlarfb_work( int matrix_layout, char side, char trans,
goto exit_level_2;
}
/* Transpose input matrices */
if( LAPACKE_lsame( storev, 'c' ) && LAPACKE_lsame( direct, 'f' ) ) {
LAPACKE_ztr_trans( matrix_layout, 'l', 'u', k, v, ldv, v_t, ldv_t );
LAPACKE_zge_trans( matrix_layout, nrows_v-k, ncols_v, &v[k*ldv], ldv,
&v_t[k], ldv_t );
} else if( LAPACKE_lsame( storev, 'c' ) &&
LAPACKE_lsame( direct, 'b' ) ) {
if( k > nrows_v ) {
LAPACKE_xerbla( "LAPACKE_zlarfb_work", -8 );
return -8;
}
LAPACKE_ztr_trans( matrix_layout, 'u', 'u', k, &v[(nrows_v-k)*ldv],
ldv, &v_t[nrows_v-k], ldv_t );
LAPACKE_zge_trans( matrix_layout, nrows_v-k, ncols_v, v, ldv, v_t,
ldv_t );
} else if( LAPACKE_lsame( storev, 'r' ) &&
LAPACKE_lsame( direct, 'f' ) ) {
LAPACKE_ztr_trans( matrix_layout, 'u', 'u', k, v, ldv, v_t, ldv_t );
LAPACKE_zge_trans( matrix_layout, nrows_v, ncols_v-k, &v[k], ldv,
&v_t[k*ldv_t], ldv_t );
} else if( LAPACKE_lsame( storev, 'r' ) &&
LAPACKE_lsame( direct, 'b' ) ) {
if( k > ncols_v ) {
LAPACKE_xerbla( "LAPACKE_zlarfb_work", -8 );
return -8;
}
LAPACKE_ztr_trans( matrix_layout, 'l', 'u', k, &v[ncols_v-k], ldv,
&v_t[(ncols_v-k)*ldv_t], ldv_t );
LAPACKE_zge_trans( matrix_layout, nrows_v, ncols_v-k, v, ldv, v_t,
ldv_t );
}
LAPACKE_ztz_trans( matrix_layout, direct, uplo, 'u', nrows_v, ncols_v,
v, ldv, v_t, ldv_t );
LAPACKE_zge_trans( matrix_layout, k, k, t, ldt, t_t, ldt_t );
LAPACKE_zge_trans( matrix_layout, m, n, c, ldc, c_t, ldc_t );
/* Call LAPACK function and adjust info */

View File

@ -1,39 +1,46 @@
set(UTILS
lapacke_c_nancheck.c lapacke_ctr_trans.c lapacke_make_complex_float.c lapacke_zgb_nancheck.c
lapacke_cgb_nancheck.c lapacke_d_nancheck.c lapacke_s_nancheck.c lapacke_zgb_trans.c
lapacke_cgb_trans.c lapacke_dgb_nancheck.c lapacke_sgb_nancheck.c lapacke_zge_nancheck.c
lapacke_cge_nancheck.c lapacke_dgb_trans.c lapacke_sgb_trans.c lapacke_zge_trans.c
lapacke_cge_trans.c lapacke_dge_nancheck.c lapacke_sge_nancheck.c lapacke_zgg_nancheck.c
lapacke_cgg_nancheck.c lapacke_dge_trans.c lapacke_sge_trans.c lapacke_zgg_trans.c
lapacke_cgg_trans.c lapacke_dgg_nancheck.c lapacke_sgg_nancheck.c lapacke_zgt_nancheck.c
lapacke_cgt_nancheck.c lapacke_dgg_trans.c lapacke_sgg_trans.c lapacke_zhb_nancheck.c
lapacke_chb_nancheck.c lapacke_dgt_nancheck.c lapacke_sgt_nancheck.c lapacke_zhb_trans.c
lapacke_chb_trans.c lapacke_dhs_nancheck.c lapacke_shs_nancheck.c lapacke_zhe_nancheck.c
lapacke_che_nancheck.c lapacke_dhs_trans.c lapacke_shs_trans.c lapacke_zhe_trans.c
lapacke_che_trans.c lapacke_dpb_nancheck.c lapacke_spb_nancheck.c lapacke_zhp_nancheck.c
lapacke_chp_nancheck.c lapacke_dpb_trans.c lapacke_spb_trans.c lapacke_zhp_trans.c
lapacke_chp_trans.c lapacke_dpf_nancheck.c lapacke_spf_nancheck.c lapacke_zhs_nancheck.c
lapacke_chs_nancheck.c lapacke_dpf_trans.c lapacke_spf_trans.c lapacke_zhs_trans.c
lapacke_chs_trans.c lapacke_dpo_nancheck.c lapacke_spo_nancheck.c lapacke_zpb_nancheck.c
lapacke_cpb_nancheck.c lapacke_dpo_trans.c lapacke_spo_trans.c lapacke_zpb_trans.c
lapacke_cpb_trans.c lapacke_dpp_nancheck.c lapacke_spp_nancheck.c lapacke_zpf_nancheck.c
lapacke_cpf_nancheck.c lapacke_dpp_trans.c lapacke_spp_trans.c lapacke_zpf_trans.c
lapacke_cpf_trans.c lapacke_dpt_nancheck.c lapacke_spt_nancheck.c lapacke_zpo_nancheck.c
lapacke_cpo_nancheck.c lapacke_dsb_nancheck.c lapacke_ssb_nancheck.c lapacke_zpo_trans.c
lapacke_cpo_trans.c lapacke_dsb_trans.c lapacke_ssb_trans.c lapacke_zpp_nancheck.c
lapacke_cpp_nancheck.c lapacke_dsp_nancheck.c lapacke_ssp_nancheck.c lapacke_zpp_trans.c
lapacke_cpp_trans.c lapacke_dsp_trans.c lapacke_ssp_trans.c lapacke_zpt_nancheck.c
lapacke_cpt_nancheck.c lapacke_dst_nancheck.c lapacke_sst_nancheck.c lapacke_zsp_nancheck.c
lapacke_csp_nancheck.c lapacke_dsy_nancheck.c lapacke_ssy_nancheck.c lapacke_zsp_trans.c
lapacke_csp_trans.c lapacke_dsy_trans.c lapacke_ssy_trans.c lapacke_zst_nancheck.c
lapacke_cst_nancheck.c lapacke_dtb_nancheck.c lapacke_stb_nancheck.c lapacke_zsy_nancheck.c
lapacke_csy_nancheck.c lapacke_dtb_trans.c lapacke_stb_trans.c lapacke_zsy_trans.c
lapacke_csy_trans.c lapacke_dtf_nancheck.c lapacke_stf_nancheck.c lapacke_ztb_nancheck.c
lapacke_ctb_nancheck.c lapacke_dtf_trans.c lapacke_stf_trans.c lapacke_ztb_trans.c
lapacke_ctb_trans.c lapacke_dtp_nancheck.c lapacke_stp_nancheck.c lapacke_ztf_nancheck.c
lapacke_ctf_nancheck.c lapacke_dtp_trans.c lapacke_stp_trans.c lapacke_ztf_trans.c
lapacke_ctf_trans.c lapacke_dtr_nancheck.c lapacke_str_nancheck.c lapacke_ztp_nancheck.c
lapacke_ctp_nancheck.c lapacke_dtr_trans.c lapacke_str_trans.c lapacke_ztp_trans.c
lapacke_ctp_trans.c lapacke_lsame.c lapacke_xerbla.c lapacke_ztr_nancheck.c
lapacke_ctr_nancheck.c lapacke_make_complex_double.c lapacke_z_nancheck.c lapacke_ztr_trans.c
lapacke_c_nancheck.c lapacke_d_nancheck.c lapacke_s_nancheck.c lapacke_z_nancheck.c
lapacke_cgb_nancheck.c lapacke_dgb_nancheck.c lapacke_sgb_nancheck.c lapacke_zgb_trans.c
lapacke_cgb_trans.c lapacke_dgb_trans.c lapacke_sgb_trans.c lapacke_zgb_nancheck.c
lapacke_cge_nancheck.c lapacke_dge_nancheck.c lapacke_sge_nancheck.c lapacke_zge_nancheck.c
lapacke_cge_trans.c lapacke_dge_trans.c lapacke_sge_trans.c lapacke_zge_trans.c
lapacke_cgg_nancheck.c lapacke_dgg_nancheck.c lapacke_sgg_nancheck.c lapacke_zgg_nancheck.c
lapacke_cgg_trans.c lapacke_dgg_trans.c lapacke_sgg_trans.c lapacke_zgg_trans.c
lapacke_cgt_nancheck.c lapacke_dgt_nancheck.c lapacke_sgt_nancheck.c lapacke_zgt_nancheck.c
lapacke_chb_nancheck.c lapacke_dsb_nancheck.c lapacke_ssb_nancheck.c lapacke_zhb_nancheck.c
lapacke_chb_trans.c lapacke_dsb_trans.c lapacke_ssb_trans.c lapacke_zhb_trans.c
lapacke_che_nancheck.c lapacke_zhe_nancheck.c
lapacke_che_trans.c lapacke_zhe_trans.c
lapacke_chp_nancheck.c lapacke_zhp_nancheck.c
lapacke_chp_trans.c lapacke_zhp_trans.c
lapacke_chs_nancheck.c lapacke_dhs_nancheck.c lapacke_shs_nancheck.c lapacke_zhs_nancheck.c
lapacke_chs_trans.c lapacke_dhs_trans.c lapacke_shs_trans.c lapacke_zhs_trans.c
lapacke_cpb_nancheck.c lapacke_dpb_nancheck.c lapacke_spb_nancheck.c lapacke_zpb_nancheck.c
lapacke_cpb_trans.c lapacke_dpb_trans.c lapacke_spb_trans.c lapacke_zpb_trans.c
lapacke_cpf_nancheck.c lapacke_dpf_nancheck.c lapacke_spf_nancheck.c lapacke_zpf_nancheck.c
lapacke_cpf_trans.c lapacke_dpf_trans.c lapacke_spf_trans.c lapacke_zpf_trans.c
lapacke_cpo_nancheck.c lapacke_dpo_nancheck.c lapacke_spo_nancheck.c lapacke_zpo_nancheck.c
lapacke_cpo_trans.c lapacke_dpo_trans.c lapacke_spo_trans.c lapacke_zpo_trans.c
lapacke_cpp_nancheck.c lapacke_dpp_nancheck.c lapacke_spp_nancheck.c lapacke_zpp_nancheck.c
lapacke_cpp_trans.c lapacke_dpp_trans.c lapacke_spp_trans.c lapacke_zpp_trans.c
lapacke_cpt_nancheck.c lapacke_dpt_nancheck.c lapacke_spt_nancheck.c lapacke_zpt_nancheck.c
lapacke_csp_nancheck.c lapacke_dsp_nancheck.c lapacke_ssp_nancheck.c lapacke_zsp_nancheck.c
lapacke_csp_trans.c lapacke_dsp_trans.c lapacke_ssp_trans.c lapacke_zsp_trans.c
lapacke_cst_nancheck.c lapacke_dst_nancheck.c lapacke_sst_nancheck.c lapacke_zst_nancheck.c
lapacke_csy_nancheck.c lapacke_dsy_nancheck.c lapacke_ssy_nancheck.c lapacke_zsy_nancheck.c
lapacke_csy_trans.c lapacke_dsy_trans.c lapacke_ssy_trans.c lapacke_zsy_trans.c
lapacke_ctb_nancheck.c lapacke_dtb_nancheck.c lapacke_stb_nancheck.c lapacke_ztb_nancheck.c
lapacke_ctb_trans.c lapacke_dtb_trans.c lapacke_stb_trans.c lapacke_ztb_trans.c
lapacke_ctf_nancheck.c lapacke_dtf_nancheck.c lapacke_stf_nancheck.c lapacke_ztf_nancheck.c
lapacke_ctf_trans.c lapacke_dtf_trans.c lapacke_stf_trans.c lapacke_ztf_trans.c
lapacke_ctp_nancheck.c lapacke_dtp_nancheck.c lapacke_stp_nancheck.c lapacke_ztp_nancheck.c
lapacke_ctp_trans.c lapacke_dtp_trans.c lapacke_stp_trans.c lapacke_ztp_trans.c
lapacke_ctr_nancheck.c lapacke_dtr_nancheck.c lapacke_str_nancheck.c lapacke_ztr_nancheck.c
lapacke_ctr_trans.c lapacke_dtr_trans.c lapacke_str_trans.c lapacke_ztr_trans.c
lapacke_ctz_nancheck.c lapacke_dtz_nancheck.c lapacke_stz_nancheck.c lapacke_ztz_nancheck.c
lapacke_ctz_trans.c lapacke_dtz_trans.c lapacke_stz_trans.c lapacke_ztz_trans.c
lapacke_make_complex_float.c lapacke_make_complex_double.c
lapacke_lsame.c
lapacke_xerbla.c
)

View File

@ -76,6 +76,8 @@ OBJ = lapacke_cgb_nancheck.o \
lapacke_ctp_trans.o \
lapacke_ctr_nancheck.o \
lapacke_ctr_trans.o \
lapacke_ctz_nancheck.o \
lapacke_ctz_trans.o \
lapacke_dgb_nancheck.o \
lapacke_dgb_trans.o \
lapacke_dge_nancheck.o \
@ -110,6 +112,8 @@ OBJ = lapacke_cgb_nancheck.o \
lapacke_dtp_trans.o \
lapacke_dtr_nancheck.o \
lapacke_dtr_trans.o \
lapacke_dtz_nancheck.o \
lapacke_dtz_trans.o \
lapacke_lsame.o \
lapacke_sgb_nancheck.o \
lapacke_sgb_trans.o \
@ -145,6 +149,8 @@ OBJ = lapacke_cgb_nancheck.o \
lapacke_stp_trans.o \
lapacke_str_nancheck.o \
lapacke_str_trans.o \
lapacke_stz_nancheck.o \
lapacke_stz_trans.o \
lapacke_xerbla.o \
lapacke_zgb_nancheck.o \
lapacke_zgb_trans.o \
@ -184,6 +190,8 @@ OBJ = lapacke_cgb_nancheck.o \
lapacke_ztp_trans.o \
lapacke_ztr_nancheck.o \
lapacke_ztr_trans.o \
lapacke_ztz_nancheck.o \
lapacke_ztz_trans.o \
lapacke_make_complex_float.o \
lapacke_make_complex_double.o

View File

@ -0,0 +1,144 @@
/*****************************************************************************
Copyright (c) 2022, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************
* Contents: Native C interface to LAPACK utility function
* Author: Simon Märtens
*****************************************************************************/
#include "lapacke_utils.h"
/*****************************************************************************
Check a trapezoidal matrix for NaN entries. The shape of the trapezoidal
matrix is determined by the arguments `direct` and `uplo`. `Direct` chooses
the diagonal which shall be considered and `uplo` tells us whether we use the
upper or lower part of the matrix with respect to the chosen diagonal.
Diagonals 'F' (front / forward) and 'B' (back / backward):
A = ( F ) A = ( F B )
( F ) ( F B )
( B F ) ( F B )
( B )
( B )
direct = 'F', uplo = 'L':
A = ( * ) A = ( * )
( * * ) ( * * )
( * * * ) ( * * * )
( * * * )
( * * * )
direct = 'F', uplo = 'U':
A = ( * * * ) A = ( * * * * * )
( * * ) ( * * * * )
( * ) ( * * * )
( )
( )
direct = 'B', uplo = 'L':
A = ( ) A = ( * * * )
( ) ( * * * * )
( * ) ( * * * * * )
( * * )
( * * * )
direct = 'B', uplo = 'U':
A = ( * * * ) A = ( * * * )
( * * * ) ( * * )
( * * * ) ( * )
( * * )
( * )
*****************************************************************************/
lapack_logical LAPACKE_ctz_nancheck( int matrix_layout, char direct, char uplo,
char diag, lapack_int m, lapack_int n,
const lapack_complex_float *a,
lapack_int lda )
{
lapack_logical colmaj, front, lower, unit;
if( a == NULL ) return (lapack_logical) 0;
colmaj = ( matrix_layout == LAPACK_COL_MAJOR );
front = LAPACKE_lsame( direct, 'f' );
lower = LAPACKE_lsame( uplo, 'l' );
unit = LAPACKE_lsame( diag, 'u' );
if( ( !colmaj && ( matrix_layout != LAPACK_ROW_MAJOR ) ) ||
( !front && !LAPACKE_lsame( direct, 'b' ) ) ||
( !lower && !LAPACKE_lsame( uplo, 'u' ) ) ||
( !unit && !LAPACKE_lsame( diag, 'n' ) ) ) {
/* Just exit if any of input parameters are wrong */
return (lapack_logical) 0;
}
/* Initial offsets and sizes of triangular and rectangular parts */
lapack_int tri_offset = 0;
lapack_int tri_n = MIN(m,n);
lapack_int rect_offset = -1;
lapack_int rect_m = ( m > n ) ? m - n : m;
lapack_int rect_n = ( n > m ) ? n - m : n;
/* Fix offsets depending on the shape of the matrix */
if( front ) {
if( lower && m > n ) {
rect_offset = tri_n * ( !colmaj ? lda : 1 );
} else if( !lower && n > m ) {
rect_offset = tri_n * ( colmaj ? lda : 1 );
}
} else {
if( m > n ) {
tri_offset = rect_m * ( !colmaj ? lda : 1 );
if( !lower ) {
rect_offset = 0;
}
} else if( n > m ) {
tri_offset = rect_n * ( colmaj ? lda : 1 );
if( lower ) {
rect_offset = 0;
}
}
}
/* Check rectangular part */
if( rect_offset >= 0 ) {
if( LAPACKE_cge_nancheck( matrix_layout, rect_m, rect_n,
&a[rect_offset], lda) ) {
return (lapack_logical) 1;
}
}
/* Check triangular part */
return LAPACKE_ctr_nancheck( matrix_layout, uplo, diag, tri_n,
&a[tri_offset], lda );
}

View File

@ -0,0 +1,153 @@
/*****************************************************************************
Copyright (c) 2022, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************
* Contents: Native C interface to LAPACK utility function
* Author: Simon Märtens
*****************************************************************************/
#include "lapacke_utils.h"
/*****************************************************************************
Converts input triangular matrix from row-major(C) to column-major(Fortran)
layout or vice versa. The shape of the trapezoidal matrix is determined by
the arguments `direct` and `uplo`. `Direct` chooses the diagonal which shall
be considered and `uplo` tells us whether we use the upper or lower part of
the matrix with respect to the chosen diagonal.
Diagonals 'F' (front / forward) and 'B' (back / backward):
A = ( F ) A = ( F B )
( F ) ( F B )
( B F ) ( F B )
( B )
( B )
direct = 'F', uplo = 'L':
A = ( * ) A = ( * )
( * * ) ( * * )
( * * * ) ( * * * )
( * * * )
( * * * )
direct = 'F', uplo = 'U':
A = ( * * * ) A = ( * * * * * )
( * * ) ( * * * * )
( * ) ( * * * )
( )
( )
direct = 'B', uplo = 'L':
A = ( ) A = ( * * * )
( ) ( * * * * )
( * ) ( * * * * * )
( * * )
( * * * )
direct = 'B', uplo = 'U':
A = ( * * * ) A = ( * * * )
( * * * ) ( * * )
( * * * ) ( * )
( * * )
( * )
*****************************************************************************/
void LAPACKE_ctz_trans( int matrix_layout, char direct, char uplo,
char diag, lapack_int m, lapack_int n,
const lapack_complex_float *in, lapack_int ldin,
lapack_complex_float *out, lapack_int ldout )
{
lapack_logical colmaj, front, lower, unit;
if( in == NULL || out == NULL ) return ;
colmaj = ( matrix_layout == LAPACK_COL_MAJOR );
front = LAPACKE_lsame( direct, 'f' );
lower = LAPACKE_lsame( uplo, 'l' );
unit = LAPACKE_lsame( diag, 'u' );
if( ( !colmaj && ( matrix_layout != LAPACK_ROW_MAJOR ) ) ||
( !front && !LAPACKE_lsame( direct, 'b' ) ) ||
( !lower && !LAPACKE_lsame( uplo, 'u' ) ) ||
( !unit && !LAPACKE_lsame( diag, 'n' ) ) ) {
/* Just exit if any of input parameters are wrong */
return;
}
/* Initial offsets and sizes of triangular and rectangular parts */
lapack_int tri_in_offset = 0;
lapack_int tri_out_offset = 0;
lapack_int tri_n = MIN(m,n);
lapack_int rect_in_offset = -1;
lapack_int rect_out_offset = -1;
lapack_int rect_m = ( m > n ) ? m - n : m;
lapack_int rect_n = ( n > m ) ? n - m : n;
/* Fix offsets depending on the shape of the matrix */
if( front ) {
if( lower && m > n ) {
rect_in_offset = tri_n * ( !colmaj ? ldin : 1 );
rect_out_offset = tri_n * ( colmaj ? ldout : 1 );
} else if( !lower && n > m ) {
rect_in_offset = tri_n * ( colmaj ? ldin : 1 );
rect_out_offset = tri_n * ( !colmaj ? ldout : 1 );
}
} else {
if( m > n ) {
tri_in_offset = rect_m * ( !colmaj ? ldin : 1 );
tri_out_offset = rect_m * ( colmaj ? ldout : 1 );
if( !lower ) {
rect_in_offset = 0;
rect_out_offset = 0;
}
} else if( n > m ) {
tri_in_offset = rect_n * ( colmaj ? ldin : 1 );
tri_out_offset = rect_n * ( !colmaj ? ldout : 1 );
if( lower ) {
rect_in_offset = 0;
rect_out_offset = 0;
}
}
}
/* Copy & transpose rectangular part */
if( rect_in_offset >= 0 && rect_out_offset >= 0 ) {
LAPACKE_cge_trans( matrix_layout, rect_m, rect_n,
&in[rect_in_offset], ldin,
&out[rect_out_offset], ldout );
}
/* Copy & transpose triangular part */
return LAPACKE_ctr_trans( matrix_layout, uplo, diag, tri_n,
&in[tri_in_offset], ldin,
&out[tri_out_offset], ldout );
}

View File

@ -0,0 +1,143 @@
/*****************************************************************************
Copyright (c) 2022, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************
* Contents: Native C interface to LAPACK utility function
* Author: Simon Märtens
*****************************************************************************/
#include "lapacke_utils.h"
/*****************************************************************************
Check a trapezoidal matrix for NaN entries. The shape of the trapezoidal
matrix is determined by the arguments `direct` and `uplo`. `Direct` chooses
the diagonal which shall be considered and `uplo` tells us whether we use the
upper or lower part of the matrix with respect to the chosen diagonal.
Diagonals 'F' (front / forward) and 'B' (back / backward):
A = ( F ) A = ( F B )
( F ) ( F B )
( B F ) ( F B )
( B )
( B )
direct = 'F', uplo = 'L':
A = ( * ) A = ( * )
( * * ) ( * * )
( * * * ) ( * * * )
( * * * )
( * * * )
direct = 'F', uplo = 'U':
A = ( * * * ) A = ( * * * * * )
( * * ) ( * * * * )
( * ) ( * * * )
( )
( )
direct = 'B', uplo = 'L':
A = ( ) A = ( * * * )
( ) ( * * * * )
( * ) ( * * * * * )
( * * )
( * * * )
direct = 'B', uplo = 'U':
A = ( * * * ) A = ( * * * )
( * * * ) ( * * )
( * * * ) ( * )
( * * )
( * )
*****************************************************************************/
lapack_logical LAPACKE_dtz_nancheck( int matrix_layout, char direct, char uplo,
char diag, lapack_int m, lapack_int n,
const double *a, lapack_int lda )
{
lapack_logical colmaj, front, lower, unit;
if( a == NULL ) return (lapack_logical) 0;
colmaj = ( matrix_layout == LAPACK_COL_MAJOR );
front = LAPACKE_lsame( direct, 'f' );
lower = LAPACKE_lsame( uplo, 'l' );
unit = LAPACKE_lsame( diag, 'u' );
if( ( !colmaj && ( matrix_layout != LAPACK_ROW_MAJOR ) ) ||
( !front && !LAPACKE_lsame( direct, 'b' ) ) ||
( !lower && !LAPACKE_lsame( uplo, 'u' ) ) ||
( !unit && !LAPACKE_lsame( diag, 'n' ) ) ) {
/* Just exit if any of input parameters are wrong */
return (lapack_logical) 0;
}
/* Initial offsets and sizes of triangular and rectangular parts */
lapack_int tri_offset = 0;
lapack_int tri_n = MIN(m,n);
lapack_int rect_offset = -1;
lapack_int rect_m = ( m > n ) ? m - n : m;
lapack_int rect_n = ( n > m ) ? n - m : n;
/* Fix offsets depending on the shape of the matrix */
if( front ) {
if( lower && m > n ) {
rect_offset = tri_n * ( !colmaj ? lda : 1 );
} else if( !lower && n > m ) {
rect_offset = tri_n * ( colmaj ? lda : 1 );
}
} else {
if( m > n ) {
tri_offset = rect_m * ( !colmaj ? lda : 1 );
if( !lower ) {
rect_offset = 0;
}
} else if( n > m ) {
tri_offset = rect_n * ( colmaj ? lda : 1 );
if( lower ) {
rect_offset = 0;
}
}
}
/* Check rectangular part */
if( rect_offset >= 0 ) {
if( LAPACKE_dge_nancheck( matrix_layout, rect_m, rect_n,
&a[rect_offset], lda ) ) {
return (lapack_logical) 1;
}
}
/* Check triangular part */
return LAPACKE_dtr_nancheck( matrix_layout, uplo, diag, tri_n,
&a[tri_offset], lda );
}

View File

@ -0,0 +1,153 @@
/*****************************************************************************
Copyright (c) 2022, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************
* Contents: Native C interface to LAPACK utility function
* Author: Simon Märtens
*****************************************************************************/
#include "lapacke_utils.h"
/*****************************************************************************
Converts input triangular matrix from row-major(C) to column-major(Fortran)
layout or vice versa. The shape of the trapezoidal matrix is determined by
the arguments `direct` and `uplo`. `Direct` chooses the diagonal which shall
be considered and `uplo` tells us whether we use the upper or lower part of
the matrix with respect to the chosen diagonal.
Diagonals 'F' (front / forward) and 'B' (back / backward):
A = ( F ) A = ( F B )
( F ) ( F B )
( B F ) ( F B )
( B )
( B )
direct = 'F', uplo = 'L':
A = ( * ) A = ( * )
( * * ) ( * * )
( * * * ) ( * * * )
( * * * )
( * * * )
direct = 'F', uplo = 'U':
A = ( * * * ) A = ( * * * * * )
( * * ) ( * * * * )
( * ) ( * * * )
( )
( )
direct = 'B', uplo = 'L':
A = ( ) A = ( * * * )
( ) ( * * * * )
( * ) ( * * * * * )
( * * )
( * * * )
direct = 'B', uplo = 'U':
A = ( * * * ) A = ( * * * )
( * * * ) ( * * )
( * * * ) ( * )
( * * )
( * )
*****************************************************************************/
void LAPACKE_dtz_trans( int matrix_layout, char direct, char uplo,
char diag, lapack_int m, lapack_int n,
const double *in, lapack_int ldin,
double *out, lapack_int ldout )
{
lapack_logical colmaj, front, lower, unit;
if( in == NULL || out == NULL ) return ;
colmaj = ( matrix_layout == LAPACK_COL_MAJOR );
front = LAPACKE_lsame( direct, 'f' );
lower = LAPACKE_lsame( uplo, 'l' );
unit = LAPACKE_lsame( diag, 'u' );
if( ( !colmaj && ( matrix_layout != LAPACK_ROW_MAJOR ) ) ||
( !front && !LAPACKE_lsame( direct, 'b' ) ) ||
( !lower && !LAPACKE_lsame( uplo, 'u' ) ) ||
( !unit && !LAPACKE_lsame( diag, 'n' ) ) ) {
/* Just exit if any of input parameters are wrong */
return;
}
/* Initial offsets and sizes of triangular and rectangular parts */
lapack_int tri_in_offset = 0;
lapack_int tri_out_offset = 0;
lapack_int tri_n = MIN(m,n);
lapack_int rect_in_offset = -1;
lapack_int rect_out_offset = -1;
lapack_int rect_m = ( m > n ) ? m - n : m;
lapack_int rect_n = ( n > m ) ? n - m : n;
/* Fix offsets depending on the shape of the matrix */
if( front ) {
if( lower && m > n ) {
rect_in_offset = tri_n * ( !colmaj ? ldin : 1 );
rect_out_offset = tri_n * ( colmaj ? ldout : 1 );
} else if( !lower && n > m ) {
rect_in_offset = tri_n * ( colmaj ? ldin : 1 );
rect_out_offset = tri_n * ( !colmaj ? ldout : 1 );
}
} else {
if( m > n ) {
tri_in_offset = rect_m * ( !colmaj ? ldin : 1 );
tri_out_offset = rect_m * ( colmaj ? ldout : 1 );
if( !lower ) {
rect_in_offset = 0;
rect_out_offset = 0;
}
} else if( n > m ) {
tri_in_offset = rect_n * ( colmaj ? ldin : 1 );
tri_out_offset = rect_n * ( !colmaj ? ldout : 1 );
if( lower ) {
rect_in_offset = 0;
rect_out_offset = 0;
}
}
}
/* Copy & transpose rectangular part */
if( rect_in_offset >= 0 && rect_out_offset >= 0 ) {
LAPACKE_dge_trans( matrix_layout, rect_m, rect_n,
&in[rect_in_offset], ldin,
&out[rect_out_offset], ldout );
}
/* Copy & transpose triangular part */
return LAPACKE_dtr_trans( matrix_layout, uplo, diag, tri_n,
&in[tri_in_offset], ldin,
&out[tri_out_offset], ldout );
}

View File

@ -0,0 +1,143 @@
/*****************************************************************************
Copyright (c) 2022, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************
* Contents: Native C interface to LAPACK utility function
* Author: Simon Märtens
*****************************************************************************/
#include "lapacke_utils.h"
/*****************************************************************************
Check a trapezoidal matrix for NaN entries. The shape of the trapezoidal
matrix is determined by the arguments `direct` and `uplo`. `Direct` chooses
the diagonal which shall be considered and `uplo` tells us whether we use the
upper or lower part of the matrix with respect to the chosen diagonal.
Diagonals 'F' (front / forward) and 'B' (back / backward):
A = ( F ) A = ( F B )
( F ) ( F B )
( B F ) ( F B )
( B )
( B )
direct = 'F', uplo = 'L':
A = ( * ) A = ( * )
( * * ) ( * * )
( * * * ) ( * * * )
( * * * )
( * * * )
direct = 'F', uplo = 'U':
A = ( * * * ) A = ( * * * * * )
( * * ) ( * * * * )
( * ) ( * * * )
( )
( )
direct = 'B', uplo = 'L':
A = ( ) A = ( * * * )
( ) ( * * * * )
( * ) ( * * * * * )
( * * )
( * * * )
direct = 'B', uplo = 'U':
A = ( * * * ) A = ( * * * )
( * * * ) ( * * )
( * * * ) ( * )
( * * )
( * )
*****************************************************************************/
lapack_logical LAPACKE_stz_nancheck( int matrix_layout, char direct, char uplo,
char diag, lapack_int m, lapack_int n,
const float *a, lapack_int lda )
{
lapack_logical colmaj, front, lower, unit;
if( a == NULL ) return (lapack_logical) 0;
colmaj = ( matrix_layout == LAPACK_COL_MAJOR );
front = LAPACKE_lsame( direct, 'f' );
lower = LAPACKE_lsame( uplo, 'l' );
unit = LAPACKE_lsame( diag, 'u' );
if( ( !colmaj && ( matrix_layout != LAPACK_ROW_MAJOR ) ) ||
( !front && !LAPACKE_lsame( direct, 'b' ) ) ||
( !lower && !LAPACKE_lsame( uplo, 'u' ) ) ||
( !unit && !LAPACKE_lsame( diag, 'n' ) ) ) {
/* Just exit if any of input parameters are wrong */
return (lapack_logical) 0;
}
/* Initial offsets and sizes of triangular and rectangular parts */
lapack_int tri_offset = 0;
lapack_int tri_n = MIN(m,n);
lapack_int rect_offset = -1;
lapack_int rect_m = ( m > n ) ? m - n : m;
lapack_int rect_n = ( n > m ) ? n - m : n;
/* Fix offsets depending on the shape of the matrix */
if( front ) {
if( lower && m > n ) {
rect_offset = tri_n * ( !colmaj ? lda : 1 );
} else if( !lower && n > m ) {
rect_offset = tri_n * ( colmaj ? lda : 1 );
}
} else {
if( m > n ) {
tri_offset = rect_m * ( !colmaj ? lda : 1 );
if( !lower ) {
rect_offset = 0;
}
} else if( n > m ) {
tri_offset = rect_n * ( colmaj ? lda : 1 );
if( lower ) {
rect_offset = 0;
}
}
}
/* Check rectangular part */
if( rect_offset >= 0 ) {
if( LAPACKE_sge_nancheck( matrix_layout, rect_m, rect_n,
&a[rect_offset], lda) ) {
return (lapack_logical) 1;
}
}
/* Check triangular part */
return LAPACKE_str_nancheck( matrix_layout, uplo, diag, tri_n,
&a[tri_offset], lda );
}

View File

@ -0,0 +1,153 @@
/*****************************************************************************
Copyright (c) 2022, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************
* Contents: Native C interface to LAPACK utility function
* Author: Simon Märtens
*****************************************************************************/
#include "lapacke_utils.h"
/*****************************************************************************
Converts input triangular matrix from row-major(C) to column-major(Fortran)
layout or vice versa. The shape of the trapezoidal matrix is determined by
the arguments `direct` and `uplo`. `Direct` chooses the diagonal which shall
be considered and `uplo` tells us whether we use the upper or lower part of
the matrix with respect to the chosen diagonal.
Diagonals 'F' (front / forward) and 'B' (back / backward):
A = ( F ) A = ( F B )
( F ) ( F B )
( B F ) ( F B )
( B )
( B )
direct = 'F', uplo = 'L':
A = ( * ) A = ( * )
( * * ) ( * * )
( * * * ) ( * * * )
( * * * )
( * * * )
direct = 'F', uplo = 'U':
A = ( * * * ) A = ( * * * * * )
( * * ) ( * * * * )
( * ) ( * * * )
( )
( )
direct = 'B', uplo = 'L':
A = ( ) A = ( * * * )
( ) ( * * * * )
( * ) ( * * * * * )
( * * )
( * * * )
direct = 'B', uplo = 'U':
A = ( * * * ) A = ( * * * )
( * * * ) ( * * )
( * * * ) ( * )
( * * )
( * )
*****************************************************************************/
void LAPACKE_stz_trans( int matrix_layout, char direct, char uplo,
char diag, lapack_int m, lapack_int n,
const float *in, lapack_int ldin,
float *out, lapack_int ldout )
{
lapack_logical colmaj, front, lower, unit;
if( in == NULL || out == NULL ) return ;
colmaj = ( matrix_layout == LAPACK_COL_MAJOR );
front = LAPACKE_lsame( direct, 'f' );
lower = LAPACKE_lsame( uplo, 'l' );
unit = LAPACKE_lsame( diag, 'u' );
if( ( !colmaj && ( matrix_layout != LAPACK_ROW_MAJOR ) ) ||
( !front && !LAPACKE_lsame( direct, 'b' ) ) ||
( !lower && !LAPACKE_lsame( uplo, 'u' ) ) ||
( !unit && !LAPACKE_lsame( diag, 'n' ) ) ) {
/* Just exit if any of input parameters are wrong */
return;
}
/* Initial offsets and sizes of triangular and rectangular parts */
lapack_int tri_in_offset = 0;
lapack_int tri_out_offset = 0;
lapack_int tri_n = MIN(m,n);
lapack_int rect_in_offset = -1;
lapack_int rect_out_offset = -1;
lapack_int rect_m = ( m > n ) ? m - n : m;
lapack_int rect_n = ( n > m ) ? n - m : n;
/* Fix offsets depending on the shape of the matrix */
if( front ) {
if( lower && m > n ) {
rect_in_offset = tri_n * ( !colmaj ? ldin : 1 );
rect_out_offset = tri_n * ( colmaj ? ldout : 1 );
} else if( !lower && n > m ) {
rect_in_offset = tri_n * ( colmaj ? ldin : 1 );
rect_out_offset = tri_n * ( !colmaj ? ldout : 1 );
}
} else {
if( m > n ) {
tri_in_offset = rect_m * ( !colmaj ? ldin : 1 );
tri_out_offset = rect_m * ( colmaj ? ldout : 1 );
if( !lower ) {
rect_in_offset = 0;
rect_out_offset = 0;
}
} else if( n > m ) {
tri_in_offset = rect_n * ( colmaj ? ldin : 1 );
tri_out_offset = rect_n * ( !colmaj ? ldout : 1 );
if( lower ) {
rect_in_offset = 0;
rect_out_offset = 0;
}
}
}
/* Copy & transpose rectangular part */
if( rect_in_offset >= 0 && rect_out_offset >= 0 ) {
LAPACKE_sge_trans( matrix_layout, rect_m, rect_n,
&in[rect_in_offset], ldin,
&out[rect_out_offset], ldout );
}
/* Copy & transpose triangular part */
return LAPACKE_str_trans( matrix_layout, uplo, diag, tri_n,
&in[tri_in_offset], ldin,
&out[tri_out_offset], ldout );
}

View File

@ -0,0 +1,144 @@
/*****************************************************************************
Copyright (c) 2022, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************
* Contents: Native C interface to LAPACK utility function
* Author: Simon Märtens
*****************************************************************************/
#include "lapacke_utils.h"
/*****************************************************************************
Check a trapezoidal matrix for NaN entries. The shape of the trapezoidal
matrix is determined by the arguments `direct` and `uplo`. `Direct` chooses
the diagonal which shall be considered and `uplo` tells us whether we use the
upper or lower part of the matrix with respect to the chosen diagonal.
Diagonals 'F' (front / forward) and 'B' (back / backward):
A = ( F ) A = ( F B )
( F ) ( F B )
( B F ) ( F B )
( B )
( B )
direct = 'F', uplo = 'L':
A = ( * ) A = ( * )
( * * ) ( * * )
( * * * ) ( * * * )
( * * * )
( * * * )
direct = 'F', uplo = 'U':
A = ( * * * ) A = ( * * * * * )
( * * ) ( * * * * )
( * ) ( * * * )
( )
( )
direct = 'B', uplo = 'L':
A = ( ) A = ( * * * )
( ) ( * * * * )
( * ) ( * * * * * )
( * * )
( * * * )
direct = 'B', uplo = 'U':
A = ( * * * ) A = ( * * * )
( * * * ) ( * * )
( * * * ) ( * )
( * * )
( * )
*****************************************************************************/
lapack_logical LAPACKE_ztz_nancheck( int matrix_layout, char direct, char uplo,
char diag, lapack_int m, lapack_int n,
const lapack_complex_double *a,
lapack_int lda )
{
lapack_logical colmaj, front, lower, unit;
if( a == NULL ) return (lapack_logical) 0;
colmaj = ( matrix_layout == LAPACK_COL_MAJOR );
front = LAPACKE_lsame( direct, 'f' );
lower = LAPACKE_lsame( uplo, 'l' );
unit = LAPACKE_lsame( diag, 'u' );
if( ( !colmaj && ( matrix_layout != LAPACK_ROW_MAJOR ) ) ||
( !front && !LAPACKE_lsame( direct, 'b' ) ) ||
( !lower && !LAPACKE_lsame( uplo, 'u' ) ) ||
( !unit && !LAPACKE_lsame( diag, 'n' ) ) ) {
/* Just exit if any of input parameters are wrong */
return (lapack_logical) 0;
}
/* Initial offsets and sizes of triangular and rectangular parts */
lapack_int tri_offset = 0;
lapack_int tri_n = MIN(m,n);
lapack_int rect_offset = -1;
lapack_int rect_m = ( m > n ) ? m - n : m;
lapack_int rect_n = ( n > m ) ? n - m : n;
/* Fix offsets depending on the shape of the matrix */
if( front ) {
if( lower && m > n ) {
rect_offset = tri_n * ( !colmaj ? lda : 1 );
} else if( !lower && n > m ) {
rect_offset = tri_n * ( colmaj ? lda : 1 );
}
} else {
if( m > n ) {
tri_offset = rect_m * ( !colmaj ? lda : 1 );
if( !lower ) {
rect_offset = 0;
}
} else if( n > m ) {
tri_offset = rect_n * ( colmaj ? lda : 1 );
if( lower ) {
rect_offset = 0;
}
}
}
/* Check rectangular part */
if( rect_offset >= 0 ) {
if( LAPACKE_zge_nancheck( matrix_layout, rect_m, rect_n,
&a[rect_offset], lda) ) {
return (lapack_logical) 1;
}
}
/* Check triangular part */
return LAPACKE_ztr_nancheck( matrix_layout, uplo, diag, tri_n,
&a[tri_offset], lda );
}

View File

@ -0,0 +1,153 @@
/*****************************************************************************
Copyright (c) 2022, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************
* Contents: Native C interface to LAPACK utility function
* Author: Simon Märtens
*****************************************************************************/
#include "lapacke_utils.h"
/*****************************************************************************
Converts input triangular matrix from row-major(C) to column-major(Fortran)
layout or vice versa. The shape of the trapezoidal matrix is determined by
the arguments `direct` and `uplo`. `Direct` chooses the diagonal which shall
be considered and `uplo` tells us whether we use the upper or lower part of
the matrix with respect to the chosen diagonal.
Diagonals 'F' (front / forward) and 'B' (back / backward):
A = ( F ) A = ( F B )
( F ) ( F B )
( B F ) ( F B )
( B )
( B )
direct = 'F', uplo = 'L':
A = ( * ) A = ( * )
( * * ) ( * * )
( * * * ) ( * * * )
( * * * )
( * * * )
direct = 'F', uplo = 'U':
A = ( * * * ) A = ( * * * * * )
( * * ) ( * * * * )
( * ) ( * * * )
( )
( )
direct = 'B', uplo = 'L':
A = ( ) A = ( * * * )
( ) ( * * * * )
( * ) ( * * * * * )
( * * )
( * * * )
direct = 'B', uplo = 'U':
A = ( * * * ) A = ( * * * )
( * * * ) ( * * )
( * * * ) ( * )
( * * )
( * )
*****************************************************************************/
void LAPACKE_ztz_trans( int matrix_layout, char direct, char uplo,
char diag, lapack_int m, lapack_int n,
const lapack_complex_double *in, lapack_int ldin,
lapack_complex_double *out, lapack_int ldout )
{
lapack_logical colmaj, front, lower, unit;
if( in == NULL || out == NULL ) return ;
colmaj = ( matrix_layout == LAPACK_COL_MAJOR );
front = LAPACKE_lsame( direct, 'f' );
lower = LAPACKE_lsame( uplo, 'l' );
unit = LAPACKE_lsame( diag, 'u' );
if( ( !colmaj && ( matrix_layout != LAPACK_ROW_MAJOR ) ) ||
( !front && !LAPACKE_lsame( direct, 'b' ) ) ||
( !lower && !LAPACKE_lsame( uplo, 'u' ) ) ||
( !unit && !LAPACKE_lsame( diag, 'n' ) ) ) {
/* Just exit if any of input parameters are wrong */
return;
}
/* Initial offsets and sizes of triangular and rectangular parts */
lapack_int tri_in_offset = 0;
lapack_int tri_out_offset = 0;
lapack_int tri_n = MIN(m,n);
lapack_int rect_in_offset = -1;
lapack_int rect_out_offset = -1;
lapack_int rect_m = ( m > n ) ? m - n : m;
lapack_int rect_n = ( n > m ) ? n - m : n;
/* Fix offsets depending on the shape of the matrix */
if( front ) {
if( lower && m > n ) {
rect_in_offset = tri_n * ( !colmaj ? ldin : 1 );
rect_out_offset = tri_n * ( colmaj ? ldout : 1 );
} else if( !lower && n > m ) {
rect_in_offset = tri_n * ( colmaj ? ldin : 1 );
rect_out_offset = tri_n * ( !colmaj ? ldout : 1 );
}
} else {
if( m > n ) {
tri_in_offset = rect_m * ( !colmaj ? ldin : 1 );
tri_out_offset = rect_m * ( colmaj ? ldout : 1 );
if( !lower ) {
rect_in_offset = 0;
rect_out_offset = 0;
}
} else if( n > m ) {
tri_in_offset = rect_n * ( colmaj ? ldin : 1 );
tri_out_offset = rect_n * ( !colmaj ? ldout : 1 );
if( lower ) {
rect_in_offset = 0;
rect_out_offset = 0;
}
}
}
/* Copy & transpose rectangular part */
if( rect_in_offset >= 0 && rect_out_offset >= 0 ) {
LAPACKE_zge_trans( matrix_layout, rect_m, rect_n,
&in[rect_in_offset], ldin,
&out[rect_out_offset], ldout );
}
/* Copy & transpose triangular part */
return LAPACKE_ztr_trans( matrix_layout, uplo, diag, tri_n,
&in[tri_in_offset], ldin,
&out[tri_out_offset], ldout );
}