ref #80. On P4 CPU with 32-bit Windows XP, Octave crashed with OpenBLAS. Walkaroud: Use netlib reference gemv instead of own funtions.
For example, make USE_NETLIB_GEMV=1
This commit is contained in:
parent
d047afe615
commit
722dd08703
|
@ -770,20 +770,36 @@ xgeru.$(SUFFIX) xgeru.$(PSUFFIX) : zger.c
|
|||
xgerc.$(SUFFIX) xgerc.$(PSUFFIX) : zger.c
|
||||
$(CC) -c $(CFLAGS) -DCONJ $< -o $(@F)
|
||||
|
||||
ifndef USE_NETLIB_GEMV
|
||||
sgemv.$(SUFFIX) sgemv.$(PSUFFIX): gemv.c
|
||||
$(CC) -c $(CFLAGS) -o $(@F) $<
|
||||
|
||||
dgemv.$(SUFFIX) dgemv.$(PSUFFIX): gemv.c
|
||||
$(CC) -c $(CFLAGS) -o $(@F) $<
|
||||
else
|
||||
sgemv.$(SUFFIX) sgemv.$(PSUFFIX): netlib/sgemv.f
|
||||
$(FC) -c $(FFLAGS) -o $(@F) $<
|
||||
|
||||
dgemv.$(SUFFIX) dgemv.$(PSUFFIX): netlib/dgemv.f
|
||||
$(FC) -c $(FFLAGS) -o $(@F) $<
|
||||
endif
|
||||
|
||||
qgemv.$(SUFFIX) qgemv.$(PSUFFIX): gemv.c
|
||||
$(CC) -c $(CFLAGS) -o $(@F) $<
|
||||
|
||||
|
||||
ifndef USE_NETLIB_GEMV
|
||||
cgemv.$(SUFFIX) cgemv.$(PSUFFIX): zgemv.c
|
||||
$(CC) -c $(CFLAGS) -o $(@F) $<
|
||||
|
||||
zgemv.$(SUFFIX) zgemv.$(PSUFFIX): zgemv.c
|
||||
$(CC) -c $(CFLAGS) -o $(@F) $<
|
||||
else
|
||||
cgemv.$(SUFFIX) cgemv.$(PSUFFIX): netlib/cgemv.f
|
||||
$(FC) -c $(FFLAGS) -o $(@F) $<
|
||||
|
||||
zgemv.$(SUFFIX) zgemv.$(PSUFFIX): netlib/zgemv.f
|
||||
$(FC) -c $(FFLAGS) -o $(@F) $<
|
||||
endif
|
||||
|
||||
xgemv.$(SUFFIX) xgemv.$(PSUFFIX): zgemv.c
|
||||
$(CC) -c $(CFLAGS) -o $(@F) $<
|
||||
|
|
|
@ -0,0 +1,285 @@
|
|||
SUBROUTINE CGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
|
||||
* .. Scalar Arguments ..
|
||||
COMPLEX ALPHA,BETA
|
||||
INTEGER INCX,INCY,LDA,M,N
|
||||
CHARACTER TRANS
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
COMPLEX A(LDA,*),X(*),Y(*)
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* CGEMV performs one of the matrix-vector operations
|
||||
*
|
||||
* y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, or
|
||||
*
|
||||
* y := alpha*A**H*x + beta*y,
|
||||
*
|
||||
* where alpha and beta are scalars, x and y are vectors and A is an
|
||||
* m by n matrix.
|
||||
*
|
||||
* Arguments
|
||||
* ==========
|
||||
*
|
||||
* TRANS - CHARACTER*1.
|
||||
* On entry, TRANS specifies the operation to be performed as
|
||||
* follows:
|
||||
*
|
||||
* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
|
||||
*
|
||||
* TRANS = 'T' or 't' y := alpha*A**T*x + beta*y.
|
||||
*
|
||||
* TRANS = 'C' or 'c' y := alpha*A**H*x + beta*y.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* M - INTEGER.
|
||||
* On entry, M specifies the number of rows of the matrix A.
|
||||
* M must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* N - INTEGER.
|
||||
* On entry, N specifies the number of columns of the matrix A.
|
||||
* N must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* ALPHA - COMPLEX .
|
||||
* On entry, ALPHA specifies the scalar alpha.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* A - COMPLEX array of DIMENSION ( LDA, n ).
|
||||
* Before entry, the leading m by n part of the array A must
|
||||
* contain the matrix of coefficients.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* LDA - INTEGER.
|
||||
* On entry, LDA specifies the first dimension of A as declared
|
||||
* in the calling (sub) program. LDA must be at least
|
||||
* max( 1, m ).
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* X - COMPLEX array of DIMENSION at least
|
||||
* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
|
||||
* and at least
|
||||
* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
|
||||
* Before entry, the incremented array X must contain the
|
||||
* vector x.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* INCX - INTEGER.
|
||||
* On entry, INCX specifies the increment for the elements of
|
||||
* X. INCX must not be zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* BETA - COMPLEX .
|
||||
* On entry, BETA specifies the scalar beta. When BETA is
|
||||
* supplied as zero then Y need not be set on input.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* Y - COMPLEX array of DIMENSION at least
|
||||
* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
|
||||
* and at least
|
||||
* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
|
||||
* Before entry with BETA non-zero, the incremented array Y
|
||||
* must contain the vector y. On exit, Y is overwritten by the
|
||||
* updated vector y.
|
||||
*
|
||||
* INCY - INTEGER.
|
||||
* On entry, INCY specifies the increment for the elements of
|
||||
* Y. INCY must not be zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* Level 2 Blas routine.
|
||||
* The vector and matrix arguments are not referenced when N = 0, or M = 0
|
||||
*
|
||||
* -- Written on 22-October-1986.
|
||||
* Jack Dongarra, Argonne National Lab.
|
||||
* Jeremy Du Croz, Nag Central Office.
|
||||
* Sven Hammarling, Nag Central Office.
|
||||
* Richard Hanson, Sandia National Labs.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
COMPLEX ONE
|
||||
PARAMETER (ONE= (1.0E+0,0.0E+0))
|
||||
COMPLEX ZERO
|
||||
PARAMETER (ZERO= (0.0E+0,0.0E+0))
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
COMPLEX TEMP
|
||||
INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY
|
||||
LOGICAL NOCONJ
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
LOGICAL LSAME
|
||||
EXTERNAL LSAME
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL XERBLA
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC CONJG,MAX
|
||||
* ..
|
||||
*
|
||||
* Test the input parameters.
|
||||
*
|
||||
INFO = 0
|
||||
IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
|
||||
+ .NOT.LSAME(TRANS,'C')) THEN
|
||||
INFO = 1
|
||||
ELSE IF (M.LT.0) THEN
|
||||
INFO = 2
|
||||
ELSE IF (N.LT.0) THEN
|
||||
INFO = 3
|
||||
ELSE IF (LDA.LT.MAX(1,M)) THEN
|
||||
INFO = 6
|
||||
ELSE IF (INCX.EQ.0) THEN
|
||||
INFO = 8
|
||||
ELSE IF (INCY.EQ.0) THEN
|
||||
INFO = 11
|
||||
END IF
|
||||
IF (INFO.NE.0) THEN
|
||||
CALL XERBLA('CGEMV ',INFO)
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Quick return if possible.
|
||||
*
|
||||
IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
|
||||
+ ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
|
||||
*
|
||||
NOCONJ = LSAME(TRANS,'T')
|
||||
*
|
||||
* Set LENX and LENY, the lengths of the vectors x and y, and set
|
||||
* up the start points in X and Y.
|
||||
*
|
||||
IF (LSAME(TRANS,'N')) THEN
|
||||
LENX = N
|
||||
LENY = M
|
||||
ELSE
|
||||
LENX = M
|
||||
LENY = N
|
||||
END IF
|
||||
IF (INCX.GT.0) THEN
|
||||
KX = 1
|
||||
ELSE
|
||||
KX = 1 - (LENX-1)*INCX
|
||||
END IF
|
||||
IF (INCY.GT.0) THEN
|
||||
KY = 1
|
||||
ELSE
|
||||
KY = 1 - (LENY-1)*INCY
|
||||
END IF
|
||||
*
|
||||
* Start the operations. In this version the elements of A are
|
||||
* accessed sequentially with one pass through A.
|
||||
*
|
||||
* First form y := beta*y.
|
||||
*
|
||||
IF (BETA.NE.ONE) THEN
|
||||
IF (INCY.EQ.1) THEN
|
||||
IF (BETA.EQ.ZERO) THEN
|
||||
DO 10 I = 1,LENY
|
||||
Y(I) = ZERO
|
||||
10 CONTINUE
|
||||
ELSE
|
||||
DO 20 I = 1,LENY
|
||||
Y(I) = BETA*Y(I)
|
||||
20 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
IY = KY
|
||||
IF (BETA.EQ.ZERO) THEN
|
||||
DO 30 I = 1,LENY
|
||||
Y(IY) = ZERO
|
||||
IY = IY + INCY
|
||||
30 CONTINUE
|
||||
ELSE
|
||||
DO 40 I = 1,LENY
|
||||
Y(IY) = BETA*Y(IY)
|
||||
IY = IY + INCY
|
||||
40 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
END IF
|
||||
IF (ALPHA.EQ.ZERO) RETURN
|
||||
IF (LSAME(TRANS,'N')) THEN
|
||||
*
|
||||
* Form y := alpha*A*x + y.
|
||||
*
|
||||
JX = KX
|
||||
IF (INCY.EQ.1) THEN
|
||||
DO 60 J = 1,N
|
||||
IF (X(JX).NE.ZERO) THEN
|
||||
TEMP = ALPHA*X(JX)
|
||||
DO 50 I = 1,M
|
||||
Y(I) = Y(I) + TEMP*A(I,J)
|
||||
50 CONTINUE
|
||||
END IF
|
||||
JX = JX + INCX
|
||||
60 CONTINUE
|
||||
ELSE
|
||||
DO 80 J = 1,N
|
||||
IF (X(JX).NE.ZERO) THEN
|
||||
TEMP = ALPHA*X(JX)
|
||||
IY = KY
|
||||
DO 70 I = 1,M
|
||||
Y(IY) = Y(IY) + TEMP*A(I,J)
|
||||
IY = IY + INCY
|
||||
70 CONTINUE
|
||||
END IF
|
||||
JX = JX + INCX
|
||||
80 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
*
|
||||
* Form y := alpha*A**T*x + y or y := alpha*A**H*x + y.
|
||||
*
|
||||
JY = KY
|
||||
IF (INCX.EQ.1) THEN
|
||||
DO 110 J = 1,N
|
||||
TEMP = ZERO
|
||||
IF (NOCONJ) THEN
|
||||
DO 90 I = 1,M
|
||||
TEMP = TEMP + A(I,J)*X(I)
|
||||
90 CONTINUE
|
||||
ELSE
|
||||
DO 100 I = 1,M
|
||||
TEMP = TEMP + CONJG(A(I,J))*X(I)
|
||||
100 CONTINUE
|
||||
END IF
|
||||
Y(JY) = Y(JY) + ALPHA*TEMP
|
||||
JY = JY + INCY
|
||||
110 CONTINUE
|
||||
ELSE
|
||||
DO 140 J = 1,N
|
||||
TEMP = ZERO
|
||||
IX = KX
|
||||
IF (NOCONJ) THEN
|
||||
DO 120 I = 1,M
|
||||
TEMP = TEMP + A(I,J)*X(IX)
|
||||
IX = IX + INCX
|
||||
120 CONTINUE
|
||||
ELSE
|
||||
DO 130 I = 1,M
|
||||
TEMP = TEMP + CONJG(A(I,J))*X(IX)
|
||||
IX = IX + INCX
|
||||
130 CONTINUE
|
||||
END IF
|
||||
Y(JY) = Y(JY) + ALPHA*TEMP
|
||||
JY = JY + INCY
|
||||
140 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
*
|
||||
RETURN
|
||||
*
|
||||
* End of CGEMV .
|
||||
*
|
||||
END
|
|
@ -0,0 +1,265 @@
|
|||
SUBROUTINE DGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
|
||||
* .. Scalar Arguments ..
|
||||
DOUBLE PRECISION ALPHA,BETA
|
||||
INTEGER INCX,INCY,LDA,M,N
|
||||
CHARACTER TRANS
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
DOUBLE PRECISION A(LDA,*),X(*),Y(*)
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DGEMV performs one of the matrix-vector operations
|
||||
*
|
||||
* y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y,
|
||||
*
|
||||
* where alpha and beta are scalars, x and y are vectors and A is an
|
||||
* m by n matrix.
|
||||
*
|
||||
* Arguments
|
||||
* ==========
|
||||
*
|
||||
* TRANS - CHARACTER*1.
|
||||
* On entry, TRANS specifies the operation to be performed as
|
||||
* follows:
|
||||
*
|
||||
* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
|
||||
*
|
||||
* TRANS = 'T' or 't' y := alpha*A**T*x + beta*y.
|
||||
*
|
||||
* TRANS = 'C' or 'c' y := alpha*A**T*x + beta*y.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* M - INTEGER.
|
||||
* On entry, M specifies the number of rows of the matrix A.
|
||||
* M must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* N - INTEGER.
|
||||
* On entry, N specifies the number of columns of the matrix A.
|
||||
* N must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* ALPHA - DOUBLE PRECISION.
|
||||
* On entry, ALPHA specifies the scalar alpha.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
|
||||
* Before entry, the leading m by n part of the array A must
|
||||
* contain the matrix of coefficients.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* LDA - INTEGER.
|
||||
* On entry, LDA specifies the first dimension of A as declared
|
||||
* in the calling (sub) program. LDA must be at least
|
||||
* max( 1, m ).
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* X - DOUBLE PRECISION array of DIMENSION at least
|
||||
* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
|
||||
* and at least
|
||||
* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
|
||||
* Before entry, the incremented array X must contain the
|
||||
* vector x.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* INCX - INTEGER.
|
||||
* On entry, INCX specifies the increment for the elements of
|
||||
* X. INCX must not be zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* BETA - DOUBLE PRECISION.
|
||||
* On entry, BETA specifies the scalar beta. When BETA is
|
||||
* supplied as zero then Y need not be set on input.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* Y - DOUBLE PRECISION array of DIMENSION at least
|
||||
* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
|
||||
* and at least
|
||||
* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
|
||||
* Before entry with BETA non-zero, the incremented array Y
|
||||
* must contain the vector y. On exit, Y is overwritten by the
|
||||
* updated vector y.
|
||||
*
|
||||
* INCY - INTEGER.
|
||||
* On entry, INCY specifies the increment for the elements of
|
||||
* Y. INCY must not be zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* Level 2 Blas routine.
|
||||
* The vector and matrix arguments are not referenced when N = 0, or M = 0
|
||||
*
|
||||
* -- Written on 22-October-1986.
|
||||
* Jack Dongarra, Argonne National Lab.
|
||||
* Jeremy Du Croz, Nag Central Office.
|
||||
* Sven Hammarling, Nag Central Office.
|
||||
* Richard Hanson, Sandia National Labs.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
DOUBLE PRECISION ONE,ZERO
|
||||
PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
DOUBLE PRECISION TEMP
|
||||
INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
LOGICAL LSAME
|
||||
EXTERNAL LSAME
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL XERBLA
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC MAX
|
||||
* ..
|
||||
*
|
||||
* Test the input parameters.
|
||||
*
|
||||
INFO = 0
|
||||
IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
|
||||
+ .NOT.LSAME(TRANS,'C')) THEN
|
||||
INFO = 1
|
||||
ELSE IF (M.LT.0) THEN
|
||||
INFO = 2
|
||||
ELSE IF (N.LT.0) THEN
|
||||
INFO = 3
|
||||
ELSE IF (LDA.LT.MAX(1,M)) THEN
|
||||
INFO = 6
|
||||
ELSE IF (INCX.EQ.0) THEN
|
||||
INFO = 8
|
||||
ELSE IF (INCY.EQ.0) THEN
|
||||
INFO = 11
|
||||
END IF
|
||||
IF (INFO.NE.0) THEN
|
||||
CALL XERBLA('DGEMV ',INFO)
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Quick return if possible.
|
||||
*
|
||||
IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
|
||||
+ ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
|
||||
*
|
||||
* Set LENX and LENY, the lengths of the vectors x and y, and set
|
||||
* up the start points in X and Y.
|
||||
*
|
||||
IF (LSAME(TRANS,'N')) THEN
|
||||
LENX = N
|
||||
LENY = M
|
||||
ELSE
|
||||
LENX = M
|
||||
LENY = N
|
||||
END IF
|
||||
IF (INCX.GT.0) THEN
|
||||
KX = 1
|
||||
ELSE
|
||||
KX = 1 - (LENX-1)*INCX
|
||||
END IF
|
||||
IF (INCY.GT.0) THEN
|
||||
KY = 1
|
||||
ELSE
|
||||
KY = 1 - (LENY-1)*INCY
|
||||
END IF
|
||||
*
|
||||
* Start the operations. In this version the elements of A are
|
||||
* accessed sequentially with one pass through A.
|
||||
*
|
||||
* First form y := beta*y.
|
||||
*
|
||||
IF (BETA.NE.ONE) THEN
|
||||
IF (INCY.EQ.1) THEN
|
||||
IF (BETA.EQ.ZERO) THEN
|
||||
DO 10 I = 1,LENY
|
||||
Y(I) = ZERO
|
||||
10 CONTINUE
|
||||
ELSE
|
||||
DO 20 I = 1,LENY
|
||||
Y(I) = BETA*Y(I)
|
||||
20 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
IY = KY
|
||||
IF (BETA.EQ.ZERO) THEN
|
||||
DO 30 I = 1,LENY
|
||||
Y(IY) = ZERO
|
||||
IY = IY + INCY
|
||||
30 CONTINUE
|
||||
ELSE
|
||||
DO 40 I = 1,LENY
|
||||
Y(IY) = BETA*Y(IY)
|
||||
IY = IY + INCY
|
||||
40 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
END IF
|
||||
IF (ALPHA.EQ.ZERO) RETURN
|
||||
IF (LSAME(TRANS,'N')) THEN
|
||||
*
|
||||
* Form y := alpha*A*x + y.
|
||||
*
|
||||
JX = KX
|
||||
IF (INCY.EQ.1) THEN
|
||||
DO 60 J = 1,N
|
||||
IF (X(JX).NE.ZERO) THEN
|
||||
TEMP = ALPHA*X(JX)
|
||||
DO 50 I = 1,M
|
||||
Y(I) = Y(I) + TEMP*A(I,J)
|
||||
50 CONTINUE
|
||||
END IF
|
||||
JX = JX + INCX
|
||||
60 CONTINUE
|
||||
ELSE
|
||||
DO 80 J = 1,N
|
||||
IF (X(JX).NE.ZERO) THEN
|
||||
TEMP = ALPHA*X(JX)
|
||||
IY = KY
|
||||
DO 70 I = 1,M
|
||||
Y(IY) = Y(IY) + TEMP*A(I,J)
|
||||
IY = IY + INCY
|
||||
70 CONTINUE
|
||||
END IF
|
||||
JX = JX + INCX
|
||||
80 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
*
|
||||
* Form y := alpha*A**T*x + y.
|
||||
*
|
||||
JY = KY
|
||||
IF (INCX.EQ.1) THEN
|
||||
DO 100 J = 1,N
|
||||
TEMP = ZERO
|
||||
DO 90 I = 1,M
|
||||
TEMP = TEMP + A(I,J)*X(I)
|
||||
90 CONTINUE
|
||||
Y(JY) = Y(JY) + ALPHA*TEMP
|
||||
JY = JY + INCY
|
||||
100 CONTINUE
|
||||
ELSE
|
||||
DO 120 J = 1,N
|
||||
TEMP = ZERO
|
||||
IX = KX
|
||||
DO 110 I = 1,M
|
||||
TEMP = TEMP + A(I,J)*X(IX)
|
||||
IX = IX + INCX
|
||||
110 CONTINUE
|
||||
Y(JY) = Y(JY) + ALPHA*TEMP
|
||||
JY = JY + INCY
|
||||
120 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
*
|
||||
RETURN
|
||||
*
|
||||
* End of DGEMV .
|
||||
*
|
||||
END
|
|
@ -0,0 +1,265 @@
|
|||
SUBROUTINE SGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
|
||||
* .. Scalar Arguments ..
|
||||
REAL ALPHA,BETA
|
||||
INTEGER INCX,INCY,LDA,M,N
|
||||
CHARACTER TRANS
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
REAL A(LDA,*),X(*),Y(*)
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* SGEMV performs one of the matrix-vector operations
|
||||
*
|
||||
* y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y,
|
||||
*
|
||||
* where alpha and beta are scalars, x and y are vectors and A is an
|
||||
* m by n matrix.
|
||||
*
|
||||
* Arguments
|
||||
* ==========
|
||||
*
|
||||
* TRANS - CHARACTER*1.
|
||||
* On entry, TRANS specifies the operation to be performed as
|
||||
* follows:
|
||||
*
|
||||
* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
|
||||
*
|
||||
* TRANS = 'T' or 't' y := alpha*A**T*x + beta*y.
|
||||
*
|
||||
* TRANS = 'C' or 'c' y := alpha*A**T*x + beta*y.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* M - INTEGER.
|
||||
* On entry, M specifies the number of rows of the matrix A.
|
||||
* M must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* N - INTEGER.
|
||||
* On entry, N specifies the number of columns of the matrix A.
|
||||
* N must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* ALPHA - REAL .
|
||||
* On entry, ALPHA specifies the scalar alpha.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* A - REAL array of DIMENSION ( LDA, n ).
|
||||
* Before entry, the leading m by n part of the array A must
|
||||
* contain the matrix of coefficients.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* LDA - INTEGER.
|
||||
* On entry, LDA specifies the first dimension of A as declared
|
||||
* in the calling (sub) program. LDA must be at least
|
||||
* max( 1, m ).
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* X - REAL array of DIMENSION at least
|
||||
* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
|
||||
* and at least
|
||||
* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
|
||||
* Before entry, the incremented array X must contain the
|
||||
* vector x.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* INCX - INTEGER.
|
||||
* On entry, INCX specifies the increment for the elements of
|
||||
* X. INCX must not be zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* BETA - REAL .
|
||||
* On entry, BETA specifies the scalar beta. When BETA is
|
||||
* supplied as zero then Y need not be set on input.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* Y - REAL array of DIMENSION at least
|
||||
* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
|
||||
* and at least
|
||||
* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
|
||||
* Before entry with BETA non-zero, the incremented array Y
|
||||
* must contain the vector y. On exit, Y is overwritten by the
|
||||
* updated vector y.
|
||||
*
|
||||
* INCY - INTEGER.
|
||||
* On entry, INCY specifies the increment for the elements of
|
||||
* Y. INCY must not be zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* Level 2 Blas routine.
|
||||
* The vector and matrix arguments are not referenced when N = 0, or M = 0
|
||||
*
|
||||
* -- Written on 22-October-1986.
|
||||
* Jack Dongarra, Argonne National Lab.
|
||||
* Jeremy Du Croz, Nag Central Office.
|
||||
* Sven Hammarling, Nag Central Office.
|
||||
* Richard Hanson, Sandia National Labs.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
REAL ONE,ZERO
|
||||
PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
REAL TEMP
|
||||
INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
LOGICAL LSAME
|
||||
EXTERNAL LSAME
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL XERBLA
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC MAX
|
||||
* ..
|
||||
*
|
||||
* Test the input parameters.
|
||||
*
|
||||
INFO = 0
|
||||
IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
|
||||
+ .NOT.LSAME(TRANS,'C')) THEN
|
||||
INFO = 1
|
||||
ELSE IF (M.LT.0) THEN
|
||||
INFO = 2
|
||||
ELSE IF (N.LT.0) THEN
|
||||
INFO = 3
|
||||
ELSE IF (LDA.LT.MAX(1,M)) THEN
|
||||
INFO = 6
|
||||
ELSE IF (INCX.EQ.0) THEN
|
||||
INFO = 8
|
||||
ELSE IF (INCY.EQ.0) THEN
|
||||
INFO = 11
|
||||
END IF
|
||||
IF (INFO.NE.0) THEN
|
||||
CALL XERBLA('SGEMV ',INFO)
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Quick return if possible.
|
||||
*
|
||||
IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
|
||||
+ ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
|
||||
*
|
||||
* Set LENX and LENY, the lengths of the vectors x and y, and set
|
||||
* up the start points in X and Y.
|
||||
*
|
||||
IF (LSAME(TRANS,'N')) THEN
|
||||
LENX = N
|
||||
LENY = M
|
||||
ELSE
|
||||
LENX = M
|
||||
LENY = N
|
||||
END IF
|
||||
IF (INCX.GT.0) THEN
|
||||
KX = 1
|
||||
ELSE
|
||||
KX = 1 - (LENX-1)*INCX
|
||||
END IF
|
||||
IF (INCY.GT.0) THEN
|
||||
KY = 1
|
||||
ELSE
|
||||
KY = 1 - (LENY-1)*INCY
|
||||
END IF
|
||||
*
|
||||
* Start the operations. In this version the elements of A are
|
||||
* accessed sequentially with one pass through A.
|
||||
*
|
||||
* First form y := beta*y.
|
||||
*
|
||||
IF (BETA.NE.ONE) THEN
|
||||
IF (INCY.EQ.1) THEN
|
||||
IF (BETA.EQ.ZERO) THEN
|
||||
DO 10 I = 1,LENY
|
||||
Y(I) = ZERO
|
||||
10 CONTINUE
|
||||
ELSE
|
||||
DO 20 I = 1,LENY
|
||||
Y(I) = BETA*Y(I)
|
||||
20 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
IY = KY
|
||||
IF (BETA.EQ.ZERO) THEN
|
||||
DO 30 I = 1,LENY
|
||||
Y(IY) = ZERO
|
||||
IY = IY + INCY
|
||||
30 CONTINUE
|
||||
ELSE
|
||||
DO 40 I = 1,LENY
|
||||
Y(IY) = BETA*Y(IY)
|
||||
IY = IY + INCY
|
||||
40 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
END IF
|
||||
IF (ALPHA.EQ.ZERO) RETURN
|
||||
IF (LSAME(TRANS,'N')) THEN
|
||||
*
|
||||
* Form y := alpha*A*x + y.
|
||||
*
|
||||
JX = KX
|
||||
IF (INCY.EQ.1) THEN
|
||||
DO 60 J = 1,N
|
||||
IF (X(JX).NE.ZERO) THEN
|
||||
TEMP = ALPHA*X(JX)
|
||||
DO 50 I = 1,M
|
||||
Y(I) = Y(I) + TEMP*A(I,J)
|
||||
50 CONTINUE
|
||||
END IF
|
||||
JX = JX + INCX
|
||||
60 CONTINUE
|
||||
ELSE
|
||||
DO 80 J = 1,N
|
||||
IF (X(JX).NE.ZERO) THEN
|
||||
TEMP = ALPHA*X(JX)
|
||||
IY = KY
|
||||
DO 70 I = 1,M
|
||||
Y(IY) = Y(IY) + TEMP*A(I,J)
|
||||
IY = IY + INCY
|
||||
70 CONTINUE
|
||||
END IF
|
||||
JX = JX + INCX
|
||||
80 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
*
|
||||
* Form y := alpha*A**T*x + y.
|
||||
*
|
||||
JY = KY
|
||||
IF (INCX.EQ.1) THEN
|
||||
DO 100 J = 1,N
|
||||
TEMP = ZERO
|
||||
DO 90 I = 1,M
|
||||
TEMP = TEMP + A(I,J)*X(I)
|
||||
90 CONTINUE
|
||||
Y(JY) = Y(JY) + ALPHA*TEMP
|
||||
JY = JY + INCY
|
||||
100 CONTINUE
|
||||
ELSE
|
||||
DO 120 J = 1,N
|
||||
TEMP = ZERO
|
||||
IX = KX
|
||||
DO 110 I = 1,M
|
||||
TEMP = TEMP + A(I,J)*X(IX)
|
||||
IX = IX + INCX
|
||||
110 CONTINUE
|
||||
Y(JY) = Y(JY) + ALPHA*TEMP
|
||||
JY = JY + INCY
|
||||
120 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
*
|
||||
RETURN
|
||||
*
|
||||
* End of SGEMV .
|
||||
*
|
||||
END
|
|
@ -0,0 +1,285 @@
|
|||
SUBROUTINE ZGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
|
||||
* .. Scalar Arguments ..
|
||||
DOUBLE COMPLEX ALPHA,BETA
|
||||
INTEGER INCX,INCY,LDA,M,N
|
||||
CHARACTER TRANS
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
DOUBLE COMPLEX A(LDA,*),X(*),Y(*)
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* ZGEMV performs one of the matrix-vector operations
|
||||
*
|
||||
* y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, or
|
||||
*
|
||||
* y := alpha*A**H*x + beta*y,
|
||||
*
|
||||
* where alpha and beta are scalars, x and y are vectors and A is an
|
||||
* m by n matrix.
|
||||
*
|
||||
* Arguments
|
||||
* ==========
|
||||
*
|
||||
* TRANS - CHARACTER*1.
|
||||
* On entry, TRANS specifies the operation to be performed as
|
||||
* follows:
|
||||
*
|
||||
* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
|
||||
*
|
||||
* TRANS = 'T' or 't' y := alpha*A**T*x + beta*y.
|
||||
*
|
||||
* TRANS = 'C' or 'c' y := alpha*A**H*x + beta*y.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* M - INTEGER.
|
||||
* On entry, M specifies the number of rows of the matrix A.
|
||||
* M must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* N - INTEGER.
|
||||
* On entry, N specifies the number of columns of the matrix A.
|
||||
* N must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* ALPHA - COMPLEX*16 .
|
||||
* On entry, ALPHA specifies the scalar alpha.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* A - COMPLEX*16 array of DIMENSION ( LDA, n ).
|
||||
* Before entry, the leading m by n part of the array A must
|
||||
* contain the matrix of coefficients.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* LDA - INTEGER.
|
||||
* On entry, LDA specifies the first dimension of A as declared
|
||||
* in the calling (sub) program. LDA must be at least
|
||||
* max( 1, m ).
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* X - COMPLEX*16 array of DIMENSION at least
|
||||
* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
|
||||
* and at least
|
||||
* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
|
||||
* Before entry, the incremented array X must contain the
|
||||
* vector x.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* INCX - INTEGER.
|
||||
* On entry, INCX specifies the increment for the elements of
|
||||
* X. INCX must not be zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* BETA - COMPLEX*16 .
|
||||
* On entry, BETA specifies the scalar beta. When BETA is
|
||||
* supplied as zero then Y need not be set on input.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* Y - COMPLEX*16 array of DIMENSION at least
|
||||
* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
|
||||
* and at least
|
||||
* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
|
||||
* Before entry with BETA non-zero, the incremented array Y
|
||||
* must contain the vector y. On exit, Y is overwritten by the
|
||||
* updated vector y.
|
||||
*
|
||||
* INCY - INTEGER.
|
||||
* On entry, INCY specifies the increment for the elements of
|
||||
* Y. INCY must not be zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* Level 2 Blas routine.
|
||||
* The vector and matrix arguments are not referenced when N = 0, or M = 0
|
||||
*
|
||||
* -- Written on 22-October-1986.
|
||||
* Jack Dongarra, Argonne National Lab.
|
||||
* Jeremy Du Croz, Nag Central Office.
|
||||
* Sven Hammarling, Nag Central Office.
|
||||
* Richard Hanson, Sandia National Labs.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
DOUBLE COMPLEX ONE
|
||||
PARAMETER (ONE= (1.0D+0,0.0D+0))
|
||||
DOUBLE COMPLEX ZERO
|
||||
PARAMETER (ZERO= (0.0D+0,0.0D+0))
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
DOUBLE COMPLEX TEMP
|
||||
INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY
|
||||
LOGICAL NOCONJ
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
LOGICAL LSAME
|
||||
EXTERNAL LSAME
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL XERBLA
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC DCONJG,MAX
|
||||
* ..
|
||||
*
|
||||
* Test the input parameters.
|
||||
*
|
||||
INFO = 0
|
||||
IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
|
||||
+ .NOT.LSAME(TRANS,'C')) THEN
|
||||
INFO = 1
|
||||
ELSE IF (M.LT.0) THEN
|
||||
INFO = 2
|
||||
ELSE IF (N.LT.0) THEN
|
||||
INFO = 3
|
||||
ELSE IF (LDA.LT.MAX(1,M)) THEN
|
||||
INFO = 6
|
||||
ELSE IF (INCX.EQ.0) THEN
|
||||
INFO = 8
|
||||
ELSE IF (INCY.EQ.0) THEN
|
||||
INFO = 11
|
||||
END IF
|
||||
IF (INFO.NE.0) THEN
|
||||
CALL XERBLA('ZGEMV ',INFO)
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Quick return if possible.
|
||||
*
|
||||
IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
|
||||
+ ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
|
||||
*
|
||||
NOCONJ = LSAME(TRANS,'T')
|
||||
*
|
||||
* Set LENX and LENY, the lengths of the vectors x and y, and set
|
||||
* up the start points in X and Y.
|
||||
*
|
||||
IF (LSAME(TRANS,'N')) THEN
|
||||
LENX = N
|
||||
LENY = M
|
||||
ELSE
|
||||
LENX = M
|
||||
LENY = N
|
||||
END IF
|
||||
IF (INCX.GT.0) THEN
|
||||
KX = 1
|
||||
ELSE
|
||||
KX = 1 - (LENX-1)*INCX
|
||||
END IF
|
||||
IF (INCY.GT.0) THEN
|
||||
KY = 1
|
||||
ELSE
|
||||
KY = 1 - (LENY-1)*INCY
|
||||
END IF
|
||||
*
|
||||
* Start the operations. In this version the elements of A are
|
||||
* accessed sequentially with one pass through A.
|
||||
*
|
||||
* First form y := beta*y.
|
||||
*
|
||||
IF (BETA.NE.ONE) THEN
|
||||
IF (INCY.EQ.1) THEN
|
||||
IF (BETA.EQ.ZERO) THEN
|
||||
DO 10 I = 1,LENY
|
||||
Y(I) = ZERO
|
||||
10 CONTINUE
|
||||
ELSE
|
||||
DO 20 I = 1,LENY
|
||||
Y(I) = BETA*Y(I)
|
||||
20 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
IY = KY
|
||||
IF (BETA.EQ.ZERO) THEN
|
||||
DO 30 I = 1,LENY
|
||||
Y(IY) = ZERO
|
||||
IY = IY + INCY
|
||||
30 CONTINUE
|
||||
ELSE
|
||||
DO 40 I = 1,LENY
|
||||
Y(IY) = BETA*Y(IY)
|
||||
IY = IY + INCY
|
||||
40 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
END IF
|
||||
IF (ALPHA.EQ.ZERO) RETURN
|
||||
IF (LSAME(TRANS,'N')) THEN
|
||||
*
|
||||
* Form y := alpha*A*x + y.
|
||||
*
|
||||
JX = KX
|
||||
IF (INCY.EQ.1) THEN
|
||||
DO 60 J = 1,N
|
||||
IF (X(JX).NE.ZERO) THEN
|
||||
TEMP = ALPHA*X(JX)
|
||||
DO 50 I = 1,M
|
||||
Y(I) = Y(I) + TEMP*A(I,J)
|
||||
50 CONTINUE
|
||||
END IF
|
||||
JX = JX + INCX
|
||||
60 CONTINUE
|
||||
ELSE
|
||||
DO 80 J = 1,N
|
||||
IF (X(JX).NE.ZERO) THEN
|
||||
TEMP = ALPHA*X(JX)
|
||||
IY = KY
|
||||
DO 70 I = 1,M
|
||||
Y(IY) = Y(IY) + TEMP*A(I,J)
|
||||
IY = IY + INCY
|
||||
70 CONTINUE
|
||||
END IF
|
||||
JX = JX + INCX
|
||||
80 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
*
|
||||
* Form y := alpha*A**T*x + y or y := alpha*A**H*x + y.
|
||||
*
|
||||
JY = KY
|
||||
IF (INCX.EQ.1) THEN
|
||||
DO 110 J = 1,N
|
||||
TEMP = ZERO
|
||||
IF (NOCONJ) THEN
|
||||
DO 90 I = 1,M
|
||||
TEMP = TEMP + A(I,J)*X(I)
|
||||
90 CONTINUE
|
||||
ELSE
|
||||
DO 100 I = 1,M
|
||||
TEMP = TEMP + DCONJG(A(I,J))*X(I)
|
||||
100 CONTINUE
|
||||
END IF
|
||||
Y(JY) = Y(JY) + ALPHA*TEMP
|
||||
JY = JY + INCY
|
||||
110 CONTINUE
|
||||
ELSE
|
||||
DO 140 J = 1,N
|
||||
TEMP = ZERO
|
||||
IX = KX
|
||||
IF (NOCONJ) THEN
|
||||
DO 120 I = 1,M
|
||||
TEMP = TEMP + A(I,J)*X(IX)
|
||||
IX = IX + INCX
|
||||
120 CONTINUE
|
||||
ELSE
|
||||
DO 130 I = 1,M
|
||||
TEMP = TEMP + DCONJG(A(I,J))*X(IX)
|
||||
IX = IX + INCX
|
||||
130 CONTINUE
|
||||
END IF
|
||||
Y(JY) = Y(JY) + ALPHA*TEMP
|
||||
JY = JY + INCY
|
||||
140 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
*
|
||||
RETURN
|
||||
*
|
||||
* End of ZGEMV .
|
||||
*
|
||||
END
|
Loading…
Reference in New Issue