From 688af253bf767630105891557a836ce6b7c911e0 Mon Sep 17 00:00:00 2001 From: Martin Kroeker Date: Sun, 29 Dec 2019 22:58:27 +0100 Subject: [PATCH] Update LAPACK to 3.9.0 --- lapack-netlib/SRC/dbdsqr.f | 2 +- lapack-netlib/SRC/dbdsvdx.f | 2 +- lapack-netlib/SRC/dcombssq.f | 92 ++ lapack-netlib/SRC/dgbrfsx.f | 10 +- lapack-netlib/SRC/dgbsvxx.f | 10 +- lapack-netlib/SRC/dgebak.f | 8 +- lapack-netlib/SRC/dgeesx.f | 4 +- lapack-netlib/SRC/dgejsv.f | 56 +- lapack-netlib/SRC/dgelq.f | 19 +- lapack-netlib/SRC/dgelq2.f | 18 +- lapack-netlib/SRC/dgelqf.f | 16 +- lapack-netlib/SRC/dgemlq.f | 3 +- lapack-netlib/SRC/dgemqr.f | 3 +- lapack-netlib/SRC/dgeqr.f | 20 +- lapack-netlib/SRC/dgeqr2.f | 19 +- lapack-netlib/SRC/dgeqr2p.f | 20 +- lapack-netlib/SRC/dgeqrf.f | 17 +- lapack-netlib/SRC/dgeqrfp.f | 20 +- lapack-netlib/SRC/dgerfsx.f | 10 +- lapack-netlib/SRC/dgesc2.f | 4 +- lapack-netlib/SRC/dgesdd.f | 4 +- lapack-netlib/SRC/dgesvdq.f | 1385 +++++++++++++++++++++++ lapack-netlib/SRC/dgesvj.f | 44 +- lapack-netlib/SRC/dgesvxx.f | 10 +- lapack-netlib/SRC/dgetc2.f | 2 +- lapack-netlib/SRC/dgetsls.f | 2 + lapack-netlib/SRC/dggesx.f | 8 +- lapack-netlib/SRC/dgsvj0.f | 20 +- lapack-netlib/SRC/dgsvj1.f | 30 +- lapack-netlib/SRC/dhseqr.f | 46 +- lapack-netlib/SRC/dla_gbrcond.f | 4 +- lapack-netlib/SRC/dla_gbrfsx_extended.f | 12 +- lapack-netlib/SRC/dla_gercond.f | 4 +- lapack-netlib/SRC/dla_gerfsx_extended.f | 12 +- lapack-netlib/SRC/dla_porcond.f | 4 +- lapack-netlib/SRC/dla_porfsx_extended.f | 8 +- lapack-netlib/SRC/dla_porpvgrw.f | 2 +- lapack-netlib/SRC/dla_syrcond.f | 4 +- lapack-netlib/SRC/dla_syrfsx_extended.f | 8 +- lapack-netlib/SRC/dla_syrpvgrw.f | 2 +- lapack-netlib/SRC/dla_wwaddw.f | 2 +- 41 files changed, 1763 insertions(+), 203 deletions(-) create mode 100644 lapack-netlib/SRC/dcombssq.f create mode 100644 lapack-netlib/SRC/dgesvdq.f diff --git a/lapack-netlib/SRC/dbdsqr.f b/lapack-netlib/SRC/dbdsqr.f index 93db95e7a..7d47fa282 100644 --- a/lapack-netlib/SRC/dbdsqr.f +++ b/lapack-netlib/SRC/dbdsqr.f @@ -166,7 +166,7 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is DOUBLE PRECISION array, dimension (4*N) +*> WORK is DOUBLE PRECISION array, dimension (4*(N-1)) *> \endverbatim *> *> \param[out] INFO diff --git a/lapack-netlib/SRC/dbdsvdx.f b/lapack-netlib/SRC/dbdsvdx.f index 96fdb3d61..10d97a71f 100644 --- a/lapack-netlib/SRC/dbdsvdx.f +++ b/lapack-netlib/SRC/dbdsvdx.f @@ -165,7 +165,7 @@ *> *> \param[out] Z *> \verbatim -*> Z is DOUBLE PRECISION array, dimension (2*N,K) ) +*> Z is DOUBLE PRECISION array, dimension (2*N,K) *> If JOBZ = 'V', then if INFO = 0 the first NS columns of Z *> contain the singular vectors of the matrix B corresponding to *> the selected singular values, with U in rows 1 to N and V diff --git a/lapack-netlib/SRC/dcombssq.f b/lapack-netlib/SRC/dcombssq.f new file mode 100644 index 000000000..79f6d95c9 --- /dev/null +++ b/lapack-netlib/SRC/dcombssq.f @@ -0,0 +1,92 @@ +*> \brief \b DCOMBSSQ adds two scaled sum of squares quantities. +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +* +* Definition: +* =========== +* +* SUBROUTINE DCOMBSSQ( V1, V2 ) +* +* .. Array Arguments .. +* DOUBLE PRECISION V1( 2 ), V2( 2 ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DCOMBSSQ adds two scaled sum of squares quantities, V1 := V1 + V2. +*> That is, +*> +*> V1_scale**2 * V1_sumsq := V1_scale**2 * V1_sumsq +*> + V2_scale**2 * V2_sumsq +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in,out] V1 +*> \verbatim +*> V1 is DOUBLE PRECISION array, dimension (2). +*> The first scaled sum. +*> V1(1) = V1_scale, V1(2) = V1_sumsq. +*> \endverbatim +*> +*> \param[in] V2 +*> \verbatim +*> V2 is DOUBLE PRECISION array, dimension (2). +*> The second scaled sum. +*> V2(1) = V2_scale, V2(2) = V2_sumsq. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2018 +* +*> \ingroup OTHERauxiliary +* +* ===================================================================== + SUBROUTINE DCOMBSSQ( V1, V2 ) +* +* -- LAPACK auxiliary routine (version 3.7.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2018 +* +* .. Array Arguments .. + DOUBLE PRECISION V1( 2 ), V2( 2 ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO + PARAMETER ( ZERO = 0.0D+0 ) +* .. +* .. Executable Statements .. +* + IF( V1( 1 ).GE.V2( 1 ) ) THEN + IF( V1( 1 ).NE.ZERO ) THEN + V1( 2 ) = V1( 2 ) + ( V2( 1 ) / V1( 1 ) )**2 * V2( 2 ) + END IF + ELSE + V1( 2 ) = V2( 2 ) + ( V1( 1 ) / V2( 1 ) )**2 * V1( 2 ) + V1( 1 ) = V2( 1 ) + END IF + RETURN +* +* End of DCOMBSSQ +* + END diff --git a/lapack-netlib/SRC/dgbrfsx.f b/lapack-netlib/SRC/dgbrfsx.f index fb52d643f..76afb2d6a 100644 --- a/lapack-netlib/SRC/dgbrfsx.f +++ b/lapack-netlib/SRC/dgbrfsx.f @@ -308,7 +308,7 @@ *> information as described below. There currently are up to three *> pieces of information returned for each right-hand side. If *> componentwise accuracy is not requested (PARAMS(3) = 0.0), then -*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most +*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most *> the first (:,N_ERR_BNDS) entries are returned. *> *> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith @@ -344,14 +344,14 @@ *> \param[in] NPARAMS *> \verbatim *> NPARAMS is INTEGER -*> Specifies the number of parameters set in PARAMS. If .LE. 0, the +*> Specifies the number of parameters set in PARAMS. If <= 0, the *> PARAMS array is never referenced and default values are used. *> \endverbatim *> *> \param[in,out] PARAMS *> \verbatim *> PARAMS is DOUBLE PRECISION array, dimension (NPARAMS) -*> Specifies algorithm parameters. If an entry is .LT. 0.0, then +*> Specifies algorithm parameters. If an entry is < 0.0, then *> that entry will be filled with default value used for that *> parameter. Only positions up to NPARAMS are accessed; defaults *> are used for higher-numbered parameters. @@ -359,9 +359,9 @@ *> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative *> refinement or not. *> Default: 1.0D+0 -*> = 0.0 : No refinement is performed, and no error bounds are +*> = 0.0: No refinement is performed, and no error bounds are *> computed. -*> = 1.0 : Use the double-precision refinement algorithm, +*> = 1.0: Use the double-precision refinement algorithm, *> possibly with doubled-single computations if the *> compilation environment does not support DOUBLE *> PRECISION. diff --git a/lapack-netlib/SRC/dgbsvxx.f b/lapack-netlib/SRC/dgbsvxx.f index 819d20c6d..058b20686 100644 --- a/lapack-netlib/SRC/dgbsvxx.f +++ b/lapack-netlib/SRC/dgbsvxx.f @@ -431,7 +431,7 @@ *> information as described below. There currently are up to three *> pieces of information returned for each right-hand side. If *> componentwise accuracy is not requested (PARAMS(3) = 0.0), then -*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most +*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most *> the first (:,N_ERR_BNDS) entries are returned. *> *> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith @@ -467,14 +467,14 @@ *> \param[in] NPARAMS *> \verbatim *> NPARAMS is INTEGER -*> Specifies the number of parameters set in PARAMS. If .LE. 0, the +*> Specifies the number of parameters set in PARAMS. If <= 0, the *> PARAMS array is never referenced and default values are used. *> \endverbatim *> *> \param[in,out] PARAMS *> \verbatim *> PARAMS is DOUBLE PRECISION array, dimension (NPARAMS) -*> Specifies algorithm parameters. If an entry is .LT. 0.0, then +*> Specifies algorithm parameters. If an entry is < 0.0, then *> that entry will be filled with default value used for that *> parameter. Only positions up to NPARAMS are accessed; defaults *> are used for higher-numbered parameters. @@ -482,9 +482,9 @@ *> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative *> refinement or not. *> Default: 1.0D+0 -*> = 0.0 : No refinement is performed, and no error bounds are +*> = 0.0: No refinement is performed, and no error bounds are *> computed. -*> = 1.0 : Use the extra-precise refinement algorithm. +*> = 1.0: Use the extra-precise refinement algorithm. *> (other values are reserved for future use) *> *> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual diff --git a/lapack-netlib/SRC/dgebak.f b/lapack-netlib/SRC/dgebak.f index 45a86ee57..10a78aa1a 100644 --- a/lapack-netlib/SRC/dgebak.f +++ b/lapack-netlib/SRC/dgebak.f @@ -47,10 +47,10 @@ *> \verbatim *> JOB is CHARACTER*1 *> Specifies the type of backward transformation required: -*> = 'N', do nothing, return immediately; -*> = 'P', do backward transformation for permutation only; -*> = 'S', do backward transformation for scaling only; -*> = 'B', do backward transformations for both permutation and +*> = 'N': do nothing, return immediately; +*> = 'P': do backward transformation for permutation only; +*> = 'S': do backward transformation for scaling only; +*> = 'B': do backward transformations for both permutation and *> scaling. *> JOB must be the same as the argument JOB supplied to DGEBAL. *> \endverbatim diff --git a/lapack-netlib/SRC/dgeesx.f b/lapack-netlib/SRC/dgeesx.f index 26042a5f9..a08104d3d 100644 --- a/lapack-netlib/SRC/dgeesx.f +++ b/lapack-netlib/SRC/dgeesx.f @@ -583,7 +583,9 @@ IF( N.GT.I+1 ) $ CALL DSWAP( N-I-1, A( I, I+2 ), LDA, $ A( I+1, I+2 ), LDA ) - CALL DSWAP( N, VS( 1, I ), 1, VS( 1, I+1 ), 1 ) + IF( WANTVS ) THEN + CALL DSWAP( N, VS( 1, I ), 1, VS( 1, I+1 ), 1 ) + END IF A( I, I+1 ) = A( I+1, I ) A( I+1, I ) = ZERO END IF diff --git a/lapack-netlib/SRC/dgejsv.f b/lapack-netlib/SRC/dgejsv.f index 25ed248d0..a30cfab87 100644 --- a/lapack-netlib/SRC/dgejsv.f +++ b/lapack-netlib/SRC/dgejsv.f @@ -82,7 +82,7 @@ *> desirable, then this option is advisable. The input matrix A *> is preprocessed with QR factorization with FULL (row and *> column) pivoting. -*> = 'G' Computation as with 'F' with an additional estimate of the +*> = 'G': Computation as with 'F' with an additional estimate of the *> condition number of B, where A=D*B. If A has heavily weighted *> rows, then using this condition number gives too pessimistic *> error bound. @@ -133,7 +133,7 @@ *> specified range. If A .NE. 0 is scaled so that the largest singular *> value of c*A is around DSQRT(BIG), BIG=SLAMCH('O'), then JOBR issues *> the licence to kill columns of A whose norm in c*A is less than -*> DSQRT(SFMIN) (for JOBR.EQ.'R'), or less than SMALL=SFMIN/EPSLN, +*> DSQRT(SFMIN) (for JOBR = 'R'), or less than SMALL=SFMIN/EPSLN, *> where SFMIN=SLAMCH('S'), EPSLN=SLAMCH('E'). *> = 'N': Do not kill small columns of c*A. This option assumes that *> BLAS and QR factorizations and triangular solvers are @@ -230,7 +230,7 @@ *> If JOBU = 'F', then U contains on exit the M-by-M matrix of *> the left singular vectors, including an ONB *> of the orthogonal complement of the Range(A). -*> If JOBU = 'W' .AND. (JOBV.EQ.'V' .AND. JOBT.EQ.'T' .AND. M.EQ.N), +*> If JOBU = 'W' .AND. (JOBV = 'V' .AND. JOBT = 'T' .AND. M = N), *> then U is used as workspace if the procedure *> replaces A with A^t. In that case, [V] is computed *> in U as left singular vectors of A^t and then @@ -252,7 +252,7 @@ *> V is DOUBLE PRECISION array, dimension ( LDV, N ) *> If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of *> the right singular vectors; -*> If JOBV = 'W', AND (JOBU.EQ.'U' AND JOBT.EQ.'T' AND M.EQ.N), +*> If JOBV = 'W', AND (JOBU = 'U' AND JOBT = 'T' AND M = N), *> then V is used as workspace if the pprocedure *> replaces A with A^t. In that case, [U] is computed *> in V as right singular vectors of A^t and then @@ -272,13 +272,13 @@ *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (LWORK) -*> On exit, if N.GT.0 .AND. M.GT.0 (else not referenced), +*> On exit, if N > 0 .AND. M > 0 (else not referenced), *> WORK(1) = SCALE = WORK(2) / WORK(1) is the scaling factor such *> that SCALE*SVA(1:N) are the computed singular values *> of A. (See the description of SVA().) *> WORK(2) = See the description of WORK(1). *> WORK(3) = SCONDA is an estimate for the condition number of -*> column equilibrated A. (If JOBA .EQ. 'E' or 'G') +*> column equilibrated A. (If JOBA = 'E' or 'G') *> SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1). *> It is computed using DPOCON. It holds *> N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA @@ -297,7 +297,7 @@ *> triangular factor in the first QR factorization. *> WORK(5) = an estimate of the scaled condition number of the *> triangular factor in the second QR factorization. -*> The following two parameters are computed if JOBT .EQ. 'T'. +*> The following two parameters are computed if JOBT = 'T'. *> They are provided for a developer/implementer who is familiar *> with the details of the method. *> @@ -313,8 +313,8 @@ *> Length of WORK to confirm proper allocation of work space. *> LWORK depends on the job: *> -*> If only SIGMA is needed ( JOBU.EQ.'N', JOBV.EQ.'N' ) and -*> -> .. no scaled condition estimate required (JOBE.EQ.'N'): +*> If only SIGMA is needed (JOBU = 'N', JOBV = 'N') and +*> -> .. no scaled condition estimate required (JOBE = 'N'): *> LWORK >= max(2*M+N,4*N+1,7). This is the minimal requirement. *> ->> For optimal performance (blocked code) the optimal value *> is LWORK >= max(2*M+N,3*N+(N+1)*NB,7). Here NB is the optimal @@ -330,7 +330,7 @@ *> LWORK >= max(2*M+N,N+LWORK(DGEQP3),N+LWORK(DGEQRF), *> N+N*N+LWORK(DPOCON),7). *> -*> If SIGMA and the right singular vectors are needed (JOBV.EQ.'V'), +*> If SIGMA and the right singular vectors are needed (JOBV = 'V'), *> -> the minimal requirement is LWORK >= max(2*M+N,4*N+1,7). *> -> For optimal performance, LWORK >= max(2*M+N,3*N+(N+1)*NB,7), *> where NB is the optimal block size for DGEQP3, DGEQRF, DGELQF, @@ -341,19 +341,19 @@ *> If SIGMA and the left singular vectors are needed *> -> the minimal requirement is LWORK >= max(2*M+N,4*N+1,7). *> -> For optimal performance: -*> if JOBU.EQ.'U' :: LWORK >= max(2*M+N,3*N+(N+1)*NB,7), -*> if JOBU.EQ.'F' :: LWORK >= max(2*M+N,3*N+(N+1)*NB,N+M*NB,7), +*> if JOBU = 'U' :: LWORK >= max(2*M+N,3*N+(N+1)*NB,7), +*> if JOBU = 'F' :: LWORK >= max(2*M+N,3*N+(N+1)*NB,N+M*NB,7), *> where NB is the optimal block size for DGEQP3, DGEQRF, DORMQR. *> In general, the optimal length LWORK is computed as *> LWORK >= max(2*M+N,N+LWORK(DGEQP3),N+LWORK(DPOCON), *> 2*N+LWORK(DGEQRF), N+LWORK(DORMQR)). -*> Here LWORK(DORMQR) equals N*NB (for JOBU.EQ.'U') or -*> M*NB (for JOBU.EQ.'F'). +*> Here LWORK(DORMQR) equals N*NB (for JOBU = 'U') or +*> M*NB (for JOBU = 'F'). *> -*> If the full SVD is needed: (JOBU.EQ.'U' or JOBU.EQ.'F') and -*> -> if JOBV.EQ.'V' +*> If the full SVD is needed: (JOBU = 'U' or JOBU = 'F') and +*> -> if JOBV = 'V' *> the minimal requirement is LWORK >= max(2*M+N,6*N+2*N*N). -*> -> if JOBV.EQ.'J' the minimal requirement is +*> -> if JOBV = 'J' the minimal requirement is *> LWORK >= max(2*M+N, 4*N+N*N,2*N+N*N+6). *> -> For optimal performance, LWORK should be additionally *> larger than N+M*NB, where NB is the optimal block size @@ -369,7 +369,7 @@ *> of JOBA and JOBR. *> IWORK(2) = the number of the computed nonzero singular values *> IWORK(3) = if nonzero, a warning message: -*> If IWORK(3).EQ.1 then some of the column norms of A +*> If IWORK(3) = 1 then some of the column norms of A *> were denormalized floats. The requested high accuracy *> is not warranted by the data. *> \endverbatim @@ -377,10 +377,10 @@ *> \param[out] INFO *> \verbatim *> INFO is INTEGER -*> < 0 : if INFO = -i, then the i-th argument had an illegal value. -*> = 0 : successful exit; -*> > 0 : DGEJSV did not converge in the maximal allowed number -*> of sweeps. The computed values may be inaccurate. +*> < 0: if INFO = -i, then the i-th argument had an illegal value. +*> = 0: successful exit; +*> > 0: DGEJSV did not converge in the maximal allowed number +*> of sweeps. The computed values may be inaccurate. *> \endverbatim * * Authors: @@ -953,7 +953,7 @@ IF ( L2ABER ) THEN * Standard absolute error bound suffices. All sigma_i with * sigma_i < N*EPSLN*||A|| are flushed to zero. This is an -* agressive enforcement of lower numerical rank by introducing a +* aggressive enforcement of lower numerical rank by introducing a * backward error of the order of N*EPSLN*||A||. TEMP1 = DSQRT(DBLE(N))*EPSLN DO 3001 p = 2, N @@ -965,7 +965,7 @@ 3001 CONTINUE 3002 CONTINUE ELSE IF ( L2RANK ) THEN -* .. similarly as above, only slightly more gentle (less agressive). +* .. similarly as above, only slightly more gentle (less aggressive). * Sudden drop on the diagonal of R1 is used as the criterion for * close-to-rank-deficient. TEMP1 = DSQRT(SFMIN) @@ -1294,7 +1294,7 @@ CALL DPOCON('Lower',NR,WORK(2*N+1),NR,ONE,TEMP1, $ WORK(2*N+NR*NR+1),IWORK(M+2*N+1),IERR) CONDR1 = ONE / DSQRT(TEMP1) -* .. here need a second oppinion on the condition number +* .. here need a second opinion on the condition number * .. then assume worst case scenario * R1 is OK for inverse <=> CONDR1 .LT. DBLE(N) * more conservative <=> CONDR1 .LT. DSQRT(DBLE(N)) @@ -1335,7 +1335,7 @@ ELSE * * .. ill-conditioned case: second QRF with pivoting -* Note that windowed pivoting would be equaly good +* Note that windowed pivoting would be equally good * numerically, and more run-time efficient. So, in * an optimal implementation, the next call to DGEQP3 * should be replaced with eg. CALL SGEQPX (ACM TOMS #782) @@ -1388,7 +1388,7 @@ * IF ( CONDR2 .GE. COND_OK ) THEN * .. save the Householder vectors used for Q3 -* (this overwrittes the copy of R2, as it will not be +* (this overwrites the copy of R2, as it will not be * needed in this branch, but it does not overwritte the * Huseholder vectors of Q2.). CALL DLACPY( 'U', NR, NR, V, LDV, WORK(2*N+1), N ) @@ -1638,7 +1638,7 @@ * * This branch deploys a preconditioned Jacobi SVD with explicitly * accumulated rotations. It is included as optional, mainly for -* experimental purposes. It does perfom well, and can also be used. +* experimental purposes. It does perform well, and can also be used. * In this implementation, this branch will be automatically activated * if the condition number sigma_max(A) / sigma_min(A) is predicted * to be greater than the overflow threshold. This is because the diff --git a/lapack-netlib/SRC/dgelq.f b/lapack-netlib/SRC/dgelq.f index ece645079..fc14d892f 100644 --- a/lapack-netlib/SRC/dgelq.f +++ b/lapack-netlib/SRC/dgelq.f @@ -1,3 +1,4 @@ +*> \brief \b DGELQ * * Definition: * =========== @@ -17,7 +18,17 @@ * ============= *> *> \verbatim -*> DGELQ computes a LQ factorization of an M-by-N matrix A. +*> +*> DGELQ computes an LQ factorization of a real M-by-N matrix A: +*> +*> A = ( L 0 ) * Q +*> +*> where: +*> +*> Q is a N-by-N orthogonal matrix; +*> L is an lower-triangular M-by-M matrix; +*> 0 is a M-by-(N-M) zero matrix, if M < N. +*> *> \endverbatim * * Arguments: @@ -138,7 +149,7 @@ *> \verbatim *> *> These details are particular for this LAPACK implementation. Users should not -*> take them for granted. These details may change in the future, and are unlikely not +*> take them for granted. These details may change in the future, and are not likely *> true for another LAPACK implementation. These details are relevant if one wants *> to try to understand the code. They are not part of the interface. *> @@ -159,10 +170,10 @@ SUBROUTINE DGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK, $ INFO ) * -* -- LAPACK computational routine (version 3.7.0) -- +* -- LAPACK computational routine (version 3.9.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. -- -* December 2016 +* November 2019 * * .. Scalar Arguments .. INTEGER INFO, LDA, M, N, TSIZE, LWORK diff --git a/lapack-netlib/SRC/dgelq2.f b/lapack-netlib/SRC/dgelq2.f index 04aa57fc1..a6c835de4 100644 --- a/lapack-netlib/SRC/dgelq2.f +++ b/lapack-netlib/SRC/dgelq2.f @@ -33,8 +33,16 @@ *> *> \verbatim *> -*> DGELQ2 computes an LQ factorization of a real m by n matrix A: -*> A = L * Q. +*> DGELQ2 computes an LQ factorization of a real m-by-n matrix A: +*> +*> A = ( L 0 ) * Q +*> +*> where: +*> +*> Q is a n-by-n orthogonal matrix; +*> L is an lower-triangular m-by-m matrix; +*> 0 is a m-by-(n-m) zero matrix, if m < n. +*> *> \endverbatim * * Arguments: @@ -96,7 +104,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \date December 2016 +*> \date November 2019 * *> \ingroup doubleGEcomputational * @@ -121,10 +129,10 @@ * ===================================================================== SUBROUTINE DGELQ2( M, N, A, LDA, TAU, WORK, INFO ) * -* -- LAPACK computational routine (version 3.7.0) -- +* -- LAPACK computational routine (version 3.9.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* December 2016 +* November 2019 * * .. Scalar Arguments .. INTEGER INFO, LDA, M, N diff --git a/lapack-netlib/SRC/dgelqf.f b/lapack-netlib/SRC/dgelqf.f index 834c47168..4b11761f6 100644 --- a/lapack-netlib/SRC/dgelqf.f +++ b/lapack-netlib/SRC/dgelqf.f @@ -34,7 +34,15 @@ *> \verbatim *> *> DGELQF computes an LQ factorization of a real M-by-N matrix A: -*> A = L * Q. +*> +*> A = ( L 0 ) * Q +*> +*> where: +*> +*> Q is a N-by-N orthogonal matrix; +*> L is an lower-triangular M-by-M matrix; +*> 0 is a M-by-(N-M) zero matrix, if M < N. +*> *> \endverbatim * * Arguments: @@ -110,7 +118,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \date December 2016 +*> \date November 2019 * *> \ingroup doubleGEcomputational * @@ -135,10 +143,10 @@ * ===================================================================== SUBROUTINE DGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * -* -- LAPACK computational routine (version 3.7.0) -- +* -- LAPACK computational routine (version 3.9.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* December 2016 +* November 2019 * * .. Scalar Arguments .. INTEGER INFO, LDA, LWORK, M, N diff --git a/lapack-netlib/SRC/dgemlq.f b/lapack-netlib/SRC/dgemlq.f index bb6b2868f..dea693c24 100644 --- a/lapack-netlib/SRC/dgemlq.f +++ b/lapack-netlib/SRC/dgemlq.f @@ -1,3 +1,4 @@ +*> \brief \b DGEMLQ * * Definition: * =========== @@ -144,7 +145,7 @@ *> \verbatim *> *> These details are particular for this LAPACK implementation. Users should not -*> take them for granted. These details may change in the future, and are unlikely not +*> take them for granted. These details may change in the future, and are not likely *> true for another LAPACK implementation. These details are relevant if one wants *> to try to understand the code. They are not part of the interface. *> diff --git a/lapack-netlib/SRC/dgemqr.f b/lapack-netlib/SRC/dgemqr.f index 8509b13d9..0f7a42233 100644 --- a/lapack-netlib/SRC/dgemqr.f +++ b/lapack-netlib/SRC/dgemqr.f @@ -1,3 +1,4 @@ +*> \brief \b DGEMQR * * Definition: * =========== @@ -144,7 +145,7 @@ *> \verbatim *> *> These details are particular for this LAPACK implementation. Users should not -*> take them for granted. These details may change in the future, and are unlikely not +*> take them for granted. These details may change in the future, and are not likely *> true for another LAPACK implementation. These details are relevant if one wants *> to try to understand the code. They are not part of the interface. *> diff --git a/lapack-netlib/SRC/dgeqr.f b/lapack-netlib/SRC/dgeqr.f index d0a1a18f9..0bff5d1f9 100644 --- a/lapack-netlib/SRC/dgeqr.f +++ b/lapack-netlib/SRC/dgeqr.f @@ -1,3 +1,4 @@ +*> \brief \b DGEQR * * Definition: * =========== @@ -17,7 +18,18 @@ * ============= *> *> \verbatim -*> DGEQR computes a QR factorization of an M-by-N matrix A. +*> +*> DGEQR computes a QR factorization of a real M-by-N matrix A: +*> +*> A = Q * ( R ), +*> ( 0 ) +*> +*> where: +*> +*> Q is a M-by-M orthogonal matrix; +*> R is an upper-triangular N-by-N matrix; +*> 0 is a (M-N)-by-N zero matrix, if M > N. +*> *> \endverbatim * * Arguments: @@ -138,7 +150,7 @@ *> \verbatim *> *> These details are particular for this LAPACK implementation. Users should not -*> take them for granted. These details may change in the future, and are unlikely not +*> take them for granted. These details may change in the future, and are not likely *> true for another LAPACK implementation. These details are relevant if one wants *> to try to understand the code. They are not part of the interface. *> @@ -160,10 +172,10 @@ SUBROUTINE DGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, $ INFO ) * -* -- LAPACK computational routine (version 3.7.0) -- +* -- LAPACK computational routine (version 3.9.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. -- -* December 2016 +* November 2019 * * .. Scalar Arguments .. INTEGER INFO, LDA, M, N, TSIZE, LWORK diff --git a/lapack-netlib/SRC/dgeqr2.f b/lapack-netlib/SRC/dgeqr2.f index c1e91e9bd..9ce1feb25 100644 --- a/lapack-netlib/SRC/dgeqr2.f +++ b/lapack-netlib/SRC/dgeqr2.f @@ -33,8 +33,17 @@ *> *> \verbatim *> -*> DGEQR2 computes a QR factorization of a real m by n matrix A: -*> A = Q * R. +*> DGEQR2 computes a QR factorization of a real m-by-n matrix A: +*> +*> A = Q * ( R ), +*> ( 0 ) +*> +*> where: +*> +*> Q is a m-by-m orthogonal matrix; +*> R is an upper-triangular n-by-n matrix; +*> 0 is a (m-n)-by-n zero matrix, if m > n. +*> *> \endverbatim * * Arguments: @@ -96,7 +105,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \date December 2016 +*> \date November 2019 * *> \ingroup doubleGEcomputational * @@ -121,10 +130,10 @@ * ===================================================================== SUBROUTINE DGEQR2( M, N, A, LDA, TAU, WORK, INFO ) * -* -- LAPACK computational routine (version 3.7.0) -- +* -- LAPACK computational routine (version 3.9.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* December 2016 +* November 2019 * * .. Scalar Arguments .. INTEGER INFO, LDA, M, N diff --git a/lapack-netlib/SRC/dgeqr2p.f b/lapack-netlib/SRC/dgeqr2p.f index 921f79921..9b81ccb33 100644 --- a/lapack-netlib/SRC/dgeqr2p.f +++ b/lapack-netlib/SRC/dgeqr2p.f @@ -33,8 +33,18 @@ *> *> \verbatim *> -*> DGEQR2P computes a QR factorization of a real m by n matrix A: -*> A = Q * R. The diagonal entries of R are nonnegative. +*> DGEQR2P computes a QR factorization of a real m-by-n matrix A: +*> +*> A = Q * ( R ), +*> ( 0 ) +*> +*> where: +*> +*> Q is a m-by-m orthogonal matrix; +*> R is an upper-triangular n-by-n matrix with nonnegative diagonal +*> entries; +*> 0 is a (m-n)-by-n zero matrix, if m > n. +*> *> \endverbatim * * Arguments: @@ -97,7 +107,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \date December 2016 +*> \date November 2019 * *> \ingroup doubleGEcomputational * @@ -124,10 +134,10 @@ * ===================================================================== SUBROUTINE DGEQR2P( M, N, A, LDA, TAU, WORK, INFO ) * -* -- LAPACK computational routine (version 3.7.0) -- +* -- LAPACK computational routine (version 3.9.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* December 2016 +* November 2019 * * .. Scalar Arguments .. INTEGER INFO, LDA, M, N diff --git a/lapack-netlib/SRC/dgeqrf.f b/lapack-netlib/SRC/dgeqrf.f index 83d7d8dd7..98666221f 100644 --- a/lapack-netlib/SRC/dgeqrf.f +++ b/lapack-netlib/SRC/dgeqrf.f @@ -34,7 +34,16 @@ *> \verbatim *> *> DGEQRF computes a QR factorization of a real M-by-N matrix A: -*> A = Q * R. +*> +*> A = Q * ( R ), +*> ( 0 ) +*> +*> where: +*> +*> Q is a M-by-M orthogonal matrix; +*> R is an upper-triangular N-by-N matrix; +*> 0 is a (M-N)-by-N zero matrix, if M > N. +*> *> \endverbatim * * Arguments: @@ -111,7 +120,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \date December 2016 +*> \date November 2019 * *> \ingroup doubleGEcomputational * @@ -136,10 +145,10 @@ * ===================================================================== SUBROUTINE DGEQRF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * -* -- LAPACK computational routine (version 3.7.0) -- +* -- LAPACK computational routine (version 3.9.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* December 2016 +* November 2019 * * .. Scalar Arguments .. INTEGER INFO, LDA, LWORK, M, N diff --git a/lapack-netlib/SRC/dgeqrfp.f b/lapack-netlib/SRC/dgeqrfp.f index d182f98c9..5cf4069ed 100644 --- a/lapack-netlib/SRC/dgeqrfp.f +++ b/lapack-netlib/SRC/dgeqrfp.f @@ -33,8 +33,18 @@ *> *> \verbatim *> -*> DGEQRFP computes a QR factorization of a real M-by-N matrix A: -*> A = Q * R. The diagonal entries of R are nonnegative. +*> DGEQR2P computes a QR factorization of a real M-by-N matrix A: +*> +*> A = Q * ( R ), +*> ( 0 ) +*> +*> where: +*> +*> Q is a M-by-M orthogonal matrix; +*> R is an upper-triangular N-by-N matrix with nonnegative diagonal +*> entries; +*> 0 is a (M-N)-by-N zero matrix, if M > N. +*> *> \endverbatim * * Arguments: @@ -112,7 +122,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \date December 2016 +*> \date November 2019 * *> \ingroup doubleGEcomputational * @@ -139,10 +149,10 @@ * ===================================================================== SUBROUTINE DGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * -* -- LAPACK computational routine (version 3.7.0) -- +* -- LAPACK computational routine (version 3.9.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* December 2016 +* November 2019 * * .. Scalar Arguments .. INTEGER INFO, LDA, LWORK, M, N diff --git a/lapack-netlib/SRC/dgerfsx.f b/lapack-netlib/SRC/dgerfsx.f index aafca8d10..495ea1726 100644 --- a/lapack-netlib/SRC/dgerfsx.f +++ b/lapack-netlib/SRC/dgerfsx.f @@ -283,7 +283,7 @@ *> information as described below. There currently are up to three *> pieces of information returned for each right-hand side. If *> componentwise accuracy is not requested (PARAMS(3) = 0.0), then -*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most +*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most *> the first (:,N_ERR_BNDS) entries are returned. *> *> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith @@ -319,14 +319,14 @@ *> \param[in] NPARAMS *> \verbatim *> NPARAMS is INTEGER -*> Specifies the number of parameters set in PARAMS. If .LE. 0, the +*> Specifies the number of parameters set in PARAMS. If <= 0, the *> PARAMS array is never referenced and default values are used. *> \endverbatim *> *> \param[in,out] PARAMS *> \verbatim *> PARAMS is DOUBLE PRECISION array, dimension (NPARAMS) -*> Specifies algorithm parameters. If an entry is .LT. 0.0, then +*> Specifies algorithm parameters. If an entry is < 0.0, then *> that entry will be filled with default value used for that *> parameter. Only positions up to NPARAMS are accessed; defaults *> are used for higher-numbered parameters. @@ -334,9 +334,9 @@ *> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative *> refinement or not. *> Default: 1.0D+0 -*> = 0.0 : No refinement is performed, and no error bounds are +*> = 0.0: No refinement is performed, and no error bounds are *> computed. -*> = 1.0 : Use the double-precision refinement algorithm, +*> = 1.0: Use the double-precision refinement algorithm, *> possibly with doubled-single computations if the *> compilation environment does not support DOUBLE *> PRECISION. diff --git a/lapack-netlib/SRC/dgesc2.f b/lapack-netlib/SRC/dgesc2.f index 2f01a762f..72d8a38f0 100644 --- a/lapack-netlib/SRC/dgesc2.f +++ b/lapack-netlib/SRC/dgesc2.f @@ -90,7 +90,7 @@ *> \verbatim *> SCALE is DOUBLE PRECISION *> On exit, SCALE contains the scale factor. SCALE is chosen -*> 0 <= SCALE <= 1 to prevent owerflow in the solution. +*> 0 <= SCALE <= 1 to prevent overflow in the solution. *> \endverbatim * * Authors: @@ -151,7 +151,7 @@ * .. * .. Executable Statements .. * -* Set constant to control owerflow +* Set constant to control overflow * EPS = DLAMCH( 'P' ) SMLNUM = DLAMCH( 'S' ) / EPS diff --git a/lapack-netlib/SRC/dgesdd.f b/lapack-netlib/SRC/dgesdd.f index 926607f98..0218900d2 100644 --- a/lapack-netlib/SRC/dgesdd.f +++ b/lapack-netlib/SRC/dgesdd.f @@ -322,7 +322,7 @@ * IF( WNTQN ) THEN * dbdsdc needs only 4*N (or 6*N for uplo=L for LAPACK <= 3.6) -* keep 7*N for backwards compatability. +* keep 7*N for backwards compatibility. BDSPAC = 7*N ELSE BDSPAC = 3*N*N + 4*N @@ -448,7 +448,7 @@ * IF( WNTQN ) THEN * dbdsdc needs only 4*N (or 6*N for uplo=L for LAPACK <= 3.6) -* keep 7*N for backwards compatability. +* keep 7*N for backwards compatibility. BDSPAC = 7*M ELSE BDSPAC = 3*M*M + 4*M diff --git a/lapack-netlib/SRC/dgesvdq.f b/lapack-netlib/SRC/dgesvdq.f new file mode 100644 index 000000000..e495d2bf9 --- /dev/null +++ b/lapack-netlib/SRC/dgesvdq.f @@ -0,0 +1,1385 @@ +*> \brief DGESVDQ computes the singular value decomposition (SVD) with a QR-Preconditioned QR SVD Method for GE matrices +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DGESVDQ + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DGESVDQ( JOBA, JOBP, JOBR, JOBU, JOBV, M, N, A, LDA, +* S, U, LDU, V, LDV, NUMRANK, IWORK, LIWORK, +* WORK, LWORK, RWORK, LRWORK, INFO ) +* +* .. Scalar Arguments .. +* IMPLICIT NONE +* CHARACTER JOBA, JOBP, JOBR, JOBU, JOBV +* INTEGER M, N, LDA, LDU, LDV, NUMRANK, LIWORK, LWORK, LRWORK, +* INFO +* .. +* .. Array Arguments .. +* DOUBLE PRECISION A( LDA, * ), U( LDU, * ), V( LDV, * ), WORK( * ) +* DOUBLE PRECISION S( * ), RWORK( * ) +* INTEGER IWORK( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DGESVDQ computes the singular value decomposition (SVD) of a real +*> M-by-N matrix A, where M >= N. The SVD of A is written as +*> [++] [xx] [x0] [xx] +*> A = U * SIGMA * V^*, [++] = [xx] * [ox] * [xx] +*> [++] [xx] +*> where SIGMA is an N-by-N diagonal matrix, U is an M-by-N orthonormal +*> matrix, and V is an N-by-N orthogonal matrix. The diagonal elements +*> of SIGMA are the singular values of A. The columns of U and V are the +*> left and the right singular vectors of A, respectively. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] JOBA +*> \verbatim +*> JOBA is CHARACTER*1 +*> Specifies the level of accuracy in the computed SVD +*> = 'A' The requested accuracy corresponds to having the backward +*> error bounded by || delta A ||_F <= f(m,n) * EPS * || A ||_F, +*> where EPS = DLAMCH('Epsilon'). This authorises DGESVDQ to +*> truncate the computed triangular factor in a rank revealing +*> QR factorization whenever the truncated part is below the +*> threshold of the order of EPS * ||A||_F. This is aggressive +*> truncation level. +*> = 'M' Similarly as with 'A', but the truncation is more gentle: it +*> is allowed only when there is a drop on the diagonal of the +*> triangular factor in the QR factorization. This is medium +*> truncation level. +*> = 'H' High accuracy requested. No numerical rank determination based +*> on the rank revealing QR factorization is attempted. +*> = 'E' Same as 'H', and in addition the condition number of column +*> scaled A is estimated and returned in RWORK(1). +*> N^(-1/4)*RWORK(1) <= ||pinv(A_scaled)||_2 <= N^(1/4)*RWORK(1) +*> \endverbatim +*> +*> \param[in] JOBP +*> \verbatim +*> JOBP is CHARACTER*1 +*> = 'P' The rows of A are ordered in decreasing order with respect to +*> ||A(i,:)||_\infty. This enhances numerical accuracy at the cost +*> of extra data movement. Recommended for numerical robustness. +*> = 'N' No row pivoting. +*> \endverbatim +*> +*> \param[in] JOBR +*> \verbatim +*> JOBR is CHARACTER*1 +*> = 'T' After the initial pivoted QR factorization, DGESVD is applied to +*> the transposed R**T of the computed triangular factor R. This involves +*> some extra data movement (matrix transpositions). Useful for +*> experiments, research and development. +*> = 'N' The triangular factor R is given as input to DGESVD. This may be +*> preferred as it involves less data movement. +*> \endverbatim +*> +*> \param[in] JOBU +*> \verbatim +*> JOBU is CHARACTER*1 +*> = 'A' All M left singular vectors are computed and returned in the +*> matrix U. See the description of U. +*> = 'S' or 'U' N = min(M,N) left singular vectors are computed and returned +*> in the matrix U. See the description of U. +*> = 'R' Numerical rank NUMRANK is determined and only NUMRANK left singular +*> vectors are computed and returned in the matrix U. +*> = 'F' The N left singular vectors are returned in factored form as the +*> product of the Q factor from the initial QR factorization and the +*> N left singular vectors of (R**T , 0)**T. If row pivoting is used, +*> then the necessary information on the row pivoting is stored in +*> IWORK(N+1:N+M-1). +*> = 'N' The left singular vectors are not computed. +*> \endverbatim +*> +*> \param[in] JOBV +*> \verbatim +*> JOBV is CHARACTER*1 +*> = 'A', 'V' All N right singular vectors are computed and returned in +*> the matrix V. +*> = 'R' Numerical rank NUMRANK is determined and only NUMRANK right singular +*> vectors are computed and returned in the matrix V. This option is +*> allowed only if JOBU = 'R' or JOBU = 'N'; otherwise it is illegal. +*> = 'N' The right singular vectors are not computed. +*> \endverbatim +*> +*> \param[in] M +*> \verbatim +*> M is INTEGER +*> The number of rows of the input matrix A. M >= 0. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of columns of the input matrix A. M >= N >= 0. +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is DOUBLE PRECISION array of dimensions LDA x N +*> On entry, the input matrix A. +*> On exit, if JOBU .NE. 'N' or JOBV .NE. 'N', the lower triangle of A contains +*> the Householder vectors as stored by DGEQP3. If JOBU = 'F', these Householder +*> vectors together with WORK(1:N) can be used to restore the Q factors from +*> the initial pivoted QR factorization of A. See the description of U. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER. +*> The leading dimension of the array A. LDA >= max(1,M). +*> \endverbatim +*> +*> \param[out] S +*> \verbatim +*> S is DOUBLE PRECISION array of dimension N. +*> The singular values of A, ordered so that S(i) >= S(i+1). +*> \endverbatim +*> +*> \param[out] U +*> \verbatim +*> U is DOUBLE PRECISION array, dimension +*> LDU x M if JOBU = 'A'; see the description of LDU. In this case, +*> on exit, U contains the M left singular vectors. +*> LDU x N if JOBU = 'S', 'U', 'R' ; see the description of LDU. In this +*> case, U contains the leading N or the leading NUMRANK left singular vectors. +*> LDU x N if JOBU = 'F' ; see the description of LDU. In this case U +*> contains N x N orthogonal matrix that can be used to form the left +*> singular vectors. +*> If JOBU = 'N', U is not referenced. +*> \endverbatim +*> +*> \param[in] LDU +*> \verbatim +*> LDU is INTEGER. +*> The leading dimension of the array U. +*> If JOBU = 'A', 'S', 'U', 'R', LDU >= max(1,M). +*> If JOBU = 'F', LDU >= max(1,N). +*> Otherwise, LDU >= 1. +*> \endverbatim +*> +*> \param[out] V +*> \verbatim +*> V is DOUBLE PRECISION array, dimension +*> LDV x N if JOBV = 'A', 'V', 'R' or if JOBA = 'E' . +*> If JOBV = 'A', or 'V', V contains the N-by-N orthogonal matrix V**T; +*> If JOBV = 'R', V contains the first NUMRANK rows of V**T (the right +*> singular vectors, stored rowwise, of the NUMRANK largest singular values). +*> If JOBV = 'N' and JOBA = 'E', V is used as a workspace. +*> If JOBV = 'N', and JOBA.NE.'E', V is not referenced. +*> \endverbatim +*> +*> \param[in] LDV +*> \verbatim +*> LDV is INTEGER +*> The leading dimension of the array V. +*> If JOBV = 'A', 'V', 'R', or JOBA = 'E', LDV >= max(1,N). +*> Otherwise, LDV >= 1. +*> \endverbatim +*> +*> \param[out] NUMRANK +*> \verbatim +*> NUMRANK is INTEGER +*> NUMRANK is the numerical rank first determined after the rank +*> revealing QR factorization, following the strategy specified by the +*> value of JOBA. If JOBV = 'R' and JOBU = 'R', only NUMRANK +*> leading singular values and vectors are then requested in the call +*> of DGESVD. The final value of NUMRANK might be further reduced if +*> some singular values are computed as zeros. +*> \endverbatim +*> +*> \param[out] IWORK +*> \verbatim +*> IWORK is INTEGER array, dimension (max(1, LIWORK)). +*> On exit, IWORK(1:N) contains column pivoting permutation of the +*> rank revealing QR factorization. +*> If JOBP = 'P', IWORK(N+1:N+M-1) contains the indices of the sequence +*> of row swaps used in row pivoting. These can be used to restore the +*> left singular vectors in the case JOBU = 'F'. +*> +*> If LIWORK, LWORK, or LRWORK = -1, then on exit, if INFO = 0, +*> LIWORK(1) returns the minimal LIWORK. +*> \endverbatim +*> +*> \param[in] LIWORK +*> \verbatim +*> LIWORK is INTEGER +*> The dimension of the array IWORK. +*> LIWORK >= N + M - 1, if JOBP = 'P' and JOBA .NE. 'E'; +*> LIWORK >= N if JOBP = 'N' and JOBA .NE. 'E'; +*> LIWORK >= N + M - 1 + N, if JOBP = 'P' and JOBA = 'E'; +*> LIWORK >= N + N if JOBP = 'N' and JOBA = 'E'. +* +*> If LIWORK = -1, then a workspace query is assumed; the routine +*> only calculates and returns the optimal and minimal sizes +*> for the WORK, IWORK, and RWORK arrays, and no error +*> message related to LWORK is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension (max(2, LWORK)), used as a workspace. +*> On exit, if, on entry, LWORK.NE.-1, WORK(1:N) contains parameters +*> needed to recover the Q factor from the QR factorization computed by +*> DGEQP3. +*> +*> If LIWORK, LWORK, or LRWORK = -1, then on exit, if INFO = 0, +*> WORK(1) returns the optimal LWORK, and +*> WORK(2) returns the minimal LWORK. +*> \endverbatim +*> +*> \param[in,out] LWORK +*> \verbatim +*> LWORK is INTEGER +*> The dimension of the array WORK. It is determined as follows: +*> Let LWQP3 = 3*N+1, LWCON = 3*N, and let +*> LWORQ = { MAX( N, 1 ), if JOBU = 'R', 'S', or 'U' +*> { MAX( M, 1 ), if JOBU = 'A' +*> LWSVD = MAX( 5*N, 1 ) +*> LWLQF = MAX( N/2, 1 ), LWSVD2 = MAX( 5*(N/2), 1 ), LWORLQ = MAX( N, 1 ), +*> LWQRF = MAX( N/2, 1 ), LWORQ2 = MAX( N, 1 ) +*> Then the minimal value of LWORK is: +*> = MAX( N + LWQP3, LWSVD ) if only the singular values are needed; +*> = MAX( N + LWQP3, LWCON, LWSVD ) if only the singular values are needed, +*> and a scaled condition estimate requested; +*> +*> = N + MAX( LWQP3, LWSVD, LWORQ ) if the singular values and the left +*> singular vectors are requested; +*> = N + MAX( LWQP3, LWCON, LWSVD, LWORQ ) if the singular values and the left +*> singular vectors are requested, and also +*> a scaled condition estimate requested; +*> +*> = N + MAX( LWQP3, LWSVD ) if the singular values and the right +*> singular vectors are requested; +*> = N + MAX( LWQP3, LWCON, LWSVD ) if the singular values and the right +*> singular vectors are requested, and also +*> a scaled condition etimate requested; +*> +*> = N + MAX( LWQP3, LWSVD, LWORQ ) if the full SVD is requested with JOBV = 'R'; +*> independent of JOBR; +*> = N + MAX( LWQP3, LWCON, LWSVD, LWORQ ) if the full SVD is requested, +*> JOBV = 'R' and, also a scaled condition +*> estimate requested; independent of JOBR; +*> = MAX( N + MAX( LWQP3, LWSVD, LWORQ ), +*> N + MAX( LWQP3, N/2+LWLQF, N/2+LWSVD2, N/2+LWORLQ, LWORQ) ) if the +*> full SVD is requested with JOBV = 'A' or 'V', and +*> JOBR ='N' +*> = MAX( N + MAX( LWQP3, LWCON, LWSVD, LWORQ ), +*> N + MAX( LWQP3, LWCON, N/2+LWLQF, N/2+LWSVD2, N/2+LWORLQ, LWORQ ) ) +*> if the full SVD is requested with JOBV = 'A' or 'V', and +*> JOBR ='N', and also a scaled condition number estimate +*> requested. +*> = MAX( N + MAX( LWQP3, LWSVD, LWORQ ), +*> N + MAX( LWQP3, N/2+LWQRF, N/2+LWSVD2, N/2+LWORQ2, LWORQ ) ) if the +*> full SVD is requested with JOBV = 'A', 'V', and JOBR ='T' +*> = MAX( N + MAX( LWQP3, LWCON, LWSVD, LWORQ ), +*> N + MAX( LWQP3, LWCON, N/2+LWQRF, N/2+LWSVD2, N/2+LWORQ2, LWORQ ) ) +*> if the full SVD is requested with JOBV = 'A' or 'V', and +*> JOBR ='T', and also a scaled condition number estimate +*> requested. +*> Finally, LWORK must be at least two: LWORK = MAX( 2, LWORK ). +*> +*> If LWORK = -1, then a workspace query is assumed; the routine +*> only calculates and returns the optimal and minimal sizes +*> for the WORK, IWORK, and RWORK arrays, and no error +*> message related to LWORK is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] RWORK +*> \verbatim +*> RWORK is DOUBLE PRECISION array, dimension (max(1, LRWORK)). +*> On exit, +*> 1. If JOBA = 'E', RWORK(1) contains an estimate of the condition +*> number of column scaled A. If A = C * D where D is diagonal and C +*> has unit columns in the Euclidean norm, then, assuming full column rank, +*> N^(-1/4) * RWORK(1) <= ||pinv(C)||_2 <= N^(1/4) * RWORK(1). +*> Otherwise, RWORK(1) = -1. +*> 2. RWORK(2) contains the number of singular values computed as +*> exact zeros in DGESVD applied to the upper triangular or trapeziodal +*> R (from the initial QR factorization). In case of early exit (no call to +*> DGESVD, such as in the case of zero matrix) RWORK(2) = -1. +*> +*> If LIWORK, LWORK, or LRWORK = -1, then on exit, if INFO = 0, +*> RWORK(1) returns the minimal LRWORK. +*> \endverbatim +*> +*> \param[in] LRWORK +*> \verbatim +*> LRWORK is INTEGER. +*> The dimension of the array RWORK. +*> If JOBP ='P', then LRWORK >= MAX(2, M). +*> Otherwise, LRWORK >= 2 +* +*> If LRWORK = -1, then a workspace query is assumed; the routine +*> only calculates and returns the optimal and minimal sizes +*> for the WORK, IWORK, and RWORK arrays, and no error +*> message related to LWORK is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit. +*> < 0: if INFO = -i, the i-th argument had an illegal value. +*> > 0: if DBDSQR did not converge, INFO specifies how many superdiagonals +*> of an intermediate bidiagonal form B (computed in DGESVD) did not +*> converge to zero. +*> \endverbatim +* +*> \par Further Details: +* ======================== +*> +*> \verbatim +*> +*> 1. The data movement (matrix transpose) is coded using simple nested +*> DO-loops because BLAS and LAPACK do not provide corresponding subroutines. +*> Those DO-loops are easily identified in this source code - by the CONTINUE +*> statements labeled with 11**. In an optimized version of this code, the +*> nested DO loops should be replaced with calls to an optimized subroutine. +*> 2. This code scales A by 1/SQRT(M) if the largest ABS(A(i,j)) could cause +*> column norm overflow. This is the minial precaution and it is left to the +*> SVD routine (CGESVD) to do its own preemptive scaling if potential over- +*> or underflows are detected. To avoid repeated scanning of the array A, +*> an optimal implementation would do all necessary scaling before calling +*> CGESVD and the scaling in CGESVD can be switched off. +*> 3. Other comments related to code optimization are given in comments in the +*> code, enlosed in [[double brackets]]. +*> \endverbatim +* +*> \par Bugs, examples and comments +* =========================== +* +*> \verbatim +*> Please report all bugs and send interesting examples and/or comments to +*> drmac@math.hr. Thank you. +*> \endverbatim +* +*> \par References +* =============== +* +*> \verbatim +*> [1] Zlatko Drmac, Algorithm 977: A QR-Preconditioned QR SVD Method for +*> Computing the SVD with High Accuracy. ACM Trans. Math. Softw. +*> 44(1): 11:1-11:30 (2017) +*> +*> SIGMA library, xGESVDQ section updated February 2016. +*> Developed and coded by Zlatko Drmac, Department of Mathematics +*> University of Zagreb, Croatia, drmac@math.hr +*> \endverbatim +* +* +*> \par Contributors: +* ================== +*> +*> \verbatim +*> Developed and coded by Zlatko Drmac, Department of Mathematics +*> University of Zagreb, Croatia, drmac@math.hr +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2018 +* +*> \ingroup doubleGEsing +* +* ===================================================================== + SUBROUTINE DGESVDQ( JOBA, JOBP, JOBR, JOBU, JOBV, M, N, A, LDA, + $ S, U, LDU, V, LDV, NUMRANK, IWORK, LIWORK, + $ WORK, LWORK, RWORK, LRWORK, INFO ) +* .. Scalar Arguments .. + IMPLICIT NONE + CHARACTER JOBA, JOBP, JOBR, JOBU, JOBV + INTEGER M, N, LDA, LDU, LDV, NUMRANK, LIWORK, LWORK, LRWORK, + $ INFO +* .. +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), U( LDU, * ), V( LDV, * ), WORK( * ) + DOUBLE PRECISION S( * ), RWORK( * ) + INTEGER IWORK( * ) +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, ONE + PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) +* .. Local Scalars .. + INTEGER IERR, IWOFF, NR, N1, OPTRATIO, p, q + INTEGER LWCON, LWQP3, LWRK_DGELQF, LWRK_DGESVD, LWRK_DGESVD2, + $ LWRK_DGEQP3, LWRK_DGEQRF, LWRK_DORMLQ, LWRK_DORMQR, + $ LWRK_DORMQR2, LWLQF, LWQRF, LWSVD, LWSVD2, LWORQ, + $ LWORQ2, LWORLQ, MINWRK, MINWRK2, OPTWRK, OPTWRK2, + $ IMINWRK, RMINWRK + LOGICAL ACCLA, ACCLM, ACCLH, ASCALED, CONDA, DNTWU, DNTWV, + $ LQUERY, LSVC0, LSVEC, ROWPRM, RSVEC, RTRANS, WNTUA, + $ WNTUF, WNTUR, WNTUS, WNTVA, WNTVR + DOUBLE PRECISION BIG, EPSLN, RTMP, SCONDA, SFMIN +* .. Local Arrays + DOUBLE PRECISION RDUMMY(1) +* .. +* .. External Subroutines (BLAS, LAPACK) + EXTERNAL DGELQF, DGEQP3, DGEQRF, DGESVD, DLACPY, DLAPMT, + $ DLASCL, DLASET, DLASWP, DSCAL, DPOCON, DORMLQ, + $ DORMQR, XERBLA +* .. +* .. External Functions (BLAS, LAPACK) + LOGICAL LSAME + INTEGER IDAMAX + DOUBLE PRECISION DLANGE, DNRM2, DLAMCH + EXTERNAL DLANGE, LSAME, IDAMAX, DNRM2, DLAMCH +* .. +* .. Intrinsic Functions .. +* + INTRINSIC ABS, MAX, MIN, DBLE, SQRT +* +* Test the input arguments +* + WNTUS = LSAME( JOBU, 'S' ) .OR. LSAME( JOBU, 'U' ) + WNTUR = LSAME( JOBU, 'R' ) + WNTUA = LSAME( JOBU, 'A' ) + WNTUF = LSAME( JOBU, 'F' ) + LSVC0 = WNTUS .OR. WNTUR .OR. WNTUA + LSVEC = LSVC0 .OR. WNTUF + DNTWU = LSAME( JOBU, 'N' ) +* + WNTVR = LSAME( JOBV, 'R' ) + WNTVA = LSAME( JOBV, 'A' ) .OR. LSAME( JOBV, 'V' ) + RSVEC = WNTVR .OR. WNTVA + DNTWV = LSAME( JOBV, 'N' ) +* + ACCLA = LSAME( JOBA, 'A' ) + ACCLM = LSAME( JOBA, 'M' ) + CONDA = LSAME( JOBA, 'E' ) + ACCLH = LSAME( JOBA, 'H' ) .OR. CONDA +* + ROWPRM = LSAME( JOBP, 'P' ) + RTRANS = LSAME( JOBR, 'T' ) +* + IF ( ROWPRM ) THEN + IF ( CONDA ) THEN + IMINWRK = MAX( 1, N + M - 1 + N ) + ELSE + IMINWRK = MAX( 1, N + M - 1 ) + END IF + RMINWRK = MAX( 2, M ) + ELSE + IF ( CONDA ) THEN + IMINWRK = MAX( 1, N + N ) + ELSE + IMINWRK = MAX( 1, N ) + END IF + RMINWRK = 2 + END IF + LQUERY = (LIWORK .EQ. -1 .OR. LWORK .EQ. -1 .OR. LRWORK .EQ. -1) + INFO = 0 + IF ( .NOT. ( ACCLA .OR. ACCLM .OR. ACCLH ) ) THEN + INFO = -1 + ELSE IF ( .NOT.( ROWPRM .OR. LSAME( JOBP, 'N' ) ) ) THEN + INFO = -2 + ELSE IF ( .NOT.( RTRANS .OR. LSAME( JOBR, 'N' ) ) ) THEN + INFO = -3 + ELSE IF ( .NOT.( LSVEC .OR. DNTWU ) ) THEN + INFO = -4 + ELSE IF ( WNTUR .AND. WNTVA ) THEN + INFO = -5 + ELSE IF ( .NOT.( RSVEC .OR. DNTWV )) THEN + INFO = -5 + ELSE IF ( M.LT.0 ) THEN + INFO = -6 + ELSE IF ( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN + INFO = -7 + ELSE IF ( LDA.LT.MAX( 1, M ) ) THEN + INFO = -9 + ELSE IF ( LDU.LT.1 .OR. ( LSVC0 .AND. LDU.LT.M ) .OR. + $ ( WNTUF .AND. LDU.LT.N ) ) THEN + INFO = -12 + ELSE IF ( LDV.LT.1 .OR. ( RSVEC .AND. LDV.LT.N ) .OR. + $ ( CONDA .AND. LDV.LT.N ) ) THEN + INFO = -14 + ELSE IF ( LIWORK .LT. IMINWRK .AND. .NOT. LQUERY ) THEN + INFO = -17 + END IF +* +* + IF ( INFO .EQ. 0 ) THEN +* .. compute the minimal and the optimal workspace lengths +* [[The expressions for computing the minimal and the optimal +* values of LWORK are written with a lot of redundancy and +* can be simplified. However, this detailed form is easier for +* maintenance and modifications of the code.]] +* +* .. minimal workspace length for DGEQP3 of an M x N matrix + LWQP3 = 3 * N + 1 +* .. minimal workspace length for DORMQR to build left singular vectors + IF ( WNTUS .OR. WNTUR ) THEN + LWORQ = MAX( N , 1 ) + ELSE IF ( WNTUA ) THEN + LWORQ = MAX( M , 1 ) + END IF +* .. minimal workspace length for DPOCON of an N x N matrix + LWCON = 3 * N +* .. DGESVD of an N x N matrix + LWSVD = MAX( 5 * N, 1 ) + IF ( LQUERY ) THEN + CALL DGEQP3( M, N, A, LDA, IWORK, RDUMMY, RDUMMY, -1, + $ IERR ) + LWRK_DGEQP3 = INT( RDUMMY(1) ) + IF ( WNTUS .OR. WNTUR ) THEN + CALL DORMQR( 'L', 'N', M, N, N, A, LDA, RDUMMY, U, + $ LDU, RDUMMY, -1, IERR ) + LWRK_DORMQR = INT( RDUMMY(1) ) + ELSE IF ( WNTUA ) THEN + CALL DORMQR( 'L', 'N', M, M, N, A, LDA, RDUMMY, U, + $ LDU, RDUMMY, -1, IERR ) + LWRK_DORMQR = INT( RDUMMY(1) ) + ELSE + LWRK_DORMQR = 0 + END IF + END IF + MINWRK = 2 + OPTWRK = 2 + IF ( .NOT. (LSVEC .OR. RSVEC )) THEN +* .. minimal and optimal sizes of the workspace if +* only the singular values are requested + IF ( CONDA ) THEN + MINWRK = MAX( N+LWQP3, LWCON, LWSVD ) + ELSE + MINWRK = MAX( N+LWQP3, LWSVD ) + END IF + IF ( LQUERY ) THEN + CALL DGESVD( 'N', 'N', N, N, A, LDA, S, U, LDU, + $ V, LDV, RDUMMY, -1, IERR ) + LWRK_DGESVD = INT( RDUMMY(1) ) + IF ( CONDA ) THEN + OPTWRK = MAX( N+LWRK_DGEQP3, N+LWCON, LWRK_DGESVD ) + ELSE + OPTWRK = MAX( N+LWRK_DGEQP3, LWRK_DGESVD ) + END IF + END IF + ELSE IF ( LSVEC .AND. (.NOT.RSVEC) ) THEN +* .. minimal and optimal sizes of the workspace if the +* singular values and the left singular vectors are requested + IF ( CONDA ) THEN + MINWRK = N + MAX( LWQP3, LWCON, LWSVD, LWORQ ) + ELSE + MINWRK = N + MAX( LWQP3, LWSVD, LWORQ ) + END IF + IF ( LQUERY ) THEN + IF ( RTRANS ) THEN + CALL DGESVD( 'N', 'O', N, N, A, LDA, S, U, LDU, + $ V, LDV, RDUMMY, -1, IERR ) + ELSE + CALL DGESVD( 'O', 'N', N, N, A, LDA, S, U, LDU, + $ V, LDV, RDUMMY, -1, IERR ) + END IF + LWRK_DGESVD = INT( RDUMMY(1) ) + IF ( CONDA ) THEN + OPTWRK = N + MAX( LWRK_DGEQP3, LWCON, LWRK_DGESVD, + $ LWRK_DORMQR ) + ELSE + OPTWRK = N + MAX( LWRK_DGEQP3, LWRK_DGESVD, + $ LWRK_DORMQR ) + END IF + END IF + ELSE IF ( RSVEC .AND. (.NOT.LSVEC) ) THEN +* .. minimal and optimal sizes of the workspace if the +* singular values and the right singular vectors are requested + IF ( CONDA ) THEN + MINWRK = N + MAX( LWQP3, LWCON, LWSVD ) + ELSE + MINWRK = N + MAX( LWQP3, LWSVD ) + END IF + IF ( LQUERY ) THEN + IF ( RTRANS ) THEN + CALL DGESVD( 'O', 'N', N, N, A, LDA, S, U, LDU, + $ V, LDV, RDUMMY, -1, IERR ) + ELSE + CALL DGESVD( 'N', 'O', N, N, A, LDA, S, U, LDU, + $ V, LDV, RDUMMY, -1, IERR ) + END IF + LWRK_DGESVD = INT( RDUMMY(1) ) + IF ( CONDA ) THEN + OPTWRK = N + MAX( LWRK_DGEQP3, LWCON, LWRK_DGESVD ) + ELSE + OPTWRK = N + MAX( LWRK_DGEQP3, LWRK_DGESVD ) + END IF + END IF + ELSE +* .. minimal and optimal sizes of the workspace if the +* full SVD is requested + IF ( RTRANS ) THEN + MINWRK = MAX( LWQP3, LWSVD, LWORQ ) + IF ( CONDA ) MINWRK = MAX( MINWRK, LWCON ) + MINWRK = MINWRK + N + IF ( WNTVA ) THEN +* .. minimal workspace length for N x N/2 DGEQRF + LWQRF = MAX( N/2, 1 ) +* .. minimal workspace lengt for N/2 x N/2 DGESVD + LWSVD2 = MAX( 5 * (N/2), 1 ) + LWORQ2 = MAX( N, 1 ) + MINWRK2 = MAX( LWQP3, N/2+LWQRF, N/2+LWSVD2, + $ N/2+LWORQ2, LWORQ ) + IF ( CONDA ) MINWRK2 = MAX( MINWRK2, LWCON ) + MINWRK2 = N + MINWRK2 + MINWRK = MAX( MINWRK, MINWRK2 ) + END IF + ELSE + MINWRK = MAX( LWQP3, LWSVD, LWORQ ) + IF ( CONDA ) MINWRK = MAX( MINWRK, LWCON ) + MINWRK = MINWRK + N + IF ( WNTVA ) THEN +* .. minimal workspace length for N/2 x N DGELQF + LWLQF = MAX( N/2, 1 ) + LWSVD2 = MAX( 5 * (N/2), 1 ) + LWORLQ = MAX( N , 1 ) + MINWRK2 = MAX( LWQP3, N/2+LWLQF, N/2+LWSVD2, + $ N/2+LWORLQ, LWORQ ) + IF ( CONDA ) MINWRK2 = MAX( MINWRK2, LWCON ) + MINWRK2 = N + MINWRK2 + MINWRK = MAX( MINWRK, MINWRK2 ) + END IF + END IF + IF ( LQUERY ) THEN + IF ( RTRANS ) THEN + CALL DGESVD( 'O', 'A', N, N, A, LDA, S, U, LDU, + $ V, LDV, RDUMMY, -1, IERR ) + LWRK_DGESVD = INT( RDUMMY(1) ) + OPTWRK = MAX(LWRK_DGEQP3,LWRK_DGESVD,LWRK_DORMQR) + IF ( CONDA ) OPTWRK = MAX( OPTWRK, LWCON ) + OPTWRK = N + OPTWRK + IF ( WNTVA ) THEN + CALL DGEQRF(N,N/2,U,LDU,RDUMMY,RDUMMY,-1,IERR) + LWRK_DGEQRF = INT( RDUMMY(1) ) + CALL DGESVD( 'S', 'O', N/2,N/2, V,LDV, S, U,LDU, + $ V, LDV, RDUMMY, -1, IERR ) + LWRK_DGESVD2 = INT( RDUMMY(1) ) + CALL DORMQR( 'R', 'C', N, N, N/2, U, LDU, RDUMMY, + $ V, LDV, RDUMMY, -1, IERR ) + LWRK_DORMQR2 = INT( RDUMMY(1) ) + OPTWRK2 = MAX( LWRK_DGEQP3, N/2+LWRK_DGEQRF, + $ N/2+LWRK_DGESVD2, N/2+LWRK_DORMQR2 ) + IF ( CONDA ) OPTWRK2 = MAX( OPTWRK2, LWCON ) + OPTWRK2 = N + OPTWRK2 + OPTWRK = MAX( OPTWRK, OPTWRK2 ) + END IF + ELSE + CALL DGESVD( 'S', 'O', N, N, A, LDA, S, U, LDU, + $ V, LDV, RDUMMY, -1, IERR ) + LWRK_DGESVD = INT( RDUMMY(1) ) + OPTWRK = MAX(LWRK_DGEQP3,LWRK_DGESVD,LWRK_DORMQR) + IF ( CONDA ) OPTWRK = MAX( OPTWRK, LWCON ) + OPTWRK = N + OPTWRK + IF ( WNTVA ) THEN + CALL DGELQF(N/2,N,U,LDU,RDUMMY,RDUMMY,-1,IERR) + LWRK_DGELQF = INT( RDUMMY(1) ) + CALL DGESVD( 'S','O', N/2,N/2, V, LDV, S, U, LDU, + $ V, LDV, RDUMMY, -1, IERR ) + LWRK_DGESVD2 = INT( RDUMMY(1) ) + CALL DORMLQ( 'R', 'N', N, N, N/2, U, LDU, RDUMMY, + $ V, LDV, RDUMMY,-1,IERR ) + LWRK_DORMLQ = INT( RDUMMY(1) ) + OPTWRK2 = MAX( LWRK_DGEQP3, N/2+LWRK_DGELQF, + $ N/2+LWRK_DGESVD2, N/2+LWRK_DORMLQ ) + IF ( CONDA ) OPTWRK2 = MAX( OPTWRK2, LWCON ) + OPTWRK2 = N + OPTWRK2 + OPTWRK = MAX( OPTWRK, OPTWRK2 ) + END IF + END IF + END IF + END IF +* + MINWRK = MAX( 2, MINWRK ) + OPTWRK = MAX( 2, OPTWRK ) + IF ( LWORK .LT. MINWRK .AND. (.NOT.LQUERY) ) INFO = -19 +* + END IF +* + IF (INFO .EQ. 0 .AND. LRWORK .LT. RMINWRK .AND. .NOT. LQUERY) THEN + INFO = -21 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'DGESVDQ', -INFO ) + RETURN + ELSE IF ( LQUERY ) THEN +* +* Return optimal workspace +* + IWORK(1) = IMINWRK + WORK(1) = OPTWRK + WORK(2) = MINWRK + RWORK(1) = RMINWRK + RETURN + END IF +* +* Quick return if the matrix is void. +* + IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) ) THEN +* .. all output is void. + RETURN + END IF +* + BIG = DLAMCH('O') + ASCALED = .FALSE. + IWOFF = 1 + IF ( ROWPRM ) THEN + IWOFF = M +* .. reordering the rows in decreasing sequence in the +* ell-infinity norm - this enhances numerical robustness in +* the case of differently scaled rows. + DO 1904 p = 1, M +* RWORK(p) = ABS( A(p,ICAMAX(N,A(p,1),LDA)) ) +* [[DLANGE will return NaN if an entry of the p-th row is Nan]] + RWORK(p) = DLANGE( 'M', 1, N, A(p,1), LDA, RDUMMY ) +* .. check for NaN's and Inf's + IF ( ( RWORK(p) .NE. RWORK(p) ) .OR. + $ ( (RWORK(p)*ZERO) .NE. ZERO ) ) THEN + INFO = -8 + CALL XERBLA( 'DGESVDQ', -INFO ) + RETURN + END IF + 1904 CONTINUE + DO 1952 p = 1, M - 1 + q = IDAMAX( M-p+1, RWORK(p), 1 ) + p - 1 + IWORK(N+p) = q + IF ( p .NE. q ) THEN + RTMP = RWORK(p) + RWORK(p) = RWORK(q) + RWORK(q) = RTMP + END IF + 1952 CONTINUE +* + IF ( RWORK(1) .EQ. ZERO ) THEN +* Quick return: A is the M x N zero matrix. + NUMRANK = 0 + CALL DLASET( 'G', N, 1, ZERO, ZERO, S, N ) + IF ( WNTUS ) CALL DLASET('G', M, N, ZERO, ONE, U, LDU) + IF ( WNTUA ) CALL DLASET('G', M, M, ZERO, ONE, U, LDU) + IF ( WNTVA ) CALL DLASET('G', N, N, ZERO, ONE, V, LDV) + IF ( WNTUF ) THEN + CALL DLASET( 'G', N, 1, ZERO, ZERO, WORK, N ) + CALL DLASET( 'G', M, N, ZERO, ONE, U, LDU ) + END IF + DO 5001 p = 1, N + IWORK(p) = p + 5001 CONTINUE + IF ( ROWPRM ) THEN + DO 5002 p = N + 1, N + M - 1 + IWORK(p) = p - N + 5002 CONTINUE + END IF + IF ( CONDA ) RWORK(1) = -1 + RWORK(2) = -1 + RETURN + END IF +* + IF ( RWORK(1) .GT. BIG / SQRT(DBLE(M)) ) THEN +* .. to prevent overflow in the QR factorization, scale the +* matrix by 1/sqrt(M) if too large entry detected + CALL DLASCL('G',0,0,SQRT(DBLE(M)),ONE, M,N, A,LDA, IERR) + ASCALED = .TRUE. + END IF + CALL DLASWP( N, A, LDA, 1, M-1, IWORK(N+1), 1 ) + END IF +* +* .. At this stage, preemptive scaling is done only to avoid column +* norms overflows during the QR factorization. The SVD procedure should +* have its own scaling to save the singular values from overflows and +* underflows. That depends on the SVD procedure. +* + IF ( .NOT.ROWPRM ) THEN + RTMP = DLANGE( 'M', M, N, A, LDA, RDUMMY ) + IF ( ( RTMP .NE. RTMP ) .OR. + $ ( (RTMP*ZERO) .NE. ZERO ) ) THEN + INFO = -8 + CALL XERBLA( 'DGESVDQ', -INFO ) + RETURN + END IF + IF ( RTMP .GT. BIG / SQRT(DBLE(M)) ) THEN +* .. to prevent overflow in the QR factorization, scale the +* matrix by 1/sqrt(M) if too large entry detected + CALL DLASCL('G',0,0, SQRT(DBLE(M)),ONE, M,N, A,LDA, IERR) + ASCALED = .TRUE. + END IF + END IF +* +* .. QR factorization with column pivoting +* +* A * P = Q * [ R ] +* [ 0 ] +* + DO 1963 p = 1, N +* .. all columns are free columns + IWORK(p) = 0 + 1963 CONTINUE + CALL DGEQP3( M, N, A, LDA, IWORK, WORK, WORK(N+1), LWORK-N, + $ IERR ) +* +* If the user requested accuracy level allows truncation in the +* computed upper triangular factor, the matrix R is examined and, +* if possible, replaced with its leading upper trapezoidal part. +* + EPSLN = DLAMCH('E') + SFMIN = DLAMCH('S') +* SMALL = SFMIN / EPSLN + NR = N +* + IF ( ACCLA ) THEN +* +* Standard absolute error bound suffices. All sigma_i with +* sigma_i < N*EPS*||A||_F are flushed to zero. This is an +* aggressive enforcement of lower numerical rank by introducing a +* backward error of the order of N*EPS*||A||_F. + NR = 1 + RTMP = SQRT(DBLE(N))*EPSLN + DO 3001 p = 2, N + IF ( ABS(A(p,p)) .LT. (RTMP*ABS(A(1,1))) ) GO TO 3002 + NR = NR + 1 + 3001 CONTINUE + 3002 CONTINUE +* + ELSEIF ( ACCLM ) THEN +* .. similarly as above, only slightly more gentle (less aggressive). +* Sudden drop on the diagonal of R is used as the criterion for being +* close-to-rank-deficient. The threshold is set to EPSLN=DLAMCH('E'). +* [[This can be made more flexible by replacing this hard-coded value +* with a user specified threshold.]] Also, the values that underflow +* will be truncated. + NR = 1 + DO 3401 p = 2, N + IF ( ( ABS(A(p,p)) .LT. (EPSLN*ABS(A(p-1,p-1))) ) .OR. + $ ( ABS(A(p,p)) .LT. SFMIN ) ) GO TO 3402 + NR = NR + 1 + 3401 CONTINUE + 3402 CONTINUE +* + ELSE +* .. RRQR not authorized to determine numerical rank except in the +* obvious case of zero pivots. +* .. inspect R for exact zeros on the diagonal; +* R(i,i)=0 => R(i:N,i:N)=0. + NR = 1 + DO 3501 p = 2, N + IF ( ABS(A(p,p)) .EQ. ZERO ) GO TO 3502 + NR = NR + 1 + 3501 CONTINUE + 3502 CONTINUE +* + IF ( CONDA ) THEN +* Estimate the scaled condition number of A. Use the fact that it is +* the same as the scaled condition number of R. +* .. V is used as workspace + CALL DLACPY( 'U', N, N, A, LDA, V, LDV ) +* Only the leading NR x NR submatrix of the triangular factor +* is considered. Only if NR=N will this give a reliable error +* bound. However, even for NR < N, this can be used on an +* expert level and obtain useful information in the sense of +* perturbation theory. + DO 3053 p = 1, NR + RTMP = DNRM2( p, V(1,p), 1 ) + CALL DSCAL( p, ONE/RTMP, V(1,p), 1 ) + 3053 CONTINUE + IF ( .NOT. ( LSVEC .OR. RSVEC ) ) THEN + CALL DPOCON( 'U', NR, V, LDV, ONE, RTMP, + $ WORK, IWORK(N+IWOFF), IERR ) + ELSE + CALL DPOCON( 'U', NR, V, LDV, ONE, RTMP, + $ WORK(N+1), IWORK(N+IWOFF), IERR ) + END IF + SCONDA = ONE / SQRT(RTMP) +* For NR=N, SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1), +* N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA +* See the reference [1] for more details. + END IF +* + ENDIF +* + IF ( WNTUR ) THEN + N1 = NR + ELSE IF ( WNTUS .OR. WNTUF) THEN + N1 = N + ELSE IF ( WNTUA ) THEN + N1 = M + END IF +* + IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN +*....................................................................... +* .. only the singular values are requested +*....................................................................... + IF ( RTRANS ) THEN +* +* .. compute the singular values of R**T = [A](1:NR,1:N)**T +* .. set the lower triangle of [A] to [A](1:NR,1:N)**T and +* the upper triangle of [A] to zero. + DO 1146 p = 1, MIN( N, NR ) + DO 1147 q = p + 1, N + A(q,p) = A(p,q) + IF ( q .LE. NR ) A(p,q) = ZERO + 1147 CONTINUE + 1146 CONTINUE +* + CALL DGESVD( 'N', 'N', N, NR, A, LDA, S, U, LDU, + $ V, LDV, WORK, LWORK, INFO ) +* + ELSE +* +* .. compute the singular values of R = [A](1:NR,1:N) +* + IF ( NR .GT. 1 ) + $ CALL DLASET( 'L', NR-1,NR-1, ZERO,ZERO, A(2,1), LDA ) + CALL DGESVD( 'N', 'N', NR, N, A, LDA, S, U, LDU, + $ V, LDV, WORK, LWORK, INFO ) +* + END IF +* + ELSE IF ( LSVEC .AND. ( .NOT. RSVEC) ) THEN +*....................................................................... +* .. the singular values and the left singular vectors requested +*......................................................................."""""""" + IF ( RTRANS ) THEN +* .. apply DGESVD to R**T +* .. copy R**T into [U] and overwrite [U] with the right singular +* vectors of R + DO 1192 p = 1, NR + DO 1193 q = p, N + U(q,p) = A(p,q) + 1193 CONTINUE + 1192 CONTINUE + IF ( NR .GT. 1 ) + $ CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, U(1,2), LDU ) +* .. the left singular vectors not computed, the NR right singular +* vectors overwrite [U](1:NR,1:NR) as transposed. These +* will be pre-multiplied by Q to build the left singular vectors of A. + CALL DGESVD( 'N', 'O', N, NR, U, LDU, S, U, LDU, + $ U, LDU, WORK(N+1), LWORK-N, INFO ) +* + DO 1119 p = 1, NR + DO 1120 q = p + 1, NR + RTMP = U(q,p) + U(q,p) = U(p,q) + U(p,q) = RTMP + 1120 CONTINUE + 1119 CONTINUE +* + ELSE +* .. apply DGESVD to R +* .. copy R into [U] and overwrite [U] with the left singular vectors + CALL DLACPY( 'U', NR, N, A, LDA, U, LDU ) + IF ( NR .GT. 1 ) + $ CALL DLASET( 'L', NR-1, NR-1, ZERO, ZERO, U(2,1), LDU ) +* .. the right singular vectors not computed, the NR left singular +* vectors overwrite [U](1:NR,1:NR) + CALL DGESVD( 'O', 'N', NR, N, U, LDU, S, U, LDU, + $ V, LDV, WORK(N+1), LWORK-N, INFO ) +* .. now [U](1:NR,1:NR) contains the NR left singular vectors of +* R. These will be pre-multiplied by Q to build the left singular +* vectors of A. + END IF +* +* .. assemble the left singular vector matrix U of dimensions +* (M x NR) or (M x N) or (M x M). + IF ( ( NR .LT. M ) .AND. ( .NOT.WNTUF ) ) THEN + CALL DLASET('A', M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU) + IF ( NR .LT. N1 ) THEN + CALL DLASET( 'A',NR,N1-NR,ZERO,ZERO,U(1,NR+1), LDU ) + CALL DLASET( 'A',M-NR,N1-NR,ZERO,ONE, + $ U(NR+1,NR+1), LDU ) + END IF + END IF +* +* The Q matrix from the first QRF is built into the left singular +* vectors matrix U. +* + IF ( .NOT.WNTUF ) + $ CALL DORMQR( 'L', 'N', M, N1, N, A, LDA, WORK, U, + $ LDU, WORK(N+1), LWORK-N, IERR ) + IF ( ROWPRM .AND. .NOT.WNTUF ) + $ CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(N+1), -1 ) +* + ELSE IF ( RSVEC .AND. ( .NOT. LSVEC ) ) THEN +*....................................................................... +* .. the singular values and the right singular vectors requested +*....................................................................... + IF ( RTRANS ) THEN +* .. apply DGESVD to R**T +* .. copy R**T into V and overwrite V with the left singular vectors + DO 1165 p = 1, NR + DO 1166 q = p, N + V(q,p) = (A(p,q)) + 1166 CONTINUE + 1165 CONTINUE + IF ( NR .GT. 1 ) + $ CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, V(1,2), LDV ) +* .. the left singular vectors of R**T overwrite V, the right singular +* vectors not computed + IF ( WNTVR .OR. ( NR .EQ. N ) ) THEN + CALL DGESVD( 'O', 'N', N, NR, V, LDV, S, U, LDU, + $ U, LDU, WORK(N+1), LWORK-N, INFO ) +* + DO 1121 p = 1, NR + DO 1122 q = p + 1, NR + RTMP = V(q,p) + V(q,p) = V(p,q) + V(p,q) = RTMP + 1122 CONTINUE + 1121 CONTINUE +* + IF ( NR .LT. N ) THEN + DO 1103 p = 1, NR + DO 1104 q = NR + 1, N + V(p,q) = V(q,p) + 1104 CONTINUE + 1103 CONTINUE + END IF + CALL DLAPMT( .FALSE., NR, N, V, LDV, IWORK ) + ELSE +* .. need all N right singular vectors and NR < N +* [!] This is simple implementation that augments [V](1:N,1:NR) +* by padding a zero block. In the case NR << N, a more efficient +* way is to first use the QR factorization. For more details +* how to implement this, see the " FULL SVD " branch. + CALL DLASET('G', N, N-NR, ZERO, ZERO, V(1,NR+1), LDV) + CALL DGESVD( 'O', 'N', N, N, V, LDV, S, U, LDU, + $ U, LDU, WORK(N+1), LWORK-N, INFO ) +* + DO 1123 p = 1, N + DO 1124 q = p + 1, N + RTMP = V(q,p) + V(q,p) = V(p,q) + V(p,q) = RTMP + 1124 CONTINUE + 1123 CONTINUE + CALL DLAPMT( .FALSE., N, N, V, LDV, IWORK ) + END IF +* + ELSE +* .. aply DGESVD to R +* .. copy R into V and overwrite V with the right singular vectors + CALL DLACPY( 'U', NR, N, A, LDA, V, LDV ) + IF ( NR .GT. 1 ) + $ CALL DLASET( 'L', NR-1, NR-1, ZERO, ZERO, V(2,1), LDV ) +* .. the right singular vectors overwrite V, the NR left singular +* vectors stored in U(1:NR,1:NR) + IF ( WNTVR .OR. ( NR .EQ. N ) ) THEN + CALL DGESVD( 'N', 'O', NR, N, V, LDV, S, U, LDU, + $ V, LDV, WORK(N+1), LWORK-N, INFO ) + CALL DLAPMT( .FALSE., NR, N, V, LDV, IWORK ) +* .. now [V](1:NR,1:N) contains V(1:N,1:NR)**T + ELSE +* .. need all N right singular vectors and NR < N +* [!] This is simple implementation that augments [V](1:NR,1:N) +* by padding a zero block. In the case NR << N, a more efficient +* way is to first use the LQ factorization. For more details +* how to implement this, see the " FULL SVD " branch. + CALL DLASET('G', N-NR, N, ZERO,ZERO, V(NR+1,1), LDV) + CALL DGESVD( 'N', 'O', N, N, V, LDV, S, U, LDU, + $ V, LDV, WORK(N+1), LWORK-N, INFO ) + CALL DLAPMT( .FALSE., N, N, V, LDV, IWORK ) + END IF +* .. now [V] contains the transposed matrix of the right singular +* vectors of A. + END IF +* + ELSE +*....................................................................... +* .. FULL SVD requested +*....................................................................... + IF ( RTRANS ) THEN +* +* .. apply DGESVD to R**T [[this option is left for R&D&T]] +* + IF ( WNTVR .OR. ( NR .EQ. N ) ) THEN +* .. copy R**T into [V] and overwrite [V] with the left singular +* vectors of R**T + DO 1168 p = 1, NR + DO 1169 q = p, N + V(q,p) = A(p,q) + 1169 CONTINUE + 1168 CONTINUE + IF ( NR .GT. 1 ) + $ CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, V(1,2), LDV ) +* +* .. the left singular vectors of R**T overwrite [V], the NR right +* singular vectors of R**T stored in [U](1:NR,1:NR) as transposed + CALL DGESVD( 'O', 'A', N, NR, V, LDV, S, V, LDV, + $ U, LDU, WORK(N+1), LWORK-N, INFO ) +* .. assemble V + DO 1115 p = 1, NR + DO 1116 q = p + 1, NR + RTMP = V(q,p) + V(q,p) = V(p,q) + V(p,q) = RTMP + 1116 CONTINUE + 1115 CONTINUE + IF ( NR .LT. N ) THEN + DO 1101 p = 1, NR + DO 1102 q = NR+1, N + V(p,q) = V(q,p) + 1102 CONTINUE + 1101 CONTINUE + END IF + CALL DLAPMT( .FALSE., NR, N, V, LDV, IWORK ) +* + DO 1117 p = 1, NR + DO 1118 q = p + 1, NR + RTMP = U(q,p) + U(q,p) = U(p,q) + U(p,q) = RTMP + 1118 CONTINUE + 1117 CONTINUE +* + IF ( ( NR .LT. M ) .AND. .NOT.(WNTUF)) THEN + CALL DLASET('A', M-NR,NR, ZERO,ZERO, U(NR+1,1), LDU) + IF ( NR .LT. N1 ) THEN + CALL DLASET('A',NR,N1-NR,ZERO,ZERO,U(1,NR+1),LDU) + CALL DLASET( 'A',M-NR,N1-NR,ZERO,ONE, + $ U(NR+1,NR+1), LDU ) + END IF + END IF +* + ELSE +* .. need all N right singular vectors and NR < N +* .. copy R**T into [V] and overwrite [V] with the left singular +* vectors of R**T +* [[The optimal ratio N/NR for using QRF instead of padding +* with zeros. Here hard coded to 2; it must be at least +* two due to work space constraints.]] +* OPTRATIO = ILAENV(6, 'DGESVD', 'S' // 'O', NR,N,0,0) +* OPTRATIO = MAX( OPTRATIO, 2 ) + OPTRATIO = 2 + IF ( OPTRATIO*NR .GT. N ) THEN + DO 1198 p = 1, NR + DO 1199 q = p, N + V(q,p) = A(p,q) + 1199 CONTINUE + 1198 CONTINUE + IF ( NR .GT. 1 ) + $ CALL DLASET('U',NR-1,NR-1, ZERO,ZERO, V(1,2),LDV) +* + CALL DLASET('A',N,N-NR,ZERO,ZERO,V(1,NR+1),LDV) + CALL DGESVD( 'O', 'A', N, N, V, LDV, S, V, LDV, + $ U, LDU, WORK(N+1), LWORK-N, INFO ) +* + DO 1113 p = 1, N + DO 1114 q = p + 1, N + RTMP = V(q,p) + V(q,p) = V(p,q) + V(p,q) = RTMP + 1114 CONTINUE + 1113 CONTINUE + CALL DLAPMT( .FALSE., N, N, V, LDV, IWORK ) +* .. assemble the left singular vector matrix U of dimensions +* (M x N1), i.e. (M x N) or (M x M). +* + DO 1111 p = 1, N + DO 1112 q = p + 1, N + RTMP = U(q,p) + U(q,p) = U(p,q) + U(p,q) = RTMP + 1112 CONTINUE + 1111 CONTINUE +* + IF ( ( N .LT. M ) .AND. .NOT.(WNTUF)) THEN + CALL DLASET('A',M-N,N,ZERO,ZERO,U(N+1,1),LDU) + IF ( N .LT. N1 ) THEN + CALL DLASET('A',N,N1-N,ZERO,ZERO,U(1,N+1),LDU) + CALL DLASET('A',M-N,N1-N,ZERO,ONE, + $ U(N+1,N+1), LDU ) + END IF + END IF + ELSE +* .. copy R**T into [U] and overwrite [U] with the right +* singular vectors of R + DO 1196 p = 1, NR + DO 1197 q = p, N + U(q,NR+p) = A(p,q) + 1197 CONTINUE + 1196 CONTINUE + IF ( NR .GT. 1 ) + $ CALL DLASET('U',NR-1,NR-1,ZERO,ZERO,U(1,NR+2),LDU) + CALL DGEQRF( N, NR, U(1,NR+1), LDU, WORK(N+1), + $ WORK(N+NR+1), LWORK-N-NR, IERR ) + DO 1143 p = 1, NR + DO 1144 q = 1, N + V(q,p) = U(p,NR+q) + 1144 CONTINUE + 1143 CONTINUE + CALL DLASET('U',NR-1,NR-1,ZERO,ZERO,V(1,2),LDV) + CALL DGESVD( 'S', 'O', NR, NR, V, LDV, S, U, LDU, + $ V,LDV, WORK(N+NR+1),LWORK-N-NR, INFO ) + CALL DLASET('A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV) + CALL DLASET('A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV) + CALL DLASET('A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV) + CALL DORMQR('R','C', N, N, NR, U(1,NR+1), LDU, + $ WORK(N+1),V,LDV,WORK(N+NR+1),LWORK-N-NR,IERR) + CALL DLAPMT( .FALSE., N, N, V, LDV, IWORK ) +* .. assemble the left singular vector matrix U of dimensions +* (M x NR) or (M x N) or (M x M). + IF ( ( NR .LT. M ) .AND. .NOT.(WNTUF)) THEN + CALL DLASET('A',M-NR,NR,ZERO,ZERO,U(NR+1,1),LDU) + IF ( NR .LT. N1 ) THEN + CALL DLASET('A',NR,N1-NR,ZERO,ZERO,U(1,NR+1),LDU) + CALL DLASET( 'A',M-NR,N1-NR,ZERO,ONE, + $ U(NR+1,NR+1),LDU) + END IF + END IF + END IF + END IF +* + ELSE +* +* .. apply DGESVD to R [[this is the recommended option]] +* + IF ( WNTVR .OR. ( NR .EQ. N ) ) THEN +* .. copy R into [V] and overwrite V with the right singular vectors + CALL DLACPY( 'U', NR, N, A, LDA, V, LDV ) + IF ( NR .GT. 1 ) + $ CALL DLASET( 'L', NR-1,NR-1, ZERO,ZERO, V(2,1), LDV ) +* .. the right singular vectors of R overwrite [V], the NR left +* singular vectors of R stored in [U](1:NR,1:NR) + CALL DGESVD( 'S', 'O', NR, N, V, LDV, S, U, LDU, + $ V, LDV, WORK(N+1), LWORK-N, INFO ) + CALL DLAPMT( .FALSE., NR, N, V, LDV, IWORK ) +* .. now [V](1:NR,1:N) contains V(1:N,1:NR)**T +* .. assemble the left singular vector matrix U of dimensions +* (M x NR) or (M x N) or (M x M). + IF ( ( NR .LT. M ) .AND. .NOT.(WNTUF)) THEN + CALL DLASET('A', M-NR,NR, ZERO,ZERO, U(NR+1,1), LDU) + IF ( NR .LT. N1 ) THEN + CALL DLASET('A',NR,N1-NR,ZERO,ZERO,U(1,NR+1),LDU) + CALL DLASET( 'A',M-NR,N1-NR,ZERO,ONE, + $ U(NR+1,NR+1), LDU ) + END IF + END IF +* + ELSE +* .. need all N right singular vectors and NR < N +* .. the requested number of the left singular vectors +* is then N1 (N or M) +* [[The optimal ratio N/NR for using LQ instead of padding +* with zeros. Here hard coded to 2; it must be at least +* two due to work space constraints.]] +* OPTRATIO = ILAENV(6, 'DGESVD', 'S' // 'O', NR,N,0,0) +* OPTRATIO = MAX( OPTRATIO, 2 ) + OPTRATIO = 2 + IF ( OPTRATIO * NR .GT. N ) THEN + CALL DLACPY( 'U', NR, N, A, LDA, V, LDV ) + IF ( NR .GT. 1 ) + $ CALL DLASET('L', NR-1,NR-1, ZERO,ZERO, V(2,1),LDV) +* .. the right singular vectors of R overwrite [V], the NR left +* singular vectors of R stored in [U](1:NR,1:NR) + CALL DLASET('A', N-NR,N, ZERO,ZERO, V(NR+1,1),LDV) + CALL DGESVD( 'S', 'O', N, N, V, LDV, S, U, LDU, + $ V, LDV, WORK(N+1), LWORK-N, INFO ) + CALL DLAPMT( .FALSE., N, N, V, LDV, IWORK ) +* .. now [V] contains the transposed matrix of the right +* singular vectors of A. The leading N left singular vectors +* are in [U](1:N,1:N) +* .. assemble the left singular vector matrix U of dimensions +* (M x N1), i.e. (M x N) or (M x M). + IF ( ( N .LT. M ) .AND. .NOT.(WNTUF)) THEN + CALL DLASET('A',M-N,N,ZERO,ZERO,U(N+1,1),LDU) + IF ( N .LT. N1 ) THEN + CALL DLASET('A',N,N1-N,ZERO,ZERO,U(1,N+1),LDU) + CALL DLASET( 'A',M-N,N1-N,ZERO,ONE, + $ U(N+1,N+1), LDU ) + END IF + END IF + ELSE + CALL DLACPY( 'U', NR, N, A, LDA, U(NR+1,1), LDU ) + IF ( NR .GT. 1 ) + $ CALL DLASET('L',NR-1,NR-1,ZERO,ZERO,U(NR+2,1),LDU) + CALL DGELQF( NR, N, U(NR+1,1), LDU, WORK(N+1), + $ WORK(N+NR+1), LWORK-N-NR, IERR ) + CALL DLACPY('L',NR,NR,U(NR+1,1),LDU,V,LDV) + IF ( NR .GT. 1 ) + $ CALL DLASET('U',NR-1,NR-1,ZERO,ZERO,V(1,2),LDV) + CALL DGESVD( 'S', 'O', NR, NR, V, LDV, S, U, LDU, + $ V, LDV, WORK(N+NR+1), LWORK-N-NR, INFO ) + CALL DLASET('A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV) + CALL DLASET('A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV) + CALL DLASET('A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV) + CALL DORMLQ('R','N',N,N,NR,U(NR+1,1),LDU,WORK(N+1), + $ V, LDV, WORK(N+NR+1),LWORK-N-NR,IERR) + CALL DLAPMT( .FALSE., N, N, V, LDV, IWORK ) +* .. assemble the left singular vector matrix U of dimensions +* (M x NR) or (M x N) or (M x M). + IF ( ( NR .LT. M ) .AND. .NOT.(WNTUF)) THEN + CALL DLASET('A',M-NR,NR,ZERO,ZERO,U(NR+1,1),LDU) + IF ( NR .LT. N1 ) THEN + CALL DLASET('A',NR,N1-NR,ZERO,ZERO,U(1,NR+1),LDU) + CALL DLASET( 'A',M-NR,N1-NR,ZERO,ONE, + $ U(NR+1,NR+1), LDU ) + END IF + END IF + END IF + END IF +* .. end of the "R**T or R" branch + END IF +* +* The Q matrix from the first QRF is built into the left singular +* vectors matrix U. +* + IF ( .NOT. WNTUF ) + $ CALL DORMQR( 'L', 'N', M, N1, N, A, LDA, WORK, U, + $ LDU, WORK(N+1), LWORK-N, IERR ) + IF ( ROWPRM .AND. .NOT.WNTUF ) + $ CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(N+1), -1 ) +* +* ... end of the "full SVD" branch + END IF +* +* Check whether some singular values are returned as zeros, e.g. +* due to underflow, and update the numerical rank. + p = NR + DO 4001 q = p, 1, -1 + IF ( S(q) .GT. ZERO ) GO TO 4002 + NR = NR - 1 + 4001 CONTINUE + 4002 CONTINUE +* +* .. if numerical rank deficiency is detected, the truncated +* singular values are set to zero. + IF ( NR .LT. N ) CALL DLASET( 'G', N-NR,1, ZERO,ZERO, S(NR+1), N ) +* .. undo scaling; this may cause overflow in the largest singular +* values. + IF ( ASCALED ) + $ CALL DLASCL( 'G',0,0, ONE,SQRT(DBLE(M)), NR,1, S, N, IERR ) + IF ( CONDA ) RWORK(1) = SCONDA + RWORK(2) = p - NR +* .. p-NR is the number of singular values that are computed as +* exact zeros in DGESVD() applied to the (possibly truncated) +* full row rank triangular (trapezoidal) factor of A. + NUMRANK = NR +* + RETURN +* +* End of DGESVDQ +* + END diff --git a/lapack-netlib/SRC/dgesvj.f b/lapack-netlib/SRC/dgesvj.f index 2cbc5ce0e..cf7aac982 100644 --- a/lapack-netlib/SRC/dgesvj.f +++ b/lapack-netlib/SRC/dgesvj.f @@ -90,13 +90,13 @@ *> JOBV is CHARACTER*1 *> Specifies whether to compute the right singular vectors, that *> is, the matrix V: -*> = 'V' : the matrix V is computed and returned in the array V -*> = 'A' : the Jacobi rotations are applied to the MV-by-N +*> = 'V': the matrix V is computed and returned in the array V +*> = 'A': the Jacobi rotations are applied to the MV-by-N *> array V. In other words, the right singular vector *> matrix V is not computed explicitly, instead it is *> applied to an MV-by-N matrix initially stored in the *> first MV rows of V. -*> = 'N' : the matrix V is not computed and the array V is not +*> = 'N': the matrix V is not computed and the array V is not *> referenced *> \endverbatim *> @@ -118,8 +118,8 @@ *> A is DOUBLE PRECISION array, dimension (LDA,N) *> On entry, the M-by-N matrix A. *> On exit : -*> If JOBU .EQ. 'U' .OR. JOBU .EQ. 'C' : -*> If INFO .EQ. 0 : +*> If JOBU = 'U' .OR. JOBU = 'C' : +*> If INFO = 0 : *> RANKA orthonormal columns of U are returned in the *> leading RANKA columns of the array A. Here RANKA <= N *> is the number of computed singular values of A that are @@ -129,9 +129,9 @@ *> in the array WORK as RANKA=NINT(WORK(2)). Also see the *> descriptions of SVA and WORK. The computed columns of U *> are mutually numerically orthogonal up to approximately -*> TOL=DSQRT(M)*EPS (default); or TOL=CTOL*EPS (JOBU.EQ.'C'), +*> TOL=DSQRT(M)*EPS (default); or TOL=CTOL*EPS (JOBU = 'C'), *> see the description of JOBU. -*> If INFO .GT. 0 : +*> If INFO > 0 : *> the procedure DGESVJ did not converge in the given number *> of iterations (sweeps). In that case, the computed *> columns of U may not be orthogonal up to TOL. The output @@ -140,8 +140,8 @@ *> input matrix A in the sense that the residual *> ||A-SCALE*U*SIGMA*V^T||_2 / ||A||_2 is small. *> -*> If JOBU .EQ. 'N' : -*> If INFO .EQ. 0 : +*> If JOBU = 'N' : +*> If INFO = 0 : *> Note that the left singular vectors are 'for free' in the *> one-sided Jacobi SVD algorithm. However, if only the *> singular values are needed, the level of numerical @@ -150,7 +150,7 @@ *> numerically orthogonal up to approximately M*EPS. Thus, *> on exit, A contains the columns of U scaled with the *> corresponding singular values. -*> If INFO .GT. 0 : +*> If INFO > 0 : *> the procedure DGESVJ did not converge in the given number *> of iterations (sweeps). *> \endverbatim @@ -165,9 +165,9 @@ *> \verbatim *> SVA is DOUBLE PRECISION array, dimension (N) *> On exit : -*> If INFO .EQ. 0 : +*> If INFO = 0 : *> depending on the value SCALE = WORK(1), we have: -*> If SCALE .EQ. ONE : +*> If SCALE = ONE : *> SVA(1:N) contains the computed singular values of A. *> During the computation SVA contains the Euclidean column *> norms of the iterated matrices in the array A. @@ -175,7 +175,7 @@ *> The singular values of A are SCALE*SVA(1:N), and this *> factored representation is due to the fact that some of the *> singular values of A might underflow or overflow. -*> If INFO .GT. 0 : +*> If INFO > 0 : *> the procedure DGESVJ did not converge in the given number of *> iterations (sweeps) and SCALE*SVA(1:N) may not be accurate. *> \endverbatim @@ -183,7 +183,7 @@ *> \param[in] MV *> \verbatim *> MV is INTEGER -*> If JOBV .EQ. 'A', then the product of Jacobi rotations in DGESVJ +*> If JOBV = 'A', then the product of Jacobi rotations in DGESVJ *> is applied to the first MV rows of V. See the description of JOBV. *> \endverbatim *> @@ -201,16 +201,16 @@ *> \param[in] LDV *> \verbatim *> LDV is INTEGER -*> The leading dimension of the array V, LDV .GE. 1. -*> If JOBV .EQ. 'V', then LDV .GE. max(1,N). -*> If JOBV .EQ. 'A', then LDV .GE. max(1,MV) . +*> The leading dimension of the array V, LDV >= 1. +*> If JOBV = 'V', then LDV >= max(1,N). +*> If JOBV = 'A', then LDV >= max(1,MV) . *> \endverbatim *> *> \param[in,out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (LWORK) *> On entry : -*> If JOBU .EQ. 'C' : +*> If JOBU = 'C' : *> WORK(1) = CTOL, where CTOL defines the threshold for convergence. *> The process stops if all columns of A are mutually *> orthogonal up to CTOL*EPS, EPS=DLAMCH('E'). @@ -230,7 +230,7 @@ *> WORK(5) = max_{i.NE.j} |COS(A(:,i),A(:,j))| in the last sweep. *> This is useful information in cases when DGESVJ did *> not converge, as it can be used to estimate whether -*> the output is stil useful and for post festum analysis. +*> the output is still useful and for post festum analysis. *> WORK(6) = the largest absolute value over all sines of the *> Jacobi rotation angles in the last sweep. It can be *> useful for a post festum analysis. @@ -245,9 +245,9 @@ *> \param[out] INFO *> \verbatim *> INFO is INTEGER -*> = 0 : successful exit. -*> < 0 : if INFO = -i, then the i-th argument had an illegal value -*> > 0 : DGESVJ did not converge in the maximal allowed number (30) +*> = 0: successful exit. +*> < 0: if INFO = -i, then the i-th argument had an illegal value +*> > 0: DGESVJ did not converge in the maximal allowed number (30) *> of sweeps. The output may still be useful. See the *> description of WORK. *> \endverbatim diff --git a/lapack-netlib/SRC/dgesvxx.f b/lapack-netlib/SRC/dgesvxx.f index afcd05d8e..21b56f61c 100644 --- a/lapack-netlib/SRC/dgesvxx.f +++ b/lapack-netlib/SRC/dgesvxx.f @@ -411,7 +411,7 @@ *> information as described below. There currently are up to three *> pieces of information returned for each right-hand side. If *> componentwise accuracy is not requested (PARAMS(3) = 0.0), then -*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most +*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most *> the first (:,N_ERR_BNDS) entries are returned. *> *> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith @@ -447,14 +447,14 @@ *> \param[in] NPARAMS *> \verbatim *> NPARAMS is INTEGER -*> Specifies the number of parameters set in PARAMS. If .LE. 0, the +*> Specifies the number of parameters set in PARAMS. If <= 0, the *> PARAMS array is never referenced and default values are used. *> \endverbatim *> *> \param[in,out] PARAMS *> \verbatim *> PARAMS is DOUBLE PRECISION array, dimension (NPARAMS) -*> Specifies algorithm parameters. If an entry is .LT. 0.0, then +*> Specifies algorithm parameters. If an entry is < 0.0, then *> that entry will be filled with default value used for that *> parameter. Only positions up to NPARAMS are accessed; defaults *> are used for higher-numbered parameters. @@ -462,9 +462,9 @@ *> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative *> refinement or not. *> Default: 1.0D+0 -*> = 0.0 : No refinement is performed, and no error bounds are +*> = 0.0: No refinement is performed, and no error bounds are *> computed. -*> = 1.0 : Use the extra-precise refinement algorithm. +*> = 1.0: Use the extra-precise refinement algorithm. *> (other values are reserved for future use) *> *> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual diff --git a/lapack-netlib/SRC/dgetc2.f b/lapack-netlib/SRC/dgetc2.f index 0896a7013..5bf5b890f 100644 --- a/lapack-netlib/SRC/dgetc2.f +++ b/lapack-netlib/SRC/dgetc2.f @@ -85,7 +85,7 @@ *> \verbatim *> INFO is INTEGER *> = 0: successful exit -*> > 0: if INFO = k, U(k, k) is likely to produce owerflow if +*> > 0: if INFO = k, U(k, k) is likely to produce overflow if *> we try to solve for x in Ax = b. So U is perturbed to *> avoid the overflow. *> \endverbatim diff --git a/lapack-netlib/SRC/dgetsls.f b/lapack-netlib/SRC/dgetsls.f index 3b44a40ab..dfc72c8b2 100644 --- a/lapack-netlib/SRC/dgetsls.f +++ b/lapack-netlib/SRC/dgetsls.f @@ -1,3 +1,5 @@ +*> \brief \b DGETSLS +* * Definition: * =========== * diff --git a/lapack-netlib/SRC/dggesx.f b/lapack-netlib/SRC/dggesx.f index 47022fbdf..0e57d636e 100644 --- a/lapack-netlib/SRC/dggesx.f +++ b/lapack-netlib/SRC/dggesx.f @@ -131,10 +131,10 @@ *> \verbatim *> SENSE is CHARACTER*1 *> Determines which reciprocal condition numbers are computed. -*> = 'N' : None are computed; -*> = 'E' : Computed for average of selected eigenvalues only; -*> = 'V' : Computed for selected deflating subspaces only; -*> = 'B' : Computed for both. +*> = 'N': None are computed; +*> = 'E': Computed for average of selected eigenvalues only; +*> = 'V': Computed for selected deflating subspaces only; +*> = 'B': Computed for both. *> If SENSE = 'E', 'V', or 'B', SORT must equal 'S'. *> \endverbatim *> diff --git a/lapack-netlib/SRC/dgsvj0.f b/lapack-netlib/SRC/dgsvj0.f index 4fd38d37e..318e369fd 100644 --- a/lapack-netlib/SRC/dgsvj0.f +++ b/lapack-netlib/SRC/dgsvj0.f @@ -117,7 +117,7 @@ *> \param[in] MV *> \verbatim *> MV is INTEGER -*> If JOBV .EQ. 'A', then MV rows of V are post-multipled by a +*> If JOBV = 'A', then MV rows of V are post-multipled by a *> sequence of Jacobi rotations. *> If JOBV = 'N', then MV is not referenced. *> \endverbatim @@ -125,9 +125,9 @@ *> \param[in,out] V *> \verbatim *> V is DOUBLE PRECISION array, dimension (LDV,N) -*> If JOBV .EQ. 'V' then N rows of V are post-multipled by a +*> If JOBV = 'V' then N rows of V are post-multipled by a *> sequence of Jacobi rotations. -*> If JOBV .EQ. 'A' then MV rows of V are post-multipled by a +*> If JOBV = 'A' then MV rows of V are post-multipled by a *> sequence of Jacobi rotations. *> If JOBV = 'N', then V is not referenced. *> \endverbatim @@ -136,8 +136,8 @@ *> \verbatim *> LDV is INTEGER *> The leading dimension of the array V, LDV >= 1. -*> If JOBV = 'V', LDV .GE. N. -*> If JOBV = 'A', LDV .GE. MV. +*> If JOBV = 'V', LDV >= N. +*> If JOBV = 'A', LDV >= MV. *> \endverbatim *> *> \param[in] EPS @@ -157,7 +157,7 @@ *> TOL is DOUBLE PRECISION *> TOL is the threshold for Jacobi rotations. For a pair *> A(:,p), A(:,q) of pivot columns, the Jacobi rotation is -*> applied only if DABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL. +*> applied only if DABS(COS(angle(A(:,p),A(:,q)))) > TOL. *> \endverbatim *> *> \param[in] NSWEEP @@ -175,14 +175,14 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> LWORK is the dimension of WORK. LWORK .GE. M. +*> LWORK is the dimension of WORK. LWORK >= M. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER -*> = 0 : successful exit. -*> < 0 : if INFO = -i, then the i-th argument had an illegal value +*> = 0: successful exit. +*> < 0: if INFO = -i, then the i-th argument had an illegal value *> \endverbatim * * Authors: @@ -1045,7 +1045,7 @@ 1993 CONTINUE * end i=1:NSWEEP loop -* #:) Reaching this point means that the procedure has comleted the given +* #:) Reaching this point means that the procedure has completed the given * number of iterations. INFO = NSWEEP - 1 GO TO 1995 diff --git a/lapack-netlib/SRC/dgsvj1.f b/lapack-netlib/SRC/dgsvj1.f index 376682c7f..35a93619f 100644 --- a/lapack-netlib/SRC/dgsvj1.f +++ b/lapack-netlib/SRC/dgsvj1.f @@ -61,7 +61,7 @@ *> In terms of the columns of A, the first N1 columns are rotated 'against' *> the remaining N-N1 columns, trying to increase the angle between the *> corresponding subspaces. The off-diagonal block is N1-by(N-N1) and it is -*> tiled using quadratic tiles of side KBL. Here, KBL is a tunning parmeter. +*> tiled using quadratic tiles of side KBL. Here, KBL is a tunning parameter. *> The number of sweeps is given in NSWEEP and the orthogonality threshold *> is given in TOL. *> \endverbatim @@ -147,27 +147,27 @@ *> \param[in] MV *> \verbatim *> MV is INTEGER -*> If JOBV .EQ. 'A', then MV rows of V are post-multipled by a -*> sequence of Jacobi rotations. -*> If JOBV = 'N', then MV is not referenced. +*> If JOBV = 'A', then MV rows of V are post-multipled by a +*> sequence of Jacobi rotations. +*> If JOBV = 'N', then MV is not referenced. *> \endverbatim *> *> \param[in,out] V *> \verbatim *> V is DOUBLE PRECISION array, dimension (LDV,N) -*> If JOBV .EQ. 'V' then N rows of V are post-multipled by a -*> sequence of Jacobi rotations. -*> If JOBV .EQ. 'A' then MV rows of V are post-multipled by a -*> sequence of Jacobi rotations. -*> If JOBV = 'N', then V is not referenced. +*> If JOBV = 'V', then N rows of V are post-multipled by a +*> sequence of Jacobi rotations. +*> If JOBV = 'A', then MV rows of V are post-multipled by a +*> sequence of Jacobi rotations. +*> If JOBV = 'N', then V is not referenced. *> \endverbatim *> *> \param[in] LDV *> \verbatim *> LDV is INTEGER *> The leading dimension of the array V, LDV >= 1. -*> If JOBV = 'V', LDV .GE. N. -*> If JOBV = 'A', LDV .GE. MV. +*> If JOBV = 'V', LDV >= N. +*> If JOBV = 'A', LDV >= MV. *> \endverbatim *> *> \param[in] EPS @@ -187,7 +187,7 @@ *> TOL is DOUBLE PRECISION *> TOL is the threshold for Jacobi rotations. For a pair *> A(:,p), A(:,q) of pivot columns, the Jacobi rotation is -*> applied only if DABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL. +*> applied only if DABS(COS(angle(A(:,p),A(:,q)))) > TOL. *> \endverbatim *> *> \param[in] NSWEEP @@ -205,14 +205,14 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> LWORK is the dimension of WORK. LWORK .GE. M. +*> LWORK is the dimension of WORK. LWORK >= M. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER -*> = 0 : successful exit. -*> < 0 : if INFO = -i, then the i-th argument had an illegal value +*> = 0: successful exit. +*> < 0: if INFO = -i, then the i-th argument had an illegal value *> \endverbatim * * Authors: diff --git a/lapack-netlib/SRC/dhseqr.f b/lapack-netlib/SRC/dhseqr.f index 4444b955f..b4fc3af90 100644 --- a/lapack-netlib/SRC/dhseqr.f +++ b/lapack-netlib/SRC/dhseqr.f @@ -70,7 +70,7 @@ *> \param[in] N *> \verbatim *> N is INTEGER -*> The order of the matrix H. N .GE. 0. +*> The order of the matrix H. N >= 0. *> \endverbatim *> *> \param[in] ILO @@ -87,7 +87,7 @@ *> set by a previous call to DGEBAL, and then passed to ZGEHRD *> when the matrix output by DGEBAL is reduced to Hessenberg *> form. Otherwise ILO and IHI should be set to 1 and N -*> respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N. +*> respectively. If N > 0, then 1 <= ILO <= IHI <= N. *> If N = 0, then ILO = 1 and IHI = 0. *> \endverbatim *> @@ -100,20 +100,20 @@ *> (the Schur form); 2-by-2 diagonal blocks (corresponding to *> complex conjugate pairs of eigenvalues) are returned in *> standard form, with H(i,i) = H(i+1,i+1) and -*> H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and JOB = 'E', the +*> H(i+1,i)*H(i,i+1) < 0. If INFO = 0 and JOB = 'E', the *> contents of H are unspecified on exit. (The output value of -*> H when INFO.GT.0 is given under the description of INFO +*> H when INFO > 0 is given under the description of INFO *> below.) *> *> Unlike earlier versions of DHSEQR, this subroutine may -*> explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1 +*> explicitly H(i,j) = 0 for i > j and j = 1, 2, ... ILO-1 *> or j = IHI+1, IHI+2, ... N. *> \endverbatim *> *> \param[in] LDH *> \verbatim *> LDH is INTEGER -*> The leading dimension of the array H. LDH .GE. max(1,N). +*> The leading dimension of the array H. LDH >= max(1,N). *> \endverbatim *> *> \param[out] WR @@ -128,8 +128,8 @@ *> The real and imaginary parts, respectively, of the computed *> eigenvalues. If two eigenvalues are computed as a complex *> conjugate pair, they are stored in consecutive elements of -*> WR and WI, say the i-th and (i+1)th, with WI(i) .GT. 0 and -*> WI(i+1) .LT. 0. If JOB = 'S', the eigenvalues are stored in +*> WR and WI, say the i-th and (i+1)th, with WI(i) > 0 and +*> WI(i+1) < 0. If JOB = 'S', the eigenvalues are stored in *> the same order as on the diagonal of the Schur form returned *> in H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 *> diagonal block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and @@ -148,7 +148,7 @@ *> if INFO = 0, Z contains Q*Z. *> Normally Q is the orthogonal matrix generated by DORGHR *> after the call to DGEHRD which formed the Hessenberg matrix -*> H. (The output value of Z when INFO.GT.0 is given under +*> H. (The output value of Z when INFO > 0 is given under *> the description of INFO below.) *> \endverbatim *> @@ -156,7 +156,7 @@ *> \verbatim *> LDZ is INTEGER *> The leading dimension of the array Z. if COMPZ = 'I' or -*> COMPZ = 'V', then LDZ.GE.MAX(1,N). Otherwize, LDZ.GE.1. +*> COMPZ = 'V', then LDZ >= MAX(1,N). Otherwise, LDZ >= 1. *> \endverbatim *> *> \param[out] WORK @@ -169,7 +169,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK .GE. max(1,N) +*> The dimension of the array WORK. LWORK >= max(1,N) *> is sufficient and delivers very good and sometimes *> optimal performance. However, LWORK as large as 11*N *> may be required for optimal performance. A workspace @@ -187,21 +187,21 @@ *> \param[out] INFO *> \verbatim *> INFO is INTEGER -*> = 0: successful exit -*> .LT. 0: if INFO = -i, the i-th argument had an illegal +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal *> value -*> .GT. 0: if INFO = i, DHSEQR failed to compute all of +*> > 0: if INFO = i, DHSEQR failed to compute all of *> the eigenvalues. Elements 1:ilo-1 and i+1:n of WR *> and WI contain those eigenvalues which have been *> successfully computed. (Failures are rare.) *> -*> If INFO .GT. 0 and JOB = 'E', then on exit, the +*> If INFO > 0 and JOB = 'E', then on exit, the *> remaining unconverged eigenvalues are the eigen- *> values of the upper Hessenberg matrix rows and *> columns ILO through INFO of the final, output *> value of H. *> -*> If INFO .GT. 0 and JOB = 'S', then on exit +*> If INFO > 0 and JOB = 'S', then on exit *> *> (*) (initial value of H)*U = U*(final value of H) *> @@ -209,19 +209,19 @@ *> value of H is upper Hessenberg and quasi-triangular *> in rows and columns INFO+1 through IHI. *> -*> If INFO .GT. 0 and COMPZ = 'V', then on exit +*> If INFO > 0 and COMPZ = 'V', then on exit *> *> (final value of Z) = (initial value of Z)*U *> *> where U is the orthogonal matrix in (*) (regard- *> less of the value of JOB.) *> -*> If INFO .GT. 0 and COMPZ = 'I', then on exit +*> If INFO > 0 and COMPZ = 'I', then on exit *> (final value of Z) = U *> where U is the orthogonal matrix in (*) (regard- *> less of the value of JOB.) *> -*> If INFO .GT. 0 and COMPZ = 'N', then Z is not +*> If INFO > 0 and COMPZ = 'N', then Z is not *> accessed. *> \endverbatim * @@ -261,8 +261,8 @@ *> This depends on ILO, IHI and NS. NS is the *> number of simultaneous shifts returned *> by ILAENV(ISPEC=15). (See ISPEC=15 below.) -*> The default for (IHI-ILO+1).LE.500 is NS. -*> The default for (IHI-ILO+1).GT.500 is 3*NS/2. +*> The default for (IHI-ILO+1) <= 500 is NS. +*> The default for (IHI-ILO+1) > 500 is 3*NS/2. *> *> ISPEC=14: Nibble crossover point. (See IPARMQ for *> details.) Default: 14% of deflation window @@ -341,8 +341,8 @@ PARAMETER ( NTINY = 11 ) * * ==== NL allocates some local workspace to help small matrices -* . through a rare DLAHQR failure. NL .GT. NTINY = 11 is -* . required and NL .LE. NMIN = ILAENV(ISPEC=12,...) is recom- +* . through a rare DLAHQR failure. NL > NTINY = 11 is +* . required and NL <= NMIN = ILAENV(ISPEC=12,...) is recom- * . mended. (The default value of NMIN is 75.) Using NL = 49 * . allows up to six simultaneous shifts and a 16-by-16 * . deflation window. ==== diff --git a/lapack-netlib/SRC/dla_gbrcond.f b/lapack-netlib/SRC/dla_gbrcond.f index e9713c9ca..c9eebcbea 100644 --- a/lapack-netlib/SRC/dla_gbrcond.f +++ b/lapack-netlib/SRC/dla_gbrcond.f @@ -141,13 +141,13 @@ *> i > 0: The ith argument is invalid. *> \endverbatim *> -*> \param[in] WORK +*> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (5*N). *> Workspace. *> \endverbatim *> -*> \param[in] IWORK +*> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (N). *> Workspace. diff --git a/lapack-netlib/SRC/dla_gbrfsx_extended.f b/lapack-netlib/SRC/dla_gbrfsx_extended.f index 12b2a32a4..282a63f1c 100644 --- a/lapack-netlib/SRC/dla_gbrfsx_extended.f +++ b/lapack-netlib/SRC/dla_gbrfsx_extended.f @@ -66,19 +66,19 @@ *> \verbatim *> PREC_TYPE is INTEGER *> Specifies the intermediate precision to be used in refinement. -*> The value is defined by ILAPREC(P) where P is a CHARACTER and -*> P = 'S': Single +*> The value is defined by ILAPREC(P) where P is a CHARACTER and P +*> = 'S': Single *> = 'D': Double *> = 'I': Indigenous -*> = 'X', 'E': Extra +*> = 'X' or 'E': Extra *> \endverbatim *> *> \param[in] TRANS_TYPE *> \verbatim *> TRANS_TYPE is INTEGER *> Specifies the transposition operation on A. -*> The value is defined by ILATRANS(T) where T is a CHARACTER and -*> T = 'N': No transpose +*> The value is defined by ILATRANS(T) where T is a CHARACTER and T +*> = 'N': No transpose *> = 'T': Transpose *> = 'C': Conjugate transpose *> \endverbatim @@ -270,7 +270,7 @@ *> information as described below. There currently are up to three *> pieces of information returned for each right-hand side. If *> componentwise accuracy is not requested (PARAMS(3) = 0.0), then -*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most +*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most *> the first (:,N_ERR_BNDS) entries are returned. *> *> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith diff --git a/lapack-netlib/SRC/dla_gercond.f b/lapack-netlib/SRC/dla_gercond.f index aa93ca5a4..6f7d70a6a 100644 --- a/lapack-netlib/SRC/dla_gercond.f +++ b/lapack-netlib/SRC/dla_gercond.f @@ -123,13 +123,13 @@ *> i > 0: The ith argument is invalid. *> \endverbatim *> -*> \param[in] WORK +*> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (3*N). *> Workspace. *> \endverbatim *> -*> \param[in] IWORK +*> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (N). *> Workspace. diff --git a/lapack-netlib/SRC/dla_gerfsx_extended.f b/lapack-netlib/SRC/dla_gerfsx_extended.f index 082f810f0..4cb9ef4f9 100644 --- a/lapack-netlib/SRC/dla_gerfsx_extended.f +++ b/lapack-netlib/SRC/dla_gerfsx_extended.f @@ -64,19 +64,19 @@ *> \verbatim *> PREC_TYPE is INTEGER *> Specifies the intermediate precision to be used in refinement. -*> The value is defined by ILAPREC(P) where P is a CHARACTER and -*> P = 'S': Single +*> The value is defined by ILAPREC(P) where P is a CHARACTER and P +*> = 'S': Single *> = 'D': Double *> = 'I': Indigenous -*> = 'X', 'E': Extra +*> = 'X' or 'E': Extra *> \endverbatim *> *> \param[in] TRANS_TYPE *> \verbatim *> TRANS_TYPE is INTEGER *> Specifies the transposition operation on A. -*> The value is defined by ILATRANS(T) where T is a CHARACTER and -*> T = 'N': No transpose +*> The value is defined by ILATRANS(T) where T is a CHARACTER and T +*> = 'N': No transpose *> = 'T': Transpose *> = 'C': Conjugate transpose *> \endverbatim @@ -256,7 +256,7 @@ *> information as described below. There currently are up to three *> pieces of information returned for each right-hand side. If *> componentwise accuracy is not requested (PARAMS(3) = 0.0), then -*> ERRS_C is not accessed. If N_ERR_BNDS .LT. 3, then at most +*> ERRS_C is not accessed. If N_ERR_BNDS < 3, then at most *> the first (:,N_ERR_BNDS) entries are returned. *> *> The first index in ERRS_C(i,:) corresponds to the ith diff --git a/lapack-netlib/SRC/dla_porcond.f b/lapack-netlib/SRC/dla_porcond.f index 498e707e3..b2f9c4b1e 100644 --- a/lapack-netlib/SRC/dla_porcond.f +++ b/lapack-netlib/SRC/dla_porcond.f @@ -113,13 +113,13 @@ *> i > 0: The ith argument is invalid. *> \endverbatim *> -*> \param[in] WORK +*> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (3*N). *> Workspace. *> \endverbatim *> -*> \param[in] IWORK +*> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (N). *> Workspace. diff --git a/lapack-netlib/SRC/dla_porfsx_extended.f b/lapack-netlib/SRC/dla_porfsx_extended.f index 8c0d6bebd..ece9b00ed 100644 --- a/lapack-netlib/SRC/dla_porfsx_extended.f +++ b/lapack-netlib/SRC/dla_porfsx_extended.f @@ -65,11 +65,11 @@ *> \verbatim *> PREC_TYPE is INTEGER *> Specifies the intermediate precision to be used in refinement. -*> The value is defined by ILAPREC(P) where P is a CHARACTER and -*> P = 'S': Single +*> The value is defined by ILAPREC(P) where P is a CHARACTER and P +*> = 'S': Single *> = 'D': Double *> = 'I': Indigenous -*> = 'X', 'E': Extra +*> = 'X' or 'E': Extra *> \endverbatim *> *> \param[in] UPLO @@ -246,7 +246,7 @@ *> information as described below. There currently are up to three *> pieces of information returned for each right-hand side. If *> componentwise accuracy is not requested (PARAMS(3) = 0.0), then -*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most +*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most *> the first (:,N_ERR_BNDS) entries are returned. *> *> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith diff --git a/lapack-netlib/SRC/dla_porpvgrw.f b/lapack-netlib/SRC/dla_porpvgrw.f index 4fe1a1922..8a6f9e1a7 100644 --- a/lapack-netlib/SRC/dla_porpvgrw.f +++ b/lapack-netlib/SRC/dla_porpvgrw.f @@ -85,7 +85,7 @@ *> The leading dimension of the array AF. LDAF >= max(1,N). *> \endverbatim *> -*> \param[in] WORK +*> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (2*N) *> \endverbatim diff --git a/lapack-netlib/SRC/dla_syrcond.f b/lapack-netlib/SRC/dla_syrcond.f index 91d557145..23ed82588 100644 --- a/lapack-netlib/SRC/dla_syrcond.f +++ b/lapack-netlib/SRC/dla_syrcond.f @@ -119,13 +119,13 @@ *> i > 0: The ith argument is invalid. *> \endverbatim *> -*> \param[in] WORK +*> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (3*N). *> Workspace. *> \endverbatim *> -*> \param[in] IWORK +*> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (N). *> Workspace. diff --git a/lapack-netlib/SRC/dla_syrfsx_extended.f b/lapack-netlib/SRC/dla_syrfsx_extended.f index f54d15194..b390600c0 100644 --- a/lapack-netlib/SRC/dla_syrfsx_extended.f +++ b/lapack-netlib/SRC/dla_syrfsx_extended.f @@ -67,11 +67,11 @@ *> \verbatim *> PREC_TYPE is INTEGER *> Specifies the intermediate precision to be used in refinement. -*> The value is defined by ILAPREC(P) where P is a CHARACTER and -*> P = 'S': Single +*> The value is defined by ILAPREC(P) where P is a CHARACTER and P +*> = 'S': Single *> = 'D': Double *> = 'I': Indigenous -*> = 'X', 'E': Extra +*> = 'X' or 'E': Extra *> \endverbatim *> *> \param[in] UPLO @@ -255,7 +255,7 @@ *> information as described below. There currently are up to three *> pieces of information returned for each right-hand side. If *> componentwise accuracy is not requested (PARAMS(3) = 0.0), then -*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most +*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most *> the first (:,N_ERR_BNDS) entries are returned. *> *> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith diff --git a/lapack-netlib/SRC/dla_syrpvgrw.f b/lapack-netlib/SRC/dla_syrpvgrw.f index c2e5cb018..5ba03093b 100644 --- a/lapack-netlib/SRC/dla_syrpvgrw.f +++ b/lapack-netlib/SRC/dla_syrpvgrw.f @@ -101,7 +101,7 @@ *> as determined by DSYTRF. *> \endverbatim *> -*> \param[in] WORK +*> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (2*N) *> \endverbatim diff --git a/lapack-netlib/SRC/dla_wwaddw.f b/lapack-netlib/SRC/dla_wwaddw.f index 99a86c553..4f50540d6 100644 --- a/lapack-netlib/SRC/dla_wwaddw.f +++ b/lapack-netlib/SRC/dla_wwaddw.f @@ -36,7 +36,7 @@ *> DLA_WWADDW adds a vector W into a doubled-single vector (X, Y). *> *> This works for all extant IBM's hex and binary floating point -*> arithmetics, but not for decimal. +*> arithmetic, but not for decimal. *> \endverbatim * * Arguments: