Merge pull request #4049 from sh-zheng/risc-v
Add rvv support for zsymv and active rvv support for zhemv
This commit is contained in:
commit
62f0f506ec
|
@ -225,10 +225,19 @@ SSYMV_U_KERNEL = symv_U_rvv.c
|
|||
SSYMV_L_KERNEL = symv_L_rvv.c
|
||||
DSYMV_U_KERNEL = symv_U_rvv.c
|
||||
DSYMV_L_KERNEL = symv_L_rvv.c
|
||||
CSYMV_U_KERNEL = ../generic/zsymv_k.c
|
||||
CSYMV_L_KERNEL = ../generic/zsymv_k.c
|
||||
ZSYMV_U_KERNEL = ../generic/zsymv_k.c
|
||||
ZSYMV_L_KERNEL = ../generic/zsymv_k.c
|
||||
CSYMV_U_KERNEL = zsymv_U_rvv.c
|
||||
CSYMV_L_KERNEL = zsymv_L_rvv.c
|
||||
ZSYMV_U_KERNEL = zsymv_U_rvv.c
|
||||
ZSYMV_L_KERNEL = zsymv_L_rvv.c
|
||||
|
||||
CHEMV_L_KERNEL = zhemv_LM_rvv.c
|
||||
CHEMV_M_KERNEL = zhemv_LM_rvv.c
|
||||
CHEMV_U_KERNEL = zhemv_UV_rvv.c
|
||||
CHEMV_V_KERNEL = zhemv_UV_rvv.c
|
||||
ZHEMV_L_KERNEL = zhemv_LM_rvv.c
|
||||
ZHEMV_M_KERNEL = zhemv_LM_rvv.c
|
||||
ZHEMV_U_KERNEL = zhemv_UV_rvv.c
|
||||
ZHEMV_V_KERNEL = zhemv_UV_rvv.c
|
||||
|
||||
ZHEMMLTCOPY_M = zhemm_ltcopy_rvv_v1.c
|
||||
ZHEMMUTCOPY_M = zhemm_utcopy_rvv_v1.c
|
||||
|
|
|
@ -0,0 +1,198 @@
|
|||
/***************************************************************************
|
||||
Copyright (c) 2013, The OpenBLAS Project
|
||||
All rights reserved.
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
1. Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
2. Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in
|
||||
the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
3. Neither the name of the OpenBLAS project nor the names of
|
||||
its contributors may be used to endorse or promote products
|
||||
derived from this software without specific prior written permission.
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
|
||||
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
||||
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*****************************************************************************/
|
||||
|
||||
#include "common.h"
|
||||
#if !defined(DOUBLE)
|
||||
#define VSETVL(n) __riscv_vsetvl_e32m4(n)
|
||||
#define VSETVL_MAX __riscv_vsetvlmax_e32m1()
|
||||
#define FLOAT_V_T vfloat32m4_t
|
||||
#define FLOAT_V_T_M1 vfloat32m1_t
|
||||
#define VFMVFS_FLOAT __riscv_vfmv_f_s_f32m1_f32
|
||||
#define VLSEV_FLOAT __riscv_vlse32_v_f32m4
|
||||
#define VSSEV_FLOAT __riscv_vsse32_v_f32m4
|
||||
#define VFREDSUM_FLOAT __riscv_vfredusum_vs_f32m4_f32m1
|
||||
#define VFMACCVV_FLOAT __riscv_vfmacc_vv_f32m4
|
||||
#define VFMACCVV_FLOAT_TU __riscv_vfmacc_vv_f32m4_tu
|
||||
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f32m4
|
||||
#define VFMVVF_FLOAT __riscv_vfmv_v_f_f32m4
|
||||
#define VFMVVF_FLOAT_M1 __riscv_vfmv_v_f_f32m1
|
||||
#define VFMULVV_FLOAT __riscv_vfmul_vv_f32m4
|
||||
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f32m4
|
||||
#define VFNMSACVV_FLOAT __riscv_vfnmsac_vv_f32m4
|
||||
#define VFNMSACVV_FLOAT_TU __riscv_vfnmsac_vv_f32m4_tu
|
||||
#else
|
||||
#define VSETVL(n) __riscv_vsetvl_e64m4(n)
|
||||
#define VSETVL_MAX __riscv_vsetvlmax_e64m1()
|
||||
#define FLOAT_V_T vfloat64m4_t
|
||||
#define FLOAT_V_T_M1 vfloat64m1_t
|
||||
#define VFMVFS_FLOAT __riscv_vfmv_f_s_f64m1_f64
|
||||
#define VLSEV_FLOAT __riscv_vlse64_v_f64m4
|
||||
#define VSSEV_FLOAT __riscv_vsse64_v_f64m4
|
||||
#define VFREDSUM_FLOAT __riscv_vfredusum_vs_f64m4_f64m1
|
||||
#define VFMACCVV_FLOAT __riscv_vfmacc_vv_f64m4
|
||||
#define VFMACCVV_FLOAT_TU __riscv_vfmacc_vv_f64m4_tu
|
||||
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f64m4
|
||||
#define VFMVVF_FLOAT __riscv_vfmv_v_f_f64m4
|
||||
#define VFMVVF_FLOAT_M1 __riscv_vfmv_v_f_f64m1
|
||||
#define VFMULVV_FLOAT __riscv_vfmul_vv_f64m4
|
||||
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f64m4
|
||||
#define VFNMSACVV_FLOAT __riscv_vfnmsac_vv_f64m4
|
||||
#define VFNMSACVV_FLOAT_TU __riscv_vfnmsac_vv_f64m4_tu
|
||||
#endif
|
||||
|
||||
int CNAME(BLASLONG m, BLASLONG offset, FLOAT alpha_r, FLOAT alpha_i, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *buffer){
|
||||
BLASLONG i, j, k;
|
||||
BLASLONG ix, iy, ia;
|
||||
BLASLONG jx, jy, ja;
|
||||
FLOAT temp_r1, temp_i1;
|
||||
FLOAT temp_r2, temp_i2;
|
||||
FLOAT *a_ptr = a;
|
||||
unsigned int gvl = 0;
|
||||
FLOAT_V_T_M1 v_res, v_z0;
|
||||
gvl = VSETVL_MAX;
|
||||
v_res = VFMVVF_FLOAT_M1(0, gvl);
|
||||
v_z0 = VFMVVF_FLOAT_M1(0, gvl);
|
||||
|
||||
FLOAT_V_T va0, va1, vx0, vx1, vy0, vy1, vr0, vr1;
|
||||
BLASLONG stride_x, stride_y, stride_a, inc_xv, inc_yv, inc_av, len, lda2;
|
||||
|
||||
BLASLONG inc_x2 = incx * 2;
|
||||
BLASLONG inc_y2 = incy * 2;
|
||||
stride_x = inc_x2 * sizeof(FLOAT);
|
||||
stride_y = inc_y2 * sizeof(FLOAT);
|
||||
stride_a = 2 * sizeof(FLOAT);
|
||||
lda2 = lda * 2;
|
||||
|
||||
jx = 0;
|
||||
jy = 0;
|
||||
ja = 0;
|
||||
for(j = 0; j < offset; j++){
|
||||
temp_r1 = alpha_r * x[jx] - alpha_i * x[jx+1];;
|
||||
temp_i1 = alpha_r * x[jx+1] + alpha_i * x[jx];
|
||||
temp_r2 = 0;
|
||||
temp_i2 = 0;
|
||||
y[jy] += temp_r1 * a_ptr[ja];
|
||||
y[jy+1] += temp_i1 * a_ptr[ja];
|
||||
ix = jx + inc_x2;
|
||||
iy = jy + inc_y2;
|
||||
ia = ja + 2;
|
||||
i = j + 1;
|
||||
len = m - i;
|
||||
if(len > 0){
|
||||
gvl = VSETVL(len);
|
||||
inc_xv = incx * gvl * 2;
|
||||
inc_yv = incy * gvl * 2;
|
||||
inc_av = gvl * 2;
|
||||
vr0 = VFMVVF_FLOAT(0, gvl);
|
||||
vr1 = VFMVVF_FLOAT(0, gvl);
|
||||
for(k = 0; k < len / gvl; k++){
|
||||
va0 = VLSEV_FLOAT(&a_ptr[ia], stride_a, gvl);
|
||||
va1 = VLSEV_FLOAT(&a_ptr[ia+1], stride_a, gvl);
|
||||
vy0 = VLSEV_FLOAT(&y[iy], stride_y, gvl);
|
||||
vy1 = VLSEV_FLOAT(&y[iy+1], stride_y, gvl);
|
||||
#ifndef HEMVREV
|
||||
vy0 = VFMACCVF_FLOAT(vy0, temp_r1, va0, gvl);
|
||||
vy0 = VFNMSACVF_FLOAT(vy0, temp_i1, va1, gvl);
|
||||
vy1 = VFMACCVF_FLOAT(vy1, temp_r1, va1, gvl);
|
||||
vy1 = VFMACCVF_FLOAT(vy1, temp_i1, va0, gvl);
|
||||
#else
|
||||
vy0 = VFMACCVF_FLOAT(vy0, temp_r1, va0, gvl);
|
||||
vy0 = VFMACCVF_FLOAT(vy0, temp_i1, va1, gvl);
|
||||
vy1 = VFNMSACVF_FLOAT(vy1, temp_r1, va1, gvl);
|
||||
vy1 = VFMACCVF_FLOAT(vy1, temp_i1, va0, gvl);
|
||||
#endif
|
||||
VSSEV_FLOAT(&y[iy], stride_y, vy0, gvl);
|
||||
VSSEV_FLOAT(&y[iy+1], stride_y, vy1, gvl);
|
||||
|
||||
vx0 = VLSEV_FLOAT(&x[ix], stride_x, gvl);
|
||||
vx1 = VLSEV_FLOAT(&x[ix+1], stride_x, gvl);
|
||||
#ifndef HEMVREV
|
||||
vr0 = VFMACCVV_FLOAT(vr0, vx0, va0, gvl);
|
||||
vr0 = VFMACCVV_FLOAT(vr0, vx1, va1, gvl);
|
||||
vr1 = VFMACCVV_FLOAT(vr1, vx1, va0, gvl);
|
||||
vr1 = VFNMSACVV_FLOAT(vr1, vx0, va1, gvl);
|
||||
#else
|
||||
vr0 = VFMACCVV_FLOAT(vr0, vx0, va0, gvl);
|
||||
vr0 = VFNMSACVV_FLOAT(vr0, vx1, va1, gvl);
|
||||
vr1 = VFMACCVV_FLOAT(vr1, vx1, va0, gvl);
|
||||
vr1 = VFMACCVV_FLOAT(vr1, vx0, va1, gvl);
|
||||
|
||||
#endif
|
||||
i += gvl;
|
||||
ix += inc_xv;
|
||||
iy += inc_yv;
|
||||
ia += inc_av;
|
||||
}
|
||||
|
||||
if(i < m){
|
||||
unsigned int gvl_rem = VSETVL(m-i);
|
||||
va0 = VLSEV_FLOAT(&a_ptr[ia], stride_a, gvl_rem);
|
||||
va1 = VLSEV_FLOAT(&a_ptr[ia+1], stride_a, gvl_rem);
|
||||
vy0 = VLSEV_FLOAT(&y[iy], stride_y, gvl_rem);
|
||||
vy1 = VLSEV_FLOAT(&y[iy+1], stride_y, gvl_rem);
|
||||
#ifndef HEMVREV
|
||||
vy0 = VFMACCVF_FLOAT(vy0, temp_r1, va0, gvl_rem);
|
||||
vy0 = VFNMSACVF_FLOAT(vy0, temp_i1, va1, gvl_rem);
|
||||
vy1 = VFMACCVF_FLOAT(vy1, temp_r1, va1, gvl_rem);
|
||||
vy1 = VFMACCVF_FLOAT(vy1, temp_i1, va0, gvl_rem);
|
||||
#else
|
||||
vy0 = VFMACCVF_FLOAT(vy0, temp_r1, va0, gvl_rem);
|
||||
vy0 = VFMACCVF_FLOAT(vy0, temp_i1, va1, gvl_rem);
|
||||
vy1 = VFNMSACVF_FLOAT(vy1, temp_r1, va1, gvl_rem);
|
||||
vy1 = VFMACCVF_FLOAT(vy1, temp_i1, va0, gvl_rem);
|
||||
#endif
|
||||
VSSEV_FLOAT(&y[iy], stride_y, vy0, gvl_rem);
|
||||
VSSEV_FLOAT(&y[iy+1], stride_y, vy1, gvl_rem);
|
||||
|
||||
vx0 = VLSEV_FLOAT(&x[ix], stride_x, gvl_rem);
|
||||
vx1 = VLSEV_FLOAT(&x[ix+1], stride_x, gvl_rem);
|
||||
#ifndef HEMVREV
|
||||
vr0 = VFMACCVV_FLOAT_TU(vr0, vx0, va0, gvl_rem);
|
||||
vr0 = VFMACCVV_FLOAT_TU(vr0, vx1, va1, gvl_rem);
|
||||
vr1 = VFMACCVV_FLOAT_TU(vr1, vx1, va0, gvl_rem);
|
||||
vr1 = VFNMSACVV_FLOAT_TU(vr1, vx0, va1, gvl_rem);
|
||||
#else
|
||||
vr0 = VFMACCVV_FLOAT_TU(vr0, vx0, va0, gvl_rem);
|
||||
vr0 = VFNMSACVV_FLOAT_TU(vr0, vx1, va1, gvl_rem);
|
||||
vr1 = VFMACCVV_FLOAT_TU(vr1, vx1, va0, gvl_rem);
|
||||
vr1 = VFMACCVV_FLOAT_TU(vr1, vx0, va1, gvl_rem);
|
||||
#endif
|
||||
}
|
||||
v_res = VFREDSUM_FLOAT(vr0, v_z0, gvl);
|
||||
temp_r2 = VFMVFS_FLOAT(v_res);
|
||||
v_res = VFREDSUM_FLOAT(vr1, v_z0, gvl);
|
||||
temp_i2 = VFMVFS_FLOAT(v_res);
|
||||
}
|
||||
y[jy] += alpha_r * temp_r2 - alpha_i * temp_i2;
|
||||
y[jy+1] += alpha_r * temp_i2 + alpha_i * temp_r2;
|
||||
jx += inc_x2;
|
||||
jy += inc_y2;
|
||||
ja += 2;
|
||||
a_ptr += lda2;
|
||||
}
|
||||
return(0);
|
||||
}
|
|
@ -0,0 +1,199 @@
|
|||
/***************************************************************************
|
||||
Copyright (c) 2013, The OpenBLAS Project
|
||||
All rights reserved.
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
1. Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
2. Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in
|
||||
the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
3. Neither the name of the OpenBLAS project nor the names of
|
||||
its contributors may be used to endorse or promote products
|
||||
derived from this software without specific prior written permission.
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
|
||||
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
||||
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*****************************************************************************/
|
||||
|
||||
#include "common.h"
|
||||
#if !defined(DOUBLE)
|
||||
#define VSETVL(n) __riscv_vsetvl_e32m4(n)
|
||||
#define VSETVL_MAX __riscv_vsetvlmax_e32m1()
|
||||
#define FLOAT_V_T vfloat32m4_t
|
||||
#define FLOAT_V_T_M1 vfloat32m1_t
|
||||
#define VFMVFS_FLOAT __riscv_vfmv_f_s_f32m1_f32
|
||||
#define VLSEV_FLOAT __riscv_vlse32_v_f32m4
|
||||
#define VSSEV_FLOAT __riscv_vsse32_v_f32m4
|
||||
#define VFREDSUM_FLOAT __riscv_vfredusum_vs_f32m4_f32m1
|
||||
#define VFMACCVV_FLOAT __riscv_vfmacc_vv_f32m4
|
||||
#define VFMACCVV_FLOAT_TU __riscv_vfmacc_vv_f32m4_tu
|
||||
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f32m4
|
||||
#define VFMVVF_FLOAT __riscv_vfmv_v_f_f32m4
|
||||
#define VFMVVF_FLOAT_M1 __riscv_vfmv_v_f_f32m1
|
||||
#define VFMULVV_FLOAT __riscv_vfmul_vv_f32m4
|
||||
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f32m4
|
||||
#define VFNMSACVV_FLOAT __riscv_vfnmsac_vv_f32m4
|
||||
#define VFNMSACVV_FLOAT_TU __riscv_vfnmsac_vv_f32m4_tu
|
||||
#else
|
||||
#define VSETVL(n) __riscv_vsetvl_e64m4(n)
|
||||
#define VSETVL_MAX __riscv_vsetvlmax_e64m1()
|
||||
#define FLOAT_V_T vfloat64m4_t
|
||||
#define FLOAT_V_T_M1 vfloat64m1_t
|
||||
#define VFMVFS_FLOAT __riscv_vfmv_f_s_f64m1_f64
|
||||
#define VLSEV_FLOAT __riscv_vlse64_v_f64m4
|
||||
#define VSSEV_FLOAT __riscv_vsse64_v_f64m4
|
||||
#define VFREDSUM_FLOAT __riscv_vfredusum_vs_f64m4_f64m1
|
||||
#define VFMACCVV_FLOAT __riscv_vfmacc_vv_f64m4
|
||||
#define VFMACCVV_FLOAT_TU __riscv_vfmacc_vv_f64m4_tu
|
||||
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f64m4
|
||||
#define VFMVVF_FLOAT __riscv_vfmv_v_f_f64m4
|
||||
#define VFMVVF_FLOAT_M1 __riscv_vfmv_v_f_f64m1
|
||||
#define VFMULVV_FLOAT __riscv_vfmul_vv_f64m4
|
||||
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f64m4
|
||||
#define VFNMSACVV_FLOAT __riscv_vfnmsac_vv_f64m4
|
||||
#define VFNMSACVV_FLOAT_TU __riscv_vfnmsac_vv_f64m4_tu
|
||||
#endif
|
||||
|
||||
int CNAME(BLASLONG m, BLASLONG offset, FLOAT alpha_r, FLOAT alpha_i, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *buffer){
|
||||
BLASLONG i, j, k;
|
||||
BLASLONG ix, iy, ia;
|
||||
BLASLONG jx, jy, ja;
|
||||
FLOAT temp_r1, temp_i1;
|
||||
FLOAT temp_r2, temp_i2;
|
||||
FLOAT *a_ptr = a;
|
||||
unsigned int gvl = 0;
|
||||
FLOAT_V_T_M1 v_res, v_z0;
|
||||
gvl = VSETVL_MAX;
|
||||
v_res = VFMVVF_FLOAT_M1(0, gvl);
|
||||
v_z0 = VFMVVF_FLOAT_M1(0, gvl);
|
||||
|
||||
FLOAT_V_T va0, va1, vx0, vx1, vy0, vy1, vr0, vr1;
|
||||
BLASLONG stride_x, stride_y, stride_a, inc_xv, inc_yv, inc_av, lda2;
|
||||
|
||||
BLASLONG inc_x2 = incx * 2;
|
||||
BLASLONG inc_y2 = incy * 2;
|
||||
stride_x = inc_x2 * sizeof(FLOAT);
|
||||
stride_y = inc_y2 * sizeof(FLOAT);
|
||||
stride_a = 2 * sizeof(FLOAT);
|
||||
lda2 = lda * 2;
|
||||
|
||||
BLASLONG m1 = m - offset;
|
||||
a_ptr = a + m1 * lda2;
|
||||
jx = m1 * inc_x2;
|
||||
jy = m1 * inc_y2;
|
||||
ja = m1 * 2;
|
||||
for(j = m1; j < m; j++){
|
||||
temp_r1 = alpha_r * x[jx] - alpha_i * x[jx+1];;
|
||||
temp_i1 = alpha_r * x[jx+1] + alpha_i * x[jx];
|
||||
temp_r2 = 0;
|
||||
temp_i2 = 0;
|
||||
ix = 0;
|
||||
iy = 0;
|
||||
ia = 0;
|
||||
i = 0;
|
||||
if(j > 0){
|
||||
gvl = VSETVL(j);
|
||||
inc_xv = incx * gvl * 2;
|
||||
inc_yv = incy * gvl * 2;
|
||||
inc_av = gvl * 2;
|
||||
vr0 = VFMVVF_FLOAT(0, gvl);
|
||||
vr1 = VFMVVF_FLOAT(0, gvl);
|
||||
for(k = 0; k < j / gvl; k++){
|
||||
va0 = VLSEV_FLOAT(&a_ptr[ia], stride_a, gvl);
|
||||
va1 = VLSEV_FLOAT(&a_ptr[ia+1], stride_a, gvl);
|
||||
vy0 = VLSEV_FLOAT(&y[iy], stride_y, gvl);
|
||||
vy1 = VLSEV_FLOAT(&y[iy+1], stride_y, gvl);
|
||||
#ifndef HEMVREV
|
||||
vy0 = VFMACCVF_FLOAT(vy0, temp_r1, va0, gvl);
|
||||
vy0 = VFNMSACVF_FLOAT(vy0, temp_i1, va1, gvl);
|
||||
vy1 = VFMACCVF_FLOAT(vy1, temp_r1, va1, gvl);
|
||||
vy1 = VFMACCVF_FLOAT(vy1, temp_i1, va0, gvl);
|
||||
#else
|
||||
vy0 = VFMACCVF_FLOAT(vy0, temp_r1, va0, gvl);
|
||||
vy0 = VFMACCVF_FLOAT(vy0, temp_i1, va1, gvl);
|
||||
vy1 = VFNMSACVF_FLOAT(vy1, temp_r1, va1, gvl);
|
||||
vy1 = VFMACCVF_FLOAT(vy1, temp_i1, va0, gvl);
|
||||
#endif
|
||||
VSSEV_FLOAT(&y[iy], stride_y, vy0, gvl);
|
||||
VSSEV_FLOAT(&y[iy+1], stride_y, vy1, gvl);
|
||||
|
||||
vx0 = VLSEV_FLOAT(&x[ix], stride_x, gvl);
|
||||
vx1 = VLSEV_FLOAT(&x[ix+1], stride_x, gvl);
|
||||
#ifndef HEMVREV
|
||||
vr0 = VFMACCVV_FLOAT(vr0, vx0, va0, gvl);
|
||||
vr0 = VFMACCVV_FLOAT(vr0, vx1, va1, gvl);
|
||||
vr1 = VFMACCVV_FLOAT(vr1, vx1, va0, gvl);
|
||||
vr1 = VFNMSACVV_FLOAT(vr1, vx0, va1, gvl);
|
||||
#else
|
||||
vr0 = VFMACCVV_FLOAT(vr0, vx0, va0, gvl);
|
||||
vr0 = VFNMSACVV_FLOAT(vr0, vx1, va1, gvl);
|
||||
vr1 = VFMACCVV_FLOAT(vr1, vx1, va0, gvl);
|
||||
vr1 = VFMACCVV_FLOAT(vr1, vx0, va1, gvl);
|
||||
|
||||
#endif
|
||||
i += gvl;
|
||||
ix += inc_xv;
|
||||
iy += inc_yv;
|
||||
ia += inc_av;
|
||||
}
|
||||
|
||||
if(i < j){
|
||||
unsigned int gvl_rem = VSETVL(j-i);
|
||||
va0 = VLSEV_FLOAT(&a_ptr[ia], stride_a, gvl_rem);
|
||||
va1 = VLSEV_FLOAT(&a_ptr[ia+1], stride_a, gvl_rem);
|
||||
vy0 = VLSEV_FLOAT(&y[iy], stride_y, gvl_rem);
|
||||
vy1 = VLSEV_FLOAT(&y[iy+1], stride_y, gvl_rem);
|
||||
#ifndef HEMVREV
|
||||
vy0 = VFMACCVF_FLOAT(vy0, temp_r1, va0, gvl_rem);
|
||||
vy0 = VFNMSACVF_FLOAT(vy0, temp_i1, va1, gvl_rem);
|
||||
vy1 = VFMACCVF_FLOAT(vy1, temp_r1, va1, gvl_rem);
|
||||
vy1 = VFMACCVF_FLOAT(vy1, temp_i1, va0, gvl_rem);
|
||||
#else
|
||||
vy0 = VFMACCVF_FLOAT(vy0, temp_r1, va0, gvl_rem);
|
||||
vy0 = VFMACCVF_FLOAT(vy0, temp_i1, va1, gvl_rem);
|
||||
vy1 = VFNMSACVF_FLOAT(vy1, temp_r1, va1, gvl_rem);
|
||||
vy1 = VFMACCVF_FLOAT(vy1, temp_i1, va0, gvl_rem);
|
||||
#endif
|
||||
VSSEV_FLOAT(&y[iy], stride_y, vy0, gvl_rem);
|
||||
VSSEV_FLOAT(&y[iy+1], stride_y, vy1, gvl_rem);
|
||||
|
||||
vx0 = VLSEV_FLOAT(&x[ix], stride_x, gvl_rem);
|
||||
vx1 = VLSEV_FLOAT(&x[ix+1], stride_x, gvl_rem);
|
||||
#ifndef HEMVREV
|
||||
vr0 = VFMACCVV_FLOAT_TU(vr0, vx0, va0, gvl_rem);
|
||||
vr0 = VFMACCVV_FLOAT_TU(vr0, vx1, va1, gvl_rem);
|
||||
vr1 = VFMACCVV_FLOAT_TU(vr1, vx1, va0, gvl_rem);
|
||||
vr1 = VFNMSACVV_FLOAT_TU(vr1, vx0, va1, gvl_rem);
|
||||
#else
|
||||
vr0 = VFMACCVV_FLOAT_TU(vr0, vx0, va0, gvl_rem);
|
||||
vr0 = VFNMSACVV_FLOAT_TU(vr0, vx1, va1, gvl_rem);
|
||||
vr1 = VFMACCVV_FLOAT_TU(vr1, vx1, va0, gvl_rem);
|
||||
vr1 = VFMACCVV_FLOAT_TU(vr1, vx0, va1, gvl_rem);
|
||||
#endif
|
||||
}
|
||||
v_res = VFREDSUM_FLOAT(vr0, v_z0, gvl);
|
||||
temp_r2 = VFMVFS_FLOAT(v_res);
|
||||
v_res = VFREDSUM_FLOAT(vr1, v_z0, gvl);
|
||||
temp_i2 = VFMVFS_FLOAT(v_res);
|
||||
}
|
||||
y[jy] += temp_r1 * a_ptr[ja];
|
||||
y[jy+1] += temp_i1 * a_ptr[ja];
|
||||
y[jy] += alpha_r * temp_r2 - alpha_i * temp_i2;
|
||||
y[jy+1] += alpha_r * temp_i2 + alpha_i * temp_r2;
|
||||
jx += inc_x2;
|
||||
jy += inc_y2;
|
||||
ja += 2;
|
||||
a_ptr += lda2;
|
||||
}
|
||||
return(0);
|
||||
}
|
|
@ -0,0 +1,179 @@
|
|||
/***************************************************************************
|
||||
Copyright (c) 2020, The OpenBLAS Project
|
||||
All rights reserved.
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
1. Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
2. Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in
|
||||
the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
3. Neither the name of the OpenBLAS project nor the names of
|
||||
its contributors may be used to endorse or promote products
|
||||
derived from this software without specific prior written permission.
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
|
||||
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
||||
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*****************************************************************************/
|
||||
|
||||
#include "common.h"
|
||||
#if !defined(DOUBLE)
|
||||
#define VSETVL(n) __riscv_vsetvl_e32m4(n)
|
||||
#define VSETVL_MAX __riscv_vsetvlmax_e32m1()
|
||||
#define FLOAT_V_T vfloat32m4_t
|
||||
#define FLOAT_V_T_M1 vfloat32m1_t
|
||||
#define VLEV_FLOAT __riscv_vle32_v_f32m4
|
||||
#define VLSEV_FLOAT __riscv_vlse32_v_f32m4
|
||||
#define VSEV_FLOAT __riscv_vse32_v_f32m4
|
||||
#define VSSEV_FLOAT __riscv_vsse32_v_f32m4
|
||||
#define VFREDSUM_FLOAT __riscv_vfredusum_vs_f32m4_f32m1
|
||||
#define VFMACCVV_FLOAT __riscv_vfmacc_vv_f32m4
|
||||
#define VFNMSACVV_FLOAT __riscv_vfnmsac_vv_f32m4
|
||||
#define VFMACCVV_FLOAT_TU __riscv_vfmacc_vv_f32m4_tu
|
||||
#define VFNMSACVV_FLOAT_TU __riscv_vfnmsac_vv_f32m4_tu
|
||||
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f32m4
|
||||
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f32m4
|
||||
#define VFMVVF_FLOAT __riscv_vfmv_v_f_f32m4
|
||||
#define VFMVVF_FLOAT_M1 __riscv_vfmv_v_f_f32m1
|
||||
#define VFMULVV_FLOAT __riscv_vfmul_vv_f32m4
|
||||
#define VFMVFS_FLOAT_M1 __riscv_vfmv_f_s_f32m1_f32
|
||||
#define VFNEGV_FLOAT __riscv_vfneg_v_f32mf4
|
||||
#else
|
||||
#define VSETVL(n) __riscv_vsetvl_e64m4(n)
|
||||
#define VSETVL_MAX __riscv_vsetvlmax_e64m1()
|
||||
#define FLOAT_V_T vfloat64m4_t
|
||||
#define FLOAT_V_T_M1 vfloat64m1_t
|
||||
#define VLEV_FLOAT __riscv_vle64_v_f64m4
|
||||
#define VLSEV_FLOAT __riscv_vlse64_v_f64m4
|
||||
#define VSEV_FLOAT __riscv_vse64_v_f64m4
|
||||
#define VSSEV_FLOAT __riscv_vsse64_v_f64m4
|
||||
#define VFREDSUM_FLOAT __riscv_vfredusum_vs_f64m4_f64m1
|
||||
#define VFMACCVV_FLOAT __riscv_vfmacc_vv_f64m4
|
||||
#define VFNMSACVV_FLOAT __riscv_vfnmsac_vv_f64m4
|
||||
#define VFMACCVV_FLOAT_TU __riscv_vfmacc_vv_f64m4_tu
|
||||
#define VFNMSACVV_FLOAT_TU __riscv_vfnmsac_vv_f64m4_tu
|
||||
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f64m4
|
||||
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f64m4
|
||||
#define VFMVVF_FLOAT __riscv_vfmv_v_f_f64m4
|
||||
#define VFMVVF_FLOAT_M1 __riscv_vfmv_v_f_f64m1
|
||||
#define VFMULVV_FLOAT __riscv_vfmul_vv_f64m4
|
||||
#define VFMVFS_FLOAT_M1 __riscv_vfmv_f_s_f64m1_f64
|
||||
#define VFNEGV_FLOAT __riscv_vfneg_v_f64mf4
|
||||
#endif
|
||||
|
||||
int CNAME(BLASLONG m, BLASLONG offset, FLOAT alpha_r, FLOAT alpha_i,
|
||||
FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG inc_x, FLOAT *y, BLASLONG inc_y, FLOAT *buffer)
|
||||
{
|
||||
BLASLONG i, j, k;
|
||||
BLASLONG ix,iy;
|
||||
BLASLONG jx,jy;
|
||||
FLOAT temp1[2];
|
||||
FLOAT temp2[2];
|
||||
FLOAT *a_ptr = a;
|
||||
BLASLONG gvl = VSETVL_MAX;
|
||||
FLOAT_V_T_M1 v_res, v_z0;
|
||||
v_res = VFMVVF_FLOAT_M1(0, gvl);
|
||||
v_z0 = VFMVVF_FLOAT_M1(0, gvl);
|
||||
|
||||
FLOAT_V_T va_r, va_i, vx_r, vx_i, vy_r, vy_i, vr_r, vr_i;
|
||||
BLASLONG stride_x, stride_y, inc_xv, inc_yv, len;
|
||||
|
||||
stride_x = 2 * inc_x * sizeof(FLOAT);
|
||||
stride_y = 2 * inc_y * sizeof(FLOAT);
|
||||
jx = 0;
|
||||
jy = 0;
|
||||
for (j=0; j<offset; j++)
|
||||
{
|
||||
temp1[0] = alpha_r * x[2 * jx] - alpha_i * x[2 * jx + 1];
|
||||
temp1[1] = alpha_r * x[2 * jx + 1] + alpha_i * x[2 * jx];
|
||||
temp2[0] = 0;
|
||||
temp2[1] = 0;
|
||||
|
||||
y[2 * jy] += temp1[0] * a_ptr[j * 2] - temp1[1] * a_ptr[j * 2 + 1];
|
||||
y[2 * jy + 1] += temp1[1] * a_ptr[j * 2] + temp1[0] * a_ptr[j * 2 + 1];
|
||||
|
||||
ix = jx + inc_x;
|
||||
iy = jy + inc_y;
|
||||
i = j + 1;
|
||||
len = m - i;
|
||||
if(len > 0){
|
||||
gvl = VSETVL(len);
|
||||
inc_xv = inc_x * gvl;
|
||||
inc_yv = inc_y * gvl;
|
||||
vr_r = VFMVVF_FLOAT(0, gvl);
|
||||
vr_i = VFMVVF_FLOAT(0, gvl);
|
||||
for(k = 0; k < len / gvl; k++){
|
||||
va_r = VLSEV_FLOAT(&a_ptr[2 * i], 2 * sizeof(FLOAT), gvl);
|
||||
va_i = VLSEV_FLOAT(&a_ptr[2 * i + 1], 2 * sizeof(FLOAT), gvl);
|
||||
|
||||
vy_r = VLSEV_FLOAT(&y[2 * iy], stride_y, gvl);
|
||||
vy_i = VLSEV_FLOAT(&y[2 * iy + 1], stride_y, gvl);
|
||||
|
||||
vy_r = VFMACCVF_FLOAT(vy_r, temp1[0], va_r, gvl);
|
||||
vy_r = VFNMSACVF_FLOAT(vy_r, temp1[1], va_i, gvl);
|
||||
vy_i = VFMACCVF_FLOAT(vy_i, temp1[0], va_i, gvl);
|
||||
vy_i = VFMACCVF_FLOAT(vy_i, temp1[1], va_r, gvl);
|
||||
|
||||
VSSEV_FLOAT(&y[2 * iy], stride_y, vy_r, gvl);
|
||||
VSSEV_FLOAT(&y[2 * iy + 1], stride_y, vy_i, gvl);
|
||||
|
||||
vx_r = VLSEV_FLOAT(&x[2 * ix], stride_x, gvl);
|
||||
vx_i = VLSEV_FLOAT(&x[2 * ix + 1], stride_x, gvl);
|
||||
vr_r = VFMACCVV_FLOAT(vr_r, vx_r, va_r, gvl);
|
||||
vr_r = VFNMSACVV_FLOAT(vr_r, vx_i, va_i, gvl);
|
||||
vr_i = VFMACCVV_FLOAT(vr_i, vx_r, va_i, gvl);
|
||||
vr_i = VFMACCVV_FLOAT(vr_i, vx_i, va_r, gvl);
|
||||
|
||||
i += gvl;
|
||||
ix += inc_xv;
|
||||
iy += inc_yv;
|
||||
}
|
||||
|
||||
if(i < m){
|
||||
unsigned int gvl_rem = VSETVL(m-i);
|
||||
vy_r = VLSEV_FLOAT(&y[2 * iy], stride_y, gvl_rem);
|
||||
vy_i = VLSEV_FLOAT(&y[2 * iy + 1], stride_y, gvl_rem);
|
||||
va_r = VLSEV_FLOAT(&a_ptr[2 * i], 2 * sizeof(FLOAT), gvl_rem);
|
||||
va_i = VLSEV_FLOAT(&a_ptr[2 * i + 1], 2 * sizeof(FLOAT), gvl_rem);
|
||||
|
||||
vy_r = VFMACCVF_FLOAT(vy_r, temp1[0], va_r, gvl_rem);
|
||||
vy_r = VFNMSACVF_FLOAT(vy_r, temp1[1], va_i, gvl_rem);
|
||||
vy_i = VFMACCVF_FLOAT(vy_i, temp1[0], va_i, gvl_rem);
|
||||
vy_i = VFMACCVF_FLOAT(vy_i, temp1[1], va_r, gvl_rem);
|
||||
|
||||
VSSEV_FLOAT(&y[2 * iy], stride_y, vy_r, gvl_rem);
|
||||
VSSEV_FLOAT(&y[2 * iy + 1], stride_y, vy_i, gvl_rem);
|
||||
|
||||
vx_r = VLSEV_FLOAT(&x[2 * ix], stride_x, gvl_rem);
|
||||
vx_i = VLSEV_FLOAT(&x[2 * ix + 1], stride_x, gvl_rem);
|
||||
vr_r = VFMACCVV_FLOAT_TU(vr_r, vx_r, va_r, gvl_rem);
|
||||
vr_r = VFNMSACVV_FLOAT_TU(vr_r, vx_i, va_i, gvl_rem);
|
||||
vr_i = VFMACCVV_FLOAT_TU(vr_i, vx_r, va_i, gvl_rem);
|
||||
vr_i = VFMACCVV_FLOAT_TU(vr_i, vx_i, va_r, gvl_rem);
|
||||
|
||||
}
|
||||
v_res = VFREDSUM_FLOAT(vr_r, v_z0, gvl);
|
||||
temp2[0] = VFMVFS_FLOAT_M1(v_res);
|
||||
v_res = VFREDSUM_FLOAT(vr_i, v_z0, gvl);
|
||||
temp2[1] = VFMVFS_FLOAT_M1(v_res);
|
||||
}
|
||||
y[2 * jy] += alpha_r * temp2[0] - alpha_i * temp2[1];
|
||||
y[2 * jy + 1] += alpha_r * temp2[1] + alpha_i * temp2[0];
|
||||
|
||||
jx += inc_x;
|
||||
jy += inc_y;
|
||||
a_ptr += 2 * lda;
|
||||
}
|
||||
|
||||
return(0);
|
||||
}
|
||||
|
|
@ -0,0 +1,177 @@
|
|||
/***************************************************************************
|
||||
Copyright (c) 2020, The OpenBLAS Project
|
||||
All rights reserved.
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
1. Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
2. Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in
|
||||
the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
3. Neither the name of the OpenBLAS project nor the names of
|
||||
its contributors may be used to endorse or promote products
|
||||
derived from this software without specific prior written permission.
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
|
||||
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
||||
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*****************************************************************************/
|
||||
|
||||
#include "common.h"
|
||||
#if !defined(DOUBLE)
|
||||
#define VSETVL(n) __riscv_vsetvl_e32m4(n)
|
||||
#define VSETVL_MAX __riscv_vsetvlmax_e32m1()
|
||||
#define FLOAT_V_T vfloat32m4_t
|
||||
#define FLOAT_V_T_M1 vfloat32m1_t
|
||||
#define VLEV_FLOAT __riscv_vle32_v_f32m4
|
||||
#define VLSEV_FLOAT __riscv_vlse32_v_f32m4
|
||||
#define VSEV_FLOAT __riscv_vse32_v_f32m4
|
||||
#define VSSEV_FLOAT __riscv_vsse32_v_f32m4
|
||||
#define VFREDSUM_FLOAT __riscv_vfredusum_vs_f32m4_f32m1
|
||||
#define VFMACCVV_FLOAT __riscv_vfmacc_vv_f32m4
|
||||
#define VFNMSACVV_FLOAT __riscv_vfnmsac_vv_f32m4
|
||||
#define VFMACCVV_FLOAT_TU __riscv_vfmacc_vv_f32m4_tu
|
||||
#define VFNMSACVV_FLOAT_TU __riscv_vfnmsac_vv_f32m4_tu
|
||||
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f32m4
|
||||
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f32m4
|
||||
#define VFMVVF_FLOAT __riscv_vfmv_v_f_f32m4
|
||||
#define VFMVVF_FLOAT_M1 __riscv_vfmv_v_f_f32m1
|
||||
#define VFMULVV_FLOAT __riscv_vfmul_vv_f32m4
|
||||
#define VFMVFS_FLOAT_M1 __riscv_vfmv_f_s_f32m1_f32
|
||||
#else
|
||||
#define VSETVL(n) __riscv_vsetvl_e64m4(n)
|
||||
#define VSETVL_MAX __riscv_vsetvlmax_e64m1()
|
||||
#define FLOAT_V_T vfloat64m4_t
|
||||
#define FLOAT_V_T_M1 vfloat64m1_t
|
||||
#define VLEV_FLOAT __riscv_vle64_v_f64m4
|
||||
#define VLSEV_FLOAT __riscv_vlse64_v_f64m4
|
||||
#define VSEV_FLOAT __riscv_vse64_v_f64m4
|
||||
#define VSSEV_FLOAT __riscv_vsse64_v_f64m4
|
||||
#define VFREDSUM_FLOAT __riscv_vfredusum_vs_f64m4_f64m1
|
||||
#define VFMACCVV_FLOAT __riscv_vfmacc_vv_f64m4
|
||||
#define VFNMSACVV_FLOAT __riscv_vfnmsac_vv_f64m4
|
||||
#define VFMACCVV_FLOAT_TU __riscv_vfmacc_vv_f64m4_tu
|
||||
#define VFNMSACVV_FLOAT_TU __riscv_vfnmsac_vv_f64m4_tu
|
||||
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f64m4
|
||||
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f64m4
|
||||
#define VFMVVF_FLOAT __riscv_vfmv_v_f_f64m4
|
||||
#define VFMVVF_FLOAT_M1 __riscv_vfmv_v_f_f64m1
|
||||
#define VFMULVV_FLOAT __riscv_vfmul_vv_f64m4
|
||||
#define VFMVFS_FLOAT_M1 __riscv_vfmv_f_s_f64m1_f64
|
||||
#endif
|
||||
|
||||
int CNAME(BLASLONG m, BLASLONG offset, FLOAT alpha_r, FLOAT alpha_i,
|
||||
FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG inc_x, FLOAT *y, BLASLONG inc_y, FLOAT *buffer)
|
||||
{
|
||||
BLASLONG i, j, k;
|
||||
BLASLONG ix,iy;
|
||||
BLASLONG jx,jy;
|
||||
FLOAT temp1[2];
|
||||
FLOAT temp2[2];
|
||||
FLOAT *a_ptr = a;
|
||||
BLASLONG gvl = VSETVL_MAX;
|
||||
FLOAT_V_T_M1 v_res, v_z0;
|
||||
v_res = VFMVVF_FLOAT_M1(0, gvl);
|
||||
v_z0 = VFMVVF_FLOAT_M1(0, gvl);
|
||||
|
||||
|
||||
FLOAT_V_T va_r, va_i, vx_r, vx_i, vy_r, vy_i, vr_r, vr_i;
|
||||
BLASLONG stride_x, stride_y, inc_xv, inc_yv;
|
||||
|
||||
BLASLONG m1 = m - offset;
|
||||
jx = m1 * inc_x;
|
||||
jy = m1 * inc_y;
|
||||
a_ptr += m1 * lda;
|
||||
stride_x = 2 * inc_x * sizeof(FLOAT);
|
||||
stride_y = 2 * inc_y * sizeof(FLOAT);
|
||||
for (j=m1; j<m; j++)
|
||||
{
|
||||
temp1[0] = alpha_r * x[2 * jx] - alpha_i * x[2 * jx + 1];
|
||||
temp1[1] = alpha_r * x[2 * jx + 1] + alpha_i * x[2 * jx];
|
||||
temp2[0] = 0;
|
||||
temp2[1] = 0;
|
||||
if(j > 0){
|
||||
ix = 0;
|
||||
iy = 0;
|
||||
i = 0;
|
||||
gvl = VSETVL(j);
|
||||
inc_xv = inc_x * gvl;
|
||||
inc_yv = inc_y * gvl;
|
||||
vr_r = VFMVVF_FLOAT(0, gvl);
|
||||
vr_i = VFMVVF_FLOAT(0, gvl);
|
||||
for(k = 0; k < j / gvl; k++){
|
||||
va_r = VLSEV_FLOAT(&a_ptr[2 * i], 2 * sizeof(FLOAT), gvl);
|
||||
va_i = VLSEV_FLOAT(&a_ptr[2 * i + 1], 2 * sizeof(FLOAT), gvl);
|
||||
|
||||
vy_r = VLSEV_FLOAT(&y[2 * iy], stride_y, gvl);
|
||||
vy_i = VLSEV_FLOAT(&y[2 * iy + 1], stride_y, gvl);
|
||||
|
||||
vy_r = VFMACCVF_FLOAT(vy_r, temp1[0], va_r, gvl);
|
||||
vy_r = VFNMSACVF_FLOAT(vy_r, temp1[1], va_i, gvl);
|
||||
vy_i = VFMACCVF_FLOAT(vy_i, temp1[0], va_i, gvl);
|
||||
vy_i = VFMACCVF_FLOAT(vy_i, temp1[1], va_r, gvl);
|
||||
|
||||
VSSEV_FLOAT(&y[2 * iy], stride_y, vy_r, gvl);
|
||||
VSSEV_FLOAT(&y[2 * iy + 1], stride_y, vy_i, gvl);
|
||||
|
||||
vx_r = VLSEV_FLOAT(&x[2 * ix], stride_x, gvl);
|
||||
vx_i = VLSEV_FLOAT(&x[2 * ix + 1], stride_x, gvl);
|
||||
vr_r = VFMACCVV_FLOAT(vr_r, vx_r, va_r, gvl);
|
||||
vr_r = VFNMSACVV_FLOAT(vr_r, vx_i, va_i, gvl);
|
||||
vr_i = VFMACCVV_FLOAT(vr_i, vx_r, va_i, gvl);
|
||||
vr_i = VFMACCVV_FLOAT(vr_i, vx_i, va_r, gvl);
|
||||
|
||||
i += gvl;
|
||||
ix += inc_xv;
|
||||
iy += inc_yv;
|
||||
}
|
||||
|
||||
if(i < j){
|
||||
unsigned int gvl_rem = VSETVL(j-i);
|
||||
vy_r = VLSEV_FLOAT(&y[2 * iy], stride_y, gvl_rem);
|
||||
vy_i = VLSEV_FLOAT(&y[2 * iy + 1], stride_y, gvl_rem);
|
||||
|
||||
va_r = VLSEV_FLOAT(&a_ptr[2 * i], 2 * sizeof(FLOAT), gvl_rem);
|
||||
va_i = VLSEV_FLOAT(&a_ptr[2 * i + 1], 2 * sizeof(FLOAT), gvl_rem);
|
||||
|
||||
vy_r = VFMACCVF_FLOAT(vy_r, temp1[0], va_r, gvl_rem);
|
||||
vy_r = VFNMSACVF_FLOAT(vy_r, temp1[1], va_i, gvl_rem);
|
||||
vy_i = VFMACCVF_FLOAT(vy_i, temp1[0], va_i, gvl_rem);
|
||||
vy_i = VFMACCVF_FLOAT(vy_i, temp1[1], va_r, gvl_rem);
|
||||
|
||||
VSSEV_FLOAT(&y[2 * iy], stride_y, vy_r, gvl_rem);
|
||||
VSSEV_FLOAT(&y[2 * iy + 1], stride_y, vy_i, gvl_rem);
|
||||
|
||||
vx_r = VLSEV_FLOAT(&x[2 * ix], stride_x, gvl_rem);
|
||||
vx_i = VLSEV_FLOAT(&x[2 * ix + 1], stride_x, gvl_rem);
|
||||
vr_r = VFMACCVV_FLOAT_TU(vr_r, vx_r, va_r, gvl_rem);
|
||||
vr_r = VFNMSACVV_FLOAT_TU(vr_r, vx_i, va_i, gvl_rem);
|
||||
vr_i = VFMACCVV_FLOAT_TU(vr_i, vx_r, va_i, gvl_rem);
|
||||
vr_i = VFMACCVV_FLOAT_TU(vr_i, vx_i, va_r, gvl_rem);
|
||||
|
||||
}
|
||||
v_res = VFREDSUM_FLOAT(vr_r, v_z0, gvl);
|
||||
temp2[0] = VFMVFS_FLOAT_M1(v_res);
|
||||
v_res = VFREDSUM_FLOAT(vr_i, v_z0, gvl);
|
||||
temp2[1] = VFMVFS_FLOAT_M1(v_res);
|
||||
}
|
||||
|
||||
y[2 * jy] += temp1[0] * a_ptr[j * 2] - temp1[1] * a_ptr[j * 2 + 1] + alpha_r * temp2[0] - alpha_i * temp2[1];
|
||||
y[2 * jy + 1] += temp1[1] * a_ptr[j * 2] + temp1[0] * a_ptr[j * 2 + 1] + alpha_r * temp2[1] + alpha_i * temp2[0];
|
||||
|
||||
a_ptr += 2 * lda;
|
||||
jx += inc_x;
|
||||
jy += inc_y;
|
||||
}
|
||||
|
||||
return(0);
|
||||
}
|
||||
|
Loading…
Reference in New Issue