Merge pull request #3946 from martin-frbg/lapack682
Rewrite ?LAQR5 and S/DHGEQZ , add tests for TRECV3 (Reference-LAPACK PR 682)
This commit is contained in:
commit
7719dbecde
|
@ -533,11 +533,13 @@
|
|||
* . Mth bulge. Exploit fact that first two elements
|
||||
* . of row are actually zero. ====
|
||||
*
|
||||
REFSUM = V( 1, M )*V( 3, M )*H( K+3, K+2 )
|
||||
H( K+3, K ) = -REFSUM
|
||||
H( K+3, K+1 ) = -REFSUM*CONJG( V( 2, M ) )
|
||||
H( K+3, K+2 ) = H( K+3, K+2 ) -
|
||||
$ REFSUM*CONJG( V( 3, M ) )
|
||||
T1 = V( 1, M )
|
||||
T2 = T1*CONJG( V( 2, M ) )
|
||||
T3 = T1*CONJG( V( 3, M ) )
|
||||
REFSUM = V( 3, M )*H( K+3, K+2 )
|
||||
H( K+3, K ) = -REFSUM*T1
|
||||
H( K+3, K+1 ) = -REFSUM*T2
|
||||
H( K+3, K+2 ) = H( K+3, K+2 ) - REFSUM*T3
|
||||
*
|
||||
* ==== Calculate reflection to move
|
||||
* . Mth bulge one step. ====
|
||||
|
@ -572,12 +574,13 @@
|
|||
$ S( 2*M ), VT )
|
||||
ALPHA = VT( 1 )
|
||||
CALL CLARFG( 3, ALPHA, VT( 2 ), 1, VT( 1 ) )
|
||||
REFSUM = CONJG( VT( 1 ) )*
|
||||
$ ( H( K+1, K )+CONJG( VT( 2 ) )*
|
||||
$ H( K+2, K ) )
|
||||
T1 = CONJG( VT( 1 ) )
|
||||
T2 = T1*VT( 2 )
|
||||
T3 = T1*VT( 3 )
|
||||
REFSUM = H( K+1, K )+CONJG( VT( 2 ) )*H( K+2, K )
|
||||
*
|
||||
IF( CABS1( H( K+2, K )-REFSUM*VT( 2 ) )+
|
||||
$ CABS1( REFSUM*VT( 3 ) ).GT.ULP*
|
||||
IF( CABS1( H( K+2, K )-REFSUM*T2 )+
|
||||
$ CABS1( REFSUM*T3 ).GT.ULP*
|
||||
$ ( CABS1( H( K, K ) )+CABS1( H( K+1,
|
||||
$ K+1 ) )+CABS1( H( K+2, K+2 ) ) ) ) THEN
|
||||
*
|
||||
|
@ -595,7 +598,7 @@
|
|||
* . Replace the old reflector with
|
||||
* . the new one. ====
|
||||
*
|
||||
H( K+1, K ) = H( K+1, K ) - REFSUM
|
||||
H( K+1, K ) = H( K+1, K ) - REFSUM*T1
|
||||
H( K+2, K ) = ZERO
|
||||
H( K+3, K ) = ZERO
|
||||
V( 1, M ) = VT( 1 )
|
||||
|
|
|
@ -337,9 +337,9 @@
|
|||
$ BTOL, C, C11I, C11R, C12, C21, C22I, C22R, CL,
|
||||
$ CQ, CR, CZ, ESHIFT, S, S1, S1INV, S2, SAFMAX,
|
||||
$ SAFMIN, SCALE, SL, SQI, SQR, SR, SZI, SZR, T1,
|
||||
$ TAU, TEMP, TEMP2, TEMPI, TEMPR, U1, U12, U12L,
|
||||
$ U2, ULP, VS, W11, W12, W21, W22, WABS, WI, WR,
|
||||
$ WR2
|
||||
$ T2, T3, TAU, TEMP, TEMP2, TEMPI, TEMPR, U1,
|
||||
$ U12, U12L, U2, ULP, VS, W11, W12, W21, W22,
|
||||
$ WABS, WI, WR, WR2
|
||||
* ..
|
||||
* .. Local Arrays ..
|
||||
DOUBLE PRECISION V( 3 )
|
||||
|
@ -1127,25 +1127,27 @@
|
|||
H( J+2, J-1 ) = ZERO
|
||||
END IF
|
||||
*
|
||||
T2 = TAU*V( 2 )
|
||||
T3 = TAU*V( 3 )
|
||||
DO 230 JC = J, ILASTM
|
||||
TEMP = TAU*( H( J, JC )+V( 2 )*H( J+1, JC )+V( 3 )*
|
||||
$ H( J+2, JC ) )
|
||||
H( J, JC ) = H( J, JC ) - TEMP
|
||||
H( J+1, JC ) = H( J+1, JC ) - TEMP*V( 2 )
|
||||
H( J+2, JC ) = H( J+2, JC ) - TEMP*V( 3 )
|
||||
TEMP2 = TAU*( T( J, JC )+V( 2 )*T( J+1, JC )+V( 3 )*
|
||||
$ T( J+2, JC ) )
|
||||
T( J, JC ) = T( J, JC ) - TEMP2
|
||||
T( J+1, JC ) = T( J+1, JC ) - TEMP2*V( 2 )
|
||||
T( J+2, JC ) = T( J+2, JC ) - TEMP2*V( 3 )
|
||||
TEMP = H( J, JC )+V( 2 )*H( J+1, JC )+V( 3 )*
|
||||
$ H( J+2, JC )
|
||||
H( J, JC ) = H( J, JC ) - TEMP*TAU
|
||||
H( J+1, JC ) = H( J+1, JC ) - TEMP*T2
|
||||
H( J+2, JC ) = H( J+2, JC ) - TEMP*T3
|
||||
TEMP2 = T( J, JC )+V( 2 )*T( J+1, JC )+V( 3 )*
|
||||
$ T( J+2, JC )
|
||||
T( J, JC ) = T( J, JC ) - TEMP2*TAU
|
||||
T( J+1, JC ) = T( J+1, JC ) - TEMP2*T2
|
||||
T( J+2, JC ) = T( J+2, JC ) - TEMP2*T3
|
||||
230 CONTINUE
|
||||
IF( ILQ ) THEN
|
||||
DO 240 JR = 1, N
|
||||
TEMP = TAU*( Q( JR, J )+V( 2 )*Q( JR, J+1 )+V( 3 )*
|
||||
$ Q( JR, J+2 ) )
|
||||
Q( JR, J ) = Q( JR, J ) - TEMP
|
||||
Q( JR, J+1 ) = Q( JR, J+1 ) - TEMP*V( 2 )
|
||||
Q( JR, J+2 ) = Q( JR, J+2 ) - TEMP*V( 3 )
|
||||
TEMP = Q( JR, J )+V( 2 )*Q( JR, J+1 )+V( 3 )*
|
||||
$ Q( JR, J+2 )
|
||||
Q( JR, J ) = Q( JR, J ) - TEMP*TAU
|
||||
Q( JR, J+1 ) = Q( JR, J+1 ) - TEMP*T2
|
||||
Q( JR, J+2 ) = Q( JR, J+2 ) - TEMP*T3
|
||||
240 CONTINUE
|
||||
END IF
|
||||
*
|
||||
|
@ -1233,27 +1235,29 @@
|
|||
*
|
||||
* Apply transformations from the right.
|
||||
*
|
||||
T2 = TAU*V(2)
|
||||
T3 = TAU*V(3)
|
||||
DO 260 JR = IFRSTM, MIN( J+3, ILAST )
|
||||
TEMP = TAU*( H( JR, J )+V( 2 )*H( JR, J+1 )+V( 3 )*
|
||||
$ H( JR, J+2 ) )
|
||||
H( JR, J ) = H( JR, J ) - TEMP
|
||||
H( JR, J+1 ) = H( JR, J+1 ) - TEMP*V( 2 )
|
||||
H( JR, J+2 ) = H( JR, J+2 ) - TEMP*V( 3 )
|
||||
TEMP = H( JR, J )+V( 2 )*H( JR, J+1 )+V( 3 )*
|
||||
$ H( JR, J+2 )
|
||||
H( JR, J ) = H( JR, J ) - TEMP*TAU
|
||||
H( JR, J+1 ) = H( JR, J+1 ) - TEMP*T2
|
||||
H( JR, J+2 ) = H( JR, J+2 ) - TEMP*T3
|
||||
260 CONTINUE
|
||||
DO 270 JR = IFRSTM, J + 2
|
||||
TEMP = TAU*( T( JR, J )+V( 2 )*T( JR, J+1 )+V( 3 )*
|
||||
$ T( JR, J+2 ) )
|
||||
T( JR, J ) = T( JR, J ) - TEMP
|
||||
T( JR, J+1 ) = T( JR, J+1 ) - TEMP*V( 2 )
|
||||
T( JR, J+2 ) = T( JR, J+2 ) - TEMP*V( 3 )
|
||||
TEMP = T( JR, J )+V( 2 )*T( JR, J+1 )+V( 3 )*
|
||||
$ T( JR, J+2 )
|
||||
T( JR, J ) = T( JR, J ) - TEMP*TAU
|
||||
T( JR, J+1 ) = T( JR, J+1 ) - TEMP*T2
|
||||
T( JR, J+2 ) = T( JR, J+2 ) - TEMP*T3
|
||||
270 CONTINUE
|
||||
IF( ILZ ) THEN
|
||||
DO 280 JR = 1, N
|
||||
TEMP = TAU*( Z( JR, J )+V( 2 )*Z( JR, J+1 )+V( 3 )*
|
||||
$ Z( JR, J+2 ) )
|
||||
Z( JR, J ) = Z( JR, J ) - TEMP
|
||||
Z( JR, J+1 ) = Z( JR, J+1 ) - TEMP*V( 2 )
|
||||
Z( JR, J+2 ) = Z( JR, J+2 ) - TEMP*V( 3 )
|
||||
TEMP = Z( JR, J )+V( 2 )*Z( JR, J+1 )+V( 3 )*
|
||||
$ Z( JR, J+2 )
|
||||
Z( JR, J ) = Z( JR, J ) - TEMP*TAU
|
||||
Z( JR, J+1 ) = Z( JR, J+1 ) - TEMP*T2
|
||||
Z( JR, J+2 ) = Z( JR, J+2 ) - TEMP*T3
|
||||
280 CONTINUE
|
||||
END IF
|
||||
T( J+1, J ) = ZERO
|
||||
|
|
|
@ -558,10 +558,13 @@
|
|||
* . Mth bulge. Exploit fact that first two elements
|
||||
* . of row are actually zero. ====
|
||||
*
|
||||
REFSUM = V( 1, M )*V( 3, M )*H( K+3, K+2 )
|
||||
H( K+3, K ) = -REFSUM
|
||||
H( K+3, K+1 ) = -REFSUM*V( 2, M )
|
||||
H( K+3, K+2 ) = H( K+3, K+2 ) - REFSUM*V( 3, M )
|
||||
T1 = V( 1, M )
|
||||
T2 = T1*V( 2, M )
|
||||
T3 = T1*V( 3, M )
|
||||
REFSUM = V( 3, M )*H( K+3, K+2 )
|
||||
H( K+3, K ) = -REFSUM*T1
|
||||
H( K+3, K+1 ) = -REFSUM*T2
|
||||
H( K+3, K+2 ) = H( K+3, K+2 ) - REFSUM*T3
|
||||
*
|
||||
* ==== Calculate reflection to move
|
||||
* . Mth bulge one step. ====
|
||||
|
@ -597,11 +600,13 @@
|
|||
$ VT )
|
||||
ALPHA = VT( 1 )
|
||||
CALL DLARFG( 3, ALPHA, VT( 2 ), 1, VT( 1 ) )
|
||||
REFSUM = VT( 1 )*( H( K+1, K )+VT( 2 )*
|
||||
$ H( K+2, K ) )
|
||||
T1 = VT( 1 )
|
||||
T2 = T1*VT( 2 )
|
||||
T3 = T1*VT( 3 )
|
||||
REFSUM = H( K+1, K ) + VT( 2 )*H( K+2, K )
|
||||
*
|
||||
IF( ABS( H( K+2, K )-REFSUM*VT( 2 ) )+
|
||||
$ ABS( REFSUM*VT( 3 ) ).GT.ULP*
|
||||
IF( ABS( H( K+2, K )-REFSUM*T2 )+
|
||||
$ ABS( REFSUM*T3 ).GT.ULP*
|
||||
$ ( ABS( H( K, K ) )+ABS( H( K+1,
|
||||
$ K+1 ) )+ABS( H( K+2, K+2 ) ) ) ) THEN
|
||||
*
|
||||
|
@ -619,7 +624,7 @@
|
|||
* . Replace the old reflector with
|
||||
* . the new one. ====
|
||||
*
|
||||
H( K+1, K ) = H( K+1, K ) - REFSUM
|
||||
H( K+1, K ) = H( K+1, K ) - REFSUM*T1
|
||||
H( K+2, K ) = ZERO
|
||||
H( K+3, K ) = ZERO
|
||||
V( 1, M ) = VT( 1 )
|
||||
|
|
|
@ -337,9 +337,9 @@
|
|||
$ BTOL, C, C11I, C11R, C12, C21, C22I, C22R, CL,
|
||||
$ CQ, CR, CZ, ESHIFT, S, S1, S1INV, S2, SAFMAX,
|
||||
$ SAFMIN, SCALE, SL, SQI, SQR, SR, SZI, SZR, T1,
|
||||
$ TAU, TEMP, TEMP2, TEMPI, TEMPR, U1, U12, U12L,
|
||||
$ U2, ULP, VS, W11, W12, W21, W22, WABS, WI, WR,
|
||||
$ WR2
|
||||
$ T2, T3, TAU, TEMP, TEMP2, TEMPI, TEMPR, U1,
|
||||
$ U12, U12L, U2, ULP, VS, W11, W12, W21, W22,
|
||||
$ WABS, WI, WR, WR2
|
||||
* ..
|
||||
* .. Local Arrays ..
|
||||
REAL V( 3 )
|
||||
|
@ -1127,25 +1127,27 @@
|
|||
H( J+2, J-1 ) = ZERO
|
||||
END IF
|
||||
*
|
||||
T2 = TAU * V( 2 )
|
||||
T3 = TAU * V( 3 )
|
||||
DO 230 JC = J, ILASTM
|
||||
TEMP = TAU*( H( J, JC )+V( 2 )*H( J+1, JC )+V( 3 )*
|
||||
$ H( J+2, JC ) )
|
||||
H( J, JC ) = H( J, JC ) - TEMP
|
||||
H( J+1, JC ) = H( J+1, JC ) - TEMP*V( 2 )
|
||||
H( J+2, JC ) = H( J+2, JC ) - TEMP*V( 3 )
|
||||
TEMP2 = TAU*( T( J, JC )+V( 2 )*T( J+1, JC )+V( 3 )*
|
||||
$ T( J+2, JC ) )
|
||||
T( J, JC ) = T( J, JC ) - TEMP2
|
||||
T( J+1, JC ) = T( J+1, JC ) - TEMP2*V( 2 )
|
||||
T( J+2, JC ) = T( J+2, JC ) - TEMP2*V( 3 )
|
||||
TEMP = H( J, JC )+V( 2 )*H( J+1, JC )+V( 3 )*
|
||||
$ H( J+2, JC )
|
||||
H( J, JC ) = H( J, JC ) - TEMP*TAU
|
||||
H( J+1, JC ) = H( J+1, JC ) - TEMP*T2
|
||||
H( J+2, JC ) = H( J+2, JC ) - TEMP*T3
|
||||
TEMP2 = T( J, JC )+V( 2 )*T( J+1, JC )+V( 3 )*
|
||||
$ T( J+2, JC )
|
||||
T( J, JC ) = T( J, JC ) - TEMP2*TAU
|
||||
T( J+1, JC ) = T( J+1, JC ) - TEMP2*T2
|
||||
T( J+2, JC ) = T( J+2, JC ) - TEMP2*T3
|
||||
230 CONTINUE
|
||||
IF( ILQ ) THEN
|
||||
DO 240 JR = 1, N
|
||||
TEMP = TAU*( Q( JR, J )+V( 2 )*Q( JR, J+1 )+V( 3 )*
|
||||
$ Q( JR, J+2 ) )
|
||||
Q( JR, J ) = Q( JR, J ) - TEMP
|
||||
Q( JR, J+1 ) = Q( JR, J+1 ) - TEMP*V( 2 )
|
||||
Q( JR, J+2 ) = Q( JR, J+2 ) - TEMP*V( 3 )
|
||||
TEMP = Q( JR, J )+V( 2 )*Q( JR, J+1 )+V( 3 )*
|
||||
$ Q( JR, J+2 )
|
||||
Q( JR, J ) = Q( JR, J ) - TEMP*TAU
|
||||
Q( JR, J+1 ) = Q( JR, J+1 ) - TEMP*T2
|
||||
Q( JR, J+2 ) = Q( JR, J+2 ) - TEMP*T3
|
||||
240 CONTINUE
|
||||
END IF
|
||||
*
|
||||
|
@ -1233,27 +1235,29 @@
|
|||
*
|
||||
* Apply transformations from the right.
|
||||
*
|
||||
T2 = TAU*V( 2 )
|
||||
T3 = TAU*V( 3 )
|
||||
DO 260 JR = IFRSTM, MIN( J+3, ILAST )
|
||||
TEMP = TAU*( H( JR, J )+V( 2 )*H( JR, J+1 )+V( 3 )*
|
||||
$ H( JR, J+2 ) )
|
||||
H( JR, J ) = H( JR, J ) - TEMP
|
||||
H( JR, J+1 ) = H( JR, J+1 ) - TEMP*V( 2 )
|
||||
H( JR, J+2 ) = H( JR, J+2 ) - TEMP*V( 3 )
|
||||
TEMP = H( JR, J )+V( 2 )*H( JR, J+1 )+V( 3 )*
|
||||
$ H( JR, J+2 )
|
||||
H( JR, J ) = H( JR, J ) - TEMP*TAU
|
||||
H( JR, J+1 ) = H( JR, J+1 ) - TEMP*T2
|
||||
H( JR, J+2 ) = H( JR, J+2 ) - TEMP*T3
|
||||
260 CONTINUE
|
||||
DO 270 JR = IFRSTM, J + 2
|
||||
TEMP = TAU*( T( JR, J )+V( 2 )*T( JR, J+1 )+V( 3 )*
|
||||
$ T( JR, J+2 ) )
|
||||
T( JR, J ) = T( JR, J ) - TEMP
|
||||
T( JR, J+1 ) = T( JR, J+1 ) - TEMP*V( 2 )
|
||||
T( JR, J+2 ) = T( JR, J+2 ) - TEMP*V( 3 )
|
||||
TEMP = T( JR, J )+V( 2 )*T( JR, J+1 )+V( 3 )*
|
||||
$ T( JR, J+2 )
|
||||
T( JR, J ) = T( JR, J ) - TEMP*TAU
|
||||
T( JR, J+1 ) = T( JR, J+1 ) - TEMP*T2
|
||||
T( JR, J+2 ) = T( JR, J+2 ) - TEMP*T3
|
||||
270 CONTINUE
|
||||
IF( ILZ ) THEN
|
||||
DO 280 JR = 1, N
|
||||
TEMP = TAU*( Z( JR, J )+V( 2 )*Z( JR, J+1 )+V( 3 )*
|
||||
$ Z( JR, J+2 ) )
|
||||
Z( JR, J ) = Z( JR, J ) - TEMP
|
||||
Z( JR, J+1 ) = Z( JR, J+1 ) - TEMP*V( 2 )
|
||||
Z( JR, J+2 ) = Z( JR, J+2 ) - TEMP*V( 3 )
|
||||
TEMP = Z( JR, J )+V( 2 )*Z( JR, J+1 )+V( 3 )*
|
||||
$ Z( JR, J+2 )
|
||||
Z( JR, J ) = Z( JR, J ) - TEMP*TAU
|
||||
Z( JR, J+1 ) = Z( JR, J+1 ) - TEMP*T2
|
||||
Z( JR, J+2 ) = Z( JR, J+2 ) - TEMP*T3
|
||||
280 CONTINUE
|
||||
END IF
|
||||
T( J+1, J ) = ZERO
|
||||
|
|
|
@ -558,10 +558,13 @@
|
|||
* . Mth bulge. Exploit fact that first two elements
|
||||
* . of row are actually zero. ====
|
||||
*
|
||||
REFSUM = V( 1, M )*V( 3, M )*H( K+3, K+2 )
|
||||
H( K+3, K ) = -REFSUM
|
||||
H( K+3, K+1 ) = -REFSUM*V( 2, M )
|
||||
H( K+3, K+2 ) = H( K+3, K+2 ) - REFSUM*V( 3, M )
|
||||
T1 = V( 1, M )
|
||||
T2 = T1*V( 2, M )
|
||||
T3 = T1*V( 3, M )
|
||||
REFSUM = V( 3, M )*H( K+3, K+2 )
|
||||
H( K+3, K ) = -REFSUM*T1
|
||||
H( K+3, K+1 ) = -REFSUM*T2
|
||||
H( K+3, K+2 ) = H( K+3, K+2 ) - REFSUM*T3
|
||||
*
|
||||
* ==== Calculate reflection to move
|
||||
* . Mth bulge one step. ====
|
||||
|
@ -597,11 +600,13 @@
|
|||
$ VT )
|
||||
ALPHA = VT( 1 )
|
||||
CALL SLARFG( 3, ALPHA, VT( 2 ), 1, VT( 1 ) )
|
||||
REFSUM = VT( 1 )*( H( K+1, K )+VT( 2 )*
|
||||
$ H( K+2, K ) )
|
||||
T1 = VT( 1 )
|
||||
T2 = T1*VT( 2 )
|
||||
T3 = T2*VT( 3 )
|
||||
REFSUM = H( K+1, K )+VT( 2 )*H( K+2, K )
|
||||
*
|
||||
IF( ABS( H( K+2, K )-REFSUM*VT( 2 ) )+
|
||||
$ ABS( REFSUM*VT( 3 ) ).GT.ULP*
|
||||
IF( ABS( H( K+2, K )-REFSUM*T2 )+
|
||||
$ ABS( REFSUM*T3 ).GT.ULP*
|
||||
$ ( ABS( H( K, K ) )+ABS( H( K+1,
|
||||
$ K+1 ) )+ABS( H( K+2, K+2 ) ) ) ) THEN
|
||||
*
|
||||
|
@ -619,7 +624,7 @@
|
|||
* . Replace the old reflector with
|
||||
* . the new one. ====
|
||||
*
|
||||
H( K+1, K ) = H( K+1, K ) - REFSUM
|
||||
H( K+1, K ) = H( K+1, K ) - REFSUM*T1
|
||||
H( K+2, K ) = ZERO
|
||||
H( K+3, K ) = ZERO
|
||||
V( 1, M ) = VT( 1 )
|
||||
|
|
|
@ -533,11 +533,13 @@
|
|||
* . Mth bulge. Exploit fact that first two elements
|
||||
* . of row are actually zero. ====
|
||||
*
|
||||
REFSUM = V( 1, M )*V( 3, M )*H( K+3, K+2 )
|
||||
H( K+3, K ) = -REFSUM
|
||||
H( K+3, K+1 ) = -REFSUM*DCONJG( V( 2, M ) )
|
||||
H( K+3, K+2 ) = H( K+3, K+2 ) -
|
||||
$ REFSUM*DCONJG( V( 3, M ) )
|
||||
T1 = V( 1, M )
|
||||
T2 = T1*DCONJG( V( 2, M ) )
|
||||
T3 = T1*DCONJG( V( 3, M ) )
|
||||
REFSUM = V( 3, M )*H( K+3, K+2 )
|
||||
H( K+3, K ) = -REFSUM*T1
|
||||
H( K+3, K+1 ) = -REFSUM*T2
|
||||
H( K+3, K+2 ) = H( K+3, K+2 ) - REFSUM*T3
|
||||
*
|
||||
* ==== Calculate reflection to move
|
||||
* . Mth bulge one step. ====
|
||||
|
@ -572,12 +574,13 @@
|
|||
$ S( 2*M ), VT )
|
||||
ALPHA = VT( 1 )
|
||||
CALL ZLARFG( 3, ALPHA, VT( 2 ), 1, VT( 1 ) )
|
||||
REFSUM = DCONJG( VT( 1 ) )*
|
||||
$ ( H( K+1, K )+DCONJG( VT( 2 ) )*
|
||||
$ H( K+2, K ) )
|
||||
T1 = DCONJG( VT( 1 ) )
|
||||
T2 = T1*VT( 2 )
|
||||
T3 = T1*VT( 3 )
|
||||
REFSUM = H( K+1, K )+DCONJG( VT( 2 ) )*H( K+2, K )
|
||||
*
|
||||
IF( CABS1( H( K+2, K )-REFSUM*VT( 2 ) )+
|
||||
$ CABS1( REFSUM*VT( 3 ) ).GT.ULP*
|
||||
IF( CABS1( H( K+2, K )-REFSUM*T2 )+
|
||||
$ CABS1( REFSUM*T3 ).GT.ULP*
|
||||
$ ( CABS1( H( K, K ) )+CABS1( H( K+1,
|
||||
$ K+1 ) )+CABS1( H( K+2, K+2 ) ) ) ) THEN
|
||||
*
|
||||
|
@ -595,7 +598,7 @@
|
|||
* . Replace the old reflector with
|
||||
* . the new one. ====
|
||||
*
|
||||
H( K+1, K ) = H( K+1, K ) - REFSUM
|
||||
H( K+1, K ) = H( K+1, K ) - REFSUM*T1
|
||||
H( K+2, K ) = ZERO
|
||||
H( K+3, K ) = ZERO
|
||||
V( 1, M ) = VT( 1 )
|
||||
|
|
|
@ -21,7 +21,7 @@
|
|||
* .. Array Arguments ..
|
||||
* LOGICAL DOTYPE( * ), SELECT( * )
|
||||
* INTEGER ISEED( 4 ), IWORK( * ), NN( * )
|
||||
* REAL RESULT( 14 ), RWORK( * )
|
||||
* REAL RESULT( 16 ), RWORK( * )
|
||||
* COMPLEX A( LDA, * ), EVECTL( LDU, * ),
|
||||
* $ EVECTR( LDU, * ), EVECTX( LDU, * ),
|
||||
* $ EVECTY( LDU, * ), H( LDA, * ), T1( LDA, * ),
|
||||
|
@ -64,10 +64,15 @@
|
|||
*> eigenvectors of H. Y is lower triangular, and X is
|
||||
*> upper triangular.
|
||||
*>
|
||||
*> CTREVC3 computes left and right eigenvector matrices
|
||||
*> from a Schur matrix T and backtransforms them with Z
|
||||
*> to eigenvector matrices L and R for A. L and R are
|
||||
*> GE matrices.
|
||||
*>
|
||||
*> When CCHKHS is called, a number of matrix "sizes" ("n's") and a
|
||||
*> number of matrix "types" are specified. For each size ("n")
|
||||
*> and each type of matrix, one matrix will be generated and used
|
||||
*> to test the nonsymmetric eigenroutines. For each matrix, 14
|
||||
*> to test the nonsymmetric eigenroutines. For each matrix, 16
|
||||
*> tests will be performed:
|
||||
*>
|
||||
*> (1) | A - U H U**H | / ( |A| n ulp )
|
||||
|
@ -98,6 +103,10 @@
|
|||
*>
|
||||
*> (14) | Y**H A - W**H Y | / ( |A| |Y| ulp )
|
||||
*>
|
||||
*> (15) | AR - RW | / ( |A| |R| ulp )
|
||||
*>
|
||||
*> (16) | LA - WL | / ( |A| |L| ulp )
|
||||
*>
|
||||
*> The "sizes" are specified by an array NN(1:NSIZES); the value of
|
||||
*> each element NN(j) specifies one size.
|
||||
*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
|
||||
|
@ -331,7 +340,7 @@
|
|||
*> Workspace. Could be equivalenced to IWORK, but not RWORK.
|
||||
*> Modified.
|
||||
*>
|
||||
*> RESULT - REAL array, dimension (14)
|
||||
*> RESULT - REAL array, dimension (16)
|
||||
*> The values computed by the fourteen tests described above.
|
||||
*> The values are currently limited to 1/ulp, to avoid
|
||||
*> overflow.
|
||||
|
@ -421,7 +430,7 @@
|
|||
* .. Array Arguments ..
|
||||
LOGICAL DOTYPE( * ), SELECT( * )
|
||||
INTEGER ISEED( 4 ), IWORK( * ), NN( * )
|
||||
REAL RESULT( 14 ), RWORK( * )
|
||||
REAL RESULT( 16 ), RWORK( * )
|
||||
COMPLEX A( LDA, * ), EVECTL( LDU, * ),
|
||||
$ EVECTR( LDU, * ), EVECTX( LDU, * ),
|
||||
$ EVECTY( LDU, * ), H( LDA, * ), T1( LDA, * ),
|
||||
|
@ -463,8 +472,8 @@
|
|||
* .. External Subroutines ..
|
||||
EXTERNAL CCOPY, CGEHRD, CGEMM, CGET10, CGET22, CHSEIN,
|
||||
$ CHSEQR, CHST01, CLACPY, CLASET, CLATME, CLATMR,
|
||||
$ CLATMS, CTREVC, CUNGHR, CUNMHR, SLABAD, SLAFTS,
|
||||
$ SLASUM, XERBLA
|
||||
$ CLATMS, CTREVC, CTREVC3, CUNGHR, CUNMHR,
|
||||
$ SLABAD, SLAFTS, SLASUM, XERBLA
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS, MAX, MIN, REAL, SQRT
|
||||
|
@ -1067,6 +1076,66 @@
|
|||
$ RESULT( 14 ) = DUMMA( 3 )*ANINV
|
||||
END IF
|
||||
*
|
||||
* Compute Left and Right Eigenvectors of A
|
||||
*
|
||||
* Compute a Right eigenvector matrix:
|
||||
*
|
||||
NTEST = 15
|
||||
RESULT( 15 ) = ULPINV
|
||||
*
|
||||
CALL CLACPY( ' ', N, N, UZ, LDU, EVECTR, LDU )
|
||||
*
|
||||
CALL CTREVC3( 'Right', 'Back', SELECT, N, T1, LDA, CDUMMA,
|
||||
$ LDU, EVECTR, LDU, N, IN, WORK, NWORK, RWORK,
|
||||
$ N, IINFO )
|
||||
IF( IINFO.NE.0 ) THEN
|
||||
WRITE( NOUNIT, FMT = 9999 )'CTREVC3(R,B)', IINFO, N,
|
||||
$ JTYPE, IOLDSD
|
||||
INFO = ABS( IINFO )
|
||||
GO TO 250
|
||||
END IF
|
||||
*
|
||||
* Test 15: | AR - RW | / ( |A| |R| ulp )
|
||||
*
|
||||
* (from Schur decomposition)
|
||||
*
|
||||
CALL CGET22( 'N', 'N', 'N', N, A, LDA, EVECTR, LDU, W1,
|
||||
$ WORK, RWORK, DUMMA( 1 ) )
|
||||
RESULT( 15 ) = DUMMA( 1 )
|
||||
IF( DUMMA( 2 ).GT.THRESH ) THEN
|
||||
WRITE( NOUNIT, FMT = 9998 )'Right', 'CTREVC3',
|
||||
$ DUMMA( 2 ), N, JTYPE, IOLDSD
|
||||
END IF
|
||||
*
|
||||
* Compute a Left eigenvector matrix:
|
||||
*
|
||||
NTEST = 16
|
||||
RESULT( 16 ) = ULPINV
|
||||
*
|
||||
CALL CLACPY( ' ', N, N, UZ, LDU, EVECTL, LDU )
|
||||
*
|
||||
CALL CTREVC3( 'Left', 'Back', SELECT, N, T1, LDA, EVECTL,
|
||||
$ LDU, CDUMMA, LDU, N, IN, WORK, NWORK, RWORK,
|
||||
$ N, IINFO )
|
||||
IF( IINFO.NE.0 ) THEN
|
||||
WRITE( NOUNIT, FMT = 9999 )'CTREVC3(L,B)', IINFO, N,
|
||||
$ JTYPE, IOLDSD
|
||||
INFO = ABS( IINFO )
|
||||
GO TO 250
|
||||
END IF
|
||||
*
|
||||
* Test 16: | LA - WL | / ( |A| |L| ulp )
|
||||
*
|
||||
* (from Schur decomposition)
|
||||
*
|
||||
CALL CGET22( 'Conj', 'N', 'Conj', N, A, LDA, EVECTL, LDU,
|
||||
$ W1, WORK, RWORK, DUMMA( 3 ) )
|
||||
RESULT( 16 ) = DUMMA( 3 )
|
||||
IF( DUMMA( 4 ).GT.THRESH ) THEN
|
||||
WRITE( NOUNIT, FMT = 9998 )'Left', 'CTREVC3', DUMMA( 4 ),
|
||||
$ N, JTYPE, IOLDSD
|
||||
END IF
|
||||
*
|
||||
* End of Loop -- Check for RESULT(j) > THRESH
|
||||
*
|
||||
240 CONTINUE
|
||||
|
|
|
@ -23,7 +23,7 @@
|
|||
* INTEGER ISEED( 4 ), IWORK( * ), NN( * )
|
||||
* DOUBLE PRECISION A( LDA, * ), EVECTL( LDU, * ),
|
||||
* $ EVECTR( LDU, * ), EVECTX( LDU, * ),
|
||||
* $ EVECTY( LDU, * ), H( LDA, * ), RESULT( 14 ),
|
||||
* $ EVECTY( LDU, * ), H( LDA, * ), RESULT( 16 ),
|
||||
* $ T1( LDA, * ), T2( LDA, * ), TAU( * ),
|
||||
* $ U( LDU, * ), UU( LDU, * ), UZ( LDU, * ),
|
||||
* $ WI1( * ), WI2( * ), WI3( * ), WORK( * ),
|
||||
|
@ -49,15 +49,21 @@
|
|||
*> T is "quasi-triangular", and the eigenvalue vector W.
|
||||
*>
|
||||
*> DTREVC computes the left and right eigenvector matrices
|
||||
*> L and R for T.
|
||||
*> L and R for T. L is lower quasi-triangular, and R is
|
||||
*> upper quasi-triangular.
|
||||
*>
|
||||
*> DHSEIN computes the left and right eigenvector matrices
|
||||
*> Y and X for H, using inverse iteration.
|
||||
*>
|
||||
*> DTREVC3 computes left and right eigenvector matrices
|
||||
*> from a Schur matrix T and backtransforms them with Z
|
||||
*> to eigenvector matrices L and R for A. L and R are
|
||||
*> GE matrices.
|
||||
*>
|
||||
*> When DCHKHS is called, a number of matrix "sizes" ("n's") and a
|
||||
*> number of matrix "types" are specified. For each size ("n")
|
||||
*> and each type of matrix, one matrix will be generated and used
|
||||
*> to test the nonsymmetric eigenroutines. For each matrix, 14
|
||||
*> to test the nonsymmetric eigenroutines. For each matrix, 16
|
||||
*> tests will be performed:
|
||||
*>
|
||||
*> (1) | A - U H U**T | / ( |A| n ulp )
|
||||
|
@ -88,6 +94,10 @@
|
|||
*>
|
||||
*> (14) | Y**H A - W**H Y | / ( |A| |Y| ulp )
|
||||
*>
|
||||
*> (15) | AR - RW | / ( |A| |R| ulp )
|
||||
*>
|
||||
*> (16) | LA - WL | / ( |A| |L| ulp )
|
||||
*>
|
||||
*> The "sizes" are specified by an array NN(1:NSIZES); the value of
|
||||
*> each element NN(j) specifies one size.
|
||||
*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
|
||||
|
@ -331,7 +341,7 @@
|
|||
*> Workspace.
|
||||
*> Modified.
|
||||
*>
|
||||
*> RESULT - DOUBLE PRECISION array, dimension (14)
|
||||
*> RESULT - DOUBLE PRECISION array, dimension (16)
|
||||
*> The values computed by the fourteen tests described above.
|
||||
*> The values are currently limited to 1/ulp, to avoid
|
||||
*> overflow.
|
||||
|
@ -423,7 +433,7 @@
|
|||
INTEGER ISEED( 4 ), IWORK( * ), NN( * )
|
||||
DOUBLE PRECISION A( LDA, * ), EVECTL( LDU, * ),
|
||||
$ EVECTR( LDU, * ), EVECTX( LDU, * ),
|
||||
$ EVECTY( LDU, * ), H( LDA, * ), RESULT( 14 ),
|
||||
$ EVECTY( LDU, * ), H( LDA, * ), RESULT( 16 ),
|
||||
$ T1( LDA, * ), T2( LDA, * ), TAU( * ),
|
||||
$ U( LDU, * ), UU( LDU, * ), UZ( LDU, * ),
|
||||
$ WI1( * ), WI2( * ), WI3( * ), WORK( * ),
|
||||
|
@ -461,7 +471,7 @@
|
|||
EXTERNAL DCOPY, DGEHRD, DGEMM, DGET10, DGET22, DHSEIN,
|
||||
$ DHSEQR, DHST01, DLABAD, DLACPY, DLAFTS, DLASET,
|
||||
$ DLASUM, DLATME, DLATMR, DLATMS, DORGHR, DORMHR,
|
||||
$ DTREVC, XERBLA
|
||||
$ DTREVC, DTREVC3, XERBLA
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS, DBLE, MAX, MIN, SQRT
|
||||
|
@ -561,7 +571,7 @@
|
|||
*
|
||||
* Initialize RESULT
|
||||
*
|
||||
DO 30 J = 1, 14
|
||||
DO 30 J = 1, 16
|
||||
RESULT( J ) = ZERO
|
||||
30 CONTINUE
|
||||
*
|
||||
|
@ -1108,6 +1118,64 @@
|
|||
$ RESULT( 14 ) = DUMMA( 3 )*ANINV
|
||||
END IF
|
||||
*
|
||||
* Compute Left and Right Eigenvectors of A
|
||||
*
|
||||
* Compute a Right eigenvector matrix:
|
||||
*
|
||||
NTEST = 15
|
||||
RESULT( 15 ) = ULPINV
|
||||
*
|
||||
CALL DLACPY( ' ', N, N, UZ, LDU, EVECTR, LDU )
|
||||
*
|
||||
CALL DTREVC3( 'Right', 'Back', SELECT, N, T1, LDA, DUMMA,
|
||||
$ LDU, EVECTR, LDU, N, IN, WORK, NWORK, IINFO )
|
||||
IF( IINFO.NE.0 ) THEN
|
||||
WRITE( NOUNIT, FMT = 9999 )'DTREVC3(R,B)', IINFO, N,
|
||||
$ JTYPE, IOLDSD
|
||||
INFO = ABS( IINFO )
|
||||
GO TO 250
|
||||
END IF
|
||||
*
|
||||
* Test 15: | AR - RW | / ( |A| |R| ulp )
|
||||
*
|
||||
* (from Schur decomposition)
|
||||
*
|
||||
CALL DGET22( 'N', 'N', 'N', N, A, LDA, EVECTR, LDU, WR1,
|
||||
$ WI1, WORK, DUMMA( 1 ) )
|
||||
RESULT( 15 ) = DUMMA( 1 )
|
||||
IF( DUMMA( 2 ).GT.THRESH ) THEN
|
||||
WRITE( NOUNIT, FMT = 9998 )'Right', 'DTREVC3',
|
||||
$ DUMMA( 2 ), N, JTYPE, IOLDSD
|
||||
END IF
|
||||
*
|
||||
* Compute a Left eigenvector matrix:
|
||||
*
|
||||
NTEST = 16
|
||||
RESULT( 16 ) = ULPINV
|
||||
*
|
||||
CALL DLACPY( ' ', N, N, UZ, LDU, EVECTL, LDU )
|
||||
*
|
||||
CALL DTREVC3( 'Left', 'Back', SELECT, N, T1, LDA, EVECTL,
|
||||
$ LDU, DUMMA, LDU, N, IN, WORK, NWORK, IINFO )
|
||||
IF( IINFO.NE.0 ) THEN
|
||||
WRITE( NOUNIT, FMT = 9999 )'DTREVC3(L,B)', IINFO, N,
|
||||
$ JTYPE, IOLDSD
|
||||
INFO = ABS( IINFO )
|
||||
GO TO 250
|
||||
END IF
|
||||
*
|
||||
* Test 16: | LA - WL | / ( |A| |L| ulp )
|
||||
*
|
||||
* (from Schur decomposition)
|
||||
*
|
||||
CALL DGET22( 'Trans', 'N', 'Conj', N, A, LDA, EVECTL, LDU,
|
||||
$ WR1, WI1, WORK, DUMMA( 3 ) )
|
||||
RESULT( 16 ) = DUMMA( 3 )
|
||||
IF( DUMMA( 4 ).GT.THRESH ) THEN
|
||||
WRITE( NOUNIT, FMT = 9998 )'Left', 'DTREVC3', DUMMA( 4 ),
|
||||
$ N, JTYPE, IOLDSD
|
||||
END IF
|
||||
*
|
||||
* End of Loop -- Check for RESULT(j) > THRESH
|
||||
*
|
||||
250 CONTINUE
|
||||
|
|
|
@ -23,7 +23,7 @@
|
|||
* INTEGER ISEED( 4 ), IWORK( * ), NN( * )
|
||||
* REAL A( LDA, * ), EVECTL( LDU, * ),
|
||||
* $ EVECTR( LDU, * ), EVECTX( LDU, * ),
|
||||
* $ EVECTY( LDU, * ), H( LDA, * ), RESULT( 14 ),
|
||||
* $ EVECTY( LDU, * ), H( LDA, * ), RESULT( 16 ),
|
||||
* $ T1( LDA, * ), T2( LDA, * ), TAU( * ),
|
||||
* $ U( LDU, * ), UU( LDU, * ), UZ( LDU, * ),
|
||||
* $ WI1( * ), WI2( * ), WI3( * ), WORK( * ),
|
||||
|
@ -54,10 +54,15 @@
|
|||
*> SHSEIN computes the left and right eigenvector matrices
|
||||
*> Y and X for H, using inverse iteration.
|
||||
*>
|
||||
*> STREVC3 computes left and right eigenvector matrices
|
||||
*> from a Schur matrix T and backtransforms them with Z
|
||||
*> to eigenvector matrices L and R for A. L and R are
|
||||
*> GE matrices.
|
||||
*>
|
||||
*> When SCHKHS is called, a number of matrix "sizes" ("n's") and a
|
||||
*> number of matrix "types" are specified. For each size ("n")
|
||||
*> and each type of matrix, one matrix will be generated and used
|
||||
*> to test the nonsymmetric eigenroutines. For each matrix, 14
|
||||
*> to test the nonsymmetric eigenroutines. For each matrix, 16
|
||||
*> tests will be performed:
|
||||
*>
|
||||
*> (1) | A - U H U**T | / ( |A| n ulp )
|
||||
|
@ -88,6 +93,10 @@
|
|||
*>
|
||||
*> (14) | Y**H A - W**H Y | / ( |A| |Y| ulp )
|
||||
*>
|
||||
*> (15) | AR - RW | / ( |A| |R| ulp )
|
||||
*>
|
||||
*> (16) | LA - WL | / ( |A| |L| ulp )
|
||||
*>
|
||||
*> The "sizes" are specified by an array NN(1:NSIZES); the value of
|
||||
*> each element NN(j) specifies one size.
|
||||
*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
|
||||
|
@ -331,7 +340,7 @@
|
|||
*> Workspace.
|
||||
*> Modified.
|
||||
*>
|
||||
*> RESULT - REAL array, dimension (14)
|
||||
*> RESULT - REAL array, dimension (16)
|
||||
*> The values computed by the fourteen tests described above.
|
||||
*> The values are currently limited to 1/ulp, to avoid
|
||||
*> overflow.
|
||||
|
@ -423,7 +432,7 @@
|
|||
INTEGER ISEED( 4 ), IWORK( * ), NN( * )
|
||||
REAL A( LDA, * ), EVECTL( LDU, * ),
|
||||
$ EVECTR( LDU, * ), EVECTX( LDU, * ),
|
||||
$ EVECTY( LDU, * ), H( LDA, * ), RESULT( 14 ),
|
||||
$ EVECTY( LDU, * ), H( LDA, * ), RESULT( 16 ),
|
||||
$ T1( LDA, * ), T2( LDA, * ), TAU( * ),
|
||||
$ U( LDU, * ), UU( LDU, * ), UZ( LDU, * ),
|
||||
$ WI1( * ), WI2( * ), WI3( * ), WORK( * ),
|
||||
|
@ -461,7 +470,7 @@
|
|||
EXTERNAL SCOPY, SGEHRD, SGEMM, SGET10, SGET22, SHSEIN,
|
||||
$ SHSEQR, SHST01, SLABAD, SLACPY, SLAFTS, SLASET,
|
||||
$ SLASUM, SLATME, SLATMR, SLATMS, SORGHR, SORMHR,
|
||||
$ STREVC, XERBLA
|
||||
$ STREVC, STREVC3, XERBLA
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS, MAX, MIN, REAL, SQRT
|
||||
|
@ -561,7 +570,7 @@
|
|||
*
|
||||
* Initialize RESULT
|
||||
*
|
||||
DO 30 J = 1, 14
|
||||
DO 30 J = 1, 16
|
||||
RESULT( J ) = ZERO
|
||||
30 CONTINUE
|
||||
*
|
||||
|
@ -1108,6 +1117,64 @@
|
|||
$ RESULT( 14 ) = DUMMA( 3 )*ANINV
|
||||
END IF
|
||||
*
|
||||
* Compute Left and Right Eigenvectors of A
|
||||
*
|
||||
* Compute a Right eigenvector matrix:
|
||||
*
|
||||
NTEST = 15
|
||||
RESULT( 15 ) = ULPINV
|
||||
*
|
||||
CALL SLACPY( ' ', N, N, UZ, LDU, EVECTR, LDU )
|
||||
*
|
||||
CALL STREVC3( 'Right', 'Back', SELECT, N, T1, LDA, DUMMA,
|
||||
$ LDU, EVECTR, LDU, N, IN, WORK, NWORK, IINFO )
|
||||
IF( IINFO.NE.0 ) THEN
|
||||
WRITE( NOUNIT, FMT = 9999 )'STREVC3(R,B)', IINFO, N,
|
||||
$ JTYPE, IOLDSD
|
||||
INFO = ABS( IINFO )
|
||||
GO TO 250
|
||||
END IF
|
||||
*
|
||||
* Test 15: | AR - RW | / ( |A| |R| ulp )
|
||||
*
|
||||
* (from Schur decomposition)
|
||||
*
|
||||
CALL SGET22( 'N', 'N', 'N', N, A, LDA, EVECTR, LDU, WR1,
|
||||
$ WI1, WORK, DUMMA( 1 ) )
|
||||
RESULT( 15 ) = DUMMA( 1 )
|
||||
IF( DUMMA( 2 ).GT.THRESH ) THEN
|
||||
WRITE( NOUNIT, FMT = 9998 )'Right', 'STREVC3',
|
||||
$ DUMMA( 2 ), N, JTYPE, IOLDSD
|
||||
END IF
|
||||
*
|
||||
* Compute a Left eigenvector matrix:
|
||||
*
|
||||
NTEST = 16
|
||||
RESULT( 16 ) = ULPINV
|
||||
*
|
||||
CALL SLACPY( ' ', N, N, UZ, LDU, EVECTL, LDU )
|
||||
*
|
||||
CALL STREVC3( 'Left', 'Back', SELECT, N, T1, LDA, EVECTL,
|
||||
$ LDU, DUMMA, LDU, N, IN, WORK, NWORK, IINFO )
|
||||
IF( IINFO.NE.0 ) THEN
|
||||
WRITE( NOUNIT, FMT = 9999 )'STREVC3(L,B)', IINFO, N,
|
||||
$ JTYPE, IOLDSD
|
||||
INFO = ABS( IINFO )
|
||||
GO TO 250
|
||||
END IF
|
||||
*
|
||||
* Test 16: | LA - WL | / ( |A| |L| ulp )
|
||||
*
|
||||
* (from Schur decomposition)
|
||||
*
|
||||
CALL SGET22( 'Trans', 'N', 'Conj', N, A, LDA, EVECTL, LDU,
|
||||
$ WR1, WI1, WORK, DUMMA( 3 ) )
|
||||
RESULT( 16 ) = DUMMA( 3 )
|
||||
IF( DUMMA( 4 ).GT.THRESH ) THEN
|
||||
WRITE( NOUNIT, FMT = 9998 )'Left', 'STREVC3', DUMMA( 4 ),
|
||||
$ N, JTYPE, IOLDSD
|
||||
END IF
|
||||
*
|
||||
* End of Loop -- Check for RESULT(j) > THRESH
|
||||
*
|
||||
250 CONTINUE
|
||||
|
|
|
@ -21,7 +21,7 @@
|
|||
* .. Array Arguments ..
|
||||
* LOGICAL DOTYPE( * ), SELECT( * )
|
||||
* INTEGER ISEED( 4 ), IWORK( * ), NN( * )
|
||||
* DOUBLE PRECISION RESULT( 14 ), RWORK( * )
|
||||
* DOUBLE PRECISION RESULT( 16 ), RWORK( * )
|
||||
* COMPLEX*16 A( LDA, * ), EVECTL( LDU, * ),
|
||||
* $ EVECTR( LDU, * ), EVECTX( LDU, * ),
|
||||
* $ EVECTY( LDU, * ), H( LDA, * ), T1( LDA, * ),
|
||||
|
@ -64,10 +64,15 @@
|
|||
*> eigenvectors of H. Y is lower triangular, and X is
|
||||
*> upper triangular.
|
||||
*>
|
||||
*> ZTREVC3 computes left and right eigenvector matrices
|
||||
*> from a Schur matrix T and backtransforms them with Z
|
||||
*> to eigenvector matrices L and R for A. L and R are
|
||||
*> GE matrices.
|
||||
*>
|
||||
*> When ZCHKHS is called, a number of matrix "sizes" ("n's") and a
|
||||
*> number of matrix "types" are specified. For each size ("n")
|
||||
*> and each type of matrix, one matrix will be generated and used
|
||||
*> to test the nonsymmetric eigenroutines. For each matrix, 14
|
||||
*> to test the nonsymmetric eigenroutines. For each matrix, 16
|
||||
*> tests will be performed:
|
||||
*>
|
||||
*> (1) | A - U H U**H | / ( |A| n ulp )
|
||||
|
@ -98,6 +103,10 @@
|
|||
*>
|
||||
*> (14) | Y**H A - W**H Y | / ( |A| |Y| ulp )
|
||||
*>
|
||||
*> (15) | AR - RW | / ( |A| |R| ulp )
|
||||
*>
|
||||
*> (16) | LA - WL | / ( |A| |L| ulp )
|
||||
*>
|
||||
*> The "sizes" are specified by an array NN(1:NSIZES); the value of
|
||||
*> each element NN(j) specifies one size.
|
||||
*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
|
||||
|
@ -331,7 +340,7 @@
|
|||
*> Workspace. Could be equivalenced to IWORK, but not RWORK.
|
||||
*> Modified.
|
||||
*>
|
||||
*> RESULT - DOUBLE PRECISION array, dimension (14)
|
||||
*> RESULT - DOUBLE PRECISION array, dimension (16)
|
||||
*> The values computed by the fourteen tests described above.
|
||||
*> The values are currently limited to 1/ulp, to avoid
|
||||
*> overflow.
|
||||
|
@ -421,7 +430,7 @@
|
|||
* .. Array Arguments ..
|
||||
LOGICAL DOTYPE( * ), SELECT( * )
|
||||
INTEGER ISEED( 4 ), IWORK( * ), NN( * )
|
||||
DOUBLE PRECISION RESULT( 14 ), RWORK( * )
|
||||
DOUBLE PRECISION RESULT( 16 ), RWORK( * )
|
||||
COMPLEX*16 A( LDA, * ), EVECTL( LDU, * ),
|
||||
$ EVECTR( LDU, * ), EVECTX( LDU, * ),
|
||||
$ EVECTY( LDU, * ), H( LDA, * ), T1( LDA, * ),
|
||||
|
@ -464,7 +473,7 @@
|
|||
EXTERNAL DLABAD, DLAFTS, DLASUM, XERBLA, ZCOPY, ZGEHRD,
|
||||
$ ZGEMM, ZGET10, ZGET22, ZHSEIN, ZHSEQR, ZHST01,
|
||||
$ ZLACPY, ZLASET, ZLATME, ZLATMR, ZLATMS, ZTREVC,
|
||||
$ ZUNGHR, ZUNMHR
|
||||
$ ZTREVC3, ZUNGHR, ZUNMHR
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS, DBLE, MAX, MIN, SQRT
|
||||
|
@ -1067,6 +1076,66 @@
|
|||
$ RESULT( 14 ) = DUMMA( 3 )*ANINV
|
||||
END IF
|
||||
*
|
||||
* Compute Left and Right Eigenvectors of A
|
||||
*
|
||||
* Compute a Right eigenvector matrix:
|
||||
*
|
||||
NTEST = 15
|
||||
RESULT( 15 ) = ULPINV
|
||||
*
|
||||
CALL ZLACPY( ' ', N, N, UZ, LDU, EVECTR, LDU )
|
||||
*
|
||||
CALL ZTREVC3( 'Right', 'Back', SELECT, N, T1, LDA, CDUMMA,
|
||||
$ LDU, EVECTR, LDU, N, IN, WORK, NWORK, RWORK,
|
||||
$ N, IINFO )
|
||||
IF( IINFO.NE.0 ) THEN
|
||||
WRITE( NOUNIT, FMT = 9999 )'ZTREVC3(R,B)', IINFO, N,
|
||||
$ JTYPE, IOLDSD
|
||||
INFO = ABS( IINFO )
|
||||
GO TO 250
|
||||
END IF
|
||||
*
|
||||
* Test 15: | AR - RW | / ( |A| |R| ulp )
|
||||
*
|
||||
* (from Schur decomposition)
|
||||
*
|
||||
CALL ZGET22( 'N', 'N', 'N', N, A, LDA, EVECTR, LDU, W1,
|
||||
$ WORK, RWORK, DUMMA( 1 ) )
|
||||
RESULT( 15 ) = DUMMA( 1 )
|
||||
IF( DUMMA( 2 ).GT.THRESH ) THEN
|
||||
WRITE( NOUNIT, FMT = 9998 )'Right', 'ZTREVC3',
|
||||
$ DUMMA( 2 ), N, JTYPE, IOLDSD
|
||||
END IF
|
||||
*
|
||||
* Compute a Left eigenvector matrix:
|
||||
*
|
||||
NTEST = 16
|
||||
RESULT( 16 ) = ULPINV
|
||||
*
|
||||
CALL ZLACPY( ' ', N, N, UZ, LDU, EVECTL, LDU )
|
||||
*
|
||||
CALL ZTREVC3( 'Left', 'Back', SELECT, N, T1, LDA, EVECTL,
|
||||
$ LDU, CDUMMA, LDU, N, IN, WORK, NWORK, RWORK,
|
||||
$ N, IINFO )
|
||||
IF( IINFO.NE.0 ) THEN
|
||||
WRITE( NOUNIT, FMT = 9999 )'ZTREVC3(L,B)', IINFO, N,
|
||||
$ JTYPE, IOLDSD
|
||||
INFO = ABS( IINFO )
|
||||
GO TO 250
|
||||
END IF
|
||||
*
|
||||
* Test 16: | LA - WL | / ( |A| |L| ulp )
|
||||
*
|
||||
* (from Schur decomposition)
|
||||
*
|
||||
CALL ZGET22( 'Conj', 'N', 'Conj', N, A, LDA, EVECTL, LDU,
|
||||
$ W1, WORK, RWORK, DUMMA( 3 ) )
|
||||
RESULT( 16 ) = DUMMA( 3 )
|
||||
IF( DUMMA( 4 ).GT.THRESH ) THEN
|
||||
WRITE( NOUNIT, FMT = 9998 )'Left', 'ZTREVC3', DUMMA( 4 ),
|
||||
$ N, JTYPE, IOLDSD
|
||||
END IF
|
||||
*
|
||||
* End of Loop -- Check for RESULT(j) > THRESH
|
||||
*
|
||||
240 CONTINUE
|
||||
|
|
Loading…
Reference in New Issue