From 54b13b974ce154302ae1871b052d23fd1419bdc0 Mon Sep 17 00:00:00 2001 From: Martin Kroeker Date: Sat, 11 Nov 2023 19:12:26 +0100 Subject: [PATCH] Delete lapack-netlib/TESTING/LIN/cgeqrs.f --- lapack-netlib/TESTING/LIN/cgeqrs.f | 189 ----------------------------- 1 file changed, 189 deletions(-) delete mode 100644 lapack-netlib/TESTING/LIN/cgeqrs.f diff --git a/lapack-netlib/TESTING/LIN/cgeqrs.f b/lapack-netlib/TESTING/LIN/cgeqrs.f deleted file mode 100644 index 13ac7f74f..000000000 --- a/lapack-netlib/TESTING/LIN/cgeqrs.f +++ /dev/null @@ -1,189 +0,0 @@ -*> \brief \b CGEQRS -* -* =========== DOCUMENTATION =========== -* -* Online html documentation available at -* http://www.netlib.org/lapack/explore-html/ -* -* Definition: -* =========== -* -* SUBROUTINE CGEQRS( M, N, NRHS, A, LDA, TAU, B, LDB, WORK, LWORK, -* INFO ) -* -* .. Scalar Arguments .. -* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS -* .. -* .. Array Arguments .. -* COMPLEX A( LDA, * ), B( LDB, * ), TAU( * ), -* $ WORK( LWORK ) -* .. -* -* -*> \par Purpose: -* ============= -*> -*> \verbatim -*> -*> Solve the least squares problem -*> min || A*X - B || -*> using the QR factorization -*> A = Q*R -*> computed by CGEQRF. -*> \endverbatim -* -* Arguments: -* ========== -* -*> \param[in] M -*> \verbatim -*> M is INTEGER -*> The number of rows of the matrix A. M >= 0. -*> \endverbatim -*> -*> \param[in] N -*> \verbatim -*> N is INTEGER -*> The number of columns of the matrix A. M >= N >= 0. -*> \endverbatim -*> -*> \param[in] NRHS -*> \verbatim -*> NRHS is INTEGER -*> The number of columns of B. NRHS >= 0. -*> \endverbatim -*> -*> \param[in] A -*> \verbatim -*> A is COMPLEX array, dimension (LDA,N) -*> Details of the QR factorization of the original matrix A as -*> returned by CGEQRF. -*> \endverbatim -*> -*> \param[in] LDA -*> \verbatim -*> LDA is INTEGER -*> The leading dimension of the array A. LDA >= M. -*> \endverbatim -*> -*> \param[in] TAU -*> \verbatim -*> TAU is COMPLEX array, dimension (N) -*> Details of the orthogonal matrix Q. -*> \endverbatim -*> -*> \param[in,out] B -*> \verbatim -*> B is COMPLEX array, dimension (LDB,NRHS) -*> On entry, the m-by-nrhs right hand side matrix B. -*> On exit, the n-by-nrhs solution matrix X. -*> \endverbatim -*> -*> \param[in] LDB -*> \verbatim -*> LDB is INTEGER -*> The leading dimension of the array B. LDB >= M. -*> \endverbatim -*> -*> \param[out] WORK -*> \verbatim -*> WORK is COMPLEX array, dimension (LWORK) -*> \endverbatim -*> -*> \param[in] LWORK -*> \verbatim -*> LWORK is INTEGER -*> The length of the array WORK. LWORK must be at least NRHS, -*> and should be at least NRHS*NB, where NB is the block size -*> for this environment. -*> \endverbatim -*> -*> \param[out] INFO -*> \verbatim -*> INFO is INTEGER -*> = 0: successful exit -*> < 0: if INFO = -i, the i-th argument had an illegal value -*> \endverbatim -* -* Authors: -* ======== -* -*> \author Univ. of Tennessee -*> \author Univ. of California Berkeley -*> \author Univ. of Colorado Denver -*> \author NAG Ltd. -* -*> \ingroup complex_lin -* -* ===================================================================== - SUBROUTINE CGEQRS( M, N, NRHS, A, LDA, TAU, B, LDB, WORK, LWORK, - $ INFO ) -* -* -- LAPACK test routine -- -* -- LAPACK is a software package provided by Univ. of Tennessee, -- -* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* -* .. Scalar Arguments .. - INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS -* .. -* .. Array Arguments .. - COMPLEX A( LDA, * ), B( LDB, * ), TAU( * ), - $ WORK( LWORK ) -* .. -* -* ===================================================================== -* -* .. Parameters .. - COMPLEX ONE - PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) ) -* .. -* .. External Subroutines .. - EXTERNAL CTRSM, CUNMQR, XERBLA -* .. -* .. Intrinsic Functions .. - INTRINSIC MAX -* .. -* .. Executable Statements .. -* -* Test the input arguments. -* - INFO = 0 - IF( M.LT.0 ) THEN - INFO = -1 - ELSE IF( N.LT.0 .OR. N.GT.M ) THEN - INFO = -2 - ELSE IF( NRHS.LT.0 ) THEN - INFO = -3 - ELSE IF( LDA.LT.MAX( 1, M ) ) THEN - INFO = -5 - ELSE IF( LDB.LT.MAX( 1, M ) ) THEN - INFO = -8 - ELSE IF( LWORK.LT.1 .OR. LWORK.LT.NRHS .AND. M.GT.0 .AND. N.GT.0 ) - $ THEN - INFO = -10 - END IF - IF( INFO.NE.0 ) THEN - CALL XERBLA( 'CGEQRS', -INFO ) - RETURN - END IF -* -* Quick return if possible -* - IF( N.EQ.0 .OR. NRHS.EQ.0 .OR. M.EQ.0 ) - $ RETURN -* -* B := Q' * B -* - CALL CUNMQR( 'Left', 'Conjugate transpose', M, NRHS, N, A, LDA, - $ TAU, B, LDB, WORK, LWORK, INFO ) -* -* Solve R*X = B(1:n,:) -* - CALL CTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', N, NRHS, - $ ONE, A, LDA, B, LDB ) -* - RETURN -* -* End of CGEQRS -* - END