diff --git a/lapack-netlib/SRC/cgejsv.f b/lapack-netlib/SRC/cgejsv.f
index 062ac182b..8fe4159f6 100644
--- a/lapack-netlib/SRC/cgejsv.f
+++ b/lapack-netlib/SRC/cgejsv.f
@@ -52,10 +52,10 @@
*> are computed and stored in the arrays U and V, respectively. The diagonal
*> of [SIGMA] is computed and stored in the array SVA.
*> \endverbatim
-*>
-*> Arguments:
-*> ==========
-*>
+*
+* Arguments:
+* ==========
+*
*> \param[in] JOBA
*> \verbatim
*> JOBA is CHARACTER*1
@@ -151,7 +151,7 @@
*> transposed A if A^* seems to be better with respect to convergence.
*> If the matrix is not square, JOBT is ignored.
*> The decision is based on two values of entropy over the adjoint
-*> orbit of A^* * A. See the descriptions of WORK(6) and WORK(7).
+*> orbit of A^* * A. See the descriptions of RWORK(6) and RWORK(7).
*> = 'T': transpose if entropy test indicates possibly faster
*> convergence of Jacobi process if A^* is taken as input. If A is
*> replaced with A^*, then the row pivoting is included automatically.
@@ -209,11 +209,11 @@
*> \verbatim
*> SVA is REAL array, dimension (N)
*> On exit,
-*> - For WORK(1)/WORK(2) = ONE: The singular values of A. During the
-*> computation SVA contains Euclidean column norms of the
+*> - For RWORK(1)/RWORK(2) = ONE: The singular values of A. During
+*> the computation SVA contains Euclidean column norms of the
*> iterated matrices in the array A.
-*> - For WORK(1) .NE. WORK(2): The singular values of A are
-*> (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if
+*> - For RWORK(1) .NE. RWORK(2): The singular values of A are
+*> (RWORK(1)/RWORK(2)) * SVA(1:N). This factored form is used if
*> sigma_max(A) overflows or if small singular values have been
*> saved from underflow by scaling the input matrix A.
*> - If JOBR='R' then some of the singular values may be returned
diff --git a/lapack-netlib/SRC/claswlq.f b/lapack-netlib/SRC/claswlq.f
index 63cbd02c6..1a09b8305 100644
--- a/lapack-netlib/SRC/claswlq.f
+++ b/lapack-netlib/SRC/claswlq.f
@@ -104,6 +104,7 @@
*> \endverbatim
*> \param[in] LWORK
*> \verbatim
+*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= MB*M.
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
diff --git a/lapack-netlib/SRC/clatsqr.f b/lapack-netlib/SRC/clatsqr.f
index 7a0b85487..377190081 100644
--- a/lapack-netlib/SRC/clatsqr.f
+++ b/lapack-netlib/SRC/clatsqr.f
@@ -106,6 +106,7 @@
*>
*> \param[in] LWORK
*> \verbatim
+*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= NB*N.
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
diff --git a/lapack-netlib/SRC/ctgevc.f b/lapack-netlib/SRC/ctgevc.f
index 4e5289cb2..22144f259 100644
--- a/lapack-netlib/SRC/ctgevc.f
+++ b/lapack-netlib/SRC/ctgevc.f
@@ -53,7 +53,7 @@
*>
*> S*x = w*P*x, (y**H)*S = w*(y**H)*P,
*>
-*> where y**H denotes the conjugate tranpose of y.
+*> where y**H denotes the conjugate transpose of y.
*> The eigenvalues are not input to this routine, but are computed
*> directly from the diagonal elements of S and P.
*>
@@ -154,7 +154,7 @@
*> \verbatim
*> VR is COMPLEX array, dimension (LDVR,MM)
*> On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
-*> contain an N-by-N matrix Q (usually the unitary matrix Z
+*> contain an N-by-N matrix Z (usually the unitary matrix Z
*> of right Schur vectors returned by CHGEQZ).
*> On exit, if SIDE = 'R' or 'B', VR contains:
*> if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P);
@@ -259,7 +259,7 @@
EXTERNAL LSAME, SLAMCH, CLADIV
* ..
* .. External Subroutines ..
- EXTERNAL CGEMV, SLABAD, XERBLA
+ EXTERNAL CGEMV, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, AIMAG, CMPLX, CONJG, MAX, MIN, REAL
@@ -367,7 +367,6 @@
*
SAFMIN = SLAMCH( 'Safe minimum' )
BIG = ONE / SAFMIN
- CALL SLABAD( SAFMIN, BIG )
ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
SMALL = SAFMIN*N / ULP
BIG = ONE / SMALL
diff --git a/lapack-netlib/SRC/cuncsd2by1.f b/lapack-netlib/SRC/cuncsd2by1.f
index 8360d5932..f0c44f670 100644
--- a/lapack-netlib/SRC/cuncsd2by1.f
+++ b/lapack-netlib/SRC/cuncsd2by1.f
@@ -212,13 +212,13 @@
*> LRWORK is INTEGER
*> The dimension of the array RWORK.
*>
-*> If LRWORK = -1, then a workspace query is assumed; the routine
+*> If LRWORK=-1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK and RWORK
*> arrays, returns this value as the first entry of the WORK
*> and RWORK array, respectively, and no error message related
*> to LWORK or LRWORK is issued by XERBLA.
*> \endverbatim
-*
+*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
diff --git a/lapack-netlib/SRC/cungtsqr.f b/lapack-netlib/SRC/cungtsqr.f
index 64ccb9731..1734be2aa 100644
--- a/lapack-netlib/SRC/cungtsqr.f
+++ b/lapack-netlib/SRC/cungtsqr.f
@@ -133,6 +133,7 @@
*>
*> \param[in] LWORK
*> \verbatim
+*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= (M+NB)*N.
*> If LWORK = -1, then a workspace query is assumed.
*> The routine only calculates the optimal size of the WORK
@@ -302,4 +303,4 @@
*
* End of CUNGTSQR
*
- END
\ No newline at end of file
+ END
diff --git a/lapack-netlib/SRC/dlaswlq.f b/lapack-netlib/SRC/dlaswlq.f
index fb8857145..c95c94cbc 100644
--- a/lapack-netlib/SRC/dlaswlq.f
+++ b/lapack-netlib/SRC/dlaswlq.f
@@ -104,6 +104,7 @@
*> \endverbatim
*> \param[in] LWORK
*> \verbatim
+*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= MB*M.
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
diff --git a/lapack-netlib/SRC/dlatsqr.f b/lapack-netlib/SRC/dlatsqr.f
index f5cbb76bb..94a04be02 100644
--- a/lapack-netlib/SRC/dlatsqr.f
+++ b/lapack-netlib/SRC/dlatsqr.f
@@ -106,6 +106,7 @@
*>
*> \param[in] LWORK
*> \verbatim
+*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= NB*N.
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
diff --git a/lapack-netlib/SRC/dorgtsqr.f b/lapack-netlib/SRC/dorgtsqr.f
index 34d96b238..2e5cd40be 100644
--- a/lapack-netlib/SRC/dorgtsqr.f
+++ b/lapack-netlib/SRC/dorgtsqr.f
@@ -133,6 +133,7 @@
*>
*> \param[in] LWORK
*> \verbatim
+*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= (M+NB)*N.
*> If LWORK = -1, then a workspace query is assumed.
*> The routine only calculates the optimal size of the WORK
@@ -301,4 +302,4 @@
*
* End of DORGTSQR
*
- END
\ No newline at end of file
+ END
diff --git a/lapack-netlib/SRC/slaswlq.f b/lapack-netlib/SRC/slaswlq.f
index bc7cf343d..95e0ddcce 100644
--- a/lapack-netlib/SRC/slaswlq.f
+++ b/lapack-netlib/SRC/slaswlq.f
@@ -104,6 +104,7 @@
*> \endverbatim
*> \param[in] LWORK
*> \verbatim
+*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= MB * M.
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
diff --git a/lapack-netlib/SRC/slatsqr.f b/lapack-netlib/SRC/slatsqr.f
index 33966c01f..86733bb15 100644
--- a/lapack-netlib/SRC/slatsqr.f
+++ b/lapack-netlib/SRC/slatsqr.f
@@ -106,6 +106,7 @@
*>
*> \param[in] LWORK
*> \verbatim
+*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= NB*N.
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
diff --git a/lapack-netlib/SRC/sorgtsqr.f b/lapack-netlib/SRC/sorgtsqr.f
index a755fa4a4..692eba1d9 100644
--- a/lapack-netlib/SRC/sorgtsqr.f
+++ b/lapack-netlib/SRC/sorgtsqr.f
@@ -133,6 +133,7 @@
*>
*> \param[in] LWORK
*> \verbatim
+*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= (M+NB)*N.
*> If LWORK = -1, then a workspace query is assumed.
*> The routine only calculates the optimal size of the WORK
@@ -301,4 +302,4 @@
*
* End of SORGTSQR
*
- END
\ No newline at end of file
+ END
diff --git a/lapack-netlib/SRC/zgejsv.f b/lapack-netlib/SRC/zgejsv.f
index 5134ea891..464c4a0fa 100644
--- a/lapack-netlib/SRC/zgejsv.f
+++ b/lapack-netlib/SRC/zgejsv.f
@@ -52,10 +52,10 @@
*> are computed and stored in the arrays U and V, respectively. The diagonal
*> of [SIGMA] is computed and stored in the array SVA.
*> \endverbatim
-*>
-*> Arguments:
-*> ==========
-*>
+*
+* Arguments:
+* ==========
+*
*> \param[in] JOBA
*> \verbatim
*> JOBA is CHARACTER*1
@@ -151,7 +151,7 @@
*> transposed A if A^* seems to be better with respect to convergence.
*> If the matrix is not square, JOBT is ignored.
*> The decision is based on two values of entropy over the adjoint
-*> orbit of A^* * A. See the descriptions of WORK(6) and WORK(7).
+*> orbit of A^* * A. See the descriptions of RWORK(6) and RWORK(7).
*> = 'T': transpose if entropy test indicates possibly faster
*> convergence of Jacobi process if A^* is taken as input. If A is
*> replaced with A^*, then the row pivoting is included automatically.
@@ -209,11 +209,11 @@
*> \verbatim
*> SVA is DOUBLE PRECISION array, dimension (N)
*> On exit,
-*> - For WORK(1)/WORK(2) = ONE: The singular values of A. During the
-*> computation SVA contains Euclidean column norms of the
+*> - For RWORK(1)/RWORK(2) = ONE: The singular values of A. During
+*> the computation SVA contains Euclidean column norms of the
*> iterated matrices in the array A.
-*> - For WORK(1) .NE. WORK(2): The singular values of A are
-*> (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if
+*> - For RWORK(1) .NE. RWORK(2): The singular values of A are
+*> (RWORK(1)/RWORK(2)) * SVA(1:N). This factored form is used if
*> sigma_max(A) overflows or if small singular values have been
*> saved from underflow by scaling the input matrix A.
*> - If JOBR='R' then some of the singular values may be returned
diff --git a/lapack-netlib/SRC/zlaswlq.f b/lapack-netlib/SRC/zlaswlq.f
index e4e703343..be4c48539 100644
--- a/lapack-netlib/SRC/zlaswlq.f
+++ b/lapack-netlib/SRC/zlaswlq.f
@@ -104,6 +104,7 @@
*> \endverbatim
*> \param[in] LWORK
*> \verbatim
+*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= MB*M.
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
diff --git a/lapack-netlib/SRC/zlatsqr.f b/lapack-netlib/SRC/zlatsqr.f
index ffdbc68c0..8c938aebc 100644
--- a/lapack-netlib/SRC/zlatsqr.f
+++ b/lapack-netlib/SRC/zlatsqr.f
@@ -106,6 +106,7 @@
*>
*> \param[in] LWORK
*> \verbatim
+*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= NB*N.
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
diff --git a/lapack-netlib/SRC/ztgevc.f b/lapack-netlib/SRC/ztgevc.f
index 23bd36ddb..6dcbe582f 100644
--- a/lapack-netlib/SRC/ztgevc.f
+++ b/lapack-netlib/SRC/ztgevc.f
@@ -53,7 +53,7 @@
*>
*> S*x = w*P*x, (y**H)*S = w*(y**H)*P,
*>
-*> where y**H denotes the conjugate tranpose of y.
+*> where y**H denotes the conjugate transpose of y.
*> The eigenvalues are not input to this routine, but are computed
*> directly from the diagonal elements of S and P.
*>
@@ -154,7 +154,7 @@
*> \verbatim
*> VR is COMPLEX*16 array, dimension (LDVR,MM)
*> On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
-*> contain an N-by-N matrix Q (usually the unitary matrix Z
+*> contain an N-by-N matrix Z (usually the unitary matrix Z
*> of right Schur vectors returned by ZHGEQZ).
*> On exit, if SIDE = 'R' or 'B', VR contains:
*> if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P);
@@ -259,7 +259,7 @@
EXTERNAL LSAME, DLAMCH, ZLADIV
* ..
* .. External Subroutines ..
- EXTERNAL DLABAD, XERBLA, ZGEMV
+ EXTERNAL XERBLA, ZGEMV
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN
@@ -367,7 +367,6 @@
*
SAFMIN = DLAMCH( 'Safe minimum' )
BIG = ONE / SAFMIN
- CALL DLABAD( SAFMIN, BIG )
ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
SMALL = SAFMIN*N / ULP
BIG = ONE / SMALL
diff --git a/lapack-netlib/SRC/zuncsd2by1.f b/lapack-netlib/SRC/zuncsd2by1.f
index 2d861c2cc..399b598be 100644
--- a/lapack-netlib/SRC/zuncsd2by1.f
+++ b/lapack-netlib/SRC/zuncsd2by1.f
@@ -211,13 +211,13 @@
*> LRWORK is INTEGER
*> The dimension of the array RWORK.
*>
-*> If LRWORK = -1, then a workspace query is assumed; the routine
+*> If LRWORK=-1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK and RWORK
*> arrays, returns this value as the first entry of the WORK
*> and RWORK array, respectively, and no error message related
*> to LWORK or LRWORK is issued by XERBLA.
*> \endverbatim
-*
+*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
diff --git a/lapack-netlib/SRC/zungtsqr.f b/lapack-netlib/SRC/zungtsqr.f
index 4f2d7dfdd..23e28ac5c 100644
--- a/lapack-netlib/SRC/zungtsqr.f
+++ b/lapack-netlib/SRC/zungtsqr.f
@@ -133,6 +133,7 @@
*>
*> \param[in] LWORK
*> \verbatim
+*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= (M+NB)*N.
*> If LWORK = -1, then a workspace query is assumed.
*> The routine only calculates the optimal size of the WORK
@@ -302,4 +303,4 @@
*
* End of ZUNGTSQR
*
- END
\ No newline at end of file
+ END
diff --git a/lapack-netlib/cgbsvx.f b/lapack-netlib/cgbsvx.f
new file mode 100644
index 000000000..eaab5682c
--- /dev/null
+++ b/lapack-netlib/cgbsvx.f
@@ -0,0 +1,644 @@
+*> \brief CGBSVX computes the solution to system of linear equations A * X = B for GB matrices
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download CGBSVX + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE CGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
+* LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
+* RCOND, FERR, BERR, WORK, RWORK, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER EQUED, FACT, TRANS
+* INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
+* REAL RCOND
+* ..
+* .. Array Arguments ..
+* INTEGER IPIV( * )
+* REAL BERR( * ), C( * ), FERR( * ), R( * ),
+* $ RWORK( * )
+* COMPLEX AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
+* $ WORK( * ), X( LDX, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> CGBSVX uses the LU factorization to compute the solution to a complex
+*> system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
+*> where A is a band matrix of order N with KL subdiagonals and KU
+*> superdiagonals, and X and B are N-by-NRHS matrices.
+*>
+*> Error bounds on the solution and a condition estimate are also
+*> provided.
+*> \endverbatim
+*
+*> \par Description:
+* =================
+*>
+*> \verbatim
+*>
+*> The following steps are performed by this subroutine:
+*>
+*> 1. If FACT = 'E', real scaling factors are computed to equilibrate
+*> the system:
+*> TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
+*> TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
+*> TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
+*> Whether or not the system will be equilibrated depends on the
+*> scaling of the matrix A, but if equilibration is used, A is
+*> overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
+*> or diag(C)*B (if TRANS = 'T' or 'C').
+*>
+*> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
+*> matrix A (after equilibration if FACT = 'E') as
+*> A = L * U,
+*> where L is a product of permutation and unit lower triangular
+*> matrices with KL subdiagonals, and U is upper triangular with
+*> KL+KU superdiagonals.
+*>
+*> 3. If some U(i,i)=0, so that U is exactly singular, then the routine
+*> returns with INFO = i. Otherwise, the factored form of A is used
+*> to estimate the condition number of the matrix A. If the
+*> reciprocal of the condition number is less than machine precision,
+*> INFO = N+1 is returned as a warning, but the routine still goes on
+*> to solve for X and compute error bounds as described below.
+*>
+*> 4. The system of equations is solved for X using the factored form
+*> of A.
+*>
+*> 5. Iterative refinement is applied to improve the computed solution
+*> matrix and calculate error bounds and backward error estimates
+*> for it.
+*>
+*> 6. If equilibration was used, the matrix X is premultiplied by
+*> diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
+*> that it solves the original system before equilibration.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] FACT
+*> \verbatim
+*> FACT is CHARACTER*1
+*> Specifies whether or not the factored form of the matrix A is
+*> supplied on entry, and if not, whether the matrix A should be
+*> equilibrated before it is factored.
+*> = 'F': On entry, AFB and IPIV contain the factored form of
+*> A. If EQUED is not 'N', the matrix A has been
+*> equilibrated with scaling factors given by R and C.
+*> AB, AFB, and IPIV are not modified.
+*> = 'N': The matrix A will be copied to AFB and factored.
+*> = 'E': The matrix A will be equilibrated if necessary, then
+*> copied to AFB and factored.
+*> \endverbatim
+*>
+*> \param[in] TRANS
+*> \verbatim
+*> TRANS is CHARACTER*1
+*> Specifies the form of the system of equations.
+*> = 'N': A * X = B (No transpose)
+*> = 'T': A**T * X = B (Transpose)
+*> = 'C': A**H * X = B (Conjugate transpose)
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of linear equations, i.e., the order of the
+*> matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] KL
+*> \verbatim
+*> KL is INTEGER
+*> The number of subdiagonals within the band of A. KL >= 0.
+*> \endverbatim
+*>
+*> \param[in] KU
+*> \verbatim
+*> KU is INTEGER
+*> The number of superdiagonals within the band of A. KU >= 0.
+*> \endverbatim
+*>
+*> \param[in] NRHS
+*> \verbatim
+*> NRHS is INTEGER
+*> The number of right hand sides, i.e., the number of columns
+*> of the matrices B and X. NRHS >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] AB
+*> \verbatim
+*> AB is COMPLEX array, dimension (LDAB,N)
+*> On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
+*> The j-th column of A is stored in the j-th column of the
+*> array AB as follows:
+*> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
+*>
+*> If FACT = 'F' and EQUED is not 'N', then A must have been
+*> equilibrated by the scaling factors in R and/or C. AB is not
+*> modified if FACT = 'F' or 'N', or if FACT = 'E' and
+*> EQUED = 'N' on exit.
+*>
+*> On exit, if EQUED .ne. 'N', A is scaled as follows:
+*> EQUED = 'R': A := diag(R) * A
+*> EQUED = 'C': A := A * diag(C)
+*> EQUED = 'B': A := diag(R) * A * diag(C).
+*> \endverbatim
+*>
+*> \param[in] LDAB
+*> \verbatim
+*> LDAB is INTEGER
+*> The leading dimension of the array AB. LDAB >= KL+KU+1.
+*> \endverbatim
+*>
+*> \param[in,out] AFB
+*> \verbatim
+*> AFB is COMPLEX array, dimension (LDAFB,N)
+*> If FACT = 'F', then AFB is an input argument and on entry
+*> contains details of the LU factorization of the band matrix
+*> A, as computed by CGBTRF. U is stored as an upper triangular
+*> band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
+*> and the multipliers used during the factorization are stored
+*> in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is
+*> the factored form of the equilibrated matrix A.
+*>
+*> If FACT = 'N', then AFB is an output argument and on exit
+*> returns details of the LU factorization of A.
+*>
+*> If FACT = 'E', then AFB is an output argument and on exit
+*> returns details of the LU factorization of the equilibrated
+*> matrix A (see the description of AB for the form of the
+*> equilibrated matrix).
+*> \endverbatim
+*>
+*> \param[in] LDAFB
+*> \verbatim
+*> LDAFB is INTEGER
+*> The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.
+*> \endverbatim
+*>
+*> \param[in,out] IPIV
+*> \verbatim
+*> IPIV is INTEGER array, dimension (N)
+*> If FACT = 'F', then IPIV is an input argument and on entry
+*> contains the pivot indices from the factorization A = L*U
+*> as computed by CGBTRF; row i of the matrix was interchanged
+*> with row IPIV(i).
+*>
+*> If FACT = 'N', then IPIV is an output argument and on exit
+*> contains the pivot indices from the factorization A = L*U
+*> of the original matrix A.
+*>
+*> If FACT = 'E', then IPIV is an output argument and on exit
+*> contains the pivot indices from the factorization A = L*U
+*> of the equilibrated matrix A.
+*> \endverbatim
+*>
+*> \param[in,out] EQUED
+*> \verbatim
+*> EQUED is CHARACTER*1
+*> Specifies the form of equilibration that was done.
+*> = 'N': No equilibration (always true if FACT = 'N').
+*> = 'R': Row equilibration, i.e., A has been premultiplied by
+*> diag(R).
+*> = 'C': Column equilibration, i.e., A has been postmultiplied
+*> by diag(C).
+*> = 'B': Both row and column equilibration, i.e., A has been
+*> replaced by diag(R) * A * diag(C).
+*> EQUED is an input argument if FACT = 'F'; otherwise, it is an
+*> output argument.
+*> \endverbatim
+*>
+*> \param[in,out] R
+*> \verbatim
+*> R is REAL array, dimension (N)
+*> The row scale factors for A. If EQUED = 'R' or 'B', A is
+*> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
+*> is not accessed. R is an input argument if FACT = 'F';
+*> otherwise, R is an output argument. If FACT = 'F' and
+*> EQUED = 'R' or 'B', each element of R must be positive.
+*> \endverbatim
+*>
+*> \param[in,out] C
+*> \verbatim
+*> C is REAL array, dimension (N)
+*> The column scale factors for A. If EQUED = 'C' or 'B', A is
+*> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
+*> is not accessed. C is an input argument if FACT = 'F';
+*> otherwise, C is an output argument. If FACT = 'F' and
+*> EQUED = 'C' or 'B', each element of C must be positive.
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is COMPLEX array, dimension (LDB,NRHS)
+*> On entry, the right hand side matrix B.
+*> On exit,
+*> if EQUED = 'N', B is not modified;
+*> if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
+*> diag(R)*B;
+*> if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
+*> overwritten by diag(C)*B.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] X
+*> \verbatim
+*> X is COMPLEX array, dimension (LDX,NRHS)
+*> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
+*> to the original system of equations. Note that A and B are
+*> modified on exit if EQUED .ne. 'N', and the solution to the
+*> equilibrated system is inv(diag(C))*X if TRANS = 'N' and
+*> EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
+*> and EQUED = 'R' or 'B'.
+*> \endverbatim
+*>
+*> \param[in] LDX
+*> \verbatim
+*> LDX is INTEGER
+*> The leading dimension of the array X. LDX >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] RCOND
+*> \verbatim
+*> RCOND is REAL
+*> The estimate of the reciprocal condition number of the matrix
+*> A after equilibration (if done). If RCOND is less than the
+*> machine precision (in particular, if RCOND = 0), the matrix
+*> is singular to working precision. This condition is
+*> indicated by a return code of INFO > 0.
+*> \endverbatim
+*>
+*> \param[out] FERR
+*> \verbatim
+*> FERR is REAL array, dimension (NRHS)
+*> The estimated forward error bound for each solution vector
+*> X(j) (the j-th column of the solution matrix X).
+*> If XTRUE is the true solution corresponding to X(j), FERR(j)
+*> is an estimated upper bound for the magnitude of the largest
+*> element in (X(j) - XTRUE) divided by the magnitude of the
+*> largest element in X(j). The estimate is as reliable as
+*> the estimate for RCOND, and is almost always a slight
+*> overestimate of the true error.
+*> \endverbatim
+*>
+*> \param[out] BERR
+*> \verbatim
+*> BERR is REAL array, dimension (NRHS)
+*> The componentwise relative backward error of each solution
+*> vector X(j) (i.e., the smallest relative change in
+*> any element of A or B that makes X(j) an exact solution).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX array, dimension (2*N)
+*> \endverbatim
+*>
+*> \param[out] RWORK
+*> \verbatim
+*> RWORK is REAL array, dimension (MAX(1,N))
+*> On exit, RWORK(1) contains the reciprocal pivot growth
+*> factor norm(A)/norm(U). The "max absolute element" norm is
+*> used. If RWORK(1) is much less than 1, then the stability
+*> of the LU factorization of the (equilibrated) matrix A
+*> could be poor. This also means that the solution X, condition
+*> estimator RCOND, and forward error bound FERR could be
+*> unreliable. If factorization fails with 0 RWORK(1) contains the reciprocal pivot growth factor for the
+*> leading INFO columns of A.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: if INFO = i, and i is
+*> <= N: U(i,i) is exactly zero. The factorization
+*> has been completed, but the factor U is exactly
+*> singular, so the solution and error bounds
+*> could not be computed. RCOND = 0 is returned.
+*> = N+1: U is nonsingular, but RCOND is less than machine
+*> precision, meaning that the matrix is singular
+*> to working precision. Nevertheless, the
+*> solution and error bounds are computed because
+*> there are a number of situations where the
+*> computed solution can be more accurate than the
+*> value of RCOND would suggest.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup complexGBsolve
+*
+* =====================================================================
+ SUBROUTINE CGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
+ $ LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
+ $ RCOND, FERR, BERR, WORK, RWORK, INFO )
+*
+* -- LAPACK driver routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ CHARACTER EQUED, FACT, TRANS
+ INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
+ REAL RCOND
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * )
+ REAL BERR( * ), C( * ), FERR( * ), R( * ),
+ $ RWORK( * )
+ COMPLEX AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
+ $ WORK( * ), X( LDX, * )
+* ..
+*
+* =====================================================================
+* Moved setting of INFO = N+1 so INFO does not subsequently get
+* overwritten. Sven, 17 Mar 05.
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO, ONE
+ PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
+ CHARACTER NORM
+ INTEGER I, INFEQU, J, J1, J2
+ REAL AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
+ $ ROWCND, RPVGRW, SMLNUM
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ REAL CLANGB, CLANTB, SLAMCH
+ EXTERNAL LSAME, CLANGB, CLANTB, SLAMCH
+* ..
+* .. External Subroutines ..
+ EXTERNAL CCOPY, CGBCON, CGBEQU, CGBRFS, CGBTRF, CGBTRS,
+ $ CLACPY, CLAQGB, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+ INFO = 0
+ NOFACT = LSAME( FACT, 'N' )
+ EQUIL = LSAME( FACT, 'E' )
+ NOTRAN = LSAME( TRANS, 'N' )
+ IF( NOFACT .OR. EQUIL ) THEN
+ EQUED = 'N'
+ ROWEQU = .FALSE.
+ COLEQU = .FALSE.
+ ELSE
+ ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
+ COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
+ SMLNUM = SLAMCH( 'Safe minimum' )
+ BIGNUM = ONE / SMLNUM
+ END IF
+*
+* Test the input parameters.
+*
+ IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
+ $ THEN
+ INFO = -1
+ ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
+ $ LSAME( TRANS, 'C' ) ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( KL.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( KU.LT.0 ) THEN
+ INFO = -5
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -6
+ ELSE IF( LDAB.LT.KL+KU+1 ) THEN
+ INFO = -8
+ ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
+ INFO = -10
+ ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
+ $ ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
+ INFO = -12
+ ELSE
+ IF( ROWEQU ) THEN
+ RCMIN = BIGNUM
+ RCMAX = ZERO
+ DO 10 J = 1, N
+ RCMIN = MIN( RCMIN, R( J ) )
+ RCMAX = MAX( RCMAX, R( J ) )
+ 10 CONTINUE
+ IF( RCMIN.LE.ZERO ) THEN
+ INFO = -13
+ ELSE IF( N.GT.0 ) THEN
+ ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
+ ELSE
+ ROWCND = ONE
+ END IF
+ END IF
+ IF( COLEQU .AND. INFO.EQ.0 ) THEN
+ RCMIN = BIGNUM
+ RCMAX = ZERO
+ DO 20 J = 1, N
+ RCMIN = MIN( RCMIN, C( J ) )
+ RCMAX = MAX( RCMAX, C( J ) )
+ 20 CONTINUE
+ IF( RCMIN.LE.ZERO ) THEN
+ INFO = -14
+ ELSE IF( N.GT.0 ) THEN
+ COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
+ ELSE
+ COLCND = ONE
+ END IF
+ END IF
+ IF( INFO.EQ.0 ) THEN
+ IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -16
+ ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
+ INFO = -18
+ END IF
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'CGBSVX', -INFO )
+ RETURN
+ END IF
+*
+ IF( EQUIL ) THEN
+*
+* Compute row and column scalings to equilibrate the matrix A.
+*
+ CALL CGBEQU( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
+ $ AMAX, INFEQU )
+ IF( INFEQU.EQ.0 ) THEN
+*
+* Equilibrate the matrix.
+*
+ CALL CLAQGB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
+ $ AMAX, EQUED )
+ ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
+ COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
+ END IF
+ END IF
+*
+* Scale the right hand side.
+*
+ IF( NOTRAN ) THEN
+ IF( ROWEQU ) THEN
+ DO 40 J = 1, NRHS
+ DO 30 I = 1, N
+ B( I, J ) = R( I )*B( I, J )
+ 30 CONTINUE
+ 40 CONTINUE
+ END IF
+ ELSE IF( COLEQU ) THEN
+ DO 60 J = 1, NRHS
+ DO 50 I = 1, N
+ B( I, J ) = C( I )*B( I, J )
+ 50 CONTINUE
+ 60 CONTINUE
+ END IF
+*
+ IF( NOFACT .OR. EQUIL ) THEN
+*
+* Compute the LU factorization of the band matrix A.
+*
+ DO 70 J = 1, N
+ J1 = MAX( J-KU, 1 )
+ J2 = MIN( J+KL, N )
+ CALL CCOPY( J2-J1+1, AB( KU+1-J+J1, J ), 1,
+ $ AFB( KL+KU+1-J+J1, J ), 1 )
+ 70 CONTINUE
+*
+ CALL CGBTRF( N, N, KL, KU, AFB, LDAFB, IPIV, INFO )
+*
+* Return if INFO is non-zero.
+*
+ IF( INFO.GT.0 ) THEN
+*
+* Compute the reciprocal pivot growth factor of the
+* leading rank-deficient INFO columns of A.
+*
+ ANORM = ZERO
+ DO 90 J = 1, INFO
+ DO 80 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
+ ANORM = MAX( ANORM, ABS( AB( I, J ) ) )
+ 80 CONTINUE
+ 90 CONTINUE
+ RPVGRW = CLANTB( 'M', 'U', 'N', INFO, MIN( INFO-1, KL+KU ),
+ $ AFB( MAX( 1, KL+KU+2-INFO ), 1 ), LDAFB,
+ $ RWORK )
+ IF( RPVGRW.EQ.ZERO ) THEN
+ RPVGRW = ONE
+ ELSE
+ RPVGRW = ANORM / RPVGRW
+ END IF
+ RWORK( 1 ) = RPVGRW
+ RCOND = ZERO
+ RETURN
+ END IF
+ END IF
+*
+* Compute the norm of the matrix A and the
+* reciprocal pivot growth factor RPVGRW.
+*
+ IF( NOTRAN ) THEN
+ NORM = '1'
+ ELSE
+ NORM = 'I'
+ END IF
+ ANORM = CLANGB( NORM, N, KL, KU, AB, LDAB, RWORK )
+ RPVGRW = CLANTB( 'M', 'U', 'N', N, KL+KU, AFB, LDAFB, RWORK )
+ IF( RPVGRW.EQ.ZERO ) THEN
+ RPVGRW = ONE
+ ELSE
+ RPVGRW = CLANGB( 'M', N, KL, KU, AB, LDAB, RWORK ) / RPVGRW
+ END IF
+*
+* Compute the reciprocal of the condition number of A.
+*
+ CALL CGBCON( NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND,
+ $ WORK, RWORK, INFO )
+*
+* Compute the solution matrix X.
+*
+ CALL CLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
+ CALL CGBTRS( TRANS, N, KL, KU, NRHS, AFB, LDAFB, IPIV, X, LDX,
+ $ INFO )
+*
+* Use iterative refinement to improve the computed solution and
+* compute error bounds and backward error estimates for it.
+*
+ CALL CGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV,
+ $ B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
+*
+* Transform the solution matrix X to a solution of the original
+* system.
+*
+ IF( NOTRAN ) THEN
+ IF( COLEQU ) THEN
+ DO 110 J = 1, NRHS
+ DO 100 I = 1, N
+ X( I, J ) = C( I )*X( I, J )
+ 100 CONTINUE
+ 110 CONTINUE
+ DO 120 J = 1, NRHS
+ FERR( J ) = FERR( J ) / COLCND
+ 120 CONTINUE
+ END IF
+ ELSE IF( ROWEQU ) THEN
+ DO 140 J = 1, NRHS
+ DO 130 I = 1, N
+ X( I, J ) = R( I )*X( I, J )
+ 130 CONTINUE
+ 140 CONTINUE
+ DO 150 J = 1, NRHS
+ FERR( J ) = FERR( J ) / ROWCND
+ 150 CONTINUE
+ END IF
+*
+* Set INFO = N+1 if the matrix is singular to working precision.
+*
+ IF( RCOND.LT.SLAMCH( 'Epsilon' ) )
+ $ INFO = N + 1
+*
+ RWORK( 1 ) = RPVGRW
+ RETURN
+*
+* End of CGBSVX
+*
+ END
diff --git a/lapack-netlib/cgejsv.f b/lapack-netlib/cgejsv.f
new file mode 100644
index 000000000..51a6cee4e
--- /dev/null
+++ b/lapack-netlib/cgejsv.f
@@ -0,0 +1,2232 @@
+*> \brief \b CGEJSV
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download CGEJSV + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE CGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
+* M, N, A, LDA, SVA, U, LDU, V, LDV,
+* CWORK, LWORK, RWORK, LRWORK, IWORK, INFO )
+*
+* .. Scalar Arguments ..
+* IMPLICIT NONE
+* INTEGER INFO, LDA, LDU, LDV, LWORK, M, N
+* ..
+* .. Array Arguments ..
+* COMPLEX A( LDA, * ), U( LDU, * ), V( LDV, * ), CWORK( LWORK )
+* REAL SVA( N ), RWORK( LRWORK )
+* INTEGER IWORK( * )
+* CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> CGEJSV computes the singular value decomposition (SVD) of a complex M-by-N
+*> matrix [A], where M >= N. The SVD of [A] is written as
+*>
+*> [A] = [U] * [SIGMA] * [V]^*,
+*>
+*> where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N
+*> diagonal elements, [U] is an M-by-N (or M-by-M) unitary matrix, and
+*> [V] is an N-by-N unitary matrix. The diagonal elements of [SIGMA] are
+*> the singular values of [A]. The columns of [U] and [V] are the left and
+*> the right singular vectors of [A], respectively. The matrices [U] and [V]
+*> are computed and stored in the arrays U and V, respectively. The diagonal
+*> of [SIGMA] is computed and stored in the array SVA.
+*> \endverbatim
+*>
+*> Arguments:
+*> ==========
+*>
+*> \param[in] JOBA
+*> \verbatim
+*> JOBA is CHARACTER*1
+*> Specifies the level of accuracy:
+*> = 'C': This option works well (high relative accuracy) if A = B * D,
+*> with well-conditioned B and arbitrary diagonal matrix D.
+*> The accuracy cannot be spoiled by COLUMN scaling. The
+*> accuracy of the computed output depends on the condition of
+*> B, and the procedure aims at the best theoretical accuracy.
+*> The relative error max_{i=1:N}|d sigma_i| / sigma_i is
+*> bounded by f(M,N)*epsilon* cond(B), independent of D.
+*> The input matrix is preprocessed with the QRF with column
+*> pivoting. This initial preprocessing and preconditioning by
+*> a rank revealing QR factorization is common for all values of
+*> JOBA. Additional actions are specified as follows:
+*> = 'E': Computation as with 'C' with an additional estimate of the
+*> condition number of B. It provides a realistic error bound.
+*> = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings
+*> D1, D2, and well-conditioned matrix C, this option gives
+*> higher accuracy than the 'C' option. If the structure of the
+*> input matrix is not known, and relative accuracy is
+*> desirable, then this option is advisable. The input matrix A
+*> is preprocessed with QR factorization with FULL (row and
+*> column) pivoting.
+*> = 'G': Computation as with 'F' with an additional estimate of the
+*> condition number of B, where A=B*D. If A has heavily weighted
+*> rows, then using this condition number gives too pessimistic
+*> error bound.
+*> = 'A': Small singular values are not well determined by the data
+*> and are considered as noisy; the matrix is treated as
+*> numerically rank deficient. The error in the computed
+*> singular values is bounded by f(m,n)*epsilon*||A||.
+*> The computed SVD A = U * S * V^* restores A up to
+*> f(m,n)*epsilon*||A||.
+*> This gives the procedure the licence to discard (set to zero)
+*> all singular values below N*epsilon*||A||.
+*> = 'R': Similar as in 'A'. Rank revealing property of the initial
+*> QR factorization is used do reveal (using triangular factor)
+*> a gap sigma_{r+1} < epsilon * sigma_r in which case the
+*> numerical RANK is declared to be r. The SVD is computed with
+*> absolute error bounds, but more accurately than with 'A'.
+*> \endverbatim
+*>
+*> \param[in] JOBU
+*> \verbatim
+*> JOBU is CHARACTER*1
+*> Specifies whether to compute the columns of U:
+*> = 'U': N columns of U are returned in the array U.
+*> = 'F': full set of M left sing. vectors is returned in the array U.
+*> = 'W': U may be used as workspace of length M*N. See the description
+*> of U.
+*> = 'N': U is not computed.
+*> \endverbatim
+*>
+*> \param[in] JOBV
+*> \verbatim
+*> JOBV is CHARACTER*1
+*> Specifies whether to compute the matrix V:
+*> = 'V': N columns of V are returned in the array V; Jacobi rotations
+*> are not explicitly accumulated.
+*> = 'J': N columns of V are returned in the array V, but they are
+*> computed as the product of Jacobi rotations, if JOBT = 'N'.
+*> = 'W': V may be used as workspace of length N*N. See the description
+*> of V.
+*> = 'N': V is not computed.
+*> \endverbatim
+*>
+*> \param[in] JOBR
+*> \verbatim
+*> JOBR is CHARACTER*1
+*> Specifies the RANGE for the singular values. Issues the licence to
+*> set to zero small positive singular values if they are outside
+*> specified range. If A .NE. 0 is scaled so that the largest singular
+*> value of c*A is around SQRT(BIG), BIG=SLAMCH('O'), then JOBR issues
+*> the licence to kill columns of A whose norm in c*A is less than
+*> SQRT(SFMIN) (for JOBR = 'R'), or less than SMALL=SFMIN/EPSLN,
+*> where SFMIN=SLAMCH('S'), EPSLN=SLAMCH('E').
+*> = 'N': Do not kill small columns of c*A. This option assumes that
+*> BLAS and QR factorizations and triangular solvers are
+*> implemented to work in that range. If the condition of A
+*> is greater than BIG, use CGESVJ.
+*> = 'R': RESTRICTED range for sigma(c*A) is [SQRT(SFMIN), SQRT(BIG)]
+*> (roughly, as described above). This option is recommended.
+*> ===========================
+*> For computing the singular values in the FULL range [SFMIN,BIG]
+*> use CGESVJ.
+*> \endverbatim
+*>
+*> \param[in] JOBT
+*> \verbatim
+*> JOBT is CHARACTER*1
+*> If the matrix is square then the procedure may determine to use
+*> transposed A if A^* seems to be better with respect to convergence.
+*> If the matrix is not square, JOBT is ignored.
+*> The decision is based on two values of entropy over the adjoint
+*> orbit of A^* * A. See the descriptions of RWORK(6) and RWORK(7).
+*> = 'T': transpose if entropy test indicates possibly faster
+*> convergence of Jacobi process if A^* is taken as input. If A is
+*> replaced with A^*, then the row pivoting is included automatically.
+*> = 'N': do not speculate.
+*> The option 'T' can be used to compute only the singular values, or
+*> the full SVD (U, SIGMA and V). For only one set of singular vectors
+*> (U or V), the caller should provide both U and V, as one of the
+*> matrices is used as workspace if the matrix A is transposed.
+*> The implementer can easily remove this constraint and make the
+*> code more complicated. See the descriptions of U and V.
+*> In general, this option is considered experimental, and 'N'; should
+*> be preferred. This is subject to changes in the future.
+*> \endverbatim
+*>
+*> \param[in] JOBP
+*> \verbatim
+*> JOBP is CHARACTER*1
+*> Issues the licence to introduce structured perturbations to drown
+*> denormalized numbers. This licence should be active if the
+*> denormals are poorly implemented, causing slow computation,
+*> especially in cases of fast convergence (!). For details see [1,2].
+*> For the sake of simplicity, this perturbations are included only
+*> when the full SVD or only the singular values are requested. The
+*> implementer/user can easily add the perturbation for the cases of
+*> computing one set of singular vectors.
+*> = 'P': introduce perturbation
+*> = 'N': do not perturb
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the input matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the input matrix A. M >= N >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX array, dimension (LDA,N)
+*> On entry, the M-by-N matrix A.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[out] SVA
+*> \verbatim
+*> SVA is REAL array, dimension (N)
+*> On exit,
+*> - For RWORK(1)/RWORK(2) = ONE: The singular values of A. During
+*> the computation SVA contains Euclidean column norms of the
+*> iterated matrices in the array A.
+*> - For RWORK(1) .NE. RWORK(2): The singular values of A are
+*> (RWORK(1)/RWORK(2)) * SVA(1:N). This factored form is used if
+*> sigma_max(A) overflows or if small singular values have been
+*> saved from underflow by scaling the input matrix A.
+*> - If JOBR='R' then some of the singular values may be returned
+*> as exact zeros obtained by "set to zero" because they are
+*> below the numerical rank threshold or are denormalized numbers.
+*> \endverbatim
+*>
+*> \param[out] U
+*> \verbatim
+*> U is COMPLEX array, dimension ( LDU, N ) or ( LDU, M )
+*> If JOBU = 'U', then U contains on exit the M-by-N matrix of
+*> the left singular vectors.
+*> If JOBU = 'F', then U contains on exit the M-by-M matrix of
+*> the left singular vectors, including an ONB
+*> of the orthogonal complement of the Range(A).
+*> If JOBU = 'W' .AND. (JOBV = 'V' .AND. JOBT = 'T' .AND. M = N),
+*> then U is used as workspace if the procedure
+*> replaces A with A^*. In that case, [V] is computed
+*> in U as left singular vectors of A^* and then
+*> copied back to the V array. This 'W' option is just
+*> a reminder to the caller that in this case U is
+*> reserved as workspace of length N*N.
+*> If JOBU = 'N' U is not referenced, unless JOBT='T'.
+*> \endverbatim
+*>
+*> \param[in] LDU
+*> \verbatim
+*> LDU is INTEGER
+*> The leading dimension of the array U, LDU >= 1.
+*> IF JOBU = 'U' or 'F' or 'W', then LDU >= M.
+*> \endverbatim
+*>
+*> \param[out] V
+*> \verbatim
+*> V is COMPLEX array, dimension ( LDV, N )
+*> If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of
+*> the right singular vectors;
+*> If JOBV = 'W', AND (JOBU = 'U' AND JOBT = 'T' AND M = N),
+*> then V is used as workspace if the pprocedure
+*> replaces A with A^*. In that case, [U] is computed
+*> in V as right singular vectors of A^* and then
+*> copied back to the U array. This 'W' option is just
+*> a reminder to the caller that in this case V is
+*> reserved as workspace of length N*N.
+*> If JOBV = 'N' V is not referenced, unless JOBT='T'.
+*> \endverbatim
+*>
+*> \param[in] LDV
+*> \verbatim
+*> LDV is INTEGER
+*> The leading dimension of the array V, LDV >= 1.
+*> If JOBV = 'V' or 'J' or 'W', then LDV >= N.
+*> \endverbatim
+*>
+*> \param[out] CWORK
+*> \verbatim
+*> CWORK is COMPLEX array, dimension (MAX(2,LWORK))
+*> If the call to CGEJSV is a workspace query (indicated by LWORK=-1 or
+*> LRWORK=-1), then on exit CWORK(1) contains the required length of
+*> CWORK for the job parameters used in the call.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> Length of CWORK to confirm proper allocation of workspace.
+*> LWORK depends on the job:
+*>
+*> 1. If only SIGMA is needed ( JOBU = 'N', JOBV = 'N' ) and
+*> 1.1 .. no scaled condition estimate required (JOBA.NE.'E'.AND.JOBA.NE.'G'):
+*> LWORK >= 2*N+1. This is the minimal requirement.
+*> ->> For optimal performance (blocked code) the optimal value
+*> is LWORK >= N + (N+1)*NB. Here NB is the optimal
+*> block size for CGEQP3 and CGEQRF.
+*> In general, optimal LWORK is computed as
+*> LWORK >= max(N+LWORK(CGEQP3),N+LWORK(CGEQRF), LWORK(CGESVJ)).
+*> 1.2. .. an estimate of the scaled condition number of A is
+*> required (JOBA='E', or 'G'). In this case, LWORK the minimal
+*> requirement is LWORK >= N*N + 2*N.
+*> ->> For optimal performance (blocked code) the optimal value
+*> is LWORK >= max(N+(N+1)*NB, N*N+2*N)=N**2+2*N.
+*> In general, the optimal length LWORK is computed as
+*> LWORK >= max(N+LWORK(CGEQP3),N+LWORK(CGEQRF), LWORK(CGESVJ),
+*> N*N+LWORK(CPOCON)).
+*> 2. If SIGMA and the right singular vectors are needed (JOBV = 'V'),
+*> (JOBU = 'N')
+*> 2.1 .. no scaled condition estimate requested (JOBE = 'N'):
+*> -> the minimal requirement is LWORK >= 3*N.
+*> -> For optimal performance,
+*> LWORK >= max(N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
+*> where NB is the optimal block size for CGEQP3, CGEQRF, CGELQF,
+*> CUNMLQ. In general, the optimal length LWORK is computed as
+*> LWORK >= max(N+LWORK(CGEQP3), N+LWORK(CGESVJ),
+*> N+LWORK(CGELQF), 2*N+LWORK(CGEQRF), N+LWORK(CUNMLQ)).
+*> 2.2 .. an estimate of the scaled condition number of A is
+*> required (JOBA='E', or 'G').
+*> -> the minimal requirement is LWORK >= 3*N.
+*> -> For optimal performance,
+*> LWORK >= max(N+(N+1)*NB, 2*N,2*N+N*NB)=2*N+N*NB,
+*> where NB is the optimal block size for CGEQP3, CGEQRF, CGELQF,
+*> CUNMLQ. In general, the optimal length LWORK is computed as
+*> LWORK >= max(N+LWORK(CGEQP3), LWORK(CPOCON), N+LWORK(CGESVJ),
+*> N+LWORK(CGELQF), 2*N+LWORK(CGEQRF), N+LWORK(CUNMLQ)).
+*> 3. If SIGMA and the left singular vectors are needed
+*> 3.1 .. no scaled condition estimate requested (JOBE = 'N'):
+*> -> the minimal requirement is LWORK >= 3*N.
+*> -> For optimal performance:
+*> if JOBU = 'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
+*> where NB is the optimal block size for CGEQP3, CGEQRF, CUNMQR.
+*> In general, the optimal length LWORK is computed as
+*> LWORK >= max(N+LWORK(CGEQP3), 2*N+LWORK(CGEQRF), N+LWORK(CUNMQR)).
+*> 3.2 .. an estimate of the scaled condition number of A is
+*> required (JOBA='E', or 'G').
+*> -> the minimal requirement is LWORK >= 3*N.
+*> -> For optimal performance:
+*> if JOBU = 'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
+*> where NB is the optimal block size for CGEQP3, CGEQRF, CUNMQR.
+*> In general, the optimal length LWORK is computed as
+*> LWORK >= max(N+LWORK(CGEQP3),N+LWORK(CPOCON),
+*> 2*N+LWORK(CGEQRF), N+LWORK(CUNMQR)).
+*>
+*> 4. If the full SVD is needed: (JOBU = 'U' or JOBU = 'F') and
+*> 4.1. if JOBV = 'V'
+*> the minimal requirement is LWORK >= 5*N+2*N*N.
+*> 4.2. if JOBV = 'J' the minimal requirement is
+*> LWORK >= 4*N+N*N.
+*> In both cases, the allocated CWORK can accommodate blocked runs
+*> of CGEQP3, CGEQRF, CGELQF, CUNMQR, CUNMLQ.
+*>
+*> If the call to CGEJSV is a workspace query (indicated by LWORK=-1 or
+*> LRWORK=-1), then on exit CWORK(1) contains the optimal and CWORK(2) contains the
+*> minimal length of CWORK for the job parameters used in the call.
+*> \endverbatim
+*>
+*> \param[out] RWORK
+*> \verbatim
+*> RWORK is REAL array, dimension (MAX(7,LRWORK))
+*> On exit,
+*> RWORK(1) = Determines the scaling factor SCALE = RWORK(2) / RWORK(1)
+*> such that SCALE*SVA(1:N) are the computed singular values
+*> of A. (See the description of SVA().)
+*> RWORK(2) = See the description of RWORK(1).
+*> RWORK(3) = SCONDA is an estimate for the condition number of
+*> column equilibrated A. (If JOBA = 'E' or 'G')
+*> SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1).
+*> It is computed using CPOCON. It holds
+*> N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
+*> where R is the triangular factor from the QRF of A.
+*> However, if R is truncated and the numerical rank is
+*> determined to be strictly smaller than N, SCONDA is
+*> returned as -1, thus indicating that the smallest
+*> singular values might be lost.
+*>
+*> If full SVD is needed, the following two condition numbers are
+*> useful for the analysis of the algorithm. They are provided for
+*> a developer/implementer who is familiar with the details of
+*> the method.
+*>
+*> RWORK(4) = an estimate of the scaled condition number of the
+*> triangular factor in the first QR factorization.
+*> RWORK(5) = an estimate of the scaled condition number of the
+*> triangular factor in the second QR factorization.
+*> The following two parameters are computed if JOBT = 'T'.
+*> They are provided for a developer/implementer who is familiar
+*> with the details of the method.
+*> RWORK(6) = the entropy of A^* * A :: this is the Shannon entropy
+*> of diag(A^* * A) / Trace(A^* * A) taken as point in the
+*> probability simplex.
+*> RWORK(7) = the entropy of A * A^*. (See the description of RWORK(6).)
+*> If the call to CGEJSV is a workspace query (indicated by LWORK=-1 or
+*> LRWORK=-1), then on exit RWORK(1) contains the required length of
+*> RWORK for the job parameters used in the call.
+*> \endverbatim
+*>
+*> \param[in] LRWORK
+*> \verbatim
+*> LRWORK is INTEGER
+*> Length of RWORK to confirm proper allocation of workspace.
+*> LRWORK depends on the job:
+*>
+*> 1. If only the singular values are requested i.e. if
+*> LSAME(JOBU,'N') .AND. LSAME(JOBV,'N')
+*> then:
+*> 1.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
+*> then: LRWORK = max( 7, 2 * M ).
+*> 1.2. Otherwise, LRWORK = max( 7, N ).
+*> 2. If singular values with the right singular vectors are requested
+*> i.e. if
+*> (LSAME(JOBV,'V').OR.LSAME(JOBV,'J')) .AND.
+*> .NOT.(LSAME(JOBU,'U').OR.LSAME(JOBU,'F'))
+*> then:
+*> 2.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
+*> then LRWORK = max( 7, 2 * M ).
+*> 2.2. Otherwise, LRWORK = max( 7, N ).
+*> 3. If singular values with the left singular vectors are requested, i.e. if
+*> (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND.
+*> .NOT.(LSAME(JOBV,'V').OR.LSAME(JOBV,'J'))
+*> then:
+*> 3.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
+*> then LRWORK = max( 7, 2 * M ).
+*> 3.2. Otherwise, LRWORK = max( 7, N ).
+*> 4. If singular values with both the left and the right singular vectors
+*> are requested, i.e. if
+*> (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND.
+*> (LSAME(JOBV,'V').OR.LSAME(JOBV,'J'))
+*> then:
+*> 4.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
+*> then LRWORK = max( 7, 2 * M ).
+*> 4.2. Otherwise, LRWORK = max( 7, N ).
+*>
+*> If, on entry, LRWORK = -1 or LWORK=-1, a workspace query is assumed and
+*> the length of RWORK is returned in RWORK(1).
+*> \endverbatim
+*>
+*> \param[out] IWORK
+*> \verbatim
+*> IWORK is INTEGER array, of dimension at least 4, that further depends
+*> on the job:
+*>
+*> 1. If only the singular values are requested then:
+*> If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') )
+*> then the length of IWORK is N+M; otherwise the length of IWORK is N.
+*> 2. If the singular values and the right singular vectors are requested then:
+*> If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') )
+*> then the length of IWORK is N+M; otherwise the length of IWORK is N.
+*> 3. If the singular values and the left singular vectors are requested then:
+*> If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') )
+*> then the length of IWORK is N+M; otherwise the length of IWORK is N.
+*> 4. If the singular values with both the left and the right singular vectors
+*> are requested, then:
+*> 4.1. If LSAME(JOBV,'J') the length of IWORK is determined as follows:
+*> If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') )
+*> then the length of IWORK is N+M; otherwise the length of IWORK is N.
+*> 4.2. If LSAME(JOBV,'V') the length of IWORK is determined as follows:
+*> If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') )
+*> then the length of IWORK is 2*N+M; otherwise the length of IWORK is 2*N.
+*>
+*> On exit,
+*> IWORK(1) = the numerical rank determined after the initial
+*> QR factorization with pivoting. See the descriptions
+*> of JOBA and JOBR.
+*> IWORK(2) = the number of the computed nonzero singular values
+*> IWORK(3) = if nonzero, a warning message:
+*> If IWORK(3) = 1 then some of the column norms of A
+*> were denormalized floats. The requested high accuracy
+*> is not warranted by the data.
+*> IWORK(4) = 1 or -1. If IWORK(4) = 1, then the procedure used A^* to
+*> do the job as specified by the JOB parameters.
+*> If the call to CGEJSV is a workspace query (indicated by LWORK = -1 and
+*> LRWORK = -1), then on exit IWORK(1) contains the required length of
+*> IWORK for the job parameters used in the call.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> < 0: if INFO = -i, then the i-th argument had an illegal value.
+*> = 0: successful exit;
+*> > 0: CGEJSV did not converge in the maximal allowed number
+*> of sweeps. The computed values may be inaccurate.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup complexGEsing
+*
+*> \par Further Details:
+* =====================
+*>
+*> \verbatim
+*> CGEJSV implements a preconditioned Jacobi SVD algorithm. It uses CGEQP3,
+*> CGEQRF, and CGELQF as preprocessors and preconditioners. Optionally, an
+*> additional row pivoting can be used as a preprocessor, which in some
+*> cases results in much higher accuracy. An example is matrix A with the
+*> structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned
+*> diagonal matrices and C is well-conditioned matrix. In that case, complete
+*> pivoting in the first QR factorizations provides accuracy dependent on the
+*> condition number of C, and independent of D1, D2. Such higher accuracy is
+*> not completely understood theoretically, but it works well in practice.
+*> Further, if A can be written as A = B*D, with well-conditioned B and some
+*> diagonal D, then the high accuracy is guaranteed, both theoretically and
+*> in software, independent of D. For more details see [1], [2].
+*> The computational range for the singular values can be the full range
+*> ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS
+*> & LAPACK routines called by CGEJSV are implemented to work in that range.
+*> If that is not the case, then the restriction for safe computation with
+*> the singular values in the range of normalized IEEE numbers is that the
+*> spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not
+*> overflow. This code (CGEJSV) is best used in this restricted range,
+*> meaning that singular values of magnitude below ||A||_2 / SLAMCH('O') are
+*> returned as zeros. See JOBR for details on this.
+*> Further, this implementation is somewhat slower than the one described
+*> in [1,2] due to replacement of some non-LAPACK components, and because
+*> the choice of some tuning parameters in the iterative part (CGESVJ) is
+*> left to the implementer on a particular machine.
+*> The rank revealing QR factorization (in this code: CGEQP3) should be
+*> implemented as in [3]. We have a new version of CGEQP3 under development
+*> that is more robust than the current one in LAPACK, with a cleaner cut in
+*> rank deficient cases. It will be available in the SIGMA library [4].
+*> If M is much larger than N, it is obvious that the initial QRF with
+*> column pivoting can be preprocessed by the QRF without pivoting. That
+*> well known trick is not used in CGEJSV because in some cases heavy row
+*> weighting can be treated with complete pivoting. The overhead in cases
+*> M much larger than N is then only due to pivoting, but the benefits in
+*> terms of accuracy have prevailed. The implementer/user can incorporate
+*> this extra QRF step easily. The implementer can also improve data movement
+*> (matrix transpose, matrix copy, matrix transposed copy) - this
+*> implementation of CGEJSV uses only the simplest, naive data movement.
+*> \endverbatim
+*
+*> \par Contributor:
+* ==================
+*>
+*> Zlatko Drmac (Zagreb, Croatia)
+*
+*> \par References:
+* ================
+*>
+*> \verbatim
+*>
+*> [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.
+*> SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.
+*> LAPACK Working note 169.
+*> [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.
+*> SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.
+*> LAPACK Working note 170.
+*> [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR
+*> factorization software - a case study.
+*> ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28.
+*> LAPACK Working note 176.
+*> [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,
+*> QSVD, (H,K)-SVD computations.
+*> Department of Mathematics, University of Zagreb, 2008, 2016.
+*> \endverbatim
+*
+*> \par Bugs, examples and comments:
+* =================================
+*>
+*> Please report all bugs and send interesting examples and/or comments to
+*> drmac@math.hr. Thank you.
+*>
+* =====================================================================
+ SUBROUTINE CGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
+ $ M, N, A, LDA, SVA, U, LDU, V, LDV,
+ $ CWORK, LWORK, RWORK, LRWORK, IWORK, INFO )
+*
+* -- LAPACK computational routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ IMPLICIT NONE
+ INTEGER INFO, LDA, LDU, LDV, LWORK, LRWORK, M, N
+* ..
+* .. Array Arguments ..
+ COMPLEX A( LDA, * ), U( LDU, * ), V( LDV, * ), CWORK( LWORK )
+ REAL SVA( N ), RWORK( LRWORK )
+ INTEGER IWORK( * )
+ CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
+* ..
+*
+* ===========================================================================
+*
+* .. Local Parameters ..
+ REAL ZERO, ONE
+ PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
+ COMPLEX CZERO, CONE
+ PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ), CONE = ( 1.0E0, 0.0E0 ) )
+* ..
+* .. Local Scalars ..
+ COMPLEX CTEMP
+ REAL AAPP, AAQQ, AATMAX, AATMIN, BIG, BIG1, COND_OK,
+ $ CONDR1, CONDR2, ENTRA, ENTRAT, EPSLN, MAXPRJ, SCALEM,
+ $ SCONDA, SFMIN, SMALL, TEMP1, USCAL1, USCAL2, XSC
+ INTEGER IERR, N1, NR, NUMRANK, p, q, WARNING
+ LOGICAL ALMORT, DEFR, ERREST, GOSCAL, JRACC, KILL, LQUERY,
+ $ LSVEC, L2ABER, L2KILL, L2PERT, L2RANK, L2TRAN, NOSCAL,
+ $ ROWPIV, RSVEC, TRANSP
+*
+ INTEGER OPTWRK, MINWRK, MINRWRK, MINIWRK
+ INTEGER LWCON, LWLQF, LWQP3, LWQRF, LWUNMLQ, LWUNMQR, LWUNMQRM,
+ $ LWSVDJ, LWSVDJV, LRWQP3, LRWCON, LRWSVDJ, IWOFF
+ INTEGER LWRK_CGELQF, LWRK_CGEQP3, LWRK_CGEQP3N, LWRK_CGEQRF,
+ $ LWRK_CGESVJ, LWRK_CGESVJV, LWRK_CGESVJU, LWRK_CUNMLQ,
+ $ LWRK_CUNMQR, LWRK_CUNMQRM
+* ..
+* .. Local Arrays
+ COMPLEX CDUMMY(1)
+ REAL RDUMMY(1)
+*
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, CMPLX, CONJG, ALOG, MAX, MIN, REAL, NINT, SQRT
+* ..
+* .. External Functions ..
+ REAL SLAMCH, SCNRM2
+ INTEGER ISAMAX, ICAMAX
+ LOGICAL LSAME
+ EXTERNAL ISAMAX, ICAMAX, LSAME, SLAMCH, SCNRM2
+* ..
+* .. External Subroutines ..
+ EXTERNAL SLASSQ, CCOPY, CGELQF, CGEQP3, CGEQRF, CLACPY, CLAPMR,
+ $ CLASCL, SLASCL, CLASET, CLASSQ, CLASWP, CUNGQR, CUNMLQ,
+ $ CUNMQR, CPOCON, SSCAL, CSSCAL, CSWAP, CTRSM, CLACGV,
+ $ XERBLA
+*
+ EXTERNAL CGESVJ
+* ..
+*
+* Test the input arguments
+*
+ LSVEC = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' )
+ JRACC = LSAME( JOBV, 'J' )
+ RSVEC = LSAME( JOBV, 'V' ) .OR. JRACC
+ ROWPIV = LSAME( JOBA, 'F' ) .OR. LSAME( JOBA, 'G' )
+ L2RANK = LSAME( JOBA, 'R' )
+ L2ABER = LSAME( JOBA, 'A' )
+ ERREST = LSAME( JOBA, 'E' ) .OR. LSAME( JOBA, 'G' )
+ L2TRAN = LSAME( JOBT, 'T' ) .AND. ( M .EQ. N )
+ L2KILL = LSAME( JOBR, 'R' )
+ DEFR = LSAME( JOBR, 'N' )
+ L2PERT = LSAME( JOBP, 'P' )
+*
+ LQUERY = ( LWORK .EQ. -1 ) .OR. ( LRWORK .EQ. -1 )
+*
+ IF ( .NOT.(ROWPIV .OR. L2RANK .OR. L2ABER .OR.
+ $ ERREST .OR. LSAME( JOBA, 'C' ) )) THEN
+ INFO = - 1
+ ELSE IF ( .NOT.( LSVEC .OR. LSAME( JOBU, 'N' ) .OR.
+ $ ( LSAME( JOBU, 'W' ) .AND. RSVEC .AND. L2TRAN ) ) ) THEN
+ INFO = - 2
+ ELSE IF ( .NOT.( RSVEC .OR. LSAME( JOBV, 'N' ) .OR.
+ $ ( LSAME( JOBV, 'W' ) .AND. LSVEC .AND. L2TRAN ) ) ) THEN
+ INFO = - 3
+ ELSE IF ( .NOT. ( L2KILL .OR. DEFR ) ) THEN
+ INFO = - 4
+ ELSE IF ( .NOT. ( LSAME(JOBT,'T') .OR. LSAME(JOBT,'N') ) ) THEN
+ INFO = - 5
+ ELSE IF ( .NOT. ( L2PERT .OR. LSAME( JOBP, 'N' ) ) ) THEN
+ INFO = - 6
+ ELSE IF ( M .LT. 0 ) THEN
+ INFO = - 7
+ ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M ) ) THEN
+ INFO = - 8
+ ELSE IF ( LDA .LT. M ) THEN
+ INFO = - 10
+ ELSE IF ( LSVEC .AND. ( LDU .LT. M ) ) THEN
+ INFO = - 13
+ ELSE IF ( RSVEC .AND. ( LDV .LT. N ) ) THEN
+ INFO = - 15
+ ELSE
+* #:)
+ INFO = 0
+ END IF
+*
+ IF ( INFO .EQ. 0 ) THEN
+* .. compute the minimal and the optimal workspace lengths
+* [[The expressions for computing the minimal and the optimal
+* values of LCWORK, LRWORK are written with a lot of redundancy and
+* can be simplified. However, this verbose form is useful for
+* maintenance and modifications of the code.]]
+*
+* .. minimal workspace length for CGEQP3 of an M x N matrix,
+* CGEQRF of an N x N matrix, CGELQF of an N x N matrix,
+* CUNMLQ for computing N x N matrix, CUNMQR for computing N x N
+* matrix, CUNMQR for computing M x N matrix, respectively.
+ LWQP3 = N+1
+ LWQRF = MAX( 1, N )
+ LWLQF = MAX( 1, N )
+ LWUNMLQ = MAX( 1, N )
+ LWUNMQR = MAX( 1, N )
+ LWUNMQRM = MAX( 1, M )
+* .. minimal workspace length for CPOCON of an N x N matrix
+ LWCON = 2 * N
+* .. minimal workspace length for CGESVJ of an N x N matrix,
+* without and with explicit accumulation of Jacobi rotations
+ LWSVDJ = MAX( 2 * N, 1 )
+ LWSVDJV = MAX( 2 * N, 1 )
+* .. minimal REAL workspace length for CGEQP3, CPOCON, CGESVJ
+ LRWQP3 = 2 * N
+ LRWCON = N
+ LRWSVDJ = N
+ IF ( LQUERY ) THEN
+ CALL CGEQP3( M, N, A, LDA, IWORK, CDUMMY, CDUMMY, -1,
+ $ RDUMMY, IERR )
+ LWRK_CGEQP3 = INT( CDUMMY(1) )
+ CALL CGEQRF( N, N, A, LDA, CDUMMY, CDUMMY,-1, IERR )
+ LWRK_CGEQRF = INT( CDUMMY(1) )
+ CALL CGELQF( N, N, A, LDA, CDUMMY, CDUMMY,-1, IERR )
+ LWRK_CGELQF = INT( CDUMMY(1) )
+ END IF
+ MINWRK = 2
+ OPTWRK = 2
+ MINIWRK = N
+ IF ( .NOT. (LSVEC .OR. RSVEC ) ) THEN
+* .. minimal and optimal sizes of the complex workspace if
+* only the singular values are requested
+ IF ( ERREST ) THEN
+ MINWRK = MAX( N+LWQP3, N**2+LWCON, N+LWQRF, LWSVDJ )
+ ELSE
+ MINWRK = MAX( N+LWQP3, N+LWQRF, LWSVDJ )
+ END IF
+ IF ( LQUERY ) THEN
+ CALL CGESVJ( 'L', 'N', 'N', N, N, A, LDA, SVA, N, V,
+ $ LDV, CDUMMY, -1, RDUMMY, -1, IERR )
+ LWRK_CGESVJ = INT( CDUMMY(1) )
+ IF ( ERREST ) THEN
+ OPTWRK = MAX( N+LWRK_CGEQP3, N**2+LWCON,
+ $ N+LWRK_CGEQRF, LWRK_CGESVJ )
+ ELSE
+ OPTWRK = MAX( N+LWRK_CGEQP3, N+LWRK_CGEQRF,
+ $ LWRK_CGESVJ )
+ END IF
+ END IF
+ IF ( L2TRAN .OR. ROWPIV ) THEN
+ IF ( ERREST ) THEN
+ MINRWRK = MAX( 7, 2*M, LRWQP3, LRWCON, LRWSVDJ )
+ ELSE
+ MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ )
+ END IF
+ ELSE
+ IF ( ERREST ) THEN
+ MINRWRK = MAX( 7, LRWQP3, LRWCON, LRWSVDJ )
+ ELSE
+ MINRWRK = MAX( 7, LRWQP3, LRWSVDJ )
+ END IF
+ END IF
+ IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
+ ELSE IF ( RSVEC .AND. (.NOT.LSVEC) ) THEN
+* .. minimal and optimal sizes of the complex workspace if the
+* singular values and the right singular vectors are requested
+ IF ( ERREST ) THEN
+ MINWRK = MAX( N+LWQP3, LWCON, LWSVDJ, N+LWLQF,
+ $ 2*N+LWQRF, N+LWSVDJ, N+LWUNMLQ )
+ ELSE
+ MINWRK = MAX( N+LWQP3, LWSVDJ, N+LWLQF, 2*N+LWQRF,
+ $ N+LWSVDJ, N+LWUNMLQ )
+ END IF
+ IF ( LQUERY ) THEN
+ CALL CGESVJ( 'L', 'U', 'N', N,N, U, LDU, SVA, N, A,
+ $ LDA, CDUMMY, -1, RDUMMY, -1, IERR )
+ LWRK_CGESVJ = INT( CDUMMY(1) )
+ CALL CUNMLQ( 'L', 'C', N, N, N, A, LDA, CDUMMY,
+ $ V, LDV, CDUMMY, -1, IERR )
+ LWRK_CUNMLQ = INT( CDUMMY(1) )
+ IF ( ERREST ) THEN
+ OPTWRK = MAX( N+LWRK_CGEQP3, LWCON, LWRK_CGESVJ,
+ $ N+LWRK_CGELQF, 2*N+LWRK_CGEQRF,
+ $ N+LWRK_CGESVJ, N+LWRK_CUNMLQ )
+ ELSE
+ OPTWRK = MAX( N+LWRK_CGEQP3, LWRK_CGESVJ,N+LWRK_CGELQF,
+ $ 2*N+LWRK_CGEQRF, N+LWRK_CGESVJ,
+ $ N+LWRK_CUNMLQ )
+ END IF
+ END IF
+ IF ( L2TRAN .OR. ROWPIV ) THEN
+ IF ( ERREST ) THEN
+ MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ, LRWCON )
+ ELSE
+ MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ )
+ END IF
+ ELSE
+ IF ( ERREST ) THEN
+ MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
+ ELSE
+ MINRWRK = MAX( 7, LRWQP3, LRWSVDJ )
+ END IF
+ END IF
+ IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
+ ELSE IF ( LSVEC .AND. (.NOT.RSVEC) ) THEN
+* .. minimal and optimal sizes of the complex workspace if the
+* singular values and the left singular vectors are requested
+ IF ( ERREST ) THEN
+ MINWRK = N + MAX( LWQP3,LWCON,N+LWQRF,LWSVDJ,LWUNMQRM )
+ ELSE
+ MINWRK = N + MAX( LWQP3, N+LWQRF, LWSVDJ, LWUNMQRM )
+ END IF
+ IF ( LQUERY ) THEN
+ CALL CGESVJ( 'L', 'U', 'N', N,N, U, LDU, SVA, N, A,
+ $ LDA, CDUMMY, -1, RDUMMY, -1, IERR )
+ LWRK_CGESVJ = INT( CDUMMY(1) )
+ CALL CUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
+ $ LDU, CDUMMY, -1, IERR )
+ LWRK_CUNMQRM = INT( CDUMMY(1) )
+ IF ( ERREST ) THEN
+ OPTWRK = N + MAX( LWRK_CGEQP3, LWCON, N+LWRK_CGEQRF,
+ $ LWRK_CGESVJ, LWRK_CUNMQRM )
+ ELSE
+ OPTWRK = N + MAX( LWRK_CGEQP3, N+LWRK_CGEQRF,
+ $ LWRK_CGESVJ, LWRK_CUNMQRM )
+ END IF
+ END IF
+ IF ( L2TRAN .OR. ROWPIV ) THEN
+ IF ( ERREST ) THEN
+ MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ, LRWCON )
+ ELSE
+ MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ )
+ END IF
+ ELSE
+ IF ( ERREST ) THEN
+ MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
+ ELSE
+ MINRWRK = MAX( 7, LRWQP3, LRWSVDJ )
+ END IF
+ END IF
+ IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
+ ELSE
+* .. minimal and optimal sizes of the complex workspace if the
+* full SVD is requested
+ IF ( .NOT. JRACC ) THEN
+ IF ( ERREST ) THEN
+ MINWRK = MAX( N+LWQP3, N+LWCON, 2*N+N**2+LWCON,
+ $ 2*N+LWQRF, 2*N+LWQP3,
+ $ 2*N+N**2+N+LWLQF, 2*N+N**2+N+N**2+LWCON,
+ $ 2*N+N**2+N+LWSVDJ, 2*N+N**2+N+LWSVDJV,
+ $ 2*N+N**2+N+LWUNMQR,2*N+N**2+N+LWUNMLQ,
+ $ N+N**2+LWSVDJ, N+LWUNMQRM )
+ ELSE
+ MINWRK = MAX( N+LWQP3, 2*N+N**2+LWCON,
+ $ 2*N+LWQRF, 2*N+LWQP3,
+ $ 2*N+N**2+N+LWLQF, 2*N+N**2+N+N**2+LWCON,
+ $ 2*N+N**2+N+LWSVDJ, 2*N+N**2+N+LWSVDJV,
+ $ 2*N+N**2+N+LWUNMQR,2*N+N**2+N+LWUNMLQ,
+ $ N+N**2+LWSVDJ, N+LWUNMQRM )
+ END IF
+ MINIWRK = MINIWRK + N
+ IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
+ ELSE
+ IF ( ERREST ) THEN
+ MINWRK = MAX( N+LWQP3, N+LWCON, 2*N+LWQRF,
+ $ 2*N+N**2+LWSVDJV, 2*N+N**2+N+LWUNMQR,
+ $ N+LWUNMQRM )
+ ELSE
+ MINWRK = MAX( N+LWQP3, 2*N+LWQRF,
+ $ 2*N+N**2+LWSVDJV, 2*N+N**2+N+LWUNMQR,
+ $ N+LWUNMQRM )
+ END IF
+ IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
+ END IF
+ IF ( LQUERY ) THEN
+ CALL CUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
+ $ LDU, CDUMMY, -1, IERR )
+ LWRK_CUNMQRM = INT( CDUMMY(1) )
+ CALL CUNMQR( 'L', 'N', N, N, N, A, LDA, CDUMMY, U,
+ $ LDU, CDUMMY, -1, IERR )
+ LWRK_CUNMQR = INT( CDUMMY(1) )
+ IF ( .NOT. JRACC ) THEN
+ CALL CGEQP3( N,N, A, LDA, IWORK, CDUMMY,CDUMMY, -1,
+ $ RDUMMY, IERR )
+ LWRK_CGEQP3N = INT( CDUMMY(1) )
+ CALL CGESVJ( 'L', 'U', 'N', N, N, U, LDU, SVA,
+ $ N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
+ LWRK_CGESVJ = INT( CDUMMY(1) )
+ CALL CGESVJ( 'U', 'U', 'N', N, N, U, LDU, SVA,
+ $ N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
+ LWRK_CGESVJU = INT( CDUMMY(1) )
+ CALL CGESVJ( 'L', 'U', 'V', N, N, U, LDU, SVA,
+ $ N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
+ LWRK_CGESVJV = INT( CDUMMY(1) )
+ CALL CUNMLQ( 'L', 'C', N, N, N, A, LDA, CDUMMY,
+ $ V, LDV, CDUMMY, -1, IERR )
+ LWRK_CUNMLQ = INT( CDUMMY(1) )
+ IF ( ERREST ) THEN
+ OPTWRK = MAX( N+LWRK_CGEQP3, N+LWCON,
+ $ 2*N+N**2+LWCON, 2*N+LWRK_CGEQRF,
+ $ 2*N+LWRK_CGEQP3N,
+ $ 2*N+N**2+N+LWRK_CGELQF,
+ $ 2*N+N**2+N+N**2+LWCON,
+ $ 2*N+N**2+N+LWRK_CGESVJ,
+ $ 2*N+N**2+N+LWRK_CGESVJV,
+ $ 2*N+N**2+N+LWRK_CUNMQR,
+ $ 2*N+N**2+N+LWRK_CUNMLQ,
+ $ N+N**2+LWRK_CGESVJU,
+ $ N+LWRK_CUNMQRM )
+ ELSE
+ OPTWRK = MAX( N+LWRK_CGEQP3,
+ $ 2*N+N**2+LWCON, 2*N+LWRK_CGEQRF,
+ $ 2*N+LWRK_CGEQP3N,
+ $ 2*N+N**2+N+LWRK_CGELQF,
+ $ 2*N+N**2+N+N**2+LWCON,
+ $ 2*N+N**2+N+LWRK_CGESVJ,
+ $ 2*N+N**2+N+LWRK_CGESVJV,
+ $ 2*N+N**2+N+LWRK_CUNMQR,
+ $ 2*N+N**2+N+LWRK_CUNMLQ,
+ $ N+N**2+LWRK_CGESVJU,
+ $ N+LWRK_CUNMQRM )
+ END IF
+ ELSE
+ CALL CGESVJ( 'L', 'U', 'V', N, N, U, LDU, SVA,
+ $ N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
+ LWRK_CGESVJV = INT( CDUMMY(1) )
+ CALL CUNMQR( 'L', 'N', N, N, N, CDUMMY, N, CDUMMY,
+ $ V, LDV, CDUMMY, -1, IERR )
+ LWRK_CUNMQR = INT( CDUMMY(1) )
+ CALL CUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
+ $ LDU, CDUMMY, -1, IERR )
+ LWRK_CUNMQRM = INT( CDUMMY(1) )
+ IF ( ERREST ) THEN
+ OPTWRK = MAX( N+LWRK_CGEQP3, N+LWCON,
+ $ 2*N+LWRK_CGEQRF, 2*N+N**2,
+ $ 2*N+N**2+LWRK_CGESVJV,
+ $ 2*N+N**2+N+LWRK_CUNMQR,N+LWRK_CUNMQRM )
+ ELSE
+ OPTWRK = MAX( N+LWRK_CGEQP3, 2*N+LWRK_CGEQRF,
+ $ 2*N+N**2, 2*N+N**2+LWRK_CGESVJV,
+ $ 2*N+N**2+N+LWRK_CUNMQR,
+ $ N+LWRK_CUNMQRM )
+ END IF
+ END IF
+ END IF
+ IF ( L2TRAN .OR. ROWPIV ) THEN
+ MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ, LRWCON )
+ ELSE
+ MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
+ END IF
+ END IF
+ MINWRK = MAX( 2, MINWRK )
+ OPTWRK = MAX( OPTWRK, MINWRK )
+ IF ( LWORK .LT. MINWRK .AND. (.NOT.LQUERY) ) INFO = - 17
+ IF ( LRWORK .LT. MINRWRK .AND. (.NOT.LQUERY) ) INFO = - 19
+ END IF
+*
+ IF ( INFO .NE. 0 ) THEN
+* #:(
+ CALL XERBLA( 'CGEJSV', - INFO )
+ RETURN
+ ELSE IF ( LQUERY ) THEN
+ CWORK(1) = OPTWRK
+ CWORK(2) = MINWRK
+ RWORK(1) = MINRWRK
+ IWORK(1) = MAX( 4, MINIWRK )
+ RETURN
+ END IF
+*
+* Quick return for void matrix (Y3K safe)
+* #:)
+ IF ( ( M .EQ. 0 ) .OR. ( N .EQ. 0 ) ) THEN
+ IWORK(1:4) = 0
+ RWORK(1:7) = 0
+ RETURN
+ ENDIF
+*
+* Determine whether the matrix U should be M x N or M x M
+*
+ IF ( LSVEC ) THEN
+ N1 = N
+ IF ( LSAME( JOBU, 'F' ) ) N1 = M
+ END IF
+*
+* Set numerical parameters
+*
+*! NOTE: Make sure SLAMCH() does not fail on the target architecture.
+*
+ EPSLN = SLAMCH('Epsilon')
+ SFMIN = SLAMCH('SafeMinimum')
+ SMALL = SFMIN / EPSLN
+ BIG = SLAMCH('O')
+* BIG = ONE / SFMIN
+*
+* Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N
+*
+*(!) If necessary, scale SVA() to protect the largest norm from
+* overflow. It is possible that this scaling pushes the smallest
+* column norm left from the underflow threshold (extreme case).
+*
+ SCALEM = ONE / SQRT(REAL(M)*REAL(N))
+ NOSCAL = .TRUE.
+ GOSCAL = .TRUE.
+ DO 1874 p = 1, N
+ AAPP = ZERO
+ AAQQ = ONE
+ CALL CLASSQ( M, A(1,p), 1, AAPP, AAQQ )
+ IF ( AAPP .GT. BIG ) THEN
+ INFO = - 9
+ CALL XERBLA( 'CGEJSV', -INFO )
+ RETURN
+ END IF
+ AAQQ = SQRT(AAQQ)
+ IF ( ( AAPP .LT. (BIG / AAQQ) ) .AND. NOSCAL ) THEN
+ SVA(p) = AAPP * AAQQ
+ ELSE
+ NOSCAL = .FALSE.
+ SVA(p) = AAPP * ( AAQQ * SCALEM )
+ IF ( GOSCAL ) THEN
+ GOSCAL = .FALSE.
+ CALL SSCAL( p-1, SCALEM, SVA, 1 )
+ END IF
+ END IF
+ 1874 CONTINUE
+*
+ IF ( NOSCAL ) SCALEM = ONE
+*
+ AAPP = ZERO
+ AAQQ = BIG
+ DO 4781 p = 1, N
+ AAPP = MAX( AAPP, SVA(p) )
+ IF ( SVA(p) .NE. ZERO ) AAQQ = MIN( AAQQ, SVA(p) )
+ 4781 CONTINUE
+*
+* Quick return for zero M x N matrix
+* #:)
+ IF ( AAPP .EQ. ZERO ) THEN
+ IF ( LSVEC ) CALL CLASET( 'G', M, N1, CZERO, CONE, U, LDU )
+ IF ( RSVEC ) CALL CLASET( 'G', N, N, CZERO, CONE, V, LDV )
+ RWORK(1) = ONE
+ RWORK(2) = ONE
+ IF ( ERREST ) RWORK(3) = ONE
+ IF ( LSVEC .AND. RSVEC ) THEN
+ RWORK(4) = ONE
+ RWORK(5) = ONE
+ END IF
+ IF ( L2TRAN ) THEN
+ RWORK(6) = ZERO
+ RWORK(7) = ZERO
+ END IF
+ IWORK(1) = 0
+ IWORK(2) = 0
+ IWORK(3) = 0
+ IWORK(4) = -1
+ RETURN
+ END IF
+*
+* Issue warning if denormalized column norms detected. Override the
+* high relative accuracy request. Issue licence to kill nonzero columns
+* (set them to zero) whose norm is less than sigma_max / BIG (roughly).
+* #:(
+ WARNING = 0
+ IF ( AAQQ .LE. SFMIN ) THEN
+ L2RANK = .TRUE.
+ L2KILL = .TRUE.
+ WARNING = 1
+ END IF
+*
+* Quick return for one-column matrix
+* #:)
+ IF ( N .EQ. 1 ) THEN
+*
+ IF ( LSVEC ) THEN
+ CALL CLASCL( 'G',0,0,SVA(1),SCALEM, M,1,A(1,1),LDA,IERR )
+ CALL CLACPY( 'A', M, 1, A, LDA, U, LDU )
+* computing all M left singular vectors of the M x 1 matrix
+ IF ( N1 .NE. N ) THEN
+ CALL CGEQRF( M, N, U,LDU, CWORK, CWORK(N+1),LWORK-N,IERR )
+ CALL CUNGQR( M,N1,1, U,LDU,CWORK,CWORK(N+1),LWORK-N,IERR )
+ CALL CCOPY( M, A(1,1), 1, U(1,1), 1 )
+ END IF
+ END IF
+ IF ( RSVEC ) THEN
+ V(1,1) = CONE
+ END IF
+ IF ( SVA(1) .LT. (BIG*SCALEM) ) THEN
+ SVA(1) = SVA(1) / SCALEM
+ SCALEM = ONE
+ END IF
+ RWORK(1) = ONE / SCALEM
+ RWORK(2) = ONE
+ IF ( SVA(1) .NE. ZERO ) THEN
+ IWORK(1) = 1
+ IF ( ( SVA(1) / SCALEM) .GE. SFMIN ) THEN
+ IWORK(2) = 1
+ ELSE
+ IWORK(2) = 0
+ END IF
+ ELSE
+ IWORK(1) = 0
+ IWORK(2) = 0
+ END IF
+ IWORK(3) = 0
+ IWORK(4) = -1
+ IF ( ERREST ) RWORK(3) = ONE
+ IF ( LSVEC .AND. RSVEC ) THEN
+ RWORK(4) = ONE
+ RWORK(5) = ONE
+ END IF
+ IF ( L2TRAN ) THEN
+ RWORK(6) = ZERO
+ RWORK(7) = ZERO
+ END IF
+ RETURN
+*
+ END IF
+*
+ TRANSP = .FALSE.
+*
+ AATMAX = -ONE
+ AATMIN = BIG
+ IF ( ROWPIV .OR. L2TRAN ) THEN
+*
+* Compute the row norms, needed to determine row pivoting sequence
+* (in the case of heavily row weighted A, row pivoting is strongly
+* advised) and to collect information needed to compare the
+* structures of A * A^* and A^* * A (in the case L2TRAN.EQ..TRUE.).
+*
+ IF ( L2TRAN ) THEN
+ DO 1950 p = 1, M
+ XSC = ZERO
+ TEMP1 = ONE
+ CALL CLASSQ( N, A(p,1), LDA, XSC, TEMP1 )
+* CLASSQ gets both the ell_2 and the ell_infinity norm
+* in one pass through the vector
+ RWORK(M+p) = XSC * SCALEM
+ RWORK(p) = XSC * (SCALEM*SQRT(TEMP1))
+ AATMAX = MAX( AATMAX, RWORK(p) )
+ IF (RWORK(p) .NE. ZERO)
+ $ AATMIN = MIN(AATMIN,RWORK(p))
+ 1950 CONTINUE
+ ELSE
+ DO 1904 p = 1, M
+ RWORK(M+p) = SCALEM*ABS( A(p,ICAMAX(N,A(p,1),LDA)) )
+ AATMAX = MAX( AATMAX, RWORK(M+p) )
+ AATMIN = MIN( AATMIN, RWORK(M+p) )
+ 1904 CONTINUE
+ END IF
+*
+ END IF
+*
+* For square matrix A try to determine whether A^* would be better
+* input for the preconditioned Jacobi SVD, with faster convergence.
+* The decision is based on an O(N) function of the vector of column
+* and row norms of A, based on the Shannon entropy. This should give
+* the right choice in most cases when the difference actually matters.
+* It may fail and pick the slower converging side.
+*
+ ENTRA = ZERO
+ ENTRAT = ZERO
+ IF ( L2TRAN ) THEN
+*
+ XSC = ZERO
+ TEMP1 = ONE
+ CALL SLASSQ( N, SVA, 1, XSC, TEMP1 )
+ TEMP1 = ONE / TEMP1
+*
+ ENTRA = ZERO
+ DO 1113 p = 1, N
+ BIG1 = ( ( SVA(p) / XSC )**2 ) * TEMP1
+ IF ( BIG1 .NE. ZERO ) ENTRA = ENTRA + BIG1 * ALOG(BIG1)
+ 1113 CONTINUE
+ ENTRA = - ENTRA / ALOG(REAL(N))
+*
+* Now, SVA().^2/Trace(A^* * A) is a point in the probability simplex.
+* It is derived from the diagonal of A^* * A. Do the same with the
+* diagonal of A * A^*, compute the entropy of the corresponding
+* probability distribution. Note that A * A^* and A^* * A have the
+* same trace.
+*
+ ENTRAT = ZERO
+ DO 1114 p = 1, M
+ BIG1 = ( ( RWORK(p) / XSC )**2 ) * TEMP1
+ IF ( BIG1 .NE. ZERO ) ENTRAT = ENTRAT + BIG1 * ALOG(BIG1)
+ 1114 CONTINUE
+ ENTRAT = - ENTRAT / ALOG(REAL(M))
+*
+* Analyze the entropies and decide A or A^*. Smaller entropy
+* usually means better input for the algorithm.
+*
+ TRANSP = ( ENTRAT .LT. ENTRA )
+*
+* If A^* is better than A, take the adjoint of A. This is allowed
+* only for square matrices, M=N.
+ IF ( TRANSP ) THEN
+* In an optimal implementation, this trivial transpose
+* should be replaced with faster transpose.
+ DO 1115 p = 1, N - 1
+ A(p,p) = CONJG(A(p,p))
+ DO 1116 q = p + 1, N
+ CTEMP = CONJG(A(q,p))
+ A(q,p) = CONJG(A(p,q))
+ A(p,q) = CTEMP
+ 1116 CONTINUE
+ 1115 CONTINUE
+ A(N,N) = CONJG(A(N,N))
+ DO 1117 p = 1, N
+ RWORK(M+p) = SVA(p)
+ SVA(p) = RWORK(p)
+* previously computed row 2-norms are now column 2-norms
+* of the transposed matrix
+ 1117 CONTINUE
+ TEMP1 = AAPP
+ AAPP = AATMAX
+ AATMAX = TEMP1
+ TEMP1 = AAQQ
+ AAQQ = AATMIN
+ AATMIN = TEMP1
+ KILL = LSVEC
+ LSVEC = RSVEC
+ RSVEC = KILL
+ IF ( LSVEC ) N1 = N
+*
+ ROWPIV = .TRUE.
+ END IF
+*
+ END IF
+* END IF L2TRAN
+*
+* Scale the matrix so that its maximal singular value remains less
+* than SQRT(BIG) -- the matrix is scaled so that its maximal column
+* has Euclidean norm equal to SQRT(BIG/N). The only reason to keep
+* SQRT(BIG) instead of BIG is the fact that CGEJSV uses LAPACK and
+* BLAS routines that, in some implementations, are not capable of
+* working in the full interval [SFMIN,BIG] and that they may provoke
+* overflows in the intermediate results. If the singular values spread
+* from SFMIN to BIG, then CGESVJ will compute them. So, in that case,
+* one should use CGESVJ instead of CGEJSV.
+ BIG1 = SQRT( BIG )
+ TEMP1 = SQRT( BIG / REAL(N) )
+* >> for future updates: allow bigger range, i.e. the largest column
+* will be allowed up to BIG/N and CGESVJ will do the rest. However, for
+* this all other (LAPACK) components must allow such a range.
+* TEMP1 = BIG/REAL(N)
+* TEMP1 = BIG * EPSLN this should 'almost' work with current LAPACK components
+ CALL SLASCL( 'G', 0, 0, AAPP, TEMP1, N, 1, SVA, N, IERR )
+ IF ( AAQQ .GT. (AAPP * SFMIN) ) THEN
+ AAQQ = ( AAQQ / AAPP ) * TEMP1
+ ELSE
+ AAQQ = ( AAQQ * TEMP1 ) / AAPP
+ END IF
+ TEMP1 = TEMP1 * SCALEM
+ CALL CLASCL( 'G', 0, 0, AAPP, TEMP1, M, N, A, LDA, IERR )
+*
+* To undo scaling at the end of this procedure, multiply the
+* computed singular values with USCAL2 / USCAL1.
+*
+ USCAL1 = TEMP1
+ USCAL2 = AAPP
+*
+ IF ( L2KILL ) THEN
+* L2KILL enforces computation of nonzero singular values in
+* the restricted range of condition number of the initial A,
+* sigma_max(A) / sigma_min(A) approx. SQRT(BIG)/SQRT(SFMIN).
+ XSC = SQRT( SFMIN )
+ ELSE
+ XSC = SMALL
+*
+* Now, if the condition number of A is too big,
+* sigma_max(A) / sigma_min(A) .GT. SQRT(BIG/N) * EPSLN / SFMIN,
+* as a precaution measure, the full SVD is computed using CGESVJ
+* with accumulated Jacobi rotations. This provides numerically
+* more robust computation, at the cost of slightly increased run
+* time. Depending on the concrete implementation of BLAS and LAPACK
+* (i.e. how they behave in presence of extreme ill-conditioning) the
+* implementor may decide to remove this switch.
+ IF ( ( AAQQ.LT.SQRT(SFMIN) ) .AND. LSVEC .AND. RSVEC ) THEN
+ JRACC = .TRUE.
+ END IF
+*
+ END IF
+ IF ( AAQQ .LT. XSC ) THEN
+ DO 700 p = 1, N
+ IF ( SVA(p) .LT. XSC ) THEN
+ CALL CLASET( 'A', M, 1, CZERO, CZERO, A(1,p), LDA )
+ SVA(p) = ZERO
+ END IF
+ 700 CONTINUE
+ END IF
+*
+* Preconditioning using QR factorization with pivoting
+*
+ IF ( ROWPIV ) THEN
+* Optional row permutation (Bjoerck row pivoting):
+* A result by Cox and Higham shows that the Bjoerck's
+* row pivoting combined with standard column pivoting
+* has similar effect as Powell-Reid complete pivoting.
+* The ell-infinity norms of A are made nonincreasing.
+ IF ( ( LSVEC .AND. RSVEC ) .AND. .NOT.( JRACC ) ) THEN
+ IWOFF = 2*N
+ ELSE
+ IWOFF = N
+ END IF
+ DO 1952 p = 1, M - 1
+ q = ISAMAX( M-p+1, RWORK(M+p), 1 ) + p - 1
+ IWORK(IWOFF+p) = q
+ IF ( p .NE. q ) THEN
+ TEMP1 = RWORK(M+p)
+ RWORK(M+p) = RWORK(M+q)
+ RWORK(M+q) = TEMP1
+ END IF
+ 1952 CONTINUE
+ CALL CLASWP( N, A, LDA, 1, M-1, IWORK(IWOFF+1), 1 )
+ END IF
+*
+* End of the preparation phase (scaling, optional sorting and
+* transposing, optional flushing of small columns).
+*
+* Preconditioning
+*
+* If the full SVD is needed, the right singular vectors are computed
+* from a matrix equation, and for that we need theoretical analysis
+* of the Businger-Golub pivoting. So we use CGEQP3 as the first RR QRF.
+* In all other cases the first RR QRF can be chosen by other criteria
+* (eg speed by replacing global with restricted window pivoting, such
+* as in xGEQPX from TOMS # 782). Good results will be obtained using
+* xGEQPX with properly (!) chosen numerical parameters.
+* Any improvement of CGEQP3 improves overall performance of CGEJSV.
+*
+* A * P1 = Q1 * [ R1^* 0]^*:
+ DO 1963 p = 1, N
+* .. all columns are free columns
+ IWORK(p) = 0
+ 1963 CONTINUE
+ CALL CGEQP3( M, N, A, LDA, IWORK, CWORK, CWORK(N+1), LWORK-N,
+ $ RWORK, IERR )
+*
+* The upper triangular matrix R1 from the first QRF is inspected for
+* rank deficiency and possibilities for deflation, or possible
+* ill-conditioning. Depending on the user specified flag L2RANK,
+* the procedure explores possibilities to reduce the numerical
+* rank by inspecting the computed upper triangular factor. If
+* L2RANK or L2ABER are up, then CGEJSV will compute the SVD of
+* A + dA, where ||dA|| <= f(M,N)*EPSLN.
+*
+ NR = 1
+ IF ( L2ABER ) THEN
+* Standard absolute error bound suffices. All sigma_i with
+* sigma_i < N*EPSLN*||A|| are flushed to zero. This is an
+* aggressive enforcement of lower numerical rank by introducing a
+* backward error of the order of N*EPSLN*||A||.
+ TEMP1 = SQRT(REAL(N))*EPSLN
+ DO 3001 p = 2, N
+ IF ( ABS(A(p,p)) .GE. (TEMP1*ABS(A(1,1))) ) THEN
+ NR = NR + 1
+ ELSE
+ GO TO 3002
+ END IF
+ 3001 CONTINUE
+ 3002 CONTINUE
+ ELSE IF ( L2RANK ) THEN
+* .. similarly as above, only slightly more gentle (less aggressive).
+* Sudden drop on the diagonal of R1 is used as the criterion for
+* close-to-rank-deficient.
+ TEMP1 = SQRT(SFMIN)
+ DO 3401 p = 2, N
+ IF ( ( ABS(A(p,p)) .LT. (EPSLN*ABS(A(p-1,p-1))) ) .OR.
+ $ ( ABS(A(p,p)) .LT. SMALL ) .OR.
+ $ ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3402
+ NR = NR + 1
+ 3401 CONTINUE
+ 3402 CONTINUE
+*
+ ELSE
+* The goal is high relative accuracy. However, if the matrix
+* has high scaled condition number the relative accuracy is in
+* general not feasible. Later on, a condition number estimator
+* will be deployed to estimate the scaled condition number.
+* Here we just remove the underflowed part of the triangular
+* factor. This prevents the situation in which the code is
+* working hard to get the accuracy not warranted by the data.
+ TEMP1 = SQRT(SFMIN)
+ DO 3301 p = 2, N
+ IF ( ( ABS(A(p,p)) .LT. SMALL ) .OR.
+ $ ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3302
+ NR = NR + 1
+ 3301 CONTINUE
+ 3302 CONTINUE
+*
+ END IF
+*
+ ALMORT = .FALSE.
+ IF ( NR .EQ. N ) THEN
+ MAXPRJ = ONE
+ DO 3051 p = 2, N
+ TEMP1 = ABS(A(p,p)) / SVA(IWORK(p))
+ MAXPRJ = MIN( MAXPRJ, TEMP1 )
+ 3051 CONTINUE
+ IF ( MAXPRJ**2 .GE. ONE - REAL(N)*EPSLN ) ALMORT = .TRUE.
+ END IF
+*
+*
+ SCONDA = - ONE
+ CONDR1 = - ONE
+ CONDR2 = - ONE
+*
+ IF ( ERREST ) THEN
+ IF ( N .EQ. NR ) THEN
+ IF ( RSVEC ) THEN
+* .. V is available as workspace
+ CALL CLACPY( 'U', N, N, A, LDA, V, LDV )
+ DO 3053 p = 1, N
+ TEMP1 = SVA(IWORK(p))
+ CALL CSSCAL( p, ONE/TEMP1, V(1,p), 1 )
+ 3053 CONTINUE
+ IF ( LSVEC )THEN
+ CALL CPOCON( 'U', N, V, LDV, ONE, TEMP1,
+ $ CWORK(N+1), RWORK, IERR )
+ ELSE
+ CALL CPOCON( 'U', N, V, LDV, ONE, TEMP1,
+ $ CWORK, RWORK, IERR )
+ END IF
+*
+ ELSE IF ( LSVEC ) THEN
+* .. U is available as workspace
+ CALL CLACPY( 'U', N, N, A, LDA, U, LDU )
+ DO 3054 p = 1, N
+ TEMP1 = SVA(IWORK(p))
+ CALL CSSCAL( p, ONE/TEMP1, U(1,p), 1 )
+ 3054 CONTINUE
+ CALL CPOCON( 'U', N, U, LDU, ONE, TEMP1,
+ $ CWORK(N+1), RWORK, IERR )
+ ELSE
+ CALL CLACPY( 'U', N, N, A, LDA, CWORK, N )
+*[] CALL CLACPY( 'U', N, N, A, LDA, CWORK(N+1), N )
+* Change: here index shifted by N to the left, CWORK(1:N)
+* not needed for SIGMA only computation
+ DO 3052 p = 1, N
+ TEMP1 = SVA(IWORK(p))
+*[] CALL CSSCAL( p, ONE/TEMP1, CWORK(N+(p-1)*N+1), 1 )
+ CALL CSSCAL( p, ONE/TEMP1, CWORK((p-1)*N+1), 1 )
+ 3052 CONTINUE
+* .. the columns of R are scaled to have unit Euclidean lengths.
+*[] CALL CPOCON( 'U', N, CWORK(N+1), N, ONE, TEMP1,
+*[] $ CWORK(N+N*N+1), RWORK, IERR )
+ CALL CPOCON( 'U', N, CWORK, N, ONE, TEMP1,
+ $ CWORK(N*N+1), RWORK, IERR )
+*
+ END IF
+ IF ( TEMP1 .NE. ZERO ) THEN
+ SCONDA = ONE / SQRT(TEMP1)
+ ELSE
+ SCONDA = - ONE
+ END IF
+* SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1).
+* N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
+ ELSE
+ SCONDA = - ONE
+ END IF
+ END IF
+*
+ L2PERT = L2PERT .AND. ( ABS( A(1,1)/A(NR,NR) ) .GT. SQRT(BIG1) )
+* If there is no violent scaling, artificial perturbation is not needed.
+*
+* Phase 3:
+*
+ IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN
+*
+* Singular Values only
+*
+* .. transpose A(1:NR,1:N)
+ DO 1946 p = 1, MIN( N-1, NR )
+ CALL CCOPY( N-p, A(p,p+1), LDA, A(p+1,p), 1 )
+ CALL CLACGV( N-p+1, A(p,p), 1 )
+ 1946 CONTINUE
+ IF ( NR .EQ. N ) A(N,N) = CONJG(A(N,N))
+*
+* The following two DO-loops introduce small relative perturbation
+* into the strict upper triangle of the lower triangular matrix.
+* Small entries below the main diagonal are also changed.
+* This modification is useful if the computing environment does not
+* provide/allow FLUSH TO ZERO underflow, for it prevents many
+* annoying denormalized numbers in case of strongly scaled matrices.
+* The perturbation is structured so that it does not introduce any
+* new perturbation of the singular values, and it does not destroy
+* the job done by the preconditioner.
+* The licence for this perturbation is in the variable L2PERT, which
+* should be .FALSE. if FLUSH TO ZERO underflow is active.
+*
+ IF ( .NOT. ALMORT ) THEN
+*
+ IF ( L2PERT ) THEN
+* XSC = SQRT(SMALL)
+ XSC = EPSLN / REAL(N)
+ DO 4947 q = 1, NR
+ CTEMP = CMPLX(XSC*ABS(A(q,q)),ZERO)
+ DO 4949 p = 1, N
+ IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) )
+ $ .OR. ( p .LT. q ) )
+* $ A(p,q) = TEMP1 * ( A(p,q) / ABS(A(p,q)) )
+ $ A(p,q) = CTEMP
+ 4949 CONTINUE
+ 4947 CONTINUE
+ ELSE
+ CALL CLASET( 'U', NR-1,NR-1, CZERO,CZERO, A(1,2),LDA )
+ END IF
+*
+* .. second preconditioning using the QR factorization
+*
+ CALL CGEQRF( N,NR, A,LDA, CWORK, CWORK(N+1),LWORK-N, IERR )
+*
+* .. and transpose upper to lower triangular
+ DO 1948 p = 1, NR - 1
+ CALL CCOPY( NR-p, A(p,p+1), LDA, A(p+1,p), 1 )
+ CALL CLACGV( NR-p+1, A(p,p), 1 )
+ 1948 CONTINUE
+*
+ END IF
+*
+* Row-cyclic Jacobi SVD algorithm with column pivoting
+*
+* .. again some perturbation (a "background noise") is added
+* to drown denormals
+ IF ( L2PERT ) THEN
+* XSC = SQRT(SMALL)
+ XSC = EPSLN / REAL(N)
+ DO 1947 q = 1, NR
+ CTEMP = CMPLX(XSC*ABS(A(q,q)),ZERO)
+ DO 1949 p = 1, NR
+ IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) )
+ $ .OR. ( p .LT. q ) )
+* $ A(p,q) = TEMP1 * ( A(p,q) / ABS(A(p,q)) )
+ $ A(p,q) = CTEMP
+ 1949 CONTINUE
+ 1947 CONTINUE
+ ELSE
+ CALL CLASET( 'U', NR-1, NR-1, CZERO, CZERO, A(1,2), LDA )
+ END IF
+*
+* .. and one-sided Jacobi rotations are started on a lower
+* triangular matrix (plus perturbation which is ignored in
+* the part which destroys triangular form (confusing?!))
+*
+ CALL CGESVJ( 'L', 'N', 'N', NR, NR, A, LDA, SVA,
+ $ N, V, LDV, CWORK, LWORK, RWORK, LRWORK, INFO )
+*
+ SCALEM = RWORK(1)
+ NUMRANK = NINT(RWORK(2))
+*
+*
+ ELSE IF ( ( RSVEC .AND. ( .NOT. LSVEC ) .AND. ( .NOT. JRACC ) )
+ $ .OR.
+ $ ( JRACC .AND. ( .NOT. LSVEC ) .AND. ( NR .NE. N ) ) ) THEN
+*
+* -> Singular Values and Right Singular Vectors <-
+*
+ IF ( ALMORT ) THEN
+*
+* .. in this case NR equals N
+ DO 1998 p = 1, NR
+ CALL CCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
+ CALL CLACGV( N-p+1, V(p,p), 1 )
+ 1998 CONTINUE
+ CALL CLASET( 'U', NR-1,NR-1, CZERO, CZERO, V(1,2), LDV )
+*
+ CALL CGESVJ( 'L','U','N', N, NR, V, LDV, SVA, NR, A, LDA,
+ $ CWORK, LWORK, RWORK, LRWORK, INFO )
+ SCALEM = RWORK(1)
+ NUMRANK = NINT(RWORK(2))
+
+ ELSE
+*
+* .. two more QR factorizations ( one QRF is not enough, two require
+* accumulated product of Jacobi rotations, three are perfect )
+*
+ CALL CLASET( 'L', NR-1,NR-1, CZERO, CZERO, A(2,1), LDA )
+ CALL CGELQF( NR,N, A, LDA, CWORK, CWORK(N+1), LWORK-N, IERR)
+ CALL CLACPY( 'L', NR, NR, A, LDA, V, LDV )
+ CALL CLASET( 'U', NR-1,NR-1, CZERO, CZERO, V(1,2), LDV )
+ CALL CGEQRF( NR, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
+ $ LWORK-2*N, IERR )
+ DO 8998 p = 1, NR
+ CALL CCOPY( NR-p+1, V(p,p), LDV, V(p,p), 1 )
+ CALL CLACGV( NR-p+1, V(p,p), 1 )
+ 8998 CONTINUE
+ CALL CLASET('U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV)
+*
+ CALL CGESVJ( 'L', 'U','N', NR, NR, V,LDV, SVA, NR, U,
+ $ LDU, CWORK(N+1), LWORK-N, RWORK, LRWORK, INFO )
+ SCALEM = RWORK(1)
+ NUMRANK = NINT(RWORK(2))
+ IF ( NR .LT. N ) THEN
+ CALL CLASET( 'A',N-NR, NR, CZERO,CZERO, V(NR+1,1), LDV )
+ CALL CLASET( 'A',NR, N-NR, CZERO,CZERO, V(1,NR+1), LDV )
+ CALL CLASET( 'A',N-NR,N-NR,CZERO,CONE, V(NR+1,NR+1),LDV )
+ END IF
+*
+ CALL CUNMLQ( 'L', 'C', N, N, NR, A, LDA, CWORK,
+ $ V, LDV, CWORK(N+1), LWORK-N, IERR )
+*
+ END IF
+* .. permute the rows of V
+* DO 8991 p = 1, N
+* CALL CCOPY( N, V(p,1), LDV, A(IWORK(p),1), LDA )
+* 8991 CONTINUE
+* CALL CLACPY( 'All', N, N, A, LDA, V, LDV )
+ CALL CLAPMR( .FALSE., N, N, V, LDV, IWORK )
+*
+ IF ( TRANSP ) THEN
+ CALL CLACPY( 'A', N, N, V, LDV, U, LDU )
+ END IF
+*
+ ELSE IF ( JRACC .AND. (.NOT. LSVEC) .AND. ( NR.EQ. N ) ) THEN
+*
+ CALL CLASET( 'L', N-1,N-1, CZERO, CZERO, A(2,1), LDA )
+*
+ CALL CGESVJ( 'U','N','V', N, N, A, LDA, SVA, N, V, LDV,
+ $ CWORK, LWORK, RWORK, LRWORK, INFO )
+ SCALEM = RWORK(1)
+ NUMRANK = NINT(RWORK(2))
+ CALL CLAPMR( .FALSE., N, N, V, LDV, IWORK )
+*
+ ELSE IF ( LSVEC .AND. ( .NOT. RSVEC ) ) THEN
+*
+* .. Singular Values and Left Singular Vectors ..
+*
+* .. second preconditioning step to avoid need to accumulate
+* Jacobi rotations in the Jacobi iterations.
+ DO 1965 p = 1, NR
+ CALL CCOPY( N-p+1, A(p,p), LDA, U(p,p), 1 )
+ CALL CLACGV( N-p+1, U(p,p), 1 )
+ 1965 CONTINUE
+ CALL CLASET( 'U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
+*
+ CALL CGEQRF( N, NR, U, LDU, CWORK(N+1), CWORK(2*N+1),
+ $ LWORK-2*N, IERR )
+*
+ DO 1967 p = 1, NR - 1
+ CALL CCOPY( NR-p, U(p,p+1), LDU, U(p+1,p), 1 )
+ CALL CLACGV( N-p+1, U(p,p), 1 )
+ 1967 CONTINUE
+ CALL CLASET( 'U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
+*
+ CALL CGESVJ( 'L', 'U', 'N', NR,NR, U, LDU, SVA, NR, A,
+ $ LDA, CWORK(N+1), LWORK-N, RWORK, LRWORK, INFO )
+ SCALEM = RWORK(1)
+ NUMRANK = NINT(RWORK(2))
+*
+ IF ( NR .LT. M ) THEN
+ CALL CLASET( 'A', M-NR, NR,CZERO, CZERO, U(NR+1,1), LDU )
+ IF ( NR .LT. N1 ) THEN
+ CALL CLASET( 'A',NR, N1-NR, CZERO, CZERO, U(1,NR+1),LDU )
+ CALL CLASET( 'A',M-NR,N1-NR,CZERO,CONE,U(NR+1,NR+1),LDU )
+ END IF
+ END IF
+*
+ CALL CUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
+ $ LDU, CWORK(N+1), LWORK-N, IERR )
+*
+ IF ( ROWPIV )
+ $ CALL CLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
+*
+ DO 1974 p = 1, N1
+ XSC = ONE / SCNRM2( M, U(1,p), 1 )
+ CALL CSSCAL( M, XSC, U(1,p), 1 )
+ 1974 CONTINUE
+*
+ IF ( TRANSP ) THEN
+ CALL CLACPY( 'A', N, N, U, LDU, V, LDV )
+ END IF
+*
+ ELSE
+*
+* .. Full SVD ..
+*
+ IF ( .NOT. JRACC ) THEN
+*
+ IF ( .NOT. ALMORT ) THEN
+*
+* Second Preconditioning Step (QRF [with pivoting])
+* Note that the composition of TRANSPOSE, QRF and TRANSPOSE is
+* equivalent to an LQF CALL. Since in many libraries the QRF
+* seems to be better optimized than the LQF, we do explicit
+* transpose and use the QRF. This is subject to changes in an
+* optimized implementation of CGEJSV.
+*
+ DO 1968 p = 1, NR
+ CALL CCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
+ CALL CLACGV( N-p+1, V(p,p), 1 )
+ 1968 CONTINUE
+*
+* .. the following two loops perturb small entries to avoid
+* denormals in the second QR factorization, where they are
+* as good as zeros. This is done to avoid painfully slow
+* computation with denormals. The relative size of the perturbation
+* is a parameter that can be changed by the implementer.
+* This perturbation device will be obsolete on machines with
+* properly implemented arithmetic.
+* To switch it off, set L2PERT=.FALSE. To remove it from the
+* code, remove the action under L2PERT=.TRUE., leave the ELSE part.
+* The following two loops should be blocked and fused with the
+* transposed copy above.
+*
+ IF ( L2PERT ) THEN
+ XSC = SQRT(SMALL)
+ DO 2969 q = 1, NR
+ CTEMP = CMPLX(XSC*ABS( V(q,q) ),ZERO)
+ DO 2968 p = 1, N
+ IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 )
+ $ .OR. ( p .LT. q ) )
+* $ V(p,q) = TEMP1 * ( V(p,q) / ABS(V(p,q)) )
+ $ V(p,q) = CTEMP
+ IF ( p .LT. q ) V(p,q) = - V(p,q)
+ 2968 CONTINUE
+ 2969 CONTINUE
+ ELSE
+ CALL CLASET( 'U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV )
+ END IF
+*
+* Estimate the row scaled condition number of R1
+* (If R1 is rectangular, N > NR, then the condition number
+* of the leading NR x NR submatrix is estimated.)
+*
+ CALL CLACPY( 'L', NR, NR, V, LDV, CWORK(2*N+1), NR )
+ DO 3950 p = 1, NR
+ TEMP1 = SCNRM2(NR-p+1,CWORK(2*N+(p-1)*NR+p),1)
+ CALL CSSCAL(NR-p+1,ONE/TEMP1,CWORK(2*N+(p-1)*NR+p),1)
+ 3950 CONTINUE
+ CALL CPOCON('L',NR,CWORK(2*N+1),NR,ONE,TEMP1,
+ $ CWORK(2*N+NR*NR+1),RWORK,IERR)
+ CONDR1 = ONE / SQRT(TEMP1)
+* .. here need a second opinion on the condition number
+* .. then assume worst case scenario
+* R1 is OK for inverse <=> CONDR1 .LT. REAL(N)
+* more conservative <=> CONDR1 .LT. SQRT(REAL(N))
+*
+ COND_OK = SQRT(SQRT(REAL(NR)))
+*[TP] COND_OK is a tuning parameter.
+*
+ IF ( CONDR1 .LT. COND_OK ) THEN
+* .. the second QRF without pivoting. Note: in an optimized
+* implementation, this QRF should be implemented as the QRF
+* of a lower triangular matrix.
+* R1^* = Q2 * R2
+ CALL CGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
+ $ LWORK-2*N, IERR )
+*
+ IF ( L2PERT ) THEN
+ XSC = SQRT(SMALL)/EPSLN
+ DO 3959 p = 2, NR
+ DO 3958 q = 1, p - 1
+ CTEMP=CMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
+ $ ZERO)
+ IF ( ABS(V(q,p)) .LE. TEMP1 )
+* $ V(q,p) = TEMP1 * ( V(q,p) / ABS(V(q,p)) )
+ $ V(q,p) = CTEMP
+ 3958 CONTINUE
+ 3959 CONTINUE
+ END IF
+*
+ IF ( NR .NE. N )
+ $ CALL CLACPY( 'A', N, NR, V, LDV, CWORK(2*N+1), N )
+* .. save ...
+*
+* .. this transposed copy should be better than naive
+ DO 1969 p = 1, NR - 1
+ CALL CCOPY( NR-p, V(p,p+1), LDV, V(p+1,p), 1 )
+ CALL CLACGV(NR-p+1, V(p,p), 1 )
+ 1969 CONTINUE
+ V(NR,NR)=CONJG(V(NR,NR))
+*
+ CONDR2 = CONDR1
+*
+ ELSE
+*
+* .. ill-conditioned case: second QRF with pivoting
+* Note that windowed pivoting would be equally good
+* numerically, and more run-time efficient. So, in
+* an optimal implementation, the next call to CGEQP3
+* should be replaced with eg. CALL CGEQPX (ACM TOMS #782)
+* with properly (carefully) chosen parameters.
+*
+* R1^* * P2 = Q2 * R2
+ DO 3003 p = 1, NR
+ IWORK(N+p) = 0
+ 3003 CONTINUE
+ CALL CGEQP3( N, NR, V, LDV, IWORK(N+1), CWORK(N+1),
+ $ CWORK(2*N+1), LWORK-2*N, RWORK, IERR )
+** CALL CGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
+** $ LWORK-2*N, IERR )
+ IF ( L2PERT ) THEN
+ XSC = SQRT(SMALL)
+ DO 3969 p = 2, NR
+ DO 3968 q = 1, p - 1
+ CTEMP=CMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
+ $ ZERO)
+ IF ( ABS(V(q,p)) .LE. TEMP1 )
+* $ V(q,p) = TEMP1 * ( V(q,p) / ABS(V(q,p)) )
+ $ V(q,p) = CTEMP
+ 3968 CONTINUE
+ 3969 CONTINUE
+ END IF
+*
+ CALL CLACPY( 'A', N, NR, V, LDV, CWORK(2*N+1), N )
+*
+ IF ( L2PERT ) THEN
+ XSC = SQRT(SMALL)
+ DO 8970 p = 2, NR
+ DO 8971 q = 1, p - 1
+ CTEMP=CMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
+ $ ZERO)
+* V(p,q) = - TEMP1*( V(q,p) / ABS(V(q,p)) )
+ V(p,q) = - CTEMP
+ 8971 CONTINUE
+ 8970 CONTINUE
+ ELSE
+ CALL CLASET( 'L',NR-1,NR-1,CZERO,CZERO,V(2,1),LDV )
+ END IF
+* Now, compute R2 = L3 * Q3, the LQ factorization.
+ CALL CGELQF( NR, NR, V, LDV, CWORK(2*N+N*NR+1),
+ $ CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, IERR )
+* .. and estimate the condition number
+ CALL CLACPY( 'L',NR,NR,V,LDV,CWORK(2*N+N*NR+NR+1),NR )
+ DO 4950 p = 1, NR
+ TEMP1 = SCNRM2( p, CWORK(2*N+N*NR+NR+p), NR )
+ CALL CSSCAL( p, ONE/TEMP1, CWORK(2*N+N*NR+NR+p), NR )
+ 4950 CONTINUE
+ CALL CPOCON( 'L',NR,CWORK(2*N+N*NR+NR+1),NR,ONE,TEMP1,
+ $ CWORK(2*N+N*NR+NR+NR*NR+1),RWORK,IERR )
+ CONDR2 = ONE / SQRT(TEMP1)
+*
+*
+ IF ( CONDR2 .GE. COND_OK ) THEN
+* .. save the Householder vectors used for Q3
+* (this overwrites the copy of R2, as it will not be
+* needed in this branch, but it does not overwritte the
+* Huseholder vectors of Q2.).
+ CALL CLACPY( 'U', NR, NR, V, LDV, CWORK(2*N+1), N )
+* .. and the rest of the information on Q3 is in
+* WORK(2*N+N*NR+1:2*N+N*NR+N)
+ END IF
+*
+ END IF
+*
+ IF ( L2PERT ) THEN
+ XSC = SQRT(SMALL)
+ DO 4968 q = 2, NR
+ CTEMP = XSC * V(q,q)
+ DO 4969 p = 1, q - 1
+* V(p,q) = - TEMP1*( V(p,q) / ABS(V(p,q)) )
+ V(p,q) = - CTEMP
+ 4969 CONTINUE
+ 4968 CONTINUE
+ ELSE
+ CALL CLASET( 'U', NR-1,NR-1, CZERO,CZERO, V(1,2), LDV )
+ END IF
+*
+* Second preconditioning finished; continue with Jacobi SVD
+* The input matrix is lower trinagular.
+*
+* Recover the right singular vectors as solution of a well
+* conditioned triangular matrix equation.
+*
+ IF ( CONDR1 .LT. COND_OK ) THEN
+*
+ CALL CGESVJ( 'L','U','N',NR,NR,V,LDV,SVA,NR,U, LDU,
+ $ CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,RWORK,
+ $ LRWORK, INFO )
+ SCALEM = RWORK(1)
+ NUMRANK = NINT(RWORK(2))
+ DO 3970 p = 1, NR
+ CALL CCOPY( NR, V(1,p), 1, U(1,p), 1 )
+ CALL CSSCAL( NR, SVA(p), V(1,p), 1 )
+ 3970 CONTINUE
+
+* .. pick the right matrix equation and solve it
+*
+ IF ( NR .EQ. N ) THEN
+* :)) .. best case, R1 is inverted. The solution of this matrix
+* equation is Q2*V2 = the product of the Jacobi rotations
+* used in CGESVJ, premultiplied with the orthogonal matrix
+* from the second QR factorization.
+ CALL CTRSM('L','U','N','N', NR,NR,CONE, A,LDA, V,LDV)
+ ELSE
+* .. R1 is well conditioned, but non-square. Adjoint of R2
+* is inverted to get the product of the Jacobi rotations
+* used in CGESVJ. The Q-factor from the second QR
+* factorization is then built in explicitly.
+ CALL CTRSM('L','U','C','N',NR,NR,CONE,CWORK(2*N+1),
+ $ N,V,LDV)
+ IF ( NR .LT. N ) THEN
+ CALL CLASET('A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV)
+ CALL CLASET('A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV)
+ CALL CLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
+ END IF
+ CALL CUNMQR('L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
+ $ V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR)
+ END IF
+*
+ ELSE IF ( CONDR2 .LT. COND_OK ) THEN
+*
+* The matrix R2 is inverted. The solution of the matrix equation
+* is Q3^* * V3 = the product of the Jacobi rotations (appplied to
+* the lower triangular L3 from the LQ factorization of
+* R2=L3*Q3), pre-multiplied with the transposed Q3.
+ CALL CGESVJ( 'L', 'U', 'N', NR, NR, V, LDV, SVA, NR, U,
+ $ LDU, CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR,
+ $ RWORK, LRWORK, INFO )
+ SCALEM = RWORK(1)
+ NUMRANK = NINT(RWORK(2))
+ DO 3870 p = 1, NR
+ CALL CCOPY( NR, V(1,p), 1, U(1,p), 1 )
+ CALL CSSCAL( NR, SVA(p), U(1,p), 1 )
+ 3870 CONTINUE
+ CALL CTRSM('L','U','N','N',NR,NR,CONE,CWORK(2*N+1),N,
+ $ U,LDU)
+* .. apply the permutation from the second QR factorization
+ DO 873 q = 1, NR
+ DO 872 p = 1, NR
+ CWORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
+ 872 CONTINUE
+ DO 874 p = 1, NR
+ U(p,q) = CWORK(2*N+N*NR+NR+p)
+ 874 CONTINUE
+ 873 CONTINUE
+ IF ( NR .LT. N ) THEN
+ CALL CLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
+ CALL CLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
+ CALL CLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
+ END IF
+ CALL CUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
+ $ V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
+ ELSE
+* Last line of defense.
+* #:( This is a rather pathological case: no scaled condition
+* improvement after two pivoted QR factorizations. Other
+* possibility is that the rank revealing QR factorization
+* or the condition estimator has failed, or the COND_OK
+* is set very close to ONE (which is unnecessary). Normally,
+* this branch should never be executed, but in rare cases of
+* failure of the RRQR or condition estimator, the last line of
+* defense ensures that CGEJSV completes the task.
+* Compute the full SVD of L3 using CGESVJ with explicit
+* accumulation of Jacobi rotations.
+ CALL CGESVJ( 'L', 'U', 'V', NR, NR, V, LDV, SVA, NR, U,
+ $ LDU, CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR,
+ $ RWORK, LRWORK, INFO )
+ SCALEM = RWORK(1)
+ NUMRANK = NINT(RWORK(2))
+ IF ( NR .LT. N ) THEN
+ CALL CLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
+ CALL CLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
+ CALL CLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
+ END IF
+ CALL CUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
+ $ V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
+*
+ CALL CUNMLQ( 'L', 'C', NR, NR, NR, CWORK(2*N+1), N,
+ $ CWORK(2*N+N*NR+1), U, LDU, CWORK(2*N+N*NR+NR+1),
+ $ LWORK-2*N-N*NR-NR, IERR )
+ DO 773 q = 1, NR
+ DO 772 p = 1, NR
+ CWORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
+ 772 CONTINUE
+ DO 774 p = 1, NR
+ U(p,q) = CWORK(2*N+N*NR+NR+p)
+ 774 CONTINUE
+ 773 CONTINUE
+*
+ END IF
+*
+* Permute the rows of V using the (column) permutation from the
+* first QRF. Also, scale the columns to make them unit in
+* Euclidean norm. This applies to all cases.
+*
+ TEMP1 = SQRT(REAL(N)) * EPSLN
+ DO 1972 q = 1, N
+ DO 972 p = 1, N
+ CWORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
+ 972 CONTINUE
+ DO 973 p = 1, N
+ V(p,q) = CWORK(2*N+N*NR+NR+p)
+ 973 CONTINUE
+ XSC = ONE / SCNRM2( N, V(1,q), 1 )
+ IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
+ $ CALL CSSCAL( N, XSC, V(1,q), 1 )
+ 1972 CONTINUE
+* At this moment, V contains the right singular vectors of A.
+* Next, assemble the left singular vector matrix U (M x N).
+ IF ( NR .LT. M ) THEN
+ CALL CLASET('A', M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU)
+ IF ( NR .LT. N1 ) THEN
+ CALL CLASET('A',NR,N1-NR,CZERO,CZERO,U(1,NR+1),LDU)
+ CALL CLASET('A',M-NR,N1-NR,CZERO,CONE,
+ $ U(NR+1,NR+1),LDU)
+ END IF
+ END IF
+*
+* The Q matrix from the first QRF is built into the left singular
+* matrix U. This applies to all cases.
+*
+ CALL CUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
+ $ LDU, CWORK(N+1), LWORK-N, IERR )
+
+* The columns of U are normalized. The cost is O(M*N) flops.
+ TEMP1 = SQRT(REAL(M)) * EPSLN
+ DO 1973 p = 1, NR
+ XSC = ONE / SCNRM2( M, U(1,p), 1 )
+ IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
+ $ CALL CSSCAL( M, XSC, U(1,p), 1 )
+ 1973 CONTINUE
+*
+* If the initial QRF is computed with row pivoting, the left
+* singular vectors must be adjusted.
+*
+ IF ( ROWPIV )
+ $ CALL CLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
+*
+ ELSE
+*
+* .. the initial matrix A has almost orthogonal columns and
+* the second QRF is not needed
+*
+ CALL CLACPY( 'U', N, N, A, LDA, CWORK(N+1), N )
+ IF ( L2PERT ) THEN
+ XSC = SQRT(SMALL)
+ DO 5970 p = 2, N
+ CTEMP = XSC * CWORK( N + (p-1)*N + p )
+ DO 5971 q = 1, p - 1
+* CWORK(N+(q-1)*N+p)=-TEMP1 * ( CWORK(N+(p-1)*N+q) /
+* $ ABS(CWORK(N+(p-1)*N+q)) )
+ CWORK(N+(q-1)*N+p)=-CTEMP
+ 5971 CONTINUE
+ 5970 CONTINUE
+ ELSE
+ CALL CLASET( 'L',N-1,N-1,CZERO,CZERO,CWORK(N+2),N )
+ END IF
+*
+ CALL CGESVJ( 'U', 'U', 'N', N, N, CWORK(N+1), N, SVA,
+ $ N, U, LDU, CWORK(N+N*N+1), LWORK-N-N*N, RWORK, LRWORK,
+ $ INFO )
+*
+ SCALEM = RWORK(1)
+ NUMRANK = NINT(RWORK(2))
+ DO 6970 p = 1, N
+ CALL CCOPY( N, CWORK(N+(p-1)*N+1), 1, U(1,p), 1 )
+ CALL CSSCAL( N, SVA(p), CWORK(N+(p-1)*N+1), 1 )
+ 6970 CONTINUE
+*
+ CALL CTRSM( 'L', 'U', 'N', 'N', N, N,
+ $ CONE, A, LDA, CWORK(N+1), N )
+ DO 6972 p = 1, N
+ CALL CCOPY( N, CWORK(N+p), N, V(IWORK(p),1), LDV )
+ 6972 CONTINUE
+ TEMP1 = SQRT(REAL(N))*EPSLN
+ DO 6971 p = 1, N
+ XSC = ONE / SCNRM2( N, V(1,p), 1 )
+ IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
+ $ CALL CSSCAL( N, XSC, V(1,p), 1 )
+ 6971 CONTINUE
+*
+* Assemble the left singular vector matrix U (M x N).
+*
+ IF ( N .LT. M ) THEN
+ CALL CLASET( 'A', M-N, N, CZERO, CZERO, U(N+1,1), LDU )
+ IF ( N .LT. N1 ) THEN
+ CALL CLASET('A',N, N1-N, CZERO, CZERO, U(1,N+1),LDU)
+ CALL CLASET( 'A',M-N,N1-N, CZERO, CONE,U(N+1,N+1),LDU)
+ END IF
+ END IF
+ CALL CUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
+ $ LDU, CWORK(N+1), LWORK-N, IERR )
+ TEMP1 = SQRT(REAL(M))*EPSLN
+ DO 6973 p = 1, N1
+ XSC = ONE / SCNRM2( M, U(1,p), 1 )
+ IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
+ $ CALL CSSCAL( M, XSC, U(1,p), 1 )
+ 6973 CONTINUE
+*
+ IF ( ROWPIV )
+ $ CALL CLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
+*
+ END IF
+*
+* end of the >> almost orthogonal case << in the full SVD
+*
+ ELSE
+*
+* This branch deploys a preconditioned Jacobi SVD with explicitly
+* accumulated rotations. It is included as optional, mainly for
+* experimental purposes. It does perform well, and can also be used.
+* In this implementation, this branch will be automatically activated
+* if the condition number sigma_max(A) / sigma_min(A) is predicted
+* to be greater than the overflow threshold. This is because the
+* a posteriori computation of the singular vectors assumes robust
+* implementation of BLAS and some LAPACK procedures, capable of working
+* in presence of extreme values, e.g. when the singular values spread from
+* the underflow to the overflow threshold.
+*
+ DO 7968 p = 1, NR
+ CALL CCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
+ CALL CLACGV( N-p+1, V(p,p), 1 )
+ 7968 CONTINUE
+*
+ IF ( L2PERT ) THEN
+ XSC = SQRT(SMALL/EPSLN)
+ DO 5969 q = 1, NR
+ CTEMP = CMPLX(XSC*ABS( V(q,q) ),ZERO)
+ DO 5968 p = 1, N
+ IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 )
+ $ .OR. ( p .LT. q ) )
+* $ V(p,q) = TEMP1 * ( V(p,q) / ABS(V(p,q)) )
+ $ V(p,q) = CTEMP
+ IF ( p .LT. q ) V(p,q) = - V(p,q)
+ 5968 CONTINUE
+ 5969 CONTINUE
+ ELSE
+ CALL CLASET( 'U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV )
+ END IF
+
+ CALL CGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
+ $ LWORK-2*N, IERR )
+ CALL CLACPY( 'L', N, NR, V, LDV, CWORK(2*N+1), N )
+*
+ DO 7969 p = 1, NR
+ CALL CCOPY( NR-p+1, V(p,p), LDV, U(p,p), 1 )
+ CALL CLACGV( NR-p+1, U(p,p), 1 )
+ 7969 CONTINUE
+
+ IF ( L2PERT ) THEN
+ XSC = SQRT(SMALL/EPSLN)
+ DO 9970 q = 2, NR
+ DO 9971 p = 1, q - 1
+ CTEMP = CMPLX(XSC * MIN(ABS(U(p,p)),ABS(U(q,q))),
+ $ ZERO)
+* U(p,q) = - TEMP1 * ( U(q,p) / ABS(U(q,p)) )
+ U(p,q) = - CTEMP
+ 9971 CONTINUE
+ 9970 CONTINUE
+ ELSE
+ CALL CLASET('U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
+ END IF
+
+ CALL CGESVJ( 'L', 'U', 'V', NR, NR, U, LDU, SVA,
+ $ N, V, LDV, CWORK(2*N+N*NR+1), LWORK-2*N-N*NR,
+ $ RWORK, LRWORK, INFO )
+ SCALEM = RWORK(1)
+ NUMRANK = NINT(RWORK(2))
+
+ IF ( NR .LT. N ) THEN
+ CALL CLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
+ CALL CLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
+ CALL CLASET( 'A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV )
+ END IF
+
+ CALL CUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
+ $ V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
+*
+* Permute the rows of V using the (column) permutation from the
+* first QRF. Also, scale the columns to make them unit in
+* Euclidean norm. This applies to all cases.
+*
+ TEMP1 = SQRT(REAL(N)) * EPSLN
+ DO 7972 q = 1, N
+ DO 8972 p = 1, N
+ CWORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
+ 8972 CONTINUE
+ DO 8973 p = 1, N
+ V(p,q) = CWORK(2*N+N*NR+NR+p)
+ 8973 CONTINUE
+ XSC = ONE / SCNRM2( N, V(1,q), 1 )
+ IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
+ $ CALL CSSCAL( N, XSC, V(1,q), 1 )
+ 7972 CONTINUE
+*
+* At this moment, V contains the right singular vectors of A.
+* Next, assemble the left singular vector matrix U (M x N).
+*
+ IF ( NR .LT. M ) THEN
+ CALL CLASET( 'A', M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU )
+ IF ( NR .LT. N1 ) THEN
+ CALL CLASET('A',NR, N1-NR, CZERO, CZERO, U(1,NR+1),LDU)
+ CALL CLASET('A',M-NR,N1-NR, CZERO, CONE,U(NR+1,NR+1),LDU)
+ END IF
+ END IF
+*
+ CALL CUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
+ $ LDU, CWORK(N+1), LWORK-N, IERR )
+*
+ IF ( ROWPIV )
+ $ CALL CLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
+*
+*
+ END IF
+ IF ( TRANSP ) THEN
+* .. swap U and V because the procedure worked on A^*
+ DO 6974 p = 1, N
+ CALL CSWAP( N, U(1,p), 1, V(1,p), 1 )
+ 6974 CONTINUE
+ END IF
+*
+ END IF
+* end of the full SVD
+*
+* Undo scaling, if necessary (and possible)
+*
+ IF ( USCAL2 .LE. (BIG/SVA(1))*USCAL1 ) THEN
+ CALL SLASCL( 'G', 0, 0, USCAL1, USCAL2, NR, 1, SVA, N, IERR )
+ USCAL1 = ONE
+ USCAL2 = ONE
+ END IF
+*
+ IF ( NR .LT. N ) THEN
+ DO 3004 p = NR+1, N
+ SVA(p) = ZERO
+ 3004 CONTINUE
+ END IF
+*
+ RWORK(1) = USCAL2 * SCALEM
+ RWORK(2) = USCAL1
+ IF ( ERREST ) RWORK(3) = SCONDA
+ IF ( LSVEC .AND. RSVEC ) THEN
+ RWORK(4) = CONDR1
+ RWORK(5) = CONDR2
+ END IF
+ IF ( L2TRAN ) THEN
+ RWORK(6) = ENTRA
+ RWORK(7) = ENTRAT
+ END IF
+*
+ IWORK(1) = NR
+ IWORK(2) = NUMRANK
+ IWORK(3) = WARNING
+ IF ( TRANSP ) THEN
+ IWORK(4) = 1
+ ELSE
+ IWORK(4) = -1
+ END IF
+
+*
+ RETURN
+* ..
+* .. END OF CGEJSV
+* ..
+ END
+*
diff --git a/lapack-netlib/cgesvx.f b/lapack-netlib/cgesvx.f
new file mode 100644
index 000000000..74a37e9a0
--- /dev/null
+++ b/lapack-netlib/cgesvx.f
@@ -0,0 +1,602 @@
+*> \brief CGESVX computes the solution to system of linear equations A * X = B for GE matrices
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download CGESVX + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE CGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
+* EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
+* WORK, RWORK, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER EQUED, FACT, TRANS
+* INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
+* REAL RCOND
+* ..
+* .. Array Arguments ..
+* INTEGER IPIV( * )
+* REAL BERR( * ), C( * ), FERR( * ), R( * ),
+* $ RWORK( * )
+* COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
+* $ WORK( * ), X( LDX, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> CGESVX uses the LU factorization to compute the solution to a complex
+*> system of linear equations
+*> A * X = B,
+*> where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
+*>
+*> Error bounds on the solution and a condition estimate are also
+*> provided.
+*> \endverbatim
+*
+*> \par Description:
+* =================
+*>
+*> \verbatim
+*>
+*> The following steps are performed:
+*>
+*> 1. If FACT = 'E', real scaling factors are computed to equilibrate
+*> the system:
+*> TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
+*> TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
+*> TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
+*> Whether or not the system will be equilibrated depends on the
+*> scaling of the matrix A, but if equilibration is used, A is
+*> overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
+*> or diag(C)*B (if TRANS = 'T' or 'C').
+*>
+*> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
+*> matrix A (after equilibration if FACT = 'E') as
+*> A = P * L * U,
+*> where P is a permutation matrix, L is a unit lower triangular
+*> matrix, and U is upper triangular.
+*>
+*> 3. If some U(i,i)=0, so that U is exactly singular, then the routine
+*> returns with INFO = i. Otherwise, the factored form of A is used
+*> to estimate the condition number of the matrix A. If the
+*> reciprocal of the condition number is less than machine precision,
+*> INFO = N+1 is returned as a warning, but the routine still goes on
+*> to solve for X and compute error bounds as described below.
+*>
+*> 4. The system of equations is solved for X using the factored form
+*> of A.
+*>
+*> 5. Iterative refinement is applied to improve the computed solution
+*> matrix and calculate error bounds and backward error estimates
+*> for it.
+*>
+*> 6. If equilibration was used, the matrix X is premultiplied by
+*> diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
+*> that it solves the original system before equilibration.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] FACT
+*> \verbatim
+*> FACT is CHARACTER*1
+*> Specifies whether or not the factored form of the matrix A is
+*> supplied on entry, and if not, whether the matrix A should be
+*> equilibrated before it is factored.
+*> = 'F': On entry, AF and IPIV contain the factored form of A.
+*> If EQUED is not 'N', the matrix A has been
+*> equilibrated with scaling factors given by R and C.
+*> A, AF, and IPIV are not modified.
+*> = 'N': The matrix A will be copied to AF and factored.
+*> = 'E': The matrix A will be equilibrated if necessary, then
+*> copied to AF and factored.
+*> \endverbatim
+*>
+*> \param[in] TRANS
+*> \verbatim
+*> TRANS is CHARACTER*1
+*> Specifies the form of the system of equations:
+*> = 'N': A * X = B (No transpose)
+*> = 'T': A**T * X = B (Transpose)
+*> = 'C': A**H * X = B (Conjugate transpose)
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of linear equations, i.e., the order of the
+*> matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] NRHS
+*> \verbatim
+*> NRHS is INTEGER
+*> The number of right hand sides, i.e., the number of columns
+*> of the matrices B and X. NRHS >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX array, dimension (LDA,N)
+*> On entry, the N-by-N matrix A. If FACT = 'F' and EQUED is
+*> not 'N', then A must have been equilibrated by the scaling
+*> factors in R and/or C. A is not modified if FACT = 'F' or
+*> 'N', or if FACT = 'E' and EQUED = 'N' on exit.
+*>
+*> On exit, if EQUED .ne. 'N', A is scaled as follows:
+*> EQUED = 'R': A := diag(R) * A
+*> EQUED = 'C': A := A * diag(C)
+*> EQUED = 'B': A := diag(R) * A * diag(C).
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,N).
+*> \endverbatim
+*>
+*> \param[in,out] AF
+*> \verbatim
+*> AF is COMPLEX array, dimension (LDAF,N)
+*> If FACT = 'F', then AF is an input argument and on entry
+*> contains the factors L and U from the factorization
+*> A = P*L*U as computed by CGETRF. If EQUED .ne. 'N', then
+*> AF is the factored form of the equilibrated matrix A.
+*>
+*> If FACT = 'N', then AF is an output argument and on exit
+*> returns the factors L and U from the factorization A = P*L*U
+*> of the original matrix A.
+*>
+*> If FACT = 'E', then AF is an output argument and on exit
+*> returns the factors L and U from the factorization A = P*L*U
+*> of the equilibrated matrix A (see the description of A for
+*> the form of the equilibrated matrix).
+*> \endverbatim
+*>
+*> \param[in] LDAF
+*> \verbatim
+*> LDAF is INTEGER
+*> The leading dimension of the array AF. LDAF >= max(1,N).
+*> \endverbatim
+*>
+*> \param[in,out] IPIV
+*> \verbatim
+*> IPIV is INTEGER array, dimension (N)
+*> If FACT = 'F', then IPIV is an input argument and on entry
+*> contains the pivot indices from the factorization A = P*L*U
+*> as computed by CGETRF; row i of the matrix was interchanged
+*> with row IPIV(i).
+*>
+*> If FACT = 'N', then IPIV is an output argument and on exit
+*> contains the pivot indices from the factorization A = P*L*U
+*> of the original matrix A.
+*>
+*> If FACT = 'E', then IPIV is an output argument and on exit
+*> contains the pivot indices from the factorization A = P*L*U
+*> of the equilibrated matrix A.
+*> \endverbatim
+*>
+*> \param[in,out] EQUED
+*> \verbatim
+*> EQUED is CHARACTER*1
+*> Specifies the form of equilibration that was done.
+*> = 'N': No equilibration (always true if FACT = 'N').
+*> = 'R': Row equilibration, i.e., A has been premultiplied by
+*> diag(R).
+*> = 'C': Column equilibration, i.e., A has been postmultiplied
+*> by diag(C).
+*> = 'B': Both row and column equilibration, i.e., A has been
+*> replaced by diag(R) * A * diag(C).
+*> EQUED is an input argument if FACT = 'F'; otherwise, it is an
+*> output argument.
+*> \endverbatim
+*>
+*> \param[in,out] R
+*> \verbatim
+*> R is REAL array, dimension (N)
+*> The row scale factors for A. If EQUED = 'R' or 'B', A is
+*> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
+*> is not accessed. R is an input argument if FACT = 'F';
+*> otherwise, R is an output argument. If FACT = 'F' and
+*> EQUED = 'R' or 'B', each element of R must be positive.
+*> \endverbatim
+*>
+*> \param[in,out] C
+*> \verbatim
+*> C is REAL array, dimension (N)
+*> The column scale factors for A. If EQUED = 'C' or 'B', A is
+*> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
+*> is not accessed. C is an input argument if FACT = 'F';
+*> otherwise, C is an output argument. If FACT = 'F' and
+*> EQUED = 'C' or 'B', each element of C must be positive.
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is COMPLEX array, dimension (LDB,NRHS)
+*> On entry, the N-by-NRHS right hand side matrix B.
+*> On exit,
+*> if EQUED = 'N', B is not modified;
+*> if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
+*> diag(R)*B;
+*> if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
+*> overwritten by diag(C)*B.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] X
+*> \verbatim
+*> X is COMPLEX array, dimension (LDX,NRHS)
+*> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
+*> to the original system of equations. Note that A and B are
+*> modified on exit if EQUED .ne. 'N', and the solution to the
+*> equilibrated system is inv(diag(C))*X if TRANS = 'N' and
+*> EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
+*> and EQUED = 'R' or 'B'.
+*> \endverbatim
+*>
+*> \param[in] LDX
+*> \verbatim
+*> LDX is INTEGER
+*> The leading dimension of the array X. LDX >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] RCOND
+*> \verbatim
+*> RCOND is REAL
+*> The estimate of the reciprocal condition number of the matrix
+*> A after equilibration (if done). If RCOND is less than the
+*> machine precision (in particular, if RCOND = 0), the matrix
+*> is singular to working precision. This condition is
+*> indicated by a return code of INFO > 0.
+*> \endverbatim
+*>
+*> \param[out] FERR
+*> \verbatim
+*> FERR is REAL array, dimension (NRHS)
+*> The estimated forward error bound for each solution vector
+*> X(j) (the j-th column of the solution matrix X).
+*> If XTRUE is the true solution corresponding to X(j), FERR(j)
+*> is an estimated upper bound for the magnitude of the largest
+*> element in (X(j) - XTRUE) divided by the magnitude of the
+*> largest element in X(j). The estimate is as reliable as
+*> the estimate for RCOND, and is almost always a slight
+*> overestimate of the true error.
+*> \endverbatim
+*>
+*> \param[out] BERR
+*> \verbatim
+*> BERR is REAL array, dimension (NRHS)
+*> The componentwise relative backward error of each solution
+*> vector X(j) (i.e., the smallest relative change in
+*> any element of A or B that makes X(j) an exact solution).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX array, dimension (2*N)
+*> \endverbatim
+*>
+*> \param[out] RWORK
+*> \verbatim
+*> RWORK is REAL array, dimension (MAX(1,2*N))
+*> On exit, RWORK(1) contains the reciprocal pivot growth
+*> factor norm(A)/norm(U). The "max absolute element" norm is
+*> used. If RWORK(1) is much less than 1, then the stability
+*> of the LU factorization of the (equilibrated) matrix A
+*> could be poor. This also means that the solution X, condition
+*> estimator RCOND, and forward error bound FERR could be
+*> unreliable. If factorization fails with 0 RWORK(1) contains the reciprocal pivot growth factor for the
+*> leading INFO columns of A.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: if INFO = i, and i is
+*> <= N: U(i,i) is exactly zero. The factorization has
+*> been completed, but the factor U is exactly
+*> singular, so the solution and error bounds
+*> could not be computed. RCOND = 0 is returned.
+*> = N+1: U is nonsingular, but RCOND is less than machine
+*> precision, meaning that the matrix is singular
+*> to working precision. Nevertheless, the
+*> solution and error bounds are computed because
+*> there are a number of situations where the
+*> computed solution can be more accurate than the
+*> value of RCOND would suggest.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup complexGEsolve
+*
+* =====================================================================
+ SUBROUTINE CGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
+ $ EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
+ $ WORK, RWORK, INFO )
+*
+* -- LAPACK driver routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ CHARACTER EQUED, FACT, TRANS
+ INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
+ REAL RCOND
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * )
+ REAL BERR( * ), C( * ), FERR( * ), R( * ),
+ $ RWORK( * )
+ COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
+ $ WORK( * ), X( LDX, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO, ONE
+ PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
+ CHARACTER NORM
+ INTEGER I, INFEQU, J
+ REAL AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
+ $ ROWCND, RPVGRW, SMLNUM
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ REAL CLANGE, CLANTR, SLAMCH
+ EXTERNAL LSAME, CLANGE, CLANTR, SLAMCH
+* ..
+* .. External Subroutines ..
+ EXTERNAL CGECON, CGEEQU, CGERFS, CGETRF, CGETRS, CLACPY,
+ $ CLAQGE, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+ INFO = 0
+ NOFACT = LSAME( FACT, 'N' )
+ EQUIL = LSAME( FACT, 'E' )
+ NOTRAN = LSAME( TRANS, 'N' )
+ IF( NOFACT .OR. EQUIL ) THEN
+ EQUED = 'N'
+ ROWEQU = .FALSE.
+ COLEQU = .FALSE.
+ ELSE
+ ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
+ COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
+ SMLNUM = SLAMCH( 'Safe minimum' )
+ BIGNUM = ONE / SMLNUM
+ END IF
+*
+* Test the input parameters.
+*
+ IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
+ $ THEN
+ INFO = -1
+ ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
+ $ LSAME( TRANS, 'C' ) ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -6
+ ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
+ INFO = -8
+ ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
+ $ ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
+ INFO = -10
+ ELSE
+ IF( ROWEQU ) THEN
+ RCMIN = BIGNUM
+ RCMAX = ZERO
+ DO 10 J = 1, N
+ RCMIN = MIN( RCMIN, R( J ) )
+ RCMAX = MAX( RCMAX, R( J ) )
+ 10 CONTINUE
+ IF( RCMIN.LE.ZERO ) THEN
+ INFO = -11
+ ELSE IF( N.GT.0 ) THEN
+ ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
+ ELSE
+ ROWCND = ONE
+ END IF
+ END IF
+ IF( COLEQU .AND. INFO.EQ.0 ) THEN
+ RCMIN = BIGNUM
+ RCMAX = ZERO
+ DO 20 J = 1, N
+ RCMIN = MIN( RCMIN, C( J ) )
+ RCMAX = MAX( RCMAX, C( J ) )
+ 20 CONTINUE
+ IF( RCMIN.LE.ZERO ) THEN
+ INFO = -12
+ ELSE IF( N.GT.0 ) THEN
+ COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
+ ELSE
+ COLCND = ONE
+ END IF
+ END IF
+ IF( INFO.EQ.0 ) THEN
+ IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -14
+ ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
+ INFO = -16
+ END IF
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'CGESVX', -INFO )
+ RETURN
+ END IF
+*
+ IF( EQUIL ) THEN
+*
+* Compute row and column scalings to equilibrate the matrix A.
+*
+ CALL CGEEQU( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFEQU )
+ IF( INFEQU.EQ.0 ) THEN
+*
+* Equilibrate the matrix.
+*
+ CALL CLAQGE( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
+ $ EQUED )
+ ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
+ COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
+ END IF
+ END IF
+*
+* Scale the right hand side.
+*
+ IF( NOTRAN ) THEN
+ IF( ROWEQU ) THEN
+ DO 40 J = 1, NRHS
+ DO 30 I = 1, N
+ B( I, J ) = R( I )*B( I, J )
+ 30 CONTINUE
+ 40 CONTINUE
+ END IF
+ ELSE IF( COLEQU ) THEN
+ DO 60 J = 1, NRHS
+ DO 50 I = 1, N
+ B( I, J ) = C( I )*B( I, J )
+ 50 CONTINUE
+ 60 CONTINUE
+ END IF
+*
+ IF( NOFACT .OR. EQUIL ) THEN
+*
+* Compute the LU factorization of A.
+*
+ CALL CLACPY( 'Full', N, N, A, LDA, AF, LDAF )
+ CALL CGETRF( N, N, AF, LDAF, IPIV, INFO )
+*
+* Return if INFO is non-zero.
+*
+ IF( INFO.GT.0 ) THEN
+*
+* Compute the reciprocal pivot growth factor of the
+* leading rank-deficient INFO columns of A.
+*
+ RPVGRW = CLANTR( 'M', 'U', 'N', INFO, INFO, AF, LDAF,
+ $ RWORK )
+ IF( RPVGRW.EQ.ZERO ) THEN
+ RPVGRW = ONE
+ ELSE
+ RPVGRW = CLANGE( 'M', N, INFO, A, LDA, RWORK ) /
+ $ RPVGRW
+ END IF
+ RWORK( 1 ) = RPVGRW
+ RCOND = ZERO
+ RETURN
+ END IF
+ END IF
+*
+* Compute the norm of the matrix A and the
+* reciprocal pivot growth factor RPVGRW.
+*
+ IF( NOTRAN ) THEN
+ NORM = '1'
+ ELSE
+ NORM = 'I'
+ END IF
+ ANORM = CLANGE( NORM, N, N, A, LDA, RWORK )
+ RPVGRW = CLANTR( 'M', 'U', 'N', N, N, AF, LDAF, RWORK )
+ IF( RPVGRW.EQ.ZERO ) THEN
+ RPVGRW = ONE
+ ELSE
+ RPVGRW = CLANGE( 'M', N, N, A, LDA, RWORK ) / RPVGRW
+ END IF
+*
+* Compute the reciprocal of the condition number of A.
+*
+ CALL CGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, RWORK, INFO )
+*
+* Compute the solution matrix X.
+*
+ CALL CLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
+ CALL CGETRS( TRANS, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
+*
+* Use iterative refinement to improve the computed solution and
+* compute error bounds and backward error estimates for it.
+*
+ CALL CGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
+ $ LDX, FERR, BERR, WORK, RWORK, INFO )
+*
+* Transform the solution matrix X to a solution of the original
+* system.
+*
+ IF( NOTRAN ) THEN
+ IF( COLEQU ) THEN
+ DO 80 J = 1, NRHS
+ DO 70 I = 1, N
+ X( I, J ) = C( I )*X( I, J )
+ 70 CONTINUE
+ 80 CONTINUE
+ DO 90 J = 1, NRHS
+ FERR( J ) = FERR( J ) / COLCND
+ 90 CONTINUE
+ END IF
+ ELSE IF( ROWEQU ) THEN
+ DO 110 J = 1, NRHS
+ DO 100 I = 1, N
+ X( I, J ) = R( I )*X( I, J )
+ 100 CONTINUE
+ 110 CONTINUE
+ DO 120 J = 1, NRHS
+ FERR( J ) = FERR( J ) / ROWCND
+ 120 CONTINUE
+ END IF
+*
+* Set INFO = N+1 if the matrix is singular to working precision.
+*
+ IF( RCOND.LT.SLAMCH( 'Epsilon' ) )
+ $ INFO = N + 1
+*
+ RWORK( 1 ) = RPVGRW
+ RETURN
+*
+* End of CGESVX
+*
+ END
diff --git a/lapack-netlib/dgbsvx.f b/lapack-netlib/dgbsvx.f
new file mode 100644
index 000000000..0ee5eecb3
--- /dev/null
+++ b/lapack-netlib/dgbsvx.f
@@ -0,0 +1,639 @@
+*> \brief DGBSVX computes the solution to system of linear equations A * X = B for GB matrices
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download DGBSVX + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE DGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
+* LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
+* RCOND, FERR, BERR, WORK, IWORK, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER EQUED, FACT, TRANS
+* INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
+* DOUBLE PRECISION RCOND
+* ..
+* .. Array Arguments ..
+* INTEGER IPIV( * ), IWORK( * )
+* DOUBLE PRECISION AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
+* $ BERR( * ), C( * ), FERR( * ), R( * ),
+* $ WORK( * ), X( LDX, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> DGBSVX uses the LU factorization to compute the solution to a real
+*> system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
+*> where A is a band matrix of order N with KL subdiagonals and KU
+*> superdiagonals, and X and B are N-by-NRHS matrices.
+*>
+*> Error bounds on the solution and a condition estimate are also
+*> provided.
+*> \endverbatim
+*
+*> \par Description:
+* =================
+*>
+*> \verbatim
+*>
+*> The following steps are performed by this subroutine:
+*>
+*> 1. If FACT = 'E', real scaling factors are computed to equilibrate
+*> the system:
+*> TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
+*> TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
+*> TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
+*> Whether or not the system will be equilibrated depends on the
+*> scaling of the matrix A, but if equilibration is used, A is
+*> overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
+*> or diag(C)*B (if TRANS = 'T' or 'C').
+*>
+*> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
+*> matrix A (after equilibration if FACT = 'E') as
+*> A = L * U,
+*> where L is a product of permutation and unit lower triangular
+*> matrices with KL subdiagonals, and U is upper triangular with
+*> KL+KU superdiagonals.
+*>
+*> 3. If some U(i,i)=0, so that U is exactly singular, then the routine
+*> returns with INFO = i. Otherwise, the factored form of A is used
+*> to estimate the condition number of the matrix A. If the
+*> reciprocal of the condition number is less than machine precision,
+*> INFO = N+1 is returned as a warning, but the routine still goes on
+*> to solve for X and compute error bounds as described below.
+*>
+*> 4. The system of equations is solved for X using the factored form
+*> of A.
+*>
+*> 5. Iterative refinement is applied to improve the computed solution
+*> matrix and calculate error bounds and backward error estimates
+*> for it.
+*>
+*> 6. If equilibration was used, the matrix X is premultiplied by
+*> diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
+*> that it solves the original system before equilibration.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] FACT
+*> \verbatim
+*> FACT is CHARACTER*1
+*> Specifies whether or not the factored form of the matrix A is
+*> supplied on entry, and if not, whether the matrix A should be
+*> equilibrated before it is factored.
+*> = 'F': On entry, AFB and IPIV contain the factored form of
+*> A. If EQUED is not 'N', the matrix A has been
+*> equilibrated with scaling factors given by R and C.
+*> AB, AFB, and IPIV are not modified.
+*> = 'N': The matrix A will be copied to AFB and factored.
+*> = 'E': The matrix A will be equilibrated if necessary, then
+*> copied to AFB and factored.
+*> \endverbatim
+*>
+*> \param[in] TRANS
+*> \verbatim
+*> TRANS is CHARACTER*1
+*> Specifies the form of the system of equations.
+*> = 'N': A * X = B (No transpose)
+*> = 'T': A**T * X = B (Transpose)
+*> = 'C': A**H * X = B (Transpose)
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of linear equations, i.e., the order of the
+*> matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] KL
+*> \verbatim
+*> KL is INTEGER
+*> The number of subdiagonals within the band of A. KL >= 0.
+*> \endverbatim
+*>
+*> \param[in] KU
+*> \verbatim
+*> KU is INTEGER
+*> The number of superdiagonals within the band of A. KU >= 0.
+*> \endverbatim
+*>
+*> \param[in] NRHS
+*> \verbatim
+*> NRHS is INTEGER
+*> The number of right hand sides, i.e., the number of columns
+*> of the matrices B and X. NRHS >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] AB
+*> \verbatim
+*> AB is DOUBLE PRECISION array, dimension (LDAB,N)
+*> On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
+*> The j-th column of A is stored in the j-th column of the
+*> array AB as follows:
+*> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
+*>
+*> If FACT = 'F' and EQUED is not 'N', then A must have been
+*> equilibrated by the scaling factors in R and/or C. AB is not
+*> modified if FACT = 'F' or 'N', or if FACT = 'E' and
+*> EQUED = 'N' on exit.
+*>
+*> On exit, if EQUED .ne. 'N', A is scaled as follows:
+*> EQUED = 'R': A := diag(R) * A
+*> EQUED = 'C': A := A * diag(C)
+*> EQUED = 'B': A := diag(R) * A * diag(C).
+*> \endverbatim
+*>
+*> \param[in] LDAB
+*> \verbatim
+*> LDAB is INTEGER
+*> The leading dimension of the array AB. LDAB >= KL+KU+1.
+*> \endverbatim
+*>
+*> \param[in,out] AFB
+*> \verbatim
+*> AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
+*> If FACT = 'F', then AFB is an input argument and on entry
+*> contains details of the LU factorization of the band matrix
+*> A, as computed by DGBTRF. U is stored as an upper triangular
+*> band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
+*> and the multipliers used during the factorization are stored
+*> in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is
+*> the factored form of the equilibrated matrix A.
+*>
+*> If FACT = 'N', then AFB is an output argument and on exit
+*> returns details of the LU factorization of A.
+*>
+*> If FACT = 'E', then AFB is an output argument and on exit
+*> returns details of the LU factorization of the equilibrated
+*> matrix A (see the description of AB for the form of the
+*> equilibrated matrix).
+*> \endverbatim
+*>
+*> \param[in] LDAFB
+*> \verbatim
+*> LDAFB is INTEGER
+*> The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.
+*> \endverbatim
+*>
+*> \param[in,out] IPIV
+*> \verbatim
+*> IPIV is INTEGER array, dimension (N)
+*> If FACT = 'F', then IPIV is an input argument and on entry
+*> contains the pivot indices from the factorization A = L*U
+*> as computed by DGBTRF; row i of the matrix was interchanged
+*> with row IPIV(i).
+*>
+*> If FACT = 'N', then IPIV is an output argument and on exit
+*> contains the pivot indices from the factorization A = L*U
+*> of the original matrix A.
+*>
+*> If FACT = 'E', then IPIV is an output argument and on exit
+*> contains the pivot indices from the factorization A = L*U
+*> of the equilibrated matrix A.
+*> \endverbatim
+*>
+*> \param[in,out] EQUED
+*> \verbatim
+*> EQUED is CHARACTER*1
+*> Specifies the form of equilibration that was done.
+*> = 'N': No equilibration (always true if FACT = 'N').
+*> = 'R': Row equilibration, i.e., A has been premultiplied by
+*> diag(R).
+*> = 'C': Column equilibration, i.e., A has been postmultiplied
+*> by diag(C).
+*> = 'B': Both row and column equilibration, i.e., A has been
+*> replaced by diag(R) * A * diag(C).
+*> EQUED is an input argument if FACT = 'F'; otherwise, it is an
+*> output argument.
+*> \endverbatim
+*>
+*> \param[in,out] R
+*> \verbatim
+*> R is DOUBLE PRECISION array, dimension (N)
+*> The row scale factors for A. If EQUED = 'R' or 'B', A is
+*> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
+*> is not accessed. R is an input argument if FACT = 'F';
+*> otherwise, R is an output argument. If FACT = 'F' and
+*> EQUED = 'R' or 'B', each element of R must be positive.
+*> \endverbatim
+*>
+*> \param[in,out] C
+*> \verbatim
+*> C is DOUBLE PRECISION array, dimension (N)
+*> The column scale factors for A. If EQUED = 'C' or 'B', A is
+*> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
+*> is not accessed. C is an input argument if FACT = 'F';
+*> otherwise, C is an output argument. If FACT = 'F' and
+*> EQUED = 'C' or 'B', each element of C must be positive.
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
+*> On entry, the right hand side matrix B.
+*> On exit,
+*> if EQUED = 'N', B is not modified;
+*> if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
+*> diag(R)*B;
+*> if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
+*> overwritten by diag(C)*B.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] X
+*> \verbatim
+*> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
+*> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
+*> to the original system of equations. Note that A and B are
+*> modified on exit if EQUED .ne. 'N', and the solution to the
+*> equilibrated system is inv(diag(C))*X if TRANS = 'N' and
+*> EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
+*> and EQUED = 'R' or 'B'.
+*> \endverbatim
+*>
+*> \param[in] LDX
+*> \verbatim
+*> LDX is INTEGER
+*> The leading dimension of the array X. LDX >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] RCOND
+*> \verbatim
+*> RCOND is DOUBLE PRECISION
+*> The estimate of the reciprocal condition number of the matrix
+*> A after equilibration (if done). If RCOND is less than the
+*> machine precision (in particular, if RCOND = 0), the matrix
+*> is singular to working precision. This condition is
+*> indicated by a return code of INFO > 0.
+*> \endverbatim
+*>
+*> \param[out] FERR
+*> \verbatim
+*> FERR is DOUBLE PRECISION array, dimension (NRHS)
+*> The estimated forward error bound for each solution vector
+*> X(j) (the j-th column of the solution matrix X).
+*> If XTRUE is the true solution corresponding to X(j), FERR(j)
+*> is an estimated upper bound for the magnitude of the largest
+*> element in (X(j) - XTRUE) divided by the magnitude of the
+*> largest element in X(j). The estimate is as reliable as
+*> the estimate for RCOND, and is almost always a slight
+*> overestimate of the true error.
+*> \endverbatim
+*>
+*> \param[out] BERR
+*> \verbatim
+*> BERR is DOUBLE PRECISION array, dimension (NRHS)
+*> The componentwise relative backward error of each solution
+*> vector X(j) (i.e., the smallest relative change in
+*> any element of A or B that makes X(j) an exact solution).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is DOUBLE PRECISION array, dimension (MAX(1,3*N))
+*> On exit, WORK(1) contains the reciprocal pivot growth
+*> factor norm(A)/norm(U). The "max absolute element" norm is
+*> used. If WORK(1) is much less than 1, then the stability
+*> of the LU factorization of the (equilibrated) matrix A
+*> could be poor. This also means that the solution X, condition
+*> estimator RCOND, and forward error bound FERR could be
+*> unreliable. If factorization fails with 0 WORK(1) contains the reciprocal pivot growth factor for the
+*> leading INFO columns of A.
+*> \endverbatim
+*>
+*> \param[out] IWORK
+*> \verbatim
+*> IWORK is INTEGER array, dimension (N)
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: if INFO = i, and i is
+*> <= N: U(i,i) is exactly zero. The factorization
+*> has been completed, but the factor U is exactly
+*> singular, so the solution and error bounds
+*> could not be computed. RCOND = 0 is returned.
+*> = N+1: U is nonsingular, but RCOND is less than machine
+*> precision, meaning that the matrix is singular
+*> to working precision. Nevertheless, the
+*> solution and error bounds are computed because
+*> there are a number of situations where the
+*> computed solution can be more accurate than the
+*> value of RCOND would suggest.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup doubleGBsolve
+*
+* =====================================================================
+ SUBROUTINE DGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
+ $ LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
+ $ RCOND, FERR, BERR, WORK, IWORK, INFO )
+*
+* -- LAPACK driver routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ CHARACTER EQUED, FACT, TRANS
+ INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
+ DOUBLE PRECISION RCOND
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * ), IWORK( * )
+ DOUBLE PRECISION AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
+ $ BERR( * ), C( * ), FERR( * ), R( * ),
+ $ WORK( * ), X( LDX, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
+ CHARACTER NORM
+ INTEGER I, INFEQU, J, J1, J2
+ DOUBLE PRECISION AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
+ $ ROWCND, RPVGRW, SMLNUM
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ DOUBLE PRECISION DLAMCH, DLANGB, DLANTB
+ EXTERNAL LSAME, DLAMCH, DLANGB, DLANTB
+* ..
+* .. External Subroutines ..
+ EXTERNAL DCOPY, DGBCON, DGBEQU, DGBRFS, DGBTRF, DGBTRS,
+ $ DLACPY, DLAQGB, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+ INFO = 0
+ NOFACT = LSAME( FACT, 'N' )
+ EQUIL = LSAME( FACT, 'E' )
+ NOTRAN = LSAME( TRANS, 'N' )
+ IF( NOFACT .OR. EQUIL ) THEN
+ EQUED = 'N'
+ ROWEQU = .FALSE.
+ COLEQU = .FALSE.
+ ELSE
+ ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
+ COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
+ SMLNUM = DLAMCH( 'Safe minimum' )
+ BIGNUM = ONE / SMLNUM
+ END IF
+*
+* Test the input parameters.
+*
+ IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
+ $ THEN
+ INFO = -1
+ ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
+ $ LSAME( TRANS, 'C' ) ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( KL.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( KU.LT.0 ) THEN
+ INFO = -5
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -6
+ ELSE IF( LDAB.LT.KL+KU+1 ) THEN
+ INFO = -8
+ ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
+ INFO = -10
+ ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
+ $ ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
+ INFO = -12
+ ELSE
+ IF( ROWEQU ) THEN
+ RCMIN = BIGNUM
+ RCMAX = ZERO
+ DO 10 J = 1, N
+ RCMIN = MIN( RCMIN, R( J ) )
+ RCMAX = MAX( RCMAX, R( J ) )
+ 10 CONTINUE
+ IF( RCMIN.LE.ZERO ) THEN
+ INFO = -13
+ ELSE IF( N.GT.0 ) THEN
+ ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
+ ELSE
+ ROWCND = ONE
+ END IF
+ END IF
+ IF( COLEQU .AND. INFO.EQ.0 ) THEN
+ RCMIN = BIGNUM
+ RCMAX = ZERO
+ DO 20 J = 1, N
+ RCMIN = MIN( RCMIN, C( J ) )
+ RCMAX = MAX( RCMAX, C( J ) )
+ 20 CONTINUE
+ IF( RCMIN.LE.ZERO ) THEN
+ INFO = -14
+ ELSE IF( N.GT.0 ) THEN
+ COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
+ ELSE
+ COLCND = ONE
+ END IF
+ END IF
+ IF( INFO.EQ.0 ) THEN
+ IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -16
+ ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
+ INFO = -18
+ END IF
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DGBSVX', -INFO )
+ RETURN
+ END IF
+*
+ IF( EQUIL ) THEN
+*
+* Compute row and column scalings to equilibrate the matrix A.
+*
+ CALL DGBEQU( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
+ $ AMAX, INFEQU )
+ IF( INFEQU.EQ.0 ) THEN
+*
+* Equilibrate the matrix.
+*
+ CALL DLAQGB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
+ $ AMAX, EQUED )
+ ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
+ COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
+ END IF
+ END IF
+*
+* Scale the right hand side.
+*
+ IF( NOTRAN ) THEN
+ IF( ROWEQU ) THEN
+ DO 40 J = 1, NRHS
+ DO 30 I = 1, N
+ B( I, J ) = R( I )*B( I, J )
+ 30 CONTINUE
+ 40 CONTINUE
+ END IF
+ ELSE IF( COLEQU ) THEN
+ DO 60 J = 1, NRHS
+ DO 50 I = 1, N
+ B( I, J ) = C( I )*B( I, J )
+ 50 CONTINUE
+ 60 CONTINUE
+ END IF
+*
+ IF( NOFACT .OR. EQUIL ) THEN
+*
+* Compute the LU factorization of the band matrix A.
+*
+ DO 70 J = 1, N
+ J1 = MAX( J-KU, 1 )
+ J2 = MIN( J+KL, N )
+ CALL DCOPY( J2-J1+1, AB( KU+1-J+J1, J ), 1,
+ $ AFB( KL+KU+1-J+J1, J ), 1 )
+ 70 CONTINUE
+*
+ CALL DGBTRF( N, N, KL, KU, AFB, LDAFB, IPIV, INFO )
+*
+* Return if INFO is non-zero.
+*
+ IF( INFO.GT.0 ) THEN
+*
+* Compute the reciprocal pivot growth factor of the
+* leading rank-deficient INFO columns of A.
+*
+ ANORM = ZERO
+ DO 90 J = 1, INFO
+ DO 80 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
+ ANORM = MAX( ANORM, ABS( AB( I, J ) ) )
+ 80 CONTINUE
+ 90 CONTINUE
+ RPVGRW = DLANTB( 'M', 'U', 'N', INFO, MIN( INFO-1, KL+KU ),
+ $ AFB( MAX( 1, KL+KU+2-INFO ), 1 ), LDAFB,
+ $ WORK )
+ IF( RPVGRW.EQ.ZERO ) THEN
+ RPVGRW = ONE
+ ELSE
+ RPVGRW = ANORM / RPVGRW
+ END IF
+ WORK( 1 ) = RPVGRW
+ RCOND = ZERO
+ RETURN
+ END IF
+ END IF
+*
+* Compute the norm of the matrix A and the
+* reciprocal pivot growth factor RPVGRW.
+*
+ IF( NOTRAN ) THEN
+ NORM = '1'
+ ELSE
+ NORM = 'I'
+ END IF
+ ANORM = DLANGB( NORM, N, KL, KU, AB, LDAB, WORK )
+ RPVGRW = DLANTB( 'M', 'U', 'N', N, KL+KU, AFB, LDAFB, WORK )
+ IF( RPVGRW.EQ.ZERO ) THEN
+ RPVGRW = ONE
+ ELSE
+ RPVGRW = DLANGB( 'M', N, KL, KU, AB, LDAB, WORK ) / RPVGRW
+ END IF
+*
+* Compute the reciprocal of the condition number of A.
+*
+ CALL DGBCON( NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND,
+ $ WORK, IWORK, INFO )
+*
+* Compute the solution matrix X.
+*
+ CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
+ CALL DGBTRS( TRANS, N, KL, KU, NRHS, AFB, LDAFB, IPIV, X, LDX,
+ $ INFO )
+*
+* Use iterative refinement to improve the computed solution and
+* compute error bounds and backward error estimates for it.
+*
+ CALL DGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV,
+ $ B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
+*
+* Transform the solution matrix X to a solution of the original
+* system.
+*
+ IF( NOTRAN ) THEN
+ IF( COLEQU ) THEN
+ DO 110 J = 1, NRHS
+ DO 100 I = 1, N
+ X( I, J ) = C( I )*X( I, J )
+ 100 CONTINUE
+ 110 CONTINUE
+ DO 120 J = 1, NRHS
+ FERR( J ) = FERR( J ) / COLCND
+ 120 CONTINUE
+ END IF
+ ELSE IF( ROWEQU ) THEN
+ DO 140 J = 1, NRHS
+ DO 130 I = 1, N
+ X( I, J ) = R( I )*X( I, J )
+ 130 CONTINUE
+ 140 CONTINUE
+ DO 150 J = 1, NRHS
+ FERR( J ) = FERR( J ) / ROWCND
+ 150 CONTINUE
+ END IF
+*
+* Set INFO = N+1 if the matrix is singular to working precision.
+*
+ IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
+ $ INFO = N + 1
+*
+ WORK( 1 ) = RPVGRW
+ RETURN
+*
+* End of DGBSVX
+*
+ END
diff --git a/lapack-netlib/dgejsv.f b/lapack-netlib/dgejsv.f
new file mode 100644
index 000000000..ee769bb38
--- /dev/null
+++ b/lapack-netlib/dgejsv.f
@@ -0,0 +1,1780 @@
+*> \brief \b DGEJSV
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download DGEJSV + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE DGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
+* M, N, A, LDA, SVA, U, LDU, V, LDV,
+* WORK, LWORK, IWORK, INFO )
+*
+* .. Scalar Arguments ..
+* IMPLICIT NONE
+* INTEGER INFO, LDA, LDU, LDV, LWORK, M, N
+* ..
+* .. Array Arguments ..
+* DOUBLE PRECISION A( LDA, * ), SVA( N ), U( LDU, * ), V( LDV, * ),
+* $ WORK( LWORK )
+* INTEGER IWORK( * )
+* CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> DGEJSV computes the singular value decomposition (SVD) of a real M-by-N
+*> matrix [A], where M >= N. The SVD of [A] is written as
+*>
+*> [A] = [U] * [SIGMA] * [V]^t,
+*>
+*> where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N
+*> diagonal elements, [U] is an M-by-N (or M-by-M) orthonormal matrix, and
+*> [V] is an N-by-N orthogonal matrix. The diagonal elements of [SIGMA] are
+*> the singular values of [A]. The columns of [U] and [V] are the left and
+*> the right singular vectors of [A], respectively. The matrices [U] and [V]
+*> are computed and stored in the arrays U and V, respectively. The diagonal
+*> of [SIGMA] is computed and stored in the array SVA.
+*> DGEJSV can sometimes compute tiny singular values and their singular vectors much
+*> more accurately than other SVD routines, see below under Further Details.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] JOBA
+*> \verbatim
+*> JOBA is CHARACTER*1
+*> Specifies the level of accuracy:
+*> = 'C': This option works well (high relative accuracy) if A = B * D,
+*> with well-conditioned B and arbitrary diagonal matrix D.
+*> The accuracy cannot be spoiled by COLUMN scaling. The
+*> accuracy of the computed output depends on the condition of
+*> B, and the procedure aims at the best theoretical accuracy.
+*> The relative error max_{i=1:N}|d sigma_i| / sigma_i is
+*> bounded by f(M,N)*epsilon* cond(B), independent of D.
+*> The input matrix is preprocessed with the QRF with column
+*> pivoting. This initial preprocessing and preconditioning by
+*> a rank revealing QR factorization is common for all values of
+*> JOBA. Additional actions are specified as follows:
+*> = 'E': Computation as with 'C' with an additional estimate of the
+*> condition number of B. It provides a realistic error bound.
+*> = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings
+*> D1, D2, and well-conditioned matrix C, this option gives
+*> higher accuracy than the 'C' option. If the structure of the
+*> input matrix is not known, and relative accuracy is
+*> desirable, then this option is advisable. The input matrix A
+*> is preprocessed with QR factorization with FULL (row and
+*> column) pivoting.
+*> = 'G': Computation as with 'F' with an additional estimate of the
+*> condition number of B, where A=D*B. If A has heavily weighted
+*> rows, then using this condition number gives too pessimistic
+*> error bound.
+*> = 'A': Small singular values are the noise and the matrix is treated
+*> as numerically rank deficient. The error in the computed
+*> singular values is bounded by f(m,n)*epsilon*||A||.
+*> The computed SVD A = U * S * V^t restores A up to
+*> f(m,n)*epsilon*||A||.
+*> This gives the procedure the licence to discard (set to zero)
+*> all singular values below N*epsilon*||A||.
+*> = 'R': Similar as in 'A'. Rank revealing property of the initial
+*> QR factorization is used do reveal (using triangular factor)
+*> a gap sigma_{r+1} < epsilon * sigma_r in which case the
+*> numerical RANK is declared to be r. The SVD is computed with
+*> absolute error bounds, but more accurately than with 'A'.
+*> \endverbatim
+*>
+*> \param[in] JOBU
+*> \verbatim
+*> JOBU is CHARACTER*1
+*> Specifies whether to compute the columns of U:
+*> = 'U': N columns of U are returned in the array U.
+*> = 'F': full set of M left sing. vectors is returned in the array U.
+*> = 'W': U may be used as workspace of length M*N. See the description
+*> of U.
+*> = 'N': U is not computed.
+*> \endverbatim
+*>
+*> \param[in] JOBV
+*> \verbatim
+*> JOBV is CHARACTER*1
+*> Specifies whether to compute the matrix V:
+*> = 'V': N columns of V are returned in the array V; Jacobi rotations
+*> are not explicitly accumulated.
+*> = 'J': N columns of V are returned in the array V, but they are
+*> computed as the product of Jacobi rotations. This option is
+*> allowed only if JOBU .NE. 'N', i.e. in computing the full SVD.
+*> = 'W': V may be used as workspace of length N*N. See the description
+*> of V.
+*> = 'N': V is not computed.
+*> \endverbatim
+*>
+*> \param[in] JOBR
+*> \verbatim
+*> JOBR is CHARACTER*1
+*> Specifies the RANGE for the singular values. Issues the licence to
+*> set to zero small positive singular values if they are outside
+*> specified range. If A .NE. 0 is scaled so that the largest singular
+*> value of c*A is around DSQRT(BIG), BIG=SLAMCH('O'), then JOBR issues
+*> the licence to kill columns of A whose norm in c*A is less than
+*> DSQRT(SFMIN) (for JOBR = 'R'), or less than SMALL=SFMIN/EPSLN,
+*> where SFMIN=SLAMCH('S'), EPSLN=SLAMCH('E').
+*> = 'N': Do not kill small columns of c*A. This option assumes that
+*> BLAS and QR factorizations and triangular solvers are
+*> implemented to work in that range. If the condition of A
+*> is greater than BIG, use DGESVJ.
+*> = 'R': RESTRICTED range for sigma(c*A) is [DSQRT(SFMIN), DSQRT(BIG)]
+*> (roughly, as described above). This option is recommended.
+*> ~~~~~~~~~~~~~~~~~~~~~~~~~~~
+*> For computing the singular values in the FULL range [SFMIN,BIG]
+*> use DGESVJ.
+*> \endverbatim
+*>
+*> \param[in] JOBT
+*> \verbatim
+*> JOBT is CHARACTER*1
+*> If the matrix is square then the procedure may determine to use
+*> transposed A if A^t seems to be better with respect to convergence.
+*> If the matrix is not square, JOBT is ignored. This is subject to
+*> changes in the future.
+*> The decision is based on two values of entropy over the adjoint
+*> orbit of A^t * A. See the descriptions of WORK(6) and WORK(7).
+*> = 'T': transpose if entropy test indicates possibly faster
+*> convergence of Jacobi process if A^t is taken as input. If A is
+*> replaced with A^t, then the row pivoting is included automatically.
+*> = 'N': do not speculate.
+*> This option can be used to compute only the singular values, or the
+*> full SVD (U, SIGMA and V). For only one set of singular vectors
+*> (U or V), the caller should provide both U and V, as one of the
+*> matrices is used as workspace if the matrix A is transposed.
+*> The implementer can easily remove this constraint and make the
+*> code more complicated. See the descriptions of U and V.
+*> \endverbatim
+*>
+*> \param[in] JOBP
+*> \verbatim
+*> JOBP is CHARACTER*1
+*> Issues the licence to introduce structured perturbations to drown
+*> denormalized numbers. This licence should be active if the
+*> denormals are poorly implemented, causing slow computation,
+*> especially in cases of fast convergence (!). For details see [1,2].
+*> For the sake of simplicity, this perturbations are included only
+*> when the full SVD or only the singular values are requested. The
+*> implementer/user can easily add the perturbation for the cases of
+*> computing one set of singular vectors.
+*> = 'P': introduce perturbation
+*> = 'N': do not perturb
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the input matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the input matrix A. M >= N >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is DOUBLE PRECISION array, dimension (LDA,N)
+*> On entry, the M-by-N matrix A.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[out] SVA
+*> \verbatim
+*> SVA is DOUBLE PRECISION array, dimension (N)
+*> On exit,
+*> - For WORK(1)/WORK(2) = ONE: The singular values of A. During the
+*> computation SVA contains Euclidean column norms of the
+*> iterated matrices in the array A.
+*> - For WORK(1) .NE. WORK(2): The singular values of A are
+*> (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if
+*> sigma_max(A) overflows or if small singular values have been
+*> saved from underflow by scaling the input matrix A.
+*> - If JOBR='R' then some of the singular values may be returned
+*> as exact zeros obtained by "set to zero" because they are
+*> below the numerical rank threshold or are denormalized numbers.
+*> \endverbatim
+*>
+*> \param[out] U
+*> \verbatim
+*> U is DOUBLE PRECISION array, dimension ( LDU, N ) or ( LDU, M )
+*> If JOBU = 'U', then U contains on exit the M-by-N matrix of
+*> the left singular vectors.
+*> If JOBU = 'F', then U contains on exit the M-by-M matrix of
+*> the left singular vectors, including an ONB
+*> of the orthogonal complement of the Range(A).
+*> If JOBU = 'W' .AND. (JOBV = 'V' .AND. JOBT = 'T' .AND. M = N),
+*> then U is used as workspace if the procedure
+*> replaces A with A^t. In that case, [V] is computed
+*> in U as left singular vectors of A^t and then
+*> copied back to the V array. This 'W' option is just
+*> a reminder to the caller that in this case U is
+*> reserved as workspace of length N*N.
+*> If JOBU = 'N' U is not referenced, unless JOBT='T'.
+*> \endverbatim
+*>
+*> \param[in] LDU
+*> \verbatim
+*> LDU is INTEGER
+*> The leading dimension of the array U, LDU >= 1.
+*> IF JOBU = 'U' or 'F' or 'W', then LDU >= M.
+*> \endverbatim
+*>
+*> \param[out] V
+*> \verbatim
+*> V is DOUBLE PRECISION array, dimension ( LDV, N )
+*> If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of
+*> the right singular vectors;
+*> If JOBV = 'W', AND (JOBU = 'U' AND JOBT = 'T' AND M = N),
+*> then V is used as workspace if the pprocedure
+*> replaces A with A^t. In that case, [U] is computed
+*> in V as right singular vectors of A^t and then
+*> copied back to the U array. This 'W' option is just
+*> a reminder to the caller that in this case V is
+*> reserved as workspace of length N*N.
+*> If JOBV = 'N' V is not referenced, unless JOBT='T'.
+*> \endverbatim
+*>
+*> \param[in] LDV
+*> \verbatim
+*> LDV is INTEGER
+*> The leading dimension of the array V, LDV >= 1.
+*> If JOBV = 'V' or 'J' or 'W', then LDV >= N.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is DOUBLE PRECISION array, dimension (MAX(7,LWORK))
+*> On exit, if N > 0 .AND. M > 0 (else not referenced),
+*> WORK(1) = SCALE = WORK(2) / WORK(1) is the scaling factor such
+*> that SCALE*SVA(1:N) are the computed singular values
+*> of A. (See the description of SVA().)
+*> WORK(2) = See the description of WORK(1).
+*> WORK(3) = SCONDA is an estimate for the condition number of
+*> column equilibrated A. (If JOBA = 'E' or 'G')
+*> SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1).
+*> It is computed using DPOCON. It holds
+*> N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
+*> where R is the triangular factor from the QRF of A.
+*> However, if R is truncated and the numerical rank is
+*> determined to be strictly smaller than N, SCONDA is
+*> returned as -1, thus indicating that the smallest
+*> singular values might be lost.
+*>
+*> If full SVD is needed, the following two condition numbers are
+*> useful for the analysis of the algorithm. They are provided for
+*> a developer/implementer who is familiar with the details of
+*> the method.
+*>
+*> WORK(4) = an estimate of the scaled condition number of the
+*> triangular factor in the first QR factorization.
+*> WORK(5) = an estimate of the scaled condition number of the
+*> triangular factor in the second QR factorization.
+*> The following two parameters are computed if JOBT = 'T'.
+*> They are provided for a developer/implementer who is familiar
+*> with the details of the method.
+*>
+*> WORK(6) = the entropy of A^t*A :: this is the Shannon entropy
+*> of diag(A^t*A) / Trace(A^t*A) taken as point in the
+*> probability simplex.
+*> WORK(7) = the entropy of A*A^t.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> Length of WORK to confirm proper allocation of work space.
+*> LWORK depends on the job:
+*>
+*> If only SIGMA is needed (JOBU = 'N', JOBV = 'N') and
+*> -> .. no scaled condition estimate required (JOBE = 'N'):
+*> LWORK >= max(2*M+N,4*N+1,7). This is the minimal requirement.
+*> ->> For optimal performance (blocked code) the optimal value
+*> is LWORK >= max(2*M+N,3*N+(N+1)*NB,7). Here NB is the optimal
+*> block size for DGEQP3 and DGEQRF.
+*> In general, optimal LWORK is computed as
+*> LWORK >= max(2*M+N,N+LWORK(DGEQP3),N+LWORK(DGEQRF), 7).
+*> -> .. an estimate of the scaled condition number of A is
+*> required (JOBA='E', 'G'). In this case, LWORK is the maximum
+*> of the above and N*N+4*N, i.e. LWORK >= max(2*M+N,N*N+4*N,7).
+*> ->> For optimal performance (blocked code) the optimal value
+*> is LWORK >= max(2*M+N,3*N+(N+1)*NB, N*N+4*N, 7).
+*> In general, the optimal length LWORK is computed as
+*> LWORK >= max(2*M+N,N+LWORK(DGEQP3),N+LWORK(DGEQRF),
+*> N+N*N+LWORK(DPOCON),7).
+*>
+*> If SIGMA and the right singular vectors are needed (JOBV = 'V'),
+*> -> the minimal requirement is LWORK >= max(2*M+N,4*N+1,7).
+*> -> For optimal performance, LWORK >= max(2*M+N,3*N+(N+1)*NB,7),
+*> where NB is the optimal block size for DGEQP3, DGEQRF, DGELQF,
+*> DORMLQ. In general, the optimal length LWORK is computed as
+*> LWORK >= max(2*M+N,N+LWORK(DGEQP3), N+LWORK(DPOCON),
+*> N+LWORK(DGELQF), 2*N+LWORK(DGEQRF), N+LWORK(DORMLQ)).
+*>
+*> If SIGMA and the left singular vectors are needed
+*> -> the minimal requirement is LWORK >= max(2*M+N,4*N+1,7).
+*> -> For optimal performance:
+*> if JOBU = 'U' :: LWORK >= max(2*M+N,3*N+(N+1)*NB,7),
+*> if JOBU = 'F' :: LWORK >= max(2*M+N,3*N+(N+1)*NB,N+M*NB,7),
+*> where NB is the optimal block size for DGEQP3, DGEQRF, DORMQR.
+*> In general, the optimal length LWORK is computed as
+*> LWORK >= max(2*M+N,N+LWORK(DGEQP3),N+LWORK(DPOCON),
+*> 2*N+LWORK(DGEQRF), N+LWORK(DORMQR)).
+*> Here LWORK(DORMQR) equals N*NB (for JOBU = 'U') or
+*> M*NB (for JOBU = 'F').
+*>
+*> If the full SVD is needed: (JOBU = 'U' or JOBU = 'F') and
+*> -> if JOBV = 'V'
+*> the minimal requirement is LWORK >= max(2*M+N,6*N+2*N*N).
+*> -> if JOBV = 'J' the minimal requirement is
+*> LWORK >= max(2*M+N, 4*N+N*N,2*N+N*N+6).
+*> -> For optimal performance, LWORK should be additionally
+*> larger than N+M*NB, where NB is the optimal block size
+*> for DORMQR.
+*> \endverbatim
+*>
+*> \param[out] IWORK
+*> \verbatim
+*> IWORK is INTEGER array, dimension (MAX(3,M+3*N)).
+*> On exit,
+*> IWORK(1) = the numerical rank determined after the initial
+*> QR factorization with pivoting. See the descriptions
+*> of JOBA and JOBR.
+*> IWORK(2) = the number of the computed nonzero singular values
+*> IWORK(3) = if nonzero, a warning message:
+*> If IWORK(3) = 1 then some of the column norms of A
+*> were denormalized floats. The requested high accuracy
+*> is not warranted by the data.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> < 0: if INFO = -i, then the i-th argument had an illegal value.
+*> = 0: successful exit;
+*> > 0: DGEJSV did not converge in the maximal allowed number
+*> of sweeps. The computed values may be inaccurate.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup doubleGEsing
+*
+*> \par Further Details:
+* =====================
+*>
+*> \verbatim
+*>
+*> DGEJSV implements a preconditioned Jacobi SVD algorithm. It uses DGEQP3,
+*> DGEQRF, and DGELQF as preprocessors and preconditioners. Optionally, an
+*> additional row pivoting can be used as a preprocessor, which in some
+*> cases results in much higher accuracy. An example is matrix A with the
+*> structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned
+*> diagonal matrices and C is well-conditioned matrix. In that case, complete
+*> pivoting in the first QR factorizations provides accuracy dependent on the
+*> condition number of C, and independent of D1, D2. Such higher accuracy is
+*> not completely understood theoretically, but it works well in practice.
+*> Further, if A can be written as A = B*D, with well-conditioned B and some
+*> diagonal D, then the high accuracy is guaranteed, both theoretically and
+*> in software, independent of D. For more details see [1], [2].
+*> The computational range for the singular values can be the full range
+*> ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS
+*> & LAPACK routines called by DGEJSV are implemented to work in that range.
+*> If that is not the case, then the restriction for safe computation with
+*> the singular values in the range of normalized IEEE numbers is that the
+*> spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not
+*> overflow. This code (DGEJSV) is best used in this restricted range,
+*> meaning that singular values of magnitude below ||A||_2 / DLAMCH('O') are
+*> returned as zeros. See JOBR for details on this.
+*> Further, this implementation is somewhat slower than the one described
+*> in [1,2] due to replacement of some non-LAPACK components, and because
+*> the choice of some tuning parameters in the iterative part (DGESVJ) is
+*> left to the implementer on a particular machine.
+*> The rank revealing QR factorization (in this code: DGEQP3) should be
+*> implemented as in [3]. We have a new version of DGEQP3 under development
+*> that is more robust than the current one in LAPACK, with a cleaner cut in
+*> rank deficient cases. It will be available in the SIGMA library [4].
+*> If M is much larger than N, it is obvious that the initial QRF with
+*> column pivoting can be preprocessed by the QRF without pivoting. That
+*> well known trick is not used in DGEJSV because in some cases heavy row
+*> weighting can be treated with complete pivoting. The overhead in cases
+*> M much larger than N is then only due to pivoting, but the benefits in
+*> terms of accuracy have prevailed. The implementer/user can incorporate
+*> this extra QRF step easily. The implementer can also improve data movement
+*> (matrix transpose, matrix copy, matrix transposed copy) - this
+*> implementation of DGEJSV uses only the simplest, naive data movement.
+*> \endverbatim
+*
+*> \par Contributors:
+* ==================
+*>
+*> Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
+*
+*> \par References:
+* ================
+*>
+*> \verbatim
+*>
+*> [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.
+*> SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.
+*> LAPACK Working note 169.
+*> [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.
+*> SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.
+*> LAPACK Working note 170.
+*> [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR
+*> factorization software - a case study.
+*> ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28.
+*> LAPACK Working note 176.
+*> [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,
+*> QSVD, (H,K)-SVD computations.
+*> Department of Mathematics, University of Zagreb, 2008.
+*> \endverbatim
+*
+*> \par Bugs, examples and comments:
+* =================================
+*>
+*> Please report all bugs and send interesting examples and/or comments to
+*> drmac@math.hr. Thank you.
+*>
+* =====================================================================
+ SUBROUTINE DGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
+ $ M, N, A, LDA, SVA, U, LDU, V, LDV,
+ $ WORK, LWORK, IWORK, INFO )
+*
+* -- LAPACK computational routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ IMPLICIT NONE
+ INTEGER INFO, LDA, LDU, LDV, LWORK, M, N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), SVA( N ), U( LDU, * ), V( LDV, * ),
+ $ WORK( LWORK )
+ INTEGER IWORK( * )
+ CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
+* ..
+*
+* ===========================================================================
+*
+* .. Local Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
+* ..
+* .. Local Scalars ..
+ DOUBLE PRECISION AAPP, AAQQ, AATMAX, AATMIN, BIG, BIG1, COND_OK,
+ $ CONDR1, CONDR2, ENTRA, ENTRAT, EPSLN, MAXPRJ, SCALEM,
+ $ SCONDA, SFMIN, SMALL, TEMP1, USCAL1, USCAL2, XSC
+ INTEGER IERR, N1, NR, NUMRANK, p, q, WARNING
+ LOGICAL ALMORT, DEFR, ERREST, GOSCAL, JRACC, KILL, LSVEC,
+ $ L2ABER, L2KILL, L2PERT, L2RANK, L2TRAN,
+ $ NOSCAL, ROWPIV, RSVEC, TRANSP
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC DABS, DLOG, MAX, MIN, DBLE, IDNINT, DSIGN, DSQRT
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DLAMCH, DNRM2
+ INTEGER IDAMAX
+ LOGICAL LSAME
+ EXTERNAL IDAMAX, LSAME, DLAMCH, DNRM2
+* ..
+* .. External Subroutines ..
+ EXTERNAL DCOPY, DGELQF, DGEQP3, DGEQRF, DLACPY, DLASCL,
+ $ DLASET, DLASSQ, DLASWP, DORGQR, DORMLQ,
+ $ DORMQR, DPOCON, DSCAL, DSWAP, DTRSM, XERBLA
+*
+ EXTERNAL DGESVJ
+* ..
+*
+* Test the input arguments
+*
+ LSVEC = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' )
+ JRACC = LSAME( JOBV, 'J' )
+ RSVEC = LSAME( JOBV, 'V' ) .OR. JRACC
+ ROWPIV = LSAME( JOBA, 'F' ) .OR. LSAME( JOBA, 'G' )
+ L2RANK = LSAME( JOBA, 'R' )
+ L2ABER = LSAME( JOBA, 'A' )
+ ERREST = LSAME( JOBA, 'E' ) .OR. LSAME( JOBA, 'G' )
+ L2TRAN = LSAME( JOBT, 'T' )
+ L2KILL = LSAME( JOBR, 'R' )
+ DEFR = LSAME( JOBR, 'N' )
+ L2PERT = LSAME( JOBP, 'P' )
+*
+ IF ( .NOT.(ROWPIV .OR. L2RANK .OR. L2ABER .OR.
+ $ ERREST .OR. LSAME( JOBA, 'C' ) )) THEN
+ INFO = - 1
+ ELSE IF ( .NOT.( LSVEC .OR. LSAME( JOBU, 'N' ) .OR.
+ $ LSAME( JOBU, 'W' )) ) THEN
+ INFO = - 2
+ ELSE IF ( .NOT.( RSVEC .OR. LSAME( JOBV, 'N' ) .OR.
+ $ LSAME( JOBV, 'W' )) .OR. ( JRACC .AND. (.NOT.LSVEC) ) ) THEN
+ INFO = - 3
+ ELSE IF ( .NOT. ( L2KILL .OR. DEFR ) ) THEN
+ INFO = - 4
+ ELSE IF ( .NOT. ( L2TRAN .OR. LSAME( JOBT, 'N' ) ) ) THEN
+ INFO = - 5
+ ELSE IF ( .NOT. ( L2PERT .OR. LSAME( JOBP, 'N' ) ) ) THEN
+ INFO = - 6
+ ELSE IF ( M .LT. 0 ) THEN
+ INFO = - 7
+ ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M ) ) THEN
+ INFO = - 8
+ ELSE IF ( LDA .LT. M ) THEN
+ INFO = - 10
+ ELSE IF ( LSVEC .AND. ( LDU .LT. M ) ) THEN
+ INFO = - 13
+ ELSE IF ( RSVEC .AND. ( LDV .LT. N ) ) THEN
+ INFO = - 15
+ ELSE IF ( (.NOT.(LSVEC .OR. RSVEC .OR. ERREST).AND.
+ & (LWORK .LT. MAX(7,4*N+1,2*M+N))) .OR.
+ & (.NOT.(LSVEC .OR. RSVEC) .AND. ERREST .AND.
+ & (LWORK .LT. MAX(7,4*N+N*N,2*M+N))) .OR.
+ & (LSVEC .AND. (.NOT.RSVEC) .AND. (LWORK .LT. MAX(7,2*M+N,4*N+1)))
+ & .OR.
+ & (RSVEC .AND. (.NOT.LSVEC) .AND. (LWORK .LT. MAX(7,2*M+N,4*N+1)))
+ & .OR.
+ & (LSVEC .AND. RSVEC .AND. (.NOT.JRACC) .AND.
+ & (LWORK.LT.MAX(2*M+N,6*N+2*N*N)))
+ & .OR. (LSVEC .AND. RSVEC .AND. JRACC .AND.
+ & LWORK.LT.MAX(2*M+N,4*N+N*N,2*N+N*N+6)))
+ & THEN
+ INFO = - 17
+ ELSE
+* #:)
+ INFO = 0
+ END IF
+*
+ IF ( INFO .NE. 0 ) THEN
+* #:(
+ CALL XERBLA( 'DGEJSV', - INFO )
+ RETURN
+ END IF
+*
+* Quick return for void matrix (Y3K safe)
+* #:)
+ IF ( ( M .EQ. 0 ) .OR. ( N .EQ. 0 ) ) THEN
+ IWORK(1:3) = 0
+ WORK(1:7) = 0
+ RETURN
+ ENDIF
+*
+* Determine whether the matrix U should be M x N or M x M
+*
+ IF ( LSVEC ) THEN
+ N1 = N
+ IF ( LSAME( JOBU, 'F' ) ) N1 = M
+ END IF
+*
+* Set numerical parameters
+*
+*! NOTE: Make sure DLAMCH() does not fail on the target architecture.
+*
+ EPSLN = DLAMCH('Epsilon')
+ SFMIN = DLAMCH('SafeMinimum')
+ SMALL = SFMIN / EPSLN
+ BIG = DLAMCH('O')
+* BIG = ONE / SFMIN
+*
+* Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N
+*
+*(!) If necessary, scale SVA() to protect the largest norm from
+* overflow. It is possible that this scaling pushes the smallest
+* column norm left from the underflow threshold (extreme case).
+*
+ SCALEM = ONE / DSQRT(DBLE(M)*DBLE(N))
+ NOSCAL = .TRUE.
+ GOSCAL = .TRUE.
+ DO 1874 p = 1, N
+ AAPP = ZERO
+ AAQQ = ONE
+ CALL DLASSQ( M, A(1,p), 1, AAPP, AAQQ )
+ IF ( AAPP .GT. BIG ) THEN
+ INFO = - 9
+ CALL XERBLA( 'DGEJSV', -INFO )
+ RETURN
+ END IF
+ AAQQ = DSQRT(AAQQ)
+ IF ( ( AAPP .LT. (BIG / AAQQ) ) .AND. NOSCAL ) THEN
+ SVA(p) = AAPP * AAQQ
+ ELSE
+ NOSCAL = .FALSE.
+ SVA(p) = AAPP * ( AAQQ * SCALEM )
+ IF ( GOSCAL ) THEN
+ GOSCAL = .FALSE.
+ CALL DSCAL( p-1, SCALEM, SVA, 1 )
+ END IF
+ END IF
+ 1874 CONTINUE
+*
+ IF ( NOSCAL ) SCALEM = ONE
+*
+ AAPP = ZERO
+ AAQQ = BIG
+ DO 4781 p = 1, N
+ AAPP = MAX( AAPP, SVA(p) )
+ IF ( SVA(p) .NE. ZERO ) AAQQ = MIN( AAQQ, SVA(p) )
+ 4781 CONTINUE
+*
+* Quick return for zero M x N matrix
+* #:)
+ IF ( AAPP .EQ. ZERO ) THEN
+ IF ( LSVEC ) CALL DLASET( 'G', M, N1, ZERO, ONE, U, LDU )
+ IF ( RSVEC ) CALL DLASET( 'G', N, N, ZERO, ONE, V, LDV )
+ WORK(1) = ONE
+ WORK(2) = ONE
+ IF ( ERREST ) WORK(3) = ONE
+ IF ( LSVEC .AND. RSVEC ) THEN
+ WORK(4) = ONE
+ WORK(5) = ONE
+ END IF
+ IF ( L2TRAN ) THEN
+ WORK(6) = ZERO
+ WORK(7) = ZERO
+ END IF
+ IWORK(1) = 0
+ IWORK(2) = 0
+ IWORK(3) = 0
+ RETURN
+ END IF
+*
+* Issue warning if denormalized column norms detected. Override the
+* high relative accuracy request. Issue licence to kill columns
+* (set them to zero) whose norm is less than sigma_max / BIG (roughly).
+* #:(
+ WARNING = 0
+ IF ( AAQQ .LE. SFMIN ) THEN
+ L2RANK = .TRUE.
+ L2KILL = .TRUE.
+ WARNING = 1
+ END IF
+*
+* Quick return for one-column matrix
+* #:)
+ IF ( N .EQ. 1 ) THEN
+*
+ IF ( LSVEC ) THEN
+ CALL DLASCL( 'G',0,0,SVA(1),SCALEM, M,1,A(1,1),LDA,IERR )
+ CALL DLACPY( 'A', M, 1, A, LDA, U, LDU )
+* computing all M left singular vectors of the M x 1 matrix
+ IF ( N1 .NE. N ) THEN
+ CALL DGEQRF( M, N, U,LDU, WORK, WORK(N+1),LWORK-N,IERR )
+ CALL DORGQR( M,N1,1, U,LDU,WORK,WORK(N+1),LWORK-N,IERR )
+ CALL DCOPY( M, A(1,1), 1, U(1,1), 1 )
+ END IF
+ END IF
+ IF ( RSVEC ) THEN
+ V(1,1) = ONE
+ END IF
+ IF ( SVA(1) .LT. (BIG*SCALEM) ) THEN
+ SVA(1) = SVA(1) / SCALEM
+ SCALEM = ONE
+ END IF
+ WORK(1) = ONE / SCALEM
+ WORK(2) = ONE
+ IF ( SVA(1) .NE. ZERO ) THEN
+ IWORK(1) = 1
+ IF ( ( SVA(1) / SCALEM) .GE. SFMIN ) THEN
+ IWORK(2) = 1
+ ELSE
+ IWORK(2) = 0
+ END IF
+ ELSE
+ IWORK(1) = 0
+ IWORK(2) = 0
+ END IF
+ IWORK(3) = 0
+ IF ( ERREST ) WORK(3) = ONE
+ IF ( LSVEC .AND. RSVEC ) THEN
+ WORK(4) = ONE
+ WORK(5) = ONE
+ END IF
+ IF ( L2TRAN ) THEN
+ WORK(6) = ZERO
+ WORK(7) = ZERO
+ END IF
+ RETURN
+*
+ END IF
+*
+ TRANSP = .FALSE.
+ L2TRAN = L2TRAN .AND. ( M .EQ. N )
+*
+ AATMAX = -ONE
+ AATMIN = BIG
+ IF ( ROWPIV .OR. L2TRAN ) THEN
+*
+* Compute the row norms, needed to determine row pivoting sequence
+* (in the case of heavily row weighted A, row pivoting is strongly
+* advised) and to collect information needed to compare the
+* structures of A * A^t and A^t * A (in the case L2TRAN.EQ..TRUE.).
+*
+ IF ( L2TRAN ) THEN
+ DO 1950 p = 1, M
+ XSC = ZERO
+ TEMP1 = ONE
+ CALL DLASSQ( N, A(p,1), LDA, XSC, TEMP1 )
+* DLASSQ gets both the ell_2 and the ell_infinity norm
+* in one pass through the vector
+ WORK(M+N+p) = XSC * SCALEM
+ WORK(N+p) = XSC * (SCALEM*DSQRT(TEMP1))
+ AATMAX = MAX( AATMAX, WORK(N+p) )
+ IF (WORK(N+p) .NE. ZERO) AATMIN = MIN(AATMIN,WORK(N+p))
+ 1950 CONTINUE
+ ELSE
+ DO 1904 p = 1, M
+ WORK(M+N+p) = SCALEM*DABS( A(p,IDAMAX(N,A(p,1),LDA)) )
+ AATMAX = MAX( AATMAX, WORK(M+N+p) )
+ AATMIN = MIN( AATMIN, WORK(M+N+p) )
+ 1904 CONTINUE
+ END IF
+*
+ END IF
+*
+* For square matrix A try to determine whether A^t would be better
+* input for the preconditioned Jacobi SVD, with faster convergence.
+* The decision is based on an O(N) function of the vector of column
+* and row norms of A, based on the Shannon entropy. This should give
+* the right choice in most cases when the difference actually matters.
+* It may fail and pick the slower converging side.
+*
+ ENTRA = ZERO
+ ENTRAT = ZERO
+ IF ( L2TRAN ) THEN
+*
+ XSC = ZERO
+ TEMP1 = ONE
+ CALL DLASSQ( N, SVA, 1, XSC, TEMP1 )
+ TEMP1 = ONE / TEMP1
+*
+ ENTRA = ZERO
+ DO 1113 p = 1, N
+ BIG1 = ( ( SVA(p) / XSC )**2 ) * TEMP1
+ IF ( BIG1 .NE. ZERO ) ENTRA = ENTRA + BIG1 * DLOG(BIG1)
+ 1113 CONTINUE
+ ENTRA = - ENTRA / DLOG(DBLE(N))
+*
+* Now, SVA().^2/Trace(A^t * A) is a point in the probability simplex.
+* It is derived from the diagonal of A^t * A. Do the same with the
+* diagonal of A * A^t, compute the entropy of the corresponding
+* probability distribution. Note that A * A^t and A^t * A have the
+* same trace.
+*
+ ENTRAT = ZERO
+ DO 1114 p = N+1, N+M
+ BIG1 = ( ( WORK(p) / XSC )**2 ) * TEMP1
+ IF ( BIG1 .NE. ZERO ) ENTRAT = ENTRAT + BIG1 * DLOG(BIG1)
+ 1114 CONTINUE
+ ENTRAT = - ENTRAT / DLOG(DBLE(M))
+*
+* Analyze the entropies and decide A or A^t. Smaller entropy
+* usually means better input for the algorithm.
+*
+ TRANSP = ( ENTRAT .LT. ENTRA )
+*
+* If A^t is better than A, transpose A.
+*
+ IF ( TRANSP ) THEN
+* In an optimal implementation, this trivial transpose
+* should be replaced with faster transpose.
+ DO 1115 p = 1, N - 1
+ DO 1116 q = p + 1, N
+ TEMP1 = A(q,p)
+ A(q,p) = A(p,q)
+ A(p,q) = TEMP1
+ 1116 CONTINUE
+ 1115 CONTINUE
+ DO 1117 p = 1, N
+ WORK(M+N+p) = SVA(p)
+ SVA(p) = WORK(N+p)
+ 1117 CONTINUE
+ TEMP1 = AAPP
+ AAPP = AATMAX
+ AATMAX = TEMP1
+ TEMP1 = AAQQ
+ AAQQ = AATMIN
+ AATMIN = TEMP1
+ KILL = LSVEC
+ LSVEC = RSVEC
+ RSVEC = KILL
+ IF ( LSVEC ) N1 = N
+*
+ ROWPIV = .TRUE.
+ END IF
+*
+ END IF
+* END IF L2TRAN
+*
+* Scale the matrix so that its maximal singular value remains less
+* than DSQRT(BIG) -- the matrix is scaled so that its maximal column
+* has Euclidean norm equal to DSQRT(BIG/N). The only reason to keep
+* DSQRT(BIG) instead of BIG is the fact that DGEJSV uses LAPACK and
+* BLAS routines that, in some implementations, are not capable of
+* working in the full interval [SFMIN,BIG] and that they may provoke
+* overflows in the intermediate results. If the singular values spread
+* from SFMIN to BIG, then DGESVJ will compute them. So, in that case,
+* one should use DGESVJ instead of DGEJSV.
+*
+ BIG1 = DSQRT( BIG )
+ TEMP1 = DSQRT( BIG / DBLE(N) )
+*
+ CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, N, 1, SVA, N, IERR )
+ IF ( AAQQ .GT. (AAPP * SFMIN) ) THEN
+ AAQQ = ( AAQQ / AAPP ) * TEMP1
+ ELSE
+ AAQQ = ( AAQQ * TEMP1 ) / AAPP
+ END IF
+ TEMP1 = TEMP1 * SCALEM
+ CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, M, N, A, LDA, IERR )
+*
+* To undo scaling at the end of this procedure, multiply the
+* computed singular values with USCAL2 / USCAL1.
+*
+ USCAL1 = TEMP1
+ USCAL2 = AAPP
+*
+ IF ( L2KILL ) THEN
+* L2KILL enforces computation of nonzero singular values in
+* the restricted range of condition number of the initial A,
+* sigma_max(A) / sigma_min(A) approx. DSQRT(BIG)/DSQRT(SFMIN).
+ XSC = DSQRT( SFMIN )
+ ELSE
+ XSC = SMALL
+*
+* Now, if the condition number of A is too big,
+* sigma_max(A) / sigma_min(A) .GT. DSQRT(BIG/N) * EPSLN / SFMIN,
+* as a precaution measure, the full SVD is computed using DGESVJ
+* with accumulated Jacobi rotations. This provides numerically
+* more robust computation, at the cost of slightly increased run
+* time. Depending on the concrete implementation of BLAS and LAPACK
+* (i.e. how they behave in presence of extreme ill-conditioning) the
+* implementor may decide to remove this switch.
+ IF ( ( AAQQ.LT.DSQRT(SFMIN) ) .AND. LSVEC .AND. RSVEC ) THEN
+ JRACC = .TRUE.
+ END IF
+*
+ END IF
+ IF ( AAQQ .LT. XSC ) THEN
+ DO 700 p = 1, N
+ IF ( SVA(p) .LT. XSC ) THEN
+ CALL DLASET( 'A', M, 1, ZERO, ZERO, A(1,p), LDA )
+ SVA(p) = ZERO
+ END IF
+ 700 CONTINUE
+ END IF
+*
+* Preconditioning using QR factorization with pivoting
+*
+ IF ( ROWPIV ) THEN
+* Optional row permutation (Bjoerck row pivoting):
+* A result by Cox and Higham shows that the Bjoerck's
+* row pivoting combined with standard column pivoting
+* has similar effect as Powell-Reid complete pivoting.
+* The ell-infinity norms of A are made nonincreasing.
+ DO 1952 p = 1, M - 1
+ q = IDAMAX( M-p+1, WORK(M+N+p), 1 ) + p - 1
+ IWORK(2*N+p) = q
+ IF ( p .NE. q ) THEN
+ TEMP1 = WORK(M+N+p)
+ WORK(M+N+p) = WORK(M+N+q)
+ WORK(M+N+q) = TEMP1
+ END IF
+ 1952 CONTINUE
+ CALL DLASWP( N, A, LDA, 1, M-1, IWORK(2*N+1), 1 )
+ END IF
+*
+* End of the preparation phase (scaling, optional sorting and
+* transposing, optional flushing of small columns).
+*
+* Preconditioning
+*
+* If the full SVD is needed, the right singular vectors are computed
+* from a matrix equation, and for that we need theoretical analysis
+* of the Businger-Golub pivoting. So we use DGEQP3 as the first RR QRF.
+* In all other cases the first RR QRF can be chosen by other criteria
+* (eg speed by replacing global with restricted window pivoting, such
+* as in SGEQPX from TOMS # 782). Good results will be obtained using
+* SGEQPX with properly (!) chosen numerical parameters.
+* Any improvement of DGEQP3 improves overall performance of DGEJSV.
+*
+* A * P1 = Q1 * [ R1^t 0]^t:
+ DO 1963 p = 1, N
+* .. all columns are free columns
+ IWORK(p) = 0
+ 1963 CONTINUE
+ CALL DGEQP3( M,N,A,LDA, IWORK,WORK, WORK(N+1),LWORK-N, IERR )
+*
+* The upper triangular matrix R1 from the first QRF is inspected for
+* rank deficiency and possibilities for deflation, or possible
+* ill-conditioning. Depending on the user specified flag L2RANK,
+* the procedure explores possibilities to reduce the numerical
+* rank by inspecting the computed upper triangular factor. If
+* L2RANK or L2ABER are up, then DGEJSV will compute the SVD of
+* A + dA, where ||dA|| <= f(M,N)*EPSLN.
+*
+ NR = 1
+ IF ( L2ABER ) THEN
+* Standard absolute error bound suffices. All sigma_i with
+* sigma_i < N*EPSLN*||A|| are flushed to zero. This is an
+* aggressive enforcement of lower numerical rank by introducing a
+* backward error of the order of N*EPSLN*||A||.
+ TEMP1 = DSQRT(DBLE(N))*EPSLN
+ DO 3001 p = 2, N
+ IF ( DABS(A(p,p)) .GE. (TEMP1*DABS(A(1,1))) ) THEN
+ NR = NR + 1
+ ELSE
+ GO TO 3002
+ END IF
+ 3001 CONTINUE
+ 3002 CONTINUE
+ ELSE IF ( L2RANK ) THEN
+* .. similarly as above, only slightly more gentle (less aggressive).
+* Sudden drop on the diagonal of R1 is used as the criterion for
+* close-to-rank-deficient.
+ TEMP1 = DSQRT(SFMIN)
+ DO 3401 p = 2, N
+ IF ( ( DABS(A(p,p)) .LT. (EPSLN*DABS(A(p-1,p-1))) ) .OR.
+ $ ( DABS(A(p,p)) .LT. SMALL ) .OR.
+ $ ( L2KILL .AND. (DABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3402
+ NR = NR + 1
+ 3401 CONTINUE
+ 3402 CONTINUE
+*
+ ELSE
+* The goal is high relative accuracy. However, if the matrix
+* has high scaled condition number the relative accuracy is in
+* general not feasible. Later on, a condition number estimator
+* will be deployed to estimate the scaled condition number.
+* Here we just remove the underflowed part of the triangular
+* factor. This prevents the situation in which the code is
+* working hard to get the accuracy not warranted by the data.
+ TEMP1 = DSQRT(SFMIN)
+ DO 3301 p = 2, N
+ IF ( ( DABS(A(p,p)) .LT. SMALL ) .OR.
+ $ ( L2KILL .AND. (DABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3302
+ NR = NR + 1
+ 3301 CONTINUE
+ 3302 CONTINUE
+*
+ END IF
+*
+ ALMORT = .FALSE.
+ IF ( NR .EQ. N ) THEN
+ MAXPRJ = ONE
+ DO 3051 p = 2, N
+ TEMP1 = DABS(A(p,p)) / SVA(IWORK(p))
+ MAXPRJ = MIN( MAXPRJ, TEMP1 )
+ 3051 CONTINUE
+ IF ( MAXPRJ**2 .GE. ONE - DBLE(N)*EPSLN ) ALMORT = .TRUE.
+ END IF
+*
+*
+ SCONDA = - ONE
+ CONDR1 = - ONE
+ CONDR2 = - ONE
+*
+ IF ( ERREST ) THEN
+ IF ( N .EQ. NR ) THEN
+ IF ( RSVEC ) THEN
+* .. V is available as workspace
+ CALL DLACPY( 'U', N, N, A, LDA, V, LDV )
+ DO 3053 p = 1, N
+ TEMP1 = SVA(IWORK(p))
+ CALL DSCAL( p, ONE/TEMP1, V(1,p), 1 )
+ 3053 CONTINUE
+ CALL DPOCON( 'U', N, V, LDV, ONE, TEMP1,
+ $ WORK(N+1), IWORK(2*N+M+1), IERR )
+ ELSE IF ( LSVEC ) THEN
+* .. U is available as workspace
+ CALL DLACPY( 'U', N, N, A, LDA, U, LDU )
+ DO 3054 p = 1, N
+ TEMP1 = SVA(IWORK(p))
+ CALL DSCAL( p, ONE/TEMP1, U(1,p), 1 )
+ 3054 CONTINUE
+ CALL DPOCON( 'U', N, U, LDU, ONE, TEMP1,
+ $ WORK(N+1), IWORK(2*N+M+1), IERR )
+ ELSE
+ CALL DLACPY( 'U', N, N, A, LDA, WORK(N+1), N )
+ DO 3052 p = 1, N
+ TEMP1 = SVA(IWORK(p))
+ CALL DSCAL( p, ONE/TEMP1, WORK(N+(p-1)*N+1), 1 )
+ 3052 CONTINUE
+* .. the columns of R are scaled to have unit Euclidean lengths.
+ CALL DPOCON( 'U', N, WORK(N+1), N, ONE, TEMP1,
+ $ WORK(N+N*N+1), IWORK(2*N+M+1), IERR )
+ END IF
+ SCONDA = ONE / DSQRT(TEMP1)
+* SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1).
+* N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
+ ELSE
+ SCONDA = - ONE
+ END IF
+ END IF
+*
+ L2PERT = L2PERT .AND. ( DABS( A(1,1)/A(NR,NR) ) .GT. DSQRT(BIG1) )
+* If there is no violent scaling, artificial perturbation is not needed.
+*
+* Phase 3:
+*
+ IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN
+*
+* Singular Values only
+*
+* .. transpose A(1:NR,1:N)
+ DO 1946 p = 1, MIN( N-1, NR )
+ CALL DCOPY( N-p, A(p,p+1), LDA, A(p+1,p), 1 )
+ 1946 CONTINUE
+*
+* The following two DO-loops introduce small relative perturbation
+* into the strict upper triangle of the lower triangular matrix.
+* Small entries below the main diagonal are also changed.
+* This modification is useful if the computing environment does not
+* provide/allow FLUSH TO ZERO underflow, for it prevents many
+* annoying denormalized numbers in case of strongly scaled matrices.
+* The perturbation is structured so that it does not introduce any
+* new perturbation of the singular values, and it does not destroy
+* the job done by the preconditioner.
+* The licence for this perturbation is in the variable L2PERT, which
+* should be .FALSE. if FLUSH TO ZERO underflow is active.
+*
+ IF ( .NOT. ALMORT ) THEN
+*
+ IF ( L2PERT ) THEN
+* XSC = DSQRT(SMALL)
+ XSC = EPSLN / DBLE(N)
+ DO 4947 q = 1, NR
+ TEMP1 = XSC*DABS(A(q,q))
+ DO 4949 p = 1, N
+ IF ( ( (p.GT.q) .AND. (DABS(A(p,q)).LE.TEMP1) )
+ $ .OR. ( p .LT. q ) )
+ $ A(p,q) = DSIGN( TEMP1, A(p,q) )
+ 4949 CONTINUE
+ 4947 CONTINUE
+ ELSE
+ CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, A(1,2),LDA )
+ END IF
+*
+* .. second preconditioning using the QR factorization
+*
+ CALL DGEQRF( N,NR, A,LDA, WORK, WORK(N+1),LWORK-N, IERR )
+*
+* .. and transpose upper to lower triangular
+ DO 1948 p = 1, NR - 1
+ CALL DCOPY( NR-p, A(p,p+1), LDA, A(p+1,p), 1 )
+ 1948 CONTINUE
+*
+ END IF
+*
+* Row-cyclic Jacobi SVD algorithm with column pivoting
+*
+* .. again some perturbation (a "background noise") is added
+* to drown denormals
+ IF ( L2PERT ) THEN
+* XSC = DSQRT(SMALL)
+ XSC = EPSLN / DBLE(N)
+ DO 1947 q = 1, NR
+ TEMP1 = XSC*DABS(A(q,q))
+ DO 1949 p = 1, NR
+ IF ( ( (p.GT.q) .AND. (DABS(A(p,q)).LE.TEMP1) )
+ $ .OR. ( p .LT. q ) )
+ $ A(p,q) = DSIGN( TEMP1, A(p,q) )
+ 1949 CONTINUE
+ 1947 CONTINUE
+ ELSE
+ CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, A(1,2), LDA )
+ END IF
+*
+* .. and one-sided Jacobi rotations are started on a lower
+* triangular matrix (plus perturbation which is ignored in
+* the part which destroys triangular form (confusing?!))
+*
+ CALL DGESVJ( 'L', 'NoU', 'NoV', NR, NR, A, LDA, SVA,
+ $ N, V, LDV, WORK, LWORK, INFO )
+*
+ SCALEM = WORK(1)
+ NUMRANK = IDNINT(WORK(2))
+*
+*
+ ELSE IF ( RSVEC .AND. ( .NOT. LSVEC ) ) THEN
+*
+* -> Singular Values and Right Singular Vectors <-
+*
+ IF ( ALMORT ) THEN
+*
+* .. in this case NR equals N
+ DO 1998 p = 1, NR
+ CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
+ 1998 CONTINUE
+ CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
+*
+ CALL DGESVJ( 'L','U','N', N, NR, V,LDV, SVA, NR, A,LDA,
+ $ WORK, LWORK, INFO )
+ SCALEM = WORK(1)
+ NUMRANK = IDNINT(WORK(2))
+
+ ELSE
+*
+* .. two more QR factorizations ( one QRF is not enough, two require
+* accumulated product of Jacobi rotations, three are perfect )
+*
+ CALL DLASET( 'Lower', NR-1, NR-1, ZERO, ZERO, A(2,1), LDA )
+ CALL DGELQF( NR, N, A, LDA, WORK, WORK(N+1), LWORK-N, IERR)
+ CALL DLACPY( 'Lower', NR, NR, A, LDA, V, LDV )
+ CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
+ CALL DGEQRF( NR, NR, V, LDV, WORK(N+1), WORK(2*N+1),
+ $ LWORK-2*N, IERR )
+ DO 8998 p = 1, NR
+ CALL DCOPY( NR-p+1, V(p,p), LDV, V(p,p), 1 )
+ 8998 CONTINUE
+ CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
+*
+ CALL DGESVJ( 'Lower', 'U','N', NR, NR, V,LDV, SVA, NR, U,
+ $ LDU, WORK(N+1), LWORK, INFO )
+ SCALEM = WORK(N+1)
+ NUMRANK = IDNINT(WORK(N+2))
+ IF ( NR .LT. N ) THEN
+ CALL DLASET( 'A',N-NR, NR, ZERO,ZERO, V(NR+1,1), LDV )
+ CALL DLASET( 'A',NR, N-NR, ZERO,ZERO, V(1,NR+1), LDV )
+ CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE, V(NR+1,NR+1), LDV )
+ END IF
+*
+ CALL DORMLQ( 'Left', 'Transpose', N, N, NR, A, LDA, WORK,
+ $ V, LDV, WORK(N+1), LWORK-N, IERR )
+*
+ END IF
+*
+ DO 8991 p = 1, N
+ CALL DCOPY( N, V(p,1), LDV, A(IWORK(p),1), LDA )
+ 8991 CONTINUE
+ CALL DLACPY( 'All', N, N, A, LDA, V, LDV )
+*
+ IF ( TRANSP ) THEN
+ CALL DLACPY( 'All', N, N, V, LDV, U, LDU )
+ END IF
+*
+ ELSE IF ( LSVEC .AND. ( .NOT. RSVEC ) ) THEN
+*
+* .. Singular Values and Left Singular Vectors ..
+*
+* .. second preconditioning step to avoid need to accumulate
+* Jacobi rotations in the Jacobi iterations.
+ DO 1965 p = 1, NR
+ CALL DCOPY( N-p+1, A(p,p), LDA, U(p,p), 1 )
+ 1965 CONTINUE
+ CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )
+*
+ CALL DGEQRF( N, NR, U, LDU, WORK(N+1), WORK(2*N+1),
+ $ LWORK-2*N, IERR )
+*
+ DO 1967 p = 1, NR - 1
+ CALL DCOPY( NR-p, U(p,p+1), LDU, U(p+1,p), 1 )
+ 1967 CONTINUE
+ CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )
+*
+ CALL DGESVJ( 'Lower', 'U', 'N', NR,NR, U, LDU, SVA, NR, A,
+ $ LDA, WORK(N+1), LWORK-N, INFO )
+ SCALEM = WORK(N+1)
+ NUMRANK = IDNINT(WORK(N+2))
+*
+ IF ( NR .LT. M ) THEN
+ CALL DLASET( 'A', M-NR, NR,ZERO, ZERO, U(NR+1,1), LDU )
+ IF ( NR .LT. N1 ) THEN
+ CALL DLASET( 'A',NR, N1-NR, ZERO, ZERO, U(1,NR+1), LDU )
+ CALL DLASET( 'A',M-NR,N1-NR,ZERO,ONE,U(NR+1,NR+1), LDU )
+ END IF
+ END IF
+*
+ CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,
+ $ LDU, WORK(N+1), LWORK-N, IERR )
+*
+ IF ( ROWPIV )
+ $ CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
+*
+ DO 1974 p = 1, N1
+ XSC = ONE / DNRM2( M, U(1,p), 1 )
+ CALL DSCAL( M, XSC, U(1,p), 1 )
+ 1974 CONTINUE
+*
+ IF ( TRANSP ) THEN
+ CALL DLACPY( 'All', N, N, U, LDU, V, LDV )
+ END IF
+*
+ ELSE
+*
+* .. Full SVD ..
+*
+ IF ( .NOT. JRACC ) THEN
+*
+ IF ( .NOT. ALMORT ) THEN
+*
+* Second Preconditioning Step (QRF [with pivoting])
+* Note that the composition of TRANSPOSE, QRF and TRANSPOSE is
+* equivalent to an LQF CALL. Since in many libraries the QRF
+* seems to be better optimized than the LQF, we do explicit
+* transpose and use the QRF. This is subject to changes in an
+* optimized implementation of DGEJSV.
+*
+ DO 1968 p = 1, NR
+ CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
+ 1968 CONTINUE
+*
+* .. the following two loops perturb small entries to avoid
+* denormals in the second QR factorization, where they are
+* as good as zeros. This is done to avoid painfully slow
+* computation with denormals. The relative size of the perturbation
+* is a parameter that can be changed by the implementer.
+* This perturbation device will be obsolete on machines with
+* properly implemented arithmetic.
+* To switch it off, set L2PERT=.FALSE. To remove it from the
+* code, remove the action under L2PERT=.TRUE., leave the ELSE part.
+* The following two loops should be blocked and fused with the
+* transposed copy above.
+*
+ IF ( L2PERT ) THEN
+ XSC = DSQRT(SMALL)
+ DO 2969 q = 1, NR
+ TEMP1 = XSC*DABS( V(q,q) )
+ DO 2968 p = 1, N
+ IF ( ( p .GT. q ) .AND. ( DABS(V(p,q)) .LE. TEMP1 )
+ $ .OR. ( p .LT. q ) )
+ $ V(p,q) = DSIGN( TEMP1, V(p,q) )
+ IF ( p .LT. q ) V(p,q) = - V(p,q)
+ 2968 CONTINUE
+ 2969 CONTINUE
+ ELSE
+ CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
+ END IF
+*
+* Estimate the row scaled condition number of R1
+* (If R1 is rectangular, N > NR, then the condition number
+* of the leading NR x NR submatrix is estimated.)
+*
+ CALL DLACPY( 'L', NR, NR, V, LDV, WORK(2*N+1), NR )
+ DO 3950 p = 1, NR
+ TEMP1 = DNRM2(NR-p+1,WORK(2*N+(p-1)*NR+p),1)
+ CALL DSCAL(NR-p+1,ONE/TEMP1,WORK(2*N+(p-1)*NR+p),1)
+ 3950 CONTINUE
+ CALL DPOCON('Lower',NR,WORK(2*N+1),NR,ONE,TEMP1,
+ $ WORK(2*N+NR*NR+1),IWORK(M+2*N+1),IERR)
+ CONDR1 = ONE / DSQRT(TEMP1)
+* .. here need a second opinion on the condition number
+* .. then assume worst case scenario
+* R1 is OK for inverse <=> CONDR1 .LT. DBLE(N)
+* more conservative <=> CONDR1 .LT. DSQRT(DBLE(N))
+*
+ COND_OK = DSQRT(DBLE(NR))
+*[TP] COND_OK is a tuning parameter.
+
+ IF ( CONDR1 .LT. COND_OK ) THEN
+* .. the second QRF without pivoting. Note: in an optimized
+* implementation, this QRF should be implemented as the QRF
+* of a lower triangular matrix.
+* R1^t = Q2 * R2
+ CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),
+ $ LWORK-2*N, IERR )
+*
+ IF ( L2PERT ) THEN
+ XSC = DSQRT(SMALL)/EPSLN
+ DO 3959 p = 2, NR
+ DO 3958 q = 1, p - 1
+ TEMP1 = XSC * MIN(DABS(V(p,p)),DABS(V(q,q)))
+ IF ( DABS(V(q,p)) .LE. TEMP1 )
+ $ V(q,p) = DSIGN( TEMP1, V(q,p) )
+ 3958 CONTINUE
+ 3959 CONTINUE
+ END IF
+*
+ IF ( NR .NE. N )
+ $ CALL DLACPY( 'A', N, NR, V, LDV, WORK(2*N+1), N )
+* .. save ...
+*
+* .. this transposed copy should be better than naive
+ DO 1969 p = 1, NR - 1
+ CALL DCOPY( NR-p, V(p,p+1), LDV, V(p+1,p), 1 )
+ 1969 CONTINUE
+*
+ CONDR2 = CONDR1
+*
+ ELSE
+*
+* .. ill-conditioned case: second QRF with pivoting
+* Note that windowed pivoting would be equally good
+* numerically, and more run-time efficient. So, in
+* an optimal implementation, the next call to DGEQP3
+* should be replaced with eg. CALL SGEQPX (ACM TOMS #782)
+* with properly (carefully) chosen parameters.
+*
+* R1^t * P2 = Q2 * R2
+ DO 3003 p = 1, NR
+ IWORK(N+p) = 0
+ 3003 CONTINUE
+ CALL DGEQP3( N, NR, V, LDV, IWORK(N+1), WORK(N+1),
+ $ WORK(2*N+1), LWORK-2*N, IERR )
+** CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),
+** $ LWORK-2*N, IERR )
+ IF ( L2PERT ) THEN
+ XSC = DSQRT(SMALL)
+ DO 3969 p = 2, NR
+ DO 3968 q = 1, p - 1
+ TEMP1 = XSC * MIN(DABS(V(p,p)),DABS(V(q,q)))
+ IF ( DABS(V(q,p)) .LE. TEMP1 )
+ $ V(q,p) = DSIGN( TEMP1, V(q,p) )
+ 3968 CONTINUE
+ 3969 CONTINUE
+ END IF
+*
+ CALL DLACPY( 'A', N, NR, V, LDV, WORK(2*N+1), N )
+*
+ IF ( L2PERT ) THEN
+ XSC = DSQRT(SMALL)
+ DO 8970 p = 2, NR
+ DO 8971 q = 1, p - 1
+ TEMP1 = XSC * MIN(DABS(V(p,p)),DABS(V(q,q)))
+ V(p,q) = - DSIGN( TEMP1, V(q,p) )
+ 8971 CONTINUE
+ 8970 CONTINUE
+ ELSE
+ CALL DLASET( 'L',NR-1,NR-1,ZERO,ZERO,V(2,1),LDV )
+ END IF
+* Now, compute R2 = L3 * Q3, the LQ factorization.
+ CALL DGELQF( NR, NR, V, LDV, WORK(2*N+N*NR+1),
+ $ WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, IERR )
+* .. and estimate the condition number
+ CALL DLACPY( 'L',NR,NR,V,LDV,WORK(2*N+N*NR+NR+1),NR )
+ DO 4950 p = 1, NR
+ TEMP1 = DNRM2( p, WORK(2*N+N*NR+NR+p), NR )
+ CALL DSCAL( p, ONE/TEMP1, WORK(2*N+N*NR+NR+p), NR )
+ 4950 CONTINUE
+ CALL DPOCON( 'L',NR,WORK(2*N+N*NR+NR+1),NR,ONE,TEMP1,
+ $ WORK(2*N+N*NR+NR+NR*NR+1),IWORK(M+2*N+1),IERR )
+ CONDR2 = ONE / DSQRT(TEMP1)
+*
+ IF ( CONDR2 .GE. COND_OK ) THEN
+* .. save the Householder vectors used for Q3
+* (this overwrites the copy of R2, as it will not be
+* needed in this branch, but it does not overwritte the
+* Huseholder vectors of Q2.).
+ CALL DLACPY( 'U', NR, NR, V, LDV, WORK(2*N+1), N )
+* .. and the rest of the information on Q3 is in
+* WORK(2*N+N*NR+1:2*N+N*NR+N)
+ END IF
+*
+ END IF
+*
+ IF ( L2PERT ) THEN
+ XSC = DSQRT(SMALL)
+ DO 4968 q = 2, NR
+ TEMP1 = XSC * V(q,q)
+ DO 4969 p = 1, q - 1
+* V(p,q) = - DSIGN( TEMP1, V(q,p) )
+ V(p,q) = - DSIGN( TEMP1, V(p,q) )
+ 4969 CONTINUE
+ 4968 CONTINUE
+ ELSE
+ CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, V(1,2), LDV )
+ END IF
+*
+* Second preconditioning finished; continue with Jacobi SVD
+* The input matrix is lower trinagular.
+*
+* Recover the right singular vectors as solution of a well
+* conditioned triangular matrix equation.
+*
+ IF ( CONDR1 .LT. COND_OK ) THEN
+*
+ CALL DGESVJ( 'L','U','N',NR,NR,V,LDV,SVA,NR,U,
+ $ LDU,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,INFO )
+ SCALEM = WORK(2*N+N*NR+NR+1)
+ NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))
+ DO 3970 p = 1, NR
+ CALL DCOPY( NR, V(1,p), 1, U(1,p), 1 )
+ CALL DSCAL( NR, SVA(p), V(1,p), 1 )
+ 3970 CONTINUE
+
+* .. pick the right matrix equation and solve it
+*
+ IF ( NR .EQ. N ) THEN
+* :)) .. best case, R1 is inverted. The solution of this matrix
+* equation is Q2*V2 = the product of the Jacobi rotations
+* used in DGESVJ, premultiplied with the orthogonal matrix
+* from the second QR factorization.
+ CALL DTRSM( 'L','U','N','N', NR,NR,ONE, A,LDA, V,LDV )
+ ELSE
+* .. R1 is well conditioned, but non-square. Transpose(R2)
+* is inverted to get the product of the Jacobi rotations
+* used in DGESVJ. The Q-factor from the second QR
+* factorization is then built in explicitly.
+ CALL DTRSM('L','U','T','N',NR,NR,ONE,WORK(2*N+1),
+ $ N,V,LDV)
+ IF ( NR .LT. N ) THEN
+ CALL DLASET('A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV)
+ CALL DLASET('A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV)
+ CALL DLASET('A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV)
+ END IF
+ CALL DORMQR('L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
+ $ V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR)
+ END IF
+*
+ ELSE IF ( CONDR2 .LT. COND_OK ) THEN
+*
+* :) .. the input matrix A is very likely a relative of
+* the Kahan matrix :)
+* The matrix R2 is inverted. The solution of the matrix equation
+* is Q3^T*V3 = the product of the Jacobi rotations (appplied to
+* the lower triangular L3 from the LQ factorization of
+* R2=L3*Q3), pre-multiplied with the transposed Q3.
+ CALL DGESVJ( 'L', 'U', 'N', NR, NR, V, LDV, SVA, NR, U,
+ $ LDU, WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, INFO )
+ SCALEM = WORK(2*N+N*NR+NR+1)
+ NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))
+ DO 3870 p = 1, NR
+ CALL DCOPY( NR, V(1,p), 1, U(1,p), 1 )
+ CALL DSCAL( NR, SVA(p), U(1,p), 1 )
+ 3870 CONTINUE
+ CALL DTRSM('L','U','N','N',NR,NR,ONE,WORK(2*N+1),N,U,LDU)
+* .. apply the permutation from the second QR factorization
+ DO 873 q = 1, NR
+ DO 872 p = 1, NR
+ WORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
+ 872 CONTINUE
+ DO 874 p = 1, NR
+ U(p,q) = WORK(2*N+N*NR+NR+p)
+ 874 CONTINUE
+ 873 CONTINUE
+ IF ( NR .LT. N ) THEN
+ CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )
+ CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )
+ CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )
+ END IF
+ CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
+ $ V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
+ ELSE
+* Last line of defense.
+* #:( This is a rather pathological case: no scaled condition
+* improvement after two pivoted QR factorizations. Other
+* possibility is that the rank revealing QR factorization
+* or the condition estimator has failed, or the COND_OK
+* is set very close to ONE (which is unnecessary). Normally,
+* this branch should never be executed, but in rare cases of
+* failure of the RRQR or condition estimator, the last line of
+* defense ensures that DGEJSV completes the task.
+* Compute the full SVD of L3 using DGESVJ with explicit
+* accumulation of Jacobi rotations.
+ CALL DGESVJ( 'L', 'U', 'V', NR, NR, V, LDV, SVA, NR, U,
+ $ LDU, WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, INFO )
+ SCALEM = WORK(2*N+N*NR+NR+1)
+ NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))
+ IF ( NR .LT. N ) THEN
+ CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )
+ CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )
+ CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )
+ END IF
+ CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
+ $ V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
+*
+ CALL DORMLQ( 'L', 'T', NR, NR, NR, WORK(2*N+1), N,
+ $ WORK(2*N+N*NR+1), U, LDU, WORK(2*N+N*NR+NR+1),
+ $ LWORK-2*N-N*NR-NR, IERR )
+ DO 773 q = 1, NR
+ DO 772 p = 1, NR
+ WORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
+ 772 CONTINUE
+ DO 774 p = 1, NR
+ U(p,q) = WORK(2*N+N*NR+NR+p)
+ 774 CONTINUE
+ 773 CONTINUE
+*
+ END IF
+*
+* Permute the rows of V using the (column) permutation from the
+* first QRF. Also, scale the columns to make them unit in
+* Euclidean norm. This applies to all cases.
+*
+ TEMP1 = DSQRT(DBLE(N)) * EPSLN
+ DO 1972 q = 1, N
+ DO 972 p = 1, N
+ WORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
+ 972 CONTINUE
+ DO 973 p = 1, N
+ V(p,q) = WORK(2*N+N*NR+NR+p)
+ 973 CONTINUE
+ XSC = ONE / DNRM2( N, V(1,q), 1 )
+ IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
+ $ CALL DSCAL( N, XSC, V(1,q), 1 )
+ 1972 CONTINUE
+* At this moment, V contains the right singular vectors of A.
+* Next, assemble the left singular vector matrix U (M x N).
+ IF ( NR .LT. M ) THEN
+ CALL DLASET( 'A', M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU )
+ IF ( NR .LT. N1 ) THEN
+ CALL DLASET('A',NR,N1-NR,ZERO,ZERO,U(1,NR+1),LDU)
+ CALL DLASET('A',M-NR,N1-NR,ZERO,ONE,U(NR+1,NR+1),LDU)
+ END IF
+ END IF
+*
+* The Q matrix from the first QRF is built into the left singular
+* matrix U. This applies to all cases.
+*
+ CALL DORMQR( 'Left', 'No_Tr', M, N1, N, A, LDA, WORK, U,
+ $ LDU, WORK(N+1), LWORK-N, IERR )
+
+* The columns of U are normalized. The cost is O(M*N) flops.
+ TEMP1 = DSQRT(DBLE(M)) * EPSLN
+ DO 1973 p = 1, NR
+ XSC = ONE / DNRM2( M, U(1,p), 1 )
+ IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
+ $ CALL DSCAL( M, XSC, U(1,p), 1 )
+ 1973 CONTINUE
+*
+* If the initial QRF is computed with row pivoting, the left
+* singular vectors must be adjusted.
+*
+ IF ( ROWPIV )
+ $ CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
+*
+ ELSE
+*
+* .. the initial matrix A has almost orthogonal columns and
+* the second QRF is not needed
+*
+ CALL DLACPY( 'Upper', N, N, A, LDA, WORK(N+1), N )
+ IF ( L2PERT ) THEN
+ XSC = DSQRT(SMALL)
+ DO 5970 p = 2, N
+ TEMP1 = XSC * WORK( N + (p-1)*N + p )
+ DO 5971 q = 1, p - 1
+ WORK(N+(q-1)*N+p)=-DSIGN(TEMP1,WORK(N+(p-1)*N+q))
+ 5971 CONTINUE
+ 5970 CONTINUE
+ ELSE
+ CALL DLASET( 'Lower',N-1,N-1,ZERO,ZERO,WORK(N+2),N )
+ END IF
+*
+ CALL DGESVJ( 'Upper', 'U', 'N', N, N, WORK(N+1), N, SVA,
+ $ N, U, LDU, WORK(N+N*N+1), LWORK-N-N*N, INFO )
+*
+ SCALEM = WORK(N+N*N+1)
+ NUMRANK = IDNINT(WORK(N+N*N+2))
+ DO 6970 p = 1, N
+ CALL DCOPY( N, WORK(N+(p-1)*N+1), 1, U(1,p), 1 )
+ CALL DSCAL( N, SVA(p), WORK(N+(p-1)*N+1), 1 )
+ 6970 CONTINUE
+*
+ CALL DTRSM( 'Left', 'Upper', 'NoTrans', 'No UD', N, N,
+ $ ONE, A, LDA, WORK(N+1), N )
+ DO 6972 p = 1, N
+ CALL DCOPY( N, WORK(N+p), N, V(IWORK(p),1), LDV )
+ 6972 CONTINUE
+ TEMP1 = DSQRT(DBLE(N))*EPSLN
+ DO 6971 p = 1, N
+ XSC = ONE / DNRM2( N, V(1,p), 1 )
+ IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
+ $ CALL DSCAL( N, XSC, V(1,p), 1 )
+ 6971 CONTINUE
+*
+* Assemble the left singular vector matrix U (M x N).
+*
+ IF ( N .LT. M ) THEN
+ CALL DLASET( 'A', M-N, N, ZERO, ZERO, U(N+1,1), LDU )
+ IF ( N .LT. N1 ) THEN
+ CALL DLASET( 'A',N, N1-N, ZERO, ZERO, U(1,N+1),LDU )
+ CALL DLASET( 'A',M-N,N1-N, ZERO, ONE,U(N+1,N+1),LDU )
+ END IF
+ END IF
+ CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,
+ $ LDU, WORK(N+1), LWORK-N, IERR )
+ TEMP1 = DSQRT(DBLE(M))*EPSLN
+ DO 6973 p = 1, N1
+ XSC = ONE / DNRM2( M, U(1,p), 1 )
+ IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
+ $ CALL DSCAL( M, XSC, U(1,p), 1 )
+ 6973 CONTINUE
+*
+ IF ( ROWPIV )
+ $ CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
+*
+ END IF
+*
+* end of the >> almost orthogonal case << in the full SVD
+*
+ ELSE
+*
+* This branch deploys a preconditioned Jacobi SVD with explicitly
+* accumulated rotations. It is included as optional, mainly for
+* experimental purposes. It does perform well, and can also be used.
+* In this implementation, this branch will be automatically activated
+* if the condition number sigma_max(A) / sigma_min(A) is predicted
+* to be greater than the overflow threshold. This is because the
+* a posteriori computation of the singular vectors assumes robust
+* implementation of BLAS and some LAPACK procedures, capable of working
+* in presence of extreme values. Since that is not always the case, ...
+*
+ DO 7968 p = 1, NR
+ CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
+ 7968 CONTINUE
+*
+ IF ( L2PERT ) THEN
+ XSC = DSQRT(SMALL/EPSLN)
+ DO 5969 q = 1, NR
+ TEMP1 = XSC*DABS( V(q,q) )
+ DO 5968 p = 1, N
+ IF ( ( p .GT. q ) .AND. ( DABS(V(p,q)) .LE. TEMP1 )
+ $ .OR. ( p .LT. q ) )
+ $ V(p,q) = DSIGN( TEMP1, V(p,q) )
+ IF ( p .LT. q ) V(p,q) = - V(p,q)
+ 5968 CONTINUE
+ 5969 CONTINUE
+ ELSE
+ CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
+ END IF
+
+ CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),
+ $ LWORK-2*N, IERR )
+ CALL DLACPY( 'L', N, NR, V, LDV, WORK(2*N+1), N )
+*
+ DO 7969 p = 1, NR
+ CALL DCOPY( NR-p+1, V(p,p), LDV, U(p,p), 1 )
+ 7969 CONTINUE
+
+ IF ( L2PERT ) THEN
+ XSC = DSQRT(SMALL/EPSLN)
+ DO 9970 q = 2, NR
+ DO 9971 p = 1, q - 1
+ TEMP1 = XSC * MIN(DABS(U(p,p)),DABS(U(q,q)))
+ U(p,q) = - DSIGN( TEMP1, U(q,p) )
+ 9971 CONTINUE
+ 9970 CONTINUE
+ ELSE
+ CALL DLASET('U', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )
+ END IF
+
+ CALL DGESVJ( 'G', 'U', 'V', NR, NR, U, LDU, SVA,
+ $ N, V, LDV, WORK(2*N+N*NR+1), LWORK-2*N-N*NR, INFO )
+ SCALEM = WORK(2*N+N*NR+1)
+ NUMRANK = IDNINT(WORK(2*N+N*NR+2))
+
+ IF ( NR .LT. N ) THEN
+ CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )
+ CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )
+ CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )
+ END IF
+
+ CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
+ $ V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
+*
+* Permute the rows of V using the (column) permutation from the
+* first QRF. Also, scale the columns to make them unit in
+* Euclidean norm. This applies to all cases.
+*
+ TEMP1 = DSQRT(DBLE(N)) * EPSLN
+ DO 7972 q = 1, N
+ DO 8972 p = 1, N
+ WORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
+ 8972 CONTINUE
+ DO 8973 p = 1, N
+ V(p,q) = WORK(2*N+N*NR+NR+p)
+ 8973 CONTINUE
+ XSC = ONE / DNRM2( N, V(1,q), 1 )
+ IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
+ $ CALL DSCAL( N, XSC, V(1,q), 1 )
+ 7972 CONTINUE
+*
+* At this moment, V contains the right singular vectors of A.
+* Next, assemble the left singular vector matrix U (M x N).
+*
+ IF ( NR .LT. M ) THEN
+ CALL DLASET( 'A', M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU )
+ IF ( NR .LT. N1 ) THEN
+ CALL DLASET( 'A',NR, N1-NR, ZERO, ZERO, U(1,NR+1),LDU )
+ CALL DLASET( 'A',M-NR,N1-NR, ZERO, ONE,U(NR+1,NR+1),LDU )
+ END IF
+ END IF
+*
+ CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,
+ $ LDU, WORK(N+1), LWORK-N, IERR )
+*
+ IF ( ROWPIV )
+ $ CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
+*
+*
+ END IF
+ IF ( TRANSP ) THEN
+* .. swap U and V because the procedure worked on A^t
+ DO 6974 p = 1, N
+ CALL DSWAP( N, U(1,p), 1, V(1,p), 1 )
+ 6974 CONTINUE
+ END IF
+*
+ END IF
+* end of the full SVD
+*
+* Undo scaling, if necessary (and possible)
+*
+ IF ( USCAL2 .LE. (BIG/SVA(1))*USCAL1 ) THEN
+ CALL DLASCL( 'G', 0, 0, USCAL1, USCAL2, NR, 1, SVA, N, IERR )
+ USCAL1 = ONE
+ USCAL2 = ONE
+ END IF
+*
+ IF ( NR .LT. N ) THEN
+ DO 3004 p = NR+1, N
+ SVA(p) = ZERO
+ 3004 CONTINUE
+ END IF
+*
+ WORK(1) = USCAL2 * SCALEM
+ WORK(2) = USCAL1
+ IF ( ERREST ) WORK(3) = SCONDA
+ IF ( LSVEC .AND. RSVEC ) THEN
+ WORK(4) = CONDR1
+ WORK(5) = CONDR2
+ END IF
+ IF ( L2TRAN ) THEN
+ WORK(6) = ENTRA
+ WORK(7) = ENTRAT
+ END IF
+*
+ IWORK(1) = NR
+ IWORK(2) = NUMRANK
+ IWORK(3) = WARNING
+*
+ RETURN
+* ..
+* .. END OF DGEJSV
+* ..
+ END
+*
diff --git a/lapack-netlib/dgesvx.f b/lapack-netlib/dgesvx.f
new file mode 100644
index 000000000..f787488dc
--- /dev/null
+++ b/lapack-netlib/dgesvx.f
@@ -0,0 +1,599 @@
+*> \brief DGESVX computes the solution to system of linear equations A * X = B for GE matrices
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download DGESVX + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE DGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
+* EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
+* WORK, IWORK, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER EQUED, FACT, TRANS
+* INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
+* DOUBLE PRECISION RCOND
+* ..
+* .. Array Arguments ..
+* INTEGER IPIV( * ), IWORK( * )
+* DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
+* $ BERR( * ), C( * ), FERR( * ), R( * ),
+* $ WORK( * ), X( LDX, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> DGESVX uses the LU factorization to compute the solution to a real
+*> system of linear equations
+*> A * X = B,
+*> where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
+*>
+*> Error bounds on the solution and a condition estimate are also
+*> provided.
+*> \endverbatim
+*
+*> \par Description:
+* =================
+*>
+*> \verbatim
+*>
+*> The following steps are performed:
+*>
+*> 1. If FACT = 'E', real scaling factors are computed to equilibrate
+*> the system:
+*> TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
+*> TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
+*> TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
+*> Whether or not the system will be equilibrated depends on the
+*> scaling of the matrix A, but if equilibration is used, A is
+*> overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
+*> or diag(C)*B (if TRANS = 'T' or 'C').
+*>
+*> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
+*> matrix A (after equilibration if FACT = 'E') as
+*> A = P * L * U,
+*> where P is a permutation matrix, L is a unit lower triangular
+*> matrix, and U is upper triangular.
+*>
+*> 3. If some U(i,i)=0, so that U is exactly singular, then the routine
+*> returns with INFO = i. Otherwise, the factored form of A is used
+*> to estimate the condition number of the matrix A. If the
+*> reciprocal of the condition number is less than machine precision,
+*> INFO = N+1 is returned as a warning, but the routine still goes on
+*> to solve for X and compute error bounds as described below.
+*>
+*> 4. The system of equations is solved for X using the factored form
+*> of A.
+*>
+*> 5. Iterative refinement is applied to improve the computed solution
+*> matrix and calculate error bounds and backward error estimates
+*> for it.
+*>
+*> 6. If equilibration was used, the matrix X is premultiplied by
+*> diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
+*> that it solves the original system before equilibration.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] FACT
+*> \verbatim
+*> FACT is CHARACTER*1
+*> Specifies whether or not the factored form of the matrix A is
+*> supplied on entry, and if not, whether the matrix A should be
+*> equilibrated before it is factored.
+*> = 'F': On entry, AF and IPIV contain the factored form of A.
+*> If EQUED is not 'N', the matrix A has been
+*> equilibrated with scaling factors given by R and C.
+*> A, AF, and IPIV are not modified.
+*> = 'N': The matrix A will be copied to AF and factored.
+*> = 'E': The matrix A will be equilibrated if necessary, then
+*> copied to AF and factored.
+*> \endverbatim
+*>
+*> \param[in] TRANS
+*> \verbatim
+*> TRANS is CHARACTER*1
+*> Specifies the form of the system of equations:
+*> = 'N': A * X = B (No transpose)
+*> = 'T': A**T * X = B (Transpose)
+*> = 'C': A**H * X = B (Transpose)
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of linear equations, i.e., the order of the
+*> matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] NRHS
+*> \verbatim
+*> NRHS is INTEGER
+*> The number of right hand sides, i.e., the number of columns
+*> of the matrices B and X. NRHS >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is DOUBLE PRECISION array, dimension (LDA,N)
+*> On entry, the N-by-N matrix A. If FACT = 'F' and EQUED is
+*> not 'N', then A must have been equilibrated by the scaling
+*> factors in R and/or C. A is not modified if FACT = 'F' or
+*> 'N', or if FACT = 'E' and EQUED = 'N' on exit.
+*>
+*> On exit, if EQUED .ne. 'N', A is scaled as follows:
+*> EQUED = 'R': A := diag(R) * A
+*> EQUED = 'C': A := A * diag(C)
+*> EQUED = 'B': A := diag(R) * A * diag(C).
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,N).
+*> \endverbatim
+*>
+*> \param[in,out] AF
+*> \verbatim
+*> AF is DOUBLE PRECISION array, dimension (LDAF,N)
+*> If FACT = 'F', then AF is an input argument and on entry
+*> contains the factors L and U from the factorization
+*> A = P*L*U as computed by DGETRF. If EQUED .ne. 'N', then
+*> AF is the factored form of the equilibrated matrix A.
+*>
+*> If FACT = 'N', then AF is an output argument and on exit
+*> returns the factors L and U from the factorization A = P*L*U
+*> of the original matrix A.
+*>
+*> If FACT = 'E', then AF is an output argument and on exit
+*> returns the factors L and U from the factorization A = P*L*U
+*> of the equilibrated matrix A (see the description of A for
+*> the form of the equilibrated matrix).
+*> \endverbatim
+*>
+*> \param[in] LDAF
+*> \verbatim
+*> LDAF is INTEGER
+*> The leading dimension of the array AF. LDAF >= max(1,N).
+*> \endverbatim
+*>
+*> \param[in,out] IPIV
+*> \verbatim
+*> IPIV is INTEGER array, dimension (N)
+*> If FACT = 'F', then IPIV is an input argument and on entry
+*> contains the pivot indices from the factorization A = P*L*U
+*> as computed by DGETRF; row i of the matrix was interchanged
+*> with row IPIV(i).
+*>
+*> If FACT = 'N', then IPIV is an output argument and on exit
+*> contains the pivot indices from the factorization A = P*L*U
+*> of the original matrix A.
+*>
+*> If FACT = 'E', then IPIV is an output argument and on exit
+*> contains the pivot indices from the factorization A = P*L*U
+*> of the equilibrated matrix A.
+*> \endverbatim
+*>
+*> \param[in,out] EQUED
+*> \verbatim
+*> EQUED is CHARACTER*1
+*> Specifies the form of equilibration that was done.
+*> = 'N': No equilibration (always true if FACT = 'N').
+*> = 'R': Row equilibration, i.e., A has been premultiplied by
+*> diag(R).
+*> = 'C': Column equilibration, i.e., A has been postmultiplied
+*> by diag(C).
+*> = 'B': Both row and column equilibration, i.e., A has been
+*> replaced by diag(R) * A * diag(C).
+*> EQUED is an input argument if FACT = 'F'; otherwise, it is an
+*> output argument.
+*> \endverbatim
+*>
+*> \param[in,out] R
+*> \verbatim
+*> R is DOUBLE PRECISION array, dimension (N)
+*> The row scale factors for A. If EQUED = 'R' or 'B', A is
+*> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
+*> is not accessed. R is an input argument if FACT = 'F';
+*> otherwise, R is an output argument. If FACT = 'F' and
+*> EQUED = 'R' or 'B', each element of R must be positive.
+*> \endverbatim
+*>
+*> \param[in,out] C
+*> \verbatim
+*> C is DOUBLE PRECISION array, dimension (N)
+*> The column scale factors for A. If EQUED = 'C' or 'B', A is
+*> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
+*> is not accessed. C is an input argument if FACT = 'F';
+*> otherwise, C is an output argument. If FACT = 'F' and
+*> EQUED = 'C' or 'B', each element of C must be positive.
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
+*> On entry, the N-by-NRHS right hand side matrix B.
+*> On exit,
+*> if EQUED = 'N', B is not modified;
+*> if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
+*> diag(R)*B;
+*> if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
+*> overwritten by diag(C)*B.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] X
+*> \verbatim
+*> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
+*> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
+*> to the original system of equations. Note that A and B are
+*> modified on exit if EQUED .ne. 'N', and the solution to the
+*> equilibrated system is inv(diag(C))*X if TRANS = 'N' and
+*> EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
+*> and EQUED = 'R' or 'B'.
+*> \endverbatim
+*>
+*> \param[in] LDX
+*> \verbatim
+*> LDX is INTEGER
+*> The leading dimension of the array X. LDX >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] RCOND
+*> \verbatim
+*> RCOND is DOUBLE PRECISION
+*> The estimate of the reciprocal condition number of the matrix
+*> A after equilibration (if done). If RCOND is less than the
+*> machine precision (in particular, if RCOND = 0), the matrix
+*> is singular to working precision. This condition is
+*> indicated by a return code of INFO > 0.
+*> \endverbatim
+*>
+*> \param[out] FERR
+*> \verbatim
+*> FERR is DOUBLE PRECISION array, dimension (NRHS)
+*> The estimated forward error bound for each solution vector
+*> X(j) (the j-th column of the solution matrix X).
+*> If XTRUE is the true solution corresponding to X(j), FERR(j)
+*> is an estimated upper bound for the magnitude of the largest
+*> element in (X(j) - XTRUE) divided by the magnitude of the
+*> largest element in X(j). The estimate is as reliable as
+*> the estimate for RCOND, and is almost always a slight
+*> overestimate of the true error.
+*> \endverbatim
+*>
+*> \param[out] BERR
+*> \verbatim
+*> BERR is DOUBLE PRECISION array, dimension (NRHS)
+*> The componentwise relative backward error of each solution
+*> vector X(j) (i.e., the smallest relative change in
+*> any element of A or B that makes X(j) an exact solution).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is DOUBLE PRECISION array, dimension (MAX(1,4*N))
+*> On exit, WORK(1) contains the reciprocal pivot growth
+*> factor norm(A)/norm(U). The "max absolute element" norm is
+*> used. If WORK(1) is much less than 1, then the stability
+*> of the LU factorization of the (equilibrated) matrix A
+*> could be poor. This also means that the solution X, condition
+*> estimator RCOND, and forward error bound FERR could be
+*> unreliable. If factorization fails with 0 WORK(1) contains the reciprocal pivot growth factor for the
+*> leading INFO columns of A.
+*> \endverbatim
+*>
+*> \param[out] IWORK
+*> \verbatim
+*> IWORK is INTEGER array, dimension (N)
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: if INFO = i, and i is
+*> <= N: U(i,i) is exactly zero. The factorization has
+*> been completed, but the factor U is exactly
+*> singular, so the solution and error bounds
+*> could not be computed. RCOND = 0 is returned.
+*> = N+1: U is nonsingular, but RCOND is less than machine
+*> precision, meaning that the matrix is singular
+*> to working precision. Nevertheless, the
+*> solution and error bounds are computed because
+*> there are a number of situations where the
+*> computed solution can be more accurate than the
+*> value of RCOND would suggest.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup doubleGEsolve
+*
+* =====================================================================
+ SUBROUTINE DGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
+ $ EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
+ $ WORK, IWORK, INFO )
+*
+* -- LAPACK driver routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ CHARACTER EQUED, FACT, TRANS
+ INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
+ DOUBLE PRECISION RCOND
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * ), IWORK( * )
+ DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
+ $ BERR( * ), C( * ), FERR( * ), R( * ),
+ $ WORK( * ), X( LDX, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
+ CHARACTER NORM
+ INTEGER I, INFEQU, J
+ DOUBLE PRECISION AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
+ $ ROWCND, RPVGRW, SMLNUM
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ DOUBLE PRECISION DLAMCH, DLANGE, DLANTR
+ EXTERNAL LSAME, DLAMCH, DLANGE, DLANTR
+* ..
+* .. External Subroutines ..
+ EXTERNAL DGECON, DGEEQU, DGERFS, DGETRF, DGETRS, DLACPY,
+ $ DLAQGE, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+ INFO = 0
+ NOFACT = LSAME( FACT, 'N' )
+ EQUIL = LSAME( FACT, 'E' )
+ NOTRAN = LSAME( TRANS, 'N' )
+ IF( NOFACT .OR. EQUIL ) THEN
+ EQUED = 'N'
+ ROWEQU = .FALSE.
+ COLEQU = .FALSE.
+ ELSE
+ ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
+ COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
+ SMLNUM = DLAMCH( 'Safe minimum' )
+ BIGNUM = ONE / SMLNUM
+ END IF
+*
+* Test the input parameters.
+*
+ IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
+ $ THEN
+ INFO = -1
+ ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
+ $ LSAME( TRANS, 'C' ) ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -6
+ ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
+ INFO = -8
+ ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
+ $ ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
+ INFO = -10
+ ELSE
+ IF( ROWEQU ) THEN
+ RCMIN = BIGNUM
+ RCMAX = ZERO
+ DO 10 J = 1, N
+ RCMIN = MIN( RCMIN, R( J ) )
+ RCMAX = MAX( RCMAX, R( J ) )
+ 10 CONTINUE
+ IF( RCMIN.LE.ZERO ) THEN
+ INFO = -11
+ ELSE IF( N.GT.0 ) THEN
+ ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
+ ELSE
+ ROWCND = ONE
+ END IF
+ END IF
+ IF( COLEQU .AND. INFO.EQ.0 ) THEN
+ RCMIN = BIGNUM
+ RCMAX = ZERO
+ DO 20 J = 1, N
+ RCMIN = MIN( RCMIN, C( J ) )
+ RCMAX = MAX( RCMAX, C( J ) )
+ 20 CONTINUE
+ IF( RCMIN.LE.ZERO ) THEN
+ INFO = -12
+ ELSE IF( N.GT.0 ) THEN
+ COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
+ ELSE
+ COLCND = ONE
+ END IF
+ END IF
+ IF( INFO.EQ.0 ) THEN
+ IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -14
+ ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
+ INFO = -16
+ END IF
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DGESVX', -INFO )
+ RETURN
+ END IF
+*
+ IF( EQUIL ) THEN
+*
+* Compute row and column scalings to equilibrate the matrix A.
+*
+ CALL DGEEQU( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFEQU )
+ IF( INFEQU.EQ.0 ) THEN
+*
+* Equilibrate the matrix.
+*
+ CALL DLAQGE( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
+ $ EQUED )
+ ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
+ COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
+ END IF
+ END IF
+*
+* Scale the right hand side.
+*
+ IF( NOTRAN ) THEN
+ IF( ROWEQU ) THEN
+ DO 40 J = 1, NRHS
+ DO 30 I = 1, N
+ B( I, J ) = R( I )*B( I, J )
+ 30 CONTINUE
+ 40 CONTINUE
+ END IF
+ ELSE IF( COLEQU ) THEN
+ DO 60 J = 1, NRHS
+ DO 50 I = 1, N
+ B( I, J ) = C( I )*B( I, J )
+ 50 CONTINUE
+ 60 CONTINUE
+ END IF
+*
+ IF( NOFACT .OR. EQUIL ) THEN
+*
+* Compute the LU factorization of A.
+*
+ CALL DLACPY( 'Full', N, N, A, LDA, AF, LDAF )
+ CALL DGETRF( N, N, AF, LDAF, IPIV, INFO )
+*
+* Return if INFO is non-zero.
+*
+ IF( INFO.GT.0 ) THEN
+*
+* Compute the reciprocal pivot growth factor of the
+* leading rank-deficient INFO columns of A.
+*
+ RPVGRW = DLANTR( 'M', 'U', 'N', INFO, INFO, AF, LDAF,
+ $ WORK )
+ IF( RPVGRW.EQ.ZERO ) THEN
+ RPVGRW = ONE
+ ELSE
+ RPVGRW = DLANGE( 'M', N, INFO, A, LDA, WORK ) / RPVGRW
+ END IF
+ WORK( 1 ) = RPVGRW
+ RCOND = ZERO
+ RETURN
+ END IF
+ END IF
+*
+* Compute the norm of the matrix A and the
+* reciprocal pivot growth factor RPVGRW.
+*
+ IF( NOTRAN ) THEN
+ NORM = '1'
+ ELSE
+ NORM = 'I'
+ END IF
+ ANORM = DLANGE( NORM, N, N, A, LDA, WORK )
+ RPVGRW = DLANTR( 'M', 'U', 'N', N, N, AF, LDAF, WORK )
+ IF( RPVGRW.EQ.ZERO ) THEN
+ RPVGRW = ONE
+ ELSE
+ RPVGRW = DLANGE( 'M', N, N, A, LDA, WORK ) / RPVGRW
+ END IF
+*
+* Compute the reciprocal of the condition number of A.
+*
+ CALL DGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, IWORK, INFO )
+*
+* Compute the solution matrix X.
+*
+ CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
+ CALL DGETRS( TRANS, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
+*
+* Use iterative refinement to improve the computed solution and
+* compute error bounds and backward error estimates for it.
+*
+ CALL DGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
+ $ LDX, FERR, BERR, WORK, IWORK, INFO )
+*
+* Transform the solution matrix X to a solution of the original
+* system.
+*
+ IF( NOTRAN ) THEN
+ IF( COLEQU ) THEN
+ DO 80 J = 1, NRHS
+ DO 70 I = 1, N
+ X( I, J ) = C( I )*X( I, J )
+ 70 CONTINUE
+ 80 CONTINUE
+ DO 90 J = 1, NRHS
+ FERR( J ) = FERR( J ) / COLCND
+ 90 CONTINUE
+ END IF
+ ELSE IF( ROWEQU ) THEN
+ DO 110 J = 1, NRHS
+ DO 100 I = 1, N
+ X( I, J ) = R( I )*X( I, J )
+ 100 CONTINUE
+ 110 CONTINUE
+ DO 120 J = 1, NRHS
+ FERR( J ) = FERR( J ) / ROWCND
+ 120 CONTINUE
+ END IF
+*
+ WORK( 1 ) = RPVGRW
+*
+* Set INFO = N+1 if the matrix is singular to working precision.
+*
+ IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
+ $ INFO = N + 1
+ RETURN
+*
+* End of DGESVX
+*
+ END
diff --git a/lapack-netlib/sgbsvx.f b/lapack-netlib/sgbsvx.f
new file mode 100644
index 000000000..df3a721d9
--- /dev/null
+++ b/lapack-netlib/sgbsvx.f
@@ -0,0 +1,641 @@
+*> \brief SGBSVX computes the solution to system of linear equations A * X = B for GB matrices
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download SGBSVX + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE SGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
+* LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
+* RCOND, FERR, BERR, WORK, IWORK, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER EQUED, FACT, TRANS
+* INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
+* REAL RCOND
+* ..
+* .. Array Arguments ..
+* INTEGER IPIV( * ), IWORK( * )
+* REAL AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
+* $ BERR( * ), C( * ), FERR( * ), R( * ),
+* $ WORK( * ), X( LDX, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> SGBSVX uses the LU factorization to compute the solution to a real
+*> system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
+*> where A is a band matrix of order N with KL subdiagonals and KU
+*> superdiagonals, and X and B are N-by-NRHS matrices.
+*>
+*> Error bounds on the solution and a condition estimate are also
+*> provided.
+*> \endverbatim
+*
+*> \par Description:
+* =================
+*>
+*> \verbatim
+*>
+*> The following steps are performed by this subroutine:
+*>
+*> 1. If FACT = 'E', real scaling factors are computed to equilibrate
+*> the system:
+*> TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
+*> TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
+*> TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
+*> Whether or not the system will be equilibrated depends on the
+*> scaling of the matrix A, but if equilibration is used, A is
+*> overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
+*> or diag(C)*B (if TRANS = 'T' or 'C').
+*>
+*> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
+*> matrix A (after equilibration if FACT = 'E') as
+*> A = L * U,
+*> where L is a product of permutation and unit lower triangular
+*> matrices with KL subdiagonals, and U is upper triangular with
+*> KL+KU superdiagonals.
+*>
+*> 3. If some U(i,i)=0, so that U is exactly singular, then the routine
+*> returns with INFO = i. Otherwise, the factored form of A is used
+*> to estimate the condition number of the matrix A. If the
+*> reciprocal of the condition number is less than machine precision,
+*> INFO = N+1 is returned as a warning, but the routine still goes on
+*> to solve for X and compute error bounds as described below.
+*>
+*> 4. The system of equations is solved for X using the factored form
+*> of A.
+*>
+*> 5. Iterative refinement is applied to improve the computed solution
+*> matrix and calculate error bounds and backward error estimates
+*> for it.
+*>
+*> 6. If equilibration was used, the matrix X is premultiplied by
+*> diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
+*> that it solves the original system before equilibration.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] FACT
+*> \verbatim
+*> FACT is CHARACTER*1
+*> Specifies whether or not the factored form of the matrix A is
+*> supplied on entry, and if not, whether the matrix A should be
+*> equilibrated before it is factored.
+*> = 'F': On entry, AFB and IPIV contain the factored form of
+*> A. If EQUED is not 'N', the matrix A has been
+*> equilibrated with scaling factors given by R and C.
+*> AB, AFB, and IPIV are not modified.
+*> = 'N': The matrix A will be copied to AFB and factored.
+*> = 'E': The matrix A will be equilibrated if necessary, then
+*> copied to AFB and factored.
+*> \endverbatim
+*>
+*> \param[in] TRANS
+*> \verbatim
+*> TRANS is CHARACTER*1
+*> Specifies the form of the system of equations.
+*> = 'N': A * X = B (No transpose)
+*> = 'T': A**T * X = B (Transpose)
+*> = 'C': A**H * X = B (Transpose)
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of linear equations, i.e., the order of the
+*> matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] KL
+*> \verbatim
+*> KL is INTEGER
+*> The number of subdiagonals within the band of A. KL >= 0.
+*> \endverbatim
+*>
+*> \param[in] KU
+*> \verbatim
+*> KU is INTEGER
+*> The number of superdiagonals within the band of A. KU >= 0.
+*> \endverbatim
+*>
+*> \param[in] NRHS
+*> \verbatim
+*> NRHS is INTEGER
+*> The number of right hand sides, i.e., the number of columns
+*> of the matrices B and X. NRHS >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] AB
+*> \verbatim
+*> AB is REAL array, dimension (LDAB,N)
+*> On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
+*> The j-th column of A is stored in the j-th column of the
+*> array AB as follows:
+*> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
+*>
+*> If FACT = 'F' and EQUED is not 'N', then A must have been
+*> equilibrated by the scaling factors in R and/or C. AB is not
+*> modified if FACT = 'F' or 'N', or if FACT = 'E' and
+*> EQUED = 'N' on exit.
+*>
+*> On exit, if EQUED .ne. 'N', A is scaled as follows:
+*> EQUED = 'R': A := diag(R) * A
+*> EQUED = 'C': A := A * diag(C)
+*> EQUED = 'B': A := diag(R) * A * diag(C).
+*> \endverbatim
+*>
+*> \param[in] LDAB
+*> \verbatim
+*> LDAB is INTEGER
+*> The leading dimension of the array AB. LDAB >= KL+KU+1.
+*> \endverbatim
+*>
+*> \param[in,out] AFB
+*> \verbatim
+*> AFB is REAL array, dimension (LDAFB,N)
+*> If FACT = 'F', then AFB is an input argument and on entry
+*> contains details of the LU factorization of the band matrix
+*> A, as computed by SGBTRF. U is stored as an upper triangular
+*> band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
+*> and the multipliers used during the factorization are stored
+*> in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is
+*> the factored form of the equilibrated matrix A.
+*>
+*> If FACT = 'N', then AFB is an output argument and on exit
+*> returns details of the LU factorization of A.
+*>
+*> If FACT = 'E', then AFB is an output argument and on exit
+*> returns details of the LU factorization of the equilibrated
+*> matrix A (see the description of AB for the form of the
+*> equilibrated matrix).
+*> \endverbatim
+*>
+*> \param[in] LDAFB
+*> \verbatim
+*> LDAFB is INTEGER
+*> The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.
+*> \endverbatim
+*>
+*> \param[in,out] IPIV
+*> \verbatim
+*> IPIV is INTEGER array, dimension (N)
+*> If FACT = 'F', then IPIV is an input argument and on entry
+*> contains the pivot indices from the factorization A = L*U
+*> as computed by SGBTRF; row i of the matrix was interchanged
+*> with row IPIV(i).
+*>
+*> If FACT = 'N', then IPIV is an output argument and on exit
+*> contains the pivot indices from the factorization A = L*U
+*> of the original matrix A.
+*>
+*> If FACT = 'E', then IPIV is an output argument and on exit
+*> contains the pivot indices from the factorization A = L*U
+*> of the equilibrated matrix A.
+*> \endverbatim
+*>
+*> \param[in,out] EQUED
+*> \verbatim
+*> EQUED is CHARACTER*1
+*> Specifies the form of equilibration that was done.
+*> = 'N': No equilibration (always true if FACT = 'N').
+*> = 'R': Row equilibration, i.e., A has been premultiplied by
+*> diag(R).
+*> = 'C': Column equilibration, i.e., A has been postmultiplied
+*> by diag(C).
+*> = 'B': Both row and column equilibration, i.e., A has been
+*> replaced by diag(R) * A * diag(C).
+*> EQUED is an input argument if FACT = 'F'; otherwise, it is an
+*> output argument.
+*> \endverbatim
+*>
+*> \param[in,out] R
+*> \verbatim
+*> R is REAL array, dimension (N)
+*> The row scale factors for A. If EQUED = 'R' or 'B', A is
+*> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
+*> is not accessed. R is an input argument if FACT = 'F';
+*> otherwise, R is an output argument. If FACT = 'F' and
+*> EQUED = 'R' or 'B', each element of R must be positive.
+*> \endverbatim
+*>
+*> \param[in,out] C
+*> \verbatim
+*> C is REAL array, dimension (N)
+*> The column scale factors for A. If EQUED = 'C' or 'B', A is
+*> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
+*> is not accessed. C is an input argument if FACT = 'F';
+*> otherwise, C is an output argument. If FACT = 'F' and
+*> EQUED = 'C' or 'B', each element of C must be positive.
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is REAL array, dimension (LDB,NRHS)
+*> On entry, the right hand side matrix B.
+*> On exit,
+*> if EQUED = 'N', B is not modified;
+*> if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
+*> diag(R)*B;
+*> if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
+*> overwritten by diag(C)*B.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] X
+*> \verbatim
+*> X is REAL array, dimension (LDX,NRHS)
+*> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
+*> to the original system of equations. Note that A and B are
+*> modified on exit if EQUED .ne. 'N', and the solution to the
+*> equilibrated system is inv(diag(C))*X if TRANS = 'N' and
+*> EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
+*> and EQUED = 'R' or 'B'.
+*> \endverbatim
+*>
+*> \param[in] LDX
+*> \verbatim
+*> LDX is INTEGER
+*> The leading dimension of the array X. LDX >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] RCOND
+*> \verbatim
+*> RCOND is REAL
+*> The estimate of the reciprocal condition number of the matrix
+*> A after equilibration (if done). If RCOND is less than the
+*> machine precision (in particular, if RCOND = 0), the matrix
+*> is singular to working precision. This condition is
+*> indicated by a return code of INFO > 0.
+*> \endverbatim
+*>
+*> \param[out] FERR
+*> \verbatim
+*> FERR is REAL array, dimension (NRHS)
+*> The estimated forward error bound for each solution vector
+*> X(j) (the j-th column of the solution matrix X).
+*> If XTRUE is the true solution corresponding to X(j), FERR(j)
+*> is an estimated upper bound for the magnitude of the largest
+*> element in (X(j) - XTRUE) divided by the magnitude of the
+*> largest element in X(j). The estimate is as reliable as
+*> the estimate for RCOND, and is almost always a slight
+*> overestimate of the true error.
+*> \endverbatim
+*>
+*> \param[out] BERR
+*> \verbatim
+*> BERR is REAL array, dimension (NRHS)
+*> The componentwise relative backward error of each solution
+*> vector X(j) (i.e., the smallest relative change in
+*> any element of A or B that makes X(j) an exact solution).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is REAL array, dimension (MAX(1,3*N))
+*> On exit, WORK(1) contains the reciprocal pivot growth
+*> factor norm(A)/norm(U). The "max absolute element" norm is
+*> used. If WORK(1) is much less than 1, then the stability
+*> of the LU factorization of the (equilibrated) matrix A
+*> could be poor. This also means that the solution X, condition
+*> estimator RCOND, and forward error bound FERR could be
+*> unreliable. If factorization fails with 0 WORK(1) contains the reciprocal pivot growth factor for the
+*> leading INFO columns of A.
+*> \endverbatim
+*>
+*> \param[out] IWORK
+*> \verbatim
+*> IWORK is INTEGER array, dimension (N)
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: if INFO = i, and i is
+*> <= N: U(i,i) is exactly zero. The factorization
+*> has been completed, but the factor U is exactly
+*> singular, so the solution and error bounds
+*> could not be computed. RCOND = 0 is returned.
+*> = N+1: U is nonsingular, but RCOND is less than machine
+*> precision, meaning that the matrix is singular
+*> to working precision. Nevertheless, the
+*> solution and error bounds are computed because
+*> there are a number of situations where the
+*> computed solution can be more accurate than the
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup realGBsolve
+*
+* =====================================================================
+ SUBROUTINE SGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
+ $ LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
+ $ RCOND, FERR, BERR, WORK, IWORK, INFO )
+*
+* -- LAPACK driver routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ CHARACTER EQUED, FACT, TRANS
+ INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
+ REAL RCOND
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * ), IWORK( * )
+ REAL AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
+ $ BERR( * ), C( * ), FERR( * ), R( * ),
+ $ WORK( * ), X( LDX, * )
+* ..
+*
+* =====================================================================
+* Moved setting of INFO = N+1 so INFO does not subsequently get
+* overwritten. Sven, 17 Mar 05.
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO, ONE
+ PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
+ CHARACTER NORM
+ INTEGER I, INFEQU, J, J1, J2
+ REAL AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
+ $ ROWCND, RPVGRW, SMLNUM
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ REAL SLAMCH, SLANGB, SLANTB
+ EXTERNAL LSAME, SLAMCH, SLANGB, SLANTB
+* ..
+* .. External Subroutines ..
+ EXTERNAL SCOPY, SGBCON, SGBEQU, SGBRFS, SGBTRF, SGBTRS,
+ $ SLACPY, SLAQGB, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+ INFO = 0
+ NOFACT = LSAME( FACT, 'N' )
+ EQUIL = LSAME( FACT, 'E' )
+ NOTRAN = LSAME( TRANS, 'N' )
+ IF( NOFACT .OR. EQUIL ) THEN
+ EQUED = 'N'
+ ROWEQU = .FALSE.
+ COLEQU = .FALSE.
+ ELSE
+ ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
+ COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
+ SMLNUM = SLAMCH( 'Safe minimum' )
+ BIGNUM = ONE / SMLNUM
+ END IF
+*
+* Test the input parameters.
+*
+ IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
+ $ THEN
+ INFO = -1
+ ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
+ $ LSAME( TRANS, 'C' ) ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( KL.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( KU.LT.0 ) THEN
+ INFO = -5
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -6
+ ELSE IF( LDAB.LT.KL+KU+1 ) THEN
+ INFO = -8
+ ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
+ INFO = -10
+ ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
+ $ ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
+ INFO = -12
+ ELSE
+ IF( ROWEQU ) THEN
+ RCMIN = BIGNUM
+ RCMAX = ZERO
+ DO 10 J = 1, N
+ RCMIN = MIN( RCMIN, R( J ) )
+ RCMAX = MAX( RCMAX, R( J ) )
+ 10 CONTINUE
+ IF( RCMIN.LE.ZERO ) THEN
+ INFO = -13
+ ELSE IF( N.GT.0 ) THEN
+ ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
+ ELSE
+ ROWCND = ONE
+ END IF
+ END IF
+ IF( COLEQU .AND. INFO.EQ.0 ) THEN
+ RCMIN = BIGNUM
+ RCMAX = ZERO
+ DO 20 J = 1, N
+ RCMIN = MIN( RCMIN, C( J ) )
+ RCMAX = MAX( RCMAX, C( J ) )
+ 20 CONTINUE
+ IF( RCMIN.LE.ZERO ) THEN
+ INFO = -14
+ ELSE IF( N.GT.0 ) THEN
+ COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
+ ELSE
+ COLCND = ONE
+ END IF
+ END IF
+ IF( INFO.EQ.0 ) THEN
+ IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -16
+ ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
+ INFO = -18
+ END IF
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'SGBSVX', -INFO )
+ RETURN
+ END IF
+*
+ IF( EQUIL ) THEN
+*
+* Compute row and column scalings to equilibrate the matrix A.
+*
+ CALL SGBEQU( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
+ $ AMAX, INFEQU )
+ IF( INFEQU.EQ.0 ) THEN
+*
+* Equilibrate the matrix.
+*
+ CALL SLAQGB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
+ $ AMAX, EQUED )
+ ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
+ COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
+ END IF
+ END IF
+*
+* Scale the right hand side.
+*
+ IF( NOTRAN ) THEN
+ IF( ROWEQU ) THEN
+ DO 40 J = 1, NRHS
+ DO 30 I = 1, N
+ B( I, J ) = R( I )*B( I, J )
+ 30 CONTINUE
+ 40 CONTINUE
+ END IF
+ ELSE IF( COLEQU ) THEN
+ DO 60 J = 1, NRHS
+ DO 50 I = 1, N
+ B( I, J ) = C( I )*B( I, J )
+ 50 CONTINUE
+ 60 CONTINUE
+ END IF
+*
+ IF( NOFACT .OR. EQUIL ) THEN
+*
+* Compute the LU factorization of the band matrix A.
+*
+ DO 70 J = 1, N
+ J1 = MAX( J-KU, 1 )
+ J2 = MIN( J+KL, N )
+ CALL SCOPY( J2-J1+1, AB( KU+1-J+J1, J ), 1,
+ $ AFB( KL+KU+1-J+J1, J ), 1 )
+ 70 CONTINUE
+*
+ CALL SGBTRF( N, N, KL, KU, AFB, LDAFB, IPIV, INFO )
+*
+* Return if INFO is non-zero.
+*
+ IF( INFO.GT.0 ) THEN
+*
+* Compute the reciprocal pivot growth factor of the
+* leading rank-deficient INFO columns of A.
+*
+ ANORM = ZERO
+ DO 90 J = 1, INFO
+ DO 80 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
+ ANORM = MAX( ANORM, ABS( AB( I, J ) ) )
+ 80 CONTINUE
+ 90 CONTINUE
+ RPVGRW = SLANTB( 'M', 'U', 'N', INFO, MIN( INFO-1, KL+KU ),
+ $ AFB( MAX( 1, KL+KU+2-INFO ), 1 ), LDAFB,
+ $ WORK )
+ IF( RPVGRW.EQ.ZERO ) THEN
+ RPVGRW = ONE
+ ELSE
+ RPVGRW = ANORM / RPVGRW
+ END IF
+ WORK( 1 ) = RPVGRW
+ RCOND = ZERO
+ RETURN
+ END IF
+ END IF
+*
+* Compute the norm of the matrix A and the
+* reciprocal pivot growth factor RPVGRW.
+*
+ IF( NOTRAN ) THEN
+ NORM = '1'
+ ELSE
+ NORM = 'I'
+ END IF
+ ANORM = SLANGB( NORM, N, KL, KU, AB, LDAB, WORK )
+ RPVGRW = SLANTB( 'M', 'U', 'N', N, KL+KU, AFB, LDAFB, WORK )
+ IF( RPVGRW.EQ.ZERO ) THEN
+ RPVGRW = ONE
+ ELSE
+ RPVGRW = SLANGB( 'M', N, KL, KU, AB, LDAB, WORK ) / RPVGRW
+ END IF
+*
+* Compute the reciprocal of the condition number of A.
+*
+ CALL SGBCON( NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND,
+ $ WORK, IWORK, INFO )
+*
+* Compute the solution matrix X.
+*
+ CALL SLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
+ CALL SGBTRS( TRANS, N, KL, KU, NRHS, AFB, LDAFB, IPIV, X, LDX,
+ $ INFO )
+*
+* Use iterative refinement to improve the computed solution and
+* compute error bounds and backward error estimates for it.
+*
+ CALL SGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV,
+ $ B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
+*
+* Transform the solution matrix X to a solution of the original
+* system.
+*
+ IF( NOTRAN ) THEN
+ IF( COLEQU ) THEN
+ DO 110 J = 1, NRHS
+ DO 100 I = 1, N
+ X( I, J ) = C( I )*X( I, J )
+ 100 CONTINUE
+ 110 CONTINUE
+ DO 120 J = 1, NRHS
+ FERR( J ) = FERR( J ) / COLCND
+ 120 CONTINUE
+ END IF
+ ELSE IF( ROWEQU ) THEN
+ DO 140 J = 1, NRHS
+ DO 130 I = 1, N
+ X( I, J ) = R( I )*X( I, J )
+ 130 CONTINUE
+ 140 CONTINUE
+ DO 150 J = 1, NRHS
+ FERR( J ) = FERR( J ) / ROWCND
+ 150 CONTINUE
+ END IF
+*
+* Set INFO = N+1 if the matrix is singular to working precision.
+*
+ IF( RCOND.LT.SLAMCH( 'Epsilon' ) )
+ $ INFO = N + 1
+*
+ WORK( 1 ) = RPVGRW
+ RETURN
+*
+* End of SGBSVX
+*
+ END
diff --git a/lapack-netlib/sgesvx.f b/lapack-netlib/sgesvx.f
new file mode 100644
index 000000000..385e626cf
--- /dev/null
+++ b/lapack-netlib/sgesvx.f
@@ -0,0 +1,599 @@
+*> \brief SGESVX computes the solution to system of linear equations A * X = B for GE matrices
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download SGESVX + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE SGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
+* EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
+* WORK, IWORK, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER EQUED, FACT, TRANS
+* INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
+* REAL RCOND
+* ..
+* .. Array Arguments ..
+* INTEGER IPIV( * ), IWORK( * )
+* REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
+* $ BERR( * ), C( * ), FERR( * ), R( * ),
+* $ WORK( * ), X( LDX, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> SGESVX uses the LU factorization to compute the solution to a real
+*> system of linear equations
+*> A * X = B,
+*> where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
+*>
+*> Error bounds on the solution and a condition estimate are also
+*> provided.
+*> \endverbatim
+*
+*> \par Description:
+* =================
+*>
+*> \verbatim
+*>
+*> The following steps are performed:
+*>
+*> 1. If FACT = 'E', real scaling factors are computed to equilibrate
+*> the system:
+*> TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
+*> TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
+*> TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
+*> Whether or not the system will be equilibrated depends on the
+*> scaling of the matrix A, but if equilibration is used, A is
+*> overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
+*> or diag(C)*B (if TRANS = 'T' or 'C').
+*>
+*> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
+*> matrix A (after equilibration if FACT = 'E') as
+*> A = P * L * U,
+*> where P is a permutation matrix, L is a unit lower triangular
+*> matrix, and U is upper triangular.
+*>
+*> 3. If some U(i,i)=0, so that U is exactly singular, then the routine
+*> returns with INFO = i. Otherwise, the factored form of A is used
+*> to estimate the condition number of the matrix A. If the
+*> reciprocal of the condition number is less than machine precision,
+*> INFO = N+1 is returned as a warning, but the routine still goes on
+*> to solve for X and compute error bounds as described below.
+*>
+*> 4. The system of equations is solved for X using the factored form
+*> of A.
+*>
+*> 5. Iterative refinement is applied to improve the computed solution
+*> matrix and calculate error bounds and backward error estimates
+*> for it.
+*>
+*> 6. If equilibration was used, the matrix X is premultiplied by
+*> diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
+*> that it solves the original system before equilibration.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] FACT
+*> \verbatim
+*> FACT is CHARACTER*1
+*> Specifies whether or not the factored form of the matrix A is
+*> supplied on entry, and if not, whether the matrix A should be
+*> equilibrated before it is factored.
+*> = 'F': On entry, AF and IPIV contain the factored form of A.
+*> If EQUED is not 'N', the matrix A has been
+*> equilibrated with scaling factors given by R and C.
+*> A, AF, and IPIV are not modified.
+*> = 'N': The matrix A will be copied to AF and factored.
+*> = 'E': The matrix A will be equilibrated if necessary, then
+*> copied to AF and factored.
+*> \endverbatim
+*>
+*> \param[in] TRANS
+*> \verbatim
+*> TRANS is CHARACTER*1
+*> Specifies the form of the system of equations:
+*> = 'N': A * X = B (No transpose)
+*> = 'T': A**T * X = B (Transpose)
+*> = 'C': A**H * X = B (Transpose)
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of linear equations, i.e., the order of the
+*> matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] NRHS
+*> \verbatim
+*> NRHS is INTEGER
+*> The number of right hand sides, i.e., the number of columns
+*> of the matrices B and X. NRHS >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is REAL array, dimension (LDA,N)
+*> On entry, the N-by-N matrix A. If FACT = 'F' and EQUED is
+*> not 'N', then A must have been equilibrated by the scaling
+*> factors in R and/or C. A is not modified if FACT = 'F' or
+*> 'N', or if FACT = 'E' and EQUED = 'N' on exit.
+*>
+*> On exit, if EQUED .ne. 'N', A is scaled as follows:
+*> EQUED = 'R': A := diag(R) * A
+*> EQUED = 'C': A := A * diag(C)
+*> EQUED = 'B': A := diag(R) * A * diag(C).
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,N).
+*> \endverbatim
+*>
+*> \param[in,out] AF
+*> \verbatim
+*> AF is REAL array, dimension (LDAF,N)
+*> If FACT = 'F', then AF is an input argument and on entry
+*> contains the factors L and U from the factorization
+*> A = P*L*U as computed by SGETRF. If EQUED .ne. 'N', then
+*> AF is the factored form of the equilibrated matrix A.
+*>
+*> If FACT = 'N', then AF is an output argument and on exit
+*> returns the factors L and U from the factorization A = P*L*U
+*> of the original matrix A.
+*>
+*> If FACT = 'E', then AF is an output argument and on exit
+*> returns the factors L and U from the factorization A = P*L*U
+*> of the equilibrated matrix A (see the description of A for
+*> the form of the equilibrated matrix).
+*> \endverbatim
+*>
+*> \param[in] LDAF
+*> \verbatim
+*> LDAF is INTEGER
+*> The leading dimension of the array AF. LDAF >= max(1,N).
+*> \endverbatim
+*>
+*> \param[in,out] IPIV
+*> \verbatim
+*> IPIV is INTEGER array, dimension (N)
+*> If FACT = 'F', then IPIV is an input argument and on entry
+*> contains the pivot indices from the factorization A = P*L*U
+*> as computed by SGETRF; row i of the matrix was interchanged
+*> with row IPIV(i).
+*>
+*> If FACT = 'N', then IPIV is an output argument and on exit
+*> contains the pivot indices from the factorization A = P*L*U
+*> of the original matrix A.
+*>
+*> If FACT = 'E', then IPIV is an output argument and on exit
+*> contains the pivot indices from the factorization A = P*L*U
+*> of the equilibrated matrix A.
+*> \endverbatim
+*>
+*> \param[in,out] EQUED
+*> \verbatim
+*> EQUED is CHARACTER*1
+*> Specifies the form of equilibration that was done.
+*> = 'N': No equilibration (always true if FACT = 'N').
+*> = 'R': Row equilibration, i.e., A has been premultiplied by
+*> diag(R).
+*> = 'C': Column equilibration, i.e., A has been postmultiplied
+*> by diag(C).
+*> = 'B': Both row and column equilibration, i.e., A has been
+*> replaced by diag(R) * A * diag(C).
+*> EQUED is an input argument if FACT = 'F'; otherwise, it is an
+*> output argument.
+*> \endverbatim
+*>
+*> \param[in,out] R
+*> \verbatim
+*> R is REAL array, dimension (N)
+*> The row scale factors for A. If EQUED = 'R' or 'B', A is
+*> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
+*> is not accessed. R is an input argument if FACT = 'F';
+*> otherwise, R is an output argument. If FACT = 'F' and
+*> EQUED = 'R' or 'B', each element of R must be positive.
+*> \endverbatim
+*>
+*> \param[in,out] C
+*> \verbatim
+*> C is REAL array, dimension (N)
+*> The column scale factors for A. If EQUED = 'C' or 'B', A is
+*> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
+*> is not accessed. C is an input argument if FACT = 'F';
+*> otherwise, C is an output argument. If FACT = 'F' and
+*> EQUED = 'C' or 'B', each element of C must be positive.
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is REAL array, dimension (LDB,NRHS)
+*> On entry, the N-by-NRHS right hand side matrix B.
+*> On exit,
+*> if EQUED = 'N', B is not modified;
+*> if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
+*> diag(R)*B;
+*> if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
+*> overwritten by diag(C)*B.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] X
+*> \verbatim
+*> X is REAL array, dimension (LDX,NRHS)
+*> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
+*> to the original system of equations. Note that A and B are
+*> modified on exit if EQUED .ne. 'N', and the solution to the
+*> equilibrated system is inv(diag(C))*X if TRANS = 'N' and
+*> EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
+*> and EQUED = 'R' or 'B'.
+*> \endverbatim
+*>
+*> \param[in] LDX
+*> \verbatim
+*> LDX is INTEGER
+*> The leading dimension of the array X. LDX >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] RCOND
+*> \verbatim
+*> RCOND is REAL
+*> The estimate of the reciprocal condition number of the matrix
+*> A after equilibration (if done). If RCOND is less than the
+*> machine precision (in particular, if RCOND = 0), the matrix
+*> is singular to working precision. This condition is
+*> indicated by a return code of INFO > 0.
+*> \endverbatim
+*>
+*> \param[out] FERR
+*> \verbatim
+*> FERR is REAL array, dimension (NRHS)
+*> The estimated forward error bound for each solution vector
+*> X(j) (the j-th column of the solution matrix X).
+*> If XTRUE is the true solution corresponding to X(j), FERR(j)
+*> is an estimated upper bound for the magnitude of the largest
+*> element in (X(j) - XTRUE) divided by the magnitude of the
+*> largest element in X(j). The estimate is as reliable as
+*> the estimate for RCOND, and is almost always a slight
+*> overestimate of the true error.
+*> \endverbatim
+*>
+*> \param[out] BERR
+*> \verbatim
+*> BERR is REAL array, dimension (NRHS)
+*> The componentwise relative backward error of each solution
+*> vector X(j) (i.e., the smallest relative change in
+*> any element of A or B that makes X(j) an exact solution).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is REAL array, dimension (MAX(1,4*N))
+*> On exit, WORK(1) contains the reciprocal pivot growth
+*> factor norm(A)/norm(U). The "max absolute element" norm is
+*> used. If WORK(1) is much less than 1, then the stability
+*> of the LU factorization of the (equilibrated) matrix A
+*> could be poor. This also means that the solution X, condition
+*> estimator RCOND, and forward error bound FERR could be
+*> unreliable. If factorization fails with 0 WORK(1) contains the reciprocal pivot growth factor for the
+*> leading INFO columns of A.
+*> \endverbatim
+*>
+*> \param[out] IWORK
+*> \verbatim
+*> IWORK is INTEGER array, dimension (N)
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: if INFO = i, and i is
+*> <= N: U(i,i) is exactly zero. The factorization has
+*> been completed, but the factor U is exactly
+*> singular, so the solution and error bounds
+*> could not be computed. RCOND = 0 is returned.
+*> = N+1: U is nonsingular, but RCOND is less than machine
+*> precision, meaning that the matrix is singular
+*> to working precision. Nevertheless, the
+*> solution and error bounds are computed because
+*> there are a number of situations where the
+*> computed solution can be more accurate than the
+*> value of RCOND would suggest.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup realGEsolve
+*
+* =====================================================================
+ SUBROUTINE SGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
+ $ EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
+ $ WORK, IWORK, INFO )
+*
+* -- LAPACK driver routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ CHARACTER EQUED, FACT, TRANS
+ INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
+ REAL RCOND
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * ), IWORK( * )
+ REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
+ $ BERR( * ), C( * ), FERR( * ), R( * ),
+ $ WORK( * ), X( LDX, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO, ONE
+ PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
+ CHARACTER NORM
+ INTEGER I, INFEQU, J
+ REAL AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
+ $ ROWCND, RPVGRW, SMLNUM
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ REAL SLAMCH, SLANGE, SLANTR
+ EXTERNAL LSAME, SLAMCH, SLANGE, SLANTR
+* ..
+* .. External Subroutines ..
+ EXTERNAL SGECON, SGEEQU, SGERFS, SGETRF, SGETRS, SLACPY,
+ $ SLAQGE, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+ INFO = 0
+ NOFACT = LSAME( FACT, 'N' )
+ EQUIL = LSAME( FACT, 'E' )
+ NOTRAN = LSAME( TRANS, 'N' )
+ IF( NOFACT .OR. EQUIL ) THEN
+ EQUED = 'N'
+ ROWEQU = .FALSE.
+ COLEQU = .FALSE.
+ ELSE
+ ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
+ COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
+ SMLNUM = SLAMCH( 'Safe minimum' )
+ BIGNUM = ONE / SMLNUM
+ END IF
+*
+* Test the input parameters.
+*
+ IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
+ $ THEN
+ INFO = -1
+ ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
+ $ LSAME( TRANS, 'C' ) ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -6
+ ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
+ INFO = -8
+ ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
+ $ ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
+ INFO = -10
+ ELSE
+ IF( ROWEQU ) THEN
+ RCMIN = BIGNUM
+ RCMAX = ZERO
+ DO 10 J = 1, N
+ RCMIN = MIN( RCMIN, R( J ) )
+ RCMAX = MAX( RCMAX, R( J ) )
+ 10 CONTINUE
+ IF( RCMIN.LE.ZERO ) THEN
+ INFO = -11
+ ELSE IF( N.GT.0 ) THEN
+ ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
+ ELSE
+ ROWCND = ONE
+ END IF
+ END IF
+ IF( COLEQU .AND. INFO.EQ.0 ) THEN
+ RCMIN = BIGNUM
+ RCMAX = ZERO
+ DO 20 J = 1, N
+ RCMIN = MIN( RCMIN, C( J ) )
+ RCMAX = MAX( RCMAX, C( J ) )
+ 20 CONTINUE
+ IF( RCMIN.LE.ZERO ) THEN
+ INFO = -12
+ ELSE IF( N.GT.0 ) THEN
+ COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
+ ELSE
+ COLCND = ONE
+ END IF
+ END IF
+ IF( INFO.EQ.0 ) THEN
+ IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -14
+ ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
+ INFO = -16
+ END IF
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'SGESVX', -INFO )
+ RETURN
+ END IF
+*
+ IF( EQUIL ) THEN
+*
+* Compute row and column scalings to equilibrate the matrix A.
+*
+ CALL SGEEQU( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFEQU )
+ IF( INFEQU.EQ.0 ) THEN
+*
+* Equilibrate the matrix.
+*
+ CALL SLAQGE( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
+ $ EQUED )
+ ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
+ COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
+ END IF
+ END IF
+*
+* Scale the right hand side.
+*
+ IF( NOTRAN ) THEN
+ IF( ROWEQU ) THEN
+ DO 40 J = 1, NRHS
+ DO 30 I = 1, N
+ B( I, J ) = R( I )*B( I, J )
+ 30 CONTINUE
+ 40 CONTINUE
+ END IF
+ ELSE IF( COLEQU ) THEN
+ DO 60 J = 1, NRHS
+ DO 50 I = 1, N
+ B( I, J ) = C( I )*B( I, J )
+ 50 CONTINUE
+ 60 CONTINUE
+ END IF
+*
+ IF( NOFACT .OR. EQUIL ) THEN
+*
+* Compute the LU factorization of A.
+*
+ CALL SLACPY( 'Full', N, N, A, LDA, AF, LDAF )
+ CALL SGETRF( N, N, AF, LDAF, IPIV, INFO )
+*
+* Return if INFO is non-zero.
+*
+ IF( INFO.GT.0 ) THEN
+*
+* Compute the reciprocal pivot growth factor of the
+* leading rank-deficient INFO columns of A.
+*
+ RPVGRW = SLANTR( 'M', 'U', 'N', INFO, INFO, AF, LDAF,
+ $ WORK )
+ IF( RPVGRW.EQ.ZERO ) THEN
+ RPVGRW = ONE
+ ELSE
+ RPVGRW = SLANGE( 'M', N, INFO, A, LDA, WORK ) / RPVGRW
+ END IF
+ WORK( 1 ) = RPVGRW
+ RCOND = ZERO
+ RETURN
+ END IF
+ END IF
+*
+* Compute the norm of the matrix A and the
+* reciprocal pivot growth factor RPVGRW.
+*
+ IF( NOTRAN ) THEN
+ NORM = '1'
+ ELSE
+ NORM = 'I'
+ END IF
+ ANORM = SLANGE( NORM, N, N, A, LDA, WORK )
+ RPVGRW = SLANTR( 'M', 'U', 'N', N, N, AF, LDAF, WORK )
+ IF( RPVGRW.EQ.ZERO ) THEN
+ RPVGRW = ONE
+ ELSE
+ RPVGRW = SLANGE( 'M', N, N, A, LDA, WORK ) / RPVGRW
+ END IF
+*
+* Compute the reciprocal of the condition number of A.
+*
+ CALL SGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, IWORK, INFO )
+*
+* Compute the solution matrix X.
+*
+ CALL SLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
+ CALL SGETRS( TRANS, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
+*
+* Use iterative refinement to improve the computed solution and
+* compute error bounds and backward error estimates for it.
+*
+ CALL SGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
+ $ LDX, FERR, BERR, WORK, IWORK, INFO )
+*
+* Transform the solution matrix X to a solution of the original
+* system.
+*
+ IF( NOTRAN ) THEN
+ IF( COLEQU ) THEN
+ DO 80 J = 1, NRHS
+ DO 70 I = 1, N
+ X( I, J ) = C( I )*X( I, J )
+ 70 CONTINUE
+ 80 CONTINUE
+ DO 90 J = 1, NRHS
+ FERR( J ) = FERR( J ) / COLCND
+ 90 CONTINUE
+ END IF
+ ELSE IF( ROWEQU ) THEN
+ DO 110 J = 1, NRHS
+ DO 100 I = 1, N
+ X( I, J ) = R( I )*X( I, J )
+ 100 CONTINUE
+ 110 CONTINUE
+ DO 120 J = 1, NRHS
+ FERR( J ) = FERR( J ) / ROWCND
+ 120 CONTINUE
+ END IF
+*
+* Set INFO = N+1 if the matrix is singular to working precision.
+*
+ IF( RCOND.LT.SLAMCH( 'Epsilon' ) )
+ $ INFO = N + 1
+*
+ WORK( 1 ) = RPVGRW
+ RETURN
+*
+* End of SGESVX
+*
+ END
diff --git a/lapack-netlib/zgbsvx.f b/lapack-netlib/zgbsvx.f
new file mode 100644
index 000000000..871564a81
--- /dev/null
+++ b/lapack-netlib/zgbsvx.f
@@ -0,0 +1,644 @@
+*> \brief ZGBSVX computes the solution to system of linear equations A * X = B for GB matrices
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download ZGBSVX + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
+* LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
+* RCOND, FERR, BERR, WORK, RWORK, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER EQUED, FACT, TRANS
+* INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
+* DOUBLE PRECISION RCOND
+* ..
+* .. Array Arguments ..
+* INTEGER IPIV( * )
+* DOUBLE PRECISION BERR( * ), C( * ), FERR( * ), R( * ),
+* $ RWORK( * )
+* COMPLEX*16 AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
+* $ WORK( * ), X( LDX, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZGBSVX uses the LU factorization to compute the solution to a complex
+*> system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
+*> where A is a band matrix of order N with KL subdiagonals and KU
+*> superdiagonals, and X and B are N-by-NRHS matrices.
+*>
+*> Error bounds on the solution and a condition estimate are also
+*> provided.
+*> \endverbatim
+*
+*> \par Description:
+* =================
+*>
+*> \verbatim
+*>
+*> The following steps are performed by this subroutine:
+*>
+*> 1. If FACT = 'E', real scaling factors are computed to equilibrate
+*> the system:
+*> TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
+*> TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
+*> TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
+*> Whether or not the system will be equilibrated depends on the
+*> scaling of the matrix A, but if equilibration is used, A is
+*> overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
+*> or diag(C)*B (if TRANS = 'T' or 'C').
+*>
+*> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
+*> matrix A (after equilibration if FACT = 'E') as
+*> A = L * U,
+*> where L is a product of permutation and unit lower triangular
+*> matrices with KL subdiagonals, and U is upper triangular with
+*> KL+KU superdiagonals.
+*>
+*> 3. If some U(i,i)=0, so that U is exactly singular, then the routine
+*> returns with INFO = i. Otherwise, the factored form of A is used
+*> to estimate the condition number of the matrix A. If the
+*> reciprocal of the condition number is less than machine precision,
+*> INFO = N+1 is returned as a warning, but the routine still goes on
+*> to solve for X and compute error bounds as described below.
+*>
+*> 4. The system of equations is solved for X using the factored form
+*> of A.
+*>
+*> 5. Iterative refinement is applied to improve the computed solution
+*> matrix and calculate error bounds and backward error estimates
+*> for it.
+*>
+*> 6. If equilibration was used, the matrix X is premultiplied by
+*> diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
+*> that it solves the original system before equilibration.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] FACT
+*> \verbatim
+*> FACT is CHARACTER*1
+*> Specifies whether or not the factored form of the matrix A is
+*> supplied on entry, and if not, whether the matrix A should be
+*> equilibrated before it is factored.
+*> = 'F': On entry, AFB and IPIV contain the factored form of
+*> A. If EQUED is not 'N', the matrix A has been
+*> equilibrated with scaling factors given by R and C.
+*> AB, AFB, and IPIV are not modified.
+*> = 'N': The matrix A will be copied to AFB and factored.
+*> = 'E': The matrix A will be equilibrated if necessary, then
+*> copied to AFB and factored.
+*> \endverbatim
+*>
+*> \param[in] TRANS
+*> \verbatim
+*> TRANS is CHARACTER*1
+*> Specifies the form of the system of equations.
+*> = 'N': A * X = B (No transpose)
+*> = 'T': A**T * X = B (Transpose)
+*> = 'C': A**H * X = B (Conjugate transpose)
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of linear equations, i.e., the order of the
+*> matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] KL
+*> \verbatim
+*> KL is INTEGER
+*> The number of subdiagonals within the band of A. KL >= 0.
+*> \endverbatim
+*>
+*> \param[in] KU
+*> \verbatim
+*> KU is INTEGER
+*> The number of superdiagonals within the band of A. KU >= 0.
+*> \endverbatim
+*>
+*> \param[in] NRHS
+*> \verbatim
+*> NRHS is INTEGER
+*> The number of right hand sides, i.e., the number of columns
+*> of the matrices B and X. NRHS >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] AB
+*> \verbatim
+*> AB is COMPLEX*16 array, dimension (LDAB,N)
+*> On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
+*> The j-th column of A is stored in the j-th column of the
+*> array AB as follows:
+*> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
+*>
+*> If FACT = 'F' and EQUED is not 'N', then A must have been
+*> equilibrated by the scaling factors in R and/or C. AB is not
+*> modified if FACT = 'F' or 'N', or if FACT = 'E' and
+*> EQUED = 'N' on exit.
+*>
+*> On exit, if EQUED .ne. 'N', A is scaled as follows:
+*> EQUED = 'R': A := diag(R) * A
+*> EQUED = 'C': A := A * diag(C)
+*> EQUED = 'B': A := diag(R) * A * diag(C).
+*> \endverbatim
+*>
+*> \param[in] LDAB
+*> \verbatim
+*> LDAB is INTEGER
+*> The leading dimension of the array AB. LDAB >= KL+KU+1.
+*> \endverbatim
+*>
+*> \param[in,out] AFB
+*> \verbatim
+*> AFB is COMPLEX*16 array, dimension (LDAFB,N)
+*> If FACT = 'F', then AFB is an input argument and on entry
+*> contains details of the LU factorization of the band matrix
+*> A, as computed by ZGBTRF. U is stored as an upper triangular
+*> band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
+*> and the multipliers used during the factorization are stored
+*> in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is
+*> the factored form of the equilibrated matrix A.
+*>
+*> If FACT = 'N', then AFB is an output argument and on exit
+*> returns details of the LU factorization of A.
+*>
+*> If FACT = 'E', then AFB is an output argument and on exit
+*> returns details of the LU factorization of the equilibrated
+*> matrix A (see the description of AB for the form of the
+*> equilibrated matrix).
+*> \endverbatim
+*>
+*> \param[in] LDAFB
+*> \verbatim
+*> LDAFB is INTEGER
+*> The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.
+*> \endverbatim
+*>
+*> \param[in,out] IPIV
+*> \verbatim
+*> IPIV is INTEGER array, dimension (N)
+*> If FACT = 'F', then IPIV is an input argument and on entry
+*> contains the pivot indices from the factorization A = L*U
+*> as computed by ZGBTRF; row i of the matrix was interchanged
+*> with row IPIV(i).
+*>
+*> If FACT = 'N', then IPIV is an output argument and on exit
+*> contains the pivot indices from the factorization A = L*U
+*> of the original matrix A.
+*>
+*> If FACT = 'E', then IPIV is an output argument and on exit
+*> contains the pivot indices from the factorization A = L*U
+*> of the equilibrated matrix A.
+*> \endverbatim
+*>
+*> \param[in,out] EQUED
+*> \verbatim
+*> EQUED is CHARACTER*1
+*> Specifies the form of equilibration that was done.
+*> = 'N': No equilibration (always true if FACT = 'N').
+*> = 'R': Row equilibration, i.e., A has been premultiplied by
+*> diag(R).
+*> = 'C': Column equilibration, i.e., A has been postmultiplied
+*> by diag(C).
+*> = 'B': Both row and column equilibration, i.e., A has been
+*> replaced by diag(R) * A * diag(C).
+*> EQUED is an input argument if FACT = 'F'; otherwise, it is an
+*> output argument.
+*> \endverbatim
+*>
+*> \param[in,out] R
+*> \verbatim
+*> R is DOUBLE PRECISION array, dimension (N)
+*> The row scale factors for A. If EQUED = 'R' or 'B', A is
+*> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
+*> is not accessed. R is an input argument if FACT = 'F';
+*> otherwise, R is an output argument. If FACT = 'F' and
+*> EQUED = 'R' or 'B', each element of R must be positive.
+*> \endverbatim
+*>
+*> \param[in,out] C
+*> \verbatim
+*> C is DOUBLE PRECISION array, dimension (N)
+*> The column scale factors for A. If EQUED = 'C' or 'B', A is
+*> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
+*> is not accessed. C is an input argument if FACT = 'F';
+*> otherwise, C is an output argument. If FACT = 'F' and
+*> EQUED = 'C' or 'B', each element of C must be positive.
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is COMPLEX*16 array, dimension (LDB,NRHS)
+*> On entry, the right hand side matrix B.
+*> On exit,
+*> if EQUED = 'N', B is not modified;
+*> if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
+*> diag(R)*B;
+*> if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
+*> overwritten by diag(C)*B.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] X
+*> \verbatim
+*> X is COMPLEX*16 array, dimension (LDX,NRHS)
+*> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
+*> to the original system of equations. Note that A and B are
+*> modified on exit if EQUED .ne. 'N', and the solution to the
+*> equilibrated system is inv(diag(C))*X if TRANS = 'N' and
+*> EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
+*> and EQUED = 'R' or 'B'.
+*> \endverbatim
+*>
+*> \param[in] LDX
+*> \verbatim
+*> LDX is INTEGER
+*> The leading dimension of the array X. LDX >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] RCOND
+*> \verbatim
+*> RCOND is DOUBLE PRECISION
+*> The estimate of the reciprocal condition number of the matrix
+*> A after equilibration (if done). If RCOND is less than the
+*> machine precision (in particular, if RCOND = 0), the matrix
+*> is singular to working precision. This condition is
+*> indicated by a return code of INFO > 0.
+*> \endverbatim
+*>
+*> \param[out] FERR
+*> \verbatim
+*> FERR is DOUBLE PRECISION array, dimension (NRHS)
+*> The estimated forward error bound for each solution vector
+*> X(j) (the j-th column of the solution matrix X).
+*> If XTRUE is the true solution corresponding to X(j), FERR(j)
+*> is an estimated upper bound for the magnitude of the largest
+*> element in (X(j) - XTRUE) divided by the magnitude of the
+*> largest element in X(j). The estimate is as reliable as
+*> the estimate for RCOND, and is almost always a slight
+*> overestimate of the true error.
+*> \endverbatim
+*>
+*> \param[out] BERR
+*> \verbatim
+*> BERR is DOUBLE PRECISION array, dimension (NRHS)
+*> The componentwise relative backward error of each solution
+*> vector X(j) (i.e., the smallest relative change in
+*> any element of A or B that makes X(j) an exact solution).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX*16 array, dimension (2*N)
+*> \endverbatim
+*>
+*> \param[out] RWORK
+*> \verbatim
+*> RWORK is DOUBLE PRECISION array, dimension (MAX(1,N))
+*> On exit, RWORK(1) contains the reciprocal pivot growth
+*> factor norm(A)/norm(U). The "max absolute element" norm is
+*> used. If RWORK(1) is much less than 1, then the stability
+*> of the LU factorization of the (equilibrated) matrix A
+*> could be poor. This also means that the solution X, condition
+*> estimator RCOND, and forward error bound FERR could be
+*> unreliable. If factorization fails with 0 RWORK(1) contains the reciprocal pivot growth factor for the
+*> leading INFO columns of A.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: if INFO = i, and i is
+*> <= N: U(i,i) is exactly zero. The factorization
+*> has been completed, but the factor U is exactly
+*> singular, so the solution and error bounds
+*> could not be computed. RCOND = 0 is returned.
+*> = N+1: U is nonsingular, but RCOND is less than machine
+*> precision, meaning that the matrix is singular
+*> to working precision. Nevertheless, the
+*> solution and error bounds are computed because
+*> there are a number of situations where the
+*> computed solution can be more accurate than the
+*> value of RCOND would suggest.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup complex16GBsolve
+*
+* =====================================================================
+ SUBROUTINE ZGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
+ $ LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
+ $ RCOND, FERR, BERR, WORK, RWORK, INFO )
+*
+* -- LAPACK driver routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ CHARACTER EQUED, FACT, TRANS
+ INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
+ DOUBLE PRECISION RCOND
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * )
+ DOUBLE PRECISION BERR( * ), C( * ), FERR( * ), R( * ),
+ $ RWORK( * )
+ COMPLEX*16 AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
+ $ WORK( * ), X( LDX, * )
+* ..
+*
+* =====================================================================
+* Moved setting of INFO = N+1 so INFO does not subsequently get
+* overwritten. Sven, 17 Mar 05.
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
+ CHARACTER NORM
+ INTEGER I, INFEQU, J, J1, J2
+ DOUBLE PRECISION AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
+ $ ROWCND, RPVGRW, SMLNUM
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ DOUBLE PRECISION DLAMCH, ZLANGB, ZLANTB
+ EXTERNAL LSAME, DLAMCH, ZLANGB, ZLANTB
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA, ZCOPY, ZGBCON, ZGBEQU, ZGBRFS, ZGBTRF,
+ $ ZGBTRS, ZLACPY, ZLAQGB
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+ INFO = 0
+ NOFACT = LSAME( FACT, 'N' )
+ EQUIL = LSAME( FACT, 'E' )
+ NOTRAN = LSAME( TRANS, 'N' )
+ IF( NOFACT .OR. EQUIL ) THEN
+ EQUED = 'N'
+ ROWEQU = .FALSE.
+ COLEQU = .FALSE.
+ ELSE
+ ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
+ COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
+ SMLNUM = DLAMCH( 'Safe minimum' )
+ BIGNUM = ONE / SMLNUM
+ END IF
+*
+* Test the input parameters.
+*
+ IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
+ $ THEN
+ INFO = -1
+ ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
+ $ LSAME( TRANS, 'C' ) ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( KL.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( KU.LT.0 ) THEN
+ INFO = -5
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -6
+ ELSE IF( LDAB.LT.KL+KU+1 ) THEN
+ INFO = -8
+ ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
+ INFO = -10
+ ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
+ $ ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
+ INFO = -12
+ ELSE
+ IF( ROWEQU ) THEN
+ RCMIN = BIGNUM
+ RCMAX = ZERO
+ DO 10 J = 1, N
+ RCMIN = MIN( RCMIN, R( J ) )
+ RCMAX = MAX( RCMAX, R( J ) )
+ 10 CONTINUE
+ IF( RCMIN.LE.ZERO ) THEN
+ INFO = -13
+ ELSE IF( N.GT.0 ) THEN
+ ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
+ ELSE
+ ROWCND = ONE
+ END IF
+ END IF
+ IF( COLEQU .AND. INFO.EQ.0 ) THEN
+ RCMIN = BIGNUM
+ RCMAX = ZERO
+ DO 20 J = 1, N
+ RCMIN = MIN( RCMIN, C( J ) )
+ RCMAX = MAX( RCMAX, C( J ) )
+ 20 CONTINUE
+ IF( RCMIN.LE.ZERO ) THEN
+ INFO = -14
+ ELSE IF( N.GT.0 ) THEN
+ COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
+ ELSE
+ COLCND = ONE
+ END IF
+ END IF
+ IF( INFO.EQ.0 ) THEN
+ IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -16
+ ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
+ INFO = -18
+ END IF
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZGBSVX', -INFO )
+ RETURN
+ END IF
+*
+ IF( EQUIL ) THEN
+*
+* Compute row and column scalings to equilibrate the matrix A.
+*
+ CALL ZGBEQU( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
+ $ AMAX, INFEQU )
+ IF( INFEQU.EQ.0 ) THEN
+*
+* Equilibrate the matrix.
+*
+ CALL ZLAQGB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
+ $ AMAX, EQUED )
+ ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
+ COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
+ END IF
+ END IF
+*
+* Scale the right hand side.
+*
+ IF( NOTRAN ) THEN
+ IF( ROWEQU ) THEN
+ DO 40 J = 1, NRHS
+ DO 30 I = 1, N
+ B( I, J ) = R( I )*B( I, J )
+ 30 CONTINUE
+ 40 CONTINUE
+ END IF
+ ELSE IF( COLEQU ) THEN
+ DO 60 J = 1, NRHS
+ DO 50 I = 1, N
+ B( I, J ) = C( I )*B( I, J )
+ 50 CONTINUE
+ 60 CONTINUE
+ END IF
+*
+ IF( NOFACT .OR. EQUIL ) THEN
+*
+* Compute the LU factorization of the band matrix A.
+*
+ DO 70 J = 1, N
+ J1 = MAX( J-KU, 1 )
+ J2 = MIN( J+KL, N )
+ CALL ZCOPY( J2-J1+1, AB( KU+1-J+J1, J ), 1,
+ $ AFB( KL+KU+1-J+J1, J ), 1 )
+ 70 CONTINUE
+*
+ CALL ZGBTRF( N, N, KL, KU, AFB, LDAFB, IPIV, INFO )
+*
+* Return if INFO is non-zero.
+*
+ IF( INFO.GT.0 ) THEN
+*
+* Compute the reciprocal pivot growth factor of the
+* leading rank-deficient INFO columns of A.
+*
+ ANORM = ZERO
+ DO 90 J = 1, INFO
+ DO 80 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
+ ANORM = MAX( ANORM, ABS( AB( I, J ) ) )
+ 80 CONTINUE
+ 90 CONTINUE
+ RPVGRW = ZLANTB( 'M', 'U', 'N', INFO, MIN( INFO-1, KL+KU ),
+ $ AFB( MAX( 1, KL+KU+2-INFO ), 1 ), LDAFB,
+ $ RWORK )
+ IF( RPVGRW.EQ.ZERO ) THEN
+ RPVGRW = ONE
+ ELSE
+ RPVGRW = ANORM / RPVGRW
+ END IF
+ RWORK( 1 ) = RPVGRW
+ RCOND = ZERO
+ RETURN
+ END IF
+ END IF
+*
+* Compute the norm of the matrix A and the
+* reciprocal pivot growth factor RPVGRW.
+*
+ IF( NOTRAN ) THEN
+ NORM = '1'
+ ELSE
+ NORM = 'I'
+ END IF
+ ANORM = ZLANGB( NORM, N, KL, KU, AB, LDAB, RWORK )
+ RPVGRW = ZLANTB( 'M', 'U', 'N', N, KL+KU, AFB, LDAFB, RWORK )
+ IF( RPVGRW.EQ.ZERO ) THEN
+ RPVGRW = ONE
+ ELSE
+ RPVGRW = ZLANGB( 'M', N, KL, KU, AB, LDAB, RWORK ) / RPVGRW
+ END IF
+*
+* Compute the reciprocal of the condition number of A.
+*
+ CALL ZGBCON( NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND,
+ $ WORK, RWORK, INFO )
+*
+* Compute the solution matrix X.
+*
+ CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
+ CALL ZGBTRS( TRANS, N, KL, KU, NRHS, AFB, LDAFB, IPIV, X, LDX,
+ $ INFO )
+*
+* Use iterative refinement to improve the computed solution and
+* compute error bounds and backward error estimates for it.
+*
+ CALL ZGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV,
+ $ B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
+*
+* Transform the solution matrix X to a solution of the original
+* system.
+*
+ IF( NOTRAN ) THEN
+ IF( COLEQU ) THEN
+ DO 110 J = 1, NRHS
+ DO 100 I = 1, N
+ X( I, J ) = C( I )*X( I, J )
+ 100 CONTINUE
+ 110 CONTINUE
+ DO 120 J = 1, NRHS
+ FERR( J ) = FERR( J ) / COLCND
+ 120 CONTINUE
+ END IF
+ ELSE IF( ROWEQU ) THEN
+ DO 140 J = 1, NRHS
+ DO 130 I = 1, N
+ X( I, J ) = R( I )*X( I, J )
+ 130 CONTINUE
+ 140 CONTINUE
+ DO 150 J = 1, NRHS
+ FERR( J ) = FERR( J ) / ROWCND
+ 150 CONTINUE
+ END IF
+*
+* Set INFO = N+1 if the matrix is singular to working precision.
+*
+ IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
+ $ INFO = N + 1
+*
+ RWORK( 1 ) = RPVGRW
+ RETURN
+*
+* End of ZGBSVX
+*
+ END
diff --git a/lapack-netlib/zgejsv.f b/lapack-netlib/zgejsv.f
new file mode 100644
index 000000000..5fe899e50
--- /dev/null
+++ b/lapack-netlib/zgejsv.f
@@ -0,0 +1,2234 @@
+*> \brief \b ZGEJSV
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download ZGEJSV + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
+* M, N, A, LDA, SVA, U, LDU, V, LDV,
+* CWORK, LWORK, RWORK, LRWORK, IWORK, INFO )
+*
+* .. Scalar Arguments ..
+* IMPLICIT NONE
+* INTEGER INFO, LDA, LDU, LDV, LWORK, M, N
+* ..
+* .. Array Arguments ..
+* COMPLEX*16 A( LDA, * ), U( LDU, * ), V( LDV, * ), CWORK( LWORK )
+* DOUBLE PRECISION SVA( N ), RWORK( LRWORK )
+* INTEGER IWORK( * )
+* CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZGEJSV computes the singular value decomposition (SVD) of a complex M-by-N
+*> matrix [A], where M >= N. The SVD of [A] is written as
+*>
+*> [A] = [U] * [SIGMA] * [V]^*,
+*>
+*> where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N
+*> diagonal elements, [U] is an M-by-N (or M-by-M) unitary matrix, and
+*> [V] is an N-by-N unitary matrix. The diagonal elements of [SIGMA] are
+*> the singular values of [A]. The columns of [U] and [V] are the left and
+*> the right singular vectors of [A], respectively. The matrices [U] and [V]
+*> are computed and stored in the arrays U and V, respectively. The diagonal
+*> of [SIGMA] is computed and stored in the array SVA.
+*> \endverbatim
+*>
+*> Arguments:
+*> ==========
+*>
+*> \param[in] JOBA
+*> \verbatim
+*> JOBA is CHARACTER*1
+*> Specifies the level of accuracy:
+*> = 'C': This option works well (high relative accuracy) if A = B * D,
+*> with well-conditioned B and arbitrary diagonal matrix D.
+*> The accuracy cannot be spoiled by COLUMN scaling. The
+*> accuracy of the computed output depends on the condition of
+*> B, and the procedure aims at the best theoretical accuracy.
+*> The relative error max_{i=1:N}|d sigma_i| / sigma_i is
+*> bounded by f(M,N)*epsilon* cond(B), independent of D.
+*> The input matrix is preprocessed with the QRF with column
+*> pivoting. This initial preprocessing and preconditioning by
+*> a rank revealing QR factorization is common for all values of
+*> JOBA. Additional actions are specified as follows:
+*> = 'E': Computation as with 'C' with an additional estimate of the
+*> condition number of B. It provides a realistic error bound.
+*> = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings
+*> D1, D2, and well-conditioned matrix C, this option gives
+*> higher accuracy than the 'C' option. If the structure of the
+*> input matrix is not known, and relative accuracy is
+*> desirable, then this option is advisable. The input matrix A
+*> is preprocessed with QR factorization with FULL (row and
+*> column) pivoting.
+*> = 'G': Computation as with 'F' with an additional estimate of the
+*> condition number of B, where A=B*D. If A has heavily weighted
+*> rows, then using this condition number gives too pessimistic
+*> error bound.
+*> = 'A': Small singular values are not well determined by the data
+*> and are considered as noisy; the matrix is treated as
+*> numerically rank deficient. The error in the computed
+*> singular values is bounded by f(m,n)*epsilon*||A||.
+*> The computed SVD A = U * S * V^* restores A up to
+*> f(m,n)*epsilon*||A||.
+*> This gives the procedure the licence to discard (set to zero)
+*> all singular values below N*epsilon*||A||.
+*> = 'R': Similar as in 'A'. Rank revealing property of the initial
+*> QR factorization is used do reveal (using triangular factor)
+*> a gap sigma_{r+1} < epsilon * sigma_r in which case the
+*> numerical RANK is declared to be r. The SVD is computed with
+*> absolute error bounds, but more accurately than with 'A'.
+*> \endverbatim
+*>
+*> \param[in] JOBU
+*> \verbatim
+*> JOBU is CHARACTER*1
+*> Specifies whether to compute the columns of U:
+*> = 'U': N columns of U are returned in the array U.
+*> = 'F': full set of M left sing. vectors is returned in the array U.
+*> = 'W': U may be used as workspace of length M*N. See the description
+*> of U.
+*> = 'N': U is not computed.
+*> \endverbatim
+*>
+*> \param[in] JOBV
+*> \verbatim
+*> JOBV is CHARACTER*1
+*> Specifies whether to compute the matrix V:
+*> = 'V': N columns of V are returned in the array V; Jacobi rotations
+*> are not explicitly accumulated.
+*> = 'J': N columns of V are returned in the array V, but they are
+*> computed as the product of Jacobi rotations, if JOBT = 'N'.
+*> = 'W': V may be used as workspace of length N*N. See the description
+*> of V.
+*> = 'N': V is not computed.
+*> \endverbatim
+*>
+*> \param[in] JOBR
+*> \verbatim
+*> JOBR is CHARACTER*1
+*> Specifies the RANGE for the singular values. Issues the licence to
+*> set to zero small positive singular values if they are outside
+*> specified range. If A .NE. 0 is scaled so that the largest singular
+*> value of c*A is around SQRT(BIG), BIG=DLAMCH('O'), then JOBR issues
+*> the licence to kill columns of A whose norm in c*A is less than
+*> SQRT(SFMIN) (for JOBR = 'R'), or less than SMALL=SFMIN/EPSLN,
+*> where SFMIN=DLAMCH('S'), EPSLN=DLAMCH('E').
+*> = 'N': Do not kill small columns of c*A. This option assumes that
+*> BLAS and QR factorizations and triangular solvers are
+*> implemented to work in that range. If the condition of A
+*> is greater than BIG, use ZGESVJ.
+*> = 'R': RESTRICTED range for sigma(c*A) is [SQRT(SFMIN), SQRT(BIG)]
+*> (roughly, as described above). This option is recommended.
+*> ===========================
+*> For computing the singular values in the FULL range [SFMIN,BIG]
+*> use ZGESVJ.
+*> \endverbatim
+*>
+*> \param[in] JOBT
+*> \verbatim
+*> JOBT is CHARACTER*1
+*> If the matrix is square then the procedure may determine to use
+*> transposed A if A^* seems to be better with respect to convergence.
+*> If the matrix is not square, JOBT is ignored.
+*> The decision is based on two values of entropy over the adjoint
+*> orbit of A^* * A. See the descriptions of RWORK(6) and RWORK(7).
+*> = 'T': transpose if entropy test indicates possibly faster
+*> convergence of Jacobi process if A^* is taken as input. If A is
+*> replaced with A^*, then the row pivoting is included automatically.
+*> = 'N': do not speculate.
+*> The option 'T' can be used to compute only the singular values, or
+*> the full SVD (U, SIGMA and V). For only one set of singular vectors
+*> (U or V), the caller should provide both U and V, as one of the
+*> matrices is used as workspace if the matrix A is transposed.
+*> The implementer can easily remove this constraint and make the
+*> code more complicated. See the descriptions of U and V.
+*> In general, this option is considered experimental, and 'N'; should
+*> be preferred. This is subject to changes in the future.
+*> \endverbatim
+*>
+*> \param[in] JOBP
+*> \verbatim
+*> JOBP is CHARACTER*1
+*> Issues the licence to introduce structured perturbations to drown
+*> denormalized numbers. This licence should be active if the
+*> denormals are poorly implemented, causing slow computation,
+*> especially in cases of fast convergence (!). For details see [1,2].
+*> For the sake of simplicity, this perturbations are included only
+*> when the full SVD or only the singular values are requested. The
+*> implementer/user can easily add the perturbation for the cases of
+*> computing one set of singular vectors.
+*> = 'P': introduce perturbation
+*> = 'N': do not perturb
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the input matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the input matrix A. M >= N >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX*16 array, dimension (LDA,N)
+*> On entry, the M-by-N matrix A.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[out] SVA
+*> \verbatim
+*> SVA is DOUBLE PRECISION array, dimension (N)
+*> On exit,
+*> - For RWORK(1)/RWORK(2) = ONE: The singular values of A. During
+*> the computation SVA contains Euclidean column norms of the
+*> iterated matrices in the array A.
+*> - For RWORK(1) .NE. RWORK(2): The singular values of A are
+*> (RWORK(1)/RWORK(2)) * SVA(1:N). This factored form is used if
+*> sigma_max(A) overflows or if small singular values have been
+*> saved from underflow by scaling the input matrix A.
+*> - If JOBR='R' then some of the singular values may be returned
+*> as exact zeros obtained by "set to zero" because they are
+*> below the numerical rank threshold or are denormalized numbers.
+*> \endverbatim
+*>
+*> \param[out] U
+*> \verbatim
+*> U is COMPLEX*16 array, dimension ( LDU, N )
+*> If JOBU = 'U', then U contains on exit the M-by-N matrix of
+*> the left singular vectors.
+*> If JOBU = 'F', then U contains on exit the M-by-M matrix of
+*> the left singular vectors, including an ONB
+*> of the orthogonal complement of the Range(A).
+*> If JOBU = 'W' .AND. (JOBV = 'V' .AND. JOBT = 'T' .AND. M = N),
+*> then U is used as workspace if the procedure
+*> replaces A with A^*. In that case, [V] is computed
+*> in U as left singular vectors of A^* and then
+*> copied back to the V array. This 'W' option is just
+*> a reminder to the caller that in this case U is
+*> reserved as workspace of length N*N.
+*> If JOBU = 'N' U is not referenced, unless JOBT='T'.
+*> \endverbatim
+*>
+*> \param[in] LDU
+*> \verbatim
+*> LDU is INTEGER
+*> The leading dimension of the array U, LDU >= 1.
+*> IF JOBU = 'U' or 'F' or 'W', then LDU >= M.
+*> \endverbatim
+*>
+*> \param[out] V
+*> \verbatim
+*> V is COMPLEX*16 array, dimension ( LDV, N )
+*> If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of
+*> the right singular vectors;
+*> If JOBV = 'W', AND (JOBU = 'U' AND JOBT = 'T' AND M = N),
+*> then V is used as workspace if the pprocedure
+*> replaces A with A^*. In that case, [U] is computed
+*> in V as right singular vectors of A^* and then
+*> copied back to the U array. This 'W' option is just
+*> a reminder to the caller that in this case V is
+*> reserved as workspace of length N*N.
+*> If JOBV = 'N' V is not referenced, unless JOBT='T'.
+*> \endverbatim
+*>
+*> \param[in] LDV
+*> \verbatim
+*> LDV is INTEGER
+*> The leading dimension of the array V, LDV >= 1.
+*> If JOBV = 'V' or 'J' or 'W', then LDV >= N.
+*> \endverbatim
+*>
+*> \param[out] CWORK
+*> \verbatim
+*> CWORK is COMPLEX*16 array, dimension (MAX(2,LWORK))
+*> If the call to ZGEJSV is a workspace query (indicated by LWORK=-1 or
+*> LRWORK=-1), then on exit CWORK(1) contains the required length of
+*> CWORK for the job parameters used in the call.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> Length of CWORK to confirm proper allocation of workspace.
+*> LWORK depends on the job:
+*>
+*> 1. If only SIGMA is needed ( JOBU = 'N', JOBV = 'N' ) and
+*> 1.1 .. no scaled condition estimate required (JOBA.NE.'E'.AND.JOBA.NE.'G'):
+*> LWORK >= 2*N+1. This is the minimal requirement.
+*> ->> For optimal performance (blocked code) the optimal value
+*> is LWORK >= N + (N+1)*NB. Here NB is the optimal
+*> block size for ZGEQP3 and ZGEQRF.
+*> In general, optimal LWORK is computed as
+*> LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZGEQRF), LWORK(ZGESVJ)).
+*> 1.2. .. an estimate of the scaled condition number of A is
+*> required (JOBA='E', or 'G'). In this case, LWORK the minimal
+*> requirement is LWORK >= N*N + 2*N.
+*> ->> For optimal performance (blocked code) the optimal value
+*> is LWORK >= max(N+(N+1)*NB, N*N+2*N)=N**2+2*N.
+*> In general, the optimal length LWORK is computed as
+*> LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZGEQRF), LWORK(ZGESVJ),
+*> N*N+LWORK(ZPOCON)).
+*> 2. If SIGMA and the right singular vectors are needed (JOBV = 'V'),
+*> (JOBU = 'N')
+*> 2.1 .. no scaled condition estimate requested (JOBE = 'N'):
+*> -> the minimal requirement is LWORK >= 3*N.
+*> -> For optimal performance,
+*> LWORK >= max(N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
+*> where NB is the optimal block size for ZGEQP3, ZGEQRF, ZGELQF,
+*> ZUNMLQ. In general, the optimal length LWORK is computed as
+*> LWORK >= max(N+LWORK(ZGEQP3), N+LWORK(ZGESVJ),
+*> N+LWORK(ZGELQF), 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMLQ)).
+*> 2.2 .. an estimate of the scaled condition number of A is
+*> required (JOBA='E', or 'G').
+*> -> the minimal requirement is LWORK >= 3*N.
+*> -> For optimal performance,
+*> LWORK >= max(N+(N+1)*NB, 2*N,2*N+N*NB)=2*N+N*NB,
+*> where NB is the optimal block size for ZGEQP3, ZGEQRF, ZGELQF,
+*> ZUNMLQ. In general, the optimal length LWORK is computed as
+*> LWORK >= max(N+LWORK(ZGEQP3), LWORK(ZPOCON), N+LWORK(ZGESVJ),
+*> N+LWORK(ZGELQF), 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMLQ)).
+*> 3. If SIGMA and the left singular vectors are needed
+*> 3.1 .. no scaled condition estimate requested (JOBE = 'N'):
+*> -> the minimal requirement is LWORK >= 3*N.
+*> -> For optimal performance:
+*> if JOBU = 'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
+*> where NB is the optimal block size for ZGEQP3, ZGEQRF, ZUNMQR.
+*> In general, the optimal length LWORK is computed as
+*> LWORK >= max(N+LWORK(ZGEQP3), 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMQR)).
+*> 3.2 .. an estimate of the scaled condition number of A is
+*> required (JOBA='E', or 'G').
+*> -> the minimal requirement is LWORK >= 3*N.
+*> -> For optimal performance:
+*> if JOBU = 'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
+*> where NB is the optimal block size for ZGEQP3, ZGEQRF, ZUNMQR.
+*> In general, the optimal length LWORK is computed as
+*> LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZPOCON),
+*> 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMQR)).
+*> 4. If the full SVD is needed: (JOBU = 'U' or JOBU = 'F') and
+*> 4.1. if JOBV = 'V'
+*> the minimal requirement is LWORK >= 5*N+2*N*N.
+*> 4.2. if JOBV = 'J' the minimal requirement is
+*> LWORK >= 4*N+N*N.
+*> In both cases, the allocated CWORK can accommodate blocked runs
+*> of ZGEQP3, ZGEQRF, ZGELQF, SUNMQR, ZUNMLQ.
+*>
+*> If the call to ZGEJSV is a workspace query (indicated by LWORK=-1 or
+*> LRWORK=-1), then on exit CWORK(1) contains the optimal and CWORK(2) contains the
+*> minimal length of CWORK for the job parameters used in the call.
+*> \endverbatim
+*>
+*> \param[out] RWORK
+*> \verbatim
+*> RWORK is DOUBLE PRECISION array, dimension (MAX(7,LRWORK))
+*> On exit,
+*> RWORK(1) = Determines the scaling factor SCALE = RWORK(2) / RWORK(1)
+*> such that SCALE*SVA(1:N) are the computed singular values
+*> of A. (See the description of SVA().)
+*> RWORK(2) = See the description of RWORK(1).
+*> RWORK(3) = SCONDA is an estimate for the condition number of
+*> column equilibrated A. (If JOBA = 'E' or 'G')
+*> SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1).
+*> It is computed using ZPOCON. It holds
+*> N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
+*> where R is the triangular factor from the QRF of A.
+*> However, if R is truncated and the numerical rank is
+*> determined to be strictly smaller than N, SCONDA is
+*> returned as -1, thus indicating that the smallest
+*> singular values might be lost.
+*>
+*> If full SVD is needed, the following two condition numbers are
+*> useful for the analysis of the algorithm. They are provided for
+*> a developer/implementer who is familiar with the details of
+*> the method.
+*>
+*> RWORK(4) = an estimate of the scaled condition number of the
+*> triangular factor in the first QR factorization.
+*> RWORK(5) = an estimate of the scaled condition number of the
+*> triangular factor in the second QR factorization.
+*> The following two parameters are computed if JOBT = 'T'.
+*> They are provided for a developer/implementer who is familiar
+*> with the details of the method.
+*> RWORK(6) = the entropy of A^* * A :: this is the Shannon entropy
+*> of diag(A^* * A) / Trace(A^* * A) taken as point in the
+*> probability simplex.
+*> RWORK(7) = the entropy of A * A^*. (See the description of RWORK(6).)
+*> If the call to ZGEJSV is a workspace query (indicated by LWORK=-1 or
+*> LRWORK=-1), then on exit RWORK(1) contains the required length of
+*> RWORK for the job parameters used in the call.
+*> \endverbatim
+*>
+*> \param[in] LRWORK
+*> \verbatim
+*> LRWORK is INTEGER
+*> Length of RWORK to confirm proper allocation of workspace.
+*> LRWORK depends on the job:
+*>
+*> 1. If only the singular values are requested i.e. if
+*> LSAME(JOBU,'N') .AND. LSAME(JOBV,'N')
+*> then:
+*> 1.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
+*> then: LRWORK = max( 7, 2 * M ).
+*> 1.2. Otherwise, LRWORK = max( 7, N ).
+*> 2. If singular values with the right singular vectors are requested
+*> i.e. if
+*> (LSAME(JOBV,'V').OR.LSAME(JOBV,'J')) .AND.
+*> .NOT.(LSAME(JOBU,'U').OR.LSAME(JOBU,'F'))
+*> then:
+*> 2.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
+*> then LRWORK = max( 7, 2 * M ).
+*> 2.2. Otherwise, LRWORK = max( 7, N ).
+*> 3. If singular values with the left singular vectors are requested, i.e. if
+*> (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND.
+*> .NOT.(LSAME(JOBV,'V').OR.LSAME(JOBV,'J'))
+*> then:
+*> 3.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
+*> then LRWORK = max( 7, 2 * M ).
+*> 3.2. Otherwise, LRWORK = max( 7, N ).
+*> 4. If singular values with both the left and the right singular vectors
+*> are requested, i.e. if
+*> (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND.
+*> (LSAME(JOBV,'V').OR.LSAME(JOBV,'J'))
+*> then:
+*> 4.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
+*> then LRWORK = max( 7, 2 * M ).
+*> 4.2. Otherwise, LRWORK = max( 7, N ).
+*>
+*> If, on entry, LRWORK = -1 or LWORK=-1, a workspace query is assumed and
+*> the length of RWORK is returned in RWORK(1).
+*> \endverbatim
+*>
+*> \param[out] IWORK
+*> \verbatim
+*> IWORK is INTEGER array, of dimension at least 4, that further depends
+*> on the job:
+*>
+*> 1. If only the singular values are requested then:
+*> If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') )
+*> then the length of IWORK is N+M; otherwise the length of IWORK is N.
+*> 2. If the singular values and the right singular vectors are requested then:
+*> If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') )
+*> then the length of IWORK is N+M; otherwise the length of IWORK is N.
+*> 3. If the singular values and the left singular vectors are requested then:
+*> If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') )
+*> then the length of IWORK is N+M; otherwise the length of IWORK is N.
+*> 4. If the singular values with both the left and the right singular vectors
+*> are requested, then:
+*> 4.1. If LSAME(JOBV,'J') the length of IWORK is determined as follows:
+*> If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') )
+*> then the length of IWORK is N+M; otherwise the length of IWORK is N.
+*> 4.2. If LSAME(JOBV,'V') the length of IWORK is determined as follows:
+*> If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') )
+*> then the length of IWORK is 2*N+M; otherwise the length of IWORK is 2*N.
+*>
+*> On exit,
+*> IWORK(1) = the numerical rank determined after the initial
+*> QR factorization with pivoting. See the descriptions
+*> of JOBA and JOBR.
+*> IWORK(2) = the number of the computed nonzero singular values
+*> IWORK(3) = if nonzero, a warning message:
+*> If IWORK(3) = 1 then some of the column norms of A
+*> were denormalized floats. The requested high accuracy
+*> is not warranted by the data.
+*> IWORK(4) = 1 or -1. If IWORK(4) = 1, then the procedure used A^* to
+*> do the job as specified by the JOB parameters.
+*> If the call to ZGEJSV is a workspace query (indicated by LWORK = -1 or
+*> LRWORK = -1), then on exit IWORK(1) contains the required length of
+*> IWORK for the job parameters used in the call.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> < 0: if INFO = -i, then the i-th argument had an illegal value.
+*> = 0: successful exit;
+*> > 0: ZGEJSV did not converge in the maximal allowed number
+*> of sweeps. The computed values may be inaccurate.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup complex16GEsing
+*
+*> \par Further Details:
+* =====================
+*>
+*> \verbatim
+*>
+*> ZGEJSV implements a preconditioned Jacobi SVD algorithm. It uses ZGEQP3,
+*> ZGEQRF, and ZGELQF as preprocessors and preconditioners. Optionally, an
+*> additional row pivoting can be used as a preprocessor, which in some
+*> cases results in much higher accuracy. An example is matrix A with the
+*> structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned
+*> diagonal matrices and C is well-conditioned matrix. In that case, complete
+*> pivoting in the first QR factorizations provides accuracy dependent on the
+*> condition number of C, and independent of D1, D2. Such higher accuracy is
+*> not completely understood theoretically, but it works well in practice.
+*> Further, if A can be written as A = B*D, with well-conditioned B and some
+*> diagonal D, then the high accuracy is guaranteed, both theoretically and
+*> in software, independent of D. For more details see [1], [2].
+*> The computational range for the singular values can be the full range
+*> ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS
+*> & LAPACK routines called by ZGEJSV are implemented to work in that range.
+*> If that is not the case, then the restriction for safe computation with
+*> the singular values in the range of normalized IEEE numbers is that the
+*> spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not
+*> overflow. This code (ZGEJSV) is best used in this restricted range,
+*> meaning that singular values of magnitude below ||A||_2 / DLAMCH('O') are
+*> returned as zeros. See JOBR for details on this.
+*> Further, this implementation is somewhat slower than the one described
+*> in [1,2] due to replacement of some non-LAPACK components, and because
+*> the choice of some tuning parameters in the iterative part (ZGESVJ) is
+*> left to the implementer on a particular machine.
+*> The rank revealing QR factorization (in this code: ZGEQP3) should be
+*> implemented as in [3]. We have a new version of ZGEQP3 under development
+*> that is more robust than the current one in LAPACK, with a cleaner cut in
+*> rank deficient cases. It will be available in the SIGMA library [4].
+*> If M is much larger than N, it is obvious that the initial QRF with
+*> column pivoting can be preprocessed by the QRF without pivoting. That
+*> well known trick is not used in ZGEJSV because in some cases heavy row
+*> weighting can be treated with complete pivoting. The overhead in cases
+*> M much larger than N is then only due to pivoting, but the benefits in
+*> terms of accuracy have prevailed. The implementer/user can incorporate
+*> this extra QRF step easily. The implementer can also improve data movement
+*> (matrix transpose, matrix copy, matrix transposed copy) - this
+*> implementation of ZGEJSV uses only the simplest, naive data movement.
+*> \endverbatim
+*
+*> \par Contributor:
+* ==================
+*>
+*> Zlatko Drmac, Department of Mathematics, Faculty of Science,
+*> University of Zagreb (Zagreb, Croatia); drmac@math.hr
+*
+*> \par References:
+* ================
+*>
+*> \verbatim
+*>
+*> [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.
+*> SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.
+*> LAPACK Working note 169.
+*> [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.
+*> SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.
+*> LAPACK Working note 170.
+*> [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR
+*> factorization software - a case study.
+*> ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28.
+*> LAPACK Working note 176.
+*> [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,
+*> QSVD, (H,K)-SVD computations.
+*> Department of Mathematics, University of Zagreb, 2008, 2016.
+*> \endverbatim
+*
+*> \par Bugs, examples and comments:
+* =================================
+*>
+*> Please report all bugs and send interesting examples and/or comments to
+*> drmac@math.hr. Thank you.
+*>
+* =====================================================================
+ SUBROUTINE ZGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
+ $ M, N, A, LDA, SVA, U, LDU, V, LDV,
+ $ CWORK, LWORK, RWORK, LRWORK, IWORK, INFO )
+*
+* -- LAPACK computational routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ IMPLICIT NONE
+ INTEGER INFO, LDA, LDU, LDV, LWORK, LRWORK, M, N
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 A( LDA, * ), U( LDU, * ), V( LDV, * ),
+ $ CWORK( LWORK )
+ DOUBLE PRECISION SVA( N ), RWORK( LRWORK )
+ INTEGER IWORK( * )
+ CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
+* ..
+*
+* ===========================================================================
+*
+* .. Local Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
+ COMPLEX*16 CZERO, CONE
+ PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ), CONE = ( 1.0D0, 0.0D0 ) )
+* ..
+* .. Local Scalars ..
+ COMPLEX*16 CTEMP
+ DOUBLE PRECISION AAPP, AAQQ, AATMAX, AATMIN, BIG, BIG1,
+ $ COND_OK, CONDR1, CONDR2, ENTRA, ENTRAT, EPSLN,
+ $ MAXPRJ, SCALEM, SCONDA, SFMIN, SMALL, TEMP1,
+ $ USCAL1, USCAL2, XSC
+ INTEGER IERR, N1, NR, NUMRANK, p, q, WARNING
+ LOGICAL ALMORT, DEFR, ERREST, GOSCAL, JRACC, KILL, LQUERY,
+ $ LSVEC, L2ABER, L2KILL, L2PERT, L2RANK, L2TRAN, NOSCAL,
+ $ ROWPIV, RSVEC, TRANSP
+*
+ INTEGER OPTWRK, MINWRK, MINRWRK, MINIWRK
+ INTEGER LWCON, LWLQF, LWQP3, LWQRF, LWUNMLQ, LWUNMQR, LWUNMQRM,
+ $ LWSVDJ, LWSVDJV, LRWQP3, LRWCON, LRWSVDJ, IWOFF
+ INTEGER LWRK_ZGELQF, LWRK_ZGEQP3, LWRK_ZGEQP3N, LWRK_ZGEQRF,
+ $ LWRK_ZGESVJ, LWRK_ZGESVJV, LWRK_ZGESVJU, LWRK_ZUNMLQ,
+ $ LWRK_ZUNMQR, LWRK_ZUNMQRM
+* ..
+* .. Local Arrays
+ COMPLEX*16 CDUMMY(1)
+ DOUBLE PRECISION RDUMMY(1)
+*
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DCMPLX, CONJG, DLOG, MAX, MIN, DBLE, NINT, SQRT
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DLAMCH, DZNRM2
+ INTEGER IDAMAX, IZAMAX
+ LOGICAL LSAME
+ EXTERNAL IDAMAX, IZAMAX, LSAME, DLAMCH, DZNRM2
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLASSQ, ZCOPY, ZGELQF, ZGEQP3, ZGEQRF, ZLACPY, ZLAPMR,
+ $ ZLASCL, DLASCL, ZLASET, ZLASSQ, ZLASWP, ZUNGQR, ZUNMLQ,
+ $ ZUNMQR, ZPOCON, DSCAL, ZDSCAL, ZSWAP, ZTRSM, ZLACGV,
+ $ XERBLA
+*
+ EXTERNAL ZGESVJ
+* ..
+*
+* Test the input arguments
+*
+ LSVEC = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' )
+ JRACC = LSAME( JOBV, 'J' )
+ RSVEC = LSAME( JOBV, 'V' ) .OR. JRACC
+ ROWPIV = LSAME( JOBA, 'F' ) .OR. LSAME( JOBA, 'G' )
+ L2RANK = LSAME( JOBA, 'R' )
+ L2ABER = LSAME( JOBA, 'A' )
+ ERREST = LSAME( JOBA, 'E' ) .OR. LSAME( JOBA, 'G' )
+ L2TRAN = LSAME( JOBT, 'T' ) .AND. ( M .EQ. N )
+ L2KILL = LSAME( JOBR, 'R' )
+ DEFR = LSAME( JOBR, 'N' )
+ L2PERT = LSAME( JOBP, 'P' )
+*
+ LQUERY = ( LWORK .EQ. -1 ) .OR. ( LRWORK .EQ. -1 )
+*
+ IF ( .NOT.(ROWPIV .OR. L2RANK .OR. L2ABER .OR.
+ $ ERREST .OR. LSAME( JOBA, 'C' ) )) THEN
+ INFO = - 1
+ ELSE IF ( .NOT.( LSVEC .OR. LSAME( JOBU, 'N' ) .OR.
+ $ ( LSAME( JOBU, 'W' ) .AND. RSVEC .AND. L2TRAN ) ) ) THEN
+ INFO = - 2
+ ELSE IF ( .NOT.( RSVEC .OR. LSAME( JOBV, 'N' ) .OR.
+ $ ( LSAME( JOBV, 'W' ) .AND. LSVEC .AND. L2TRAN ) ) ) THEN
+ INFO = - 3
+ ELSE IF ( .NOT. ( L2KILL .OR. DEFR ) ) THEN
+ INFO = - 4
+ ELSE IF ( .NOT. ( LSAME(JOBT,'T') .OR. LSAME(JOBT,'N') ) ) THEN
+ INFO = - 5
+ ELSE IF ( .NOT. ( L2PERT .OR. LSAME( JOBP, 'N' ) ) ) THEN
+ INFO = - 6
+ ELSE IF ( M .LT. 0 ) THEN
+ INFO = - 7
+ ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M ) ) THEN
+ INFO = - 8
+ ELSE IF ( LDA .LT. M ) THEN
+ INFO = - 10
+ ELSE IF ( LSVEC .AND. ( LDU .LT. M ) ) THEN
+ INFO = - 13
+ ELSE IF ( RSVEC .AND. ( LDV .LT. N ) ) THEN
+ INFO = - 15
+ ELSE
+* #:)
+ INFO = 0
+ END IF
+*
+ IF ( INFO .EQ. 0 ) THEN
+* .. compute the minimal and the optimal workspace lengths
+* [[The expressions for computing the minimal and the optimal
+* values of LCWORK, LRWORK are written with a lot of redundancy and
+* can be simplified. However, this verbose form is useful for
+* maintenance and modifications of the code.]]
+*
+* .. minimal workspace length for ZGEQP3 of an M x N matrix,
+* ZGEQRF of an N x N matrix, ZGELQF of an N x N matrix,
+* ZUNMLQ for computing N x N matrix, ZUNMQR for computing N x N
+* matrix, ZUNMQR for computing M x N matrix, respectively.
+ LWQP3 = N+1
+ LWQRF = MAX( 1, N )
+ LWLQF = MAX( 1, N )
+ LWUNMLQ = MAX( 1, N )
+ LWUNMQR = MAX( 1, N )
+ LWUNMQRM = MAX( 1, M )
+* .. minimal workspace length for ZPOCON of an N x N matrix
+ LWCON = 2 * N
+* .. minimal workspace length for ZGESVJ of an N x N matrix,
+* without and with explicit accumulation of Jacobi rotations
+ LWSVDJ = MAX( 2 * N, 1 )
+ LWSVDJV = MAX( 2 * N, 1 )
+* .. minimal REAL workspace length for ZGEQP3, ZPOCON, ZGESVJ
+ LRWQP3 = 2 * N
+ LRWCON = N
+ LRWSVDJ = N
+ IF ( LQUERY ) THEN
+ CALL ZGEQP3( M, N, A, LDA, IWORK, CDUMMY, CDUMMY, -1,
+ $ RDUMMY, IERR )
+ LWRK_ZGEQP3 = INT( CDUMMY(1) )
+ CALL ZGEQRF( N, N, A, LDA, CDUMMY, CDUMMY,-1, IERR )
+ LWRK_ZGEQRF = INT( CDUMMY(1) )
+ CALL ZGELQF( N, N, A, LDA, CDUMMY, CDUMMY,-1, IERR )
+ LWRK_ZGELQF = INT( CDUMMY(1) )
+ END IF
+ MINWRK = 2
+ OPTWRK = 2
+ MINIWRK = N
+ IF ( .NOT. (LSVEC .OR. RSVEC ) ) THEN
+* .. minimal and optimal sizes of the complex workspace if
+* only the singular values are requested
+ IF ( ERREST ) THEN
+ MINWRK = MAX( N+LWQP3, N**2+LWCON, N+LWQRF, LWSVDJ )
+ ELSE
+ MINWRK = MAX( N+LWQP3, N+LWQRF, LWSVDJ )
+ END IF
+ IF ( LQUERY ) THEN
+ CALL ZGESVJ( 'L', 'N', 'N', N, N, A, LDA, SVA, N, V,
+ $ LDV, CDUMMY, -1, RDUMMY, -1, IERR )
+ LWRK_ZGESVJ = INT( CDUMMY(1) )
+ IF ( ERREST ) THEN
+ OPTWRK = MAX( N+LWRK_ZGEQP3, N**2+LWCON,
+ $ N+LWRK_ZGEQRF, LWRK_ZGESVJ )
+ ELSE
+ OPTWRK = MAX( N+LWRK_ZGEQP3, N+LWRK_ZGEQRF,
+ $ LWRK_ZGESVJ )
+ END IF
+ END IF
+ IF ( L2TRAN .OR. ROWPIV ) THEN
+ IF ( ERREST ) THEN
+ MINRWRK = MAX( 7, 2*M, LRWQP3, LRWCON, LRWSVDJ )
+ ELSE
+ MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ )
+ END IF
+ ELSE
+ IF ( ERREST ) THEN
+ MINRWRK = MAX( 7, LRWQP3, LRWCON, LRWSVDJ )
+ ELSE
+ MINRWRK = MAX( 7, LRWQP3, LRWSVDJ )
+ END IF
+ END IF
+ IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
+ ELSE IF ( RSVEC .AND. (.NOT.LSVEC) ) THEN
+* .. minimal and optimal sizes of the complex workspace if the
+* singular values and the right singular vectors are requested
+ IF ( ERREST ) THEN
+ MINWRK = MAX( N+LWQP3, LWCON, LWSVDJ, N+LWLQF,
+ $ 2*N+LWQRF, N+LWSVDJ, N+LWUNMLQ )
+ ELSE
+ MINWRK = MAX( N+LWQP3, LWSVDJ, N+LWLQF, 2*N+LWQRF,
+ $ N+LWSVDJ, N+LWUNMLQ )
+ END IF
+ IF ( LQUERY ) THEN
+ CALL ZGESVJ( 'L', 'U', 'N', N,N, U, LDU, SVA, N, A,
+ $ LDA, CDUMMY, -1, RDUMMY, -1, IERR )
+ LWRK_ZGESVJ = INT( CDUMMY(1) )
+ CALL ZUNMLQ( 'L', 'C', N, N, N, A, LDA, CDUMMY,
+ $ V, LDV, CDUMMY, -1, IERR )
+ LWRK_ZUNMLQ = INT( CDUMMY(1) )
+ IF ( ERREST ) THEN
+ OPTWRK = MAX( N+LWRK_ZGEQP3, LWCON, LWRK_ZGESVJ,
+ $ N+LWRK_ZGELQF, 2*N+LWRK_ZGEQRF,
+ $ N+LWRK_ZGESVJ, N+LWRK_ZUNMLQ )
+ ELSE
+ OPTWRK = MAX( N+LWRK_ZGEQP3, LWRK_ZGESVJ,N+LWRK_ZGELQF,
+ $ 2*N+LWRK_ZGEQRF, N+LWRK_ZGESVJ,
+ $ N+LWRK_ZUNMLQ )
+ END IF
+ END IF
+ IF ( L2TRAN .OR. ROWPIV ) THEN
+ IF ( ERREST ) THEN
+ MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ, LRWCON )
+ ELSE
+ MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ )
+ END IF
+ ELSE
+ IF ( ERREST ) THEN
+ MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
+ ELSE
+ MINRWRK = MAX( 7, LRWQP3, LRWSVDJ )
+ END IF
+ END IF
+ IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
+ ELSE IF ( LSVEC .AND. (.NOT.RSVEC) ) THEN
+* .. minimal and optimal sizes of the complex workspace if the
+* singular values and the left singular vectors are requested
+ IF ( ERREST ) THEN
+ MINWRK = N + MAX( LWQP3,LWCON,N+LWQRF,LWSVDJ,LWUNMQRM )
+ ELSE
+ MINWRK = N + MAX( LWQP3, N+LWQRF, LWSVDJ, LWUNMQRM )
+ END IF
+ IF ( LQUERY ) THEN
+ CALL ZGESVJ( 'L', 'U', 'N', N,N, U, LDU, SVA, N, A,
+ $ LDA, CDUMMY, -1, RDUMMY, -1, IERR )
+ LWRK_ZGESVJ = INT( CDUMMY(1) )
+ CALL ZUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
+ $ LDU, CDUMMY, -1, IERR )
+ LWRK_ZUNMQRM = INT( CDUMMY(1) )
+ IF ( ERREST ) THEN
+ OPTWRK = N + MAX( LWRK_ZGEQP3, LWCON, N+LWRK_ZGEQRF,
+ $ LWRK_ZGESVJ, LWRK_ZUNMQRM )
+ ELSE
+ OPTWRK = N + MAX( LWRK_ZGEQP3, N+LWRK_ZGEQRF,
+ $ LWRK_ZGESVJ, LWRK_ZUNMQRM )
+ END IF
+ END IF
+ IF ( L2TRAN .OR. ROWPIV ) THEN
+ IF ( ERREST ) THEN
+ MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ, LRWCON )
+ ELSE
+ MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ )
+ END IF
+ ELSE
+ IF ( ERREST ) THEN
+ MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
+ ELSE
+ MINRWRK = MAX( 7, LRWQP3, LRWSVDJ )
+ END IF
+ END IF
+ IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
+ ELSE
+* .. minimal and optimal sizes of the complex workspace if the
+* full SVD is requested
+ IF ( .NOT. JRACC ) THEN
+ IF ( ERREST ) THEN
+ MINWRK = MAX( N+LWQP3, N+LWCON, 2*N+N**2+LWCON,
+ $ 2*N+LWQRF, 2*N+LWQP3,
+ $ 2*N+N**2+N+LWLQF, 2*N+N**2+N+N**2+LWCON,
+ $ 2*N+N**2+N+LWSVDJ, 2*N+N**2+N+LWSVDJV,
+ $ 2*N+N**2+N+LWUNMQR,2*N+N**2+N+LWUNMLQ,
+ $ N+N**2+LWSVDJ, N+LWUNMQRM )
+ ELSE
+ MINWRK = MAX( N+LWQP3, 2*N+N**2+LWCON,
+ $ 2*N+LWQRF, 2*N+LWQP3,
+ $ 2*N+N**2+N+LWLQF, 2*N+N**2+N+N**2+LWCON,
+ $ 2*N+N**2+N+LWSVDJ, 2*N+N**2+N+LWSVDJV,
+ $ 2*N+N**2+N+LWUNMQR,2*N+N**2+N+LWUNMLQ,
+ $ N+N**2+LWSVDJ, N+LWUNMQRM )
+ END IF
+ MINIWRK = MINIWRK + N
+ IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
+ ELSE
+ IF ( ERREST ) THEN
+ MINWRK = MAX( N+LWQP3, N+LWCON, 2*N+LWQRF,
+ $ 2*N+N**2+LWSVDJV, 2*N+N**2+N+LWUNMQR,
+ $ N+LWUNMQRM )
+ ELSE
+ MINWRK = MAX( N+LWQP3, 2*N+LWQRF,
+ $ 2*N+N**2+LWSVDJV, 2*N+N**2+N+LWUNMQR,
+ $ N+LWUNMQRM )
+ END IF
+ IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
+ END IF
+ IF ( LQUERY ) THEN
+ CALL ZUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
+ $ LDU, CDUMMY, -1, IERR )
+ LWRK_ZUNMQRM = INT( CDUMMY(1) )
+ CALL ZUNMQR( 'L', 'N', N, N, N, A, LDA, CDUMMY, U,
+ $ LDU, CDUMMY, -1, IERR )
+ LWRK_ZUNMQR = INT( CDUMMY(1) )
+ IF ( .NOT. JRACC ) THEN
+ CALL ZGEQP3( N,N, A, LDA, IWORK, CDUMMY,CDUMMY, -1,
+ $ RDUMMY, IERR )
+ LWRK_ZGEQP3N = INT( CDUMMY(1) )
+ CALL ZGESVJ( 'L', 'U', 'N', N, N, U, LDU, SVA,
+ $ N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
+ LWRK_ZGESVJ = INT( CDUMMY(1) )
+ CALL ZGESVJ( 'U', 'U', 'N', N, N, U, LDU, SVA,
+ $ N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
+ LWRK_ZGESVJU = INT( CDUMMY(1) )
+ CALL ZGESVJ( 'L', 'U', 'V', N, N, U, LDU, SVA,
+ $ N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
+ LWRK_ZGESVJV = INT( CDUMMY(1) )
+ CALL ZUNMLQ( 'L', 'C', N, N, N, A, LDA, CDUMMY,
+ $ V, LDV, CDUMMY, -1, IERR )
+ LWRK_ZUNMLQ = INT( CDUMMY(1) )
+ IF ( ERREST ) THEN
+ OPTWRK = MAX( N+LWRK_ZGEQP3, N+LWCON,
+ $ 2*N+N**2+LWCON, 2*N+LWRK_ZGEQRF,
+ $ 2*N+LWRK_ZGEQP3N,
+ $ 2*N+N**2+N+LWRK_ZGELQF,
+ $ 2*N+N**2+N+N**2+LWCON,
+ $ 2*N+N**2+N+LWRK_ZGESVJ,
+ $ 2*N+N**2+N+LWRK_ZGESVJV,
+ $ 2*N+N**2+N+LWRK_ZUNMQR,
+ $ 2*N+N**2+N+LWRK_ZUNMLQ,
+ $ N+N**2+LWRK_ZGESVJU,
+ $ N+LWRK_ZUNMQRM )
+ ELSE
+ OPTWRK = MAX( N+LWRK_ZGEQP3,
+ $ 2*N+N**2+LWCON, 2*N+LWRK_ZGEQRF,
+ $ 2*N+LWRK_ZGEQP3N,
+ $ 2*N+N**2+N+LWRK_ZGELQF,
+ $ 2*N+N**2+N+N**2+LWCON,
+ $ 2*N+N**2+N+LWRK_ZGESVJ,
+ $ 2*N+N**2+N+LWRK_ZGESVJV,
+ $ 2*N+N**2+N+LWRK_ZUNMQR,
+ $ 2*N+N**2+N+LWRK_ZUNMLQ,
+ $ N+N**2+LWRK_ZGESVJU,
+ $ N+LWRK_ZUNMQRM )
+ END IF
+ ELSE
+ CALL ZGESVJ( 'L', 'U', 'V', N, N, U, LDU, SVA,
+ $ N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
+ LWRK_ZGESVJV = INT( CDUMMY(1) )
+ CALL ZUNMQR( 'L', 'N', N, N, N, CDUMMY, N, CDUMMY,
+ $ V, LDV, CDUMMY, -1, IERR )
+ LWRK_ZUNMQR = INT( CDUMMY(1) )
+ CALL ZUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
+ $ LDU, CDUMMY, -1, IERR )
+ LWRK_ZUNMQRM = INT( CDUMMY(1) )
+ IF ( ERREST ) THEN
+ OPTWRK = MAX( N+LWRK_ZGEQP3, N+LWCON,
+ $ 2*N+LWRK_ZGEQRF, 2*N+N**2,
+ $ 2*N+N**2+LWRK_ZGESVJV,
+ $ 2*N+N**2+N+LWRK_ZUNMQR,N+LWRK_ZUNMQRM )
+ ELSE
+ OPTWRK = MAX( N+LWRK_ZGEQP3, 2*N+LWRK_ZGEQRF,
+ $ 2*N+N**2, 2*N+N**2+LWRK_ZGESVJV,
+ $ 2*N+N**2+N+LWRK_ZUNMQR,
+ $ N+LWRK_ZUNMQRM )
+ END IF
+ END IF
+ END IF
+ IF ( L2TRAN .OR. ROWPIV ) THEN
+ MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ, LRWCON )
+ ELSE
+ MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
+ END IF
+ END IF
+ MINWRK = MAX( 2, MINWRK )
+ OPTWRK = MAX( MINWRK, OPTWRK )
+ IF ( LWORK .LT. MINWRK .AND. (.NOT.LQUERY) ) INFO = - 17
+ IF ( LRWORK .LT. MINRWRK .AND. (.NOT.LQUERY) ) INFO = - 19
+ END IF
+*
+ IF ( INFO .NE. 0 ) THEN
+* #:(
+ CALL XERBLA( 'ZGEJSV', - INFO )
+ RETURN
+ ELSE IF ( LQUERY ) THEN
+ CWORK(1) = OPTWRK
+ CWORK(2) = MINWRK
+ RWORK(1) = MINRWRK
+ IWORK(1) = MAX( 4, MINIWRK )
+ RETURN
+ END IF
+*
+* Quick return for void matrix (Y3K safe)
+* #:)
+ IF ( ( M .EQ. 0 ) .OR. ( N .EQ. 0 ) ) THEN
+ IWORK(1:4) = 0
+ RWORK(1:7) = 0
+ RETURN
+ ENDIF
+*
+* Determine whether the matrix U should be M x N or M x M
+*
+ IF ( LSVEC ) THEN
+ N1 = N
+ IF ( LSAME( JOBU, 'F' ) ) N1 = M
+ END IF
+*
+* Set numerical parameters
+*
+*! NOTE: Make sure DLAMCH() does not fail on the target architecture.
+*
+ EPSLN = DLAMCH('Epsilon')
+ SFMIN = DLAMCH('SafeMinimum')
+ SMALL = SFMIN / EPSLN
+ BIG = DLAMCH('O')
+* BIG = ONE / SFMIN
+*
+* Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N
+*
+*(!) If necessary, scale SVA() to protect the largest norm from
+* overflow. It is possible that this scaling pushes the smallest
+* column norm left from the underflow threshold (extreme case).
+*
+ SCALEM = ONE / SQRT(DBLE(M)*DBLE(N))
+ NOSCAL = .TRUE.
+ GOSCAL = .TRUE.
+ DO 1874 p = 1, N
+ AAPP = ZERO
+ AAQQ = ONE
+ CALL ZLASSQ( M, A(1,p), 1, AAPP, AAQQ )
+ IF ( AAPP .GT. BIG ) THEN
+ INFO = - 9
+ CALL XERBLA( 'ZGEJSV', -INFO )
+ RETURN
+ END IF
+ AAQQ = SQRT(AAQQ)
+ IF ( ( AAPP .LT. (BIG / AAQQ) ) .AND. NOSCAL ) THEN
+ SVA(p) = AAPP * AAQQ
+ ELSE
+ NOSCAL = .FALSE.
+ SVA(p) = AAPP * ( AAQQ * SCALEM )
+ IF ( GOSCAL ) THEN
+ GOSCAL = .FALSE.
+ CALL DSCAL( p-1, SCALEM, SVA, 1 )
+ END IF
+ END IF
+ 1874 CONTINUE
+*
+ IF ( NOSCAL ) SCALEM = ONE
+*
+ AAPP = ZERO
+ AAQQ = BIG
+ DO 4781 p = 1, N
+ AAPP = MAX( AAPP, SVA(p) )
+ IF ( SVA(p) .NE. ZERO ) AAQQ = MIN( AAQQ, SVA(p) )
+ 4781 CONTINUE
+*
+* Quick return for zero M x N matrix
+* #:)
+ IF ( AAPP .EQ. ZERO ) THEN
+ IF ( LSVEC ) CALL ZLASET( 'G', M, N1, CZERO, CONE, U, LDU )
+ IF ( RSVEC ) CALL ZLASET( 'G', N, N, CZERO, CONE, V, LDV )
+ RWORK(1) = ONE
+ RWORK(2) = ONE
+ IF ( ERREST ) RWORK(3) = ONE
+ IF ( LSVEC .AND. RSVEC ) THEN
+ RWORK(4) = ONE
+ RWORK(5) = ONE
+ END IF
+ IF ( L2TRAN ) THEN
+ RWORK(6) = ZERO
+ RWORK(7) = ZERO
+ END IF
+ IWORK(1) = 0
+ IWORK(2) = 0
+ IWORK(3) = 0
+ IWORK(4) = -1
+ RETURN
+ END IF
+*
+* Issue warning if denormalized column norms detected. Override the
+* high relative accuracy request. Issue licence to kill nonzero columns
+* (set them to zero) whose norm is less than sigma_max / BIG (roughly).
+* #:(
+ WARNING = 0
+ IF ( AAQQ .LE. SFMIN ) THEN
+ L2RANK = .TRUE.
+ L2KILL = .TRUE.
+ WARNING = 1
+ END IF
+*
+* Quick return for one-column matrix
+* #:)
+ IF ( N .EQ. 1 ) THEN
+*
+ IF ( LSVEC ) THEN
+ CALL ZLASCL( 'G',0,0,SVA(1),SCALEM, M,1,A(1,1),LDA,IERR )
+ CALL ZLACPY( 'A', M, 1, A, LDA, U, LDU )
+* computing all M left singular vectors of the M x 1 matrix
+ IF ( N1 .NE. N ) THEN
+ CALL ZGEQRF( M, N, U,LDU, CWORK, CWORK(N+1),LWORK-N,IERR )
+ CALL ZUNGQR( M,N1,1, U,LDU,CWORK,CWORK(N+1),LWORK-N,IERR )
+ CALL ZCOPY( M, A(1,1), 1, U(1,1), 1 )
+ END IF
+ END IF
+ IF ( RSVEC ) THEN
+ V(1,1) = CONE
+ END IF
+ IF ( SVA(1) .LT. (BIG*SCALEM) ) THEN
+ SVA(1) = SVA(1) / SCALEM
+ SCALEM = ONE
+ END IF
+ RWORK(1) = ONE / SCALEM
+ RWORK(2) = ONE
+ IF ( SVA(1) .NE. ZERO ) THEN
+ IWORK(1) = 1
+ IF ( ( SVA(1) / SCALEM) .GE. SFMIN ) THEN
+ IWORK(2) = 1
+ ELSE
+ IWORK(2) = 0
+ END IF
+ ELSE
+ IWORK(1) = 0
+ IWORK(2) = 0
+ END IF
+ IWORK(3) = 0
+ IWORK(4) = -1
+ IF ( ERREST ) RWORK(3) = ONE
+ IF ( LSVEC .AND. RSVEC ) THEN
+ RWORK(4) = ONE
+ RWORK(5) = ONE
+ END IF
+ IF ( L2TRAN ) THEN
+ RWORK(6) = ZERO
+ RWORK(7) = ZERO
+ END IF
+ RETURN
+*
+ END IF
+*
+ TRANSP = .FALSE.
+*
+ AATMAX = -ONE
+ AATMIN = BIG
+ IF ( ROWPIV .OR. L2TRAN ) THEN
+*
+* Compute the row norms, needed to determine row pivoting sequence
+* (in the case of heavily row weighted A, row pivoting is strongly
+* advised) and to collect information needed to compare the
+* structures of A * A^* and A^* * A (in the case L2TRAN.EQ..TRUE.).
+*
+ IF ( L2TRAN ) THEN
+ DO 1950 p = 1, M
+ XSC = ZERO
+ TEMP1 = ONE
+ CALL ZLASSQ( N, A(p,1), LDA, XSC, TEMP1 )
+* ZLASSQ gets both the ell_2 and the ell_infinity norm
+* in one pass through the vector
+ RWORK(M+p) = XSC * SCALEM
+ RWORK(p) = XSC * (SCALEM*SQRT(TEMP1))
+ AATMAX = MAX( AATMAX, RWORK(p) )
+ IF (RWORK(p) .NE. ZERO)
+ $ AATMIN = MIN(AATMIN,RWORK(p))
+ 1950 CONTINUE
+ ELSE
+ DO 1904 p = 1, M
+ RWORK(M+p) = SCALEM*ABS( A(p,IZAMAX(N,A(p,1),LDA)) )
+ AATMAX = MAX( AATMAX, RWORK(M+p) )
+ AATMIN = MIN( AATMIN, RWORK(M+p) )
+ 1904 CONTINUE
+ END IF
+*
+ END IF
+*
+* For square matrix A try to determine whether A^* would be better
+* input for the preconditioned Jacobi SVD, with faster convergence.
+* The decision is based on an O(N) function of the vector of column
+* and row norms of A, based on the Shannon entropy. This should give
+* the right choice in most cases when the difference actually matters.
+* It may fail and pick the slower converging side.
+*
+ ENTRA = ZERO
+ ENTRAT = ZERO
+ IF ( L2TRAN ) THEN
+*
+ XSC = ZERO
+ TEMP1 = ONE
+ CALL DLASSQ( N, SVA, 1, XSC, TEMP1 )
+ TEMP1 = ONE / TEMP1
+*
+ ENTRA = ZERO
+ DO 1113 p = 1, N
+ BIG1 = ( ( SVA(p) / XSC )**2 ) * TEMP1
+ IF ( BIG1 .NE. ZERO ) ENTRA = ENTRA + BIG1 * DLOG(BIG1)
+ 1113 CONTINUE
+ ENTRA = - ENTRA / DLOG(DBLE(N))
+*
+* Now, SVA().^2/Trace(A^* * A) is a point in the probability simplex.
+* It is derived from the diagonal of A^* * A. Do the same with the
+* diagonal of A * A^*, compute the entropy of the corresponding
+* probability distribution. Note that A * A^* and A^* * A have the
+* same trace.
+*
+ ENTRAT = ZERO
+ DO 1114 p = 1, M
+ BIG1 = ( ( RWORK(p) / XSC )**2 ) * TEMP1
+ IF ( BIG1 .NE. ZERO ) ENTRAT = ENTRAT + BIG1 * DLOG(BIG1)
+ 1114 CONTINUE
+ ENTRAT = - ENTRAT / DLOG(DBLE(M))
+*
+* Analyze the entropies and decide A or A^*. Smaller entropy
+* usually means better input for the algorithm.
+*
+ TRANSP = ( ENTRAT .LT. ENTRA )
+*
+* If A^* is better than A, take the adjoint of A. This is allowed
+* only for square matrices, M=N.
+ IF ( TRANSP ) THEN
+* In an optimal implementation, this trivial transpose
+* should be replaced with faster transpose.
+ DO 1115 p = 1, N - 1
+ A(p,p) = CONJG(A(p,p))
+ DO 1116 q = p + 1, N
+ CTEMP = CONJG(A(q,p))
+ A(q,p) = CONJG(A(p,q))
+ A(p,q) = CTEMP
+ 1116 CONTINUE
+ 1115 CONTINUE
+ A(N,N) = CONJG(A(N,N))
+ DO 1117 p = 1, N
+ RWORK(M+p) = SVA(p)
+ SVA(p) = RWORK(p)
+* previously computed row 2-norms are now column 2-norms
+* of the transposed matrix
+ 1117 CONTINUE
+ TEMP1 = AAPP
+ AAPP = AATMAX
+ AATMAX = TEMP1
+ TEMP1 = AAQQ
+ AAQQ = AATMIN
+ AATMIN = TEMP1
+ KILL = LSVEC
+ LSVEC = RSVEC
+ RSVEC = KILL
+ IF ( LSVEC ) N1 = N
+*
+ ROWPIV = .TRUE.
+ END IF
+*
+ END IF
+* END IF L2TRAN
+*
+* Scale the matrix so that its maximal singular value remains less
+* than SQRT(BIG) -- the matrix is scaled so that its maximal column
+* has Euclidean norm equal to SQRT(BIG/N). The only reason to keep
+* SQRT(BIG) instead of BIG is the fact that ZGEJSV uses LAPACK and
+* BLAS routines that, in some implementations, are not capable of
+* working in the full interval [SFMIN,BIG] and that they may provoke
+* overflows in the intermediate results. If the singular values spread
+* from SFMIN to BIG, then ZGESVJ will compute them. So, in that case,
+* one should use ZGESVJ instead of ZGEJSV.
+* >> change in the April 2016 update: allow bigger range, i.e. the
+* largest column is allowed up to BIG/N and ZGESVJ will do the rest.
+ BIG1 = SQRT( BIG )
+ TEMP1 = SQRT( BIG / DBLE(N) )
+* TEMP1 = BIG/DBLE(N)
+*
+ CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, N, 1, SVA, N, IERR )
+ IF ( AAQQ .GT. (AAPP * SFMIN) ) THEN
+ AAQQ = ( AAQQ / AAPP ) * TEMP1
+ ELSE
+ AAQQ = ( AAQQ * TEMP1 ) / AAPP
+ END IF
+ TEMP1 = TEMP1 * SCALEM
+ CALL ZLASCL( 'G', 0, 0, AAPP, TEMP1, M, N, A, LDA, IERR )
+*
+* To undo scaling at the end of this procedure, multiply the
+* computed singular values with USCAL2 / USCAL1.
+*
+ USCAL1 = TEMP1
+ USCAL2 = AAPP
+*
+ IF ( L2KILL ) THEN
+* L2KILL enforces computation of nonzero singular values in
+* the restricted range of condition number of the initial A,
+* sigma_max(A) / sigma_min(A) approx. SQRT(BIG)/SQRT(SFMIN).
+ XSC = SQRT( SFMIN )
+ ELSE
+ XSC = SMALL
+*
+* Now, if the condition number of A is too big,
+* sigma_max(A) / sigma_min(A) .GT. SQRT(BIG/N) * EPSLN / SFMIN,
+* as a precaution measure, the full SVD is computed using ZGESVJ
+* with accumulated Jacobi rotations. This provides numerically
+* more robust computation, at the cost of slightly increased run
+* time. Depending on the concrete implementation of BLAS and LAPACK
+* (i.e. how they behave in presence of extreme ill-conditioning) the
+* implementor may decide to remove this switch.
+ IF ( ( AAQQ.LT.SQRT(SFMIN) ) .AND. LSVEC .AND. RSVEC ) THEN
+ JRACC = .TRUE.
+ END IF
+*
+ END IF
+ IF ( AAQQ .LT. XSC ) THEN
+ DO 700 p = 1, N
+ IF ( SVA(p) .LT. XSC ) THEN
+ CALL ZLASET( 'A', M, 1, CZERO, CZERO, A(1,p), LDA )
+ SVA(p) = ZERO
+ END IF
+ 700 CONTINUE
+ END IF
+*
+* Preconditioning using QR factorization with pivoting
+*
+ IF ( ROWPIV ) THEN
+* Optional row permutation (Bjoerck row pivoting):
+* A result by Cox and Higham shows that the Bjoerck's
+* row pivoting combined with standard column pivoting
+* has similar effect as Powell-Reid complete pivoting.
+* The ell-infinity norms of A are made nonincreasing.
+ IF ( ( LSVEC .AND. RSVEC ) .AND. .NOT.( JRACC ) ) THEN
+ IWOFF = 2*N
+ ELSE
+ IWOFF = N
+ END IF
+ DO 1952 p = 1, M - 1
+ q = IDAMAX( M-p+1, RWORK(M+p), 1 ) + p - 1
+ IWORK(IWOFF+p) = q
+ IF ( p .NE. q ) THEN
+ TEMP1 = RWORK(M+p)
+ RWORK(M+p) = RWORK(M+q)
+ RWORK(M+q) = TEMP1
+ END IF
+ 1952 CONTINUE
+ CALL ZLASWP( N, A, LDA, 1, M-1, IWORK(IWOFF+1), 1 )
+ END IF
+*
+* End of the preparation phase (scaling, optional sorting and
+* transposing, optional flushing of small columns).
+*
+* Preconditioning
+*
+* If the full SVD is needed, the right singular vectors are computed
+* from a matrix equation, and for that we need theoretical analysis
+* of the Businger-Golub pivoting. So we use ZGEQP3 as the first RR QRF.
+* In all other cases the first RR QRF can be chosen by other criteria
+* (eg speed by replacing global with restricted window pivoting, such
+* as in xGEQPX from TOMS # 782). Good results will be obtained using
+* xGEQPX with properly (!) chosen numerical parameters.
+* Any improvement of ZGEQP3 improves overall performance of ZGEJSV.
+*
+* A * P1 = Q1 * [ R1^* 0]^*:
+ DO 1963 p = 1, N
+* .. all columns are free columns
+ IWORK(p) = 0
+ 1963 CONTINUE
+ CALL ZGEQP3( M, N, A, LDA, IWORK, CWORK, CWORK(N+1), LWORK-N,
+ $ RWORK, IERR )
+*
+* The upper triangular matrix R1 from the first QRF is inspected for
+* rank deficiency and possibilities for deflation, or possible
+* ill-conditioning. Depending on the user specified flag L2RANK,
+* the procedure explores possibilities to reduce the numerical
+* rank by inspecting the computed upper triangular factor. If
+* L2RANK or L2ABER are up, then ZGEJSV will compute the SVD of
+* A + dA, where ||dA|| <= f(M,N)*EPSLN.
+*
+ NR = 1
+ IF ( L2ABER ) THEN
+* Standard absolute error bound suffices. All sigma_i with
+* sigma_i < N*EPSLN*||A|| are flushed to zero. This is an
+* aggressive enforcement of lower numerical rank by introducing a
+* backward error of the order of N*EPSLN*||A||.
+ TEMP1 = SQRT(DBLE(N))*EPSLN
+ DO 3001 p = 2, N
+ IF ( ABS(A(p,p)) .GE. (TEMP1*ABS(A(1,1))) ) THEN
+ NR = NR + 1
+ ELSE
+ GO TO 3002
+ END IF
+ 3001 CONTINUE
+ 3002 CONTINUE
+ ELSE IF ( L2RANK ) THEN
+* .. similarly as above, only slightly more gentle (less aggressive).
+* Sudden drop on the diagonal of R1 is used as the criterion for
+* close-to-rank-deficient.
+ TEMP1 = SQRT(SFMIN)
+ DO 3401 p = 2, N
+ IF ( ( ABS(A(p,p)) .LT. (EPSLN*ABS(A(p-1,p-1))) ) .OR.
+ $ ( ABS(A(p,p)) .LT. SMALL ) .OR.
+ $ ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3402
+ NR = NR + 1
+ 3401 CONTINUE
+ 3402 CONTINUE
+*
+ ELSE
+* The goal is high relative accuracy. However, if the matrix
+* has high scaled condition number the relative accuracy is in
+* general not feasible. Later on, a condition number estimator
+* will be deployed to estimate the scaled condition number.
+* Here we just remove the underflowed part of the triangular
+* factor. This prevents the situation in which the code is
+* working hard to get the accuracy not warranted by the data.
+ TEMP1 = SQRT(SFMIN)
+ DO 3301 p = 2, N
+ IF ( ( ABS(A(p,p)) .LT. SMALL ) .OR.
+ $ ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3302
+ NR = NR + 1
+ 3301 CONTINUE
+ 3302 CONTINUE
+*
+ END IF
+*
+ ALMORT = .FALSE.
+ IF ( NR .EQ. N ) THEN
+ MAXPRJ = ONE
+ DO 3051 p = 2, N
+ TEMP1 = ABS(A(p,p)) / SVA(IWORK(p))
+ MAXPRJ = MIN( MAXPRJ, TEMP1 )
+ 3051 CONTINUE
+ IF ( MAXPRJ**2 .GE. ONE - DBLE(N)*EPSLN ) ALMORT = .TRUE.
+ END IF
+*
+*
+ SCONDA = - ONE
+ CONDR1 = - ONE
+ CONDR2 = - ONE
+*
+ IF ( ERREST ) THEN
+ IF ( N .EQ. NR ) THEN
+ IF ( RSVEC ) THEN
+* .. V is available as workspace
+ CALL ZLACPY( 'U', N, N, A, LDA, V, LDV )
+ DO 3053 p = 1, N
+ TEMP1 = SVA(IWORK(p))
+ CALL ZDSCAL( p, ONE/TEMP1, V(1,p), 1 )
+ 3053 CONTINUE
+ IF ( LSVEC )THEN
+ CALL ZPOCON( 'U', N, V, LDV, ONE, TEMP1,
+ $ CWORK(N+1), RWORK, IERR )
+ ELSE
+ CALL ZPOCON( 'U', N, V, LDV, ONE, TEMP1,
+ $ CWORK, RWORK, IERR )
+ END IF
+*
+ ELSE IF ( LSVEC ) THEN
+* .. U is available as workspace
+ CALL ZLACPY( 'U', N, N, A, LDA, U, LDU )
+ DO 3054 p = 1, N
+ TEMP1 = SVA(IWORK(p))
+ CALL ZDSCAL( p, ONE/TEMP1, U(1,p), 1 )
+ 3054 CONTINUE
+ CALL ZPOCON( 'U', N, U, LDU, ONE, TEMP1,
+ $ CWORK(N+1), RWORK, IERR )
+ ELSE
+ CALL ZLACPY( 'U', N, N, A, LDA, CWORK, N )
+*[] CALL ZLACPY( 'U', N, N, A, LDA, CWORK(N+1), N )
+* Change: here index shifted by N to the left, CWORK(1:N)
+* not needed for SIGMA only computation
+ DO 3052 p = 1, N
+ TEMP1 = SVA(IWORK(p))
+*[] CALL ZDSCAL( p, ONE/TEMP1, CWORK(N+(p-1)*N+1), 1 )
+ CALL ZDSCAL( p, ONE/TEMP1, CWORK((p-1)*N+1), 1 )
+ 3052 CONTINUE
+* .. the columns of R are scaled to have unit Euclidean lengths.
+*[] CALL ZPOCON( 'U', N, CWORK(N+1), N, ONE, TEMP1,
+*[] $ CWORK(N+N*N+1), RWORK, IERR )
+ CALL ZPOCON( 'U', N, CWORK, N, ONE, TEMP1,
+ $ CWORK(N*N+1), RWORK, IERR )
+*
+ END IF
+ IF ( TEMP1 .NE. ZERO ) THEN
+ SCONDA = ONE / SQRT(TEMP1)
+ ELSE
+ SCONDA = - ONE
+ END IF
+* SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1).
+* N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
+ ELSE
+ SCONDA = - ONE
+ END IF
+ END IF
+*
+ L2PERT = L2PERT .AND. ( ABS( A(1,1)/A(NR,NR) ) .GT. SQRT(BIG1) )
+* If there is no violent scaling, artificial perturbation is not needed.
+*
+* Phase 3:
+*
+ IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN
+*
+* Singular Values only
+*
+* .. transpose A(1:NR,1:N)
+ DO 1946 p = 1, MIN( N-1, NR )
+ CALL ZCOPY( N-p, A(p,p+1), LDA, A(p+1,p), 1 )
+ CALL ZLACGV( N-p+1, A(p,p), 1 )
+ 1946 CONTINUE
+ IF ( NR .EQ. N ) A(N,N) = CONJG(A(N,N))
+*
+* The following two DO-loops introduce small relative perturbation
+* into the strict upper triangle of the lower triangular matrix.
+* Small entries below the main diagonal are also changed.
+* This modification is useful if the computing environment does not
+* provide/allow FLUSH TO ZERO underflow, for it prevents many
+* annoying denormalized numbers in case of strongly scaled matrices.
+* The perturbation is structured so that it does not introduce any
+* new perturbation of the singular values, and it does not destroy
+* the job done by the preconditioner.
+* The licence for this perturbation is in the variable L2PERT, which
+* should be .FALSE. if FLUSH TO ZERO underflow is active.
+*
+ IF ( .NOT. ALMORT ) THEN
+*
+ IF ( L2PERT ) THEN
+* XSC = SQRT(SMALL)
+ XSC = EPSLN / DBLE(N)
+ DO 4947 q = 1, NR
+ CTEMP = DCMPLX(XSC*ABS(A(q,q)),ZERO)
+ DO 4949 p = 1, N
+ IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) )
+ $ .OR. ( p .LT. q ) )
+* $ A(p,q) = TEMP1 * ( A(p,q) / ABS(A(p,q)) )
+ $ A(p,q) = CTEMP
+ 4949 CONTINUE
+ 4947 CONTINUE
+ ELSE
+ CALL ZLASET( 'U', NR-1,NR-1, CZERO,CZERO, A(1,2),LDA )
+ END IF
+*
+* .. second preconditioning using the QR factorization
+*
+ CALL ZGEQRF( N,NR, A,LDA, CWORK, CWORK(N+1),LWORK-N, IERR )
+*
+* .. and transpose upper to lower triangular
+ DO 1948 p = 1, NR - 1
+ CALL ZCOPY( NR-p, A(p,p+1), LDA, A(p+1,p), 1 )
+ CALL ZLACGV( NR-p+1, A(p,p), 1 )
+ 1948 CONTINUE
+*
+ END IF
+*
+* Row-cyclic Jacobi SVD algorithm with column pivoting
+*
+* .. again some perturbation (a "background noise") is added
+* to drown denormals
+ IF ( L2PERT ) THEN
+* XSC = SQRT(SMALL)
+ XSC = EPSLN / DBLE(N)
+ DO 1947 q = 1, NR
+ CTEMP = DCMPLX(XSC*ABS(A(q,q)),ZERO)
+ DO 1949 p = 1, NR
+ IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) )
+ $ .OR. ( p .LT. q ) )
+* $ A(p,q) = TEMP1 * ( A(p,q) / ABS(A(p,q)) )
+ $ A(p,q) = CTEMP
+ 1949 CONTINUE
+ 1947 CONTINUE
+ ELSE
+ CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, A(1,2), LDA )
+ END IF
+*
+* .. and one-sided Jacobi rotations are started on a lower
+* triangular matrix (plus perturbation which is ignored in
+* the part which destroys triangular form (confusing?!))
+*
+ CALL ZGESVJ( 'L', 'N', 'N', NR, NR, A, LDA, SVA,
+ $ N, V, LDV, CWORK, LWORK, RWORK, LRWORK, INFO )
+*
+ SCALEM = RWORK(1)
+ NUMRANK = NINT(RWORK(2))
+*
+*
+ ELSE IF ( ( RSVEC .AND. ( .NOT. LSVEC ) .AND. ( .NOT. JRACC ) )
+ $ .OR.
+ $ ( JRACC .AND. ( .NOT. LSVEC ) .AND. ( NR .NE. N ) ) ) THEN
+*
+* -> Singular Values and Right Singular Vectors <-
+*
+ IF ( ALMORT ) THEN
+*
+* .. in this case NR equals N
+ DO 1998 p = 1, NR
+ CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
+ CALL ZLACGV( N-p+1, V(p,p), 1 )
+ 1998 CONTINUE
+ CALL ZLASET( 'U', NR-1,NR-1, CZERO, CZERO, V(1,2), LDV )
+*
+ CALL ZGESVJ( 'L','U','N', N, NR, V, LDV, SVA, NR, A, LDA,
+ $ CWORK, LWORK, RWORK, LRWORK, INFO )
+ SCALEM = RWORK(1)
+ NUMRANK = NINT(RWORK(2))
+
+ ELSE
+*
+* .. two more QR factorizations ( one QRF is not enough, two require
+* accumulated product of Jacobi rotations, three are perfect )
+*
+ CALL ZLASET( 'L', NR-1,NR-1, CZERO, CZERO, A(2,1), LDA )
+ CALL ZGELQF( NR,N, A, LDA, CWORK, CWORK(N+1), LWORK-N, IERR)
+ CALL ZLACPY( 'L', NR, NR, A, LDA, V, LDV )
+ CALL ZLASET( 'U', NR-1,NR-1, CZERO, CZERO, V(1,2), LDV )
+ CALL ZGEQRF( NR, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
+ $ LWORK-2*N, IERR )
+ DO 8998 p = 1, NR
+ CALL ZCOPY( NR-p+1, V(p,p), LDV, V(p,p), 1 )
+ CALL ZLACGV( NR-p+1, V(p,p), 1 )
+ 8998 CONTINUE
+ CALL ZLASET('U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV)
+*
+ CALL ZGESVJ( 'L', 'U','N', NR, NR, V,LDV, SVA, NR, U,
+ $ LDU, CWORK(N+1), LWORK-N, RWORK, LRWORK, INFO )
+ SCALEM = RWORK(1)
+ NUMRANK = NINT(RWORK(2))
+ IF ( NR .LT. N ) THEN
+ CALL ZLASET( 'A',N-NR, NR, CZERO,CZERO, V(NR+1,1), LDV )
+ CALL ZLASET( 'A',NR, N-NR, CZERO,CZERO, V(1,NR+1), LDV )
+ CALL ZLASET( 'A',N-NR,N-NR,CZERO,CONE, V(NR+1,NR+1),LDV )
+ END IF
+*
+ CALL ZUNMLQ( 'L', 'C', N, N, NR, A, LDA, CWORK,
+ $ V, LDV, CWORK(N+1), LWORK-N, IERR )
+*
+ END IF
+* .. permute the rows of V
+* DO 8991 p = 1, N
+* CALL ZCOPY( N, V(p,1), LDV, A(IWORK(p),1), LDA )
+* 8991 CONTINUE
+* CALL ZLACPY( 'All', N, N, A, LDA, V, LDV )
+ CALL ZLAPMR( .FALSE., N, N, V, LDV, IWORK )
+*
+ IF ( TRANSP ) THEN
+ CALL ZLACPY( 'A', N, N, V, LDV, U, LDU )
+ END IF
+*
+ ELSE IF ( JRACC .AND. (.NOT. LSVEC) .AND. ( NR.EQ. N ) ) THEN
+*
+ CALL ZLASET( 'L', N-1,N-1, CZERO, CZERO, A(2,1), LDA )
+*
+ CALL ZGESVJ( 'U','N','V', N, N, A, LDA, SVA, N, V, LDV,
+ $ CWORK, LWORK, RWORK, LRWORK, INFO )
+ SCALEM = RWORK(1)
+ NUMRANK = NINT(RWORK(2))
+ CALL ZLAPMR( .FALSE., N, N, V, LDV, IWORK )
+*
+ ELSE IF ( LSVEC .AND. ( .NOT. RSVEC ) ) THEN
+*
+* .. Singular Values and Left Singular Vectors ..
+*
+* .. second preconditioning step to avoid need to accumulate
+* Jacobi rotations in the Jacobi iterations.
+ DO 1965 p = 1, NR
+ CALL ZCOPY( N-p+1, A(p,p), LDA, U(p,p), 1 )
+ CALL ZLACGV( N-p+1, U(p,p), 1 )
+ 1965 CONTINUE
+ CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
+*
+ CALL ZGEQRF( N, NR, U, LDU, CWORK(N+1), CWORK(2*N+1),
+ $ LWORK-2*N, IERR )
+*
+ DO 1967 p = 1, NR - 1
+ CALL ZCOPY( NR-p, U(p,p+1), LDU, U(p+1,p), 1 )
+ CALL ZLACGV( N-p+1, U(p,p), 1 )
+ 1967 CONTINUE
+ CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
+*
+ CALL ZGESVJ( 'L', 'U', 'N', NR,NR, U, LDU, SVA, NR, A,
+ $ LDA, CWORK(N+1), LWORK-N, RWORK, LRWORK, INFO )
+ SCALEM = RWORK(1)
+ NUMRANK = NINT(RWORK(2))
+*
+ IF ( NR .LT. M ) THEN
+ CALL ZLASET( 'A', M-NR, NR,CZERO, CZERO, U(NR+1,1), LDU )
+ IF ( NR .LT. N1 ) THEN
+ CALL ZLASET( 'A',NR, N1-NR, CZERO, CZERO, U(1,NR+1),LDU )
+ CALL ZLASET( 'A',M-NR,N1-NR,CZERO,CONE,U(NR+1,NR+1),LDU )
+ END IF
+ END IF
+*
+ CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
+ $ LDU, CWORK(N+1), LWORK-N, IERR )
+*
+ IF ( ROWPIV )
+ $ CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
+*
+ DO 1974 p = 1, N1
+ XSC = ONE / DZNRM2( M, U(1,p), 1 )
+ CALL ZDSCAL( M, XSC, U(1,p), 1 )
+ 1974 CONTINUE
+*
+ IF ( TRANSP ) THEN
+ CALL ZLACPY( 'A', N, N, U, LDU, V, LDV )
+ END IF
+*
+ ELSE
+*
+* .. Full SVD ..
+*
+ IF ( .NOT. JRACC ) THEN
+*
+ IF ( .NOT. ALMORT ) THEN
+*
+* Second Preconditioning Step (QRF [with pivoting])
+* Note that the composition of TRANSPOSE, QRF and TRANSPOSE is
+* equivalent to an LQF CALL. Since in many libraries the QRF
+* seems to be better optimized than the LQF, we do explicit
+* transpose and use the QRF. This is subject to changes in an
+* optimized implementation of ZGEJSV.
+*
+ DO 1968 p = 1, NR
+ CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
+ CALL ZLACGV( N-p+1, V(p,p), 1 )
+ 1968 CONTINUE
+*
+* .. the following two loops perturb small entries to avoid
+* denormals in the second QR factorization, where they are
+* as good as zeros. This is done to avoid painfully slow
+* computation with denormals. The relative size of the perturbation
+* is a parameter that can be changed by the implementer.
+* This perturbation device will be obsolete on machines with
+* properly implemented arithmetic.
+* To switch it off, set L2PERT=.FALSE. To remove it from the
+* code, remove the action under L2PERT=.TRUE., leave the ELSE part.
+* The following two loops should be blocked and fused with the
+* transposed copy above.
+*
+ IF ( L2PERT ) THEN
+ XSC = SQRT(SMALL)
+ DO 2969 q = 1, NR
+ CTEMP = DCMPLX(XSC*ABS( V(q,q) ),ZERO)
+ DO 2968 p = 1, N
+ IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 )
+ $ .OR. ( p .LT. q ) )
+* $ V(p,q) = TEMP1 * ( V(p,q) / ABS(V(p,q)) )
+ $ V(p,q) = CTEMP
+ IF ( p .LT. q ) V(p,q) = - V(p,q)
+ 2968 CONTINUE
+ 2969 CONTINUE
+ ELSE
+ CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV )
+ END IF
+*
+* Estimate the row scaled condition number of R1
+* (If R1 is rectangular, N > NR, then the condition number
+* of the leading NR x NR submatrix is estimated.)
+*
+ CALL ZLACPY( 'L', NR, NR, V, LDV, CWORK(2*N+1), NR )
+ DO 3950 p = 1, NR
+ TEMP1 = DZNRM2(NR-p+1,CWORK(2*N+(p-1)*NR+p),1)
+ CALL ZDSCAL(NR-p+1,ONE/TEMP1,CWORK(2*N+(p-1)*NR+p),1)
+ 3950 CONTINUE
+ CALL ZPOCON('L',NR,CWORK(2*N+1),NR,ONE,TEMP1,
+ $ CWORK(2*N+NR*NR+1),RWORK,IERR)
+ CONDR1 = ONE / SQRT(TEMP1)
+* .. here need a second opinion on the condition number
+* .. then assume worst case scenario
+* R1 is OK for inverse <=> CONDR1 .LT. DBLE(N)
+* more conservative <=> CONDR1 .LT. SQRT(DBLE(N))
+*
+ COND_OK = SQRT(SQRT(DBLE(NR)))
+*[TP] COND_OK is a tuning parameter.
+*
+ IF ( CONDR1 .LT. COND_OK ) THEN
+* .. the second QRF without pivoting. Note: in an optimized
+* implementation, this QRF should be implemented as the QRF
+* of a lower triangular matrix.
+* R1^* = Q2 * R2
+ CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
+ $ LWORK-2*N, IERR )
+*
+ IF ( L2PERT ) THEN
+ XSC = SQRT(SMALL)/EPSLN
+ DO 3959 p = 2, NR
+ DO 3958 q = 1, p - 1
+ CTEMP=DCMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
+ $ ZERO)
+ IF ( ABS(V(q,p)) .LE. TEMP1 )
+* $ V(q,p) = TEMP1 * ( V(q,p) / ABS(V(q,p)) )
+ $ V(q,p) = CTEMP
+ 3958 CONTINUE
+ 3959 CONTINUE
+ END IF
+*
+ IF ( NR .NE. N )
+ $ CALL ZLACPY( 'A', N, NR, V, LDV, CWORK(2*N+1), N )
+* .. save ...
+*
+* .. this transposed copy should be better than naive
+ DO 1969 p = 1, NR - 1
+ CALL ZCOPY( NR-p, V(p,p+1), LDV, V(p+1,p), 1 )
+ CALL ZLACGV(NR-p+1, V(p,p), 1 )
+ 1969 CONTINUE
+ V(NR,NR)=CONJG(V(NR,NR))
+*
+ CONDR2 = CONDR1
+*
+ ELSE
+*
+* .. ill-conditioned case: second QRF with pivoting
+* Note that windowed pivoting would be equally good
+* numerically, and more run-time efficient. So, in
+* an optimal implementation, the next call to ZGEQP3
+* should be replaced with eg. CALL ZGEQPX (ACM TOMS #782)
+* with properly (carefully) chosen parameters.
+*
+* R1^* * P2 = Q2 * R2
+ DO 3003 p = 1, NR
+ IWORK(N+p) = 0
+ 3003 CONTINUE
+ CALL ZGEQP3( N, NR, V, LDV, IWORK(N+1), CWORK(N+1),
+ $ CWORK(2*N+1), LWORK-2*N, RWORK, IERR )
+** CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
+** $ LWORK-2*N, IERR )
+ IF ( L2PERT ) THEN
+ XSC = SQRT(SMALL)
+ DO 3969 p = 2, NR
+ DO 3968 q = 1, p - 1
+ CTEMP=DCMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
+ $ ZERO)
+ IF ( ABS(V(q,p)) .LE. TEMP1 )
+* $ V(q,p) = TEMP1 * ( V(q,p) / ABS(V(q,p)) )
+ $ V(q,p) = CTEMP
+ 3968 CONTINUE
+ 3969 CONTINUE
+ END IF
+*
+ CALL ZLACPY( 'A', N, NR, V, LDV, CWORK(2*N+1), N )
+*
+ IF ( L2PERT ) THEN
+ XSC = SQRT(SMALL)
+ DO 8970 p = 2, NR
+ DO 8971 q = 1, p - 1
+ CTEMP=DCMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
+ $ ZERO)
+* V(p,q) = - TEMP1*( V(q,p) / ABS(V(q,p)) )
+ V(p,q) = - CTEMP
+ 8971 CONTINUE
+ 8970 CONTINUE
+ ELSE
+ CALL ZLASET( 'L',NR-1,NR-1,CZERO,CZERO,V(2,1),LDV )
+ END IF
+* Now, compute R2 = L3 * Q3, the LQ factorization.
+ CALL ZGELQF( NR, NR, V, LDV, CWORK(2*N+N*NR+1),
+ $ CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, IERR )
+* .. and estimate the condition number
+ CALL ZLACPY( 'L',NR,NR,V,LDV,CWORK(2*N+N*NR+NR+1),NR )
+ DO 4950 p = 1, NR
+ TEMP1 = DZNRM2( p, CWORK(2*N+N*NR+NR+p), NR )
+ CALL ZDSCAL( p, ONE/TEMP1, CWORK(2*N+N*NR+NR+p), NR )
+ 4950 CONTINUE
+ CALL ZPOCON( 'L',NR,CWORK(2*N+N*NR+NR+1),NR,ONE,TEMP1,
+ $ CWORK(2*N+N*NR+NR+NR*NR+1),RWORK,IERR )
+ CONDR2 = ONE / SQRT(TEMP1)
+*
+*
+ IF ( CONDR2 .GE. COND_OK ) THEN
+* .. save the Householder vectors used for Q3
+* (this overwrites the copy of R2, as it will not be
+* needed in this branch, but it does not overwritte the
+* Huseholder vectors of Q2.).
+ CALL ZLACPY( 'U', NR, NR, V, LDV, CWORK(2*N+1), N )
+* .. and the rest of the information on Q3 is in
+* WORK(2*N+N*NR+1:2*N+N*NR+N)
+ END IF
+*
+ END IF
+*
+ IF ( L2PERT ) THEN
+ XSC = SQRT(SMALL)
+ DO 4968 q = 2, NR
+ CTEMP = XSC * V(q,q)
+ DO 4969 p = 1, q - 1
+* V(p,q) = - TEMP1*( V(p,q) / ABS(V(p,q)) )
+ V(p,q) = - CTEMP
+ 4969 CONTINUE
+ 4968 CONTINUE
+ ELSE
+ CALL ZLASET( 'U', NR-1,NR-1, CZERO,CZERO, V(1,2), LDV )
+ END IF
+*
+* Second preconditioning finished; continue with Jacobi SVD
+* The input matrix is lower trinagular.
+*
+* Recover the right singular vectors as solution of a well
+* conditioned triangular matrix equation.
+*
+ IF ( CONDR1 .LT. COND_OK ) THEN
+*
+ CALL ZGESVJ( 'L','U','N',NR,NR,V,LDV,SVA,NR,U, LDU,
+ $ CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,RWORK,
+ $ LRWORK, INFO )
+ SCALEM = RWORK(1)
+ NUMRANK = NINT(RWORK(2))
+ DO 3970 p = 1, NR
+ CALL ZCOPY( NR, V(1,p), 1, U(1,p), 1 )
+ CALL ZDSCAL( NR, SVA(p), V(1,p), 1 )
+ 3970 CONTINUE
+
+* .. pick the right matrix equation and solve it
+*
+ IF ( NR .EQ. N ) THEN
+* :)) .. best case, R1 is inverted. The solution of this matrix
+* equation is Q2*V2 = the product of the Jacobi rotations
+* used in ZGESVJ, premultiplied with the orthogonal matrix
+* from the second QR factorization.
+ CALL ZTRSM('L','U','N','N', NR,NR,CONE, A,LDA, V,LDV)
+ ELSE
+* .. R1 is well conditioned, but non-square. Adjoint of R2
+* is inverted to get the product of the Jacobi rotations
+* used in ZGESVJ. The Q-factor from the second QR
+* factorization is then built in explicitly.
+ CALL ZTRSM('L','U','C','N',NR,NR,CONE,CWORK(2*N+1),
+ $ N,V,LDV)
+ IF ( NR .LT. N ) THEN
+ CALL ZLASET('A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV)
+ CALL ZLASET('A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV)
+ CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
+ END IF
+ CALL ZUNMQR('L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
+ $ V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR)
+ END IF
+*
+ ELSE IF ( CONDR2 .LT. COND_OK ) THEN
+*
+* The matrix R2 is inverted. The solution of the matrix equation
+* is Q3^* * V3 = the product of the Jacobi rotations (appplied to
+* the lower triangular L3 from the LQ factorization of
+* R2=L3*Q3), pre-multiplied with the transposed Q3.
+ CALL ZGESVJ( 'L', 'U', 'N', NR, NR, V, LDV, SVA, NR, U,
+ $ LDU, CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR,
+ $ RWORK, LRWORK, INFO )
+ SCALEM = RWORK(1)
+ NUMRANK = NINT(RWORK(2))
+ DO 3870 p = 1, NR
+ CALL ZCOPY( NR, V(1,p), 1, U(1,p), 1 )
+ CALL ZDSCAL( NR, SVA(p), U(1,p), 1 )
+ 3870 CONTINUE
+ CALL ZTRSM('L','U','N','N',NR,NR,CONE,CWORK(2*N+1),N,
+ $ U,LDU)
+* .. apply the permutation from the second QR factorization
+ DO 873 q = 1, NR
+ DO 872 p = 1, NR
+ CWORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
+ 872 CONTINUE
+ DO 874 p = 1, NR
+ U(p,q) = CWORK(2*N+N*NR+NR+p)
+ 874 CONTINUE
+ 873 CONTINUE
+ IF ( NR .LT. N ) THEN
+ CALL ZLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
+ CALL ZLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
+ CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
+ END IF
+ CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
+ $ V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
+ ELSE
+* Last line of defense.
+* #:( This is a rather pathological case: no scaled condition
+* improvement after two pivoted QR factorizations. Other
+* possibility is that the rank revealing QR factorization
+* or the condition estimator has failed, or the COND_OK
+* is set very close to ONE (which is unnecessary). Normally,
+* this branch should never be executed, but in rare cases of
+* failure of the RRQR or condition estimator, the last line of
+* defense ensures that ZGEJSV completes the task.
+* Compute the full SVD of L3 using ZGESVJ with explicit
+* accumulation of Jacobi rotations.
+ CALL ZGESVJ( 'L', 'U', 'V', NR, NR, V, LDV, SVA, NR, U,
+ $ LDU, CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR,
+ $ RWORK, LRWORK, INFO )
+ SCALEM = RWORK(1)
+ NUMRANK = NINT(RWORK(2))
+ IF ( NR .LT. N ) THEN
+ CALL ZLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
+ CALL ZLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
+ CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
+ END IF
+ CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
+ $ V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
+*
+ CALL ZUNMLQ( 'L', 'C', NR, NR, NR, CWORK(2*N+1), N,
+ $ CWORK(2*N+N*NR+1), U, LDU, CWORK(2*N+N*NR+NR+1),
+ $ LWORK-2*N-N*NR-NR, IERR )
+ DO 773 q = 1, NR
+ DO 772 p = 1, NR
+ CWORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
+ 772 CONTINUE
+ DO 774 p = 1, NR
+ U(p,q) = CWORK(2*N+N*NR+NR+p)
+ 774 CONTINUE
+ 773 CONTINUE
+*
+ END IF
+*
+* Permute the rows of V using the (column) permutation from the
+* first QRF. Also, scale the columns to make them unit in
+* Euclidean norm. This applies to all cases.
+*
+ TEMP1 = SQRT(DBLE(N)) * EPSLN
+ DO 1972 q = 1, N
+ DO 972 p = 1, N
+ CWORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
+ 972 CONTINUE
+ DO 973 p = 1, N
+ V(p,q) = CWORK(2*N+N*NR+NR+p)
+ 973 CONTINUE
+ XSC = ONE / DZNRM2( N, V(1,q), 1 )
+ IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
+ $ CALL ZDSCAL( N, XSC, V(1,q), 1 )
+ 1972 CONTINUE
+* At this moment, V contains the right singular vectors of A.
+* Next, assemble the left singular vector matrix U (M x N).
+ IF ( NR .LT. M ) THEN
+ CALL ZLASET('A', M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU)
+ IF ( NR .LT. N1 ) THEN
+ CALL ZLASET('A',NR,N1-NR,CZERO,CZERO,U(1,NR+1),LDU)
+ CALL ZLASET('A',M-NR,N1-NR,CZERO,CONE,
+ $ U(NR+1,NR+1),LDU)
+ END IF
+ END IF
+*
+* The Q matrix from the first QRF is built into the left singular
+* matrix U. This applies to all cases.
+*
+ CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
+ $ LDU, CWORK(N+1), LWORK-N, IERR )
+
+* The columns of U are normalized. The cost is O(M*N) flops.
+ TEMP1 = SQRT(DBLE(M)) * EPSLN
+ DO 1973 p = 1, NR
+ XSC = ONE / DZNRM2( M, U(1,p), 1 )
+ IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
+ $ CALL ZDSCAL( M, XSC, U(1,p), 1 )
+ 1973 CONTINUE
+*
+* If the initial QRF is computed with row pivoting, the left
+* singular vectors must be adjusted.
+*
+ IF ( ROWPIV )
+ $ CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
+*
+ ELSE
+*
+* .. the initial matrix A has almost orthogonal columns and
+* the second QRF is not needed
+*
+ CALL ZLACPY( 'U', N, N, A, LDA, CWORK(N+1), N )
+ IF ( L2PERT ) THEN
+ XSC = SQRT(SMALL)
+ DO 5970 p = 2, N
+ CTEMP = XSC * CWORK( N + (p-1)*N + p )
+ DO 5971 q = 1, p - 1
+* CWORK(N+(q-1)*N+p)=-TEMP1 * ( CWORK(N+(p-1)*N+q) /
+* $ ABS(CWORK(N+(p-1)*N+q)) )
+ CWORK(N+(q-1)*N+p)=-CTEMP
+ 5971 CONTINUE
+ 5970 CONTINUE
+ ELSE
+ CALL ZLASET( 'L',N-1,N-1,CZERO,CZERO,CWORK(N+2),N )
+ END IF
+*
+ CALL ZGESVJ( 'U', 'U', 'N', N, N, CWORK(N+1), N, SVA,
+ $ N, U, LDU, CWORK(N+N*N+1), LWORK-N-N*N, RWORK, LRWORK,
+ $ INFO )
+*
+ SCALEM = RWORK(1)
+ NUMRANK = NINT(RWORK(2))
+ DO 6970 p = 1, N
+ CALL ZCOPY( N, CWORK(N+(p-1)*N+1), 1, U(1,p), 1 )
+ CALL ZDSCAL( N, SVA(p), CWORK(N+(p-1)*N+1), 1 )
+ 6970 CONTINUE
+*
+ CALL ZTRSM( 'L', 'U', 'N', 'N', N, N,
+ $ CONE, A, LDA, CWORK(N+1), N )
+ DO 6972 p = 1, N
+ CALL ZCOPY( N, CWORK(N+p), N, V(IWORK(p),1), LDV )
+ 6972 CONTINUE
+ TEMP1 = SQRT(DBLE(N))*EPSLN
+ DO 6971 p = 1, N
+ XSC = ONE / DZNRM2( N, V(1,p), 1 )
+ IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
+ $ CALL ZDSCAL( N, XSC, V(1,p), 1 )
+ 6971 CONTINUE
+*
+* Assemble the left singular vector matrix U (M x N).
+*
+ IF ( N .LT. M ) THEN
+ CALL ZLASET( 'A', M-N, N, CZERO, CZERO, U(N+1,1), LDU )
+ IF ( N .LT. N1 ) THEN
+ CALL ZLASET('A',N, N1-N, CZERO, CZERO, U(1,N+1),LDU)
+ CALL ZLASET( 'A',M-N,N1-N, CZERO, CONE,U(N+1,N+1),LDU)
+ END IF
+ END IF
+ CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
+ $ LDU, CWORK(N+1), LWORK-N, IERR )
+ TEMP1 = SQRT(DBLE(M))*EPSLN
+ DO 6973 p = 1, N1
+ XSC = ONE / DZNRM2( M, U(1,p), 1 )
+ IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
+ $ CALL ZDSCAL( M, XSC, U(1,p), 1 )
+ 6973 CONTINUE
+*
+ IF ( ROWPIV )
+ $ CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
+*
+ END IF
+*
+* end of the >> almost orthogonal case << in the full SVD
+*
+ ELSE
+*
+* This branch deploys a preconditioned Jacobi SVD with explicitly
+* accumulated rotations. It is included as optional, mainly for
+* experimental purposes. It does perform well, and can also be used.
+* In this implementation, this branch will be automatically activated
+* if the condition number sigma_max(A) / sigma_min(A) is predicted
+* to be greater than the overflow threshold. This is because the
+* a posteriori computation of the singular vectors assumes robust
+* implementation of BLAS and some LAPACK procedures, capable of working
+* in presence of extreme values, e.g. when the singular values spread from
+* the underflow to the overflow threshold.
+*
+ DO 7968 p = 1, NR
+ CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
+ CALL ZLACGV( N-p+1, V(p,p), 1 )
+ 7968 CONTINUE
+*
+ IF ( L2PERT ) THEN
+ XSC = SQRT(SMALL/EPSLN)
+ DO 5969 q = 1, NR
+ CTEMP = DCMPLX(XSC*ABS( V(q,q) ),ZERO)
+ DO 5968 p = 1, N
+ IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 )
+ $ .OR. ( p .LT. q ) )
+* $ V(p,q) = TEMP1 * ( V(p,q) / ABS(V(p,q)) )
+ $ V(p,q) = CTEMP
+ IF ( p .LT. q ) V(p,q) = - V(p,q)
+ 5968 CONTINUE
+ 5969 CONTINUE
+ ELSE
+ CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV )
+ END IF
+
+ CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
+ $ LWORK-2*N, IERR )
+ CALL ZLACPY( 'L', N, NR, V, LDV, CWORK(2*N+1), N )
+*
+ DO 7969 p = 1, NR
+ CALL ZCOPY( NR-p+1, V(p,p), LDV, U(p,p), 1 )
+ CALL ZLACGV( NR-p+1, U(p,p), 1 )
+ 7969 CONTINUE
+
+ IF ( L2PERT ) THEN
+ XSC = SQRT(SMALL/EPSLN)
+ DO 9970 q = 2, NR
+ DO 9971 p = 1, q - 1
+ CTEMP = DCMPLX(XSC * MIN(ABS(U(p,p)),ABS(U(q,q))),
+ $ ZERO)
+* U(p,q) = - TEMP1 * ( U(q,p) / ABS(U(q,p)) )
+ U(p,q) = - CTEMP
+ 9971 CONTINUE
+ 9970 CONTINUE
+ ELSE
+ CALL ZLASET('U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
+ END IF
+
+ CALL ZGESVJ( 'L', 'U', 'V', NR, NR, U, LDU, SVA,
+ $ N, V, LDV, CWORK(2*N+N*NR+1), LWORK-2*N-N*NR,
+ $ RWORK, LRWORK, INFO )
+ SCALEM = RWORK(1)
+ NUMRANK = NINT(RWORK(2))
+
+ IF ( NR .LT. N ) THEN
+ CALL ZLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
+ CALL ZLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
+ CALL ZLASET( 'A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV )
+ END IF
+
+ CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
+ $ V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
+*
+* Permute the rows of V using the (column) permutation from the
+* first QRF. Also, scale the columns to make them unit in
+* Euclidean norm. This applies to all cases.
+*
+ TEMP1 = SQRT(DBLE(N)) * EPSLN
+ DO 7972 q = 1, N
+ DO 8972 p = 1, N
+ CWORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
+ 8972 CONTINUE
+ DO 8973 p = 1, N
+ V(p,q) = CWORK(2*N+N*NR+NR+p)
+ 8973 CONTINUE
+ XSC = ONE / DZNRM2( N, V(1,q), 1 )
+ IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
+ $ CALL ZDSCAL( N, XSC, V(1,q), 1 )
+ 7972 CONTINUE
+*
+* At this moment, V contains the right singular vectors of A.
+* Next, assemble the left singular vector matrix U (M x N).
+*
+ IF ( NR .LT. M ) THEN
+ CALL ZLASET( 'A', M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU )
+ IF ( NR .LT. N1 ) THEN
+ CALL ZLASET('A',NR, N1-NR, CZERO, CZERO, U(1,NR+1),LDU)
+ CALL ZLASET('A',M-NR,N1-NR, CZERO, CONE,U(NR+1,NR+1),LDU)
+ END IF
+ END IF
+*
+ CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
+ $ LDU, CWORK(N+1), LWORK-N, IERR )
+*
+ IF ( ROWPIV )
+ $ CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
+*
+*
+ END IF
+ IF ( TRANSP ) THEN
+* .. swap U and V because the procedure worked on A^*
+ DO 6974 p = 1, N
+ CALL ZSWAP( N, U(1,p), 1, V(1,p), 1 )
+ 6974 CONTINUE
+ END IF
+*
+ END IF
+* end of the full SVD
+*
+* Undo scaling, if necessary (and possible)
+*
+ IF ( USCAL2 .LE. (BIG/SVA(1))*USCAL1 ) THEN
+ CALL DLASCL( 'G', 0, 0, USCAL1, USCAL2, NR, 1, SVA, N, IERR )
+ USCAL1 = ONE
+ USCAL2 = ONE
+ END IF
+*
+ IF ( NR .LT. N ) THEN
+ DO 3004 p = NR+1, N
+ SVA(p) = ZERO
+ 3004 CONTINUE
+ END IF
+*
+ RWORK(1) = USCAL2 * SCALEM
+ RWORK(2) = USCAL1
+ IF ( ERREST ) RWORK(3) = SCONDA
+ IF ( LSVEC .AND. RSVEC ) THEN
+ RWORK(4) = CONDR1
+ RWORK(5) = CONDR2
+ END IF
+ IF ( L2TRAN ) THEN
+ RWORK(6) = ENTRA
+ RWORK(7) = ENTRAT
+ END IF
+*
+ IWORK(1) = NR
+ IWORK(2) = NUMRANK
+ IWORK(3) = WARNING
+ IF ( TRANSP ) THEN
+ IWORK(4) = 1
+ ELSE
+ IWORK(4) = -1
+ END IF
+
+*
+ RETURN
+* ..
+* .. END OF ZGEJSV
+* ..
+ END
+*
diff --git a/lapack-netlib/zgesvx.f b/lapack-netlib/zgesvx.f
new file mode 100644
index 000000000..3b193a1b2
--- /dev/null
+++ b/lapack-netlib/zgesvx.f
@@ -0,0 +1,602 @@
+*> \brief ZGESVX computes the solution to system of linear equations A * X = B for GE matrices
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download ZGESVX + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
+* EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
+* WORK, RWORK, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER EQUED, FACT, TRANS
+* INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
+* DOUBLE PRECISION RCOND
+* ..
+* .. Array Arguments ..
+* INTEGER IPIV( * )
+* DOUBLE PRECISION BERR( * ), C( * ), FERR( * ), R( * ),
+* $ RWORK( * )
+* COMPLEX*16 A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
+* $ WORK( * ), X( LDX, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZGESVX uses the LU factorization to compute the solution to a complex
+*> system of linear equations
+*> A * X = B,
+*> where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
+*>
+*> Error bounds on the solution and a condition estimate are also
+*> provided.
+*> \endverbatim
+*
+*> \par Description:
+* =================
+*>
+*> \verbatim
+*>
+*> The following steps are performed:
+*>
+*> 1. If FACT = 'E', real scaling factors are computed to equilibrate
+*> the system:
+*> TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
+*> TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
+*> TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
+*> Whether or not the system will be equilibrated depends on the
+*> scaling of the matrix A, but if equilibration is used, A is
+*> overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
+*> or diag(C)*B (if TRANS = 'T' or 'C').
+*>
+*> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
+*> matrix A (after equilibration if FACT = 'E') as
+*> A = P * L * U,
+*> where P is a permutation matrix, L is a unit lower triangular
+*> matrix, and U is upper triangular.
+*>
+*> 3. If some U(i,i)=0, so that U is exactly singular, then the routine
+*> returns with INFO = i. Otherwise, the factored form of A is used
+*> to estimate the condition number of the matrix A. If the
+*> reciprocal of the condition number is less than machine precision,
+*> INFO = N+1 is returned as a warning, but the routine still goes on
+*> to solve for X and compute error bounds as described below.
+*>
+*> 4. The system of equations is solved for X using the factored form
+*> of A.
+*>
+*> 5. Iterative refinement is applied to improve the computed solution
+*> matrix and calculate error bounds and backward error estimates
+*> for it.
+*>
+*> 6. If equilibration was used, the matrix X is premultiplied by
+*> diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
+*> that it solves the original system before equilibration.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] FACT
+*> \verbatim
+*> FACT is CHARACTER*1
+*> Specifies whether or not the factored form of the matrix A is
+*> supplied on entry, and if not, whether the matrix A should be
+*> equilibrated before it is factored.
+*> = 'F': On entry, AF and IPIV contain the factored form of A.
+*> If EQUED is not 'N', the matrix A has been
+*> equilibrated with scaling factors given by R and C.
+*> A, AF, and IPIV are not modified.
+*> = 'N': The matrix A will be copied to AF and factored.
+*> = 'E': The matrix A will be equilibrated if necessary, then
+*> copied to AF and factored.
+*> \endverbatim
+*>
+*> \param[in] TRANS
+*> \verbatim
+*> TRANS is CHARACTER*1
+*> Specifies the form of the system of equations:
+*> = 'N': A * X = B (No transpose)
+*> = 'T': A**T * X = B (Transpose)
+*> = 'C': A**H * X = B (Conjugate transpose)
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of linear equations, i.e., the order of the
+*> matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] NRHS
+*> \verbatim
+*> NRHS is INTEGER
+*> The number of right hand sides, i.e., the number of columns
+*> of the matrices B and X. NRHS >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX*16 array, dimension (LDA,N)
+*> On entry, the N-by-N matrix A. If FACT = 'F' and EQUED is
+*> not 'N', then A must have been equilibrated by the scaling
+*> factors in R and/or C. A is not modified if FACT = 'F' or
+*> 'N', or if FACT = 'E' and EQUED = 'N' on exit.
+*>
+*> On exit, if EQUED .ne. 'N', A is scaled as follows:
+*> EQUED = 'R': A := diag(R) * A
+*> EQUED = 'C': A := A * diag(C)
+*> EQUED = 'B': A := diag(R) * A * diag(C).
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,N).
+*> \endverbatim
+*>
+*> \param[in,out] AF
+*> \verbatim
+*> AF is COMPLEX*16 array, dimension (LDAF,N)
+*> If FACT = 'F', then AF is an input argument and on entry
+*> contains the factors L and U from the factorization
+*> A = P*L*U as computed by ZGETRF. If EQUED .ne. 'N', then
+*> AF is the factored form of the equilibrated matrix A.
+*>
+*> If FACT = 'N', then AF is an output argument and on exit
+*> returns the factors L and U from the factorization A = P*L*U
+*> of the original matrix A.
+*>
+*> If FACT = 'E', then AF is an output argument and on exit
+*> returns the factors L and U from the factorization A = P*L*U
+*> of the equilibrated matrix A (see the description of A for
+*> the form of the equilibrated matrix).
+*> \endverbatim
+*>
+*> \param[in] LDAF
+*> \verbatim
+*> LDAF is INTEGER
+*> The leading dimension of the array AF. LDAF >= max(1,N).
+*> \endverbatim
+*>
+*> \param[in,out] IPIV
+*> \verbatim
+*> IPIV is INTEGER array, dimension (N)
+*> If FACT = 'F', then IPIV is an input argument and on entry
+*> contains the pivot indices from the factorization A = P*L*U
+*> as computed by ZGETRF; row i of the matrix was interchanged
+*> with row IPIV(i).
+*>
+*> If FACT = 'N', then IPIV is an output argument and on exit
+*> contains the pivot indices from the factorization A = P*L*U
+*> of the original matrix A.
+*>
+*> If FACT = 'E', then IPIV is an output argument and on exit
+*> contains the pivot indices from the factorization A = P*L*U
+*> of the equilibrated matrix A.
+*> \endverbatim
+*>
+*> \param[in,out] EQUED
+*> \verbatim
+*> EQUED is CHARACTER*1
+*> Specifies the form of equilibration that was done.
+*> = 'N': No equilibration (always true if FACT = 'N').
+*> = 'R': Row equilibration, i.e., A has been premultiplied by
+*> diag(R).
+*> = 'C': Column equilibration, i.e., A has been postmultiplied
+*> by diag(C).
+*> = 'B': Both row and column equilibration, i.e., A has been
+*> replaced by diag(R) * A * diag(C).
+*> EQUED is an input argument if FACT = 'F'; otherwise, it is an
+*> output argument.
+*> \endverbatim
+*>
+*> \param[in,out] R
+*> \verbatim
+*> R is DOUBLE PRECISION array, dimension (N)
+*> The row scale factors for A. If EQUED = 'R' or 'B', A is
+*> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
+*> is not accessed. R is an input argument if FACT = 'F';
+*> otherwise, R is an output argument. If FACT = 'F' and
+*> EQUED = 'R' or 'B', each element of R must be positive.
+*> \endverbatim
+*>
+*> \param[in,out] C
+*> \verbatim
+*> C is DOUBLE PRECISION array, dimension (N)
+*> The column scale factors for A. If EQUED = 'C' or 'B', A is
+*> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
+*> is not accessed. C is an input argument if FACT = 'F';
+*> otherwise, C is an output argument. If FACT = 'F' and
+*> EQUED = 'C' or 'B', each element of C must be positive.
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is COMPLEX*16 array, dimension (LDB,NRHS)
+*> On entry, the N-by-NRHS right hand side matrix B.
+*> On exit,
+*> if EQUED = 'N', B is not modified;
+*> if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
+*> diag(R)*B;
+*> if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
+*> overwritten by diag(C)*B.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] X
+*> \verbatim
+*> X is COMPLEX*16 array, dimension (LDX,NRHS)
+*> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
+*> to the original system of equations. Note that A and B are
+*> modified on exit if EQUED .ne. 'N', and the solution to the
+*> equilibrated system is inv(diag(C))*X if TRANS = 'N' and
+*> EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
+*> and EQUED = 'R' or 'B'.
+*> \endverbatim
+*>
+*> \param[in] LDX
+*> \verbatim
+*> LDX is INTEGER
+*> The leading dimension of the array X. LDX >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] RCOND
+*> \verbatim
+*> RCOND is DOUBLE PRECISION
+*> The estimate of the reciprocal condition number of the matrix
+*> A after equilibration (if done). If RCOND is less than the
+*> machine precision (in particular, if RCOND = 0), the matrix
+*> is singular to working precision. This condition is
+*> indicated by a return code of INFO > 0.
+*> \endverbatim
+*>
+*> \param[out] FERR
+*> \verbatim
+*> FERR is DOUBLE PRECISION array, dimension (NRHS)
+*> The estimated forward error bound for each solution vector
+*> X(j) (the j-th column of the solution matrix X).
+*> If XTRUE is the true solution corresponding to X(j), FERR(j)
+*> is an estimated upper bound for the magnitude of the largest
+*> element in (X(j) - XTRUE) divided by the magnitude of the
+*> largest element in X(j). The estimate is as reliable as
+*> the estimate for RCOND, and is almost always a slight
+*> overestimate of the true error.
+*> \endverbatim
+*>
+*> \param[out] BERR
+*> \verbatim
+*> BERR is DOUBLE PRECISION array, dimension (NRHS)
+*> The componentwise relative backward error of each solution
+*> vector X(j) (i.e., the smallest relative change in
+*> any element of A or B that makes X(j) an exact solution).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX*16 array, dimension (2*N)
+*> \endverbatim
+*>
+*> \param[out] RWORK
+*> \verbatim
+*> RWORK is DOUBLE PRECISION array, dimension (MAX(1,2*N))
+*> On exit, RWORK(1) contains the reciprocal pivot growth
+*> factor norm(A)/norm(U). The "max absolute element" norm is
+*> used. If RWORK(1) is much less than 1, then the stability
+*> of the LU factorization of the (equilibrated) matrix A
+*> could be poor. This also means that the solution X, condition
+*> estimator RCOND, and forward error bound FERR could be
+*> unreliable. If factorization fails with 0 RWORK(1) contains the reciprocal pivot growth factor for the
+*> leading INFO columns of A.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: if INFO = i, and i is
+*> <= N: U(i,i) is exactly zero. The factorization has
+*> been completed, but the factor U is exactly
+*> singular, so the solution and error bounds
+*> could not be computed. RCOND = 0 is returned.
+*> = N+1: U is nonsingular, but RCOND is less than machine
+*> precision, meaning that the matrix is singular
+*> to working precision. Nevertheless, the
+*> solution and error bounds are computed because
+*> there are a number of situations where the
+*> computed solution can be more accurate than the
+*> value of RCOND would suggest.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup complex16GEsolve
+*
+* =====================================================================
+ SUBROUTINE ZGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
+ $ EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
+ $ WORK, RWORK, INFO )
+*
+* -- LAPACK driver routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ CHARACTER EQUED, FACT, TRANS
+ INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
+ DOUBLE PRECISION RCOND
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * )
+ DOUBLE PRECISION BERR( * ), C( * ), FERR( * ), R( * ),
+ $ RWORK( * )
+ COMPLEX*16 A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
+ $ WORK( * ), X( LDX, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
+ CHARACTER NORM
+ INTEGER I, INFEQU, J
+ DOUBLE PRECISION AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
+ $ ROWCND, RPVGRW, SMLNUM
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ DOUBLE PRECISION DLAMCH, ZLANGE, ZLANTR
+ EXTERNAL LSAME, DLAMCH, ZLANGE, ZLANTR
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA, ZGECON, ZGEEQU, ZGERFS, ZGETRF, ZGETRS,
+ $ ZLACPY, ZLAQGE
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+ INFO = 0
+ NOFACT = LSAME( FACT, 'N' )
+ EQUIL = LSAME( FACT, 'E' )
+ NOTRAN = LSAME( TRANS, 'N' )
+ IF( NOFACT .OR. EQUIL ) THEN
+ EQUED = 'N'
+ ROWEQU = .FALSE.
+ COLEQU = .FALSE.
+ ELSE
+ ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
+ COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
+ SMLNUM = DLAMCH( 'Safe minimum' )
+ BIGNUM = ONE / SMLNUM
+ END IF
+*
+* Test the input parameters.
+*
+ IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
+ $ THEN
+ INFO = -1
+ ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
+ $ LSAME( TRANS, 'C' ) ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -6
+ ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
+ INFO = -8
+ ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
+ $ ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
+ INFO = -10
+ ELSE
+ IF( ROWEQU ) THEN
+ RCMIN = BIGNUM
+ RCMAX = ZERO
+ DO 10 J = 1, N
+ RCMIN = MIN( RCMIN, R( J ) )
+ RCMAX = MAX( RCMAX, R( J ) )
+ 10 CONTINUE
+ IF( RCMIN.LE.ZERO ) THEN
+ INFO = -11
+ ELSE IF( N.GT.0 ) THEN
+ ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
+ ELSE
+ ROWCND = ONE
+ END IF
+ END IF
+ IF( COLEQU .AND. INFO.EQ.0 ) THEN
+ RCMIN = BIGNUM
+ RCMAX = ZERO
+ DO 20 J = 1, N
+ RCMIN = MIN( RCMIN, C( J ) )
+ RCMAX = MAX( RCMAX, C( J ) )
+ 20 CONTINUE
+ IF( RCMIN.LE.ZERO ) THEN
+ INFO = -12
+ ELSE IF( N.GT.0 ) THEN
+ COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
+ ELSE
+ COLCND = ONE
+ END IF
+ END IF
+ IF( INFO.EQ.0 ) THEN
+ IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -14
+ ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
+ INFO = -16
+ END IF
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZGESVX', -INFO )
+ RETURN
+ END IF
+*
+ IF( EQUIL ) THEN
+*
+* Compute row and column scalings to equilibrate the matrix A.
+*
+ CALL ZGEEQU( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFEQU )
+ IF( INFEQU.EQ.0 ) THEN
+*
+* Equilibrate the matrix.
+*
+ CALL ZLAQGE( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
+ $ EQUED )
+ ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
+ COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
+ END IF
+ END IF
+*
+* Scale the right hand side.
+*
+ IF( NOTRAN ) THEN
+ IF( ROWEQU ) THEN
+ DO 40 J = 1, NRHS
+ DO 30 I = 1, N
+ B( I, J ) = R( I )*B( I, J )
+ 30 CONTINUE
+ 40 CONTINUE
+ END IF
+ ELSE IF( COLEQU ) THEN
+ DO 60 J = 1, NRHS
+ DO 50 I = 1, N
+ B( I, J ) = C( I )*B( I, J )
+ 50 CONTINUE
+ 60 CONTINUE
+ END IF
+*
+ IF( NOFACT .OR. EQUIL ) THEN
+*
+* Compute the LU factorization of A.
+*
+ CALL ZLACPY( 'Full', N, N, A, LDA, AF, LDAF )
+ CALL ZGETRF( N, N, AF, LDAF, IPIV, INFO )
+*
+* Return if INFO is non-zero.
+*
+ IF( INFO.GT.0 ) THEN
+*
+* Compute the reciprocal pivot growth factor of the
+* leading rank-deficient INFO columns of A.
+*
+ RPVGRW = ZLANTR( 'M', 'U', 'N', INFO, INFO, AF, LDAF,
+ $ RWORK )
+ IF( RPVGRW.EQ.ZERO ) THEN
+ RPVGRW = ONE
+ ELSE
+ RPVGRW = ZLANGE( 'M', N, INFO, A, LDA, RWORK ) /
+ $ RPVGRW
+ END IF
+ RWORK( 1 ) = RPVGRW
+ RCOND = ZERO
+ RETURN
+ END IF
+ END IF
+*
+* Compute the norm of the matrix A and the
+* reciprocal pivot growth factor RPVGRW.
+*
+ IF( NOTRAN ) THEN
+ NORM = '1'
+ ELSE
+ NORM = 'I'
+ END IF
+ ANORM = ZLANGE( NORM, N, N, A, LDA, RWORK )
+ RPVGRW = ZLANTR( 'M', 'U', 'N', N, N, AF, LDAF, RWORK )
+ IF( RPVGRW.EQ.ZERO ) THEN
+ RPVGRW = ONE
+ ELSE
+ RPVGRW = ZLANGE( 'M', N, N, A, LDA, RWORK ) / RPVGRW
+ END IF
+*
+* Compute the reciprocal of the condition number of A.
+*
+ CALL ZGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, RWORK, INFO )
+*
+* Compute the solution matrix X.
+*
+ CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
+ CALL ZGETRS( TRANS, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
+*
+* Use iterative refinement to improve the computed solution and
+* compute error bounds and backward error estimates for it.
+*
+ CALL ZGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
+ $ LDX, FERR, BERR, WORK, RWORK, INFO )
+*
+* Transform the solution matrix X to a solution of the original
+* system.
+*
+ IF( NOTRAN ) THEN
+ IF( COLEQU ) THEN
+ DO 80 J = 1, NRHS
+ DO 70 I = 1, N
+ X( I, J ) = C( I )*X( I, J )
+ 70 CONTINUE
+ 80 CONTINUE
+ DO 90 J = 1, NRHS
+ FERR( J ) = FERR( J ) / COLCND
+ 90 CONTINUE
+ END IF
+ ELSE IF( ROWEQU ) THEN
+ DO 110 J = 1, NRHS
+ DO 100 I = 1, N
+ X( I, J ) = R( I )*X( I, J )
+ 100 CONTINUE
+ 110 CONTINUE
+ DO 120 J = 1, NRHS
+ FERR( J ) = FERR( J ) / ROWCND
+ 120 CONTINUE
+ END IF
+*
+* Set INFO = N+1 if the matrix is singular to working precision.
+*
+ IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
+ $ INFO = N + 1
+*
+ RWORK( 1 ) = RPVGRW
+ RETURN
+*
+* End of ZGESVX
+*
+ END