Add Dynamic Mode Decomposition functions (Reference-LAPACK PR 736)
This commit is contained in:
parent
8302aabcdb
commit
8d57af540b
|
@ -0,0 +1,995 @@
|
|||
SUBROUTINE CGEDMD( JOBS, JOBZ, JOBR, JOBF, WHTSVD, &
|
||||
M, N, X, LDX, Y, LDY, NRNK, TOL, &
|
||||
K, EIGS, Z, LDZ, RES, B, LDB, &
|
||||
W, LDW, S, LDS, ZWORK, LZWORK, &
|
||||
RWORK, LRWORK, IWORK, LIWORK, INFO )
|
||||
! March 2023
|
||||
!.....
|
||||
USE iso_fortran_env
|
||||
IMPLICIT NONE
|
||||
INTEGER, PARAMETER :: WP = real32
|
||||
!.....
|
||||
! Scalar arguments
|
||||
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBF
|
||||
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDX, LDY, &
|
||||
NRNK, LDZ, LDB, LDW, LDS, &
|
||||
LIWORK, LRWORK, LZWORK
|
||||
INTEGER, INTENT(OUT) :: K, INFO
|
||||
REAL(KIND=WP), INTENT(IN) :: TOL
|
||||
! Array arguments
|
||||
COMPLEX(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*)
|
||||
COMPLEX(KIND=WP), INTENT(OUT) :: Z(LDZ,*), B(LDB,*), &
|
||||
W(LDW,*), S(LDS,*)
|
||||
COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*)
|
||||
COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*)
|
||||
REAL(KIND=WP), INTENT(OUT) :: RES(*)
|
||||
REAL(KIND=WP), INTENT(OUT) :: RWORK(*)
|
||||
INTEGER, INTENT(OUT) :: IWORK(*)
|
||||
!............................................................
|
||||
! Purpose
|
||||
! =======
|
||||
! CGEDMD computes the Dynamic Mode Decomposition (DMD) for
|
||||
! a pair of data snapshot matrices. For the input matrices
|
||||
! X and Y such that Y = A*X with an unaccessible matrix
|
||||
! A, CGEDMD computes a certain number of Ritz pairs of A using
|
||||
! the standard Rayleigh-Ritz extraction from a subspace of
|
||||
! range(X) that is determined using the leading left singular
|
||||
! vectors of X. Optionally, CGEDMD returns the residuals
|
||||
! of the computed Ritz pairs, the information needed for
|
||||
! a refinement of the Ritz vectors, or the eigenvectors of
|
||||
! the Exact DMD.
|
||||
! For further details see the references listed
|
||||
! below. For more details of the implementation see [3].
|
||||
!
|
||||
! References
|
||||
! ==========
|
||||
! [1] P. Schmid: Dynamic mode decomposition of numerical
|
||||
! and experimental data,
|
||||
! Journal of Fluid Mechanics 656, 5-28, 2010.
|
||||
! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
|
||||
! decompositions: analysis and enhancements,
|
||||
! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
|
||||
! [3] Z. Drmac: A LAPACK implementation of the Dynamic
|
||||
! Mode Decomposition I. Technical report. AIMDyn Inc.
|
||||
! and LAPACK Working Note 298.
|
||||
! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
|
||||
! Brunton, N. Kutz: On Dynamic Mode Decomposition:
|
||||
! Theory and Applications, Journal of Computational
|
||||
! Dynamics 1(2), 391 -421, 2014.
|
||||
!
|
||||
!......................................................................
|
||||
! Developed and supported by:
|
||||
! ===========================
|
||||
! Developed and coded by Zlatko Drmac, Faculty of Science,
|
||||
! University of Zagreb; drmac@math.hr
|
||||
! In cooperation with
|
||||
! AIMdyn Inc., Santa Barbara, CA.
|
||||
! and supported by
|
||||
! - DARPA SBIR project "Koopman Operator-Based Forecasting
|
||||
! for Nonstationary Processes from Near-Term, Limited
|
||||
! Observational Data" Contract No: W31P4Q-21-C-0007
|
||||
! - DARPA PAI project "Physics-Informed Machine Learning
|
||||
! Methodologies" Contract No: HR0011-18-9-0033
|
||||
! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
|
||||
! Framework for Space-Time Analysis of Process Dynamics"
|
||||
! Contract No: HR0011-16-C-0116
|
||||
! Any opinions, findings and conclusions or recommendations
|
||||
! expressed in this material are those of the author and
|
||||
! do not necessarily reflect the views of the DARPA SBIR
|
||||
! Program Office
|
||||
!============================================================
|
||||
! Distribution Statement A:
|
||||
! Approved for Public Release, Distribution Unlimited.
|
||||
! Cleared by DARPA on September 29, 2022
|
||||
!============================================================
|
||||
!......................................................................
|
||||
! Arguments
|
||||
! =========
|
||||
! JOBS (input) CHARACTER*1
|
||||
! Determines whether the initial data snapshots are scaled
|
||||
! by a diagonal matrix.
|
||||
! 'S' :: The data snapshots matrices X and Y are multiplied
|
||||
! with a diagonal matrix D so that X*D has unit
|
||||
! nonzero columns (in the Euclidean 2-norm)
|
||||
! 'C' :: The snapshots are scaled as with the 'S' option.
|
||||
! If it is found that an i-th column of X is zero
|
||||
! vector and the corresponding i-th column of Y is
|
||||
! non-zero, then the i-th column of Y is set to
|
||||
! zero and a warning flag is raised.
|
||||
! 'Y' :: The data snapshots matrices X and Y are multiplied
|
||||
! by a diagonal matrix D so that Y*D has unit
|
||||
! nonzero columns (in the Euclidean 2-norm)
|
||||
! 'N' :: No data scaling.
|
||||
!.....
|
||||
! JOBZ (input) CHARACTER*1
|
||||
! Determines whether the eigenvectors (Koopman modes) will
|
||||
! be computed.
|
||||
! 'V' :: The eigenvectors (Koopman modes) will be computed
|
||||
! and returned in the matrix Z.
|
||||
! See the description of Z.
|
||||
! 'F' :: The eigenvectors (Koopman modes) will be returned
|
||||
! in factored form as the product X(:,1:K)*W, where X
|
||||
! contains a POD basis (leading left singular vectors
|
||||
! of the data matrix X) and W contains the eigenvectors
|
||||
! of the corresponding Rayleigh quotient.
|
||||
! See the descriptions of K, X, W, Z.
|
||||
! 'N' :: The eigenvectors are not computed.
|
||||
!.....
|
||||
! JOBR (input) CHARACTER*1
|
||||
! Determines whether to compute the residuals.
|
||||
! 'R' :: The residuals for the computed eigenpairs will be
|
||||
! computed and stored in the array RES.
|
||||
! See the description of RES.
|
||||
! For this option to be legal, JOBZ must be 'V'.
|
||||
! 'N' :: The residuals are not computed.
|
||||
!.....
|
||||
! JOBF (input) CHARACTER*1
|
||||
! Specifies whether to store information needed for post-
|
||||
! processing (e.g. computing refined Ritz vectors)
|
||||
! 'R' :: The matrix needed for the refinement of the Ritz
|
||||
! vectors is computed and stored in the array B.
|
||||
! See the description of B.
|
||||
! 'E' :: The unscaled eigenvectors of the Exact DMD are
|
||||
! computed and returned in the array B. See the
|
||||
! description of B.
|
||||
! 'N' :: No eigenvector refinement data is computed.
|
||||
!.....
|
||||
! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
|
||||
! Allows for a selection of the SVD algorithm from the
|
||||
! LAPACK library.
|
||||
! 1 :: CGESVD (the QR SVD algorithm)
|
||||
! 2 :: CGESDD (the Divide and Conquer algorithm; if enough
|
||||
! workspace available, this is the fastest option)
|
||||
! 3 :: CGESVDQ (the preconditioned QR SVD ; this and 4
|
||||
! are the most accurate options)
|
||||
! 4 :: CGEJSV (the preconditioned Jacobi SVD; this and 3
|
||||
! are the most accurate options)
|
||||
! For the four methods above, a significant difference in
|
||||
! the accuracy of small singular values is possible if
|
||||
! the snapshots vary in norm so that X is severely
|
||||
! ill-conditioned. If small (smaller than EPS*||X||)
|
||||
! singular values are of interest and JOBS=='N', then
|
||||
! the options (3, 4) give the most accurate results, where
|
||||
! the option 4 is slightly better and with stronger
|
||||
! theoretical background.
|
||||
! If JOBS=='S', i.e. the columns of X will be normalized,
|
||||
! then all methods give nearly equally accurate results.
|
||||
!.....
|
||||
! M (input) INTEGER, M>= 0
|
||||
! The state space dimension (the row dimension of X, Y).
|
||||
!.....
|
||||
! N (input) INTEGER, 0 <= N <= M
|
||||
! The number of data snapshot pairs
|
||||
! (the number of columns of X and Y).
|
||||
!.....
|
||||
! X (input/output) COMPLEX(KIND=WP) M-by-N array
|
||||
! > On entry, X contains the data snapshot matrix X. It is
|
||||
! assumed that the column norms of X are in the range of
|
||||
! the normalized floating point numbers.
|
||||
! < On exit, the leading K columns of X contain a POD basis,
|
||||
! i.e. the leading K left singular vectors of the input
|
||||
! data matrix X, U(:,1:K). All N columns of X contain all
|
||||
! left singular vectors of the input matrix X.
|
||||
! See the descriptions of K, Z and W.
|
||||
!.....
|
||||
! LDX (input) INTEGER, LDX >= M
|
||||
! The leading dimension of the array X.
|
||||
!.....
|
||||
! Y (input/workspace/output) COMPLEX(KIND=WP) M-by-N array
|
||||
! > On entry, Y contains the data snapshot matrix Y
|
||||
! < On exit,
|
||||
! If JOBR == 'R', the leading K columns of Y contain
|
||||
! the residual vectors for the computed Ritz pairs.
|
||||
! See the description of RES.
|
||||
! If JOBR == 'N', Y contains the original input data,
|
||||
! scaled according to the value of JOBS.
|
||||
!.....
|
||||
! LDY (input) INTEGER , LDY >= M
|
||||
! The leading dimension of the array Y.
|
||||
!.....
|
||||
! NRNK (input) INTEGER
|
||||
! Determines the mode how to compute the numerical rank,
|
||||
! i.e. how to truncate small singular values of the input
|
||||
! matrix X. On input, if
|
||||
! NRNK = -1 :: i-th singular value sigma(i) is truncated
|
||||
! if sigma(i) <= TOL*sigma(1)
|
||||
! This option is recommended.
|
||||
! NRNK = -2 :: i-th singular value sigma(i) is truncated
|
||||
! if sigma(i) <= TOL*sigma(i-1)
|
||||
! This option is included for R&D purposes.
|
||||
! It requires highly accurate SVD, which
|
||||
! may not be feasible.
|
||||
! The numerical rank can be enforced by using positive
|
||||
! value of NRNK as follows:
|
||||
! 0 < NRNK <= N :: at most NRNK largest singular values
|
||||
! will be used. If the number of the computed nonzero
|
||||
! singular values is less than NRNK, then only those
|
||||
! nonzero values will be used and the actually used
|
||||
! dimension is less than NRNK. The actual number of
|
||||
! the nonzero singular values is returned in the variable
|
||||
! K. See the descriptions of TOL and K.
|
||||
!.....
|
||||
! TOL (input) REAL(KIND=WP), 0 <= TOL < 1
|
||||
! The tolerance for truncating small singular values.
|
||||
! See the description of NRNK.
|
||||
!.....
|
||||
! K (output) INTEGER, 0 <= K <= N
|
||||
! The dimension of the POD basis for the data snapshot
|
||||
! matrix X and the number of the computed Ritz pairs.
|
||||
! The value of K is determined according to the rule set
|
||||
! by the parameters NRNK and TOL.
|
||||
! See the descriptions of NRNK and TOL.
|
||||
!.....
|
||||
! EIGS (output) COMPLEX(KIND=WP) N-by-1 array
|
||||
! The leading K (K<=N) entries of EIGS contain
|
||||
! the computed eigenvalues (Ritz values).
|
||||
! See the descriptions of K, and Z.
|
||||
!.....
|
||||
! Z (workspace/output) COMPLEX(KIND=WP) M-by-N array
|
||||
! If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i)
|
||||
! is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1.
|
||||
! If JOBZ == 'F', then the Z(:,i)'s are given implicitly as
|
||||
! the columns of X(:,1:K)*W(1:K,1:K), i.e. X(:,1:K)*W(:,i)
|
||||
! is an eigenvector corresponding to EIGS(i). The columns
|
||||
! of W(1:k,1:K) are the computed eigenvectors of the
|
||||
! K-by-K Rayleigh quotient.
|
||||
! See the descriptions of EIGS, X and W.
|
||||
!.....
|
||||
! LDZ (input) INTEGER , LDZ >= M
|
||||
! The leading dimension of the array Z.
|
||||
!.....
|
||||
! RES (output) REAL(KIND=WP) N-by-1 array
|
||||
! RES(1:K) contains the residuals for the K computed
|
||||
! Ritz pairs,
|
||||
! RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2.
|
||||
! See the description of EIGS and Z.
|
||||
!.....
|
||||
! B (output) COMPLEX(KIND=WP) M-by-N array.
|
||||
! IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can
|
||||
! be used for computing the refined vectors; see further
|
||||
! details in the provided references.
|
||||
! If JOBF == 'E', B(1:M,1:K) contains
|
||||
! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
|
||||
! Exact DMD, up to scaling by the inverse eigenvalues.
|
||||
! If JOBF =='N', then B is not referenced.
|
||||
! See the descriptions of X, W, K.
|
||||
!.....
|
||||
! LDB (input) INTEGER, LDB >= M
|
||||
! The leading dimension of the array B.
|
||||
!.....
|
||||
! W (workspace/output) COMPLEX(KIND=WP) N-by-N array
|
||||
! On exit, W(1:K,1:K) contains the K computed
|
||||
! eigenvectors of the matrix Rayleigh quotient.
|
||||
! The Ritz vectors (returned in Z) are the
|
||||
! product of X (containing a POD basis for the input
|
||||
! matrix X) and W. See the descriptions of K, S, X and Z.
|
||||
! W is also used as a workspace to temporarily store the
|
||||
! right singular vectors of X.
|
||||
!.....
|
||||
! LDW (input) INTEGER, LDW >= N
|
||||
! The leading dimension of the array W.
|
||||
!.....
|
||||
! S (workspace/output) COMPLEX(KIND=WP) N-by-N array
|
||||
! The array S(1:K,1:K) is used for the matrix Rayleigh
|
||||
! quotient. This content is overwritten during
|
||||
! the eigenvalue decomposition by CGEEV.
|
||||
! See the description of K.
|
||||
!.....
|
||||
! LDS (input) INTEGER, LDS >= N
|
||||
! The leading dimension of the array S.
|
||||
!.....
|
||||
! ZWORK (workspace/output) COMPLEX(KIND=WP) LZWORK-by-1 array
|
||||
! ZWORK is used as complex workspace in the complex SVD, as
|
||||
! specified by WHTSVD (1,2, 3 or 4) and for CGEEV for computing
|
||||
! the eigenvalues of a Rayleigh quotient.
|
||||
! If the call to CGEDMD is only workspace query, then
|
||||
! ZWORK(1) contains the minimal complex workspace length and
|
||||
! ZWORK(2) is the optimal complex workspace length.
|
||||
! Hence, the length of work is at least 2.
|
||||
! See the description of LZWORK.
|
||||
!.....
|
||||
! LZWORK (input) INTEGER
|
||||
! The minimal length of the workspace vector ZWORK.
|
||||
! LZWORK is calculated as MAX(LZWORK_SVD, LZWORK_CGEEV),
|
||||
! where LZWORK_CGEEV = MAX( 1, 2*N ) and the minimal
|
||||
! LZWORK_SVD is calculated as follows
|
||||
! If WHTSVD == 1 :: CGESVD ::
|
||||
! LZWORK_SVD = MAX(1,2*MIN(M,N)+MAX(M,N))
|
||||
! If WHTSVD == 2 :: CGESDD ::
|
||||
! LZWORK_SVD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N)
|
||||
! If WHTSVD == 3 :: CGESVDQ ::
|
||||
! LZWORK_SVD = obtainable by a query
|
||||
! If WHTSVD == 4 :: CGEJSV ::
|
||||
! LZWORK_SVD = obtainable by a query
|
||||
! If on entry LZWORK = -1, then a workspace query is
|
||||
! assumed and the procedure only computes the minimal
|
||||
! and the optimal workspace lengths and returns them in
|
||||
! LZWORK(1) and LZWORK(2), respectively.
|
||||
!.....
|
||||
! RWORK (workspace/output) REAL(KIND=WP) LRWORK-by-1 array
|
||||
! On exit, RWORK(1:N) contains the singular values of
|
||||
! X (for JOBS=='N') or column scaled X (JOBS=='S', 'C').
|
||||
! If WHTSVD==4, then RWORK(N+1) and RWORK(N+2) contain
|
||||
! scaling factor RWORK(N+2)/RWORK(N+1) used to scale X
|
||||
! and Y to avoid overflow in the SVD of X.
|
||||
! This may be of interest if the scaling option is off
|
||||
! and as many as possible smallest eigenvalues are
|
||||
! desired to the highest feasible accuracy.
|
||||
! If the call to CGEDMD is only workspace query, then
|
||||
! RWORK(1) contains the minimal workspace length.
|
||||
! See the description of LRWORK.
|
||||
!.....
|
||||
! LRWORK (input) INTEGER
|
||||
! The minimal length of the workspace vector RWORK.
|
||||
! LRWORK is calculated as follows:
|
||||
! LRWORK = MAX(1, N+LRWORK_SVD,N+LRWORK_CGEEV), where
|
||||
! LRWORK_CGEEV = MAX(1,2*N) and RWORK_SVD is the real workspace
|
||||
! for the SVD subroutine determined by the input parameter
|
||||
! WHTSVD.
|
||||
! If WHTSVD == 1 :: CGESVD ::
|
||||
! LRWORK_SVD = 5*MIN(M,N)
|
||||
! If WHTSVD == 2 :: CGESDD ::
|
||||
! LRWORK_SVD = MAX(5*MIN(M,N)*MIN(M,N)+7*MIN(M,N),
|
||||
! 2*MAX(M,N)*MIN(M,N)+2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) )
|
||||
! If WHTSVD == 3 :: CGESVDQ ::
|
||||
! LRWORK_SVD = obtainable by a query
|
||||
! If WHTSVD == 4 :: CGEJSV ::
|
||||
! LRWORK_SVD = obtainable by a query
|
||||
! If on entry LRWORK = -1, then a workspace query is
|
||||
! assumed and the procedure only computes the minimal
|
||||
! real workspace length and returns it in RWORK(1).
|
||||
!.....
|
||||
! IWORK (workspace/output) INTEGER LIWORK-by-1 array
|
||||
! Workspace that is required only if WHTSVD equals
|
||||
! 2 , 3 or 4. (See the description of WHTSVD).
|
||||
! If on entry LWORK =-1 or LIWORK=-1, then the
|
||||
! minimal length of IWORK is computed and returned in
|
||||
! IWORK(1). See the description of LIWORK.
|
||||
!.....
|
||||
! LIWORK (input) INTEGER
|
||||
! The minimal length of the workspace vector IWORK.
|
||||
! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
|
||||
! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N))
|
||||
! If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1)
|
||||
! If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N)
|
||||
! If on entry LIWORK = -1, then a workspace query is
|
||||
! assumed and the procedure only computes the minimal
|
||||
! and the optimal workspace lengths for ZWORK, RWORK and
|
||||
! IWORK. See the descriptions of ZWORK, RWORK and IWORK.
|
||||
!.....
|
||||
! INFO (output) INTEGER
|
||||
! -i < 0 :: On entry, the i-th argument had an
|
||||
! illegal value
|
||||
! = 0 :: Successful return.
|
||||
! = 1 :: Void input. Quick exit (M=0 or N=0).
|
||||
! = 2 :: The SVD computation of X did not converge.
|
||||
! Suggestion: Check the input data and/or
|
||||
! repeat with different WHTSVD.
|
||||
! = 3 :: The computation of the eigenvalues did not
|
||||
! converge.
|
||||
! = 4 :: If data scaling was requested on input and
|
||||
! the procedure found inconsistency in the data
|
||||
! such that for some column index i,
|
||||
! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
|
||||
! to zero if JOBS=='C'. The computation proceeds
|
||||
! with original or modified data and warning
|
||||
! flag is set with INFO=4.
|
||||
!.............................................................
|
||||
!.............................................................
|
||||
! Parameters
|
||||
! ~~~~~~~~~~
|
||||
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP
|
||||
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP
|
||||
COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP )
|
||||
COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP )
|
||||
|
||||
! Local scalars
|
||||
! ~~~~~~~~~~~~~
|
||||
REAL(KIND=WP) :: OFL, ROOTSC, SCALE, SMALL, &
|
||||
SSUM, XSCL1, XSCL2
|
||||
INTEGER :: i, j, IMINWR, INFO1, INFO2, &
|
||||
LWRKEV, LWRSDD, LWRSVD, LWRSVJ, &
|
||||
LWRSVQ, MLWORK, MWRKEV, MWRSDD, &
|
||||
MWRSVD, MWRSVJ, MWRSVQ, NUMRNK, &
|
||||
OLWORK, MLRWRK
|
||||
LOGICAL :: BADXY, LQUERY, SCCOLX, SCCOLY, &
|
||||
WNTEX, WNTREF, WNTRES, WNTVEC
|
||||
CHARACTER :: JOBZL, T_OR_N
|
||||
CHARACTER :: JSVOPT
|
||||
!
|
||||
! Local arrays
|
||||
! ~~~~~~~~~~~~
|
||||
REAL(KIND=WP) :: RDUMMY(2)
|
||||
|
||||
! External functions (BLAS and LAPACK)
|
||||
! ~~~~~~~~~~~~~~~~~
|
||||
REAL(KIND=WP) CLANGE, SLAMCH, SCNRM2
|
||||
EXTERNAL CLANGE, SLAMCH, SCNRM2, ICAMAX
|
||||
INTEGER ICAMAX
|
||||
LOGICAL SISNAN, LSAME
|
||||
EXTERNAL SISNAN, LSAME
|
||||
|
||||
! External subroutines (BLAS and LAPACK)
|
||||
! ~~~~~~~~~~~~~~~~~~~~
|
||||
EXTERNAL CAXPY, CGEMM, CSSCAL
|
||||
EXTERNAL CGEEV, CGEJSV, CGESDD, CGESVD, CGESVDQ, &
|
||||
CLACPY, CLASCL, CLASSQ, XERBLA
|
||||
|
||||
! Intrinsic functions
|
||||
! ~~~~~~~~~~~~~~~~~~~
|
||||
INTRINSIC FLOAT, INT, MAX, SQRT
|
||||
!............................................................
|
||||
!
|
||||
! Test the input arguments
|
||||
!
|
||||
WNTRES = LSAME(JOBR,'R')
|
||||
SCCOLX = LSAME(JOBS,'S') .OR. LSAME(JOBS,'C')
|
||||
SCCOLY = LSAME(JOBS,'Y')
|
||||
WNTVEC = LSAME(JOBZ,'V')
|
||||
WNTREF = LSAME(JOBF,'R')
|
||||
WNTEX = LSAME(JOBF,'E')
|
||||
INFO = 0
|
||||
LQUERY = ( ( LZWORK == -1 ) .OR. ( LIWORK == -1 ) &
|
||||
.OR. ( LRWORK == -1 ) )
|
||||
!
|
||||
IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. &
|
||||
LSAME(JOBS,'N')) ) THEN
|
||||
INFO = -1
|
||||
ELSE IF ( .NOT. (WNTVEC .OR. LSAME(JOBZ,'N') &
|
||||
.OR. LSAME(JOBZ,'F')) ) THEN
|
||||
INFO = -2
|
||||
ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. &
|
||||
( WNTRES .AND. (.NOT.WNTVEC) ) ) THEN
|
||||
INFO = -3
|
||||
ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. &
|
||||
LSAME(JOBF,'N') ) ) THEN
|
||||
INFO = -4
|
||||
ELSE IF ( .NOT.((WHTSVD == 1) .OR. (WHTSVD == 2) .OR. &
|
||||
(WHTSVD == 3) .OR. (WHTSVD == 4) )) THEN
|
||||
INFO = -5
|
||||
ELSE IF ( M < 0 ) THEN
|
||||
INFO = -6
|
||||
ELSE IF ( ( N < 0 ) .OR. ( N > M ) ) THEN
|
||||
INFO = -7
|
||||
ELSE IF ( LDX < M ) THEN
|
||||
INFO = -9
|
||||
ELSE IF ( LDY < M ) THEN
|
||||
INFO = -11
|
||||
ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. &
|
||||
((NRNK >= 1).AND.(NRNK <=N ))) ) THEN
|
||||
INFO = -12
|
||||
ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN
|
||||
INFO = -13
|
||||
ELSE IF ( LDZ < M ) THEN
|
||||
INFO = -17
|
||||
ELSE IF ( (WNTREF .OR. WNTEX ) .AND. ( LDB < M ) ) THEN
|
||||
INFO = -20
|
||||
ELSE IF ( LDW < N ) THEN
|
||||
INFO = -22
|
||||
ELSE IF ( LDS < N ) THEN
|
||||
INFO = -24
|
||||
END IF
|
||||
!
|
||||
IF ( INFO == 0 ) THEN
|
||||
! Compute the minimal and the optimal workspace
|
||||
! requirements. Simulate running the code and
|
||||
! determine minimal and optimal sizes of the
|
||||
! workspace at any moment of the run.
|
||||
IF ( N == 0 ) THEN
|
||||
! Quick return. All output except K is void.
|
||||
! INFO=1 signals the void input.
|
||||
! In case of a workspace query, the default
|
||||
! minimal workspace lengths are returned.
|
||||
IF ( LQUERY ) THEN
|
||||
IWORK(1) = 1
|
||||
RWORK(1) = 1
|
||||
ZWORK(1) = 2
|
||||
ZWORK(2) = 2
|
||||
ELSE
|
||||
K = 0
|
||||
END IF
|
||||
INFO = 1
|
||||
RETURN
|
||||
END IF
|
||||
|
||||
IMINWR = 1
|
||||
MLRWRK = MAX(1,N)
|
||||
MLWORK = 2
|
||||
OLWORK = 2
|
||||
SELECT CASE ( WHTSVD )
|
||||
CASE (1)
|
||||
! The following is specified as the minimal
|
||||
! length of WORK in the definition of CGESVD:
|
||||
! MWRSVD = MAX(1,2*MIN(M,N)+MAX(M,N))
|
||||
MWRSVD = MAX(1,2*MIN(M,N)+MAX(M,N))
|
||||
MLWORK = MAX(MLWORK,MWRSVD)
|
||||
MLRWRK = MAX(MLRWRK,N + 5*MIN(M,N))
|
||||
IF ( LQUERY ) THEN
|
||||
CALL CGESVD( 'O', 'S', M, N, X, LDX, RWORK, &
|
||||
B, LDB, W, LDW, ZWORK, -1, RDUMMY, INFO1 )
|
||||
LWRSVD = INT( ZWORK(1) )
|
||||
OLWORK = MAX(OLWORK,LWRSVD)
|
||||
END IF
|
||||
CASE (2)
|
||||
! The following is specified as the minimal
|
||||
! length of WORK in the definition of CGESDD:
|
||||
! MWRSDD = 2*min(M,N)*min(M,N)+2*min(M,N)+max(M,N).
|
||||
! RWORK length: 5*MIN(M,N)*MIN(M,N)+7*MIN(M,N)
|
||||
! In LAPACK 3.10.1 RWORK is defined differently.
|
||||
! Below we take max over the two versions.
|
||||
! IMINWR = 8*MIN(M,N)
|
||||
MWRSDD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N)
|
||||
MLWORK = MAX(MLWORK,MWRSDD)
|
||||
IMINWR = 8*MIN(M,N)
|
||||
MLRWRK = MAX( MLRWRK, N + &
|
||||
MAX( 5*MIN(M,N)*MIN(M,N)+7*MIN(M,N), &
|
||||
5*MIN(M,N)*MIN(M,N)+5*MIN(M,N), &
|
||||
2*MAX(M,N)*MIN(M,N)+ &
|
||||
2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) )
|
||||
IF ( LQUERY ) THEN
|
||||
CALL CGESDD( 'O', M, N, X, LDX, RWORK, B, &
|
||||
LDB, W, LDW, ZWORK, -1, RDUMMY, IWORK, INFO1 )
|
||||
LWRSDD = MAX(MWRSDD,INT( ZWORK(1) ))
|
||||
OLWORK = MAX(OLWORK,LWRSDD)
|
||||
END IF
|
||||
CASE (3)
|
||||
CALL CGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, &
|
||||
X, LDX, RWORK, Z, LDZ, W, LDW, NUMRNK, &
|
||||
IWORK, -1, ZWORK, -1, RDUMMY, -1, INFO1 )
|
||||
IMINWR = IWORK(1)
|
||||
MWRSVQ = INT(ZWORK(2))
|
||||
MLWORK = MAX(MLWORK,MWRSVQ)
|
||||
MLRWRK = MAX(MLRWRK,N + INT(RDUMMY(1)))
|
||||
IF ( LQUERY ) THEN
|
||||
LWRSVQ = INT(ZWORK(1))
|
||||
OLWORK = MAX(OLWORK,LWRSVQ)
|
||||
END IF
|
||||
CASE (4)
|
||||
JSVOPT = 'J'
|
||||
CALL CGEJSV( 'F', 'U', JSVOPT, 'N', 'N', 'P', M, &
|
||||
N, X, LDX, RWORK, Z, LDZ, W, LDW, &
|
||||
ZWORK, -1, RDUMMY, -1, IWORK, INFO1 )
|
||||
IMINWR = IWORK(1)
|
||||
MWRSVJ = INT(ZWORK(2))
|
||||
MLWORK = MAX(MLWORK,MWRSVJ)
|
||||
MLRWRK = MAX(MLRWRK,N + MAX(7,INT(RDUMMY(1))))
|
||||
IF ( LQUERY ) THEN
|
||||
LWRSVJ = INT(ZWORK(1))
|
||||
OLWORK = MAX(OLWORK,LWRSVJ)
|
||||
END IF
|
||||
END SELECT
|
||||
IF ( WNTVEC .OR. WNTEX .OR. LSAME(JOBZ,'F') ) THEN
|
||||
JOBZL = 'V'
|
||||
ELSE
|
||||
JOBZL = 'N'
|
||||
END IF
|
||||
! Workspace calculation to the CGEEV call
|
||||
MWRKEV = MAX( 1, 2*N )
|
||||
MLWORK = MAX(MLWORK,MWRKEV)
|
||||
MLRWRK = MAX(MLRWRK,N+2*N)
|
||||
IF ( LQUERY ) THEN
|
||||
CALL CGEEV( 'N', JOBZL, N, S, LDS, EIGS, &
|
||||
W, LDW, W, LDW, ZWORK, -1, RWORK, INFO1 ) ! LAPACK CALL
|
||||
LWRKEV = INT(ZWORK(1))
|
||||
OLWORK = MAX( OLWORK, LWRKEV )
|
||||
OLWORK = MAX( 2, OLWORK )
|
||||
END IF
|
||||
!
|
||||
IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -30
|
||||
IF ( LRWORK < MLRWRK .AND. (.NOT.LQUERY) ) INFO = -28
|
||||
IF ( LZWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -26
|
||||
|
||||
END IF
|
||||
!
|
||||
IF( INFO /= 0 ) THEN
|
||||
CALL XERBLA( 'CGEDMD', -INFO )
|
||||
RETURN
|
||||
ELSE IF ( LQUERY ) THEN
|
||||
! Return minimal and optimal workspace sizes
|
||||
IWORK(1) = IMINWR
|
||||
RWORK(1) = MLRWRK
|
||||
ZWORK(1) = MLWORK
|
||||
ZWORK(2) = OLWORK
|
||||
RETURN
|
||||
END IF
|
||||
!............................................................
|
||||
!
|
||||
OFL = SLAMCH('O')*SLAMCH('P')
|
||||
SMALL = SLAMCH('S')
|
||||
BADXY = .FALSE.
|
||||
!
|
||||
! <1> Optional scaling of the snapshots (columns of X, Y)
|
||||
! ==========================================================
|
||||
IF ( SCCOLX ) THEN
|
||||
! The columns of X will be normalized.
|
||||
! To prevent overflows, the column norms of X are
|
||||
! carefully computed using CLASSQ.
|
||||
K = 0
|
||||
DO i = 1, N
|
||||
!WORK(i) = SCNRM2( M, X(1,i), 1 )
|
||||
SCALE = ZERO
|
||||
CALL CLASSQ( M, X(1,i), 1, SCALE, SSUM )
|
||||
IF ( SISNAN(SCALE) .OR. SISNAN(SSUM) ) THEN
|
||||
K = 0
|
||||
INFO = -8
|
||||
CALL XERBLA('CGEDMD',-INFO)
|
||||
END IF
|
||||
IF ( (SCALE /= ZERO) .AND. (SSUM /= ZERO) ) THEN
|
||||
ROOTSC = SQRT(SSUM)
|
||||
IF ( SCALE .GE. (OFL / ROOTSC) ) THEN
|
||||
! Norm of X(:,i) overflows. First, X(:,i)
|
||||
! is scaled by
|
||||
! ( ONE / ROOTSC ) / SCALE = 1/||X(:,i)||_2.
|
||||
! Next, the norm of X(:,i) is stored without
|
||||
! overflow as WORK(i) = - SCALE * (ROOTSC/M),
|
||||
! the minus sign indicating the 1/M factor.
|
||||
! Scaling is performed without overflow, and
|
||||
! underflow may occur in the smallest entries
|
||||
! of X(:,i). The relative backward and forward
|
||||
! errors are small in the ell_2 norm.
|
||||
CALL CLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, &
|
||||
M, 1, X(1,i), LDX, INFO2 )
|
||||
RWORK(i) = - SCALE * ( ROOTSC / FLOAT(M) )
|
||||
ELSE
|
||||
! X(:,i) will be scaled to unit 2-norm
|
||||
RWORK(i) = SCALE * ROOTSC
|
||||
CALL CLASCL( 'G',0, 0, RWORK(i), ONE, M, 1, &
|
||||
X(1,i), LDX, INFO2 ) ! LAPACK CALL
|
||||
! X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i) ! INTRINSIC
|
||||
END IF
|
||||
ELSE
|
||||
RWORK(i) = ZERO
|
||||
K = K + 1
|
||||
END IF
|
||||
END DO
|
||||
IF ( K == N ) THEN
|
||||
! All columns of X are zero. Return error code -8.
|
||||
! (the 8th input variable had an illegal value)
|
||||
K = 0
|
||||
INFO = -8
|
||||
CALL XERBLA('CGEDMD',-INFO)
|
||||
RETURN
|
||||
END IF
|
||||
DO i = 1, N
|
||||
! Now, apply the same scaling to the columns of Y.
|
||||
IF ( RWORK(i) > ZERO ) THEN
|
||||
CALL CSSCAL( M, ONE/RWORK(i), Y(1,i), 1 ) ! BLAS CALL
|
||||
! Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i) ! INTRINSIC
|
||||
ELSE IF ( RWORK(i) < ZERO ) THEN
|
||||
CALL CLASCL( 'G', 0, 0, -RWORK(i), &
|
||||
ONE/FLOAT(M), M, 1, Y(1,i), LDY, INFO2 ) ! LAPACK CALL
|
||||
ELSE IF ( ABS(Y(ICAMAX(M, Y(1,i),1),i )) &
|
||||
/= ZERO ) THEN
|
||||
! X(:,i) is zero vector. For consistency,
|
||||
! Y(:,i) should also be zero. If Y(:,i) is not
|
||||
! zero, then the data might be inconsistent or
|
||||
! corrupted. If JOBS == 'C', Y(:,i) is set to
|
||||
! zero and a warning flag is raised.
|
||||
! The computation continues but the
|
||||
! situation will be reported in the output.
|
||||
BADXY = .TRUE.
|
||||
IF ( LSAME(JOBS,'C')) &
|
||||
CALL CSSCAL( M, ZERO, Y(1,i), 1 ) ! BLAS CALL
|
||||
END IF
|
||||
END DO
|
||||
END IF
|
||||
!
|
||||
IF ( SCCOLY ) THEN
|
||||
! The columns of Y will be normalized.
|
||||
! To prevent overflows, the column norms of Y are
|
||||
! carefully computed using CLASSQ.
|
||||
DO i = 1, N
|
||||
!RWORK(i) = SCNRM2( M, Y(1,i), 1 )
|
||||
SCALE = ZERO
|
||||
CALL CLASSQ( M, Y(1,i), 1, SCALE, SSUM )
|
||||
IF ( SISNAN(SCALE) .OR. SISNAN(SSUM) ) THEN
|
||||
K = 0
|
||||
INFO = -10
|
||||
CALL XERBLA('CGEDMD',-INFO)
|
||||
END IF
|
||||
IF ( SCALE /= ZERO .AND. (SSUM /= ZERO) ) THEN
|
||||
ROOTSC = SQRT(SSUM)
|
||||
IF ( SCALE .GE. (OFL / ROOTSC) ) THEN
|
||||
! Norm of Y(:,i) overflows. First, Y(:,i)
|
||||
! is scaled by
|
||||
! ( ONE / ROOTSC ) / SCALE = 1/||Y(:,i)||_2.
|
||||
! Next, the norm of Y(:,i) is stored without
|
||||
! overflow as RWORK(i) = - SCALE * (ROOTSC/M),
|
||||
! the minus sign indicating the 1/M factor.
|
||||
! Scaling is performed without overflow, and
|
||||
! underflow may occur in the smallest entries
|
||||
! of Y(:,i). The relative backward and forward
|
||||
! errors are small in the ell_2 norm.
|
||||
CALL CLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, &
|
||||
M, 1, Y(1,i), LDY, INFO2 )
|
||||
RWORK(i) = - SCALE * ( ROOTSC / FLOAT(M) )
|
||||
ELSE
|
||||
! Y(:,i) will be scaled to unit 2-norm
|
||||
RWORK(i) = SCALE * ROOTSC
|
||||
CALL CLASCL( 'G',0, 0, RWORK(i), ONE, M, 1, &
|
||||
Y(1,i), LDY, INFO2 ) ! LAPACK CALL
|
||||
! Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i) ! INTRINSIC
|
||||
END IF
|
||||
ELSE
|
||||
RWORK(i) = ZERO
|
||||
END IF
|
||||
END DO
|
||||
DO i = 1, N
|
||||
! Now, apply the same scaling to the columns of X.
|
||||
IF ( RWORK(i) > ZERO ) THEN
|
||||
CALL CSSCAL( M, ONE/RWORK(i), X(1,i), 1 ) ! BLAS CALL
|
||||
! X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i) ! INTRINSIC
|
||||
ELSE IF ( RWORK(i) < ZERO ) THEN
|
||||
CALL CLASCL( 'G', 0, 0, -RWORK(i), &
|
||||
ONE/FLOAT(M), M, 1, X(1,i), LDX, INFO2 ) ! LAPACK CALL
|
||||
ELSE IF ( ABS(X(ICAMAX(M, X(1,i),1),i )) &
|
||||
/= ZERO ) THEN
|
||||
! Y(:,i) is zero vector. If X(:,i) is not
|
||||
! zero, then a warning flag is raised.
|
||||
! The computation continues but the
|
||||
! situation will be reported in the output.
|
||||
BADXY = .TRUE.
|
||||
END IF
|
||||
END DO
|
||||
END IF
|
||||
!
|
||||
! <2> SVD of the data snapshot matrix X.
|
||||
! =====================================
|
||||
! The left singular vectors are stored in the array X.
|
||||
! The right singular vectors are in the array W.
|
||||
! The array W will later on contain the eigenvectors
|
||||
! of a Rayleigh quotient.
|
||||
NUMRNK = N
|
||||
SELECT CASE ( WHTSVD )
|
||||
CASE (1)
|
||||
CALL CGESVD( 'O', 'S', M, N, X, LDX, RWORK, B, &
|
||||
LDB, W, LDW, ZWORK, LZWORK, RWORK(N+1), INFO1 ) ! LAPACK CALL
|
||||
T_OR_N = 'C'
|
||||
CASE (2)
|
||||
CALL CGESDD( 'O', M, N, X, LDX, RWORK, B, LDB, W, &
|
||||
LDW, ZWORK, LZWORK, RWORK(N+1), IWORK, INFO1 ) ! LAPACK CALL
|
||||
T_OR_N = 'C'
|
||||
CASE (3)
|
||||
CALL CGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, &
|
||||
X, LDX, RWORK, Z, LDZ, W, LDW, &
|
||||
NUMRNK, IWORK, LIWORK, ZWORK, &
|
||||
LZWORK, RWORK(N+1), LRWORK-N, INFO1) ! LAPACK CALL
|
||||
CALL CLACPY( 'A', M, NUMRNK, Z, LDZ, X, LDX ) ! LAPACK CALL
|
||||
T_OR_N = 'C'
|
||||
CASE (4)
|
||||
CALL CGEJSV( 'F', 'U', JSVOPT, 'N', 'N', 'P', M, &
|
||||
N, X, LDX, RWORK, Z, LDZ, W, LDW, &
|
||||
ZWORK, LZWORK, RWORK(N+1), LRWORK-N, IWORK, INFO1 ) ! LAPACK CALL
|
||||
CALL CLACPY( 'A', M, N, Z, LDZ, X, LDX ) ! LAPACK CALL
|
||||
T_OR_N = 'N'
|
||||
XSCL1 = RWORK(N+1)
|
||||
XSCL2 = RWORK(N+2)
|
||||
IF ( XSCL1 /= XSCL2 ) THEN
|
||||
! This is an exceptional situation. If the
|
||||
! data matrices are not scaled and the
|
||||
! largest singular value of X overflows.
|
||||
! In that case CGEJSV can return the SVD
|
||||
! in scaled form. The scaling factor can be used
|
||||
! to rescale the data (X and Y).
|
||||
CALL CLASCL( 'G', 0, 0, XSCL1, XSCL2, M, N, Y, LDY, INFO2 )
|
||||
END IF
|
||||
END SELECT
|
||||
!
|
||||
IF ( INFO1 > 0 ) THEN
|
||||
! The SVD selected subroutine did not converge.
|
||||
! Return with an error code.
|
||||
INFO = 2
|
||||
RETURN
|
||||
END IF
|
||||
!
|
||||
IF ( RWORK(1) == ZERO ) THEN
|
||||
! The largest computed singular value of (scaled)
|
||||
! X is zero. Return error code -8
|
||||
! (the 8th input variable had an illegal value).
|
||||
K = 0
|
||||
INFO = -8
|
||||
CALL XERBLA('CGEDMD',-INFO)
|
||||
RETURN
|
||||
END IF
|
||||
!
|
||||
!<3> Determine the numerical rank of the data
|
||||
! snapshots matrix X. This depends on the
|
||||
! parameters NRNK and TOL.
|
||||
|
||||
SELECT CASE ( NRNK )
|
||||
CASE ( -1 )
|
||||
K = 1
|
||||
DO i = 2, NUMRNK
|
||||
IF ( ( RWORK(i) <= RWORK(1)*TOL ) .OR. &
|
||||
( RWORK(i) <= SMALL ) ) EXIT
|
||||
K = K + 1
|
||||
END DO
|
||||
CASE ( -2 )
|
||||
K = 1
|
||||
DO i = 1, NUMRNK-1
|
||||
IF ( ( RWORK(i+1) <= RWORK(i)*TOL ) .OR. &
|
||||
( RWORK(i) <= SMALL ) ) EXIT
|
||||
K = K + 1
|
||||
END DO
|
||||
CASE DEFAULT
|
||||
K = 1
|
||||
DO i = 2, NRNK
|
||||
IF ( RWORK(i) <= SMALL ) EXIT
|
||||
K = K + 1
|
||||
END DO
|
||||
END SELECT
|
||||
! Now, U = X(1:M,1:K) is the SVD/POD basis for the
|
||||
! snapshot data in the input matrix X.
|
||||
|
||||
!<4> Compute the Rayleigh quotient S = U^H * A * U.
|
||||
! Depending on the requested outputs, the computation
|
||||
! is organized to compute additional auxiliary
|
||||
! matrices (for the residuals and refinements).
|
||||
!
|
||||
! In all formulas below, we need V_k*Sigma_k^(-1)
|
||||
! where either V_k is in W(1:N,1:K), or V_k^H is in
|
||||
! W(1:K,1:N). Here Sigma_k=diag(WORK(1:K)).
|
||||
IF ( LSAME(T_OR_N, 'N') ) THEN
|
||||
DO i = 1, K
|
||||
CALL CSSCAL( N, ONE/RWORK(i), W(1,i), 1 ) ! BLAS CALL
|
||||
! W(1:N,i) = (ONE/RWORK(i)) * W(1:N,i) ! INTRINSIC
|
||||
END DO
|
||||
ELSE
|
||||
! This non-unit stride access is due to the fact
|
||||
! that CGESVD, CGESVDQ and CGESDD return the
|
||||
! adjoint matrix of the right singular vectors.
|
||||
!DO i = 1, K
|
||||
! CALL DSCAL( N, ONE/RWORK(i), W(i,1), LDW ) ! BLAS CALL
|
||||
! ! W(i,1:N) = (ONE/RWORK(i)) * W(i,1:N) ! INTRINSIC
|
||||
!END DO
|
||||
DO i = 1, K
|
||||
RWORK(N+i) = ONE/RWORK(i)
|
||||
END DO
|
||||
DO j = 1, N
|
||||
DO i = 1, K
|
||||
W(i,j) = CMPLX(RWORK(N+i),ZERO,KIND=WP)*W(i,j)
|
||||
END DO
|
||||
END DO
|
||||
END IF
|
||||
!
|
||||
IF ( WNTREF ) THEN
|
||||
!
|
||||
! Need A*U(:,1:K)=Y*V_k*inv(diag(WORK(1:K)))
|
||||
! for computing the refined Ritz vectors
|
||||
! (optionally, outside CGEDMD).
|
||||
CALL CGEMM( 'N', T_OR_N, M, K, N, ZONE, Y, LDY, W, &
|
||||
LDW, ZZERO, Z, LDZ ) ! BLAS CALL
|
||||
! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),TRANSPOSE(W(1:K,1:N))) ! INTRINSIC, for T_OR_N=='T'
|
||||
! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),W(1:N,1:K)) ! INTRINSIC, for T_OR_N=='N'
|
||||
!
|
||||
! At this point Z contains
|
||||
! A * U(:,1:K) = Y * V_k * Sigma_k^(-1), and
|
||||
! this is needed for computing the residuals.
|
||||
! This matrix is returned in the array B and
|
||||
! it can be used to compute refined Ritz vectors.
|
||||
CALL CLACPY( 'A', M, K, Z, LDZ, B, LDB ) ! BLAS CALL
|
||||
! B(1:M,1:K) = Z(1:M,1:K) ! INTRINSIC
|
||||
|
||||
CALL CGEMM( 'C', 'N', K, K, M, ZONE, X, LDX, Z, &
|
||||
LDZ, ZZERO, S, LDS ) ! BLAS CALL
|
||||
! S(1:K,1:K) = MATMUL(TANSPOSE(X(1:M,1:K)),Z(1:M,1:K)) ! INTRINSIC
|
||||
! At this point S = U^H * A * U is the Rayleigh quotient.
|
||||
ELSE
|
||||
! A * U(:,1:K) is not explicitly needed and the
|
||||
! computation is organized differently. The Rayleigh
|
||||
! quotient is computed more efficiently.
|
||||
CALL CGEMM( 'C', 'N', K, N, M, ZONE, X, LDX, Y, LDY, &
|
||||
ZZERO, Z, LDZ ) ! BLAS CALL
|
||||
! Z(1:K,1:N) = MATMUL( TRANSPOSE(X(1:M,1:K)), Y(1:M,1:N) ) ! INTRINSIC
|
||||
!
|
||||
CALL CGEMM( 'N', T_OR_N, K, K, N, ZONE, Z, LDZ, W, &
|
||||
LDW, ZZERO, S, LDS ) ! BLAS CALL
|
||||
! S(1:K,1:K) = MATMUL(Z(1:K,1:N),TRANSPOSE(W(1:K,1:N))) ! INTRINSIC, for T_OR_N=='T'
|
||||
! S(1:K,1:K) = MATMUL(Z(1:K,1:N),(W(1:N,1:K))) ! INTRINSIC, for T_OR_N=='N'
|
||||
! At this point S = U^H * A * U is the Rayleigh quotient.
|
||||
! If the residuals are requested, save scaled V_k into Z.
|
||||
! Recall that V_k or V_k^H is stored in W.
|
||||
IF ( WNTRES .OR. WNTEX ) THEN
|
||||
IF ( LSAME(T_OR_N, 'N') ) THEN
|
||||
CALL CLACPY( 'A', N, K, W, LDW, Z, LDZ )
|
||||
ELSE
|
||||
CALL CLACPY( 'A', K, N, W, LDW, Z, LDZ )
|
||||
END IF
|
||||
END IF
|
||||
END IF
|
||||
!
|
||||
!<5> Compute the Ritz values and (if requested) the
|
||||
! right eigenvectors of the Rayleigh quotient.
|
||||
!
|
||||
CALL CGEEV( 'N', JOBZL, K, S, LDS, EIGS, W, &
|
||||
LDW, W, LDW, ZWORK, LZWORK, RWORK(N+1), INFO1 ) ! LAPACK CALL
|
||||
!
|
||||
! W(1:K,1:K) contains the eigenvectors of the Rayleigh
|
||||
! quotient. See the description of Z.
|
||||
! Also, see the description of CGEEV.
|
||||
IF ( INFO1 > 0 ) THEN
|
||||
! CGEEV failed to compute the eigenvalues and
|
||||
! eigenvectors of the Rayleigh quotient.
|
||||
INFO = 3
|
||||
RETURN
|
||||
END IF
|
||||
!
|
||||
! <6> Compute the eigenvectors (if requested) and,
|
||||
! the residuals (if requested).
|
||||
!
|
||||
IF ( WNTVEC .OR. WNTEX ) THEN
|
||||
IF ( WNTRES ) THEN
|
||||
IF ( WNTREF ) THEN
|
||||
! Here, if the refinement is requested, we have
|
||||
! A*U(:,1:K) already computed and stored in Z.
|
||||
! For the residuals, need Y = A * U(:,1;K) * W.
|
||||
CALL CGEMM( 'N', 'N', M, K, K, ZONE, Z, LDZ, W, &
|
||||
LDW, ZZERO, Y, LDY ) ! BLAS CALL
|
||||
! Y(1:M,1:K) = Z(1:M,1:K) * W(1:K,1:K) ! INTRINSIC
|
||||
! This frees Z; Y contains A * U(:,1:K) * W.
|
||||
ELSE
|
||||
! Compute S = V_k * Sigma_k^(-1) * W, where
|
||||
! V_k * Sigma_k^(-1) (or its adjoint) is stored in Z
|
||||
CALL CGEMM( T_OR_N, 'N', N, K, K, ZONE, Z, LDZ, &
|
||||
W, LDW, ZZERO, S, LDS)
|
||||
! Then, compute Z = Y * S =
|
||||
! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) =
|
||||
! = A * U(:,1:K) * W(1:K,1:K)
|
||||
CALL CGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, &
|
||||
LDS, ZZERO, Z, LDZ)
|
||||
! Save a copy of Z into Y and free Z for holding
|
||||
! the Ritz vectors.
|
||||
CALL CLACPY( 'A', M, K, Z, LDZ, Y, LDY )
|
||||
IF ( WNTEX ) CALL CLACPY( 'A', M, K, Z, LDZ, B, LDB )
|
||||
END IF
|
||||
ELSE IF ( WNTEX ) THEN
|
||||
! Compute S = V_k * Sigma_k^(-1) * W, where
|
||||
! V_k * Sigma_k^(-1) is stored in Z
|
||||
CALL CGEMM( T_OR_N, 'N', N, K, K, ZONE, Z, LDZ, &
|
||||
W, LDW, ZZERO, S, LDS)
|
||||
! Then, compute Z = Y * S =
|
||||
! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) =
|
||||
! = A * U(:,1:K) * W(1:K,1:K)
|
||||
CALL CGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, &
|
||||
LDS, ZZERO, B, LDB)
|
||||
! The above call replaces the following two calls
|
||||
! that were used in the developing-testing phase.
|
||||
! CALL CGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, &
|
||||
! LDS, ZZERO, Z, LDZ)
|
||||
! Save a copy of Z into Y and free Z for holding
|
||||
! the Ritz vectors.
|
||||
! CALL CLACPY( 'A', M, K, Z, LDZ, B, LDB )
|
||||
END IF
|
||||
!
|
||||
! Compute the Ritz vectors
|
||||
IF ( WNTVEC ) CALL CGEMM( 'N', 'N', M, K, K, ZONE, X, LDX, W, LDW, &
|
||||
ZZERO, Z, LDZ ) ! BLAS CALL
|
||||
! Z(1:M,1:K) = MATMUL(X(1:M,1:K), W(1:K,1:K)) ! INTRINSIC
|
||||
!
|
||||
IF ( WNTRES ) THEN
|
||||
DO i = 1, K
|
||||
CALL CAXPY( M, -EIGS(i), Z(1,i), 1, Y(1,i), 1 ) ! BLAS CALL
|
||||
! Y(1:M,i) = Y(1:M,i) - EIGS(i) * Z(1:M,i) ! INTRINSIC
|
||||
RES(i) = SCNRM2( M, Y(1,i), 1) ! BLAS CALL
|
||||
END DO
|
||||
END IF
|
||||
END IF
|
||||
!
|
||||
IF ( WHTSVD == 4 ) THEN
|
||||
RWORK(N+1) = XSCL1
|
||||
RWORK(N+2) = XSCL2
|
||||
END IF
|
||||
!
|
||||
! Successful exit.
|
||||
IF ( .NOT. BADXY ) THEN
|
||||
INFO = 0
|
||||
ELSE
|
||||
! A warning on possible data inconsistency.
|
||||
! This should be a rare event.
|
||||
INFO = 4
|
||||
END IF
|
||||
!............................................................
|
||||
RETURN
|
||||
! ......
|
||||
END SUBROUTINE CGEDMD
|
||||
|
|
@ -0,0 +1,689 @@
|
|||
SUBROUTINE CGEDMDQ( JOBS, JOBZ, JOBR, JOBQ, JOBT, JOBF, &
|
||||
WHTSVD, M, N, F, LDF, X, LDX, Y, &
|
||||
LDY, NRNK, TOL, K, EIGS, &
|
||||
Z, LDZ, RES, B, LDB, V, LDV, &
|
||||
S, LDS, ZWORK, LZWORK, WORK, LWORK, &
|
||||
IWORK, LIWORK, INFO )
|
||||
! March 2023
|
||||
!.....
|
||||
USE iso_fortran_env
|
||||
IMPLICIT NONE
|
||||
INTEGER, PARAMETER :: WP = real32
|
||||
!.....
|
||||
! Scalar arguments
|
||||
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBQ, &
|
||||
JOBT, JOBF
|
||||
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDF, LDX, &
|
||||
LDY, NRNK, LDZ, LDB, LDV, &
|
||||
LDS, LZWORK, LWORK, LIWORK
|
||||
INTEGER, INTENT(OUT) :: INFO, K
|
||||
REAL(KIND=WP), INTENT(IN) :: TOL
|
||||
! Array arguments
|
||||
COMPLEX(KIND=WP), INTENT(INOUT) :: F(LDF,*)
|
||||
COMPLEX(KIND=WP), INTENT(OUT) :: X(LDX,*), Y(LDY,*), &
|
||||
Z(LDZ,*), B(LDB,*), &
|
||||
V(LDV,*), S(LDS,*)
|
||||
COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*)
|
||||
COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*)
|
||||
REAL(KIND=WP), INTENT(OUT) :: RES(*)
|
||||
REAL(KIND=WP), INTENT(OUT) :: WORK(*)
|
||||
INTEGER, INTENT(OUT) :: IWORK(*)
|
||||
!.....
|
||||
! Purpose
|
||||
! =======
|
||||
! CGEDMDQ computes the Dynamic Mode Decomposition (DMD) for
|
||||
! a pair of data snapshot matrices, using a QR factorization
|
||||
! based compression of the data. For the input matrices
|
||||
! X and Y such that Y = A*X with an unaccessible matrix
|
||||
! A, CGEDMDQ computes a certain number of Ritz pairs of A using
|
||||
! the standard Rayleigh-Ritz extraction from a subspace of
|
||||
! range(X) that is determined using the leading left singular
|
||||
! vectors of X. Optionally, CGEDMDQ returns the residuals
|
||||
! of the computed Ritz pairs, the information needed for
|
||||
! a refinement of the Ritz vectors, or the eigenvectors of
|
||||
! the Exact DMD.
|
||||
! For further details see the references listed
|
||||
! below. For more details of the implementation see [3].
|
||||
!
|
||||
! References
|
||||
! ==========
|
||||
! [1] P. Schmid: Dynamic mode decomposition of numerical
|
||||
! and experimental data,
|
||||
! Journal of Fluid Mechanics 656, 5-28, 2010.
|
||||
! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
|
||||
! decompositions: analysis and enhancements,
|
||||
! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
|
||||
! [3] Z. Drmac: A LAPACK implementation of the Dynamic
|
||||
! Mode Decomposition I. Technical report. AIMDyn Inc.
|
||||
! and LAPACK Working Note 298.
|
||||
! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
|
||||
! Brunton, N. Kutz: On Dynamic Mode Decomposition:
|
||||
! Theory and Applications, Journal of Computational
|
||||
! Dynamics 1(2), 391 -421, 2014.
|
||||
!
|
||||
! Developed and supported by:
|
||||
! ===========================
|
||||
! Developed and coded by Zlatko Drmac, Faculty of Science,
|
||||
! University of Zagreb; drmac@math.hr
|
||||
! In cooperation with
|
||||
! AIMdyn Inc., Santa Barbara, CA.
|
||||
! and supported by
|
||||
! - DARPA SBIR project "Koopman Operator-Based Forecasting
|
||||
! for Nonstationary Processes from Near-Term, Limited
|
||||
! Observational Data" Contract No: W31P4Q-21-C-0007
|
||||
! - DARPA PAI project "Physics-Informed Machine Learning
|
||||
! Methodologies" Contract No: HR0011-18-9-0033
|
||||
! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
|
||||
! Framework for Space-Time Analysis of Process Dynamics"
|
||||
! Contract No: HR0011-16-C-0116
|
||||
! Any opinions, findings and conclusions or recommendations
|
||||
! expressed in this material are those of the author and
|
||||
! do not necessarily reflect the views of the DARPA SBIR
|
||||
! Program Office.
|
||||
!============================================================
|
||||
! Distribution Statement A:
|
||||
! Approved for Public Release, Distribution Unlimited.
|
||||
! Cleared by DARPA on September 29, 2022
|
||||
!============================================================
|
||||
!......................................................................
|
||||
! Arguments
|
||||
! =========
|
||||
! JOBS (input) CHARACTER*1
|
||||
! Determines whether the initial data snapshots are scaled
|
||||
! by a diagonal matrix. The data snapshots are the columns
|
||||
! of F. The leading N-1 columns of F are denoted X and the
|
||||
! trailing N-1 columns are denoted Y.
|
||||
! 'S' :: The data snapshots matrices X and Y are multiplied
|
||||
! with a diagonal matrix D so that X*D has unit
|
||||
! nonzero columns (in the Euclidean 2-norm)
|
||||
! 'C' :: The snapshots are scaled as with the 'S' option.
|
||||
! If it is found that an i-th column of X is zero
|
||||
! vector and the corresponding i-th column of Y is
|
||||
! non-zero, then the i-th column of Y is set to
|
||||
! zero and a warning flag is raised.
|
||||
! 'Y' :: The data snapshots matrices X and Y are multiplied
|
||||
! by a diagonal matrix D so that Y*D has unit
|
||||
! nonzero columns (in the Euclidean 2-norm)
|
||||
! 'N' :: No data scaling.
|
||||
!.....
|
||||
! JOBZ (input) CHARACTER*1
|
||||
! Determines whether the eigenvectors (Koopman modes) will
|
||||
! be computed.
|
||||
! 'V' :: The eigenvectors (Koopman modes) will be computed
|
||||
! and returned in the matrix Z.
|
||||
! See the description of Z.
|
||||
! 'F' :: The eigenvectors (Koopman modes) will be returned
|
||||
! in factored form as the product Z*V, where Z
|
||||
! is orthonormal and V contains the eigenvectors
|
||||
! of the corresponding Rayleigh quotient.
|
||||
! See the descriptions of F, V, Z.
|
||||
! 'Q' :: The eigenvectors (Koopman modes) will be returned
|
||||
! in factored form as the product Q*Z, where Z
|
||||
! contains the eigenvectors of the compression of the
|
||||
! underlying discretised operator onto the span of
|
||||
! the data snapshots. See the descriptions of F, V, Z.
|
||||
! Q is from the inital QR facorization.
|
||||
! 'N' :: The eigenvectors are not computed.
|
||||
!.....
|
||||
! JOBR (input) CHARACTER*1
|
||||
! Determines whether to compute the residuals.
|
||||
! 'R' :: The residuals for the computed eigenpairs will
|
||||
! be computed and stored in the array RES.
|
||||
! See the description of RES.
|
||||
! For this option to be legal, JOBZ must be 'V'.
|
||||
! 'N' :: The residuals are not computed.
|
||||
!.....
|
||||
! JOBQ (input) CHARACTER*1
|
||||
! Specifies whether to explicitly compute and return the
|
||||
! unitary matrix from the QR factorization.
|
||||
! 'Q' :: The matrix Q of the QR factorization of the data
|
||||
! snapshot matrix is computed and stored in the
|
||||
! array F. See the description of F.
|
||||
! 'N' :: The matrix Q is not explicitly computed.
|
||||
!.....
|
||||
! JOBT (input) CHARACTER*1
|
||||
! Specifies whether to return the upper triangular factor
|
||||
! from the QR factorization.
|
||||
! 'R' :: The matrix R of the QR factorization of the data
|
||||
! snapshot matrix F is returned in the array Y.
|
||||
! See the description of Y and Further details.
|
||||
! 'N' :: The matrix R is not returned.
|
||||
!.....
|
||||
! JOBF (input) CHARACTER*1
|
||||
! Specifies whether to store information needed for post-
|
||||
! processing (e.g. computing refined Ritz vectors)
|
||||
! 'R' :: The matrix needed for the refinement of the Ritz
|
||||
! vectors is computed and stored in the array B.
|
||||
! See the description of B.
|
||||
! 'E' :: The unscaled eigenvectors of the Exact DMD are
|
||||
! computed and returned in the array B. See the
|
||||
! description of B.
|
||||
! 'N' :: No eigenvector refinement data is computed.
|
||||
! To be useful on exit, this option needs JOBQ='Q'.
|
||||
!.....
|
||||
! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
|
||||
! Allows for a selection of the SVD algorithm from the
|
||||
! LAPACK library.
|
||||
! 1 :: CGESVD (the QR SVD algorithm)
|
||||
! 2 :: CGESDD (the Divide and Conquer algorithm; if enough
|
||||
! workspace available, this is the fastest option)
|
||||
! 3 :: CGESVDQ (the preconditioned QR SVD ; this and 4
|
||||
! are the most accurate options)
|
||||
! 4 :: CGEJSV (the preconditioned Jacobi SVD; this and 3
|
||||
! are the most accurate options)
|
||||
! For the four methods above, a significant difference in
|
||||
! the accuracy of small singular values is possible if
|
||||
! the snapshots vary in norm so that X is severely
|
||||
! ill-conditioned. If small (smaller than EPS*||X||)
|
||||
! singular values are of interest and JOBS=='N', then
|
||||
! the options (3, 4) give the most accurate results, where
|
||||
! the option 4 is slightly better and with stronger
|
||||
! theoretical background.
|
||||
! If JOBS=='S', i.e. the columns of X will be normalized,
|
||||
! then all methods give nearly equally accurate results.
|
||||
!.....
|
||||
! M (input) INTEGER, M >= 0
|
||||
! The state space dimension (the number of rows of F).
|
||||
!.....
|
||||
! N (input) INTEGER, 0 <= N <= M
|
||||
! The number of data snapshots from a single trajectory,
|
||||
! taken at equidistant discrete times. This is the
|
||||
! number of columns of F.
|
||||
!.....
|
||||
! F (input/output) COMPLEX(KIND=WP) M-by-N array
|
||||
! > On entry,
|
||||
! the columns of F are the sequence of data snapshots
|
||||
! from a single trajectory, taken at equidistant discrete
|
||||
! times. It is assumed that the column norms of F are
|
||||
! in the range of the normalized floating point numbers.
|
||||
! < On exit,
|
||||
! If JOBQ == 'Q', the array F contains the orthogonal
|
||||
! matrix/factor of the QR factorization of the initial
|
||||
! data snapshots matrix F. See the description of JOBQ.
|
||||
! If JOBQ == 'N', the entries in F strictly below the main
|
||||
! diagonal contain, column-wise, the information on the
|
||||
! Householder vectors, as returned by CGEQRF. The
|
||||
! remaining information to restore the orthogonal matrix
|
||||
! of the initial QR factorization is stored in ZWORK(1:MIN(M,N)).
|
||||
! See the description of ZWORK.
|
||||
!.....
|
||||
! LDF (input) INTEGER, LDF >= M
|
||||
! The leading dimension of the array F.
|
||||
!.....
|
||||
! X (workspace/output) COMPLEX(KIND=WP) MIN(M,N)-by-(N-1) array
|
||||
! X is used as workspace to hold representations of the
|
||||
! leading N-1 snapshots in the orthonormal basis computed
|
||||
! in the QR factorization of F.
|
||||
! On exit, the leading K columns of X contain the leading
|
||||
! K left singular vectors of the above described content
|
||||
! of X. To lift them to the space of the left singular
|
||||
! vectors U(:,1:K) of the input data, pre-multiply with the
|
||||
! Q factor from the initial QR factorization.
|
||||
! See the descriptions of F, K, V and Z.
|
||||
!.....
|
||||
! LDX (input) INTEGER, LDX >= N
|
||||
! The leading dimension of the array X.
|
||||
!.....
|
||||
! Y (workspace/output) COMPLEX(KIND=WP) MIN(M,N)-by-(N) array
|
||||
! Y is used as workspace to hold representations of the
|
||||
! trailing N-1 snapshots in the orthonormal basis computed
|
||||
! in the QR factorization of F.
|
||||
! On exit,
|
||||
! If JOBT == 'R', Y contains the MIN(M,N)-by-N upper
|
||||
! triangular factor from the QR factorization of the data
|
||||
! snapshot matrix F.
|
||||
!.....
|
||||
! LDY (input) INTEGER , LDY >= N
|
||||
! The leading dimension of the array Y.
|
||||
!.....
|
||||
! NRNK (input) INTEGER
|
||||
! Determines the mode how to compute the numerical rank,
|
||||
! i.e. how to truncate small singular values of the input
|
||||
! matrix X. On input, if
|
||||
! NRNK = -1 :: i-th singular value sigma(i) is truncated
|
||||
! if sigma(i) <= TOL*sigma(1)
|
||||
! This option is recommended.
|
||||
! NRNK = -2 :: i-th singular value sigma(i) is truncated
|
||||
! if sigma(i) <= TOL*sigma(i-1)
|
||||
! This option is included for R&D purposes.
|
||||
! It requires highly accurate SVD, which
|
||||
! may not be feasible.
|
||||
! The numerical rank can be enforced by using positive
|
||||
! value of NRNK as follows:
|
||||
! 0 < NRNK <= N-1 :: at most NRNK largest singular values
|
||||
! will be used. If the number of the computed nonzero
|
||||
! singular values is less than NRNK, then only those
|
||||
! nonzero values will be used and the actually used
|
||||
! dimension is less than NRNK. The actual number of
|
||||
! the nonzero singular values is returned in the variable
|
||||
! K. See the description of K.
|
||||
!.....
|
||||
! TOL (input) REAL(KIND=WP), 0 <= TOL < 1
|
||||
! The tolerance for truncating small singular values.
|
||||
! See the description of NRNK.
|
||||
!.....
|
||||
! K (output) INTEGER, 0 <= K <= N
|
||||
! The dimension of the SVD/POD basis for the leading N-1
|
||||
! data snapshots (columns of F) and the number of the
|
||||
! computed Ritz pairs. The value of K is determined
|
||||
! according to the rule set by the parameters NRNK and
|
||||
! TOL. See the descriptions of NRNK and TOL.
|
||||
!.....
|
||||
! EIGS (output) COMPLEX(KIND=WP) (N-1)-by-1 array
|
||||
! The leading K (K<=N-1) entries of EIGS contain
|
||||
! the computed eigenvalues (Ritz values).
|
||||
! See the descriptions of K, and Z.
|
||||
!.....
|
||||
! Z (workspace/output) COMPLEX(KIND=WP) M-by-(N-1) array
|
||||
! If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i)
|
||||
! is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1.
|
||||
! If JOBZ == 'F', then the Z(:,i)'s are given implicitly as
|
||||
! Z*V, where Z contains orthonormal matrix (the product of
|
||||
! Q from the initial QR factorization and the SVD/POD_basis
|
||||
! returned by CGEDMD in X) and the second factor (the
|
||||
! eigenvectors of the Rayleigh quotient) is in the array V,
|
||||
! as returned by CGEDMD. That is, X(:,1:K)*V(:,i)
|
||||
! is an eigenvector corresponding to EIGS(i). The columns
|
||||
! of V(1:K,1:K) are the computed eigenvectors of the
|
||||
! K-by-K Rayleigh quotient.
|
||||
! See the descriptions of EIGS, X and V.
|
||||
!.....
|
||||
! LDZ (input) INTEGER , LDZ >= M
|
||||
! The leading dimension of the array Z.
|
||||
!.....
|
||||
! RES (output) REAL(KIND=WP) (N-1)-by-1 array
|
||||
! RES(1:K) contains the residuals for the K computed
|
||||
! Ritz pairs,
|
||||
! RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2.
|
||||
! See the description of EIGS and Z.
|
||||
!.....
|
||||
! B (output) COMPLEX(KIND=WP) MIN(M,N)-by-(N-1) array.
|
||||
! IF JOBF =='R', B(1:N,1:K) contains A*U(:,1:K), and can
|
||||
! be used for computing the refined vectors; see further
|
||||
! details in the provided references.
|
||||
! If JOBF == 'E', B(1:N,1;K) contains
|
||||
! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
|
||||
! Exact DMD, up to scaling by the inverse eigenvalues.
|
||||
! In both cases, the content of B can be lifted to the
|
||||
! original dimension of the input data by pre-multiplying
|
||||
! with the Q factor from the initial QR factorization.
|
||||
! Here A denotes a compression of the underlying operator.
|
||||
! See the descriptions of F and X.
|
||||
! If JOBF =='N', then B is not referenced.
|
||||
!.....
|
||||
! LDB (input) INTEGER, LDB >= MIN(M,N)
|
||||
! The leading dimension of the array B.
|
||||
!.....
|
||||
! V (workspace/output) COMPLEX(KIND=WP) (N-1)-by-(N-1) array
|
||||
! On exit, V(1:K,1:K) V contains the K eigenvectors of
|
||||
! the Rayleigh quotient. The Ritz vectors
|
||||
! (returned in Z) are the product of Q from the initial QR
|
||||
! factorization (see the description of F) X (see the
|
||||
! description of X) and V.
|
||||
!.....
|
||||
! LDV (input) INTEGER, LDV >= N-1
|
||||
! The leading dimension of the array V.
|
||||
!.....
|
||||
! S (output) COMPLEX(KIND=WP) (N-1)-by-(N-1) array
|
||||
! The array S(1:K,1:K) is used for the matrix Rayleigh
|
||||
! quotient. This content is overwritten during
|
||||
! the eigenvalue decomposition by CGEEV.
|
||||
! See the description of K.
|
||||
!.....
|
||||
! LDS (input) INTEGER, LDS >= N-1
|
||||
! The leading dimension of the array S.
|
||||
!.....
|
||||
! ZWORK (workspace/output) COMPLEX(KIND=WP) LWORK-by-1 array
|
||||
! On exit,
|
||||
! ZWORK(1:MIN(M,N)) contains the scalar factors of the
|
||||
! elementary reflectors as returned by CGEQRF of the
|
||||
! M-by-N input matrix F.
|
||||
! If the call to CGEDMDQ is only workspace query, then
|
||||
! ZWORK(1) contains the minimal complex workspace length and
|
||||
! ZWORK(2) is the optimal complex workspace length.
|
||||
! Hence, the length of work is at least 2.
|
||||
! See the description of LZWORK.
|
||||
!.....
|
||||
! LZWORK (input) INTEGER
|
||||
! The minimal length of the workspace vector ZWORK.
|
||||
! LZWORK is calculated as follows:
|
||||
! Let MLWQR = N (minimal workspace for CGEQRF[M,N])
|
||||
! MLWDMD = minimal workspace for CGEDMD (see the
|
||||
! description of LWORK in CGEDMD)
|
||||
! MLWMQR = N (minimal workspace for
|
||||
! ZUNMQR['L','N',M,N,N])
|
||||
! MLWGQR = N (minimal workspace for ZUNGQR[M,N,N])
|
||||
! MINMN = MIN(M,N)
|
||||
! Then
|
||||
! LZWORK = MAX(2, MIN(M,N)+MLWQR, MINMN+MLWDMD)
|
||||
! is further updated as follows:
|
||||
! if JOBZ == 'V' or JOBZ == 'F' THEN
|
||||
! LZWORK = MAX( LZWORK, MINMN+MLWMQR )
|
||||
! if JOBQ == 'Q' THEN
|
||||
! LZWORK = MAX( ZLWORK, MINMN+MLWGQR)
|
||||
!
|
||||
!.....
|
||||
! WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array
|
||||
! On exit,
|
||||
! WORK(1:N-1) contains the singular values of
|
||||
! the input submatrix F(1:M,1:N-1).
|
||||
! If the call to CGEDMDQ is only workspace query, then
|
||||
! WORK(1) contains the minimal workspace length and
|
||||
! WORK(2) is the optimal workspace length. hence, the
|
||||
! length of work is at least 2.
|
||||
! See the description of LWORK.
|
||||
!.....
|
||||
! LWORK (input) INTEGER
|
||||
! The minimal length of the workspace vector WORK.
|
||||
! LWORK is the same as in CGEDMD, because in CGEDMDQ
|
||||
! only CGEDMD requires real workspace for snapshots
|
||||
! of dimensions MIN(M,N)-by-(N-1).
|
||||
! If on entry LWORK = -1, then a workspace query is
|
||||
! assumed and the procedure only computes the minimal
|
||||
! and the optimal workspace lengths for both WORK and
|
||||
! IWORK. See the descriptions of WORK and IWORK.
|
||||
!.....
|
||||
! IWORK (workspace/output) INTEGER LIWORK-by-1 array
|
||||
! Workspace that is required only if WHTSVD equals
|
||||
! 2 , 3 or 4. (See the description of WHTSVD).
|
||||
! If on entry LWORK =-1 or LIWORK=-1, then the
|
||||
! minimal length of IWORK is computed and returned in
|
||||
! IWORK(1). See the description of LIWORK.
|
||||
!.....
|
||||
! LIWORK (input) INTEGER
|
||||
! The minimal length of the workspace vector IWORK.
|
||||
! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
|
||||
! Let M1=MIN(M,N), N1=N-1. Then
|
||||
! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N))
|
||||
! If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1)
|
||||
! If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N)
|
||||
! If on entry LIWORK = -1, then a workspace query is
|
||||
! assumed and the procedure only computes the minimal
|
||||
! and the optimal workspace lengths for both WORK and
|
||||
! IWORK. See the descriptions of WORK and IWORK.
|
||||
!.....
|
||||
! INFO (output) INTEGER
|
||||
! -i < 0 :: On entry, the i-th argument had an
|
||||
! illegal value
|
||||
! = 0 :: Successful return.
|
||||
! = 1 :: Void input. Quick exit (M=0 or N=0).
|
||||
! = 2 :: The SVD computation of X did not converge.
|
||||
! Suggestion: Check the input data and/or
|
||||
! repeat with different WHTSVD.
|
||||
! = 3 :: The computation of the eigenvalues did not
|
||||
! converge.
|
||||
! = 4 :: If data scaling was requested on input and
|
||||
! the procedure found inconsistency in the data
|
||||
! such that for some column index i,
|
||||
! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
|
||||
! to zero if JOBS=='C'. The computation proceeds
|
||||
! with original or modified data and warning
|
||||
! flag is set with INFO=4.
|
||||
!.............................................................
|
||||
!.............................................................
|
||||
! Parameters
|
||||
! ~~~~~~~~~~
|
||||
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP
|
||||
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP
|
||||
! COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP )
|
||||
COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP )
|
||||
!
|
||||
! Local scalars
|
||||
! ~~~~~~~~~~~~~
|
||||
INTEGER :: IMINWR, INFO1, MINMN, MLRWRK, &
|
||||
MLWDMD, MLWGQR, MLWMQR, MLWORK, &
|
||||
MLWQR, OLWDMD, OLWGQR, OLWMQR, &
|
||||
OLWORK, OLWQR
|
||||
LOGICAL :: LQUERY, SCCOLX, SCCOLY, WANTQ, &
|
||||
WNTTRF, WNTRES, WNTVEC, WNTVCF, &
|
||||
WNTVCQ, WNTREF, WNTEX
|
||||
CHARACTER(LEN=1) :: JOBVL
|
||||
!
|
||||
! External functions (BLAS and LAPACK)
|
||||
! ~~~~~~~~~~~~~~~~~
|
||||
LOGICAL LSAME
|
||||
EXTERNAL LSAME
|
||||
!
|
||||
! External subroutines (BLAS and LAPACK)
|
||||
! ~~~~~~~~~~~~~~~~~~~~
|
||||
EXTERNAL CGEQRF, CLACPY, CLASET, CUNGQR, &
|
||||
CUNMQR, XERBLA
|
||||
|
||||
! External subroutines
|
||||
! ~~~~~~~~~~~~~~~~~~~~
|
||||
EXTERNAL CGEDMD
|
||||
|
||||
! Intrinsic functions
|
||||
! ~~~~~~~~~~~~~~~~~~~
|
||||
INTRINSIC MAX, MIN, INT
|
||||
!..........................................................
|
||||
!
|
||||
! Test the input arguments
|
||||
WNTRES = LSAME(JOBR,'R')
|
||||
SCCOLX = LSAME(JOBS,'S') .OR. LSAME( JOBS, 'C' )
|
||||
SCCOLY = LSAME(JOBS,'Y')
|
||||
WNTVEC = LSAME(JOBZ,'V')
|
||||
WNTVCF = LSAME(JOBZ,'F')
|
||||
WNTVCQ = LSAME(JOBZ,'Q')
|
||||
WNTREF = LSAME(JOBF,'R')
|
||||
WNTEX = LSAME(JOBF,'E')
|
||||
WANTQ = LSAME(JOBQ,'Q')
|
||||
WNTTRF = LSAME(JOBT,'R')
|
||||
MINMN = MIN(M,N)
|
||||
INFO = 0
|
||||
LQUERY = ( ( LWORK == -1 ) .OR. ( LIWORK == -1 ) )
|
||||
!
|
||||
IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. &
|
||||
LSAME(JOBS,'N')) ) THEN
|
||||
INFO = -1
|
||||
ELSE IF ( .NOT. (WNTVEC .OR. WNTVCF .OR. WNTVCQ &
|
||||
.OR. LSAME(JOBZ,'N')) ) THEN
|
||||
INFO = -2
|
||||
ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. &
|
||||
( WNTRES .AND. LSAME(JOBZ,'N') ) ) THEN
|
||||
INFO = -3
|
||||
ELSE IF ( .NOT. (WANTQ .OR. LSAME(JOBQ,'N')) ) THEN
|
||||
INFO = -4
|
||||
ELSE IF ( .NOT. ( WNTTRF .OR. LSAME(JOBT,'N') ) ) THEN
|
||||
INFO = -5
|
||||
ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. &
|
||||
LSAME(JOBF,'N') ) ) THEN
|
||||
INFO = -6
|
||||
ELSE IF ( .NOT. ((WHTSVD == 1).OR.(WHTSVD == 2).OR. &
|
||||
(WHTSVD == 3).OR.(WHTSVD == 4)) ) THEN
|
||||
INFO = -7
|
||||
ELSE IF ( M < 0 ) THEN
|
||||
INFO = -8
|
||||
ELSE IF ( ( N < 0 ) .OR. ( N > M+1 ) ) THEN
|
||||
INFO = -9
|
||||
ELSE IF ( LDF < M ) THEN
|
||||
INFO = -11
|
||||
ELSE IF ( LDX < MINMN ) THEN
|
||||
INFO = -13
|
||||
ELSE IF ( LDY < MINMN ) THEN
|
||||
INFO = -15
|
||||
ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. &
|
||||
((NRNK >= 1).AND.(NRNK <=N ))) ) THEN
|
||||
INFO = -16
|
||||
ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN
|
||||
INFO = -17
|
||||
ELSE IF ( LDZ < M ) THEN
|
||||
INFO = -21
|
||||
ELSE IF ( (WNTREF.OR.WNTEX ).AND.( LDB < MINMN ) ) THEN
|
||||
INFO = -24
|
||||
ELSE IF ( LDV < N-1 ) THEN
|
||||
INFO = -26
|
||||
ELSE IF ( LDS < N-1 ) THEN
|
||||
INFO = -28
|
||||
END IF
|
||||
!
|
||||
IF ( WNTVEC .OR. WNTVCF .OR. WNTVCQ ) THEN
|
||||
JOBVL = 'V'
|
||||
ELSE
|
||||
JOBVL = 'N'
|
||||
END IF
|
||||
IF ( INFO == 0 ) THEN
|
||||
! Compute the minimal and the optimal workspace
|
||||
! requirements. Simulate running the code and
|
||||
! determine minimal and optimal sizes of the
|
||||
! workspace at any moment of the run.
|
||||
IF ( ( N == 0 ) .OR. ( N == 1 ) ) THEN
|
||||
! All output except K is void. INFO=1 signals
|
||||
! the void input. In case of a workspace query,
|
||||
! the minimal workspace lengths are returned.
|
||||
IF ( LQUERY ) THEN
|
||||
IWORK(1) = 1
|
||||
WORK(1) = 2
|
||||
WORK(2) = 2
|
||||
ELSE
|
||||
K = 0
|
||||
END IF
|
||||
INFO = 1
|
||||
RETURN
|
||||
END IF
|
||||
|
||||
MLRWRK = 2
|
||||
MLWORK = 2
|
||||
OLWORK = 2
|
||||
IMINWR = 1
|
||||
MLWQR = MAX(1,N) ! Minimal workspace length for CGEQRF.
|
||||
MLWORK = MAX(MLWORK,MINMN + MLWQR)
|
||||
|
||||
IF ( LQUERY ) THEN
|
||||
CALL CGEQRF( M, N, F, LDF, ZWORK, ZWORK, -1, &
|
||||
INFO1 )
|
||||
OLWQR = INT(ZWORK(1))
|
||||
OLWORK = MAX(OLWORK,MINMN + OLWQR)
|
||||
END IF
|
||||
CALL CGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN,&
|
||||
N-1, X, LDX, Y, LDY, NRNK, TOL, K, &
|
||||
EIGS, Z, LDZ, RES, B, LDB, V, LDV, &
|
||||
S, LDS, ZWORK, LZWORK, WORK, -1, IWORK,&
|
||||
LIWORK, INFO1 )
|
||||
MLWDMD = INT(ZWORK(1))
|
||||
MLWORK = MAX(MLWORK, MINMN + MLWDMD)
|
||||
MLRWRK = MAX(MLRWRK, INT(WORK(1)))
|
||||
IMINWR = MAX(IMINWR, IWORK(1))
|
||||
IF ( LQUERY ) THEN
|
||||
OLWDMD = INT(ZWORK(2))
|
||||
OLWORK = MAX(OLWORK, MINMN+OLWDMD)
|
||||
END IF
|
||||
IF ( WNTVEC .OR. WNTVCF ) THEN
|
||||
MLWMQR = MAX(1,N)
|
||||
MLWORK = MAX(MLWORK, MINMN+MLWMQR)
|
||||
IF ( LQUERY ) THEN
|
||||
CALL CUNMQR( 'L','N', M, N, MINMN, F, LDF, &
|
||||
ZWORK, Z, LDZ, ZWORK, -1, INFO1 )
|
||||
OLWMQR = INT(ZWORK(1))
|
||||
OLWORK = MAX(OLWORK, MINMN+OLWMQR)
|
||||
END IF
|
||||
END IF
|
||||
IF ( WANTQ ) THEN
|
||||
MLWGQR = MAX(1,N)
|
||||
MLWORK = MAX(MLWORK, MINMN+MLWGQR)
|
||||
IF ( LQUERY ) THEN
|
||||
CALL CUNGQR( M, MINMN, MINMN, F, LDF, ZWORK, &
|
||||
ZWORK, -1, INFO1 )
|
||||
OLWGQR = INT(ZWORK(1))
|
||||
OLWORK = MAX(OLWORK, MINMN+OLWGQR)
|
||||
END IF
|
||||
END IF
|
||||
IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -34
|
||||
IF ( LWORK < MLRWRK .AND. (.NOT.LQUERY) ) INFO = -32
|
||||
IF ( LZWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -30
|
||||
END IF
|
||||
IF( INFO /= 0 ) THEN
|
||||
CALL XERBLA( 'CGEDMDQ', -INFO )
|
||||
RETURN
|
||||
ELSE IF ( LQUERY ) THEN
|
||||
! Return minimal and optimal workspace sizes
|
||||
IWORK(1) = IMINWR
|
||||
ZWORK(1) = MLWORK
|
||||
ZWORK(2) = OLWORK
|
||||
WORK(1) = MLRWRK
|
||||
WORK(2) = MLRWRK
|
||||
RETURN
|
||||
END IF
|
||||
!.....
|
||||
! Initial QR factorization that is used to represent the
|
||||
! snapshots as elements of lower dimensional subspace.
|
||||
! For large scale computation with M >>N , at this place
|
||||
! one can use an out of core QRF.
|
||||
!
|
||||
CALL CGEQRF( M, N, F, LDF, ZWORK, &
|
||||
ZWORK(MINMN+1), LZWORK-MINMN, INFO1 )
|
||||
!
|
||||
! Define X and Y as the snapshots representations in the
|
||||
! orthogonal basis computed in the QR factorization.
|
||||
! X corresponds to the leading N-1 and Y to the trailing
|
||||
! N-1 snapshots.
|
||||
CALL CLASET( 'L', MINMN, N-1, ZZERO, ZZERO, X, LDX )
|
||||
CALL CLACPY( 'U', MINMN, N-1, F, LDF, X, LDX )
|
||||
CALL CLACPY( 'A', MINMN, N-1, F(1,2), LDF, Y, LDY )
|
||||
IF ( M >= 3 ) THEN
|
||||
CALL CLASET( 'L', MINMN-2, N-2, ZZERO, ZZERO, &
|
||||
Y(3,1), LDY )
|
||||
END IF
|
||||
!
|
||||
! Compute the DMD of the projected snapshot pairs (X,Y)
|
||||
CALL CGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN, &
|
||||
N-1, X, LDX, Y, LDY, NRNK, TOL, K, &
|
||||
EIGS, Z, LDZ, RES, B, LDB, V, LDV, &
|
||||
S, LDS, ZWORK(MINMN+1), LZWORK-MINMN, &
|
||||
WORK, LWORK, IWORK, LIWORK, INFO1 )
|
||||
IF ( INFO1 == 2 .OR. INFO1 == 3 ) THEN
|
||||
! Return with error code. See CGEDMD for details.
|
||||
INFO = INFO1
|
||||
RETURN
|
||||
ELSE
|
||||
INFO = INFO1
|
||||
END IF
|
||||
!
|
||||
! The Ritz vectors (Koopman modes) can be explicitly
|
||||
! formed or returned in factored form.
|
||||
IF ( WNTVEC ) THEN
|
||||
! Compute the eigenvectors explicitly.
|
||||
IF ( M > MINMN ) CALL CLASET( 'A', M-MINMN, K, ZZERO, &
|
||||
ZZERO, Z(MINMN+1,1), LDZ )
|
||||
CALL CUNMQR( 'L','N', M, K, MINMN, F, LDF, ZWORK, Z, &
|
||||
LDZ, ZWORK(MINMN+1), LZWORK-MINMN, INFO1 )
|
||||
ELSE IF ( WNTVCF ) THEN
|
||||
! Return the Ritz vectors (eigenvectors) in factored
|
||||
! form Z*V, where Z contains orthonormal matrix (the
|
||||
! product of Q from the initial QR factorization and
|
||||
! the SVD/POD_basis returned by CGEDMD in X) and the
|
||||
! second factor (the eigenvectors of the Rayleigh
|
||||
! quotient) is in the array V, as returned by CGEDMD.
|
||||
CALL CLACPY( 'A', N, K, X, LDX, Z, LDZ )
|
||||
IF ( M > N ) CALL CLASET( 'A', M-N, K, ZZERO, ZZERO, &
|
||||
Z(N+1,1), LDZ )
|
||||
CALL CUNMQR( 'L','N', M, K, MINMN, F, LDF, ZWORK, Z, &
|
||||
LDZ, ZWORK(MINMN+1), LZWORK-MINMN, INFO1 )
|
||||
END IF
|
||||
!
|
||||
! Some optional output variables:
|
||||
!
|
||||
! The upper triangular factor R in the initial QR
|
||||
! factorization is optionally returned in the array Y.
|
||||
! This is useful if this call to CGEDMDQ is to be
|
||||
|
||||
! followed by a streaming DMD that is implemented in a
|
||||
! QR compressed form.
|
||||
IF ( WNTTRF ) THEN ! Return the upper triangular R in Y
|
||||
CALL CLASET( 'A', MINMN, N, ZZERO, ZZERO, Y, LDY )
|
||||
CALL CLACPY( 'U', MINMN, N, F, LDF, Y, LDY )
|
||||
END IF
|
||||
!
|
||||
! The orthonormal/unitary factor Q in the initial QR
|
||||
! factorization is optionally returned in the array F.
|
||||
! Same as with the triangular factor above, this is
|
||||
! useful in a streaming DMD.
|
||||
IF ( WANTQ ) THEN ! Q overwrites F
|
||||
CALL CUNGQR( M, MINMN, MINMN, F, LDF, ZWORK, &
|
||||
ZWORK(MINMN+1), LZWORK-MINMN, INFO1 )
|
||||
END IF
|
||||
!
|
||||
RETURN
|
||||
!
|
||||
END SUBROUTINE CGEDMDQ
|
||||
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,704 @@
|
|||
SUBROUTINE DGEDMDQ( JOBS, JOBZ, JOBR, JOBQ, JOBT, JOBF, &
|
||||
WHTSVD, M, N, F, LDF, X, LDX, Y, &
|
||||
LDY, NRNK, TOL, K, REIG, IMEIG, &
|
||||
Z, LDZ, RES, B, LDB, V, LDV, &
|
||||
S, LDS, WORK, LWORK, IWORK, LIWORK, INFO )
|
||||
! March 2023
|
||||
!.....
|
||||
USE iso_fortran_env
|
||||
IMPLICIT NONE
|
||||
INTEGER, PARAMETER :: WP = real64
|
||||
!.....
|
||||
! Scalar arguments
|
||||
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBQ, &
|
||||
JOBT, JOBF
|
||||
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDF, LDX, &
|
||||
LDY, NRNK, LDZ, LDB, LDV, &
|
||||
LDS, LWORK, LIWORK
|
||||
INTEGER, INTENT(OUT) :: INFO, K
|
||||
REAL(KIND=WP), INTENT(IN) :: TOL
|
||||
! Array arguments
|
||||
REAL(KIND=WP), INTENT(INOUT) :: F(LDF,*)
|
||||
REAL(KIND=WP), INTENT(OUT) :: X(LDX,*), Y(LDY,*), &
|
||||
Z(LDZ,*), B(LDB,*), &
|
||||
V(LDV,*), S(LDS,*)
|
||||
REAL(KIND=WP), INTENT(OUT) :: REIG(*), IMEIG(*), &
|
||||
RES(*)
|
||||
REAL(KIND=WP), INTENT(OUT) :: WORK(*)
|
||||
INTEGER, INTENT(OUT) :: IWORK(*)
|
||||
!.....
|
||||
! Purpose
|
||||
! =======
|
||||
! DGEDMDQ computes the Dynamic Mode Decomposition (DMD) for
|
||||
! a pair of data snapshot matrices, using a QR factorization
|
||||
! based compression of the data. For the input matrices
|
||||
! X and Y such that Y = A*X with an unaccessible matrix
|
||||
! A, DGEDMDQ computes a certain number of Ritz pairs of A using
|
||||
! the standard Rayleigh-Ritz extraction from a subspace of
|
||||
! range(X) that is determined using the leading left singular
|
||||
! vectors of X. Optionally, DGEDMDQ returns the residuals
|
||||
! of the computed Ritz pairs, the information needed for
|
||||
! a refinement of the Ritz vectors, or the eigenvectors of
|
||||
! the Exact DMD.
|
||||
! For further details see the references listed
|
||||
! below. For more details of the implementation see [3].
|
||||
!
|
||||
! References
|
||||
! ==========
|
||||
! [1] P. Schmid: Dynamic mode decomposition of numerical
|
||||
! and experimental data,
|
||||
! Journal of Fluid Mechanics 656, 5-28, 2010.
|
||||
! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
|
||||
! decompositions: analysis and enhancements,
|
||||
! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
|
||||
! [3] Z. Drmac: A LAPACK implementation of the Dynamic
|
||||
! Mode Decomposition I. Technical report. AIMDyn Inc.
|
||||
! and LAPACK Working Note 298.
|
||||
! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
|
||||
! Brunton, N. Kutz: On Dynamic Mode Decomposition:
|
||||
! Theory and Applications, Journal of Computational
|
||||
! Dynamics 1(2), 391 -421, 2014.
|
||||
!
|
||||
! Developed and supported by:
|
||||
! ===========================
|
||||
! Developed and coded by Zlatko Drmac, Faculty of Science,
|
||||
! University of Zagreb; drmac@math.hr
|
||||
! In cooperation with
|
||||
! AIMdyn Inc., Santa Barbara, CA.
|
||||
! and supported by
|
||||
! - DARPA SBIR project "Koopman Operator-Based Forecasting
|
||||
! for Nonstationary Processes from Near-Term, Limited
|
||||
! Observational Data" Contract No: W31P4Q-21-C-0007
|
||||
! - DARPA PAI project "Physics-Informed Machine Learning
|
||||
! Methodologies" Contract No: HR0011-18-9-0033
|
||||
! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
|
||||
! Framework for Space-Time Analysis of Process Dynamics"
|
||||
! Contract No: HR0011-16-C-0116
|
||||
! Any opinions, findings and conclusions or recommendations
|
||||
! expressed in this material are those of the author and
|
||||
! do not necessarily reflect the views of the DARPA SBIR
|
||||
! Program Office.
|
||||
!============================================================
|
||||
! Distribution Statement A:
|
||||
! Approved for Public Release, Distribution Unlimited.
|
||||
! Cleared by DARPA on September 29, 2022
|
||||
!============================================================
|
||||
!......................................................................
|
||||
! Arguments
|
||||
! =========
|
||||
! JOBS (input) CHARACTER*1
|
||||
! Determines whether the initial data snapshots are scaled
|
||||
! by a diagonal matrix. The data snapshots are the columns
|
||||
! of F. The leading N-1 columns of F are denoted X and the
|
||||
! trailing N-1 columns are denoted Y.
|
||||
! 'S' :: The data snapshots matrices X and Y are multiplied
|
||||
! with a diagonal matrix D so that X*D has unit
|
||||
! nonzero columns (in the Euclidean 2-norm)
|
||||
! 'C' :: The snapshots are scaled as with the 'S' option.
|
||||
! If it is found that an i-th column of X is zero
|
||||
! vector and the corresponding i-th column of Y is
|
||||
! non-zero, then the i-th column of Y is set to
|
||||
! zero and a warning flag is raised.
|
||||
! 'Y' :: The data snapshots matrices X and Y are multiplied
|
||||
! by a diagonal matrix D so that Y*D has unit
|
||||
! nonzero columns (in the Euclidean 2-norm)
|
||||
! 'N' :: No data scaling.
|
||||
!.....
|
||||
! JOBZ (input) CHARACTER*1
|
||||
! Determines whether the eigenvectors (Koopman modes) will
|
||||
! be computed.
|
||||
! 'V' :: The eigenvectors (Koopman modes) will be computed
|
||||
! and returned in the matrix Z.
|
||||
! See the description of Z.
|
||||
! 'F' :: The eigenvectors (Koopman modes) will be returned
|
||||
! in factored form as the product Z*V, where Z
|
||||
! is orthonormal and V contains the eigenvectors
|
||||
! of the corresponding Rayleigh quotient.
|
||||
! See the descriptions of F, V, Z.
|
||||
! 'Q' :: The eigenvectors (Koopman modes) will be returned
|
||||
! in factored form as the product Q*Z, where Z
|
||||
! contains the eigenvectors of the compression of the
|
||||
! underlying discretized operator onto the span of
|
||||
! the data snapshots. See the descriptions of F, V, Z.
|
||||
! Q is from the initial QR factorization.
|
||||
! 'N' :: The eigenvectors are not computed.
|
||||
!.....
|
||||
! JOBR (input) CHARACTER*1
|
||||
! Determines whether to compute the residuals.
|
||||
! 'R' :: The residuals for the computed eigenpairs will
|
||||
! be computed and stored in the array RES.
|
||||
! See the description of RES.
|
||||
! For this option to be legal, JOBZ must be 'V'.
|
||||
! 'N' :: The residuals are not computed.
|
||||
!.....
|
||||
! JOBQ (input) CHARACTER*1
|
||||
! Specifies whether to explicitly compute and return the
|
||||
! orthogonal matrix from the QR factorization.
|
||||
! 'Q' :: The matrix Q of the QR factorization of the data
|
||||
! snapshot matrix is computed and stored in the
|
||||
! array F. See the description of F.
|
||||
! 'N' :: The matrix Q is not explicitly computed.
|
||||
!.....
|
||||
! JOBT (input) CHARACTER*1
|
||||
! Specifies whether to return the upper triangular factor
|
||||
! from the QR factorization.
|
||||
! 'R' :: The matrix R of the QR factorization of the data
|
||||
! snapshot matrix F is returned in the array Y.
|
||||
! See the description of Y and Further details.
|
||||
! 'N' :: The matrix R is not returned.
|
||||
!.....
|
||||
! JOBF (input) CHARACTER*1
|
||||
! Specifies whether to store information needed for post-
|
||||
! processing (e.g. computing refined Ritz vectors)
|
||||
! 'R' :: The matrix needed for the refinement of the Ritz
|
||||
! vectors is computed and stored in the array B.
|
||||
! See the description of B.
|
||||
! 'E' :: The unscaled eigenvectors of the Exact DMD are
|
||||
! computed and returned in the array B. See the
|
||||
! description of B.
|
||||
! 'N' :: No eigenvector refinement data is computed.
|
||||
! To be useful on exit, this option needs JOBQ='Q'.
|
||||
!.....
|
||||
! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
|
||||
! Allows for a selection of the SVD algorithm from the
|
||||
! LAPACK library.
|
||||
! 1 :: DGESVD (the QR SVD algorithm)
|
||||
! 2 :: DGESDD (the Divide and Conquer algorithm; if enough
|
||||
! workspace available, this is the fastest option)
|
||||
! 3 :: DGESVDQ (the preconditioned QR SVD ; this and 4
|
||||
! are the most accurate options)
|
||||
! 4 :: DGEJSV (the preconditioned Jacobi SVD; this and 3
|
||||
! are the most accurate options)
|
||||
! For the four methods above, a significant difference in
|
||||
! the accuracy of small singular values is possible if
|
||||
! the snapshots vary in norm so that X is severely
|
||||
! ill-conditioned. If small (smaller than EPS*||X||)
|
||||
! singular values are of interest and JOBS=='N', then
|
||||
! the options (3, 4) give the most accurate results, where
|
||||
! the option 4 is slightly better and with stronger
|
||||
! theoretical background.
|
||||
! If JOBS=='S', i.e. the columns of X will be normalized,
|
||||
! then all methods give nearly equally accurate results.
|
||||
!.....
|
||||
! M (input) INTEGER, M >= 0
|
||||
! The state space dimension (the number of rows of F).
|
||||
!.....
|
||||
! N (input) INTEGER, 0 <= N <= M
|
||||
! The number of data snapshots from a single trajectory,
|
||||
! taken at equidistant discrete times. This is the
|
||||
! number of columns of F.
|
||||
!.....
|
||||
! F (input/output) REAL(KIND=WP) M-by-N array
|
||||
! > On entry,
|
||||
! the columns of F are the sequence of data snapshots
|
||||
! from a single trajectory, taken at equidistant discrete
|
||||
! times. It is assumed that the column norms of F are
|
||||
! in the range of the normalized floating point numbers.
|
||||
! < On exit,
|
||||
! If JOBQ == 'Q', the array F contains the orthogonal
|
||||
! matrix/factor of the QR factorization of the initial
|
||||
! data snapshots matrix F. See the description of JOBQ.
|
||||
! If JOBQ == 'N', the entries in F strictly below the main
|
||||
! diagonal contain, column-wise, the information on the
|
||||
! Householder vectors, as returned by DGEQRF. The
|
||||
! remaining information to restore the orthogonal matrix
|
||||
! of the initial QR factorization is stored in WORK(1:N).
|
||||
! See the description of WORK.
|
||||
!.....
|
||||
! LDF (input) INTEGER, LDF >= M
|
||||
! The leading dimension of the array F.
|
||||
!.....
|
||||
! X (workspace/output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array
|
||||
! X is used as workspace to hold representations of the
|
||||
! leading N-1 snapshots in the orthonormal basis computed
|
||||
! in the QR factorization of F.
|
||||
! On exit, the leading K columns of X contain the leading
|
||||
! K left singular vectors of the above described content
|
||||
! of X. To lift them to the space of the left singular
|
||||
! vectors U(:,1:K)of the input data, pre-multiply with the
|
||||
! Q factor from the initial QR factorization.
|
||||
! See the descriptions of F, K, V and Z.
|
||||
!.....
|
||||
! LDX (input) INTEGER, LDX >= N
|
||||
! The leading dimension of the array X.
|
||||
!.....
|
||||
! Y (workspace/output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array
|
||||
! Y is used as workspace to hold representations of the
|
||||
! trailing N-1 snapshots in the orthonormal basis computed
|
||||
! in the QR factorization of F.
|
||||
! On exit,
|
||||
! If JOBT == 'R', Y contains the MIN(M,N)-by-N upper
|
||||
! triangular factor from the QR factorization of the data
|
||||
! snapshot matrix F.
|
||||
!.....
|
||||
! LDY (input) INTEGER , LDY >= N
|
||||
! The leading dimension of the array Y.
|
||||
!.....
|
||||
! NRNK (input) INTEGER
|
||||
! Determines the mode how to compute the numerical rank,
|
||||
! i.e. how to truncate small singular values of the input
|
||||
! matrix X. On input, if
|
||||
! NRNK = -1 :: i-th singular value sigma(i) is truncated
|
||||
! if sigma(i) <= TOL*sigma(1)
|
||||
! This option is recommended.
|
||||
! NRNK = -2 :: i-th singular value sigma(i) is truncated
|
||||
! if sigma(i) <= TOL*sigma(i-1)
|
||||
! This option is included for R&D purposes.
|
||||
! It requires highly accurate SVD, which
|
||||
! may not be feasible.
|
||||
! The numerical rank can be enforced by using positive
|
||||
! value of NRNK as follows:
|
||||
! 0 < NRNK <= N-1 :: at most NRNK largest singular values
|
||||
! will be used. If the number of the computed nonzero
|
||||
! singular values is less than NRNK, then only those
|
||||
! nonzero values will be used and the actually used
|
||||
! dimension is less than NRNK. The actual number of
|
||||
! the nonzero singular values is returned in the variable
|
||||
! K. See the description of K.
|
||||
!.....
|
||||
! TOL (input) REAL(KIND=WP), 0 <= TOL < 1
|
||||
! The tolerance for truncating small singular values.
|
||||
! See the description of NRNK.
|
||||
!.....
|
||||
! K (output) INTEGER, 0 <= K <= N
|
||||
! The dimension of the SVD/POD basis for the leading N-1
|
||||
! data snapshots (columns of F) and the number of the
|
||||
! computed Ritz pairs. The value of K is determined
|
||||
! according to the rule set by the parameters NRNK and
|
||||
! TOL. See the descriptions of NRNK and TOL.
|
||||
!.....
|
||||
! REIG (output) REAL(KIND=WP) (N-1)-by-1 array
|
||||
! The leading K (K<=N) entries of REIG contain
|
||||
! the real parts of the computed eigenvalues
|
||||
! REIG(1:K) + sqrt(-1)*IMEIG(1:K).
|
||||
! See the descriptions of K, IMEIG, Z.
|
||||
!.....
|
||||
! IMEIG (output) REAL(KIND=WP) (N-1)-by-1 array
|
||||
! The leading K (K<N) entries of REIG contain
|
||||
! the imaginary parts of the computed eigenvalues
|
||||
! REIG(1:K) + sqrt(-1)*IMEIG(1:K).
|
||||
! The eigenvalues are determined as follows:
|
||||
! If IMEIG(i) == 0, then the corresponding eigenvalue is
|
||||
! real, LAMBDA(i) = REIG(i).
|
||||
! If IMEIG(i)>0, then the corresponding complex
|
||||
! conjugate pair of eigenvalues reads
|
||||
! LAMBDA(i) = REIG(i) + sqrt(-1)*IMAG(i)
|
||||
! LAMBDA(i+1) = REIG(i) - sqrt(-1)*IMAG(i)
|
||||
! That is, complex conjugate pairs have consequtive
|
||||
! indices (i,i+1), with the positive imaginary part
|
||||
! listed first.
|
||||
! See the descriptions of K, REIG, Z.
|
||||
!.....
|
||||
! Z (workspace/output) REAL(KIND=WP) M-by-(N-1) array
|
||||
! If JOBZ =='V' then
|
||||
! Z contains real Ritz vectors as follows:
|
||||
! If IMEIG(i)=0, then Z(:,i) is an eigenvector of
|
||||
! the i-th Ritz value.
|
||||
! If IMEIG(i) > 0 (and IMEIG(i+1) < 0) then
|
||||
! [Z(:,i) Z(:,i+1)] span an invariant subspace and
|
||||
! the Ritz values extracted from this subspace are
|
||||
! REIG(i) + sqrt(-1)*IMEIG(i) and
|
||||
! REIG(i) - sqrt(-1)*IMEIG(i).
|
||||
! The corresponding eigenvectors are
|
||||
! Z(:,i) + sqrt(-1)*Z(:,i+1) and
|
||||
! Z(:,i) - sqrt(-1)*Z(:,i+1), respectively.
|
||||
! If JOBZ == 'F', then the above descriptions hold for
|
||||
! the columns of Z*V, where the columns of V are the
|
||||
! eigenvectors of the K-by-K Rayleigh quotient, and Z is
|
||||
! orthonormal. The columns of V are similarly structured:
|
||||
! If IMEIG(i) == 0 then Z*V(:,i) is an eigenvector, and if
|
||||
! IMEIG(i) > 0 then Z*V(:,i)+sqrt(-1)*Z*V(:,i+1) and
|
||||
! Z*V(:,i)-sqrt(-1)*Z*V(:,i+1)
|
||||
! are the eigenvectors of LAMBDA(i), LAMBDA(i+1).
|
||||
! See the descriptions of REIG, IMEIG, X and V.
|
||||
!.....
|
||||
! LDZ (input) INTEGER , LDZ >= M
|
||||
! The leading dimension of the array Z.
|
||||
!.....
|
||||
! RES (output) REAL(KIND=WP) (N-1)-by-1 array
|
||||
! RES(1:K) contains the residuals for the K computed
|
||||
! Ritz pairs.
|
||||
! If LAMBDA(i) is real, then
|
||||
! RES(i) = || A * Z(:,i) - LAMBDA(i)*Z(:,i))||_2.
|
||||
! If [LAMBDA(i), LAMBDA(i+1)] is a complex conjugate pair
|
||||
! then
|
||||
! RES(i)=RES(i+1) = || A * Z(:,i:i+1) - Z(:,i:i+1) *B||_F
|
||||
! where B = [ real(LAMBDA(i)) imag(LAMBDA(i)) ]
|
||||
! [-imag(LAMBDA(i)) real(LAMBDA(i)) ].
|
||||
! It holds that
|
||||
! RES(i) = || A*ZC(:,i) - LAMBDA(i) *ZC(:,i) ||_2
|
||||
! RES(i+1) = || A*ZC(:,i+1) - LAMBDA(i+1)*ZC(:,i+1) ||_2
|
||||
! where ZC(:,i) = Z(:,i) + sqrt(-1)*Z(:,i+1)
|
||||
! ZC(:,i+1) = Z(:,i) - sqrt(-1)*Z(:,i+1)
|
||||
! See the description of Z.
|
||||
!.....
|
||||
! B (output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array.
|
||||
! IF JOBF =='R', B(1:N,1:K) contains A*U(:,1:K), and can
|
||||
! be used for computing the refined vectors; see further
|
||||
! details in the provided references.
|
||||
! If JOBF == 'E', B(1:N,1;K) contains
|
||||
! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
|
||||
! Exact DMD, up to scaling by the inverse eigenvalues.
|
||||
! In both cases, the content of B can be lifted to the
|
||||
! original dimension of the input data by pre-multiplying
|
||||
! with the Q factor from the initial QR factorization.
|
||||
! Here A denotes a compression of the underlying operator.
|
||||
! See the descriptions of F and X.
|
||||
! If JOBF =='N', then B is not referenced.
|
||||
!.....
|
||||
! LDB (input) INTEGER, LDB >= MIN(M,N)
|
||||
! The leading dimension of the array B.
|
||||
!.....
|
||||
! V (workspace/output) REAL(KIND=WP) (N-1)-by-(N-1) array
|
||||
! On exit, V(1:K,1:K) contains the K eigenvectors of
|
||||
! the Rayleigh quotient. The eigenvectors of a complex
|
||||
! conjugate pair of eigenvalues are returned in real form
|
||||
! as explained in the description of Z. The Ritz vectors
|
||||
! (returned in Z) are the product of X and V; see
|
||||
! the descriptions of X and Z.
|
||||
!.....
|
||||
! LDV (input) INTEGER, LDV >= N-1
|
||||
! The leading dimension of the array V.
|
||||
!.....
|
||||
! S (output) REAL(KIND=WP) (N-1)-by-(N-1) array
|
||||
! The array S(1:K,1:K) is used for the matrix Rayleigh
|
||||
! quotient. This content is overwritten during
|
||||
! the eigenvalue decomposition by DGEEV.
|
||||
! See the description of K.
|
||||
!.....
|
||||
! LDS (input) INTEGER, LDS >= N-1
|
||||
! The leading dimension of the array S.
|
||||
!.....
|
||||
! WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array
|
||||
! On exit,
|
||||
! WORK(1:MIN(M,N)) contains the scalar factors of the
|
||||
! elementary reflectors as returned by DGEQRF of the
|
||||
! M-by-N input matrix F.
|
||||
! WORK(MIN(M,N)+1:MIN(M,N)+N-1) contains the singular values of
|
||||
! the input submatrix F(1:M,1:N-1).
|
||||
! If the call to DGEDMDQ is only workspace query, then
|
||||
! WORK(1) contains the minimal workspace length and
|
||||
! WORK(2) is the optimal workspace length. Hence, the
|
||||
! length of work is at least 2.
|
||||
! See the description of LWORK.
|
||||
!.....
|
||||
! LWORK (input) INTEGER
|
||||
! The minimal length of the workspace vector WORK.
|
||||
! LWORK is calculated as follows:
|
||||
! Let MLWQR = N (minimal workspace for DGEQRF[M,N])
|
||||
! MLWDMD = minimal workspace for DGEDMD (see the
|
||||
! description of LWORK in DGEDMD) for
|
||||
! snapshots of dimensions MIN(M,N)-by-(N-1)
|
||||
! MLWMQR = N (minimal workspace for
|
||||
! DORMQR['L','N',M,N,N])
|
||||
! MLWGQR = N (minimal workspace for DORGQR[M,N,N])
|
||||
! Then
|
||||
! LWORK = MAX(N+MLWQR, N+MLWDMD)
|
||||
! is updated as follows:
|
||||
! if JOBZ == 'V' or JOBZ == 'F' THEN
|
||||
! LWORK = MAX( LWORK, MIN(M,N)+N-1+MLWMQR )
|
||||
! if JOBQ == 'Q' THEN
|
||||
! LWORK = MAX( LWORK, MIN(M,N)+N-1+MLWGQR)
|
||||
! If on entry LWORK = -1, then a workspace query is
|
||||
! assumed and the procedure only computes the minimal
|
||||
! and the optimal workspace lengths for both WORK and
|
||||
! IWORK. See the descriptions of WORK and IWORK.
|
||||
!.....
|
||||
! IWORK (workspace/output) INTEGER LIWORK-by-1 array
|
||||
! Workspace that is required only if WHTSVD equals
|
||||
! 2 , 3 or 4. (See the description of WHTSVD).
|
||||
! If on entry LWORK =-1 or LIWORK=-1, then the
|
||||
! minimal length of IWORK is computed and returned in
|
||||
! IWORK(1). See the description of LIWORK.
|
||||
!.....
|
||||
! LIWORK (input) INTEGER
|
||||
! The minimal length of the workspace vector IWORK.
|
||||
! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
|
||||
! Let M1=MIN(M,N), N1=N-1. Then
|
||||
! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M1,N1))
|
||||
! If WHTSVD == 3, then LIWORK >= MAX(1,M1+N1-1)
|
||||
! If WHTSVD == 4, then LIWORK >= MAX(3,M1+3*N1)
|
||||
! If on entry LIWORK = -1, then a workspace query is
|
||||
! assumed and the procedure only computes the minimal
|
||||
! and the optimal workspace lengths for both WORK and
|
||||
! IWORK. See the descriptions of WORK and IWORK.
|
||||
!.....
|
||||
! INFO (output) INTEGER
|
||||
! -i < 0 :: On entry, the i-th argument had an
|
||||
! illegal value
|
||||
! = 0 :: Successful return.
|
||||
! = 1 :: Void input. Quick exit (M=0 or N=0).
|
||||
! = 2 :: The SVD computation of X did not converge.
|
||||
! Suggestion: Check the input data and/or
|
||||
! repeat with different WHTSVD.
|
||||
! = 3 :: The computation of the eigenvalues did not
|
||||
! converge.
|
||||
! = 4 :: If data scaling was requested on input and
|
||||
! the procedure found inconsistency in the data
|
||||
! such that for some column index i,
|
||||
! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
|
||||
! to zero if JOBS=='C'. The computation proceeds
|
||||
! with original or modified data and warning
|
||||
! flag is set with INFO=4.
|
||||
!.............................................................
|
||||
!.............................................................
|
||||
! Parameters
|
||||
! ~~~~~~~~~~
|
||||
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP
|
||||
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP
|
||||
!
|
||||
! Local scalars
|
||||
! ~~~~~~~~~~~~~
|
||||
INTEGER :: IMINWR, INFO1, MLWDMD, MLWGQR, &
|
||||
MLWMQR, MLWORK, MLWQR, MINMN, &
|
||||
OLWDMD, OLWGQR, OLWMQR, OLWORK, &
|
||||
OLWQR
|
||||
LOGICAL :: LQUERY, SCCOLX, SCCOLY, WANTQ, &
|
||||
WNTTRF, WNTRES, WNTVEC, WNTVCF, &
|
||||
WNTVCQ, WNTREF, WNTEX
|
||||
CHARACTER(LEN=1) :: JOBVL
|
||||
!
|
||||
! Local array
|
||||
! ~~~~~~~~~~~
|
||||
REAL(KIND=WP) :: RDUMMY(2)
|
||||
!
|
||||
! External functions (BLAS and LAPACK)
|
||||
! ~~~~~~~~~~~~~~~~~
|
||||
LOGICAL LSAME
|
||||
EXTERNAL LSAME
|
||||
!
|
||||
! External subroutines (BLAS and LAPACK)
|
||||
! ~~~~~~~~~~~~~~~~~~~~
|
||||
EXTERNAL DGEMM
|
||||
EXTERNAL DGEQRF, DLACPY, DLASET, DORGQR, &
|
||||
DORMQR, XERBLA
|
||||
|
||||
! External subroutines
|
||||
! ~~~~~~~~~~~~~~~~~~~~
|
||||
EXTERNAL DGEDMD
|
||||
|
||||
! Intrinsic functions
|
||||
! ~~~~~~~~~~~~~~~~~~~
|
||||
INTRINSIC MAX, MIN, INT
|
||||
!..........................................................
|
||||
!
|
||||
! Test the input arguments
|
||||
WNTRES = LSAME(JOBR,'R')
|
||||
SCCOLX = LSAME(JOBS,'S') .OR. LSAME( JOBS, 'C' )
|
||||
SCCOLY = LSAME(JOBS,'Y')
|
||||
WNTVEC = LSAME(JOBZ,'V')
|
||||
WNTVCF = LSAME(JOBZ,'F')
|
||||
WNTVCQ = LSAME(JOBZ,'Q')
|
||||
WNTREF = LSAME(JOBF,'R')
|
||||
WNTEX = LSAME(JOBF,'E')
|
||||
WANTQ = LSAME(JOBQ,'Q')
|
||||
WNTTRF = LSAME(JOBT,'R')
|
||||
MINMN = MIN(M,N)
|
||||
INFO = 0
|
||||
LQUERY = ( ( LWORK == -1 ) .OR. ( LIWORK == -1 ) )
|
||||
!
|
||||
IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. &
|
||||
LSAME(JOBS,'N')) ) THEN
|
||||
INFO = -1
|
||||
ELSE IF ( .NOT. (WNTVEC .OR. WNTVCF .OR. WNTVCQ &
|
||||
.OR. LSAME(JOBZ,'N')) ) THEN
|
||||
INFO = -2
|
||||
ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. &
|
||||
( WNTRES .AND. LSAME(JOBZ,'N') ) ) THEN
|
||||
INFO = -3
|
||||
ELSE IF ( .NOT. (WANTQ .OR. LSAME(JOBQ,'N')) ) THEN
|
||||
INFO = -4
|
||||
ELSE IF ( .NOT. ( WNTTRF .OR. LSAME(JOBT,'N') ) ) THEN
|
||||
INFO = -5
|
||||
ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. &
|
||||
LSAME(JOBF,'N') ) ) THEN
|
||||
INFO = -6
|
||||
ELSE IF ( .NOT. ((WHTSVD == 1).OR.(WHTSVD == 2).OR. &
|
||||
(WHTSVD == 3).OR.(WHTSVD == 4)) ) THEN
|
||||
INFO = -7
|
||||
ELSE IF ( M < 0 ) THEN
|
||||
INFO = -8
|
||||
ELSE IF ( ( N < 0 ) .OR. ( N > M+1 ) ) THEN
|
||||
INFO = -9
|
||||
ELSE IF ( LDF < M ) THEN
|
||||
INFO = -11
|
||||
ELSE IF ( LDX < MINMN ) THEN
|
||||
INFO = -13
|
||||
ELSE IF ( LDY < MINMN ) THEN
|
||||
INFO = -15
|
||||
ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. &
|
||||
((NRNK >= 1).AND.(NRNK <=N ))) ) THEN
|
||||
INFO = -16
|
||||
ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN
|
||||
INFO = -17
|
||||
ELSE IF ( LDZ < M ) THEN
|
||||
INFO = -22
|
||||
ELSE IF ( (WNTREF.OR.WNTEX ).AND.( LDB < MINMN ) ) THEN
|
||||
INFO = -25
|
||||
ELSE IF ( LDV < N-1 ) THEN
|
||||
INFO = -27
|
||||
ELSE IF ( LDS < N-1 ) THEN
|
||||
INFO = -29
|
||||
END IF
|
||||
!
|
||||
IF ( WNTVEC .OR. WNTVCF .OR. WNTVCQ ) THEN
|
||||
JOBVL = 'V'
|
||||
ELSE
|
||||
JOBVL = 'N'
|
||||
END IF
|
||||
IF ( INFO == 0 ) THEN
|
||||
! Compute the minimal and the optimal workspace
|
||||
! requirements. Simulate running the code and
|
||||
! determine minimal and optimal sizes of the
|
||||
! workspace at any moment of the run.
|
||||
IF ( ( N == 0 ) .OR. ( N == 1 ) ) THEN
|
||||
! All output except K is void. INFO=1 signals
|
||||
! the void input. In case of a workspace query,
|
||||
! the minimal workspace lengths are returned.
|
||||
IF ( LQUERY ) THEN
|
||||
IWORK(1) = 1
|
||||
WORK(1) = 2
|
||||
WORK(2) = 2
|
||||
ELSE
|
||||
K = 0
|
||||
END IF
|
||||
INFO = 1
|
||||
RETURN
|
||||
END IF
|
||||
MLWQR = MAX(1,N) ! Minimal workspace length for DGEQRF.
|
||||
MLWORK = MINMN + MLWQR
|
||||
IF ( LQUERY ) THEN
|
||||
CALL DGEQRF( M, N, F, LDF, WORK, RDUMMY, -1, &
|
||||
INFO1 )
|
||||
OLWQR = INT(RDUMMY(1))
|
||||
OLWORK = MIN(M,N) + OLWQR
|
||||
END IF
|
||||
CALL DGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN,&
|
||||
N-1, X, LDX, Y, LDY, NRNK, TOL, K, &
|
||||
REIG, IMEIG, Z, LDZ, RES, B, LDB, &
|
||||
V, LDV, S, LDS, WORK, -1, IWORK, &
|
||||
LIWORK, INFO1 )
|
||||
MLWDMD = INT(WORK(1))
|
||||
MLWORK = MAX(MLWORK, MINMN + MLWDMD)
|
||||
IMINWR = IWORK(1)
|
||||
IF ( LQUERY ) THEN
|
||||
OLWDMD = INT(WORK(2))
|
||||
OLWORK = MAX(OLWORK, MINMN+OLWDMD)
|
||||
END IF
|
||||
IF ( WNTVEC .OR. WNTVCF ) THEN
|
||||
MLWMQR = MAX(1,N)
|
||||
MLWORK = MAX(MLWORK,MINMN+N-1+MLWMQR)
|
||||
IF ( LQUERY ) THEN
|
||||
CALL DORMQR( 'L','N', M, N, MINMN, F, LDF, &
|
||||
WORK, Z, LDZ, WORK, -1, INFO1 )
|
||||
OLWMQR = INT(WORK(1))
|
||||
OLWORK = MAX(OLWORK,MINMN+N-1+OLWMQR)
|
||||
END IF
|
||||
END IF
|
||||
IF ( WANTQ ) THEN
|
||||
MLWGQR = N
|
||||
MLWORK = MAX(MLWORK,MINMN+N-1+MLWGQR)
|
||||
IF ( LQUERY ) THEN
|
||||
CALL DORGQR( M, MINMN, MINMN, F, LDF, WORK, &
|
||||
WORK, -1, INFO1 )
|
||||
OLWGQR = INT(WORK(1))
|
||||
OLWORK = MAX(OLWORK,MINMN+N-1+OLWGQR)
|
||||
END IF
|
||||
END IF
|
||||
IMINWR = MAX( 1, IMINWR )
|
||||
MLWORK = MAX( 2, MLWORK )
|
||||
IF ( LWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -31
|
||||
IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -33
|
||||
END IF
|
||||
IF( INFO /= 0 ) THEN
|
||||
CALL XERBLA( 'DGEDMDQ', -INFO )
|
||||
RETURN
|
||||
ELSE IF ( LQUERY ) THEN
|
||||
! Return minimal and optimal workspace sizes
|
||||
IWORK(1) = IMINWR
|
||||
WORK(1) = MLWORK
|
||||
WORK(2) = OLWORK
|
||||
RETURN
|
||||
END IF
|
||||
!.....
|
||||
! Initial QR factorization that is used to represent the
|
||||
! snapshots as elements of lower dimensional subspace.
|
||||
! For large scale computation with M >>N , at this place
|
||||
! one can use an out of core QRF.
|
||||
!
|
||||
CALL DGEQRF( M, N, F, LDF, WORK, &
|
||||
WORK(MINMN+1), LWORK-MINMN, INFO1 )
|
||||
!
|
||||
! Define X and Y as the snapshots representations in the
|
||||
! orthogonal basis computed in the QR factorization.
|
||||
! X corresponds to the leading N-1 and Y to the trailing
|
||||
! N-1 snapshots.
|
||||
CALL DLASET( 'L', MINMN, N-1, ZERO, ZERO, X, LDX )
|
||||
CALL DLACPY( 'U', MINMN, N-1, F, LDF, X, LDX )
|
||||
CALL DLACPY( 'A', MINMN, N-1, F(1,2), LDF, Y, LDY )
|
||||
IF ( M >= 3 ) THEN
|
||||
CALL DLASET( 'L', MINMN-2, N-2, ZERO, ZERO, &
|
||||
Y(3,1), LDY )
|
||||
END IF
|
||||
!
|
||||
! Compute the DMD of the projected snapshot pairs (X,Y)
|
||||
CALL DGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN, &
|
||||
N-1, X, LDX, Y, LDY, NRNK, TOL, K, &
|
||||
REIG, IMEIG, Z, LDZ, RES, B, LDB, V, &
|
||||
LDV, S, LDS, WORK(MINMN+1), LWORK-MINMN, &
|
||||
IWORK, LIWORK, INFO1 )
|
||||
IF ( INFO1 == 2 .OR. INFO1 == 3 ) THEN
|
||||
! Return with error code. See DGEDMD for details.
|
||||
INFO = INFO1
|
||||
RETURN
|
||||
ELSE
|
||||
INFO = INFO1
|
||||
END IF
|
||||
!
|
||||
! The Ritz vectors (Koopman modes) can be explicitly
|
||||
! formed or returned in factored form.
|
||||
IF ( WNTVEC ) THEN
|
||||
! Compute the eigenvectors explicitly.
|
||||
IF ( M > MINMN ) CALL DLASET( 'A', M-MINMN, K, ZERO, &
|
||||
ZERO, Z(MINMN+1,1), LDZ )
|
||||
CALL DORMQR( 'L','N', M, K, MINMN, F, LDF, WORK, Z, &
|
||||
LDZ, WORK(MINMN+N), LWORK-(MINMN+N-1), INFO1 )
|
||||
ELSE IF ( WNTVCF ) THEN
|
||||
! Return the Ritz vectors (eigenvectors) in factored
|
||||
! form Z*V, where Z contains orthonormal matrix (the
|
||||
! product of Q from the initial QR factorization and
|
||||
! the SVD/POD_basis returned by DGEDMD in X) and the
|
||||
! second factor (the eigenvectors of the Rayleigh
|
||||
! quotient) is in the array V, as returned by DGEDMD.
|
||||
CALL DLACPY( 'A', N, K, X, LDX, Z, LDZ )
|
||||
IF ( M > N ) CALL DLASET( 'A', M-N, K, ZERO, ZERO, &
|
||||
Z(N+1,1), LDZ )
|
||||
CALL DORMQR( 'L','N', M, K, MINMN, F, LDF, WORK, Z, &
|
||||
LDZ, WORK(MINMN+N), LWORK-(MINMN+N-1), INFO1 )
|
||||
END IF
|
||||
!
|
||||
! Some optional output variables:
|
||||
!
|
||||
! The upper triangular factor R in the initial QR
|
||||
! factorization is optionally returned in the array Y.
|
||||
! This is useful if this call to DGEDMDQ is to be
|
||||
! followed by a streaming DMD that is implemented in a
|
||||
! QR compressed form.
|
||||
IF ( WNTTRF ) THEN ! Return the upper triangular R in Y
|
||||
CALL DLASET( 'A', MINMN, N, ZERO, ZERO, Y, LDY )
|
||||
CALL DLACPY( 'U', MINMN, N, F, LDF, Y, LDY )
|
||||
END IF
|
||||
!
|
||||
! The orthonormal/orthogonal factor Q in the initial QR
|
||||
! factorization is optionally returned in the array F.
|
||||
! Same as with the triangular factor above, this is
|
||||
! useful in a streaming DMD.
|
||||
IF ( WANTQ ) THEN ! Q overwrites F
|
||||
CALL DORGQR( M, MINMN, MINMN, F, LDF, WORK, &
|
||||
WORK(MINMN+N), LWORK-(MINMN+N-1), INFO1 )
|
||||
END IF
|
||||
!
|
||||
RETURN
|
||||
!
|
||||
END SUBROUTINE DGEDMDQ
|
||||
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,703 @@
|
|||
SUBROUTINE SGEDMDQ( JOBS, JOBZ, JOBR, JOBQ, JOBT, JOBF, &
|
||||
WHTSVD, M, N, F, LDF, X, LDX, Y, &
|
||||
LDY, NRNK, TOL, K, REIG, IMEIG, &
|
||||
Z, LDZ, RES, B, LDB, V, LDV, &
|
||||
S, LDS, WORK, LWORK, IWORK, LIWORK, INFO )
|
||||
! March 2023
|
||||
!.....
|
||||
USE iso_fortran_env
|
||||
IMPLICIT NONE
|
||||
INTEGER, PARAMETER :: WP = real32
|
||||
!.....
|
||||
! Scalar arguments
|
||||
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBQ, &
|
||||
JOBT, JOBF
|
||||
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDF, LDX, &
|
||||
LDY, NRNK, LDZ, LDB, LDV, &
|
||||
LDS, LWORK, LIWORK
|
||||
INTEGER, INTENT(OUT) :: INFO, K
|
||||
REAL(KIND=WP), INTENT(IN) :: TOL
|
||||
! Array arguments
|
||||
REAL(KIND=WP), INTENT(INOUT) :: F(LDF,*)
|
||||
REAL(KIND=WP), INTENT(OUT) :: X(LDX,*), Y(LDY,*), &
|
||||
Z(LDZ,*), B(LDB,*), &
|
||||
V(LDV,*), S(LDS,*)
|
||||
REAL(KIND=WP), INTENT(OUT) :: REIG(*), IMEIG(*), &
|
||||
RES(*)
|
||||
REAL(KIND=WP), INTENT(OUT) :: WORK(*)
|
||||
INTEGER, INTENT(OUT) :: IWORK(*)
|
||||
!.....
|
||||
! Purpose
|
||||
! =======
|
||||
! SGEDMDQ computes the Dynamic Mode Decomposition (DMD) for
|
||||
! a pair of data snapshot matrices, using a QR factorization
|
||||
! based compression of the data. For the input matrices
|
||||
! X and Y such that Y = A*X with an unaccessible matrix
|
||||
! A, SGEDMDQ computes a certain number of Ritz pairs of A using
|
||||
! the standard Rayleigh-Ritz extraction from a subspace of
|
||||
! range(X) that is determined using the leading left singular
|
||||
! vectors of X. Optionally, SGEDMDQ returns the residuals
|
||||
! of the computed Ritz pairs, the information needed for
|
||||
! a refinement of the Ritz vectors, or the eigenvectors of
|
||||
! the Exact DMD.
|
||||
! For further details see the references listed
|
||||
! below. For more details of the implementation see [3].
|
||||
!
|
||||
! References
|
||||
! ==========
|
||||
! [1] P. Schmid: Dynamic mode decomposition of numerical
|
||||
! and experimental data,
|
||||
! Journal of Fluid Mechanics 656, 5-28, 2010.
|
||||
! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
|
||||
! decompositions: analysis and enhancements,
|
||||
! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
|
||||
! [3] Z. Drmac: A LAPACK implementation of the Dynamic
|
||||
! Mode Decomposition I. Technical report. AIMDyn Inc.
|
||||
! and LAPACK Working Note 298.
|
||||
! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
|
||||
! Brunton, N. Kutz: On Dynamic Mode Decomposition:
|
||||
! Theory and Applications, Journal of Computational
|
||||
! Dynamics 1(2), 391 -421, 2014.
|
||||
!
|
||||
! Developed and supported by:
|
||||
! ===========================
|
||||
! Developed and coded by Zlatko Drmac, Faculty of Science,
|
||||
! University of Zagreb; drmac@math.hr
|
||||
! In cooperation with
|
||||
! AIMdyn Inc., Santa Barbara, CA.
|
||||
! and supported by
|
||||
! - DARPA SBIR project "Koopman Operator-Based Forecasting
|
||||
! for Nonstationary Processes from Near-Term, Limited
|
||||
! Observational Data" Contract No: W31P4Q-21-C-0007
|
||||
! - DARPA PAI project "Physics-Informed Machine Learning
|
||||
! Methodologies" Contract No: HR0011-18-9-0033
|
||||
! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
|
||||
! Framework for Space-Time Analysis of Process Dynamics"
|
||||
! Contract No: HR0011-16-C-0116
|
||||
! Any opinions, findings and conclusions or recommendations
|
||||
! expressed in this material are those of the author and
|
||||
! do not necessarily reflect the views of the DARPA SBIR
|
||||
! Program Office.
|
||||
!============================================================
|
||||
! Distribution Statement A:
|
||||
! Approved for Public Release, Distribution Unlimited.
|
||||
! Cleared by DARPA on September 29, 2022
|
||||
!============================================================
|
||||
!......................................................................
|
||||
! Arguments
|
||||
! =========
|
||||
! JOBS (input) CHARACTER*1
|
||||
! Determines whether the initial data snapshots are scaled
|
||||
! by a diagonal matrix. The data snapshots are the columns
|
||||
! of F. The leading N-1 columns of F are denoted X and the
|
||||
! trailing N-1 columns are denoted Y.
|
||||
! 'S' :: The data snapshots matrices X and Y are multiplied
|
||||
! with a diagonal matrix D so that X*D has unit
|
||||
! nonzero columns (in the Euclidean 2-norm)
|
||||
! 'C' :: The snapshots are scaled as with the 'S' option.
|
||||
! If it is found that an i-th column of X is zero
|
||||
! vector and the corresponding i-th column of Y is
|
||||
! non-zero, then the i-th column of Y is set to
|
||||
! zero and a warning flag is raised.
|
||||
! 'Y' :: The data snapshots matrices X and Y are multiplied
|
||||
! by a diagonal matrix D so that Y*D has unit
|
||||
! nonzero columns (in the Euclidean 2-norm)
|
||||
! 'N' :: No data scaling.
|
||||
!.....
|
||||
! JOBZ (input) CHARACTER*1
|
||||
! Determines whether the eigenvectors (Koopman modes) will
|
||||
! be computed.
|
||||
! 'V' :: The eigenvectors (Koopman modes) will be computed
|
||||
! and returned in the matrix Z.
|
||||
! See the description of Z.
|
||||
! 'F' :: The eigenvectors (Koopman modes) will be returned
|
||||
! in factored form as the product Z*V, where Z
|
||||
! is orthonormal and V contains the eigenvectors
|
||||
! of the corresponding Rayleigh quotient.
|
||||
! See the descriptions of F, V, Z.
|
||||
! 'Q' :: The eigenvectors (Koopman modes) will be returned
|
||||
! in factored form as the product Q*Z, where Z
|
||||
! contains the eigenvectors of the compression of the
|
||||
! underlying discretized operator onto the span of
|
||||
! the data snapshots. See the descriptions of F, V, Z.
|
||||
! Q is from the initial QR factorization.
|
||||
! 'N' :: The eigenvectors are not computed.
|
||||
!.....
|
||||
! JOBR (input) CHARACTER*1
|
||||
! Determines whether to compute the residuals.
|
||||
! 'R' :: The residuals for the computed eigenpairs will
|
||||
! be computed and stored in the array RES.
|
||||
! See the description of RES.
|
||||
! For this option to be legal, JOBZ must be 'V'.
|
||||
! 'N' :: The residuals are not computed.
|
||||
!.....
|
||||
! JOBQ (input) CHARACTER*1
|
||||
! Specifies whether to explicitly compute and return the
|
||||
! orthogonal matrix from the QR factorization.
|
||||
! 'Q' :: The matrix Q of the QR factorization of the data
|
||||
! snapshot matrix is computed and stored in the
|
||||
! array F. See the description of F.
|
||||
! 'N' :: The matrix Q is not explicitly computed.
|
||||
!.....
|
||||
! JOBT (input) CHARACTER*1
|
||||
! Specifies whether to return the upper triangular factor
|
||||
! from the QR factorization.
|
||||
! 'R' :: The matrix R of the QR factorization of the data
|
||||
! snapshot matrix F is returned in the array Y.
|
||||
! See the description of Y and Further details.
|
||||
! 'N' :: The matrix R is not returned.
|
||||
!.....
|
||||
! JOBF (input) CHARACTER*1
|
||||
! Specifies whether to store information needed for post-
|
||||
! processing (e.g. computing refined Ritz vectors)
|
||||
! 'R' :: The matrix needed for the refinement of the Ritz
|
||||
! vectors is computed and stored in the array B.
|
||||
! See the description of B.
|
||||
! 'E' :: The unscaled eigenvectors of the Exact DMD are
|
||||
! computed and returned in the array B. See the
|
||||
! description of B.
|
||||
! 'N' :: No eigenvector refinement data is computed.
|
||||
! To be useful on exit, this option needs JOBQ='Q'.
|
||||
!.....
|
||||
! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
|
||||
! Allows for a selection of the SVD algorithm from the
|
||||
! LAPACK library.
|
||||
! 1 :: SGESVD (the QR SVD algorithm)
|
||||
! 2 :: SGESDD (the Divide and Conquer algorithm; if enough
|
||||
! workspace available, this is the fastest option)
|
||||
! 3 :: SGESVDQ (the preconditioned QR SVD ; this and 4
|
||||
! are the most accurate options)
|
||||
! 4 :: SGEJSV (the preconditioned Jacobi SVD; this and 3
|
||||
! are the most accurate options)
|
||||
! For the four methods above, a significant difference in
|
||||
! the accuracy of small singular values is possible if
|
||||
! the snapshots vary in norm so that X is severely
|
||||
! ill-conditioned. If small (smaller than EPS*||X||)
|
||||
! singular values are of interest and JOBS=='N', then
|
||||
! the options (3, 4) give the most accurate results, where
|
||||
! the option 4 is slightly better and with stronger
|
||||
! theoretical background.
|
||||
! If JOBS=='S', i.e. the columns of X will be normalized,
|
||||
! then all methods give nearly equally accurate results.
|
||||
!.....
|
||||
! M (input) INTEGER, M >= 0
|
||||
! The state space dimension (the number of rows of F)
|
||||
!.....
|
||||
! N (input) INTEGER, 0 <= N <= M
|
||||
! The number of data snapshots from a single trajectory,
|
||||
! taken at equidistant discrete times. This is the
|
||||
! number of columns of F.
|
||||
!.....
|
||||
! F (input/output) REAL(KIND=WP) M-by-N array
|
||||
! > On entry,
|
||||
! the columns of F are the sequence of data snapshots
|
||||
! from a single trajectory, taken at equidistant discrete
|
||||
! times. It is assumed that the column norms of F are
|
||||
! in the range of the normalized floating point numbers.
|
||||
! < On exit,
|
||||
! If JOBQ == 'Q', the array F contains the orthogonal
|
||||
! matrix/factor of the QR factorization of the initial
|
||||
! data snapshots matrix F. See the description of JOBQ.
|
||||
! If JOBQ == 'N', the entries in F strictly below the main
|
||||
! diagonal contain, column-wise, the information on the
|
||||
! Householder vectors, as returned by SGEQRF. The
|
||||
! remaining information to restore the orthogonal matrix
|
||||
! of the initial QR factorization is stored in WORK(1:N).
|
||||
! See the description of WORK.
|
||||
!.....
|
||||
! LDF (input) INTEGER, LDF >= M
|
||||
! The leading dimension of the array F.
|
||||
!.....
|
||||
! X (workspace/output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array
|
||||
! X is used as workspace to hold representations of the
|
||||
! leading N-1 snapshots in the orthonormal basis computed
|
||||
! in the QR factorization of F.
|
||||
! On exit, the leading K columns of X contain the leading
|
||||
! K left singular vectors of the above described content
|
||||
! of X. To lift them to the space of the left singular
|
||||
! vectors U(:,1:K)of the input data, pre-multiply with the
|
||||
! Q factor from the initial QR factorization.
|
||||
! See the descriptions of F, K, V and Z.
|
||||
!.....
|
||||
! LDX (input) INTEGER, LDX >= N
|
||||
! The leading dimension of the array X
|
||||
!.....
|
||||
! Y (workspace/output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array
|
||||
! Y is used as workspace to hold representations of the
|
||||
! trailing N-1 snapshots in the orthonormal basis computed
|
||||
! in the QR factorization of F.
|
||||
! On exit,
|
||||
! If JOBT == 'R', Y contains the MIN(M,N)-by-N upper
|
||||
! triangular factor from the QR factorization of the data
|
||||
! snapshot matrix F.
|
||||
!.....
|
||||
! LDY (input) INTEGER , LDY >= N
|
||||
! The leading dimension of the array Y
|
||||
!.....
|
||||
! NRNK (input) INTEGER
|
||||
! Determines the mode how to compute the numerical rank,
|
||||
! i.e. how to truncate small singular values of the input
|
||||
! matrix X. On input, if
|
||||
! NRNK = -1 :: i-th singular value sigma(i) is truncated
|
||||
! if sigma(i) <= TOL*sigma(1)
|
||||
! This option is recommended.
|
||||
! NRNK = -2 :: i-th singular value sigma(i) is truncated
|
||||
! if sigma(i) <= TOL*sigma(i-1)
|
||||
! This option is included for R&D purposes.
|
||||
! It requires highly accurate SVD, which
|
||||
! may not be feasible.
|
||||
! The numerical rank can be enforced by using positive
|
||||
! value of NRNK as follows:
|
||||
! 0 < NRNK <= N-1 :: at most NRNK largest singular values
|
||||
! will be used. If the number of the computed nonzero
|
||||
! singular values is less than NRNK, then only those
|
||||
! nonzero values will be used and the actually used
|
||||
! dimension is less than NRNK. The actual number of
|
||||
! the nonzero singular values is returned in the variable
|
||||
! K. See the description of K.
|
||||
!.....
|
||||
! TOL (input) REAL(KIND=WP), 0 <= TOL < 1
|
||||
! The tolerance for truncating small singular values.
|
||||
! See the description of NRNK.
|
||||
!.....
|
||||
! K (output) INTEGER, 0 <= K <= N
|
||||
! The dimension of the SVD/POD basis for the leading N-1
|
||||
! data snapshots (columns of F) and the number of the
|
||||
! computed Ritz pairs. The value of K is determined
|
||||
! according to the rule set by the parameters NRNK and
|
||||
! TOL. See the descriptions of NRNK and TOL.
|
||||
!.....
|
||||
! REIG (output) REAL(KIND=WP) (N-1)-by-1 array
|
||||
! The leading K (K<=N) entries of REIG contain
|
||||
! the real parts of the computed eigenvalues
|
||||
! REIG(1:K) + sqrt(-1)*IMEIG(1:K).
|
||||
! See the descriptions of K, IMEIG, Z.
|
||||
!.....
|
||||
! IMEIG (output) REAL(KIND=WP) (N-1)-by-1 array
|
||||
! The leading K (K<N) entries of REIG contain
|
||||
! the imaginary parts of the computed eigenvalues
|
||||
! REIG(1:K) + sqrt(-1)*IMEIG(1:K).
|
||||
! The eigenvalues are determined as follows:
|
||||
! If IMEIG(i) == 0, then the corresponding eigenvalue is
|
||||
! real, LAMBDA(i) = REIG(i).
|
||||
! If IMEIG(i)>0, then the corresponding complex
|
||||
! conjugate pair of eigenvalues reads
|
||||
! LAMBDA(i) = REIG(i) + sqrt(-1)*IMAG(i)
|
||||
! LAMBDA(i+1) = REIG(i) - sqrt(-1)*IMAG(i)
|
||||
! That is, complex conjugate pairs have consecutive
|
||||
! indices (i,i+1), with the positive imaginary part
|
||||
! listed first.
|
||||
! See the descriptions of K, REIG, Z.
|
||||
!.....
|
||||
! Z (workspace/output) REAL(KIND=WP) M-by-(N-1) array
|
||||
! If JOBZ =='V' then
|
||||
! Z contains real Ritz vectors as follows:
|
||||
! If IMEIG(i)=0, then Z(:,i) is an eigenvector of
|
||||
! the i-th Ritz value.
|
||||
! If IMEIG(i) > 0 (and IMEIG(i+1) < 0) then
|
||||
! [Z(:,i) Z(:,i+1)] span an invariant subspace and
|
||||
! the Ritz values extracted from this subspace are
|
||||
! REIG(i) + sqrt(-1)*IMEIG(i) and
|
||||
! REIG(i) - sqrt(-1)*IMEIG(i).
|
||||
! The corresponding eigenvectors are
|
||||
! Z(:,i) + sqrt(-1)*Z(:,i+1) and
|
||||
! Z(:,i) - sqrt(-1)*Z(:,i+1), respectively.
|
||||
! If JOBZ == 'F', then the above descriptions hold for
|
||||
! the columns of Z*V, where the columns of V are the
|
||||
! eigenvectors of the K-by-K Rayleigh quotient, and Z is
|
||||
! orthonormal. The columns of V are similarly structured:
|
||||
! If IMEIG(i) == 0 then Z*V(:,i) is an eigenvector, and if
|
||||
! IMEIG(i) > 0 then Z*V(:,i)+sqrt(-1)*Z*V(:,i+1) and
|
||||
! Z*V(:,i)-sqrt(-1)*Z*V(:,i+1)
|
||||
! are the eigenvectors of LAMBDA(i), LAMBDA(i+1).
|
||||
! See the descriptions of REIG, IMEIG, X and V.
|
||||
!.....
|
||||
! LDZ (input) INTEGER , LDZ >= M
|
||||
! The leading dimension of the array Z.
|
||||
!.....
|
||||
! RES (output) REAL(KIND=WP) (N-1)-by-1 array
|
||||
! RES(1:K) contains the residuals for the K computed
|
||||
! Ritz pairs.
|
||||
! If LAMBDA(i) is real, then
|
||||
! RES(i) = || A * Z(:,i) - LAMBDA(i)*Z(:,i))||_2.
|
||||
! If [LAMBDA(i), LAMBDA(i+1)] is a complex conjugate pair
|
||||
! then
|
||||
! RES(i)=RES(i+1) = || A * Z(:,i:i+1) - Z(:,i:i+1) *B||_F
|
||||
! where B = [ real(LAMBDA(i)) imag(LAMBDA(i)) ]
|
||||
! [-imag(LAMBDA(i)) real(LAMBDA(i)) ].
|
||||
! It holds that
|
||||
! RES(i) = || A*ZC(:,i) - LAMBDA(i) *ZC(:,i) ||_2
|
||||
! RES(i+1) = || A*ZC(:,i+1) - LAMBDA(i+1)*ZC(:,i+1) ||_2
|
||||
! where ZC(:,i) = Z(:,i) + sqrt(-1)*Z(:,i+1)
|
||||
! ZC(:,i+1) = Z(:,i) - sqrt(-1)*Z(:,i+1)
|
||||
! See the description of Z.
|
||||
!.....
|
||||
! B (output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array.
|
||||
! IF JOBF =='R', B(1:N,1:K) contains A*U(:,1:K), and can
|
||||
! be used for computing the refined vectors; see further
|
||||
! details in the provided references.
|
||||
! If JOBF == 'E', B(1:N,1;K) contains
|
||||
! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
|
||||
! Exact DMD, up to scaling by the inverse eigenvalues.
|
||||
! In both cases, the content of B can be lifted to the
|
||||
! original dimension of the input data by pre-multiplying
|
||||
! with the Q factor from the initial QR factorization.
|
||||
! Here A denotes a compression of the underlying operator.
|
||||
! See the descriptions of F and X.
|
||||
! If JOBF =='N', then B is not referenced.
|
||||
!.....
|
||||
! LDB (input) INTEGER, LDB >= MIN(M,N)
|
||||
! The leading dimension of the array B.
|
||||
!.....
|
||||
! V (workspace/output) REAL(KIND=WP) (N-1)-by-(N-1) array
|
||||
! On exit, V(1:K,1:K) contains the K eigenvectors of
|
||||
! the Rayleigh quotient. The eigenvectors of a complex
|
||||
! conjugate pair of eigenvalues are returned in real form
|
||||
! as explained in the description of Z. The Ritz vectors
|
||||
! (returned in Z) are the product of X and V; see
|
||||
! the descriptions of X and Z.
|
||||
!.....
|
||||
! LDV (input) INTEGER, LDV >= N-1
|
||||
! The leading dimension of the array V.
|
||||
!.....
|
||||
! S (output) REAL(KIND=WP) (N-1)-by-(N-1) array
|
||||
! The array S(1:K,1:K) is used for the matrix Rayleigh
|
||||
! quotient. This content is overwritten during
|
||||
! the eigenvalue decomposition by SGEEV.
|
||||
! See the description of K.
|
||||
!.....
|
||||
! LDS (input) INTEGER, LDS >= N-1
|
||||
! The leading dimension of the array S.
|
||||
!.....
|
||||
! WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array
|
||||
! On exit,
|
||||
! WORK(1:MIN(M,N)) contains the scalar factors of the
|
||||
! elementary reflectors as returned by SGEQRF of the
|
||||
! M-by-N input matrix F.
|
||||
! WORK(MIN(M,N)+1:MIN(M,N)+N-1) contains the singular values of
|
||||
! the input submatrix F(1:M,1:N-1).
|
||||
! If the call to SGEDMDQ is only workspace query, then
|
||||
! WORK(1) contains the minimal workspace length and
|
||||
! WORK(2) is the optimal workspace length. Hence, the
|
||||
! length of work is at least 2.
|
||||
! See the description of LWORK.
|
||||
!.....
|
||||
! LWORK (input) INTEGER
|
||||
! The minimal length of the workspace vector WORK.
|
||||
! LWORK is calculated as follows:
|
||||
! Let MLWQR = N (minimal workspace for SGEQRF[M,N])
|
||||
! MLWDMD = minimal workspace for SGEDMD (see the
|
||||
! description of LWORK in SGEDMD) for
|
||||
! snapshots of dimensions MIN(M,N)-by-(N-1)
|
||||
! MLWMQR = N (minimal workspace for
|
||||
! SORMQR['L','N',M,N,N])
|
||||
! MLWGQR = N (minimal workspace for SORGQR[M,N,N])
|
||||
! Then
|
||||
! LWORK = MAX(N+MLWQR, N+MLWDMD)
|
||||
! is updated as follows:
|
||||
! if JOBZ == 'V' or JOBZ == 'F' THEN
|
||||
! LWORK = MAX( LWORK,MIN(M,N)+N-1 +MLWMQR )
|
||||
! if JOBQ == 'Q' THEN
|
||||
! LWORK = MAX( LWORK,MIN(M,N)+N-1+MLWGQR)
|
||||
! If on entry LWORK = -1, then a workspace query is
|
||||
! assumed and the procedure only computes the minimal
|
||||
! and the optimal workspace lengths for both WORK and
|
||||
! IWORK. See the descriptions of WORK and IWORK.
|
||||
!.....
|
||||
! IWORK (workspace/output) INTEGER LIWORK-by-1 array
|
||||
! Workspace that is required only if WHTSVD equals
|
||||
! 2 , 3 or 4. (See the description of WHTSVD).
|
||||
! If on entry LWORK =-1 or LIWORK=-1, then the
|
||||
! minimal length of IWORK is computed and returned in
|
||||
! IWORK(1). See the description of LIWORK.
|
||||
!.....
|
||||
! LIWORK (input) INTEGER
|
||||
! The minimal length of the workspace vector IWORK.
|
||||
! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
|
||||
! Let M1=MIN(M,N), N1=N-1. Then
|
||||
! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M1,N1))
|
||||
! If WHTSVD == 3, then LIWORK >= MAX(1,M1+N1-1)
|
||||
! If WHTSVD == 4, then LIWORK >= MAX(3,M1+3*N1)
|
||||
! If on entry LIWORK = -1, then a worskpace query is
|
||||
! assumed and the procedure only computes the minimal
|
||||
! and the optimal workspace lengths for both WORK and
|
||||
! IWORK. See the descriptions of WORK and IWORK.
|
||||
!.....
|
||||
! INFO (output) INTEGER
|
||||
! -i < 0 :: On entry, the i-th argument had an
|
||||
! illegal value
|
||||
! = 0 :: Successful return.
|
||||
! = 1 :: Void input. Quick exit (M=0 or N=0).
|
||||
! = 2 :: The SVD computation of X did not converge.
|
||||
! Suggestion: Check the input data and/or
|
||||
! repeat with different WHTSVD.
|
||||
! = 3 :: The computation of the eigenvalues did not
|
||||
! converge.
|
||||
! = 4 :: If data scaling was requested on input and
|
||||
! the procedure found inconsistency in the data
|
||||
! such that for some column index i,
|
||||
! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
|
||||
! to zero if JOBS=='C'. The computation proceeds
|
||||
! with original or modified data and warning
|
||||
! flag is set with INFO=4.
|
||||
!.............................................................
|
||||
!.............................................................
|
||||
! Parameters
|
||||
! ~~~~~~~~~~
|
||||
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP
|
||||
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP
|
||||
!
|
||||
! Local scalars
|
||||
! ~~~~~~~~~~~~~
|
||||
INTEGER :: IMINWR, INFO1, MLWDMD, MLWGQR, &
|
||||
MLWMQR, MLWORK, MLWQR, MINMN, &
|
||||
OLWDMD, OLWGQR, OLWMQR, OLWORK, &
|
||||
OLWQR
|
||||
LOGICAL :: LQUERY, SCCOLX, SCCOLY, WANTQ, &
|
||||
WNTTRF, WNTRES, WNTVEC, WNTVCF, &
|
||||
WNTVCQ, WNTREF, WNTEX
|
||||
CHARACTER(LEN=1) :: JOBVL
|
||||
!
|
||||
! Local array
|
||||
! ~~~~~~~~~~~
|
||||
REAL(KIND=WP) :: RDUMMY(2)
|
||||
!
|
||||
! External functions (BLAS and LAPACK)
|
||||
! ~~~~~~~~~~~~~~~~~
|
||||
LOGICAL LSAME
|
||||
EXTERNAL LSAME
|
||||
!
|
||||
! External subroutines (BLAS and LAPACK)
|
||||
! ~~~~~~~~~~~~~~~~~~~~
|
||||
EXTERNAL SGEMM
|
||||
EXTERNAL SGEQRF, SLACPY, SLASET, SORGQR, &
|
||||
SORMQR, XERBLA
|
||||
|
||||
! External subroutines
|
||||
! ~~~~~~~~~~~~~~~~~~~~
|
||||
EXTERNAL SGEDMD
|
||||
|
||||
! Intrinsic functions
|
||||
! ~~~~~~~~~~~~~~~~~~~
|
||||
INTRINSIC MAX, MIN, INT
|
||||
!..........................................................
|
||||
!
|
||||
! Test the input arguments
|
||||
WNTRES = LSAME(JOBR,'R')
|
||||
SCCOLX = LSAME(JOBS,'S') .OR. LSAME( JOBS, 'C' )
|
||||
SCCOLY = LSAME(JOBS,'Y')
|
||||
WNTVEC = LSAME(JOBZ,'V')
|
||||
WNTVCF = LSAME(JOBZ,'F')
|
||||
WNTVCQ = LSAME(JOBZ,'Q')
|
||||
WNTREF = LSAME(JOBF,'R')
|
||||
WNTEX = LSAME(JOBF,'E')
|
||||
WANTQ = LSAME(JOBQ,'Q')
|
||||
WNTTRF = LSAME(JOBT,'R')
|
||||
MINMN = MIN(M,N)
|
||||
INFO = 0
|
||||
LQUERY = ( ( LWORK == -1 ) .OR. ( LIWORK == -1 ) )
|
||||
!
|
||||
IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. LSAME(JOBS,'N')) ) THEN
|
||||
INFO = -1
|
||||
ELSE IF ( .NOT. (WNTVEC .OR. WNTVCF .OR. WNTVCQ &
|
||||
.OR. LSAME(JOBZ,'N')) ) THEN
|
||||
INFO = -2
|
||||
ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. &
|
||||
( WNTRES .AND. LSAME(JOBZ,'N') ) ) THEN
|
||||
INFO = -3
|
||||
ELSE IF ( .NOT. (WANTQ .OR. LSAME(JOBQ,'N')) ) THEN
|
||||
INFO = -4
|
||||
ELSE IF ( .NOT. ( WNTTRF .OR. LSAME(JOBT,'N') ) ) THEN
|
||||
INFO = -5
|
||||
ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. &
|
||||
LSAME(JOBF,'N') ) ) THEN
|
||||
INFO = -6
|
||||
ELSE IF ( .NOT. ((WHTSVD == 1).OR.(WHTSVD == 2).OR. &
|
||||
(WHTSVD == 3).OR.(WHTSVD == 4)) ) THEN
|
||||
INFO = -7
|
||||
ELSE IF ( M < 0 ) THEN
|
||||
INFO = -8
|
||||
ELSE IF ( ( N < 0 ) .OR. ( N > M+1 ) ) THEN
|
||||
INFO = -9
|
||||
ELSE IF ( LDF < M ) THEN
|
||||
INFO = -11
|
||||
ELSE IF ( LDX < MINMN ) THEN
|
||||
INFO = -13
|
||||
ELSE IF ( LDY < MINMN ) THEN
|
||||
INFO = -15
|
||||
ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. &
|
||||
((NRNK >= 1).AND.(NRNK <=N ))) ) THEN
|
||||
INFO = -16
|
||||
ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN
|
||||
INFO = -17
|
||||
ELSE IF ( LDZ < M ) THEN
|
||||
INFO = -22
|
||||
ELSE IF ( (WNTREF.OR.WNTEX ).AND.( LDB < MINMN ) ) THEN
|
||||
INFO = -25
|
||||
ELSE IF ( LDV < N-1 ) THEN
|
||||
INFO = -27
|
||||
ELSE IF ( LDS < N-1 ) THEN
|
||||
INFO = -29
|
||||
END IF
|
||||
!
|
||||
IF ( WNTVEC .OR. WNTVCF ) THEN
|
||||
JOBVL = 'V'
|
||||
ELSE
|
||||
JOBVL = 'N'
|
||||
END IF
|
||||
IF ( INFO == 0 ) THEN
|
||||
! Compute the minimal and the optimal workspace
|
||||
! requirements. Simulate running the code and
|
||||
! determine minimal and optimal sizes of the
|
||||
! workspace at any moment of the run.
|
||||
IF ( ( N == 0 ) .OR. ( N == 1 ) ) THEN
|
||||
! All output except K is void. INFO=1 signals
|
||||
! the void input. In case of a workspace query,
|
||||
! the minimal workspace lengths are returned.
|
||||
IF ( LQUERY ) THEN
|
||||
IWORK(1) = 1
|
||||
WORK(1) = 2
|
||||
WORK(2) = 2
|
||||
ELSE
|
||||
K = 0
|
||||
END IF
|
||||
INFO = 1
|
||||
RETURN
|
||||
END IF
|
||||
MLWQR = MAX(1,N) ! Minimal workspace length for SGEQRF.
|
||||
MLWORK = MIN(M,N) + MLWQR
|
||||
IF ( LQUERY ) THEN
|
||||
CALL SGEQRF( M, N, F, LDF, WORK, RDUMMY, -1, &
|
||||
INFO1 )
|
||||
OLWQR = INT(RDUMMY(1))
|
||||
OLWORK = MIN(M,N) + OLWQR
|
||||
END IF
|
||||
CALL SGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN,&
|
||||
N-1, X, LDX, Y, LDY, NRNK, TOL, K, &
|
||||
REIG, IMEIG, Z, LDZ, RES, B, LDB, &
|
||||
V, LDV, S, LDS, WORK, -1, IWORK, &
|
||||
LIWORK, INFO1 )
|
||||
MLWDMD = INT(WORK(1))
|
||||
MLWORK = MAX(MLWORK, MINMN + MLWDMD)
|
||||
IMINWR = IWORK(1)
|
||||
IF ( LQUERY ) THEN
|
||||
OLWDMD = INT(WORK(2))
|
||||
OLWORK = MAX(OLWORK, MINMN+OLWDMD)
|
||||
END IF
|
||||
IF ( WNTVEC .OR. WNTVCF ) THEN
|
||||
MLWMQR = MAX(1,N)
|
||||
MLWORK = MAX(MLWORK,MINMN+N-1+MLWMQR)
|
||||
IF ( LQUERY ) THEN
|
||||
CALL SORMQR( 'L','N', M, N, MINMN, F, LDF, &
|
||||
WORK, Z, LDZ, WORK, -1, INFO1 )
|
||||
OLWMQR = INT(WORK(1))
|
||||
OLWORK = MAX(OLWORK,MINMN+N-1+OLWMQR)
|
||||
END IF
|
||||
END IF
|
||||
IF ( WANTQ ) THEN
|
||||
MLWGQR = N
|
||||
MLWORK = MAX(MLWORK,MINMN+N-1+MLWGQR)
|
||||
IF ( LQUERY ) THEN
|
||||
CALL SORGQR( M, MINMN, MINMN, F, LDF, WORK, &
|
||||
WORK, -1, INFO1 )
|
||||
OLWGQR = INT(WORK(1))
|
||||
OLWORK = MAX(OLWORK,MINMN+N-1+OLWGQR)
|
||||
END IF
|
||||
END IF
|
||||
IMINWR = MAX( 1, IMINWR )
|
||||
MLWORK = MAX( 2, MLWORK )
|
||||
IF ( LWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -31
|
||||
IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -33
|
||||
END IF
|
||||
IF( INFO /= 0 ) THEN
|
||||
CALL XERBLA( 'SGEDMDQ', -INFO )
|
||||
RETURN
|
||||
ELSE IF ( LQUERY ) THEN
|
||||
! Return minimal and optimal workspace sizes
|
||||
IWORK(1) = IMINWR
|
||||
WORK(1) = MLWORK
|
||||
WORK(2) = OLWORK
|
||||
RETURN
|
||||
END IF
|
||||
!.....
|
||||
! Initial QR factorization that is used to represent the
|
||||
! snapshots as elements of lower dimensional subspace.
|
||||
! For large scale computation with M >>N , at this place
|
||||
! one can use an out of core QRF.
|
||||
!
|
||||
CALL SGEQRF( M, N, F, LDF, WORK, &
|
||||
WORK(MINMN+1), LWORK-MINMN, INFO1 )
|
||||
!
|
||||
! Define X and Y as the snapshots representations in the
|
||||
! orthogonal basis computed in the QR factorization.
|
||||
! X corresponds to the leading N-1 and Y to the trailing
|
||||
! N-1 snapshots.
|
||||
CALL SLASET( 'L', MINMN, N-1, ZERO, ZERO, X, LDX )
|
||||
CALL SLACPY( 'U', MINMN, N-1, F, LDF, X, LDX )
|
||||
CALL SLACPY( 'A', MINMN, N-1, F(1,2), LDF, Y, LDY )
|
||||
IF ( M >= 3 ) THEN
|
||||
CALL SLASET( 'L', MINMN-2, N-2, ZERO, ZERO, &
|
||||
Y(3,1), LDY )
|
||||
END IF
|
||||
!
|
||||
! Compute the DMD of the projected snapshot pairs (X,Y)
|
||||
CALL SGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN, &
|
||||
N-1, X, LDX, Y, LDY, NRNK, TOL, K, &
|
||||
REIG, IMEIG, Z, LDZ, RES, B, LDB, V, &
|
||||
LDV, S, LDS, WORK(MINMN+1), LWORK-MINMN, IWORK, &
|
||||
LIWORK, INFO1 )
|
||||
IF ( INFO1 == 2 .OR. INFO1 == 3 ) THEN
|
||||
! Return with error code.
|
||||
INFO = INFO1
|
||||
RETURN
|
||||
ELSE
|
||||
INFO = INFO1
|
||||
END IF
|
||||
!
|
||||
! The Ritz vectors (Koopman modes) can be explicitly
|
||||
! formed or returned in factored form.
|
||||
IF ( WNTVEC ) THEN
|
||||
! Compute the eigenvectors explicitly.
|
||||
IF ( M > MINMN ) CALL SLASET( 'A', M-MINMN, K, ZERO, &
|
||||
ZERO, Z(MINMN+1,1), LDZ )
|
||||
CALL SORMQR( 'L','N', M, K, MINMN, F, LDF, WORK, Z, &
|
||||
LDZ, WORK(MINMN+N), LWORK-(MINMN+N-1), INFO1 )
|
||||
ELSE IF ( WNTVCF ) THEN
|
||||
! Return the Ritz vectors (eigenvectors) in factored
|
||||
! form Z*V, where Z contains orthonormal matrix (the
|
||||
! product of Q from the initial QR factorization and
|
||||
! the SVD/POD_basis returned by SGEDMD in X) and the
|
||||
! second factor (the eigenvectors of the Rayleigh
|
||||
! quotient) is in the array V, as returned by SGEDMD.
|
||||
CALL SLACPY( 'A', N, K, X, LDX, Z, LDZ )
|
||||
IF ( M > N ) CALL SLASET( 'A', M-N, K, ZERO, ZERO, &
|
||||
Z(N+1,1), LDZ )
|
||||
CALL SORMQR( 'L','N', M, K, MINMN, F, LDF, WORK, Z, &
|
||||
LDZ, WORK(MINMN+N), LWORK-(MINMN+N-1), INFO1 )
|
||||
END IF
|
||||
!
|
||||
! Some optional output variables:
|
||||
!
|
||||
! The upper triangular factor in the initial QR
|
||||
! factorization is optionally returned in the array Y.
|
||||
! This is useful if this call to SGEDMDQ is to be
|
||||
! followed by a streaming DMD that is implemented in a
|
||||
! QR compressed form.
|
||||
IF ( WNTTRF ) THEN ! Return the upper triangular R in Y
|
||||
CALL SLASET( 'A', MINMN, N, ZERO, ZERO, Y, LDY )
|
||||
CALL SLACPY( 'U', MINMN, N, F, LDF, Y, LDY )
|
||||
END IF
|
||||
!
|
||||
! The orthonormal/orthogonal factor in the initial QR
|
||||
! factorization is optionally returned in the array F.
|
||||
! Same as with the triangular factor above, this is
|
||||
! useful in a streaming DMD.
|
||||
IF ( WANTQ ) THEN ! Q overwrites F
|
||||
CALL SORGQR( M, MINMN, MINMN, F, LDF, WORK, &
|
||||
WORK(MINMN+N), LWORK-(MINMN+N-1), INFO1 )
|
||||
END IF
|
||||
!
|
||||
RETURN
|
||||
!
|
||||
END SUBROUTINE SGEDMDQ
|
||||
|
|
@ -0,0 +1,996 @@
|
|||
SUBROUTINE ZGEDMD( JOBS, JOBZ, JOBR, JOBF, WHTSVD, &
|
||||
M, N, X, LDX, Y, LDY, NRNK, TOL, &
|
||||
K, EIGS, Z, LDZ, RES, B, LDB, &
|
||||
W, LDW, S, LDS, ZWORK, LZWORK, &
|
||||
RWORK, LRWORK, IWORK, LIWORK, INFO )
|
||||
! March 2023
|
||||
!.....
|
||||
USE iso_fortran_env
|
||||
IMPLICIT NONE
|
||||
INTEGER, PARAMETER :: WP = real64
|
||||
|
||||
!.....
|
||||
! Scalar arguments
|
||||
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBF
|
||||
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDX, LDY, &
|
||||
NRNK, LDZ, LDB, LDW, LDS, &
|
||||
LIWORK, LRWORK, LZWORK
|
||||
INTEGER, INTENT(OUT) :: K, INFO
|
||||
REAL(KIND=WP), INTENT(IN) :: TOL
|
||||
! Array arguments
|
||||
COMPLEX(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*)
|
||||
COMPLEX(KIND=WP), INTENT(OUT) :: Z(LDZ,*), B(LDB,*), &
|
||||
W(LDW,*), S(LDS,*)
|
||||
COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*)
|
||||
COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*)
|
||||
REAL(KIND=WP), INTENT(OUT) :: RES(*)
|
||||
REAL(KIND=WP), INTENT(OUT) :: RWORK(*)
|
||||
INTEGER, INTENT(OUT) :: IWORK(*)
|
||||
!............................................................
|
||||
! Purpose
|
||||
! =======
|
||||
! ZGEDMD computes the Dynamic Mode Decomposition (DMD) for
|
||||
! a pair of data snapshot matrices. For the input matrices
|
||||
! X and Y such that Y = A*X with an unaccessible matrix
|
||||
! A, ZGEDMD computes a certain number of Ritz pairs of A using
|
||||
! the standard Rayleigh-Ritz extraction from a subspace of
|
||||
! range(X) that is determined using the leading left singular
|
||||
! vectors of X. Optionally, ZGEDMD returns the residuals
|
||||
! of the computed Ritz pairs, the information needed for
|
||||
! a refinement of the Ritz vectors, or the eigenvectors of
|
||||
! the Exact DMD.
|
||||
! For further details see the references listed
|
||||
! below. For more details of the implementation see [3].
|
||||
!
|
||||
! References
|
||||
! ==========
|
||||
! [1] P. Schmid: Dynamic mode decomposition of numerical
|
||||
! and experimental data,
|
||||
! Journal of Fluid Mechanics 656, 5-28, 2010.
|
||||
! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
|
||||
! decompositions: analysis and enhancements,
|
||||
! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
|
||||
! [3] Z. Drmac: A LAPACK implementation of the Dynamic
|
||||
! Mode Decomposition I. Technical report. AIMDyn Inc.
|
||||
! and LAPACK Working Note 298.
|
||||
! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
|
||||
! Brunton, N. Kutz: On Dynamic Mode Decomposition:
|
||||
! Theory and Applications, Journal of Computational
|
||||
! Dynamics 1(2), 391 -421, 2014.
|
||||
!
|
||||
!......................................................................
|
||||
! Developed and supported by:
|
||||
! ===========================
|
||||
! Developed and coded by Zlatko Drmac, Faculty of Science,
|
||||
! University of Zagreb; drmac@math.hr
|
||||
! In cooperation with
|
||||
! AIMdyn Inc., Santa Barbara, CA.
|
||||
! and supported by
|
||||
! - DARPA SBIR project "Koopman Operator-Based Forecasting
|
||||
! for Nonstationary Processes from Near-Term, Limited
|
||||
! Observational Data" Contract No: W31P4Q-21-C-0007
|
||||
! - DARPA PAI project "Physics-Informed Machine Learning
|
||||
! Methodologies" Contract No: HR0011-18-9-0033
|
||||
! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
|
||||
! Framework for Space-Time Analysis of Process Dynamics"
|
||||
! Contract No: HR0011-16-C-0116
|
||||
! Any opinions, findings and conclusions or recommendations
|
||||
! expressed in this material are those of the author and
|
||||
! do not necessarily reflect the views of the DARPA SBIR
|
||||
! Program Office
|
||||
!============================================================
|
||||
! Distribution Statement A:
|
||||
! Approved for Public Release, Distribution Unlimited.
|
||||
! Cleared by DARPA on September 29, 2022
|
||||
!============================================================
|
||||
!............................................................
|
||||
! Arguments
|
||||
! =========
|
||||
! JOBS (input) CHARACTER*1
|
||||
! Determines whether the initial data snapshots are scaled
|
||||
! by a diagonal matrix.
|
||||
! 'S' :: The data snapshots matrices X and Y are multiplied
|
||||
! with a diagonal matrix D so that X*D has unit
|
||||
! nonzero columns (in the Euclidean 2-norm)
|
||||
! 'C' :: The snapshots are scaled as with the 'S' option.
|
||||
! If it is found that an i-th column of X is zero
|
||||
! vector and the corresponding i-th column of Y is
|
||||
! non-zero, then the i-th column of Y is set to
|
||||
! zero and a warning flag is raised.
|
||||
! 'Y' :: The data snapshots matrices X and Y are multiplied
|
||||
! by a diagonal matrix D so that Y*D has unit
|
||||
! nonzero columns (in the Euclidean 2-norm)
|
||||
! 'N' :: No data scaling.
|
||||
!.....
|
||||
! JOBZ (input) CHARACTER*1
|
||||
! Determines whether the eigenvectors (Koopman modes) will
|
||||
! be computed.
|
||||
! 'V' :: The eigenvectors (Koopman modes) will be computed
|
||||
! and returned in the matrix Z.
|
||||
! See the description of Z.
|
||||
! 'F' :: The eigenvectors (Koopman modes) will be returned
|
||||
! in factored form as the product X(:,1:K)*W, where X
|
||||
! contains a POD basis (leading left singular vectors
|
||||
! of the data matrix X) and W contains the eigenvectors
|
||||
! of the corresponding Rayleigh quotient.
|
||||
! See the descriptions of K, X, W, Z.
|
||||
! 'N' :: The eigenvectors are not computed.
|
||||
!.....
|
||||
! JOBR (input) CHARACTER*1
|
||||
! Determines whether to compute the residuals.
|
||||
! 'R' :: The residuals for the computed eigenpairs will be
|
||||
! computed and stored in the array RES.
|
||||
! See the description of RES.
|
||||
! For this option to be legal, JOBZ must be 'V'.
|
||||
! 'N' :: The residuals are not computed.
|
||||
!.....
|
||||
! JOBF (input) CHARACTER*1
|
||||
! Specifies whether to store information needed for post-
|
||||
! processing (e.g. computing refined Ritz vectors)
|
||||
! 'R' :: The matrix needed for the refinement of the Ritz
|
||||
! vectors is computed and stored in the array B.
|
||||
! See the description of B.
|
||||
! 'E' :: The unscaled eigenvectors of the Exact DMD are
|
||||
! computed and returned in the array B. See the
|
||||
! description of B.
|
||||
! 'N' :: No eigenvector refinement data is computed.
|
||||
!.....
|
||||
! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
|
||||
! Allows for a selection of the SVD algorithm from the
|
||||
! LAPACK library.
|
||||
! 1 :: ZGESVD (the QR SVD algorithm)
|
||||
! 2 :: ZGESDD (the Divide and Conquer algorithm; if enough
|
||||
! workspace available, this is the fastest option)
|
||||
! 3 :: ZGESVDQ (the preconditioned QR SVD ; this and 4
|
||||
! are the most accurate options)
|
||||
! 4 :: ZGEJSV (the preconditioned Jacobi SVD; this and 3
|
||||
! are the most accurate options)
|
||||
! For the four methods above, a significant difference in
|
||||
! the accuracy of small singular values is possible if
|
||||
! the snapshots vary in norm so that X is severely
|
||||
! ill-conditioned. If small (smaller than EPS*||X||)
|
||||
! singular values are of interest and JOBS=='N', then
|
||||
! the options (3, 4) give the most accurate results, where
|
||||
! the option 4 is slightly better and with stronger
|
||||
! theoretical background.
|
||||
! If JOBS=='S', i.e. the columns of X will be normalized,
|
||||
! then all methods give nearly equally accurate results.
|
||||
!.....
|
||||
! M (input) INTEGER, M>= 0
|
||||
! The state space dimension (the row dimension of X, Y).
|
||||
!.....
|
||||
! N (input) INTEGER, 0 <= N <= M
|
||||
! The number of data snapshot pairs
|
||||
! (the number of columns of X and Y).
|
||||
!.....
|
||||
! X (input/output) COMPLEX(KIND=WP) M-by-N array
|
||||
! > On entry, X contains the data snapshot matrix X. It is
|
||||
! assumed that the column norms of X are in the range of
|
||||
! the normalized floating point numbers.
|
||||
! < On exit, the leading K columns of X contain a POD basis,
|
||||
! i.e. the leading K left singular vectors of the input
|
||||
! data matrix X, U(:,1:K). All N columns of X contain all
|
||||
! left singular vectors of the input matrix X.
|
||||
! See the descriptions of K, Z and W.
|
||||
!.....
|
||||
! LDX (input) INTEGER, LDX >= M
|
||||
! The leading dimension of the array X.
|
||||
!.....
|
||||
! Y (input/workspace/output) COMPLEX(KIND=WP) M-by-N array
|
||||
! > On entry, Y contains the data snapshot matrix Y
|
||||
! < On exit,
|
||||
! If JOBR == 'R', the leading K columns of Y contain
|
||||
! the residual vectors for the computed Ritz pairs.
|
||||
! See the description of RES.
|
||||
! If JOBR == 'N', Y contains the original input data,
|
||||
! scaled according to the value of JOBS.
|
||||
!.....
|
||||
! LDY (input) INTEGER , LDY >= M
|
||||
! The leading dimension of the array Y.
|
||||
!.....
|
||||
! NRNK (input) INTEGER
|
||||
! Determines the mode how to compute the numerical rank,
|
||||
! i.e. how to truncate small singular values of the input
|
||||
! matrix X. On input, if
|
||||
! NRNK = -1 :: i-th singular value sigma(i) is truncated
|
||||
! if sigma(i) <= TOL*sigma(1)
|
||||
! This option is recommended.
|
||||
! NRNK = -2 :: i-th singular value sigma(i) is truncated
|
||||
! if sigma(i) <= TOL*sigma(i-1)
|
||||
! This option is included for R&D purposes.
|
||||
! It requires highly accurate SVD, which
|
||||
! may not be feasible.
|
||||
! The numerical rank can be enforced by using positive
|
||||
! value of NRNK as follows:
|
||||
! 0 < NRNK <= N :: at most NRNK largest singular values
|
||||
! will be used. If the number of the computed nonzero
|
||||
! singular values is less than NRNK, then only those
|
||||
! nonzero values will be used and the actually used
|
||||
! dimension is less than NRNK. The actual number of
|
||||
! the nonzero singular values is returned in the variable
|
||||
! K. See the descriptions of TOL and K.
|
||||
!.....
|
||||
! TOL (input) REAL(KIND=WP), 0 <= TOL < 1
|
||||
! The tolerance for truncating small singular values.
|
||||
! See the description of NRNK.
|
||||
!.....
|
||||
! K (output) INTEGER, 0 <= K <= N
|
||||
! The dimension of the POD basis for the data snapshot
|
||||
! matrix X and the number of the computed Ritz pairs.
|
||||
! The value of K is determined according to the rule set
|
||||
! by the parameters NRNK and TOL.
|
||||
! See the descriptions of NRNK and TOL.
|
||||
!.....
|
||||
! EIGS (output) COMPLEX(KIND=WP) N-by-1 array
|
||||
! The leading K (K<=N) entries of EIGS contain
|
||||
! the computed eigenvalues (Ritz values).
|
||||
! See the descriptions of K, and Z.
|
||||
!.....
|
||||
! Z (workspace/output) COMPLEX(KIND=WP) M-by-N array
|
||||
! If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i)
|
||||
! is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1.
|
||||
! If JOBZ == 'F', then the Z(:,i)'s are given implicitly as
|
||||
! the columns of X(:,1:K)*W(1:K,1:K), i.e. X(:,1:K)*W(:,i)
|
||||
! is an eigenvector corresponding to EIGS(i). The columns
|
||||
! of W(1:k,1:K) are the computed eigenvectors of the
|
||||
! K-by-K Rayleigh quotient.
|
||||
! See the descriptions of EIGS, X and W.
|
||||
!.....
|
||||
! LDZ (input) INTEGER , LDZ >= M
|
||||
! The leading dimension of the array Z.
|
||||
!.....
|
||||
! RES (output) REAL(KIND=WP) N-by-1 array
|
||||
! RES(1:K) contains the residuals for the K computed
|
||||
! Ritz pairs,
|
||||
! RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2.
|
||||
! See the description of EIGS and Z.
|
||||
!.....
|
||||
! B (output) COMPLEX(KIND=WP) M-by-N array.
|
||||
! IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can
|
||||
! be used for computing the refined vectors; see further
|
||||
! details in the provided references.
|
||||
! If JOBF == 'E', B(1:M,1:K) contains
|
||||
! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
|
||||
! Exact DMD, up to scaling by the inverse eigenvalues.
|
||||
! If JOBF =='N', then B is not referenced.
|
||||
! See the descriptions of X, W, K.
|
||||
!.....
|
||||
! LDB (input) INTEGER, LDB >= M
|
||||
! The leading dimension of the array B.
|
||||
!.....
|
||||
! W (workspace/output) COMPLEX(KIND=WP) N-by-N array
|
||||
! On exit, W(1:K,1:K) contains the K computed
|
||||
! eigenvectors of the matrix Rayleigh quotient.
|
||||
! The Ritz vectors (returned in Z) are the
|
||||
! product of X (containing a POD basis for the input
|
||||
! matrix X) and W. See the descriptions of K, S, X and Z.
|
||||
! W is also used as a workspace to temporarily store the
|
||||
! right singular vectors of X.
|
||||
!.....
|
||||
! LDW (input) INTEGER, LDW >= N
|
||||
! The leading dimension of the array W.
|
||||
!.....
|
||||
! S (workspace/output) COMPLEX(KIND=WP) N-by-N array
|
||||
! The array S(1:K,1:K) is used for the matrix Rayleigh
|
||||
! quotient. This content is overwritten during
|
||||
! the eigenvalue decomposition by ZGEEV.
|
||||
! See the description of K.
|
||||
!.....
|
||||
! LDS (input) INTEGER, LDS >= N
|
||||
! The leading dimension of the array S.
|
||||
!.....
|
||||
! ZWORK (workspace/output) COMPLEX(KIND=WP) LZWORK-by-1 array
|
||||
! ZWORK is used as complex workspace in the complex SVD, as
|
||||
! specified by WHTSVD (1,2, 3 or 4) and for ZGEEV for computing
|
||||
! the eigenvalues of a Rayleigh quotient.
|
||||
! If the call to ZGEDMD is only workspace query, then
|
||||
! ZWORK(1) contains the minimal complex workspace length and
|
||||
! ZWORK(2) is the optimal complex workspace length.
|
||||
! Hence, the length of work is at least 2.
|
||||
! See the description of LZWORK.
|
||||
!.....
|
||||
! LZWORK (input) INTEGER
|
||||
! The minimal length of the workspace vector ZWORK.
|
||||
! LZWORK is calculated as MAX(LZWORK_SVD, LZWORK_ZGEEV),
|
||||
! where LZWORK_ZGEEV = MAX( 1, 2*N ) and the minimal
|
||||
! LZWORK_SVD is calculated as follows
|
||||
! If WHTSVD == 1 :: ZGESVD ::
|
||||
! LZWORK_SVD = MAX(1,2*MIN(M,N)+MAX(M,N))
|
||||
! If WHTSVD == 2 :: ZGESDD ::
|
||||
! LZWORK_SVD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N)
|
||||
! If WHTSVD == 3 :: ZGESVDQ ::
|
||||
! LZWORK_SVD = obtainable by a query
|
||||
! If WHTSVD == 4 :: ZGEJSV ::
|
||||
! LZWORK_SVD = obtainable by a query
|
||||
! If on entry LZWORK = -1, then a workspace query is
|
||||
! assumed and the procedure only computes the minimal
|
||||
! and the optimal workspace lengths and returns them in
|
||||
! LZWORK(1) and LZWORK(2), respectively.
|
||||
!.....
|
||||
! RWORK (workspace/output) REAL(KIND=WP) LRWORK-by-1 array
|
||||
! On exit, RWORK(1:N) contains the singular values of
|
||||
! X (for JOBS=='N') or column scaled X (JOBS=='S', 'C').
|
||||
! If WHTSVD==4, then RWORK(N+1) and RWORK(N+2) contain
|
||||
! scaling factor RWORK(N+2)/RWORK(N+1) used to scale X
|
||||
! and Y to avoid overflow in the SVD of X.
|
||||
! This may be of interest if the scaling option is off
|
||||
! and as many as possible smallest eigenvalues are
|
||||
! desired to the highest feasible accuracy.
|
||||
! If the call to ZGEDMD is only workspace query, then
|
||||
! RWORK(1) contains the minimal workspace length.
|
||||
! See the description of LRWORK.
|
||||
!.....
|
||||
! LRWORK (input) INTEGER
|
||||
! The minimal length of the workspace vector RWORK.
|
||||
! LRWORK is calculated as follows:
|
||||
! LRWORK = MAX(1, N+LRWORK_SVD,N+LRWORK_ZGEEV), where
|
||||
! LRWORK_ZGEEV = MAX(1,2*N) and RWORK_SVD is the real workspace
|
||||
! for the SVD subroutine determined by the input parameter
|
||||
! WHTSVD.
|
||||
! If WHTSVD == 1 :: ZGESVD ::
|
||||
! LRWORK_SVD = 5*MIN(M,N)
|
||||
! If WHTSVD == 2 :: ZGESDD ::
|
||||
! LRWORK_SVD = MAX(5*MIN(M,N)*MIN(M,N)+7*MIN(M,N),
|
||||
! 2*MAX(M,N)*MIN(M,N)+2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) )
|
||||
! If WHTSVD == 3 :: ZGESVDQ ::
|
||||
! LRWORK_SVD = obtainable by a query
|
||||
! If WHTSVD == 4 :: ZGEJSV ::
|
||||
! LRWORK_SVD = obtainable by a query
|
||||
! If on entry LRWORK = -1, then a workspace query is
|
||||
! assumed and the procedure only computes the minimal
|
||||
! real workspace length and returns it in RWORK(1).
|
||||
!.....
|
||||
! IWORK (workspace/output) INTEGER LIWORK-by-1 array
|
||||
! Workspace that is required only if WHTSVD equals
|
||||
! 2 , 3 or 4. (See the description of WHTSVD).
|
||||
! If on entry LWORK =-1 or LIWORK=-1, then the
|
||||
! minimal length of IWORK is computed and returned in
|
||||
! IWORK(1). See the description of LIWORK.
|
||||
!.....
|
||||
! LIWORK (input) INTEGER
|
||||
! The minimal length of the workspace vector IWORK.
|
||||
! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
|
||||
! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N))
|
||||
! If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1)
|
||||
! If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N)
|
||||
! If on entry LIWORK = -1, then a workspace query is
|
||||
! assumed and the procedure only computes the minimal
|
||||
! and the optimal workspace lengths for ZWORK, RWORK and
|
||||
! IWORK. See the descriptions of ZWORK, RWORK and IWORK.
|
||||
!.....
|
||||
! INFO (output) INTEGER
|
||||
! -i < 0 :: On entry, the i-th argument had an
|
||||
! illegal value
|
||||
! = 0 :: Successful return.
|
||||
! = 1 :: Void input. Quick exit (M=0 or N=0).
|
||||
! = 2 :: The SVD computation of X did not converge.
|
||||
! Suggestion: Check the input data and/or
|
||||
! repeat with different WHTSVD.
|
||||
! = 3 :: The computation of the eigenvalues did not
|
||||
! converge.
|
||||
! = 4 :: If data scaling was requested on input and
|
||||
! the procedure found inconsistency in the data
|
||||
! such that for some column index i,
|
||||
! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
|
||||
! to zero if JOBS=='C'. The computation proceeds
|
||||
! with original or modified data and warning
|
||||
! flag is set with INFO=4.
|
||||
!.............................................................
|
||||
!.............................................................
|
||||
! Parameters
|
||||
! ~~~~~~~~~~
|
||||
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP
|
||||
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP
|
||||
COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP )
|
||||
COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP )
|
||||
|
||||
! Local scalars
|
||||
! ~~~~~~~~~~~~~
|
||||
REAL(KIND=WP) :: OFL, ROOTSC, SCALE, SMALL, &
|
||||
SSUM, XSCL1, XSCL2
|
||||
INTEGER :: i, j, IMINWR, INFO1, INFO2, &
|
||||
LWRKEV, LWRSDD, LWRSVD, LWRSVJ, &
|
||||
LWRSVQ, MLWORK, MWRKEV, MWRSDD, &
|
||||
MWRSVD, MWRSVJ, MWRSVQ, NUMRNK, &
|
||||
OLWORK, MLRWRK
|
||||
LOGICAL :: BADXY, LQUERY, SCCOLX, SCCOLY, &
|
||||
WNTEX, WNTREF, WNTRES, WNTVEC
|
||||
CHARACTER :: JOBZL, T_OR_N
|
||||
CHARACTER :: JSVOPT
|
||||
!
|
||||
! Local arrays
|
||||
! ~~~~~~~~~~~~
|
||||
REAL(KIND=WP) :: RDUMMY(2)
|
||||
|
||||
! External functions (BLAS and LAPACK)
|
||||
! ~~~~~~~~~~~~~~~~~
|
||||
REAL(KIND=WP) ZLANGE, DLAMCH, DZNRM2
|
||||
EXTERNAL ZLANGE, DLAMCH, DZNRM2, IZAMAX
|
||||
INTEGER IZAMAX
|
||||
LOGICAL DISNAN, LSAME
|
||||
EXTERNAL DISNAN, LSAME
|
||||
|
||||
! External subroutines (BLAS and LAPACK)
|
||||
! ~~~~~~~~~~~~~~~~~~~~
|
||||
EXTERNAL ZAXPY, ZGEMM, ZDSCAL
|
||||
EXTERNAL ZGEEV, ZGEJSV, ZGESDD, ZGESVD, ZGESVDQ, &
|
||||
ZLACPY, ZLASCL, ZLASSQ, XERBLA
|
||||
|
||||
! Intrinsic functions
|
||||
! ~~~~~~~~~~~~~~~~~~~
|
||||
INTRINSIC DBLE, INT, MAX, SQRT
|
||||
!............................................................
|
||||
!
|
||||
! Test the input arguments
|
||||
!
|
||||
WNTRES = LSAME(JOBR,'R')
|
||||
SCCOLX = LSAME(JOBS,'S') .OR. LSAME(JOBS,'C')
|
||||
SCCOLY = LSAME(JOBS,'Y')
|
||||
WNTVEC = LSAME(JOBZ,'V')
|
||||
WNTREF = LSAME(JOBF,'R')
|
||||
WNTEX = LSAME(JOBF,'E')
|
||||
INFO = 0
|
||||
LQUERY = ( ( LZWORK == -1 ) .OR. ( LIWORK == -1 ) &
|
||||
.OR. ( LRWORK == -1 ) )
|
||||
!
|
||||
IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. &
|
||||
LSAME(JOBS,'N')) ) THEN
|
||||
INFO = -1
|
||||
ELSE IF ( .NOT. (WNTVEC .OR. LSAME(JOBZ,'N') &
|
||||
.OR. LSAME(JOBZ,'F')) ) THEN
|
||||
INFO = -2
|
||||
ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. &
|
||||
( WNTRES .AND. (.NOT.WNTVEC) ) ) THEN
|
||||
INFO = -3
|
||||
ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. &
|
||||
LSAME(JOBF,'N') ) ) THEN
|
||||
INFO = -4
|
||||
ELSE IF ( .NOT.((WHTSVD == 1) .OR. (WHTSVD == 2) .OR. &
|
||||
(WHTSVD == 3) .OR. (WHTSVD == 4) )) THEN
|
||||
INFO = -5
|
||||
ELSE IF ( M < 0 ) THEN
|
||||
INFO = -6
|
||||
ELSE IF ( ( N < 0 ) .OR. ( N > M ) ) THEN
|
||||
INFO = -7
|
||||
ELSE IF ( LDX < M ) THEN
|
||||
INFO = -9
|
||||
ELSE IF ( LDY < M ) THEN
|
||||
INFO = -11
|
||||
ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. &
|
||||
((NRNK >= 1).AND.(NRNK <=N ))) ) THEN
|
||||
INFO = -12
|
||||
ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN
|
||||
INFO = -13
|
||||
ELSE IF ( LDZ < M ) THEN
|
||||
INFO = -17
|
||||
ELSE IF ( (WNTREF .OR. WNTEX ) .AND. ( LDB < M ) ) THEN
|
||||
INFO = -20
|
||||
ELSE IF ( LDW < N ) THEN
|
||||
INFO = -22
|
||||
ELSE IF ( LDS < N ) THEN
|
||||
INFO = -24
|
||||
END IF
|
||||
!
|
||||
IF ( INFO == 0 ) THEN
|
||||
! Compute the minimal and the optimal workspace
|
||||
! requirements. Simulate running the code and
|
||||
! determine minimal and optimal sizes of the
|
||||
! workspace at any moment of the run.
|
||||
IF ( N == 0 ) THEN
|
||||
! Quick return. All output except K is void.
|
||||
! INFO=1 signals the void input.
|
||||
! In case of a workspace query, the default
|
||||
! minimal workspace lengths are returned.
|
||||
IF ( LQUERY ) THEN
|
||||
IWORK(1) = 1
|
||||
RWORK(1) = 1
|
||||
ZWORK(1) = 2
|
||||
ZWORK(2) = 2
|
||||
ELSE
|
||||
K = 0
|
||||
END IF
|
||||
INFO = 1
|
||||
RETURN
|
||||
END IF
|
||||
|
||||
IMINWR = 1
|
||||
MLRWRK = MAX(1,N)
|
||||
MLWORK = 2
|
||||
OLWORK = 2
|
||||
SELECT CASE ( WHTSVD )
|
||||
CASE (1)
|
||||
! The following is specified as the minimal
|
||||
! length of WORK in the definition of ZGESVD:
|
||||
! MWRSVD = MAX(1,2*MIN(M,N)+MAX(M,N))
|
||||
MWRSVD = MAX(1,2*MIN(M,N)+MAX(M,N))
|
||||
MLWORK = MAX(MLWORK,MWRSVD)
|
||||
MLRWRK = MAX(MLRWRK,N + 5*MIN(M,N))
|
||||
IF ( LQUERY ) THEN
|
||||
CALL ZGESVD( 'O', 'S', M, N, X, LDX, RWORK, &
|
||||
B, LDB, W, LDW, ZWORK, -1, RDUMMY, INFO1 )
|
||||
LWRSVD = INT( ZWORK(1) )
|
||||
OLWORK = MAX(OLWORK,LWRSVD)
|
||||
END IF
|
||||
CASE (2)
|
||||
! The following is specified as the minimal
|
||||
! length of WORK in the definition of ZGESDD:
|
||||
! MWRSDD = 2*min(M,N)*min(M,N)+2*min(M,N)+max(M,N).
|
||||
! RWORK length: 5*MIN(M,N)*MIN(M,N)+7*MIN(M,N)
|
||||
! In LAPACK 3.10.1 RWORK is defined differently.
|
||||
! Below we take max over the two versions.
|
||||
! IMINWR = 8*MIN(M,N)
|
||||
MWRSDD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N)
|
||||
MLWORK = MAX(MLWORK,MWRSDD)
|
||||
IMINWR = 8*MIN(M,N)
|
||||
MLRWRK = MAX( MLRWRK, N + &
|
||||
MAX( 5*MIN(M,N)*MIN(M,N)+7*MIN(M,N), &
|
||||
5*MIN(M,N)*MIN(M,N)+5*MIN(M,N), &
|
||||
2*MAX(M,N)*MIN(M,N)+ &
|
||||
2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) )
|
||||
IF ( LQUERY ) THEN
|
||||
CALL ZGESDD( 'O', M, N, X, LDX, RWORK, B,LDB,&
|
||||
W, LDW, ZWORK, -1, RDUMMY, IWORK, INFO1 )
|
||||
LWRSDD = MAX( MWRSDD,INT( ZWORK(1) ))
|
||||
! Possible bug in ZGESDD optimal workspace size.
|
||||
OLWORK = MAX(OLWORK,LWRSDD)
|
||||
END IF
|
||||
CASE (3)
|
||||
CALL ZGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, &
|
||||
X, LDX, RWORK, Z, LDZ, W, LDW, NUMRNK, &
|
||||
IWORK, -1, ZWORK, -1, RDUMMY, -1, INFO1 )
|
||||
IMINWR = IWORK(1)
|
||||
MWRSVQ = INT(ZWORK(2))
|
||||
MLWORK = MAX(MLWORK,MWRSVQ)
|
||||
MLRWRK = MAX(MLRWRK,N + INT(RDUMMY(1)))
|
||||
IF ( LQUERY ) THEN
|
||||
LWRSVQ = INT(ZWORK(1))
|
||||
OLWORK = MAX(OLWORK,LWRSVQ)
|
||||
END IF
|
||||
CASE (4)
|
||||
JSVOPT = 'J'
|
||||
CALL ZGEJSV( 'F', 'U', JSVOPT, 'R', 'N', 'P', M, &
|
||||
N, X, LDX, RWORK, Z, LDZ, W, LDW, &
|
||||
ZWORK, -1, RDUMMY, -1, IWORK, INFO1 )
|
||||
IMINWR = IWORK(1)
|
||||
MWRSVJ = INT(ZWORK(2))
|
||||
MLWORK = MAX(MLWORK,MWRSVJ)
|
||||
MLRWRK = MAX(MLRWRK,N + MAX(7,INT(RDUMMY(1))))
|
||||
IF ( LQUERY ) THEN
|
||||
LWRSVJ = INT(ZWORK(1))
|
||||
OLWORK = MAX(OLWORK,LWRSVJ)
|
||||
END IF
|
||||
END SELECT
|
||||
IF ( WNTVEC .OR. WNTEX .OR. LSAME(JOBZ,'F') ) THEN
|
||||
JOBZL = 'V'
|
||||
ELSE
|
||||
JOBZL = 'N'
|
||||
END IF
|
||||
! Workspace calculation to the ZGEEV call
|
||||
MWRKEV = MAX( 1, 2*N )
|
||||
MLWORK = MAX(MLWORK,MWRKEV)
|
||||
MLRWRK = MAX(MLRWRK,N+2*N)
|
||||
IF ( LQUERY ) THEN
|
||||
CALL ZGEEV( 'N', JOBZL, N, S, LDS, EIGS, &
|
||||
W, LDW, W, LDW, ZWORK, -1, RWORK, INFO1 )
|
||||
LWRKEV = INT(ZWORK(1))
|
||||
OLWORK = MAX( OLWORK, LWRKEV )
|
||||
END IF
|
||||
!
|
||||
IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -30
|
||||
IF ( LRWORK < MLRWRK .AND. (.NOT.LQUERY) ) INFO = -28
|
||||
IF ( LZWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -26
|
||||
|
||||
END IF
|
||||
!
|
||||
IF( INFO /= 0 ) THEN
|
||||
CALL XERBLA( 'ZGEDMD', -INFO )
|
||||
RETURN
|
||||
ELSE IF ( LQUERY ) THEN
|
||||
! Return minimal and optimal workspace sizes
|
||||
IWORK(1) = IMINWR
|
||||
RWORK(1) = MLRWRK
|
||||
ZWORK(1) = MLWORK
|
||||
ZWORK(2) = OLWORK
|
||||
RETURN
|
||||
END IF
|
||||
!............................................................
|
||||
!
|
||||
OFL = DLAMCH('O')
|
||||
SMALL = DLAMCH('S')
|
||||
BADXY = .FALSE.
|
||||
!
|
||||
! <1> Optional scaling of the snapshots (columns of X, Y)
|
||||
! ==========================================================
|
||||
IF ( SCCOLX ) THEN
|
||||
! The columns of X will be normalized.
|
||||
! To prevent overflows, the column norms of X are
|
||||
! carefully computed using ZLASSQ.
|
||||
K = 0
|
||||
DO i = 1, N
|
||||
!WORK(i) = DZNRM2( M, X(1,i), 1 )
|
||||
SCALE = ZERO
|
||||
CALL ZLASSQ( M, X(1,i), 1, SCALE, SSUM )
|
||||
IF ( DISNAN(SCALE) .OR. DISNAN(SSUM) ) THEN
|
||||
K = 0
|
||||
INFO = -8
|
||||
CALL XERBLA('ZGEDMD',-INFO)
|
||||
END IF
|
||||
IF ( (SCALE /= ZERO) .AND. (SSUM /= ZERO) ) THEN
|
||||
ROOTSC = SQRT(SSUM)
|
||||
IF ( SCALE .GE. (OFL / ROOTSC) ) THEN
|
||||
! Norm of X(:,i) overflows. First, X(:,i)
|
||||
! is scaled by
|
||||
! ( ONE / ROOTSC ) / SCALE = 1/||X(:,i)||_2.
|
||||
! Next, the norm of X(:,i) is stored without
|
||||
! overflow as RWORK(i) = - SCALE * (ROOTSC/M),
|
||||
! the minus sign indicating the 1/M factor.
|
||||
! Scaling is performed without overflow, and
|
||||
! underflow may occur in the smallest entries
|
||||
! of X(:,i). The relative backward and forward
|
||||
! errors are small in the ell_2 norm.
|
||||
CALL ZLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, &
|
||||
M, 1, X(1,i), LDX, INFO2 )
|
||||
RWORK(i) = - SCALE * ( ROOTSC / DBLE(M) )
|
||||
ELSE
|
||||
! X(:,i) will be scaled to unit 2-norm
|
||||
RWORK(i) = SCALE * ROOTSC
|
||||
CALL ZLASCL( 'G',0, 0, RWORK(i), ONE, M, 1, &
|
||||
X(1,i), LDX, INFO2 ) ! LAPACK CALL
|
||||
! X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i) ! INTRINSIC
|
||||
END IF
|
||||
ELSE
|
||||
RWORK(i) = ZERO
|
||||
K = K + 1
|
||||
END IF
|
||||
END DO
|
||||
IF ( K == N ) THEN
|
||||
! All columns of X are zero. Return error code -8.
|
||||
! (the 8th input variable had an illegal value)
|
||||
K = 0
|
||||
INFO = -8
|
||||
CALL XERBLA('ZGEDMD',-INFO)
|
||||
RETURN
|
||||
END IF
|
||||
DO i = 1, N
|
||||
! Now, apply the same scaling to the columns of Y.
|
||||
IF ( RWORK(i) > ZERO ) THEN
|
||||
CALL ZDSCAL( M, ONE/RWORK(i), Y(1,i), 1 ) ! BLAS CALL
|
||||
! Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i) ! INTRINSIC
|
||||
ELSE IF ( RWORK(i) < ZERO ) THEN
|
||||
CALL ZLASCL( 'G', 0, 0, -RWORK(i), &
|
||||
ONE/DBLE(M), M, 1, Y(1,i), LDY, INFO2 ) ! LAPACK CALL
|
||||
ELSE IF ( ABS(Y(IZAMAX(M, Y(1,i),1),i )) &
|
||||
/= ZERO ) THEN
|
||||
! X(:,i) is zero vector. For consistency,
|
||||
! Y(:,i) should also be zero. If Y(:,i) is not
|
||||
! zero, then the data might be inconsistent or
|
||||
! corrupted. If JOBS == 'C', Y(:,i) is set to
|
||||
! zero and a warning flag is raised.
|
||||
! The computation continues but the
|
||||
! situation will be reported in the output.
|
||||
BADXY = .TRUE.
|
||||
IF ( LSAME(JOBS,'C')) &
|
||||
CALL ZDSCAL( M, ZERO, Y(1,i), 1 ) ! BLAS CALL
|
||||
END IF
|
||||
END DO
|
||||
END IF
|
||||
!
|
||||
IF ( SCCOLY ) THEN
|
||||
! The columns of Y will be normalized.
|
||||
! To prevent overflows, the column norms of Y are
|
||||
! carefully computed using ZLASSQ.
|
||||
DO i = 1, N
|
||||
!RWORK(i) = DZNRM2( M, Y(1,i), 1 )
|
||||
SCALE = ZERO
|
||||
CALL ZLASSQ( M, Y(1,i), 1, SCALE, SSUM )
|
||||
IF ( DISNAN(SCALE) .OR. DISNAN(SSUM) ) THEN
|
||||
K = 0
|
||||
INFO = -10
|
||||
CALL XERBLA('ZGEDMD',-INFO)
|
||||
END IF
|
||||
IF ( SCALE /= ZERO .AND. (SSUM /= ZERO) ) THEN
|
||||
ROOTSC = SQRT(SSUM)
|
||||
IF ( SCALE .GE. (OFL / ROOTSC) ) THEN
|
||||
! Norm of Y(:,i) overflows. First, Y(:,i)
|
||||
! is scaled by
|
||||
! ( ONE / ROOTSC ) / SCALE = 1/||Y(:,i)||_2.
|
||||
! Next, the norm of Y(:,i) is stored without
|
||||
! overflow as RWORK(i) = - SCALE * (ROOTSC/M),
|
||||
! the minus sign indicating the 1/M factor.
|
||||
! Scaling is performed without overflow, and
|
||||
! underflow may occur in the smallest entries
|
||||
! of Y(:,i). The relative backward and forward
|
||||
! errors are small in the ell_2 norm.
|
||||
CALL ZLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, &
|
||||
M, 1, Y(1,i), LDY, INFO2 )
|
||||
RWORK(i) = - SCALE * ( ROOTSC / DBLE(M) )
|
||||
ELSE
|
||||
! Y(:,i) will be scaled to unit 2-norm
|
||||
RWORK(i) = SCALE * ROOTSC
|
||||
CALL ZLASCL( 'G',0, 0, RWORK(i), ONE, M, 1, &
|
||||
Y(1,i), LDY, INFO2 ) ! LAPACK CALL
|
||||
! Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i) ! INTRINSIC
|
||||
END IF
|
||||
ELSE
|
||||
RWORK(i) = ZERO
|
||||
END IF
|
||||
END DO
|
||||
DO i = 1, N
|
||||
! Now, apply the same scaling to the columns of X.
|
||||
IF ( RWORK(i) > ZERO ) THEN
|
||||
CALL ZDSCAL( M, ONE/RWORK(i), X(1,i), 1 ) ! BLAS CALL
|
||||
! X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i) ! INTRINSIC
|
||||
ELSE IF ( RWORK(i) < ZERO ) THEN
|
||||
CALL ZLASCL( 'G', 0, 0, -RWORK(i), &
|
||||
ONE/DBLE(M), M, 1, X(1,i), LDX, INFO2 ) ! LAPACK CALL
|
||||
ELSE IF ( ABS(X(IZAMAX(M, X(1,i),1),i )) &
|
||||
/= ZERO ) THEN
|
||||
! Y(:,i) is zero vector. If X(:,i) is not
|
||||
! zero, then a warning flag is raised.
|
||||
! The computation continues but the
|
||||
! situation will be reported in the output.
|
||||
BADXY = .TRUE.
|
||||
END IF
|
||||
END DO
|
||||
END IF
|
||||
!
|
||||
! <2> SVD of the data snapshot matrix X.
|
||||
! =====================================
|
||||
! The left singular vectors are stored in the array X.
|
||||
! The right singular vectors are in the array W.
|
||||
! The array W will later on contain the eigenvectors
|
||||
! of a Rayleigh quotient.
|
||||
NUMRNK = N
|
||||
SELECT CASE ( WHTSVD )
|
||||
CASE (1)
|
||||
CALL ZGESVD( 'O', 'S', M, N, X, LDX, RWORK, B, &
|
||||
LDB, W, LDW, ZWORK, LZWORK, RWORK(N+1), INFO1 ) ! LAPACK CALL
|
||||
T_OR_N = 'C'
|
||||
CASE (2)
|
||||
CALL ZGESDD( 'O', M, N, X, LDX, RWORK, B, LDB, W, &
|
||||
LDW, ZWORK, LZWORK, RWORK(N+1), IWORK, INFO1 ) ! LAPACK CALL
|
||||
T_OR_N = 'C'
|
||||
CASE (3)
|
||||
CALL ZGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, &
|
||||
X, LDX, RWORK, Z, LDZ, W, LDW, &
|
||||
NUMRNK, IWORK, LIWORK, ZWORK, &
|
||||
LZWORK, RWORK(N+1), LRWORK-N, INFO1) ! LAPACK CALL
|
||||
CALL ZLACPY( 'A', M, NUMRNK, Z, LDZ, X, LDX ) ! LAPACK CALL
|
||||
T_OR_N = 'C'
|
||||
CASE (4)
|
||||
CALL ZGEJSV( 'F', 'U', JSVOPT, 'R', 'N', 'P', M, &
|
||||
N, X, LDX, RWORK, Z, LDZ, W, LDW, &
|
||||
ZWORK, LZWORK, RWORK(N+1), LRWORK-N, IWORK, INFO1 ) ! LAPACK CALL
|
||||
CALL ZLACPY( 'A', M, N, Z, LDZ, X, LDX ) ! LAPACK CALL
|
||||
T_OR_N = 'N'
|
||||
XSCL1 = RWORK(N+1)
|
||||
XSCL2 = RWORK(N+2)
|
||||
IF ( XSCL1 /= XSCL2 ) THEN
|
||||
! This is an exceptional situation. If the
|
||||
! data matrices are not scaled and the
|
||||
! largest singular value of X overflows.
|
||||
! In that case ZGEJSV can return the SVD
|
||||
! in scaled form. The scaling factor can be used
|
||||
! to rescale the data (X and Y).
|
||||
CALL ZLASCL( 'G', 0, 0, XSCL1, XSCL2, M, N, Y, LDY, INFO2 )
|
||||
END IF
|
||||
END SELECT
|
||||
!
|
||||
IF ( INFO1 > 0 ) THEN
|
||||
! The SVD selected subroutine did not converge.
|
||||
! Return with an error code.
|
||||
INFO = 2
|
||||
RETURN
|
||||
END IF
|
||||
!
|
||||
IF ( RWORK(1) == ZERO ) THEN
|
||||
! The largest computed singular value of (scaled)
|
||||
! X is zero. Return error code -8
|
||||
! (the 8th input variable had an illegal value).
|
||||
K = 0
|
||||
INFO = -8
|
||||
CALL XERBLA('ZGEDMD',-INFO)
|
||||
RETURN
|
||||
END IF
|
||||
!
|
||||
!<3> Determine the numerical rank of the data
|
||||
! snapshots matrix X. This depends on the
|
||||
! parameters NRNK and TOL.
|
||||
|
||||
SELECT CASE ( NRNK )
|
||||
CASE ( -1 )
|
||||
K = 1
|
||||
DO i = 2, NUMRNK
|
||||
IF ( ( RWORK(i) <= RWORK(1)*TOL ) .OR. &
|
||||
( RWORK(i) <= SMALL ) ) EXIT
|
||||
K = K + 1
|
||||
END DO
|
||||
CASE ( -2 )
|
||||
K = 1
|
||||
DO i = 1, NUMRNK-1
|
||||
IF ( ( RWORK(i+1) <= RWORK(i)*TOL ) .OR. &
|
||||
( RWORK(i) <= SMALL ) ) EXIT
|
||||
K = K + 1
|
||||
END DO
|
||||
CASE DEFAULT
|
||||
K = 1
|
||||
DO i = 2, NRNK
|
||||
IF ( RWORK(i) <= SMALL ) EXIT
|
||||
K = K + 1
|
||||
END DO
|
||||
END SELECT
|
||||
! Now, U = X(1:M,1:K) is the SVD/POD basis for the
|
||||
! snapshot data in the input matrix X.
|
||||
|
||||
!<4> Compute the Rayleigh quotient S = U^H * A * U.
|
||||
! Depending on the requested outputs, the computation
|
||||
! is organized to compute additional auxiliary
|
||||
! matrices (for the residuals and refinements).
|
||||
!
|
||||
! In all formulas below, we need V_k*Sigma_k^(-1)
|
||||
! where either V_k is in W(1:N,1:K), or V_k^H is in
|
||||
! W(1:K,1:N). Here Sigma_k=diag(WORK(1:K)).
|
||||
IF ( LSAME(T_OR_N, 'N') ) THEN
|
||||
DO i = 1, K
|
||||
CALL ZDSCAL( N, ONE/RWORK(i), W(1,i), 1 ) ! BLAS CALL
|
||||
! W(1:N,i) = (ONE/RWORK(i)) * W(1:N,i) ! INTRINSIC
|
||||
END DO
|
||||
ELSE
|
||||
! This non-unit stride access is due to the fact
|
||||
! that ZGESVD, ZGESVDQ and ZGESDD return the
|
||||
! adjoint matrix of the right singular vectors.
|
||||
!DO i = 1, K
|
||||
! CALL ZDSCAL( N, ONE/RWORK(i), W(i,1), LDW ) ! BLAS CALL
|
||||
! ! W(i,1:N) = (ONE/RWORK(i)) * W(i,1:N) ! INTRINSIC
|
||||
!END DO
|
||||
DO i = 1, K
|
||||
RWORK(N+i) = ONE/RWORK(i)
|
||||
END DO
|
||||
DO j = 1, N
|
||||
DO i = 1, K
|
||||
W(i,j) = CMPLX(RWORK(N+i),ZERO,KIND=WP)*W(i,j)
|
||||
END DO
|
||||
END DO
|
||||
END IF
|
||||
!
|
||||
IF ( WNTREF ) THEN
|
||||
!
|
||||
! Need A*U(:,1:K)=Y*V_k*inv(diag(WORK(1:K)))
|
||||
! for computing the refined Ritz vectors
|
||||
! (optionally, outside ZGEDMD).
|
||||
CALL ZGEMM( 'N', T_OR_N, M, K, N, ZONE, Y, LDY, W, &
|
||||
LDW, ZZERO, Z, LDZ ) ! BLAS CALL
|
||||
! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),TRANSPOSE(CONJG(W(1:K,1:N)))) ! INTRINSIC, for T_OR_N=='C'
|
||||
! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),W(1:N,1:K)) ! INTRINSIC, for T_OR_N=='N'
|
||||
!
|
||||
! At this point Z contains
|
||||
! A * U(:,1:K) = Y * V_k * Sigma_k^(-1), and
|
||||
! this is needed for computing the residuals.
|
||||
! This matrix is returned in the array B and
|
||||
! it can be used to compute refined Ritz vectors.
|
||||
CALL ZLACPY( 'A', M, K, Z, LDZ, B, LDB ) ! BLAS CALL
|
||||
! B(1:M,1:K) = Z(1:M,1:K) ! INTRINSIC
|
||||
|
||||
CALL ZGEMM( 'C', 'N', K, K, M, ZONE, X, LDX, Z, &
|
||||
LDZ, ZZERO, S, LDS ) ! BLAS CALL
|
||||
! S(1:K,1:K) = MATMUL(TRANSPOSE(CONJG(X(1:M,1:K))),Z(1:M,1:K)) ! INTRINSIC
|
||||
! At this point S = U^H * A * U is the Rayleigh quotient.
|
||||
ELSE
|
||||
! A * U(:,1:K) is not explicitly needed and the
|
||||
! computation is organized differently. The Rayleigh
|
||||
! quotient is computed more efficiently.
|
||||
CALL ZGEMM( 'C', 'N', K, N, M, ZONE, X, LDX, Y, LDY, &
|
||||
ZZERO, Z, LDZ ) ! BLAS CALL
|
||||
! Z(1:K,1:N) = MATMUL( TRANSPOSE(CONJG(X(1:M,1:K))), Y(1:M,1:N) ) ! INTRINSIC
|
||||
!
|
||||
CALL ZGEMM( 'N', T_OR_N, K, K, N, ZONE, Z, LDZ, W, &
|
||||
LDW, ZZERO, S, LDS ) ! BLAS CALL
|
||||
! S(1:K,1:K) = MATMUL(Z(1:K,1:N),TRANSPOSE(CONJG(W(1:K,1:N)))) ! INTRINSIC, for T_OR_N=='T'
|
||||
! S(1:K,1:K) = MATMUL(Z(1:K,1:N),(W(1:N,1:K))) ! INTRINSIC, for T_OR_N=='N'
|
||||
! At this point S = U^H * A * U is the Rayleigh quotient.
|
||||
! If the residuals are requested, save scaled V_k into Z.
|
||||
! Recall that V_k or V_k^H is stored in W.
|
||||
IF ( WNTRES .OR. WNTEX ) THEN
|
||||
IF ( LSAME(T_OR_N, 'N') ) THEN
|
||||
CALL ZLACPY( 'A', N, K, W, LDW, Z, LDZ )
|
||||
ELSE
|
||||
CALL ZLACPY( 'A', K, N, W, LDW, Z, LDZ )
|
||||
END IF
|
||||
END IF
|
||||
END IF
|
||||
!
|
||||
!<5> Compute the Ritz values and (if requested) the
|
||||
! right eigenvectors of the Rayleigh quotient.
|
||||
!
|
||||
CALL ZGEEV( 'N', JOBZL, K, S, LDS, EIGS, W, LDW, &
|
||||
W, LDW, ZWORK, LZWORK, RWORK(N+1), INFO1 ) ! LAPACK CALL
|
||||
!
|
||||
! W(1:K,1:K) contains the eigenvectors of the Rayleigh
|
||||
! quotient. See the description of Z.
|
||||
! Also, see the description of ZGEEV.
|
||||
IF ( INFO1 > 0 ) THEN
|
||||
! ZGEEV failed to compute the eigenvalues and
|
||||
! eigenvectors of the Rayleigh quotient.
|
||||
INFO = 3
|
||||
RETURN
|
||||
END IF
|
||||
!
|
||||
! <6> Compute the eigenvectors (if requested) and,
|
||||
! the residuals (if requested).
|
||||
!
|
||||
IF ( WNTVEC .OR. WNTEX ) THEN
|
||||
IF ( WNTRES ) THEN
|
||||
IF ( WNTREF ) THEN
|
||||
! Here, if the refinement is requested, we have
|
||||
! A*U(:,1:K) already computed and stored in Z.
|
||||
! For the residuals, need Y = A * U(:,1;K) * W.
|
||||
CALL ZGEMM( 'N', 'N', M, K, K, ZONE, Z, LDZ, W, &
|
||||
LDW, ZZERO, Y, LDY ) ! BLAS CALL
|
||||
! Y(1:M,1:K) = Z(1:M,1:K) * W(1:K,1:K) ! INTRINSIC
|
||||
! This frees Z; Y contains A * U(:,1:K) * W.
|
||||
ELSE
|
||||
! Compute S = V_k * Sigma_k^(-1) * W, where
|
||||
! V_k * Sigma_k^(-1) (or its adjoint) is stored in Z
|
||||
CALL ZGEMM( T_OR_N, 'N', N, K, K, ZONE, Z, LDZ, &
|
||||
W, LDW, ZZERO, S, LDS )
|
||||
! Then, compute Z = Y * S =
|
||||
! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) =
|
||||
! = A * U(:,1:K) * W(1:K,1:K)
|
||||
CALL ZGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, &
|
||||
LDS, ZZERO, Z, LDZ )
|
||||
! Save a copy of Z into Y and free Z for holding
|
||||
! the Ritz vectors.
|
||||
CALL ZLACPY( 'A', M, K, Z, LDZ, Y, LDY )
|
||||
IF ( WNTEX ) CALL ZLACPY( 'A', M, K, Z, LDZ, B, LDB )
|
||||
END IF
|
||||
ELSE IF ( WNTEX ) THEN
|
||||
! Compute S = V_k * Sigma_k^(-1) * W, where
|
||||
! V_k * Sigma_k^(-1) is stored in Z
|
||||
CALL ZGEMM( T_OR_N, 'N', N, K, K, ZONE, Z, LDZ, &
|
||||
W, LDW, ZZERO, S, LDS )
|
||||
! Then, compute Z = Y * S =
|
||||
! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) =
|
||||
! = A * U(:,1:K) * W(1:K,1:K)
|
||||
CALL ZGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, &
|
||||
LDS, ZZERO, B, LDB )
|
||||
! The above call replaces the following two calls
|
||||
! that were used in the developing-testing phase.
|
||||
! CALL ZGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, &
|
||||
! LDS, ZZERO, Z, LDZ)
|
||||
! Save a copy of Z into B and free Z for holding
|
||||
! the Ritz vectors.
|
||||
! CALL ZLACPY( 'A', M, K, Z, LDZ, B, LDB )
|
||||
END IF
|
||||
!
|
||||
! Compute the Ritz vectors
|
||||
IF ( WNTVEC ) CALL ZGEMM( 'N', 'N', M, K, K, ZONE, X, LDX, W, LDW, &
|
||||
ZZERO, Z, LDZ ) ! BLAS CALL
|
||||
! Z(1:M,1:K) = MATMUL(X(1:M,1:K), W(1:K,1:K)) ! INTRINSIC
|
||||
!
|
||||
IF ( WNTRES ) THEN
|
||||
DO i = 1, K
|
||||
CALL ZAXPY( M, -EIGS(i), Z(1,i), 1, Y(1,i), 1 ) ! BLAS CALL
|
||||
! Y(1:M,i) = Y(1:M,i) - EIGS(i) * Z(1:M,i) ! INTRINSIC
|
||||
RES(i) = DZNRM2( M, Y(1,i), 1 ) ! BLAS CALL
|
||||
END DO
|
||||
END IF
|
||||
END IF
|
||||
!
|
||||
IF ( WHTSVD == 4 ) THEN
|
||||
RWORK(N+1) = XSCL1
|
||||
RWORK(N+2) = XSCL2
|
||||
END IF
|
||||
!
|
||||
! Successful exit.
|
||||
IF ( .NOT. BADXY ) THEN
|
||||
INFO = 0
|
||||
ELSE
|
||||
! A warning on possible data inconsistency.
|
||||
! This should be a rare event.
|
||||
INFO = 4
|
||||
END IF
|
||||
!............................................................
|
||||
RETURN
|
||||
! ......
|
||||
END SUBROUTINE ZGEDMD
|
||||
|
|
@ -0,0 +1,689 @@
|
|||
SUBROUTINE ZGEDMDQ( JOBS, JOBZ, JOBR, JOBQ, JOBT, JOBF, &
|
||||
WHTSVD, M, N, F, LDF, X, LDX, Y, &
|
||||
LDY, NRNK, TOL, K, EIGS, &
|
||||
Z, LDZ, RES, B, LDB, V, LDV, &
|
||||
S, LDS, ZWORK, LZWORK, WORK, LWORK, &
|
||||
IWORK, LIWORK, INFO )
|
||||
! March 2023
|
||||
!.....
|
||||
USE iso_fortran_env
|
||||
IMPLICIT NONE
|
||||
INTEGER, PARAMETER :: WP = real64
|
||||
!.....
|
||||
! Scalar arguments
|
||||
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBQ, &
|
||||
JOBT, JOBF
|
||||
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDF, LDX, &
|
||||
LDY, NRNK, LDZ, LDB, LDV, &
|
||||
LDS, LZWORK, LWORK, LIWORK
|
||||
INTEGER, INTENT(OUT) :: INFO, K
|
||||
REAL(KIND=WP), INTENT(IN) :: TOL
|
||||
! Array arguments
|
||||
COMPLEX(KIND=WP), INTENT(INOUT) :: F(LDF,*)
|
||||
COMPLEX(KIND=WP), INTENT(OUT) :: X(LDX,*), Y(LDY,*), &
|
||||
Z(LDZ,*), B(LDB,*), &
|
||||
V(LDV,*), S(LDS,*)
|
||||
COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*)
|
||||
COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*)
|
||||
REAL(KIND=WP), INTENT(OUT) :: RES(*)
|
||||
REAL(KIND=WP), INTENT(OUT) :: WORK(*)
|
||||
INTEGER, INTENT(OUT) :: IWORK(*)
|
||||
!.....
|
||||
! Purpose
|
||||
! =======
|
||||
! ZGEDMDQ computes the Dynamic Mode Decomposition (DMD) for
|
||||
! a pair of data snapshot matrices, using a QR factorization
|
||||
! based compression of the data. For the input matrices
|
||||
! X and Y such that Y = A*X with an unaccessible matrix
|
||||
! A, ZGEDMDQ computes a certain number of Ritz pairs of A using
|
||||
! the standard Rayleigh-Ritz extraction from a subspace of
|
||||
! range(X) that is determined using the leading left singular
|
||||
! vectors of X. Optionally, ZGEDMDQ returns the residuals
|
||||
! of the computed Ritz pairs, the information needed for
|
||||
! a refinement of the Ritz vectors, or the eigenvectors of
|
||||
! the Exact DMD.
|
||||
! For further details see the references listed
|
||||
! below. For more details of the implementation see [3].
|
||||
!
|
||||
! References
|
||||
! ==========
|
||||
! [1] P. Schmid: Dynamic mode decomposition of numerical
|
||||
! and experimental data,
|
||||
! Journal of Fluid Mechanics 656, 5-28, 2010.
|
||||
! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
|
||||
! decompositions: analysis and enhancements,
|
||||
! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
|
||||
! [3] Z. Drmac: A LAPACK implementation of the Dynamic
|
||||
! Mode Decomposition I. Technical report. AIMDyn Inc.
|
||||
! and LAPACK Working Note 298.
|
||||
! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
|
||||
! Brunton, N. Kutz: On Dynamic Mode Decomposition:
|
||||
! Theory and Applications, Journal of Computational
|
||||
! Dynamics 1(2), 391 -421, 2014.
|
||||
!
|
||||
! Developed and supported by:
|
||||
! ===========================
|
||||
! Developed and coded by Zlatko Drmac, Faculty of Science,
|
||||
! University of Zagreb; drmac@math.hr
|
||||
! In cooperation with
|
||||
! AIMdyn Inc., Santa Barbara, CA.
|
||||
! and supported by
|
||||
! - DARPA SBIR project "Koopman Operator-Based Forecasting
|
||||
! for Nonstationary Processes from Near-Term, Limited
|
||||
! Observational Data" Contract No: W31P4Q-21-C-0007
|
||||
! - DARPA PAI project "Physics-Informed Machine Learning
|
||||
! Methodologies" Contract No: HR0011-18-9-0033
|
||||
! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
|
||||
! Framework for Space-Time Analysis of Process Dynamics"
|
||||
! Contract No: HR0011-16-C-0116
|
||||
! Any opinions, findings and conclusions or recommendations
|
||||
! expressed in this material are those of the author and
|
||||
! do not necessarily reflect the views of the DARPA SBIR
|
||||
! Program Office.
|
||||
!============================================================
|
||||
! Distribution Statement A:
|
||||
! Approved for Public Release, Distribution Unlimited.
|
||||
! Cleared by DARPA on September 29, 2022
|
||||
!============================================================
|
||||
!......................................................................
|
||||
! Arguments
|
||||
! =========
|
||||
! JOBS (input) CHARACTER*1
|
||||
! Determines whether the initial data snapshots are scaled
|
||||
! by a diagonal matrix. The data snapshots are the columns
|
||||
! of F. The leading N-1 columns of F are denoted X and the
|
||||
! trailing N-1 columns are denoted Y.
|
||||
! 'S' :: The data snapshots matrices X and Y are multiplied
|
||||
! with a diagonal matrix D so that X*D has unit
|
||||
! nonzero columns (in the Euclidean 2-norm)
|
||||
! 'C' :: The snapshots are scaled as with the 'S' option.
|
||||
! If it is found that an i-th column of X is zero
|
||||
! vector and the corresponding i-th column of Y is
|
||||
! non-zero, then the i-th column of Y is set to
|
||||
! zero and a warning flag is raised.
|
||||
! 'Y' :: The data snapshots matrices X and Y are multiplied
|
||||
! by a diagonal matrix D so that Y*D has unit
|
||||
! nonzero columns (in the Euclidean 2-norm)
|
||||
! 'N' :: No data scaling.
|
||||
!.....
|
||||
! JOBZ (input) CHARACTER*1
|
||||
! Determines whether the eigenvectors (Koopman modes) will
|
||||
! be computed.
|
||||
! 'V' :: The eigenvectors (Koopman modes) will be computed
|
||||
! and returned in the matrix Z.
|
||||
! See the description of Z.
|
||||
! 'F' :: The eigenvectors (Koopman modes) will be returned
|
||||
! in factored form as the product Z*V, where Z
|
||||
! is orthonormal and V contains the eigenvectors
|
||||
! of the corresponding Rayleigh quotient.
|
||||
! See the descriptions of F, V, Z.
|
||||
! 'Q' :: The eigenvectors (Koopman modes) will be returned
|
||||
! in factored form as the product Q*Z, where Z
|
||||
! contains the eigenvectors of the compression of the
|
||||
! underlying discretized operator onto the span of
|
||||
! the data snapshots. See the descriptions of F, V, Z.
|
||||
! Q is from the initial QR factorization.
|
||||
! 'N' :: The eigenvectors are not computed.
|
||||
!.....
|
||||
! JOBR (input) CHARACTER*1
|
||||
! Determines whether to compute the residuals.
|
||||
! 'R' :: The residuals for the computed eigenpairs will
|
||||
! be computed and stored in the array RES.
|
||||
! See the description of RES.
|
||||
! For this option to be legal, JOBZ must be 'V'.
|
||||
! 'N' :: The residuals are not computed.
|
||||
!.....
|
||||
! JOBQ (input) CHARACTER*1
|
||||
! Specifies whether to explicitly compute and return the
|
||||
! unitary matrix from the QR factorization.
|
||||
! 'Q' :: The matrix Q of the QR factorization of the data
|
||||
! snapshot matrix is computed and stored in the
|
||||
! array F. See the description of F.
|
||||
! 'N' :: The matrix Q is not explicitly computed.
|
||||
!.....
|
||||
! JOBT (input) CHARACTER*1
|
||||
! Specifies whether to return the upper triangular factor
|
||||
! from the QR factorization.
|
||||
! 'R' :: The matrix R of the QR factorization of the data
|
||||
! snapshot matrix F is returned in the array Y.
|
||||
! See the description of Y and Further details.
|
||||
! 'N' :: The matrix R is not returned.
|
||||
!.....
|
||||
! JOBF (input) CHARACTER*1
|
||||
! Specifies whether to store information needed for post-
|
||||
! processing (e.g. computing refined Ritz vectors)
|
||||
! 'R' :: The matrix needed for the refinement of the Ritz
|
||||
! vectors is computed and stored in the array B.
|
||||
! See the description of B.
|
||||
! 'E' :: The unscaled eigenvectors of the Exact DMD are
|
||||
! computed and returned in the array B. See the
|
||||
! description of B.
|
||||
! 'N' :: No eigenvector refinement data is computed.
|
||||
! To be useful on exit, this option needs JOBQ='Q'.
|
||||
!.....
|
||||
! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
|
||||
! Allows for a selection of the SVD algorithm from the
|
||||
! LAPACK library.
|
||||
! 1 :: ZGESVD (the QR SVD algorithm)
|
||||
! 2 :: ZGESDD (the Divide and Conquer algorithm; if enough
|
||||
! workspace available, this is the fastest option)
|
||||
! 3 :: ZGESVDQ (the preconditioned QR SVD ; this and 4
|
||||
! are the most accurate options)
|
||||
! 4 :: ZGEJSV (the preconditioned Jacobi SVD; this and 3
|
||||
! are the most accurate options)
|
||||
! For the four methods above, a significant difference in
|
||||
! the accuracy of small singular values is possible if
|
||||
! the snapshots vary in norm so that X is severely
|
||||
! ill-conditioned. If small (smaller than EPS*||X||)
|
||||
! singular values are of interest and JOBS=='N', then
|
||||
! the options (3, 4) give the most accurate results, where
|
||||
! the option 4 is slightly better and with stronger
|
||||
! theoretical background.
|
||||
! If JOBS=='S', i.e. the columns of X will be normalized,
|
||||
! then all methods give nearly equally accurate results.
|
||||
!.....
|
||||
! M (input) INTEGER, M >= 0
|
||||
! The state space dimension (the number of rows of F).
|
||||
!.....
|
||||
! N (input) INTEGER, 0 <= N <= M
|
||||
! The number of data snapshots from a single trajectory,
|
||||
! taken at equidistant discrete times. This is the
|
||||
! number of columns of F.
|
||||
!.....
|
||||
! F (input/output) COMPLEX(KIND=WP) M-by-N array
|
||||
! > On entry,
|
||||
! the columns of F are the sequence of data snapshots
|
||||
! from a single trajectory, taken at equidistant discrete
|
||||
! times. It is assumed that the column norms of F are
|
||||
! in the range of the normalized floating point numbers.
|
||||
! < On exit,
|
||||
! If JOBQ == 'Q', the array F contains the orthogonal
|
||||
! matrix/factor of the QR factorization of the initial
|
||||
! data snapshots matrix F. See the description of JOBQ.
|
||||
! If JOBQ == 'N', the entries in F strictly below the main
|
||||
! diagonal contain, column-wise, the information on the
|
||||
! Householder vectors, as returned by ZGEQRF. The
|
||||
! remaining information to restore the orthogonal matrix
|
||||
! of the initial QR factorization is stored in ZWORK(1:MIN(M,N)).
|
||||
! See the description of ZWORK.
|
||||
!.....
|
||||
! LDF (input) INTEGER, LDF >= M
|
||||
! The leading dimension of the array F.
|
||||
!.....
|
||||
! X (workspace/output) COMPLEX(KIND=WP) MIN(M,N)-by-(N-1) array
|
||||
! X is used as workspace to hold representations of the
|
||||
! leading N-1 snapshots in the orthonormal basis computed
|
||||
! in the QR factorization of F.
|
||||
! On exit, the leading K columns of X contain the leading
|
||||
! K left singular vectors of the above described content
|
||||
! of X. To lift them to the space of the left singular
|
||||
! vectors U(:,1:K) of the input data, pre-multiply with the
|
||||
! Q factor from the initial QR factorization.
|
||||
! See the descriptions of F, K, V and Z.
|
||||
!.....
|
||||
! LDX (input) INTEGER, LDX >= N
|
||||
! The leading dimension of the array X.
|
||||
!.....
|
||||
! Y (workspace/output) COMPLEX(KIND=WP) MIN(M,N)-by-(N) array
|
||||
! Y is used as workspace to hold representations of the
|
||||
! trailing N-1 snapshots in the orthonormal basis computed
|
||||
! in the QR factorization of F.
|
||||
! On exit,
|
||||
! If JOBT == 'R', Y contains the MIN(M,N)-by-N upper
|
||||
! triangular factor from the QR factorization of the data
|
||||
! snapshot matrix F.
|
||||
!.....
|
||||
! LDY (input) INTEGER , LDY >= N
|
||||
! The leading dimension of the array Y.
|
||||
!.....
|
||||
! NRNK (input) INTEGER
|
||||
! Determines the mode how to compute the numerical rank,
|
||||
! i.e. how to truncate small singular values of the input
|
||||
! matrix X. On input, if
|
||||
! NRNK = -1 :: i-th singular value sigma(i) is truncated
|
||||
! if sigma(i) <= TOL*sigma(1)
|
||||
! This option is recommended.
|
||||
! NRNK = -2 :: i-th singular value sigma(i) is truncated
|
||||
! if sigma(i) <= TOL*sigma(i-1)
|
||||
! This option is included for R&D purposes.
|
||||
! It requires highly accurate SVD, which
|
||||
! may not be feasible.
|
||||
! The numerical rank can be enforced by using positive
|
||||
! value of NRNK as follows:
|
||||
! 0 < NRNK <= N-1 :: at most NRNK largest singular values
|
||||
! will be used. If the number of the computed nonzero
|
||||
! singular values is less than NRNK, then only those
|
||||
! nonzero values will be used and the actually used
|
||||
! dimension is less than NRNK. The actual number of
|
||||
! the nonzero singular values is returned in the variable
|
||||
! K. See the description of K.
|
||||
!.....
|
||||
! TOL (input) REAL(KIND=WP), 0 <= TOL < 1
|
||||
! The tolerance for truncating small singular values.
|
||||
! See the description of NRNK.
|
||||
!.....
|
||||
! K (output) INTEGER, 0 <= K <= N
|
||||
! The dimension of the SVD/POD basis for the leading N-1
|
||||
! data snapshots (columns of F) and the number of the
|
||||
! computed Ritz pairs. The value of K is determined
|
||||
! according to the rule set by the parameters NRNK and
|
||||
! TOL. See the descriptions of NRNK and TOL.
|
||||
!.....
|
||||
! EIGS (output) COMPLEX(KIND=WP) (N-1)-by-1 array
|
||||
! The leading K (K<=N-1) entries of EIGS contain
|
||||
! the computed eigenvalues (Ritz values).
|
||||
! See the descriptions of K, and Z.
|
||||
!.....
|
||||
! Z (workspace/output) COMPLEX(KIND=WP) M-by-(N-1) array
|
||||
! If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i)
|
||||
! is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1.
|
||||
! If JOBZ == 'F', then the Z(:,i)'s are given implicitly as
|
||||
! Z*V, where Z contains orthonormal matrix (the product of
|
||||
! Q from the initial QR factorization and the SVD/POD_basis
|
||||
! returned by ZGEDMD in X) and the second factor (the
|
||||
! eigenvectors of the Rayleigh quotient) is in the array V,
|
||||
! as returned by ZGEDMD. That is, X(:,1:K)*V(:,i)
|
||||
! is an eigenvector corresponding to EIGS(i). The columns
|
||||
! of V(1:K,1:K) are the computed eigenvectors of the
|
||||
! K-by-K Rayleigh quotient.
|
||||
! See the descriptions of EIGS, X and V.
|
||||
!.....
|
||||
! LDZ (input) INTEGER , LDZ >= M
|
||||
! The leading dimension of the array Z.
|
||||
!.....
|
||||
! RES (output) REAL(KIND=WP) (N-1)-by-1 array
|
||||
! RES(1:K) contains the residuals for the K computed
|
||||
! Ritz pairs,
|
||||
! RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2.
|
||||
! See the description of EIGS and Z.
|
||||
!.....
|
||||
! B (output) COMPLEX(KIND=WP) MIN(M,N)-by-(N-1) array.
|
||||
! IF JOBF =='R', B(1:N,1:K) contains A*U(:,1:K), and can
|
||||
! be used for computing the refined vectors; see further
|
||||
! details in the provided references.
|
||||
! If JOBF == 'E', B(1:N,1;K) contains
|
||||
! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
|
||||
! Exact DMD, up to scaling by the inverse eigenvalues.
|
||||
! In both cases, the content of B can be lifted to the
|
||||
! original dimension of the input data by pre-multiplying
|
||||
! with the Q factor from the initial QR factorization.
|
||||
! Here A denotes a compression of the underlying operator.
|
||||
! See the descriptions of F and X.
|
||||
! If JOBF =='N', then B is not referenced.
|
||||
!.....
|
||||
! LDB (input) INTEGER, LDB >= MIN(M,N)
|
||||
! The leading dimension of the array B.
|
||||
!.....
|
||||
! V (workspace/output) COMPLEX(KIND=WP) (N-1)-by-(N-1) array
|
||||
! On exit, V(1:K,1:K) V contains the K eigenvectors of
|
||||
! the Rayleigh quotient. The Ritz vectors
|
||||
! (returned in Z) are the product of Q from the initial QR
|
||||
! factorization (see the description of F) X (see the
|
||||
! description of X) and V.
|
||||
!.....
|
||||
! LDV (input) INTEGER, LDV >= N-1
|
||||
! The leading dimension of the array V.
|
||||
!.....
|
||||
! S (output) COMPLEX(KIND=WP) (N-1)-by-(N-1) array
|
||||
! The array S(1:K,1:K) is used for the matrix Rayleigh
|
||||
! quotient. This content is overwritten during
|
||||
! the eigenvalue decomposition by ZGEEV.
|
||||
! See the description of K.
|
||||
!.....
|
||||
! LDS (input) INTEGER, LDS >= N-1
|
||||
! The leading dimension of the array S.
|
||||
!.....
|
||||
! ZWORK (workspace/output) COMPLEX(KIND=WP) LWORK-by-1 array
|
||||
! On exit,
|
||||
! ZWORK(1:MIN(M,N)) contains the scalar factors of the
|
||||
! elementary reflectors as returned by ZGEQRF of the
|
||||
! M-by-N input matrix F.
|
||||
! If the call to ZGEDMDQ is only workspace query, then
|
||||
! ZWORK(1) contains the minimal complex workspace length and
|
||||
! ZWORK(2) is the optimal complex workspace length.
|
||||
! Hence, the length of work is at least 2.
|
||||
! See the description of LZWORK.
|
||||
!.....
|
||||
! LZWORK (input) INTEGER
|
||||
! The minimal length of the workspace vector ZWORK.
|
||||
! LZWORK is calculated as follows:
|
||||
! Let MLWQR = N (minimal workspace for ZGEQRF[M,N])
|
||||
! MLWDMD = minimal workspace for ZGEDMD (see the
|
||||
! description of LWORK in ZGEDMD)
|
||||
! MLWMQR = N (minimal workspace for
|
||||
! ZUNMQR['L','N',M,N,N])
|
||||
! MLWGQR = N (minimal workspace for ZUNGQR[M,N,N])
|
||||
! MINMN = MIN(M,N)
|
||||
! Then
|
||||
! LZWORK = MAX(2, MIN(M,N)+MLWQR, MINMN+MLWDMD)
|
||||
! is further updated as follows:
|
||||
! if JOBZ == 'V' or JOBZ == 'F' THEN
|
||||
! LZWORK = MAX(LZWORK, MINMN+MLWMQR)
|
||||
! if JOBQ == 'Q' THEN
|
||||
! LZWORK = MAX(ZLWORK, MINMN+MLWGQR)
|
||||
!
|
||||
!.....
|
||||
! WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array
|
||||
! On exit,
|
||||
! WORK(1:N-1) contains the singular values of
|
||||
! the input submatrix F(1:M,1:N-1).
|
||||
! If the call to ZGEDMDQ is only workspace query, then
|
||||
! WORK(1) contains the minimal workspace length and
|
||||
! WORK(2) is the optimal workspace length. hence, the
|
||||
! length of work is at least 2.
|
||||
! See the description of LWORK.
|
||||
!.....
|
||||
! LWORK (input) INTEGER
|
||||
! The minimal length of the workspace vector WORK.
|
||||
! LWORK is the same as in ZGEDMD, because in ZGEDMDQ
|
||||
! only ZGEDMD requires real workspace for snapshots
|
||||
! of dimensions MIN(M,N)-by-(N-1).
|
||||
! If on entry LWORK = -1, then a workspace query is
|
||||
! assumed and the procedure only computes the minimal
|
||||
! and the optimal workspace length for WORK.
|
||||
!.....
|
||||
! IWORK (workspace/output) INTEGER LIWORK-by-1 array
|
||||
! Workspace that is required only if WHTSVD equals
|
||||
! 2 , 3 or 4. (See the description of WHTSVD).
|
||||
! If on entry LWORK =-1 or LIWORK=-1, then the
|
||||
! minimal length of IWORK is computed and returned in
|
||||
! IWORK(1). See the description of LIWORK.
|
||||
!.....
|
||||
! LIWORK (input) INTEGER
|
||||
! The minimal length of the workspace vector IWORK.
|
||||
! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
|
||||
! Let M1=MIN(M,N), N1=N-1. Then
|
||||
! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M1,N1))
|
||||
! If WHTSVD == 3, then LIWORK >= MAX(1,M1+N1-1)
|
||||
! If WHTSVD == 4, then LIWORK >= MAX(3,M1+3*N1)
|
||||
! If on entry LIWORK = -1, then a workspace query is
|
||||
! assumed and the procedure only computes the minimal
|
||||
! and the optimal workspace lengths for both WORK and
|
||||
! IWORK. See the descriptions of WORK and IWORK.
|
||||
!.....
|
||||
! INFO (output) INTEGER
|
||||
! -i < 0 :: On entry, the i-th argument had an
|
||||
! illegal value
|
||||
! = 0 :: Successful return.
|
||||
! = 1 :: Void input. Quick exit (M=0 or N=0).
|
||||
! = 2 :: The SVD computation of X did not converge.
|
||||
! Suggestion: Check the input data and/or
|
||||
! repeat with different WHTSVD.
|
||||
! = 3 :: The computation of the eigenvalues did not
|
||||
! converge.
|
||||
! = 4 :: If data scaling was requested on input and
|
||||
! the procedure found inconsistency in the data
|
||||
! such that for some column index i,
|
||||
! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
|
||||
! to zero if JOBS=='C'. The computation proceeds
|
||||
! with original or modified data and warning
|
||||
! flag is set with INFO=4.
|
||||
!.............................................................
|
||||
!.............................................................
|
||||
! Parameters
|
||||
! ~~~~~~~~~~
|
||||
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP
|
||||
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP
|
||||
! COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP )
|
||||
COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP )
|
||||
!
|
||||
! Local scalars
|
||||
! ~~~~~~~~~~~~~
|
||||
INTEGER :: IMINWR, INFO1, MINMN, MLRWRK, &
|
||||
MLWDMD, MLWGQR, MLWMQR, MLWORK, &
|
||||
MLWQR, OLWDMD, OLWGQR, OLWMQR, &
|
||||
OLWORK, OLWQR
|
||||
LOGICAL :: LQUERY, SCCOLX, SCCOLY, WANTQ, &
|
||||
WNTTRF, WNTRES, WNTVEC, WNTVCF, &
|
||||
WNTVCQ, WNTREF, WNTEX
|
||||
CHARACTER(LEN=1) :: JOBVL
|
||||
!
|
||||
! External functions (BLAS and LAPACK)
|
||||
! ~~~~~~~~~~~~~~~~~
|
||||
LOGICAL LSAME
|
||||
EXTERNAL LSAME
|
||||
!
|
||||
! External subroutines (BLAS and LAPACK)
|
||||
! ~~~~~~~~~~~~~~~~~~~~
|
||||
EXTERNAL ZGEQRF, ZLACPY, ZLASET, ZUNGQR, &
|
||||
ZUNMQR, XERBLA
|
||||
|
||||
! External subroutines
|
||||
! ~~~~~~~~~~~~~~~~~~~~
|
||||
EXTERNAL ZGEDMD
|
||||
|
||||
! Intrinsic functions
|
||||
! ~~~~~~~~~~~~~~~~~~~
|
||||
INTRINSIC MAX, MIN, INT
|
||||
!..........................................................
|
||||
!
|
||||
! Test the input arguments
|
||||
WNTRES = LSAME(JOBR,'R')
|
||||
SCCOLX = LSAME(JOBS,'S') .OR. LSAME( JOBS, 'C' )
|
||||
SCCOLY = LSAME(JOBS,'Y')
|
||||
WNTVEC = LSAME(JOBZ,'V')
|
||||
WNTVCF = LSAME(JOBZ,'F')
|
||||
WNTVCQ = LSAME(JOBZ,'Q')
|
||||
WNTREF = LSAME(JOBF,'R')
|
||||
WNTEX = LSAME(JOBF,'E')
|
||||
WANTQ = LSAME(JOBQ,'Q')
|
||||
WNTTRF = LSAME(JOBT,'R')
|
||||
MINMN = MIN(M,N)
|
||||
INFO = 0
|
||||
LQUERY = ( (LZWORK == -1) .OR. (LWORK == -1) .OR. (LIWORK == -1) )
|
||||
!
|
||||
IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. &
|
||||
LSAME(JOBS,'N')) ) THEN
|
||||
INFO = -1
|
||||
ELSE IF ( .NOT. (WNTVEC .OR. WNTVCF .OR. WNTVCQ &
|
||||
.OR. LSAME(JOBZ,'N')) ) THEN
|
||||
INFO = -2
|
||||
ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. &
|
||||
( WNTRES .AND. LSAME(JOBZ,'N') ) ) THEN
|
||||
INFO = -3
|
||||
ELSE IF ( .NOT. (WANTQ .OR. LSAME(JOBQ,'N')) ) THEN
|
||||
INFO = -4
|
||||
ELSE IF ( .NOT. ( WNTTRF .OR. LSAME(JOBT,'N') ) ) THEN
|
||||
INFO = -5
|
||||
ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. &
|
||||
LSAME(JOBF,'N') ) ) THEN
|
||||
INFO = -6
|
||||
ELSE IF ( .NOT. ((WHTSVD == 1).OR.(WHTSVD == 2).OR. &
|
||||
(WHTSVD == 3).OR.(WHTSVD == 4)) ) THEN
|
||||
INFO = -7
|
||||
ELSE IF ( M < 0 ) THEN
|
||||
INFO = -8
|
||||
ELSE IF ( ( N < 0 ) .OR. ( N > M+1 ) ) THEN
|
||||
INFO = -9
|
||||
ELSE IF ( LDF < M ) THEN
|
||||
INFO = -11
|
||||
ELSE IF ( LDX < MINMN ) THEN
|
||||
INFO = -13
|
||||
ELSE IF ( LDY < MINMN ) THEN
|
||||
INFO = -15
|
||||
ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. &
|
||||
((NRNK >= 1).AND.(NRNK <=N ))) ) THEN
|
||||
INFO = -16
|
||||
ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN
|
||||
INFO = -17
|
||||
ELSE IF ( LDZ < M ) THEN
|
||||
INFO = -21
|
||||
ELSE IF ( (WNTREF.OR.WNTEX ).AND.( LDB < MINMN ) ) THEN
|
||||
INFO = -24
|
||||
ELSE IF ( LDV < N-1 ) THEN
|
||||
INFO = -26
|
||||
ELSE IF ( LDS < N-1 ) THEN
|
||||
INFO = -28
|
||||
END IF
|
||||
!
|
||||
IF ( WNTVEC .OR. WNTVCF .OR. WNTVCQ ) THEN
|
||||
JOBVL = 'V'
|
||||
ELSE
|
||||
JOBVL = 'N'
|
||||
END IF
|
||||
IF ( INFO == 0 ) THEN
|
||||
! Compute the minimal and the optimal workspace
|
||||
! requirements. Simulate running the code and
|
||||
! determine minimal and optimal sizes of the
|
||||
! workspace at any moment of the run.
|
||||
IF ( ( N == 0 ) .OR. ( N == 1 ) ) THEN
|
||||
! All output except K is void. INFO=1 signals
|
||||
! the void input. In case of a workspace query,
|
||||
! the minimal workspace lengths are returned.
|
||||
IF ( LQUERY ) THEN
|
||||
IWORK(1) = 1
|
||||
ZWORK(1) = 2
|
||||
ZWORK(2) = 2
|
||||
WORK(1) = 2
|
||||
WORK(2) = 2
|
||||
ELSE
|
||||
K = 0
|
||||
END IF
|
||||
INFO = 1
|
||||
RETURN
|
||||
END IF
|
||||
|
||||
MLRWRK = 2
|
||||
MLWORK = 2
|
||||
OLWORK = 2
|
||||
IMINWR = 1
|
||||
MLWQR = MAX(1,N) ! Minimal workspace length for ZGEQRF.
|
||||
MLWORK = MAX(MLWORK,MINMN + MLWQR)
|
||||
|
||||
IF ( LQUERY ) THEN
|
||||
CALL ZGEQRF( M, N, F, LDF, ZWORK, ZWORK, -1, &
|
||||
INFO1 )
|
||||
OLWQR = INT(ZWORK(1))
|
||||
OLWORK = MAX(OLWORK,MINMN + OLWQR)
|
||||
END IF
|
||||
CALL ZGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN,&
|
||||
N-1, X, LDX, Y, LDY, NRNK, TOL, K, &
|
||||
EIGS, Z, LDZ, RES, B, LDB, V, LDV, &
|
||||
S, LDS, ZWORK, -1, WORK, -1, IWORK,&
|
||||
-1, INFO1 )
|
||||
MLWDMD = INT(ZWORK(1))
|
||||
MLWORK = MAX(MLWORK, MINMN + MLWDMD)
|
||||
MLRWRK = MAX(MLRWRK, INT(WORK(1)))
|
||||
IMINWR = MAX(IMINWR, IWORK(1))
|
||||
IF ( LQUERY ) THEN
|
||||
OLWDMD = INT(ZWORK(2))
|
||||
OLWORK = MAX(OLWORK, MINMN+OLWDMD)
|
||||
END IF
|
||||
IF ( WNTVEC .OR. WNTVCF ) THEN
|
||||
MLWMQR = MAX(1,N)
|
||||
MLWORK = MAX(MLWORK,MINMN+MLWMQR)
|
||||
IF ( LQUERY ) THEN
|
||||
CALL ZUNMQR( 'L','N', M, N, MINMN, F, LDF, &
|
||||
ZWORK, Z, LDZ, ZWORK, -1, INFO1 )
|
||||
OLWMQR = INT(ZWORK(1))
|
||||
OLWORK = MAX(OLWORK,MINMN+OLWMQR)
|
||||
END IF
|
||||
END IF
|
||||
IF ( WANTQ ) THEN
|
||||
MLWGQR = MAX(1,N)
|
||||
MLWORK = MAX(MLWORK,MINMN+MLWGQR)
|
||||
IF ( LQUERY ) THEN
|
||||
CALL ZUNGQR( M, MINMN, MINMN, F, LDF, ZWORK, &
|
||||
ZWORK, -1, INFO1 )
|
||||
OLWGQR = INT(ZWORK(1))
|
||||
OLWORK = MAX(OLWORK,MINMN+OLWGQR)
|
||||
END IF
|
||||
END IF
|
||||
IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -34
|
||||
IF ( LWORK < MLRWRK .AND. (.NOT.LQUERY) ) INFO = -32
|
||||
IF ( LZWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -30
|
||||
END IF
|
||||
IF( INFO /= 0 ) THEN
|
||||
CALL XERBLA( 'ZGEDMDQ', -INFO )
|
||||
RETURN
|
||||
ELSE IF ( LQUERY ) THEN
|
||||
! Return minimal and optimal workspace sizes
|
||||
IWORK(1) = IMINWR
|
||||
ZWORK(1) = MLWORK
|
||||
ZWORK(2) = OLWORK
|
||||
WORK(1) = MLRWRK
|
||||
WORK(2) = MLRWRK
|
||||
RETURN
|
||||
END IF
|
||||
!.....
|
||||
! Initial QR factorization that is used to represent the
|
||||
! snapshots as elements of lower dimensional subspace.
|
||||
! For large scale computation with M >> N, at this place
|
||||
! one can use an out of core QRF.
|
||||
!
|
||||
CALL ZGEQRF( M, N, F, LDF, ZWORK, &
|
||||
ZWORK(MINMN+1), LZWORK-MINMN, INFO1 )
|
||||
!
|
||||
! Define X and Y as the snapshots representations in the
|
||||
! orthogonal basis computed in the QR factorization.
|
||||
! X corresponds to the leading N-1 and Y to the trailing
|
||||
! N-1 snapshots.
|
||||
CALL ZLASET( 'L', MINMN, N-1, ZZERO, ZZERO, X, LDX )
|
||||
CALL ZLACPY( 'U', MINMN, N-1, F, LDF, X, LDX )
|
||||
CALL ZLACPY( 'A', MINMN, N-1, F(1,2), LDF, Y, LDY )
|
||||
IF ( M >= 3 ) THEN
|
||||
CALL ZLASET( 'L', MINMN-2, N-2, ZZERO, ZZERO, &
|
||||
Y(3,1), LDY )
|
||||
END IF
|
||||
!
|
||||
! Compute the DMD of the projected snapshot pairs (X,Y)
|
||||
CALL ZGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN, &
|
||||
N-1, X, LDX, Y, LDY, NRNK, TOL, K, &
|
||||
EIGS, Z, LDZ, RES, B, LDB, V, LDV, &
|
||||
S, LDS, ZWORK(MINMN+1), LZWORK-MINMN, &
|
||||
WORK, LWORK, IWORK, LIWORK, INFO1 )
|
||||
IF ( INFO1 == 2 .OR. INFO1 == 3 ) THEN
|
||||
! Return with error code. See ZGEDMD for details.
|
||||
INFO = INFO1
|
||||
RETURN
|
||||
ELSE
|
||||
INFO = INFO1
|
||||
END IF
|
||||
!
|
||||
! The Ritz vectors (Koopman modes) can be explicitly
|
||||
! formed or returned in factored form.
|
||||
IF ( WNTVEC ) THEN
|
||||
! Compute the eigenvectors explicitly.
|
||||
IF ( M > MINMN ) CALL ZLASET( 'A', M-MINMN, K, ZZERO, &
|
||||
ZZERO, Z(MINMN+1,1), LDZ )
|
||||
CALL ZUNMQR( 'L','N', M, K, MINMN, F, LDF, ZWORK, Z, &
|
||||
LDZ, ZWORK(MINMN+1), LZWORK-MINMN, INFO1 )
|
||||
ELSE IF ( WNTVCF ) THEN
|
||||
! Return the Ritz vectors (eigenvectors) in factored
|
||||
! form Z*V, where Z contains orthonormal matrix (the
|
||||
! product of Q from the initial QR factorization and
|
||||
! the SVD/POD_basis returned by ZGEDMD in X) and the
|
||||
! second factor (the eigenvectors of the Rayleigh
|
||||
! quotient) is in the array V, as returned by ZGEDMD.
|
||||
CALL ZLACPY( 'A', N, K, X, LDX, Z, LDZ )
|
||||
IF ( M > N ) CALL ZLASET( 'A', M-N, K, ZZERO, ZZERO, &
|
||||
Z(N+1,1), LDZ )
|
||||
CALL ZUNMQR( 'L','N', M, K, MINMN, F, LDF, ZWORK, Z, &
|
||||
LDZ, ZWORK(MINMN+1), LZWORK-MINMN, INFO1 )
|
||||
END IF
|
||||
!
|
||||
! Some optional output variables:
|
||||
!
|
||||
! The upper triangular factor R in the initial QR
|
||||
! factorization is optionally returned in the array Y.
|
||||
! This is useful if this call to ZGEDMDQ is to be
|
||||
! followed by a streaming DMD that is implemented in a
|
||||
! QR compressed form.
|
||||
IF ( WNTTRF ) THEN ! Return the upper triangular R in Y
|
||||
CALL ZLASET( 'A', MINMN, N, ZZERO, ZZERO, Y, LDY )
|
||||
CALL ZLACPY( 'U', MINMN, N, F, LDF, Y, LDY )
|
||||
END IF
|
||||
!
|
||||
! The orthonormal/unitary factor Q in the initial QR
|
||||
! factorization is optionally returned in the array F.
|
||||
! Same as with the triangular factor above, this is
|
||||
! useful in a streaming DMD.
|
||||
IF ( WANTQ ) THEN ! Q overwrites F
|
||||
CALL ZUNGQR( M, MINMN, MINMN, F, LDF, ZWORK, &
|
||||
ZWORK(MINMN+1), LZWORK-MINMN, INFO1 )
|
||||
END IF
|
||||
!
|
||||
RETURN
|
||||
!
|
||||
END SUBROUTINE ZGEDMDQ
|
||||
|
Loading…
Reference in New Issue