diff --git a/lapack-netlib/SRC/Makefile b/lapack-netlib/SRC/Makefile
index 83baac875..470b5326e 100644
--- a/lapack-netlib/SRC/Makefile
+++ b/lapack-netlib/SRC/Makefile
@@ -135,14 +135,14 @@ SLASRC_O = \
slaqgb.o slaqge.o slaqp2.o slaqps.o slaqsb.o slaqsp.o slaqsy.o \
slaqr0.o slaqr1.o slaqr2.o slaqr3.o slaqr4.o slaqr5.o \
slaqtr.o slar1v.o slar2v.o ilaslr.o ilaslc.o \
- slarf.o slarfb.o slarfg.o slarfgp.o slarft.o slarfx.o slarfy.o slargv.o \
+ slarf.o slarfb.o slarfb_gett.o slarfg.o slarfgp.o slarft.o slarfx.o slarfy.o slargv.o \
slarrv.o slartv.o \
slarz.o slarzb.o slarzt.o slaswp.o slasy2.o slasyf.o slasyf_rook.o \
slasyf_rk.o \
slatbs.o slatdf.o slatps.o slatrd.o slatrs.o slatrz.o \
slauu2.o slauum.o sopgtr.o sopmtr.o sorg2l.o sorg2r.o \
sorgbr.o sorghr.o sorgl2.o sorglq.o sorgql.o sorgqr.o sorgr2.o \
- sorgrq.o sorgtr.o sorgtsqr.o sorm2l.o sorm2r.o sorm22.o \
+ sorgrq.o sorgtr.o sorgtsqr.o sorgtsqr_row.o sorm2l.o sorm2r.o sorm22.o \
sormbr.o sormhr.o sorml2.o sormlq.o sormql.o sormqr.o sormr2.o \
sormr3.o sormrq.o sormrz.o sormtr.o spbcon.o spbequ.o spbrfs.o \
spbstf.o spbsv.o spbsvx.o \
@@ -181,7 +181,7 @@ SLASRC_O = \
sgeqrt.o sgeqrt2.o sgeqrt3.o sgemqrt.o \
stpqrt.o stpqrt2.o stpmqrt.o stprfb.o \
sgelqt.o sgelqt3.o sgemlqt.o \
- sgetsls.o sgeqr.o slatsqr.o slamtsqr.o sgemqr.o \
+ sgetsls.o sgetsqrhrt.o sgeqr.o slatsqr.o slamtsqr.o sgemqr.o \
sgelq.o slaswlq.o slamswlq.o sgemlq.o \
stplqt.o stplqt2.o stpmlqt.o \
sorhr_col.o slaorhr_col_getrfnp.o slaorhr_col_getrfnp2.o \
@@ -250,7 +250,7 @@ CLASRC_O = \
claqhb.o claqhe.o claqhp.o claqp2.o claqps.o claqsb.o \
claqr0.o claqr1.o claqr2.o claqr3.o claqr4.o claqr5.o \
claqsp.o claqsy.o clar1v.o clar2v.o ilaclr.o ilaclc.o \
- clarf.o clarfb.o clarfg.o clarft.o clarfgp.o \
+ clarf.o clarfb.o clarfb_gett.o clarfg.o clarft.o clarfgp.o \
clarfx.o clarfy.o clargv.o clarnv.o clarrv.o clartg.o clartv.o \
clarz.o clarzb.o clarzt.o clascl.o claset.o clasr.o classq.o \
claswp.o clasyf.o clasyf_rook.o clasyf_rk.o clasyf_aa.o \
@@ -278,7 +278,7 @@ CLASRC_O = \
ctptrs.o ctrcon.o ctrevc.o ctrevc3.o ctrexc.o ctrrfs.o ctrsen.o ctrsna.o \
ctrsyl.o ctrti2.o ctrtri.o ctrtrs.o ctzrzf.o cung2l.o cung2r.o \
cungbr.o cunghr.o cungl2.o cunglq.o cungql.o cungqr.o cungr2.o \
- cungrq.o cungtr.o cungtsqr.o cunm2l.o cunm2r.o cunmbr.o cunmhr.o cunml2.o cunm22.o \
+ cungrq.o cungtr.o cungtsqr.o cungtsqr_row.o cunm2l.o cunm2r.o cunmbr.o cunmhr.o cunml2.o cunm22.o \
cunmlq.o cunmql.o cunmqr.o cunmr2.o cunmr3.o cunmrq.o cunmrz.o \
cunmtr.o cupgtr.o cupmtr.o icmax1.o scsum1.o cstemr.o \
chfrk.o ctfttp.o clanhf.o cpftrf.o cpftri.o cpftrs.o ctfsm.o ctftri.o \
@@ -342,14 +342,14 @@ DLASRC_O = \
dlaqgb.o dlaqge.o dlaqp2.o dlaqps.o dlaqsb.o dlaqsp.o dlaqsy.o \
dlaqr0.o dlaqr1.o dlaqr2.o dlaqr3.o dlaqr4.o dlaqr5.o \
dlaqtr.o dlar1v.o dlar2v.o iladlr.o iladlc.o \
- dlarf.o dlarfb.o dlarfg.o dlarfgp.o dlarft.o dlarfx.o dlarfy.o \
+ dlarf.o dlarfb.o dlarfb_gett.o dlarfg.o dlarfgp.o dlarft.o dlarfx.o dlarfy.o \
dlargv.o dlarrv.o dlartv.o \
dlarz.o dlarzb.o dlarzt.o dlaswp.o dlasy2.o \
dlasyf.o dlasyf_rook.o dlasyf_rk.o \
dlatbs.o dlatdf.o dlatps.o dlatrd.o dlatrs.o dlatrz.o dlauu2.o \
dlauum.o dopgtr.o dopmtr.o dorg2l.o dorg2r.o \
dorgbr.o dorghr.o dorgl2.o dorglq.o dorgql.o dorgqr.o dorgr2.o \
- dorgrq.o dorgtr.o dorgtsqr.o dorm2l.o dorm2r.o dorm22.o \
+ dorgrq.o dorgtr.o dorgtsqr.o dorgtsqr_row.o dorm2l.o dorm2r.o dorm22.o \
dormbr.o dormhr.o dorml2.o dormlq.o dormql.o dormqr.o dormr2.o \
dormr3.o dormrq.o dormrz.o dormtr.o dpbcon.o dpbequ.o dpbrfs.o \
dpbstf.o dpbsv.o dpbsvx.o \
@@ -389,7 +389,7 @@ DLASRC_O = \
dgeqrt.o dgeqrt2.o dgeqrt3.o dgemqrt.o \
dtpqrt.o dtpqrt2.o dtpmqrt.o dtprfb.o \
dgelqt.o dgelqt3.o dgemlqt.o \
- dgetsls.o dgeqr.o dlatsqr.o dlamtsqr.o dgemqr.o \
+ dgetsls.o dgetsqrhrt.o dgeqr.o dlatsqr.o dlamtsqr.o dgemqr.o \
dgelq.o dlaswlq.o dlamswlq.o dgemlq.o \
dtplqt.o dtplqt2.o dtpmlqt.o \
dorhr_col.o dlaorhr_col_getrfnp.o dlaorhr_col_getrfnp2.o \
@@ -455,7 +455,7 @@ ZLASRC_O = \
zlaqhb.o zlaqhe.o zlaqhp.o zlaqp2.o zlaqps.o zlaqsb.o \
zlaqr0.o zlaqr1.o zlaqr2.o zlaqr3.o zlaqr4.o zlaqr5.o \
zlaqsp.o zlaqsy.o zlar1v.o zlar2v.o ilazlr.o ilazlc.o \
- zlarcm.o zlarf.o zlarfb.o \
+ zlarcm.o zlarf.o zlarfb.o zlarfb_gett.o \
zlarfg.o zlarft.o zlarfgp.o \
zlarfx.o zlarfy.o zlargv.o zlarnv.o zlarrv.o zlartg.o zlartv.o \
zlarz.o zlarzb.o zlarzt.o zlascl.o zlaset.o zlasr.o \
@@ -484,7 +484,7 @@ ZLASRC_O = \
ztptrs.o ztrcon.o ztrevc.o ztrevc3.o ztrexc.o ztrrfs.o ztrsen.o ztrsna.o \
ztrsyl.o ztrti2.o ztrtri.o ztrtrs.o ztzrzf.o zung2l.o \
zung2r.o zungbr.o zunghr.o zungl2.o zunglq.o zungql.o zungqr.o zungr2.o \
- zungrq.o zungtr.o zungtsqr.o zunm2l.o zunm2r.o zunmbr.o zunmhr.o zunml2.o zunm22.o \
+ zungrq.o zungtr.o zungtsqr.o zungtsqr_row.o zunm2l.o zunm2r.o zunmbr.o zunmhr.o zunml2.o zunm22.o \
zunmlq.o zunmql.o zunmqr.o zunmr2.o zunmr3.o zunmrq.o zunmrz.o \
zunmtr.o zupgtr.o \
zupmtr.o izmax1.o dzsum1.o zstemr.o \
@@ -498,7 +498,7 @@ ZLASRC_O = \
ztpqrt.o ztpqrt2.o ztpmqrt.o ztprfb.o \
ztplqt.o ztplqt2.o ztpmlqt.o \
zgelqt.o zgelqt3.o zgemlqt.o \
- zgetsls.o zgeqr.o zlatsqr.o zlamtsqr.o zgemqr.o \
+ zgetsls.o zgetsqrhrt.o zgeqr.o zlatsqr.o zlamtsqr.o zgemqr.o \
zgelq.o zlaswlq.o zlamswlq.o zgemlq.o \
zunhr_col.o zlaunhr_col_getrfnp.o zlaunhr_col_getrfnp2.o \
zhetrd_2stage.o zhetrd_he2hb.o zhetrd_hb2st.o zhb2st_kernels.o \
diff --git a/lapack-netlib/SRC/cgetsqrhrt.f b/lapack-netlib/SRC/cgetsqrhrt.f
new file mode 100644
index 000000000..4e4dc1d4a
--- /dev/null
+++ b/lapack-netlib/SRC/cgetsqrhrt.f
@@ -0,0 +1,349 @@
+*> \brief \b CGETSQRHRT
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download CGETSQRHRT + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE CGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK,
+* $ LWORK, INFO )
+* IMPLICIT NONE
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDT, LWORK, M, N, NB1, NB2, MB1
+* ..
+* .. Array Arguments ..
+* COMPLEX*16 A( LDA, * ), T( LDT, * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> CGETSQRHRT computes a NB2-sized column blocked QR-factorization
+*> of a complex M-by-N matrix A with M >= N,
+*>
+*> A = Q * R.
+*>
+*> The routine uses internally a NB1-sized column blocked and MB1-sized
+*> row blocked TSQR-factorization and perfors the reconstruction
+*> of the Householder vectors from the TSQR output. The routine also
+*> converts the R_tsqr factor from the TSQR-factorization output into
+*> the R factor that corresponds to the Householder QR-factorization,
+*>
+*> A = Q_tsqr * R_tsqr = Q * R.
+*>
+*> The output Q and R factors are stored in the same format as in CGEQRT
+*> (Q is in blocked compact WY-representation). See the documentation
+*> of CGEQRT for more details on the format.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. M >= N >= 0.
+*> \endverbatim
+*>
+*> \param[in] MB1
+*> \verbatim
+*> MB1 is INTEGER
+*> The row block size to be used in the blocked TSQR.
+*> MB1 > N.
+*> \endverbatim
+*>
+*> \param[in] NB1
+*> \verbatim
+*> NB1 is INTEGER
+*> The column block size to be used in the blocked TSQR.
+*> N >= NB1 >= 1.
+*> \endverbatim
+*>
+*> \param[in] NB2
+*> \verbatim
+*> NB2 is INTEGER
+*> The block size to be used in the blocked QR that is
+*> output. NB2 >= 1.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX*16 array, dimension (LDA,N)
+*>
+*> On entry: an M-by-N matrix A.
+*>
+*> On exit:
+*> a) the elements on and above the diagonal
+*> of the array contain the N-by-N upper-triangular
+*> matrix R corresponding to the Householder QR;
+*> b) the elements below the diagonal represent Q by
+*> the columns of blocked V (compact WY-representation).
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[out] T
+*> \verbatim
+*> T is COMPLEX array, dimension (LDT,N))
+*> The upper triangular block reflectors stored in compact form
+*> as a sequence of upper triangular blocks.
+*> \endverbatim
+*>
+*> \param[in] LDT
+*> \verbatim
+*> LDT is INTEGER
+*> The leading dimension of the array T. LDT >= NB2.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> (workspace) COMPLEX array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> The dimension of the array WORK.
+*> LWORK >= MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ),
+*> where
+*> NUM_ALL_ROW_BLOCKS = CEIL((M-N)/(MB1-N)),
+*> NB1LOCAL = MIN(NB1,N).
+*> LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL,
+*> LW1 = NB1LOCAL * N,
+*> LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ),
+*> If LWORK = -1, then a workspace query is assumed.
+*> The routine only calculates the optimal size of the WORK
+*> array, returns this value as the first entry of the WORK
+*> array, and no error message related to LWORK is issued
+*> by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup comlpexOTHERcomputational
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2020, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> \endverbatim
+*>
+* =====================================================================
+ SUBROUTINE CGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK,
+ $ LWORK, INFO )
+ IMPLICIT NONE
+*
+* -- LAPACK computational routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDT, LWORK, M, N, NB1, NB2, MB1
+* ..
+* .. Array Arguments ..
+ COMPLEX A( LDA, * ), T( LDT, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ COMPLEX CONE
+ PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY
+ INTEGER I, IINFO, J, LW1, LW2, LWT, LDWT, LWORKOPT,
+ $ NB1LOCAL, NB2LOCAL, NUM_ALL_ROW_BLOCKS
+* ..
+* .. External Subroutines ..
+ EXTERNAL CCOPY, CLATSQR, CUNGTSQR_ROW, CUNHR_COL,
+ $ XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC CEILING, REAL, CMPLX, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments
+*
+ INFO = 0
+ LQUERY = LWORK.EQ.-1
+ IF( M.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
+ INFO = -2
+ ELSE IF( MB1.LE.N ) THEN
+ INFO = -3
+ ELSE IF( NB1.LT.1 ) THEN
+ INFO = -4
+ ELSE IF( NB2.LT.1 ) THEN
+ INFO = -5
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -7
+ ELSE IF( LDT.LT.MAX( 1, MIN( NB2, N ) ) ) THEN
+ INFO = -9
+ ELSE
+*
+* Test the input LWORK for the dimension of the array WORK.
+* This workspace is used to store array:
+* a) Matrix T and WORK for CLATSQR;
+* b) N-by-N upper-triangular factor R_tsqr;
+* c) Matrix T and array WORK for CUNGTSQR_ROW;
+* d) Diagonal D for CUNHR_COL.
+*
+ IF( LWORK.LT.N*N+1 .AND. .NOT.LQUERY ) THEN
+ INFO = -11
+ ELSE
+*
+* Set block size for column blocks
+*
+ NB1LOCAL = MIN( NB1, N )
+*
+ NUM_ALL_ROW_BLOCKS = MAX( 1,
+ $ CEILING( REAL( M - N ) / REAL( MB1 - N ) ) )
+*
+* Length and leading dimension of WORK array to place
+* T array in TSQR.
+*
+ LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL
+
+ LDWT = NB1LOCAL
+*
+* Length of TSQR work array
+*
+ LW1 = NB1LOCAL * N
+*
+* Length of CUNGTSQR_ROW work array.
+*
+ LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) )
+*
+ LWORKOPT = MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) )
+*
+ IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN
+ INFO = -11
+ END IF
+*
+ END IF
+ END IF
+*
+* Handle error in the input parameters and return workspace query.
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'CGETSQRHRT', -INFO )
+ RETURN
+ ELSE IF ( LQUERY ) THEN
+ WORK( 1 ) = CMPLX( LWORKOPT )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( MIN( M, N ).EQ.0 ) THEN
+ WORK( 1 ) = CMPLX( LWORKOPT )
+ RETURN
+ END IF
+*
+ NB2LOCAL = MIN( NB2, N )
+*
+*
+* (1) Perform TSQR-factorization of the M-by-N matrix A.
+*
+ CALL CLATSQR( M, N, MB1, NB1LOCAL, A, LDA, WORK, LDWT,
+ $ WORK(LWT+1), LW1, IINFO )
+*
+* (2) Copy the factor R_tsqr stored in the upper-triangular part
+* of A into the square matrix in the work array
+* WORK(LWT+1:LWT+N*N) column-by-column.
+*
+ DO J = 1, N
+ CALL CCOPY( J, A( 1, J ), 1, WORK( LWT + N*(J-1)+1 ), 1 )
+ END DO
+*
+* (3) Generate a M-by-N matrix Q with orthonormal columns from
+* the result stored below the diagonal in the array A in place.
+*
+
+ CALL CUNGTSQR_ROW( M, N, MB1, NB1LOCAL, A, LDA, WORK, LDWT,
+ $ WORK( LWT+N*N+1 ), LW2, IINFO )
+*
+* (4) Perform the reconstruction of Householder vectors from
+* the matrix Q (stored in A) in place.
+*
+ CALL CUNHR_COL( M, N, NB2LOCAL, A, LDA, T, LDT,
+ $ WORK( LWT+N*N+1 ), IINFO )
+*
+* (5) Copy the factor R_tsqr stored in the square matrix in the
+* work array WORK(LWT+1:LWT+N*N) into the upper-triangular
+* part of A.
+*
+* (6) Compute from R_tsqr the factor R_hr corresponding to
+* the reconstructed Householder vectors, i.e. R_hr = S * R_tsqr.
+* This multiplication by the sign matrix S on the left means
+* changing the sign of I-th row of the matrix R_tsqr according
+* to sign of the I-th diagonal element DIAG(I) of the matrix S.
+* DIAG is stored in WORK( LWT+N*N+1 ) from the CUNHR_COL output.
+*
+* (5) and (6) can be combined in a single loop, so the rows in A
+* are accessed only once.
+*
+ DO I = 1, N
+ IF( WORK( LWT+N*N+I ).EQ.-CONE ) THEN
+ DO J = I, N
+ A( I, J ) = -CONE * WORK( LWT+N*(J-1)+I )
+ END DO
+ ELSE
+ CALL CCOPY( N-I+1, WORK(LWT+N*(I-1)+I), N, A( I, I ), LDA )
+ END IF
+ END DO
+*
+ WORK( 1 ) = CMPLX( LWORKOPT )
+ RETURN
+*
+* End of CGETSQRHRT
+*
+ END
\ No newline at end of file
diff --git a/lapack-netlib/SRC/clarfb_gett.f b/lapack-netlib/SRC/clarfb_gett.f
new file mode 100644
index 000000000..ee6959ed8
--- /dev/null
+++ b/lapack-netlib/SRC/clarfb_gett.f
@@ -0,0 +1,597 @@
+*> \brief \b CLARFB_GETT
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download CLARFB_GETT + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*>
+* Definition:
+* ===========
+*
+* SUBROUTINE CLARFB_GETT( IDENT, M, N, K, T, LDT, A, LDA, B, LDB,
+* $ WORK, LDWORK )
+* IMPLICIT NONE
+*
+* .. Scalar Arguments ..
+* CHARACTER IDENT
+* INTEGER K, LDA, LDB, LDT, LDWORK, M, N
+* ..
+* .. Array Arguments ..
+* COMPLEX A( LDA, * ), B( LDB, * ), T( LDT, * ),
+* $ WORK( LDWORK, * )
+* ..
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> CLARFB_GETT applies a complex Householder block reflector H from the
+*> left to a complex (K+M)-by-N "triangular-pentagonal" matrix
+*> composed of two block matrices: an upper trapezoidal K-by-N matrix A
+*> stored in the array A, and a rectangular M-by-(N-K) matrix B, stored
+*> in the array B. The block reflector H is stored in a compact
+*> WY-representation, where the elementary reflectors are in the
+*> arrays A, B and T. See Further Details section.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] IDENT
+*> \verbatim
+*> IDENT is CHARACTER*1
+*> If IDENT = not 'I', or not 'i', then V1 is unit
+*> lower-triangular and stored in the left K-by-K block of
+*> the input matrix A,
+*> If IDENT = 'I' or 'i', then V1 is an identity matrix and
+*> not stored.
+*> See Further Details section.
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix B.
+*> M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrices A and B.
+*> N >= 0.
+*> \endverbatim
+*>
+*> \param[in] K
+*> \verbatim
+*> K is INTEGER
+*> The number or rows of the matrix A.
+*> K is also order of the matrix T, i.e. the number of
+*> elementary reflectors whose product defines the block
+*> reflector. 0 <= K <= N.
+*> \endverbatim
+*>
+*> \param[in] T
+*> \verbatim
+*> T is COMPLEX array, dimension (LDT,K)
+*> The upper-triangular K-by-K matrix T in the representation
+*> of the block reflector.
+*> \endverbatim
+*>
+*> \param[in] LDT
+*> \verbatim
+*> LDT is INTEGER
+*> The leading dimension of the array T. LDT >= K.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX array, dimension (LDA,N)
+*>
+*> On entry:
+*> a) In the K-by-N upper-trapezoidal part A: input matrix A.
+*> b) In the columns below the diagonal: columns of V1
+*> (ones are not stored on the diagonal).
+*>
+*> On exit:
+*> A is overwritten by rectangular K-by-N product H*A.
+*>
+*> See Further Details section.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,K).
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is COMPLEX array, dimension (LDB,N)
+*>
+*> On entry:
+*> a) In the M-by-(N-K) right block: input matrix B.
+*> b) In the M-by-N left block: columns of V2.
+*>
+*> On exit:
+*> B is overwritten by rectangular M-by-N product H*B.
+*>
+*> See Further Details section.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= max(1,M).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX array,
+*> dimension (LDWORK,max(K,N-K))
+*> \endverbatim
+*>
+*> \param[in] LDWORK
+*> \verbatim
+*> LDWORK is INTEGER
+*> The leading dimension of the array WORK. LDWORK>=max(1,K).
+*>
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup complexOTHERauxiliary
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2020, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> \endverbatim
+*
+*> \par Further Details:
+* =====================
+*>
+*> \verbatim
+*>
+*> (1) Description of the Algebraic Operation.
+*>
+*> The matrix A is a K-by-N matrix composed of two column block
+*> matrices, A1, which is K-by-K, and A2, which is K-by-(N-K):
+*> A = ( A1, A2 ).
+*> The matrix B is an M-by-N matrix composed of two column block
+*> matrices, B1, which is M-by-K, and B2, which is M-by-(N-K):
+*> B = ( B1, B2 ).
+*>
+*> Perform the operation:
+*>
+*> ( A_out ) := H * ( A_in ) = ( I - V * T * V**H ) * ( A_in ) =
+*> ( B_out ) ( B_in ) ( B_in )
+*> = ( I - ( V1 ) * T * ( V1**H, V2**H ) ) * ( A_in )
+*> ( V2 ) ( B_in )
+*> On input:
+*>
+*> a) ( A_in ) consists of two block columns:
+*> ( B_in )
+*>
+*> ( A_in ) = (( A1_in ) ( A2_in )) = (( A1_in ) ( A2_in ))
+*> ( B_in ) (( B1_in ) ( B2_in )) (( 0 ) ( B2_in )),
+*>
+*> where the column blocks are:
+*>
+*> ( A1_in ) is a K-by-K upper-triangular matrix stored in the
+*> upper triangular part of the array A(1:K,1:K).
+*> ( B1_in ) is an M-by-K rectangular ZERO matrix and not stored.
+*>
+*> ( A2_in ) is a K-by-(N-K) rectangular matrix stored
+*> in the array A(1:K,K+1:N).
+*> ( B2_in ) is an M-by-(N-K) rectangular matrix stored
+*> in the array B(1:M,K+1:N).
+*>
+*> b) V = ( V1 )
+*> ( V2 )
+*>
+*> where:
+*> 1) if IDENT == 'I',V1 is a K-by-K identity matrix, not stored;
+*> 2) if IDENT != 'I',V1 is a K-by-K unit lower-triangular matrix,
+*> stored in the lower-triangular part of the array
+*> A(1:K,1:K) (ones are not stored),
+*> and V2 is an M-by-K rectangular stored the array B(1:M,1:K),
+*> (because on input B1_in is a rectangular zero
+*> matrix that is not stored and the space is
+*> used to store V2).
+*>
+*> c) T is a K-by-K upper-triangular matrix stored
+*> in the array T(1:K,1:K).
+*>
+*> On output:
+*>
+*> a) ( A_out ) consists of two block columns:
+*> ( B_out )
+*>
+*> ( A_out ) = (( A1_out ) ( A2_out ))
+*> ( B_out ) (( B1_out ) ( B2_out )),
+*>
+*> where the column blocks are:
+*>
+*> ( A1_out ) is a K-by-K square matrix, or a K-by-K
+*> upper-triangular matrix, if V1 is an
+*> identity matrix. AiOut is stored in
+*> the array A(1:K,1:K).
+*> ( B1_out ) is an M-by-K rectangular matrix stored
+*> in the array B(1:M,K:N).
+*>
+*> ( A2_out ) is a K-by-(N-K) rectangular matrix stored
+*> in the array A(1:K,K+1:N).
+*> ( B2_out ) is an M-by-(N-K) rectangular matrix stored
+*> in the array B(1:M,K+1:N).
+*>
+*>
+*> The operation above can be represented as the same operation
+*> on each block column:
+*>
+*> ( A1_out ) := H * ( A1_in ) = ( I - V * T * V**H ) * ( A1_in )
+*> ( B1_out ) ( 0 ) ( 0 )
+*>
+*> ( A2_out ) := H * ( A2_in ) = ( I - V * T * V**H ) * ( A2_in )
+*> ( B2_out ) ( B2_in ) ( B2_in )
+*>
+*> If IDENT != 'I':
+*>
+*> The computation for column block 1:
+*>
+*> A1_out: = A1_in - V1*T*(V1**H)*A1_in
+*>
+*> B1_out: = - V2*T*(V1**H)*A1_in
+*>
+*> The computation for column block 2, which exists if N > K:
+*>
+*> A2_out: = A2_in - V1*T*( (V1**H)*A2_in + (V2**H)*B2_in )
+*>
+*> B2_out: = B2_in - V2*T*( (V1**H)*A2_in + (V2**H)*B2_in )
+*>
+*> If IDENT == 'I':
+*>
+*> The operation for column block 1:
+*>
+*> A1_out: = A1_in - V1*T*A1_in
+*>
+*> B1_out: = - V2*T*A1_in
+*>
+*> The computation for column block 2, which exists if N > K:
+*>
+*> A2_out: = A2_in - T*( A2_in + (V2**H)*B2_in )
+*>
+*> B2_out: = B2_in - V2*T*( A2_in + (V2**H)*B2_in )
+*>
+*> (2) Description of the Algorithmic Computation.
+*>
+*> In the first step, we compute column block 2, i.e. A2 and B2.
+*> Here, we need to use the K-by-(N-K) rectangular workspace
+*> matrix W2 that is of the same size as the matrix A2.
+*> W2 is stored in the array WORK(1:K,1:(N-K)).
+*>
+*> In the second step, we compute column block 1, i.e. A1 and B1.
+*> Here, we need to use the K-by-K square workspace matrix W1
+*> that is of the same size as the as the matrix A1.
+*> W1 is stored in the array WORK(1:K,1:K).
+*>
+*> NOTE: Hence, in this routine, we need the workspace array WORK
+*> only of size WORK(1:K,1:max(K,N-K)) so it can hold both W2 from
+*> the first step and W1 from the second step.
+*>
+*> Case (A), when V1 is unit lower-triangular, i.e. IDENT != 'I',
+*> more computations than in the Case (B).
+*>
+*> if( IDENT != 'I' ) then
+*> if ( N > K ) then
+*> (First Step - column block 2)
+*> col2_(1) W2: = A2
+*> col2_(2) W2: = (V1**H) * W2 = (unit_lower_tr_of_(A1)**H) * W2
+*> col2_(3) W2: = W2 + (V2**H) * B2 = W2 + (B1**H) * B2
+*> col2_(4) W2: = T * W2
+*> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2
+*> col2_(6) W2: = V1 * W2 = unit_lower_tr_of_(A1) * W2
+*> col2_(7) A2: = A2 - W2
+*> else
+*> (Second Step - column block 1)
+*> col1_(1) W1: = A1
+*> col1_(2) W1: = (V1**H) * W1 = (unit_lower_tr_of_(A1)**H) * W1
+*> col1_(3) W1: = T * W1
+*> col1_(4) B1: = - V2 * W1 = - B1 * W1
+*> col1_(5) square W1: = V1 * W1 = unit_lower_tr_of_(A1) * W1
+*> col1_(6) square A1: = A1 - W1
+*> end if
+*> end if
+*>
+*> Case (B), when V1 is an identity matrix, i.e. IDENT == 'I',
+*> less computations than in the Case (A)
+*>
+*> if( IDENT == 'I' ) then
+*> if ( N > K ) then
+*> (First Step - column block 2)
+*> col2_(1) W2: = A2
+*> col2_(3) W2: = W2 + (V2**H) * B2 = W2 + (B1**H) * B2
+*> col2_(4) W2: = T * W2
+*> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2
+*> col2_(7) A2: = A2 - W2
+*> else
+*> (Second Step - column block 1)
+*> col1_(1) W1: = A1
+*> col1_(3) W1: = T * W1
+*> col1_(4) B1: = - V2 * W1 = - B1 * W1
+*> col1_(6) upper-triangular_of_(A1): = A1 - W1
+*> end if
+*> end if
+*>
+*> Combine these cases (A) and (B) together, this is the resulting
+*> algorithm:
+*>
+*> if ( N > K ) then
+*>
+*> (First Step - column block 2)
+*>
+*> col2_(1) W2: = A2
+*> if( IDENT != 'I' ) then
+*> col2_(2) W2: = (V1**H) * W2
+*> = (unit_lower_tr_of_(A1)**H) * W2
+*> end if
+*> col2_(3) W2: = W2 + (V2**H) * B2 = W2 + (B1**H) * B2]
+*> col2_(4) W2: = T * W2
+*> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2
+*> if( IDENT != 'I' ) then
+*> col2_(6) W2: = V1 * W2 = unit_lower_tr_of_(A1) * W2
+*> end if
+*> col2_(7) A2: = A2 - W2
+*>
+*> else
+*>
+*> (Second Step - column block 1)
+*>
+*> col1_(1) W1: = A1
+*> if( IDENT != 'I' ) then
+*> col1_(2) W1: = (V1**H) * W1
+*> = (unit_lower_tr_of_(A1)**H) * W1
+*> end if
+*> col1_(3) W1: = T * W1
+*> col1_(4) B1: = - V2 * W1 = - B1 * W1
+*> if( IDENT != 'I' ) then
+*> col1_(5) square W1: = V1 * W1 = unit_lower_tr_of_(A1) * W1
+*> col1_(6_a) below_diag_of_(A1): = - below_diag_of_(W1)
+*> end if
+*> col1_(6_b) up_tr_of_(A1): = up_tr_of_(A1) - up_tr_of_(W1)
+*>
+*> end if
+*>
+*> \endverbatim
+*>
+* =====================================================================
+ SUBROUTINE CLARFB_GETT( IDENT, M, N, K, T, LDT, A, LDA, B, LDB,
+ $ WORK, LDWORK )
+ IMPLICIT NONE
+*
+* -- LAPACK auxiliary routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ CHARACTER IDENT
+ INTEGER K, LDA, LDB, LDT, LDWORK, M, N
+* ..
+* .. Array Arguments ..
+ COMPLEX A( LDA, * ), B( LDB, * ), T( LDT, * ),
+ $ WORK( LDWORK, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ COMPLEX CONE, CZERO
+ PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ),
+ $ CZERO = ( 0.0E+0, 0.0E+0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL LNOTIDENT
+ INTEGER I, J
+* ..
+* .. EXTERNAL FUNCTIONS ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL CCOPY, CGEMM, CTRMM
+* ..
+* .. Executable Statements ..
+*
+* Quick return if possible
+*
+ IF( M.LT.0 .OR. N.LE.0 .OR. K.EQ.0 .OR. K.GT.N )
+ $ RETURN
+*
+ LNOTIDENT = .NOT.LSAME( IDENT, 'I' )
+*
+* ------------------------------------------------------------------
+*
+* First Step. Computation of the Column Block 2:
+*
+* ( A2 ) := H * ( A2 )
+* ( B2 ) ( B2 )
+*
+* ------------------------------------------------------------------
+*
+ IF( N.GT.K ) THEN
+*
+* col2_(1) Compute W2: = A2. Therefore, copy A2 = A(1:K, K+1:N)
+* into W2=WORK(1:K, 1:N-K) column-by-column.
+*
+ DO J = 1, N-K
+ CALL CCOPY( K, A( 1, K+J ), 1, WORK( 1, J ), 1 )
+ END DO
+
+ IF( LNOTIDENT ) THEN
+*
+* col2_(2) Compute W2: = (V1**H) * W2 = (A1**H) * W2,
+* V1 is not an identy matrix, but unit lower-triangular
+* V1 stored in A1 (diagonal ones are not stored).
+*
+*
+ CALL CTRMM( 'L', 'L', 'C', 'U', K, N-K, CONE, A, LDA,
+ $ WORK, LDWORK )
+ END IF
+*
+* col2_(3) Compute W2: = W2 + (V2**H) * B2 = W2 + (B1**H) * B2
+* V2 stored in B1.
+*
+ IF( M.GT.0 ) THEN
+ CALL CGEMM( 'C', 'N', K, N-K, M, CONE, B, LDB,
+ $ B( 1, K+1 ), LDB, CONE, WORK, LDWORK )
+ END IF
+*
+* col2_(4) Compute W2: = T * W2,
+* T is upper-triangular.
+*
+ CALL CTRMM( 'L', 'U', 'N', 'N', K, N-K, CONE, T, LDT,
+ $ WORK, LDWORK )
+*
+* col2_(5) Compute B2: = B2 - V2 * W2 = B2 - B1 * W2,
+* V2 stored in B1.
+*
+ IF( M.GT.0 ) THEN
+ CALL CGEMM( 'N', 'N', M, N-K, K, -CONE, B, LDB,
+ $ WORK, LDWORK, CONE, B( 1, K+1 ), LDB )
+ END IF
+*
+ IF( LNOTIDENT ) THEN
+*
+* col2_(6) Compute W2: = V1 * W2 = A1 * W2,
+* V1 is not an identity matrix, but unit lower-triangular,
+* V1 stored in A1 (diagonal ones are not stored).
+*
+ CALL CTRMM( 'L', 'L', 'N', 'U', K, N-K, CONE, A, LDA,
+ $ WORK, LDWORK )
+ END IF
+*
+* col2_(7) Compute A2: = A2 - W2 =
+* = A(1:K, K+1:N-K) - WORK(1:K, 1:N-K),
+* column-by-column.
+*
+ DO J = 1, N-K
+ DO I = 1, K
+ A( I, K+J ) = A( I, K+J ) - WORK( I, J )
+ END DO
+ END DO
+*
+ END IF
+*
+* ------------------------------------------------------------------
+*
+* Second Step. Computation of the Column Block 1:
+*
+* ( A1 ) := H * ( A1 )
+* ( B1 ) ( 0 )
+*
+* ------------------------------------------------------------------
+*
+* col1_(1) Compute W1: = A1. Copy the upper-triangular
+* A1 = A(1:K, 1:K) into the upper-triangular
+* W1 = WORK(1:K, 1:K) column-by-column.
+*
+ DO J = 1, K
+ CALL CCOPY( J, A( 1, J ), 1, WORK( 1, J ), 1 )
+ END DO
+*
+* Set the subdiagonal elements of W1 to zero column-by-column.
+*
+ DO J = 1, K - 1
+ DO I = J + 1, K
+ WORK( I, J ) = CZERO
+ END DO
+ END DO
+*
+ IF( LNOTIDENT ) THEN
+*
+* col1_(2) Compute W1: = (V1**H) * W1 = (A1**H) * W1,
+* V1 is not an identity matrix, but unit lower-triangular
+* V1 stored in A1 (diagonal ones are not stored),
+* W1 is upper-triangular with zeroes below the diagonal.
+*
+ CALL CTRMM( 'L', 'L', 'C', 'U', K, K, CONE, A, LDA,
+ $ WORK, LDWORK )
+ END IF
+*
+* col1_(3) Compute W1: = T * W1,
+* T is upper-triangular,
+* W1 is upper-triangular with zeroes below the diagonal.
+*
+ CALL CTRMM( 'L', 'U', 'N', 'N', K, K, CONE, T, LDT,
+ $ WORK, LDWORK )
+*
+* col1_(4) Compute B1: = - V2 * W1 = - B1 * W1,
+* V2 = B1, W1 is upper-triangular with zeroes below the diagonal.
+*
+ IF( M.GT.0 ) THEN
+ CALL CTRMM( 'R', 'U', 'N', 'N', M, K, -CONE, WORK, LDWORK,
+ $ B, LDB )
+ END IF
+*
+ IF( LNOTIDENT ) THEN
+*
+* col1_(5) Compute W1: = V1 * W1 = A1 * W1,
+* V1 is not an identity matrix, but unit lower-triangular
+* V1 stored in A1 (diagonal ones are not stored),
+* W1 is upper-triangular on input with zeroes below the diagonal,
+* and square on output.
+*
+ CALL CTRMM( 'L', 'L', 'N', 'U', K, K, CONE, A, LDA,
+ $ WORK, LDWORK )
+*
+* col1_(6) Compute A1: = A1 - W1 = A(1:K, 1:K) - WORK(1:K, 1:K)
+* column-by-column. A1 is upper-triangular on input.
+* If IDENT, A1 is square on output, and W1 is square,
+* if NOT IDENT, A1 is upper-triangular on output,
+* W1 is upper-triangular.
+*
+* col1_(6)_a Compute elements of A1 below the diagonal.
+*
+ DO J = 1, K - 1
+ DO I = J + 1, K
+ A( I, J ) = - WORK( I, J )
+ END DO
+ END DO
+*
+ END IF
+*
+* col1_(6)_b Compute elements of A1 on and above the diagonal.
+*
+ DO J = 1, K
+ DO I = 1, J
+ A( I, J ) = A( I, J ) - WORK( I, J )
+ END DO
+ END DO
+*
+ RETURN
+*
+* End of CLARFB_GETT
+*
+ END
diff --git a/lapack-netlib/SRC/cungtsqr_row.f b/lapack-netlib/SRC/cungtsqr_row.f
new file mode 100644
index 000000000..e1597c58b
--- /dev/null
+++ b/lapack-netlib/SRC/cungtsqr_row.f
@@ -0,0 +1,380 @@
+*> \brief \b CUNGTSQR_ROW
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download CUNGTSQR_ROW + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*>
+* Definition:
+* ===========
+*
+* SUBROUTINE CUNGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK,
+* $ LWORK, INFO )
+* IMPLICIT NONE
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
+* ..
+* .. Array Arguments ..
+* COMPLEX A( LDA, * ), T( LDT, * ), WORK( * )
+* ..
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> CUNGTSQR_ROW generates an M-by-N complex matrix Q_out with
+*> orthonormal columns from the output of CLATSQR. These N orthonormal
+*> columns are the first N columns of a product of complex unitary
+*> matrices Q(k)_in of order M, which are returned by CLATSQR in
+*> a special format.
+*>
+*> Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).
+*>
+*> The input matrices Q(k)_in are stored in row and column blocks in A.
+*> See the documentation of CLATSQR for more details on the format of
+*> Q(k)_in, where each Q(k)_in is represented by block Householder
+*> transformations. This routine calls an auxiliary routine CLARFB_GETT,
+*> where the computation is performed on each individual block. The
+*> algorithm first sweeps NB-sized column blocks from the right to left
+*> starting in the bottom row block and continues to the top row block
+*> (hence _ROW in the routine name). This sweep is in reverse order of
+*> the order in which CLATSQR generates the output blocks.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. M >= N >= 0.
+*> \endverbatim
+*>
+*> \param[in] MB
+*> \verbatim
+*> MB is INTEGER
+*> The row block size used by CLATSQR to return
+*> arrays A and T. MB > N.
+*> (Note that if MB > M, then M is used instead of MB
+*> as the row block size).
+*> \endverbatim
+*>
+*> \param[in] NB
+*> \verbatim
+*> NB is INTEGER
+*> The column block size used by CLATSQR to return
+*> arrays A and T. NB >= 1.
+*> (Note that if NB > N, then N is used instead of NB
+*> as the column block size).
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX array, dimension (LDA,N)
+*>
+*> On entry:
+*>
+*> The elements on and above the diagonal are not used as
+*> input. The elements below the diagonal represent the unit
+*> lower-trapezoidal blocked matrix V computed by CLATSQR
+*> that defines the input matrices Q_in(k) (ones on the
+*> diagonal are not stored). See CLATSQR for more details.
+*>
+*> On exit:
+*>
+*> The array A contains an M-by-N orthonormal matrix Q_out,
+*> i.e the columns of A are orthogonal unit vectors.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in] T
+*> \verbatim
+*> T is COMPLEX array,
+*> dimension (LDT, N * NIRB)
+*> where NIRB = Number_of_input_row_blocks
+*> = MAX( 1, CEIL((M-N)/(MB-N)) )
+*> Let NICB = Number_of_input_col_blocks
+*> = CEIL(N/NB)
+*>
+*> The upper-triangular block reflectors used to define the
+*> input matrices Q_in(k), k=(1:NIRB*NICB). The block
+*> reflectors are stored in compact form in NIRB block
+*> reflector sequences. Each of the NIRB block reflector
+*> sequences is stored in a larger NB-by-N column block of T
+*> and consists of NICB smaller NB-by-NB upper-triangular
+*> column blocks. See CLATSQR for more details on the format
+*> of T.
+*> \endverbatim
+*>
+*> \param[in] LDT
+*> \verbatim
+*> LDT is INTEGER
+*> The leading dimension of the array T.
+*> LDT >= max(1,min(NB,N)).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> (workspace) COMPLEX array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> The dimension of the array WORK.
+*> LWORK >= NBLOCAL * MAX(NBLOCAL,(N-NBLOCAL)),
+*> where NBLOCAL=MIN(NB,N).
+*> If LWORK = -1, then a workspace query is assumed.
+*> The routine only calculates the optimal size of the WORK
+*> array, returns this value as the first entry of the WORK
+*> array, and no error message related to LWORK is issued
+*> by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> \endverbatim
+*>
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup complexOTHERcomputational
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2020, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> \endverbatim
+*>
+* =====================================================================
+ SUBROUTINE CUNGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK,
+ $ LWORK, INFO )
+ IMPLICIT NONE
+*
+* -- LAPACK computational routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
+* ..
+* .. Array Arguments ..
+ COMPLEX A( LDA, * ), T( LDT, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ COMPLEX CONE, CZERO
+ PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ),
+ $ CZERO = ( 0.0E+0, 0.0E+0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY
+ INTEGER NBLOCAL, MB2, M_PLUS_ONE, ITMP, IB_BOTTOM,
+ $ LWORKOPT, NUM_ALL_ROW_BLOCKS, JB_T, IB, IMB,
+ $ KB, KB_LAST, KNB, MB1
+* ..
+* .. Local Arrays ..
+ COMPLEX DUMMY( 1, 1 )
+* ..
+* .. External Subroutines ..
+ EXTERNAL CLARFB_GETT, CLASET, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC CMPLX, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters
+*
+ INFO = 0
+ LQUERY = LWORK.EQ.-1
+ IF( M.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
+ INFO = -2
+ ELSE IF( MB.LE.N ) THEN
+ INFO = -3
+ ELSE IF( NB.LT.1 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -6
+ ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
+ INFO = -8
+ ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
+ INFO = -10
+ END IF
+*
+ NBLOCAL = MIN( NB, N )
+*
+* Determine the workspace size.
+*
+ IF( INFO.EQ.0 ) THEN
+ LWORKOPT = NBLOCAL * MAX( NBLOCAL, ( N - NBLOCAL ) )
+ END IF
+*
+* Handle error in the input parameters and handle the workspace query.
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'CUNGTSQR_ROW', -INFO )
+ RETURN
+ ELSE IF ( LQUERY ) THEN
+ WORK( 1 ) = CMPLX( LWORKOPT )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( MIN( M, N ).EQ.0 ) THEN
+ WORK( 1 ) = CMPLX( LWORKOPT )
+ RETURN
+ END IF
+*
+* (0) Set the upper-triangular part of the matrix A to zero and
+* its diagonal elements to one.
+*
+ CALL CLASET('U', M, N, CZERO, CONE, A, LDA )
+*
+* KB_LAST is the column index of the last column block reflector
+* in the matrices T and V.
+*
+ KB_LAST = ( ( N-1 ) / NBLOCAL ) * NBLOCAL + 1
+*
+*
+* (1) Bottom-up loop over row blocks of A, except the top row block.
+* NOTE: If MB>=M, then the loop is never executed.
+*
+ IF ( MB.LT.M ) THEN
+*
+* MB2 is the row blocking size for the row blocks before the
+* first top row block in the matrix A. IB is the row index for
+* the row blocks in the matrix A before the first top row block.
+* IB_BOTTOM is the row index for the last bottom row block
+* in the matrix A. JB_T is the column index of the corresponding
+* column block in the matrix T.
+*
+* Initialize variables.
+*
+* NUM_ALL_ROW_BLOCKS is the number of row blocks in the matrix A
+* including the first row block.
+*
+ MB2 = MB - N
+ M_PLUS_ONE = M + 1
+ ITMP = ( M - MB - 1 ) / MB2
+ IB_BOTTOM = ITMP * MB2 + MB + 1
+ NUM_ALL_ROW_BLOCKS = ITMP + 2
+ JB_T = NUM_ALL_ROW_BLOCKS * N + 1
+*
+ DO IB = IB_BOTTOM, MB+1, -MB2
+*
+* Determine the block size IMB for the current row block
+* in the matrix A.
+*
+ IMB = MIN( M_PLUS_ONE - IB, MB2 )
+*
+* Determine the column index JB_T for the current column block
+* in the matrix T.
+*
+ JB_T = JB_T - N
+*
+* Apply column blocks of H in the row block from right to left.
+*
+* KB is the column index of the current column block reflector
+* in the matrices T and V.
+*
+ DO KB = KB_LAST, 1, -NBLOCAL
+*
+* Determine the size of the current column block KNB in
+* the matrices T and V.
+*
+ KNB = MIN( NBLOCAL, N - KB + 1 )
+*
+ CALL CLARFB_GETT( 'I', IMB, N-KB+1, KNB,
+ $ T( 1, JB_T+KB-1 ), LDT, A( KB, KB ), LDA,
+ $ A( IB, KB ), LDA, WORK, KNB )
+*
+ END DO
+*
+ END DO
+*
+ END IF
+*
+* (2) Top row block of A.
+* NOTE: If MB>=M, then we have only one row block of A of size M
+* and we work on the entire matrix A.
+*
+ MB1 = MIN( MB, M )
+*
+* Apply column blocks of H in the top row block from right to left.
+*
+* KB is the column index of the current block reflector in
+* the matrices T and V.
+*
+ DO KB = KB_LAST, 1, -NBLOCAL
+*
+* Determine the size of the current column block KNB in
+* the matrices T and V.
+*
+ KNB = MIN( NBLOCAL, N - KB + 1 )
+*
+ IF( MB1-KB-KNB+1.EQ.0 ) THEN
+*
+* In SLARFB_GETT parameters, when M=0, then the matrix B
+* does not exist, hence we need to pass a dummy array
+* reference DUMMY(1,1) to B with LDDUMMY=1.
+*
+ CALL CLARFB_GETT( 'N', 0, N-KB+1, KNB,
+ $ T( 1, KB ), LDT, A( KB, KB ), LDA,
+ $ DUMMY( 1, 1 ), 1, WORK, KNB )
+ ELSE
+ CALL CLARFB_GETT( 'N', MB1-KB-KNB+1, N-KB+1, KNB,
+ $ T( 1, KB ), LDT, A( KB, KB ), LDA,
+ $ A( KB+KNB, KB), LDA, WORK, KNB )
+
+ END IF
+*
+ END DO
+*
+ WORK( 1 ) = CMPLX( LWORKOPT )
+ RETURN
+*
+* End of CUNGTSQR_ROW
+*
+ END
diff --git a/lapack-netlib/SRC/dgetsqrhrt.f b/lapack-netlib/SRC/dgetsqrhrt.f
new file mode 100644
index 000000000..668deeba8
--- /dev/null
+++ b/lapack-netlib/SRC/dgetsqrhrt.f
@@ -0,0 +1,349 @@
+*> \brief \b DGETSQRHRT
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download DGETSQRHRT + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE DGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK,
+* $ LWORK, INFO )
+* IMPLICIT NONE
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDT, LWORK, M, N, NB1, NB2, MB1
+* ..
+* .. Array Arguments ..
+* DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> DGETSQRHRT computes a NB2-sized column blocked QR-factorization
+*> of a real M-by-N matrix A with M >= N,
+*>
+*> A = Q * R.
+*>
+*> The routine uses internally a NB1-sized column blocked and MB1-sized
+*> row blocked TSQR-factorization and perfors the reconstruction
+*> of the Householder vectors from the TSQR output. The routine also
+*> converts the R_tsqr factor from the TSQR-factorization output into
+*> the R factor that corresponds to the Householder QR-factorization,
+*>
+*> A = Q_tsqr * R_tsqr = Q * R.
+*>
+*> The output Q and R factors are stored in the same format as in DGEQRT
+*> (Q is in blocked compact WY-representation). See the documentation
+*> of DGEQRT for more details on the format.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. M >= N >= 0.
+*> \endverbatim
+*>
+*> \param[in] MB1
+*> \verbatim
+*> MB1 is INTEGER
+*> The row block size to be used in the blocked TSQR.
+*> MB1 > N.
+*> \endverbatim
+*>
+*> \param[in] NB1
+*> \verbatim
+*> NB1 is INTEGER
+*> The column block size to be used in the blocked TSQR.
+*> N >= NB1 >= 1.
+*> \endverbatim
+*>
+*> \param[in] NB2
+*> \verbatim
+*> NB2 is INTEGER
+*> The block size to be used in the blocked QR that is
+*> output. NB2 >= 1.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is DOUBLE PRECISION array, dimension (LDA,N)
+*>
+*> On entry: an M-by-N matrix A.
+*>
+*> On exit:
+*> a) the elements on and above the diagonal
+*> of the array contain the N-by-N upper-triangular
+*> matrix R corresponding to the Householder QR;
+*> b) the elements below the diagonal represent Q by
+*> the columns of blocked V (compact WY-representation).
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[out] T
+*> \verbatim
+*> T is DOUBLE PRECISION array, dimension (LDT,N))
+*> The upper triangular block reflectors stored in compact form
+*> as a sequence of upper triangular blocks.
+*> \endverbatim
+*>
+*> \param[in] LDT
+*> \verbatim
+*> LDT is INTEGER
+*> The leading dimension of the array T. LDT >= NB2.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> The dimension of the array WORK.
+*> LWORK >= MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ),
+*> where
+*> NUM_ALL_ROW_BLOCKS = CEIL((M-N)/(MB1-N)),
+*> NB1LOCAL = MIN(NB1,N).
+*> LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL,
+*> LW1 = NB1LOCAL * N,
+*> LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ),
+*> If LWORK = -1, then a workspace query is assumed.
+*> The routine only calculates the optimal size of the WORK
+*> array, returns this value as the first entry of the WORK
+*> array, and no error message related to LWORK is issued
+*> by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup doubleOTHERcomputational
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2020, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> \endverbatim
+*>
+* =====================================================================
+ SUBROUTINE DGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK,
+ $ LWORK, INFO )
+ IMPLICIT NONE
+*
+* -- LAPACK computational routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDT, LWORK, M, N, NB1, NB2, MB1
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE
+ PARAMETER ( ONE = 1.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY
+ INTEGER I, IINFO, J, LW1, LW2, LWT, LDWT, LWORKOPT,
+ $ NB1LOCAL, NB2LOCAL, NUM_ALL_ROW_BLOCKS
+* ..
+* .. External Subroutines ..
+ EXTERNAL DCOPY, DLATSQR, DORGTSQR_ROW, DORHR_COL,
+ $ XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC CEILING, DBLE, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments
+*
+ INFO = 0
+ LQUERY = LWORK.EQ.-1
+ IF( M.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
+ INFO = -2
+ ELSE IF( MB1.LE.N ) THEN
+ INFO = -3
+ ELSE IF( NB1.LT.1 ) THEN
+ INFO = -4
+ ELSE IF( NB2.LT.1 ) THEN
+ INFO = -5
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -7
+ ELSE IF( LDT.LT.MAX( 1, MIN( NB2, N ) ) ) THEN
+ INFO = -9
+ ELSE
+*
+* Test the input LWORK for the dimension of the array WORK.
+* This workspace is used to store array:
+* a) Matrix T and WORK for DLATSQR;
+* b) N-by-N upper-triangular factor R_tsqr;
+* c) Matrix T and array WORK for DORGTSQR_ROW;
+* d) Diagonal D for DORHR_COL.
+*
+ IF( LWORK.LT.N*N+1 .AND. .NOT.LQUERY ) THEN
+ INFO = -11
+ ELSE
+*
+* Set block size for column blocks
+*
+ NB1LOCAL = MIN( NB1, N )
+*
+ NUM_ALL_ROW_BLOCKS = MAX( 1,
+ $ CEILING( DBLE( M - N ) / DBLE( MB1 - N ) ) )
+*
+* Length and leading dimension of WORK array to place
+* T array in TSQR.
+*
+ LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL
+
+ LDWT = NB1LOCAL
+*
+* Length of TSQR work array
+*
+ LW1 = NB1LOCAL * N
+*
+* Length of DORGTSQR_ROW work array.
+*
+ LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) )
+*
+ LWORKOPT = MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) )
+*
+ IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN
+ INFO = -11
+ END IF
+*
+ END IF
+ END IF
+*
+* Handle error in the input parameters and return workspace query.
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DGETSQRHRT', -INFO )
+ RETURN
+ ELSE IF ( LQUERY ) THEN
+ WORK( 1 ) = DBLE( LWORKOPT )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( MIN( M, N ).EQ.0 ) THEN
+ WORK( 1 ) = DBLE( LWORKOPT )
+ RETURN
+ END IF
+*
+ NB2LOCAL = MIN( NB2, N )
+*
+*
+* (1) Perform TSQR-factorization of the M-by-N matrix A.
+*
+ CALL DLATSQR( M, N, MB1, NB1LOCAL, A, LDA, WORK, LDWT,
+ $ WORK(LWT+1), LW1, IINFO )
+*
+* (2) Copy the factor R_tsqr stored in the upper-triangular part
+* of A into the square matrix in the work array
+* WORK(LWT+1:LWT+N*N) column-by-column.
+*
+ DO J = 1, N
+ CALL DCOPY( J, A( 1, J ), 1, WORK( LWT + N*(J-1)+1 ), 1 )
+ END DO
+*
+* (3) Generate a M-by-N matrix Q with orthonormal columns from
+* the result stored below the diagonal in the array A in place.
+*
+
+ CALL DORGTSQR_ROW( M, N, MB1, NB1LOCAL, A, LDA, WORK, LDWT,
+ $ WORK( LWT+N*N+1 ), LW2, IINFO )
+*
+* (4) Perform the reconstruction of Householder vectors from
+* the matrix Q (stored in A) in place.
+*
+ CALL DORHR_COL( M, N, NB2LOCAL, A, LDA, T, LDT,
+ $ WORK( LWT+N*N+1 ), IINFO )
+*
+* (5) Copy the factor R_tsqr stored in the square matrix in the
+* work array WORK(LWT+1:LWT+N*N) into the upper-triangular
+* part of A.
+*
+* (6) Compute from R_tsqr the factor R_hr corresponding to
+* the reconstructed Householder vectors, i.e. R_hr = S * R_tsqr.
+* This multiplication by the sign matrix S on the left means
+* changing the sign of I-th row of the matrix R_tsqr according
+* to sign of the I-th diagonal element DIAG(I) of the matrix S.
+* DIAG is stored in WORK( LWT+N*N+1 ) from the DORHR_COL output.
+*
+* (5) and (6) can be combined in a single loop, so the rows in A
+* are accessed only once.
+*
+ DO I = 1, N
+ IF( WORK( LWT+N*N+I ).EQ.-ONE ) THEN
+ DO J = I, N
+ A( I, J ) = -ONE * WORK( LWT+N*(J-1)+I )
+ END DO
+ ELSE
+ CALL DCOPY( N-I+1, WORK(LWT+N*(I-1)+I), N, A( I, I ), LDA )
+ END IF
+ END DO
+*
+ WORK( 1 ) = DBLE( LWORKOPT )
+ RETURN
+*
+* End of DGETSQRHRT
+*
+ END
\ No newline at end of file
diff --git a/lapack-netlib/SRC/dlarfb_gett.f b/lapack-netlib/SRC/dlarfb_gett.f
new file mode 100644
index 000000000..10ab6461e
--- /dev/null
+++ b/lapack-netlib/SRC/dlarfb_gett.f
@@ -0,0 +1,596 @@
+*> \brief \b DLARFB_GETT
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download DLARFB_GETT + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE DLARFB_GETT( IDENT, M, N, K, T, LDT, A, LDA, B, LDB,
+* $ WORK, LDWORK )
+* IMPLICIT NONE
+*
+* .. Scalar Arguments ..
+* CHARACTER IDENT
+* INTEGER K, LDA, LDB, LDT, LDWORK, M, N
+* ..
+* .. Array Arguments ..
+* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), T( LDT, * ),
+* $ WORK( LDWORK, * )
+* ..
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> DLARFB_GETT applies a real Householder block reflector H from the
+*> left to a real (K+M)-by-N "triangular-pentagonal" matrix
+*> composed of two block matrices: an upper trapezoidal K-by-N matrix A
+*> stored in the array A, and a rectangular M-by-(N-K) matrix B, stored
+*> in the array B. The block reflector H is stored in a compact
+*> WY-representation, where the elementary reflectors are in the
+*> arrays A, B and T. See Further Details section.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] IDENT
+*> \verbatim
+*> IDENT is CHARACTER*1
+*> If IDENT = not 'I', or not 'i', then V1 is unit
+*> lower-triangular and stored in the left K-by-K block of
+*> the input matrix A,
+*> If IDENT = 'I' or 'i', then V1 is an identity matrix and
+*> not stored.
+*> See Further Details section.
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix B.
+*> M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrices A and B.
+*> N >= 0.
+*> \endverbatim
+*>
+*> \param[in] K
+*> \verbatim
+*> K is INTEGER
+*> The number or rows of the matrix A.
+*> K is also order of the matrix T, i.e. the number of
+*> elementary reflectors whose product defines the block
+*> reflector. 0 <= K <= N.
+*> \endverbatim
+*>
+*> \param[in] T
+*> \verbatim
+*> T is DOUBLE PRECISION array, dimension (LDT,K)
+*> The upper-triangular K-by-K matrix T in the representation
+*> of the block reflector.
+*> \endverbatim
+*>
+*> \param[in] LDT
+*> \verbatim
+*> LDT is INTEGER
+*> The leading dimension of the array T. LDT >= K.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is DOUBLE PRECISION array, dimension (LDA,N)
+*>
+*> On entry:
+*> a) In the K-by-N upper-trapezoidal part A: input matrix A.
+*> b) In the columns below the diagonal: columns of V1
+*> (ones are not stored on the diagonal).
+*>
+*> On exit:
+*> A is overwritten by rectangular K-by-N product H*A.
+*>
+*> See Further Details section.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,K).
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is DOUBLE PRECISION array, dimension (LDB,N)
+*>
+*> On entry:
+*> a) In the M-by-(N-K) right block: input matrix B.
+*> b) In the M-by-N left block: columns of V2.
+*>
+*> On exit:
+*> B is overwritten by rectangular M-by-N product H*B.
+*>
+*> See Further Details section.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= max(1,M).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is DOUBLE PRECISION array,
+*> dimension (LDWORK,max(K,N-K))
+*> \endverbatim
+*>
+*> \param[in] LDWORK
+*> \verbatim
+*> LDWORK is INTEGER
+*> The leading dimension of the array WORK. LDWORK>=max(1,K).
+*>
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup doubleOTHERauxiliary
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2020, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> \endverbatim
+*
+*> \par Further Details:
+* =====================
+*>
+*> \verbatim
+*>
+*> (1) Description of the Algebraic Operation.
+*>
+*> The matrix A is a K-by-N matrix composed of two column block
+*> matrices, A1, which is K-by-K, and A2, which is K-by-(N-K):
+*> A = ( A1, A2 ).
+*> The matrix B is an M-by-N matrix composed of two column block
+*> matrices, B1, which is M-by-K, and B2, which is M-by-(N-K):
+*> B = ( B1, B2 ).
+*>
+*> Perform the operation:
+*>
+*> ( A_out ) := H * ( A_in ) = ( I - V * T * V**T ) * ( A_in ) =
+*> ( B_out ) ( B_in ) ( B_in )
+*> = ( I - ( V1 ) * T * ( V1**T, V2**T ) ) * ( A_in )
+*> ( V2 ) ( B_in )
+*> On input:
+*>
+*> a) ( A_in ) consists of two block columns:
+*> ( B_in )
+*>
+*> ( A_in ) = (( A1_in ) ( A2_in )) = (( A1_in ) ( A2_in ))
+*> ( B_in ) (( B1_in ) ( B2_in )) (( 0 ) ( B2_in )),
+*>
+*> where the column blocks are:
+*>
+*> ( A1_in ) is a K-by-K upper-triangular matrix stored in the
+*> upper triangular part of the array A(1:K,1:K).
+*> ( B1_in ) is an M-by-K rectangular ZERO matrix and not stored.
+*>
+*> ( A2_in ) is a K-by-(N-K) rectangular matrix stored
+*> in the array A(1:K,K+1:N).
+*> ( B2_in ) is an M-by-(N-K) rectangular matrix stored
+*> in the array B(1:M,K+1:N).
+*>
+*> b) V = ( V1 )
+*> ( V2 )
+*>
+*> where:
+*> 1) if IDENT == 'I',V1 is a K-by-K identity matrix, not stored;
+*> 2) if IDENT != 'I',V1 is a K-by-K unit lower-triangular matrix,
+*> stored in the lower-triangular part of the array
+*> A(1:K,1:K) (ones are not stored),
+*> and V2 is an M-by-K rectangular stored the array B(1:M,1:K),
+*> (because on input B1_in is a rectangular zero
+*> matrix that is not stored and the space is
+*> used to store V2).
+*>
+*> c) T is a K-by-K upper-triangular matrix stored
+*> in the array T(1:K,1:K).
+*>
+*> On output:
+*>
+*> a) ( A_out ) consists of two block columns:
+*> ( B_out )
+*>
+*> ( A_out ) = (( A1_out ) ( A2_out ))
+*> ( B_out ) (( B1_out ) ( B2_out )),
+*>
+*> where the column blocks are:
+*>
+*> ( A1_out ) is a K-by-K square matrix, or a K-by-K
+*> upper-triangular matrix, if V1 is an
+*> identity matrix. AiOut is stored in
+*> the array A(1:K,1:K).
+*> ( B1_out ) is an M-by-K rectangular matrix stored
+*> in the array B(1:M,K:N).
+*>
+*> ( A2_out ) is a K-by-(N-K) rectangular matrix stored
+*> in the array A(1:K,K+1:N).
+*> ( B2_out ) is an M-by-(N-K) rectangular matrix stored
+*> in the array B(1:M,K+1:N).
+*>
+*>
+*> The operation above can be represented as the same operation
+*> on each block column:
+*>
+*> ( A1_out ) := H * ( A1_in ) = ( I - V * T * V**T ) * ( A1_in )
+*> ( B1_out ) ( 0 ) ( 0 )
+*>
+*> ( A2_out ) := H * ( A2_in ) = ( I - V * T * V**T ) * ( A2_in )
+*> ( B2_out ) ( B2_in ) ( B2_in )
+*>
+*> If IDENT != 'I':
+*>
+*> The computation for column block 1:
+*>
+*> A1_out: = A1_in - V1*T*(V1**T)*A1_in
+*>
+*> B1_out: = - V2*T*(V1**T)*A1_in
+*>
+*> The computation for column block 2, which exists if N > K:
+*>
+*> A2_out: = A2_in - V1*T*( (V1**T)*A2_in + (V2**T)*B2_in )
+*>
+*> B2_out: = B2_in - V2*T*( (V1**T)*A2_in + (V2**T)*B2_in )
+*>
+*> If IDENT == 'I':
+*>
+*> The operation for column block 1:
+*>
+*> A1_out: = A1_in - V1*T**A1_in
+*>
+*> B1_out: = - V2*T**A1_in
+*>
+*> The computation for column block 2, which exists if N > K:
+*>
+*> A2_out: = A2_in - T*( A2_in + (V2**T)*B2_in )
+*>
+*> B2_out: = B2_in - V2*T*( A2_in + (V2**T)*B2_in )
+*>
+*> (2) Description of the Algorithmic Computation.
+*>
+*> In the first step, we compute column block 2, i.e. A2 and B2.
+*> Here, we need to use the K-by-(N-K) rectangular workspace
+*> matrix W2 that is of the same size as the matrix A2.
+*> W2 is stored in the array WORK(1:K,1:(N-K)).
+*>
+*> In the second step, we compute column block 1, i.e. A1 and B1.
+*> Here, we need to use the K-by-K square workspace matrix W1
+*> that is of the same size as the as the matrix A1.
+*> W1 is stored in the array WORK(1:K,1:K).
+*>
+*> NOTE: Hence, in this routine, we need the workspace array WORK
+*> only of size WORK(1:K,1:max(K,N-K)) so it can hold both W2 from
+*> the first step and W1 from the second step.
+*>
+*> Case (A), when V1 is unit lower-triangular, i.e. IDENT != 'I',
+*> more computations than in the Case (B).
+*>
+*> if( IDENT != 'I' ) then
+*> if ( N > K ) then
+*> (First Step - column block 2)
+*> col2_(1) W2: = A2
+*> col2_(2) W2: = (V1**T) * W2 = (unit_lower_tr_of_(A1)**T) * W2
+*> col2_(3) W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2
+*> col2_(4) W2: = T * W2
+*> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2
+*> col2_(6) W2: = V1 * W2 = unit_lower_tr_of_(A1) * W2
+*> col2_(7) A2: = A2 - W2
+*> else
+*> (Second Step - column block 1)
+*> col1_(1) W1: = A1
+*> col1_(2) W1: = (V1**T) * W1 = (unit_lower_tr_of_(A1)**T) * W1
+*> col1_(3) W1: = T * W1
+*> col1_(4) B1: = - V2 * W1 = - B1 * W1
+*> col1_(5) square W1: = V1 * W1 = unit_lower_tr_of_(A1) * W1
+*> col1_(6) square A1: = A1 - W1
+*> end if
+*> end if
+*>
+*> Case (B), when V1 is an identity matrix, i.e. IDENT == 'I',
+*> less computations than in the Case (A)
+*>
+*> if( IDENT == 'I' ) then
+*> if ( N > K ) then
+*> (First Step - column block 2)
+*> col2_(1) W2: = A2
+*> col2_(3) W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2
+*> col2_(4) W2: = T * W2
+*> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2
+*> col2_(7) A2: = A2 - W2
+*> else
+*> (Second Step - column block 1)
+*> col1_(1) W1: = A1
+*> col1_(3) W1: = T * W1
+*> col1_(4) B1: = - V2 * W1 = - B1 * W1
+*> col1_(6) upper-triangular_of_(A1): = A1 - W1
+*> end if
+*> end if
+*>
+*> Combine these cases (A) and (B) together, this is the resulting
+*> algorithm:
+*>
+*> if ( N > K ) then
+*>
+*> (First Step - column block 2)
+*>
+*> col2_(1) W2: = A2
+*> if( IDENT != 'I' ) then
+*> col2_(2) W2: = (V1**T) * W2
+*> = (unit_lower_tr_of_(A1)**T) * W2
+*> end if
+*> col2_(3) W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2]
+*> col2_(4) W2: = T * W2
+*> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2
+*> if( IDENT != 'I' ) then
+*> col2_(6) W2: = V1 * W2 = unit_lower_tr_of_(A1) * W2
+*> end if
+*> col2_(7) A2: = A2 - W2
+*>
+*> else
+*>
+*> (Second Step - column block 1)
+*>
+*> col1_(1) W1: = A1
+*> if( IDENT != 'I' ) then
+*> col1_(2) W1: = (V1**T) * W1
+*> = (unit_lower_tr_of_(A1)**T) * W1
+*> end if
+*> col1_(3) W1: = T * W1
+*> col1_(4) B1: = - V2 * W1 = - B1 * W1
+*> if( IDENT != 'I' ) then
+*> col1_(5) square W1: = V1 * W1 = unit_lower_tr_of_(A1) * W1
+*> col1_(6_a) below_diag_of_(A1): = - below_diag_of_(W1)
+*> end if
+*> col1_(6_b) up_tr_of_(A1): = up_tr_of_(A1) - up_tr_of_(W1)
+*>
+*> end if
+*>
+*> \endverbatim
+*>
+* =====================================================================
+ SUBROUTINE DLARFB_GETT( IDENT, M, N, K, T, LDT, A, LDA, B, LDB,
+ $ WORK, LDWORK )
+ IMPLICIT NONE
+*
+* -- LAPACK auxiliary routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ CHARACTER IDENT
+ INTEGER K, LDA, LDB, LDT, LDWORK, M, N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), B( LDB, * ), T( LDT, * ),
+ $ WORK( LDWORK, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE, ZERO
+ PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LNOTIDENT
+ INTEGER I, J
+* ..
+* .. EXTERNAL FUNCTIONS ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL DCOPY, DGEMM, DTRMM
+* ..
+* .. Executable Statements ..
+*
+* Quick return if possible
+*
+ IF( M.LT.0 .OR. N.LE.0 .OR. K.EQ.0 .OR. K.GT.N )
+ $ RETURN
+*
+ LNOTIDENT = .NOT.LSAME( IDENT, 'I' )
+*
+* ------------------------------------------------------------------
+*
+* First Step. Computation of the Column Block 2:
+*
+* ( A2 ) := H * ( A2 )
+* ( B2 ) ( B2 )
+*
+* ------------------------------------------------------------------
+*
+ IF( N.GT.K ) THEN
+*
+* col2_(1) Compute W2: = A2. Therefore, copy A2 = A(1:K, K+1:N)
+* into W2=WORK(1:K, 1:N-K) column-by-column.
+*
+ DO J = 1, N-K
+ CALL DCOPY( K, A( 1, K+J ), 1, WORK( 1, J ), 1 )
+ END DO
+
+ IF( LNOTIDENT ) THEN
+*
+* col2_(2) Compute W2: = (V1**T) * W2 = (A1**T) * W2,
+* V1 is not an identy matrix, but unit lower-triangular
+* V1 stored in A1 (diagonal ones are not stored).
+*
+*
+ CALL DTRMM( 'L', 'L', 'T', 'U', K, N-K, ONE, A, LDA,
+ $ WORK, LDWORK )
+ END IF
+*
+* col2_(3) Compute W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2
+* V2 stored in B1.
+*
+ IF( M.GT.0 ) THEN
+ CALL DGEMM( 'T', 'N', K, N-K, M, ONE, B, LDB,
+ $ B( 1, K+1 ), LDB, ONE, WORK, LDWORK )
+ END IF
+*
+* col2_(4) Compute W2: = T * W2,
+* T is upper-triangular.
+*
+ CALL DTRMM( 'L', 'U', 'N', 'N', K, N-K, ONE, T, LDT,
+ $ WORK, LDWORK )
+*
+* col2_(5) Compute B2: = B2 - V2 * W2 = B2 - B1 * W2,
+* V2 stored in B1.
+*
+ IF( M.GT.0 ) THEN
+ CALL DGEMM( 'N', 'N', M, N-K, K, -ONE, B, LDB,
+ $ WORK, LDWORK, ONE, B( 1, K+1 ), LDB )
+ END IF
+*
+ IF( LNOTIDENT ) THEN
+*
+* col2_(6) Compute W2: = V1 * W2 = A1 * W2,
+* V1 is not an identity matrix, but unit lower-triangular,
+* V1 stored in A1 (diagonal ones are not stored).
+*
+ CALL DTRMM( 'L', 'L', 'N', 'U', K, N-K, ONE, A, LDA,
+ $ WORK, LDWORK )
+ END IF
+*
+* col2_(7) Compute A2: = A2 - W2 =
+* = A(1:K, K+1:N-K) - WORK(1:K, 1:N-K),
+* column-by-column.
+*
+ DO J = 1, N-K
+ DO I = 1, K
+ A( I, K+J ) = A( I, K+J ) - WORK( I, J )
+ END DO
+ END DO
+*
+ END IF
+*
+* ------------------------------------------------------------------
+*
+* Second Step. Computation of the Column Block 1:
+*
+* ( A1 ) := H * ( A1 )
+* ( B1 ) ( 0 )
+*
+* ------------------------------------------------------------------
+*
+* col1_(1) Compute W1: = A1. Copy the upper-triangular
+* A1 = A(1:K, 1:K) into the upper-triangular
+* W1 = WORK(1:K, 1:K) column-by-column.
+*
+ DO J = 1, K
+ CALL DCOPY( J, A( 1, J ), 1, WORK( 1, J ), 1 )
+ END DO
+*
+* Set the subdiagonal elements of W1 to zero column-by-column.
+*
+ DO J = 1, K - 1
+ DO I = J + 1, K
+ WORK( I, J ) = ZERO
+ END DO
+ END DO
+*
+ IF( LNOTIDENT ) THEN
+*
+* col1_(2) Compute W1: = (V1**T) * W1 = (A1**T) * W1,
+* V1 is not an identity matrix, but unit lower-triangular
+* V1 stored in A1 (diagonal ones are not stored),
+* W1 is upper-triangular with zeroes below the diagonal.
+*
+ CALL DTRMM( 'L', 'L', 'T', 'U', K, K, ONE, A, LDA,
+ $ WORK, LDWORK )
+ END IF
+*
+* col1_(3) Compute W1: = T * W1,
+* T is upper-triangular,
+* W1 is upper-triangular with zeroes below the diagonal.
+*
+ CALL DTRMM( 'L', 'U', 'N', 'N', K, K, ONE, T, LDT,
+ $ WORK, LDWORK )
+*
+* col1_(4) Compute B1: = - V2 * W1 = - B1 * W1,
+* V2 = B1, W1 is upper-triangular with zeroes below the diagonal.
+*
+ IF( M.GT.0 ) THEN
+ CALL DTRMM( 'R', 'U', 'N', 'N', M, K, -ONE, WORK, LDWORK,
+ $ B, LDB )
+ END IF
+*
+ IF( LNOTIDENT ) THEN
+*
+* col1_(5) Compute W1: = V1 * W1 = A1 * W1,
+* V1 is not an identity matrix, but unit lower-triangular
+* V1 stored in A1 (diagonal ones are not stored),
+* W1 is upper-triangular on input with zeroes below the diagonal,
+* and square on output.
+*
+ CALL DTRMM( 'L', 'L', 'N', 'U', K, K, ONE, A, LDA,
+ $ WORK, LDWORK )
+*
+* col1_(6) Compute A1: = A1 - W1 = A(1:K, 1:K) - WORK(1:K, 1:K)
+* column-by-column. A1 is upper-triangular on input.
+* If IDENT, A1 is square on output, and W1 is square,
+* if NOT IDENT, A1 is upper-triangular on output,
+* W1 is upper-triangular.
+*
+* col1_(6)_a Compute elements of A1 below the diagonal.
+*
+ DO J = 1, K - 1
+ DO I = J + 1, K
+ A( I, J ) = - WORK( I, J )
+ END DO
+ END DO
+*
+ END IF
+*
+* col1_(6)_b Compute elements of A1 on and above the diagonal.
+*
+ DO J = 1, K
+ DO I = 1, J
+ A( I, J ) = A( I, J ) - WORK( I, J )
+ END DO
+ END DO
+*
+ RETURN
+*
+* End of DLARFB_GETT
+*
+ END
diff --git a/lapack-netlib/SRC/dorgtsqr_row.f b/lapack-netlib/SRC/dorgtsqr_row.f
new file mode 100644
index 000000000..94f8b0120
--- /dev/null
+++ b/lapack-netlib/SRC/dorgtsqr_row.f
@@ -0,0 +1,379 @@
+*> \brief \b DORGTSQR_ROW
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download DORGTSQR_ROW + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE DORGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK,
+* $ LWORK, INFO )
+* IMPLICIT NONE
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
+* ..
+* .. Array Arguments ..
+* DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * )
+* ..
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> DORGTSQR_ROW generates an M-by-N real matrix Q_out with
+*> orthonormal columns from the output of DLATSQR. These N orthonormal
+*> columns are the first N columns of a product of complex unitary
+*> matrices Q(k)_in of order M, which are returned by DLATSQR in
+*> a special format.
+*>
+*> Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).
+*>
+*> The input matrices Q(k)_in are stored in row and column blocks in A.
+*> See the documentation of DLATSQR for more details on the format of
+*> Q(k)_in, where each Q(k)_in is represented by block Householder
+*> transformations. This routine calls an auxiliary routine DLARFB_GETT,
+*> where the computation is performed on each individual block. The
+*> algorithm first sweeps NB-sized column blocks from the right to left
+*> starting in the bottom row block and continues to the top row block
+*> (hence _ROW in the routine name). This sweep is in reverse order of
+*> the order in which DLATSQR generates the output blocks.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. M >= N >= 0.
+*> \endverbatim
+*>
+*> \param[in] MB
+*> \verbatim
+*> MB is INTEGER
+*> The row block size used by DLATSQR to return
+*> arrays A and T. MB > N.
+*> (Note that if MB > M, then M is used instead of MB
+*> as the row block size).
+*> \endverbatim
+*>
+*> \param[in] NB
+*> \verbatim
+*> NB is INTEGER
+*> The column block size used by DLATSQR to return
+*> arrays A and T. NB >= 1.
+*> (Note that if NB > N, then N is used instead of NB
+*> as the column block size).
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is DOUBLE PRECISION array, dimension (LDA,N)
+*>
+*> On entry:
+*>
+*> The elements on and above the diagonal are not used as
+*> input. The elements below the diagonal represent the unit
+*> lower-trapezoidal blocked matrix V computed by DLATSQR
+*> that defines the input matrices Q_in(k) (ones on the
+*> diagonal are not stored). See DLATSQR for more details.
+*>
+*> On exit:
+*>
+*> The array A contains an M-by-N orthonormal matrix Q_out,
+*> i.e the columns of A are orthogonal unit vectors.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in] T
+*> \verbatim
+*> T is DOUBLE PRECISION array,
+*> dimension (LDT, N * NIRB)
+*> where NIRB = Number_of_input_row_blocks
+*> = MAX( 1, CEIL((M-N)/(MB-N)) )
+*> Let NICB = Number_of_input_col_blocks
+*> = CEIL(N/NB)
+*>
+*> The upper-triangular block reflectors used to define the
+*> input matrices Q_in(k), k=(1:NIRB*NICB). The block
+*> reflectors are stored in compact form in NIRB block
+*> reflector sequences. Each of the NIRB block reflector
+*> sequences is stored in a larger NB-by-N column block of T
+*> and consists of NICB smaller NB-by-NB upper-triangular
+*> column blocks. See DLATSQR for more details on the format
+*> of T.
+*> \endverbatim
+*>
+*> \param[in] LDT
+*> \verbatim
+*> LDT is INTEGER
+*> The leading dimension of the array T.
+*> LDT >= max(1,min(NB,N)).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> The dimension of the array WORK.
+*> LWORK >= NBLOCAL * MAX(NBLOCAL,(N-NBLOCAL)),
+*> where NBLOCAL=MIN(NB,N).
+*> If LWORK = -1, then a workspace query is assumed.
+*> The routine only calculates the optimal size of the WORK
+*> array, returns this value as the first entry of the WORK
+*> array, and no error message related to LWORK is issued
+*> by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> \endverbatim
+*>
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup doubleOTHERcomputational
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2020, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> \endverbatim
+*>
+* =====================================================================
+ SUBROUTINE DORGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK,
+ $ LWORK, INFO )
+ IMPLICIT NONE
+*
+* -- LAPACK computational routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE, ZERO
+ PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY
+ INTEGER NBLOCAL, MB2, M_PLUS_ONE, ITMP, IB_BOTTOM,
+ $ LWORKOPT, NUM_ALL_ROW_BLOCKS, JB_T, IB, IMB,
+ $ KB, KB_LAST, KNB, MB1
+* ..
+* .. Local Arrays ..
+ DOUBLE PRECISION DUMMY( 1, 1 )
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLARFB_GETT, DLASET, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC DBLE, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters
+*
+ INFO = 0
+ LQUERY = LWORK.EQ.-1
+ IF( M.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
+ INFO = -2
+ ELSE IF( MB.LE.N ) THEN
+ INFO = -3
+ ELSE IF( NB.LT.1 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -6
+ ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
+ INFO = -8
+ ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
+ INFO = -10
+ END IF
+*
+ NBLOCAL = MIN( NB, N )
+*
+* Determine the workspace size.
+*
+ IF( INFO.EQ.0 ) THEN
+ LWORKOPT = NBLOCAL * MAX( NBLOCAL, ( N - NBLOCAL ) )
+ END IF
+*
+* Handle error in the input parameters and handle the workspace query.
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DORGTSQR_ROW', -INFO )
+ RETURN
+ ELSE IF ( LQUERY ) THEN
+ WORK( 1 ) = DBLE( LWORKOPT )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( MIN( M, N ).EQ.0 ) THEN
+ WORK( 1 ) = DBLE( LWORKOPT )
+ RETURN
+ END IF
+*
+* (0) Set the upper-triangular part of the matrix A to zero and
+* its diagonal elements to one.
+*
+ CALL DLASET('U', M, N, ZERO, ONE, A, LDA )
+*
+* KB_LAST is the column index of the last column block reflector
+* in the matrices T and V.
+*
+ KB_LAST = ( ( N-1 ) / NBLOCAL ) * NBLOCAL + 1
+*
+*
+* (1) Bottom-up loop over row blocks of A, except the top row block.
+* NOTE: If MB>=M, then the loop is never executed.
+*
+ IF ( MB.LT.M ) THEN
+*
+* MB2 is the row blocking size for the row blocks before the
+* first top row block in the matrix A. IB is the row index for
+* the row blocks in the matrix A before the first top row block.
+* IB_BOTTOM is the row index for the last bottom row block
+* in the matrix A. JB_T is the column index of the corresponding
+* column block in the matrix T.
+*
+* Initialize variables.
+*
+* NUM_ALL_ROW_BLOCKS is the number of row blocks in the matrix A
+* including the first row block.
+*
+ MB2 = MB - N
+ M_PLUS_ONE = M + 1
+ ITMP = ( M - MB - 1 ) / MB2
+ IB_BOTTOM = ITMP * MB2 + MB + 1
+ NUM_ALL_ROW_BLOCKS = ITMP + 2
+ JB_T = NUM_ALL_ROW_BLOCKS * N + 1
+*
+ DO IB = IB_BOTTOM, MB+1, -MB2
+*
+* Determine the block size IMB for the current row block
+* in the matrix A.
+*
+ IMB = MIN( M_PLUS_ONE - IB, MB2 )
+*
+* Determine the column index JB_T for the current column block
+* in the matrix T.
+*
+ JB_T = JB_T - N
+*
+* Apply column blocks of H in the row block from right to left.
+*
+* KB is the column index of the current column block reflector
+* in the matrices T and V.
+*
+ DO KB = KB_LAST, 1, -NBLOCAL
+*
+* Determine the size of the current column block KNB in
+* the matrices T and V.
+*
+ KNB = MIN( NBLOCAL, N - KB + 1 )
+*
+ CALL DLARFB_GETT( 'I', IMB, N-KB+1, KNB,
+ $ T( 1, JB_T+KB-1 ), LDT, A( KB, KB ), LDA,
+ $ A( IB, KB ), LDA, WORK, KNB )
+*
+ END DO
+*
+ END DO
+*
+ END IF
+*
+* (2) Top row block of A.
+* NOTE: If MB>=M, then we have only one row block of A of size M
+* and we work on the entire matrix A.
+*
+ MB1 = MIN( MB, M )
+*
+* Apply column blocks of H in the top row block from right to left.
+*
+* KB is the column index of the current block reflector in
+* the matrices T and V.
+*
+ DO KB = KB_LAST, 1, -NBLOCAL
+*
+* Determine the size of the current column block KNB in
+* the matrices T and V.
+*
+ KNB = MIN( NBLOCAL, N - KB + 1 )
+*
+ IF( MB1-KB-KNB+1.EQ.0 ) THEN
+*
+* In SLARFB_GETT parameters, when M=0, then the matrix B
+* does not exist, hence we need to pass a dummy array
+* reference DUMMY(1,1) to B with LDDUMMY=1.
+*
+ CALL DLARFB_GETT( 'N', 0, N-KB+1, KNB,
+ $ T( 1, KB ), LDT, A( KB, KB ), LDA,
+ $ DUMMY( 1, 1 ), 1, WORK, KNB )
+ ELSE
+ CALL DLARFB_GETT( 'N', MB1-KB-KNB+1, N-KB+1, KNB,
+ $ T( 1, KB ), LDT, A( KB, KB ), LDA,
+ $ A( KB+KNB, KB), LDA, WORK, KNB )
+
+ END IF
+*
+ END DO
+*
+ WORK( 1 ) = DBLE( LWORKOPT )
+ RETURN
+*
+* End of DORGTSQR_ROW
+*
+ END
diff --git a/lapack-netlib/SRC/sgetsqrhrt.f b/lapack-netlib/SRC/sgetsqrhrt.f
new file mode 100644
index 000000000..f9580da7b
--- /dev/null
+++ b/lapack-netlib/SRC/sgetsqrhrt.f
@@ -0,0 +1,349 @@
+*> \brief \b SGETSQRHRT
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download SGETSQRHRT + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE SGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK,
+* $ LWORK, INFO )
+* IMPLICIT NONE
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDT, LWORK, M, N, NB1, NB2, MB1
+* ..
+* .. Array Arguments ..
+* REAL A( LDA, * ), T( LDT, * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> SGETSQRHRT computes a NB2-sized column blocked QR-factorization
+*> of a complex M-by-N matrix A with M >= N,
+*>
+*> A = Q * R.
+*>
+*> The routine uses internally a NB1-sized column blocked and MB1-sized
+*> row blocked TSQR-factorization and perfors the reconstruction
+*> of the Householder vectors from the TSQR output. The routine also
+*> converts the R_tsqr factor from the TSQR-factorization output into
+*> the R factor that corresponds to the Householder QR-factorization,
+*>
+*> A = Q_tsqr * R_tsqr = Q * R.
+*>
+*> The output Q and R factors are stored in the same format as in SGEQRT
+*> (Q is in blocked compact WY-representation). See the documentation
+*> of SGEQRT for more details on the format.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. M >= N >= 0.
+*> \endverbatim
+*>
+*> \param[in] MB1
+*> \verbatim
+*> MB1 is INTEGER
+*> The row block size to be used in the blocked TSQR.
+*> MB1 > N.
+*> \endverbatim
+*>
+*> \param[in] NB1
+*> \verbatim
+*> NB1 is INTEGER
+*> The column block size to be used in the blocked TSQR.
+*> N >= NB1 >= 1.
+*> \endverbatim
+*>
+*> \param[in] NB2
+*> \verbatim
+*> NB2 is INTEGER
+*> The block size to be used in the blocked QR that is
+*> output. NB2 >= 1.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is REAL array, dimension (LDA,N)
+*>
+*> On entry: an M-by-N matrix A.
+*>
+*> On exit:
+*> a) the elements on and above the diagonal
+*> of the array contain the N-by-N upper-triangular
+*> matrix R corresponding to the Householder QR;
+*> b) the elements below the diagonal represent Q by
+*> the columns of blocked V (compact WY-representation).
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[out] T
+*> \verbatim
+*> T is REAL array, dimension (LDT,N))
+*> The upper triangular block reflectors stored in compact form
+*> as a sequence of upper triangular blocks.
+*> \endverbatim
+*>
+*> \param[in] LDT
+*> \verbatim
+*> LDT is INTEGER
+*> The leading dimension of the array T. LDT >= NB2.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> (workspace) REAL array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> The dimension of the array WORK.
+*> LWORK >= MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ),
+*> where
+*> NUM_ALL_ROW_BLOCKS = CEIL((M-N)/(MB1-N)),
+*> NB1LOCAL = MIN(NB1,N).
+*> LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL,
+*> LW1 = NB1LOCAL * N,
+*> LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ),
+*> If LWORK = -1, then a workspace query is assumed.
+*> The routine only calculates the optimal size of the WORK
+*> array, returns this value as the first entry of the WORK
+*> array, and no error message related to LWORK is issued
+*> by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup singleOTHERcomputational
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2020, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> \endverbatim
+*>
+* =====================================================================
+ SUBROUTINE SGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK,
+ $ LWORK, INFO )
+ IMPLICIT NONE
+*
+* -- LAPACK computational routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDT, LWORK, M, N, NB1, NB2, MB1
+* ..
+* .. Array Arguments ..
+ REAL A( LDA, * ), T( LDT, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ONE
+ PARAMETER ( ONE = 1.0E+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY
+ INTEGER I, IINFO, J, LW1, LW2, LWT, LDWT, LWORKOPT,
+ $ NB1LOCAL, NB2LOCAL, NUM_ALL_ROW_BLOCKS
+* ..
+* .. External Subroutines ..
+ EXTERNAL SCOPY, SLATSQR, SORGTSQR_ROW, SORHR_COL,
+ $ XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC CEILING, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments
+*
+ INFO = 0
+ LQUERY = LWORK.EQ.-1
+ IF( M.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
+ INFO = -2
+ ELSE IF( MB1.LE.N ) THEN
+ INFO = -3
+ ELSE IF( NB1.LT.1 ) THEN
+ INFO = -4
+ ELSE IF( NB2.LT.1 ) THEN
+ INFO = -5
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -7
+ ELSE IF( LDT.LT.MAX( 1, MIN( NB2, N ) ) ) THEN
+ INFO = -9
+ ELSE
+*
+* Test the input LWORK for the dimension of the array WORK.
+* This workspace is used to store array:
+* a) Matrix T and WORK for SLATSQR;
+* b) N-by-N upper-triangular factor R_tsqr;
+* c) Matrix T and array WORK for SORGTSQR_ROW;
+* d) Diagonal D for SORHR_COL.
+*
+ IF( LWORK.LT.N*N+1 .AND. .NOT.LQUERY ) THEN
+ INFO = -11
+ ELSE
+*
+* Set block size for column blocks
+*
+ NB1LOCAL = MIN( NB1, N )
+*
+ NUM_ALL_ROW_BLOCKS = MAX( 1,
+ $ CEILING( REAL( M - N ) / REAL( MB1 - N ) ) )
+*
+* Length and leading dimension of WORK array to place
+* T array in TSQR.
+*
+ LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL
+
+ LDWT = NB1LOCAL
+*
+* Length of TSQR work array
+*
+ LW1 = NB1LOCAL * N
+*
+* Length of SORGTSQR_ROW work array.
+*
+ LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) )
+*
+ LWORKOPT = MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) )
+*
+ IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN
+ INFO = -11
+ END IF
+*
+ END IF
+ END IF
+*
+* Handle error in the input parameters and return workspace query.
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'SGETSQRHRT', -INFO )
+ RETURN
+ ELSE IF ( LQUERY ) THEN
+ WORK( 1 ) = REAL( LWORKOPT )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( MIN( M, N ).EQ.0 ) THEN
+ WORK( 1 ) = REAL( LWORKOPT )
+ RETURN
+ END IF
+*
+ NB2LOCAL = MIN( NB2, N )
+*
+*
+* (1) Perform TSQR-factorization of the M-by-N matrix A.
+*
+ CALL SLATSQR( M, N, MB1, NB1LOCAL, A, LDA, WORK, LDWT,
+ $ WORK(LWT+1), LW1, IINFO )
+*
+* (2) Copy the factor R_tsqr stored in the upper-triangular part
+* of A into the square matrix in the work array
+* WORK(LWT+1:LWT+N*N) column-by-column.
+*
+ DO J = 1, N
+ CALL SCOPY( J, A( 1, J ), 1, WORK( LWT + N*(J-1)+1 ), 1 )
+ END DO
+*
+* (3) Generate a M-by-N matrix Q with orthonormal columns from
+* the result stored below the diagonal in the array A in place.
+*
+
+ CALL SORGTSQR_ROW( M, N, MB1, NB1LOCAL, A, LDA, WORK, LDWT,
+ $ WORK( LWT+N*N+1 ), LW2, IINFO )
+*
+* (4) Perform the reconstruction of Householder vectors from
+* the matrix Q (stored in A) in place.
+*
+ CALL SORHR_COL( M, N, NB2LOCAL, A, LDA, T, LDT,
+ $ WORK( LWT+N*N+1 ), IINFO )
+*
+* (5) Copy the factor R_tsqr stored in the square matrix in the
+* work array WORK(LWT+1:LWT+N*N) into the upper-triangular
+* part of A.
+*
+* (6) Compute from R_tsqr the factor R_hr corresponding to
+* the reconstructed Householder vectors, i.e. R_hr = S * R_tsqr.
+* This multiplication by the sign matrix S on the left means
+* changing the sign of I-th row of the matrix R_tsqr according
+* to sign of the I-th diagonal element DIAG(I) of the matrix S.
+* DIAG is stored in WORK( LWT+N*N+1 ) from the SORHR_COL output.
+*
+* (5) and (6) can be combined in a single loop, so the rows in A
+* are accessed only once.
+*
+ DO I = 1, N
+ IF( WORK( LWT+N*N+I ).EQ.-ONE ) THEN
+ DO J = I, N
+ A( I, J ) = -ONE * WORK( LWT+N*(J-1)+I )
+ END DO
+ ELSE
+ CALL SCOPY( N-I+1, WORK(LWT+N*(I-1)+I), N, A( I, I ), LDA )
+ END IF
+ END DO
+*
+ WORK( 1 ) = REAL( LWORKOPT )
+ RETURN
+*
+* End of SGETSQRHRT
+*
+ END
\ No newline at end of file
diff --git a/lapack-netlib/SRC/slarfb_gett.f b/lapack-netlib/SRC/slarfb_gett.f
new file mode 100644
index 000000000..7719f2965
--- /dev/null
+++ b/lapack-netlib/SRC/slarfb_gett.f
@@ -0,0 +1,596 @@
+*> \brief \b SLARFB_GETT
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download SLARFB_GETT + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE SLARFB_GETT( IDENT, M, N, K, T, LDT, A, LDA, B, LDB,
+* $ WORK, LDWORK )
+* IMPLICIT NONE
+*
+* .. Scalar Arguments ..
+* CHARACTER IDENT
+* INTEGER K, LDA, LDB, LDT, LDWORK, M, N
+* ..
+* .. Array Arguments ..
+* REAL A( LDA, * ), B( LDB, * ), T( LDT, * ),
+* $ WORK( LDWORK, * )
+* ..
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> SLARFB_GETT applies a real Householder block reflector H from the
+*> left to a real (K+M)-by-N "triangular-pentagonal" matrix
+*> composed of two block matrices: an upper trapezoidal K-by-N matrix A
+*> stored in the array A, and a rectangular M-by-(N-K) matrix B, stored
+*> in the array B. The block reflector H is stored in a compact
+*> WY-representation, where the elementary reflectors are in the
+*> arrays A, B and T. See Further Details section.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] IDENT
+*> \verbatim
+*> IDENT is CHARACTER*1
+*> If IDENT = not 'I', or not 'i', then V1 is unit
+*> lower-triangular and stored in the left K-by-K block of
+*> the input matrix A,
+*> If IDENT = 'I' or 'i', then V1 is an identity matrix and
+*> not stored.
+*> See Further Details section.
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix B.
+*> M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrices A and B.
+*> N >= 0.
+*> \endverbatim
+*>
+*> \param[in] K
+*> \verbatim
+*> K is INTEGER
+*> The number or rows of the matrix A.
+*> K is also order of the matrix T, i.e. the number of
+*> elementary reflectors whose product defines the block
+*> reflector. 0 <= K <= N.
+*> \endverbatim
+*>
+*> \param[in] T
+*> \verbatim
+*> T is REAL array, dimension (LDT,K)
+*> The upper-triangular K-by-K matrix T in the representation
+*> of the block reflector.
+*> \endverbatim
+*>
+*> \param[in] LDT
+*> \verbatim
+*> LDT is INTEGER
+*> The leading dimension of the array T. LDT >= K.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is REAL array, dimension (LDA,N)
+*>
+*> On entry:
+*> a) In the K-by-N upper-trapezoidal part A: input matrix A.
+*> b) In the columns below the diagonal: columns of V1
+*> (ones are not stored on the diagonal).
+*>
+*> On exit:
+*> A is overwritten by rectangular K-by-N product H*A.
+*>
+*> See Further Details section.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,K).
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is REAL array, dimension (LDB,N)
+*>
+*> On entry:
+*> a) In the M-by-(N-K) right block: input matrix B.
+*> b) In the M-by-N left block: columns of V2.
+*>
+*> On exit:
+*> B is overwritten by rectangular M-by-N product H*B.
+*>
+*> See Further Details section.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= max(1,M).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is REAL array,
+*> dimension (LDWORK,max(K,N-K))
+*> \endverbatim
+*>
+*> \param[in] LDWORK
+*> \verbatim
+*> LDWORK is INTEGER
+*> The leading dimension of the array WORK. LDWORK>=max(1,K).
+*>
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup singleOTHERauxiliary
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2020, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> \endverbatim
+*
+*> \par Further Details:
+* =====================
+*>
+*> \verbatim
+*>
+*> (1) Description of the Algebraic Operation.
+*>
+*> The matrix A is a K-by-N matrix composed of two column block
+*> matrices, A1, which is K-by-K, and A2, which is K-by-(N-K):
+*> A = ( A1, A2 ).
+*> The matrix B is an M-by-N matrix composed of two column block
+*> matrices, B1, which is M-by-K, and B2, which is M-by-(N-K):
+*> B = ( B1, B2 ).
+*>
+*> Perform the operation:
+*>
+*> ( A_out ) := H * ( A_in ) = ( I - V * T * V**T ) * ( A_in ) =
+*> ( B_out ) ( B_in ) ( B_in )
+*> = ( I - ( V1 ) * T * ( V1**T, V2**T ) ) * ( A_in )
+*> ( V2 ) ( B_in )
+*> On input:
+*>
+*> a) ( A_in ) consists of two block columns:
+*> ( B_in )
+*>
+*> ( A_in ) = (( A1_in ) ( A2_in )) = (( A1_in ) ( A2_in ))
+*> ( B_in ) (( B1_in ) ( B2_in )) (( 0 ) ( B2_in )),
+*>
+*> where the column blocks are:
+*>
+*> ( A1_in ) is a K-by-K upper-triangular matrix stored in the
+*> upper triangular part of the array A(1:K,1:K).
+*> ( B1_in ) is an M-by-K rectangular ZERO matrix and not stored.
+*>
+*> ( A2_in ) is a K-by-(N-K) rectangular matrix stored
+*> in the array A(1:K,K+1:N).
+*> ( B2_in ) is an M-by-(N-K) rectangular matrix stored
+*> in the array B(1:M,K+1:N).
+*>
+*> b) V = ( V1 )
+*> ( V2 )
+*>
+*> where:
+*> 1) if IDENT == 'I',V1 is a K-by-K identity matrix, not stored;
+*> 2) if IDENT != 'I',V1 is a K-by-K unit lower-triangular matrix,
+*> stored in the lower-triangular part of the array
+*> A(1:K,1:K) (ones are not stored),
+*> and V2 is an M-by-K rectangular stored the array B(1:M,1:K),
+*> (because on input B1_in is a rectangular zero
+*> matrix that is not stored and the space is
+*> used to store V2).
+*>
+*> c) T is a K-by-K upper-triangular matrix stored
+*> in the array T(1:K,1:K).
+*>
+*> On output:
+*>
+*> a) ( A_out ) consists of two block columns:
+*> ( B_out )
+*>
+*> ( A_out ) = (( A1_out ) ( A2_out ))
+*> ( B_out ) (( B1_out ) ( B2_out )),
+*>
+*> where the column blocks are:
+*>
+*> ( A1_out ) is a K-by-K square matrix, or a K-by-K
+*> upper-triangular matrix, if V1 is an
+*> identity matrix. AiOut is stored in
+*> the array A(1:K,1:K).
+*> ( B1_out ) is an M-by-K rectangular matrix stored
+*> in the array B(1:M,K:N).
+*>
+*> ( A2_out ) is a K-by-(N-K) rectangular matrix stored
+*> in the array A(1:K,K+1:N).
+*> ( B2_out ) is an M-by-(N-K) rectangular matrix stored
+*> in the array B(1:M,K+1:N).
+*>
+*>
+*> The operation above can be represented as the same operation
+*> on each block column:
+*>
+*> ( A1_out ) := H * ( A1_in ) = ( I - V * T * V**T ) * ( A1_in )
+*> ( B1_out ) ( 0 ) ( 0 )
+*>
+*> ( A2_out ) := H * ( A2_in ) = ( I - V * T * V**T ) * ( A2_in )
+*> ( B2_out ) ( B2_in ) ( B2_in )
+*>
+*> If IDENT != 'I':
+*>
+*> The computation for column block 1:
+*>
+*> A1_out: = A1_in - V1*T*(V1**T)*A1_in
+*>
+*> B1_out: = - V2*T*(V1**T)*A1_in
+*>
+*> The computation for column block 2, which exists if N > K:
+*>
+*> A2_out: = A2_in - V1*T*( (V1**T)*A2_in + (V2**T)*B2_in )
+*>
+*> B2_out: = B2_in - V2*T*( (V1**T)*A2_in + (V2**T)*B2_in )
+*>
+*> If IDENT == 'I':
+*>
+*> The operation for column block 1:
+*>
+*> A1_out: = A1_in - V1*T**A1_in
+*>
+*> B1_out: = - V2*T**A1_in
+*>
+*> The computation for column block 2, which exists if N > K:
+*>
+*> A2_out: = A2_in - T*( A2_in + (V2**T)*B2_in )
+*>
+*> B2_out: = B2_in - V2*T*( A2_in + (V2**T)*B2_in )
+*>
+*> (2) Description of the Algorithmic Computation.
+*>
+*> In the first step, we compute column block 2, i.e. A2 and B2.
+*> Here, we need to use the K-by-(N-K) rectangular workspace
+*> matrix W2 that is of the same size as the matrix A2.
+*> W2 is stored in the array WORK(1:K,1:(N-K)).
+*>
+*> In the second step, we compute column block 1, i.e. A1 and B1.
+*> Here, we need to use the K-by-K square workspace matrix W1
+*> that is of the same size as the as the matrix A1.
+*> W1 is stored in the array WORK(1:K,1:K).
+*>
+*> NOTE: Hence, in this routine, we need the workspace array WORK
+*> only of size WORK(1:K,1:max(K,N-K)) so it can hold both W2 from
+*> the first step and W1 from the second step.
+*>
+*> Case (A), when V1 is unit lower-triangular, i.e. IDENT != 'I',
+*> more computations than in the Case (B).
+*>
+*> if( IDENT != 'I' ) then
+*> if ( N > K ) then
+*> (First Step - column block 2)
+*> col2_(1) W2: = A2
+*> col2_(2) W2: = (V1**T) * W2 = (unit_lower_tr_of_(A1)**T) * W2
+*> col2_(3) W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2
+*> col2_(4) W2: = T * W2
+*> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2
+*> col2_(6) W2: = V1 * W2 = unit_lower_tr_of_(A1) * W2
+*> col2_(7) A2: = A2 - W2
+*> else
+*> (Second Step - column block 1)
+*> col1_(1) W1: = A1
+*> col1_(2) W1: = (V1**T) * W1 = (unit_lower_tr_of_(A1)**T) * W1
+*> col1_(3) W1: = T * W1
+*> col1_(4) B1: = - V2 * W1 = - B1 * W1
+*> col1_(5) square W1: = V1 * W1 = unit_lower_tr_of_(A1) * W1
+*> col1_(6) square A1: = A1 - W1
+*> end if
+*> end if
+*>
+*> Case (B), when V1 is an identity matrix, i.e. IDENT == 'I',
+*> less computations than in the Case (A)
+*>
+*> if( IDENT == 'I' ) then
+*> if ( N > K ) then
+*> (First Step - column block 2)
+*> col2_(1) W2: = A2
+*> col2_(3) W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2
+*> col2_(4) W2: = T * W2
+*> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2
+*> col2_(7) A2: = A2 - W2
+*> else
+*> (Second Step - column block 1)
+*> col1_(1) W1: = A1
+*> col1_(3) W1: = T * W1
+*> col1_(4) B1: = - V2 * W1 = - B1 * W1
+*> col1_(6) upper-triangular_of_(A1): = A1 - W1
+*> end if
+*> end if
+*>
+*> Combine these cases (A) and (B) together, this is the resulting
+*> algorithm:
+*>
+*> if ( N > K ) then
+*>
+*> (First Step - column block 2)
+*>
+*> col2_(1) W2: = A2
+*> if( IDENT != 'I' ) then
+*> col2_(2) W2: = (V1**T) * W2
+*> = (unit_lower_tr_of_(A1)**T) * W2
+*> end if
+*> col2_(3) W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2]
+*> col2_(4) W2: = T * W2
+*> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2
+*> if( IDENT != 'I' ) then
+*> col2_(6) W2: = V1 * W2 = unit_lower_tr_of_(A1) * W2
+*> end if
+*> col2_(7) A2: = A2 - W2
+*>
+*> else
+*>
+*> (Second Step - column block 1)
+*>
+*> col1_(1) W1: = A1
+*> if( IDENT != 'I' ) then
+*> col1_(2) W1: = (V1**T) * W1
+*> = (unit_lower_tr_of_(A1)**T) * W1
+*> end if
+*> col1_(3) W1: = T * W1
+*> col1_(4) B1: = - V2 * W1 = - B1 * W1
+*> if( IDENT != 'I' ) then
+*> col1_(5) square W1: = V1 * W1 = unit_lower_tr_of_(A1) * W1
+*> col1_(6_a) below_diag_of_(A1): = - below_diag_of_(W1)
+*> end if
+*> col1_(6_b) up_tr_of_(A1): = up_tr_of_(A1) - up_tr_of_(W1)
+*>
+*> end if
+*>
+*> \endverbatim
+*>
+* =====================================================================
+ SUBROUTINE SLARFB_GETT( IDENT, M, N, K, T, LDT, A, LDA, B, LDB,
+ $ WORK, LDWORK )
+ IMPLICIT NONE
+*
+* -- LAPACK auxiliary routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ CHARACTER IDENT
+ INTEGER K, LDA, LDB, LDT, LDWORK, M, N
+* ..
+* .. Array Arguments ..
+ REAL A( LDA, * ), B( LDB, * ), T( LDT, * ),
+ $ WORK( LDWORK, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ONE, ZERO
+ PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LNOTIDENT
+ INTEGER I, J
+* ..
+* .. EXTERNAL FUNCTIONS ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL SCOPY, SGEMM, STRMM
+* ..
+* .. Executable Statements ..
+*
+* Quick return if possible
+*
+ IF( M.LT.0 .OR. N.LE.0 .OR. K.EQ.0 .OR. K.GT.N )
+ $ RETURN
+*
+ LNOTIDENT = .NOT.LSAME( IDENT, 'I' )
+*
+* ------------------------------------------------------------------
+*
+* First Step. Computation of the Column Block 2:
+*
+* ( A2 ) := H * ( A2 )
+* ( B2 ) ( B2 )
+*
+* ------------------------------------------------------------------
+*
+ IF( N.GT.K ) THEN
+*
+* col2_(1) Compute W2: = A2. Therefore, copy A2 = A(1:K, K+1:N)
+* into W2=WORK(1:K, 1:N-K) column-by-column.
+*
+ DO J = 1, N-K
+ CALL SCOPY( K, A( 1, K+J ), 1, WORK( 1, J ), 1 )
+ END DO
+
+ IF( LNOTIDENT ) THEN
+*
+* col2_(2) Compute W2: = (V1**T) * W2 = (A1**T) * W2,
+* V1 is not an identy matrix, but unit lower-triangular
+* V1 stored in A1 (diagonal ones are not stored).
+*
+*
+ CALL STRMM( 'L', 'L', 'T', 'U', K, N-K, ONE, A, LDA,
+ $ WORK, LDWORK )
+ END IF
+*
+* col2_(3) Compute W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2
+* V2 stored in B1.
+*
+ IF( M.GT.0 ) THEN
+ CALL SGEMM( 'T', 'N', K, N-K, M, ONE, B, LDB,
+ $ B( 1, K+1 ), LDB, ONE, WORK, LDWORK )
+ END IF
+*
+* col2_(4) Compute W2: = T * W2,
+* T is upper-triangular.
+*
+ CALL STRMM( 'L', 'U', 'N', 'N', K, N-K, ONE, T, LDT,
+ $ WORK, LDWORK )
+*
+* col2_(5) Compute B2: = B2 - V2 * W2 = B2 - B1 * W2,
+* V2 stored in B1.
+*
+ IF( M.GT.0 ) THEN
+ CALL SGEMM( 'N', 'N', M, N-K, K, -ONE, B, LDB,
+ $ WORK, LDWORK, ONE, B( 1, K+1 ), LDB )
+ END IF
+*
+ IF( LNOTIDENT ) THEN
+*
+* col2_(6) Compute W2: = V1 * W2 = A1 * W2,
+* V1 is not an identity matrix, but unit lower-triangular,
+* V1 stored in A1 (diagonal ones are not stored).
+*
+ CALL STRMM( 'L', 'L', 'N', 'U', K, N-K, ONE, A, LDA,
+ $ WORK, LDWORK )
+ END IF
+*
+* col2_(7) Compute A2: = A2 - W2 =
+* = A(1:K, K+1:N-K) - WORK(1:K, 1:N-K),
+* column-by-column.
+*
+ DO J = 1, N-K
+ DO I = 1, K
+ A( I, K+J ) = A( I, K+J ) - WORK( I, J )
+ END DO
+ END DO
+*
+ END IF
+*
+* ------------------------------------------------------------------
+*
+* Second Step. Computation of the Column Block 1:
+*
+* ( A1 ) := H * ( A1 )
+* ( B1 ) ( 0 )
+*
+* ------------------------------------------------------------------
+*
+* col1_(1) Compute W1: = A1. Copy the upper-triangular
+* A1 = A(1:K, 1:K) into the upper-triangular
+* W1 = WORK(1:K, 1:K) column-by-column.
+*
+ DO J = 1, K
+ CALL SCOPY( J, A( 1, J ), 1, WORK( 1, J ), 1 )
+ END DO
+*
+* Set the subdiagonal elements of W1 to zero column-by-column.
+*
+ DO J = 1, K - 1
+ DO I = J + 1, K
+ WORK( I, J ) = ZERO
+ END DO
+ END DO
+*
+ IF( LNOTIDENT ) THEN
+*
+* col1_(2) Compute W1: = (V1**T) * W1 = (A1**T) * W1,
+* V1 is not an identity matrix, but unit lower-triangular
+* V1 stored in A1 (diagonal ones are not stored),
+* W1 is upper-triangular with zeroes below the diagonal.
+*
+ CALL STRMM( 'L', 'L', 'T', 'U', K, K, ONE, A, LDA,
+ $ WORK, LDWORK )
+ END IF
+*
+* col1_(3) Compute W1: = T * W1,
+* T is upper-triangular,
+* W1 is upper-triangular with zeroes below the diagonal.
+*
+ CALL STRMM( 'L', 'U', 'N', 'N', K, K, ONE, T, LDT,
+ $ WORK, LDWORK )
+*
+* col1_(4) Compute B1: = - V2 * W1 = - B1 * W1,
+* V2 = B1, W1 is upper-triangular with zeroes below the diagonal.
+*
+ IF( M.GT.0 ) THEN
+ CALL STRMM( 'R', 'U', 'N', 'N', M, K, -ONE, WORK, LDWORK,
+ $ B, LDB )
+ END IF
+*
+ IF( LNOTIDENT ) THEN
+*
+* col1_(5) Compute W1: = V1 * W1 = A1 * W1,
+* V1 is not an identity matrix, but unit lower-triangular
+* V1 stored in A1 (diagonal ones are not stored),
+* W1 is upper-triangular on input with zeroes below the diagonal,
+* and square on output.
+*
+ CALL STRMM( 'L', 'L', 'N', 'U', K, K, ONE, A, LDA,
+ $ WORK, LDWORK )
+*
+* col1_(6) Compute A1: = A1 - W1 = A(1:K, 1:K) - WORK(1:K, 1:K)
+* column-by-column. A1 is upper-triangular on input.
+* If IDENT, A1 is square on output, and W1 is square,
+* if NOT IDENT, A1 is upper-triangular on output,
+* W1 is upper-triangular.
+*
+* col1_(6)_a Compute elements of A1 below the diagonal.
+*
+ DO J = 1, K - 1
+ DO I = J + 1, K
+ A( I, J ) = - WORK( I, J )
+ END DO
+ END DO
+*
+ END IF
+*
+* col1_(6)_b Compute elements of A1 on and above the diagonal.
+*
+ DO J = 1, K
+ DO I = 1, J
+ A( I, J ) = A( I, J ) - WORK( I, J )
+ END DO
+ END DO
+*
+ RETURN
+*
+* End of SLARFB_GETT
+*
+ END
diff --git a/lapack-netlib/SRC/sorgtsqr_row.f b/lapack-netlib/SRC/sorgtsqr_row.f
new file mode 100644
index 000000000..d2a2150cd
--- /dev/null
+++ b/lapack-netlib/SRC/sorgtsqr_row.f
@@ -0,0 +1,379 @@
+*> \brief \b SORGTSQR_ROW
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download SORGTSQR_ROW + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE SORGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK,
+* $ LWORK, INFO )
+* IMPLICIT NONE
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
+* ..
+* .. Array Arguments ..
+* REAL A( LDA, * ), T( LDT, * ), WORK( * )
+* ..
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> SORGTSQR_ROW generates an M-by-N real matrix Q_out with
+*> orthonormal columns from the output of SLATSQR. These N orthonormal
+*> columns are the first N columns of a product of complex unitary
+*> matrices Q(k)_in of order M, which are returned by SLATSQR in
+*> a special format.
+*>
+*> Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).
+*>
+*> The input matrices Q(k)_in are stored in row and column blocks in A.
+*> See the documentation of SLATSQR for more details on the format of
+*> Q(k)_in, where each Q(k)_in is represented by block Householder
+*> transformations. This routine calls an auxiliary routine SLARFB_GETT,
+*> where the computation is performed on each individual block. The
+*> algorithm first sweeps NB-sized column blocks from the right to left
+*> starting in the bottom row block and continues to the top row block
+*> (hence _ROW in the routine name). This sweep is in reverse order of
+*> the order in which SLATSQR generates the output blocks.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. M >= N >= 0.
+*> \endverbatim
+*>
+*> \param[in] MB
+*> \verbatim
+*> MB is INTEGER
+*> The row block size used by SLATSQR to return
+*> arrays A and T. MB > N.
+*> (Note that if MB > M, then M is used instead of MB
+*> as the row block size).
+*> \endverbatim
+*>
+*> \param[in] NB
+*> \verbatim
+*> NB is INTEGER
+*> The column block size used by SLATSQR to return
+*> arrays A and T. NB >= 1.
+*> (Note that if NB > N, then N is used instead of NB
+*> as the column block size).
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is REAL array, dimension (LDA,N)
+*>
+*> On entry:
+*>
+*> The elements on and above the diagonal are not used as
+*> input. The elements below the diagonal represent the unit
+*> lower-trapezoidal blocked matrix V computed by SLATSQR
+*> that defines the input matrices Q_in(k) (ones on the
+*> diagonal are not stored). See SLATSQR for more details.
+*>
+*> On exit:
+*>
+*> The array A contains an M-by-N orthonormal matrix Q_out,
+*> i.e the columns of A are orthogonal unit vectors.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in] T
+*> \verbatim
+*> T is REAL array,
+*> dimension (LDT, N * NIRB)
+*> where NIRB = Number_of_input_row_blocks
+*> = MAX( 1, CEIL((M-N)/(MB-N)) )
+*> Let NICB = Number_of_input_col_blocks
+*> = CEIL(N/NB)
+*>
+*> The upper-triangular block reflectors used to define the
+*> input matrices Q_in(k), k=(1:NIRB*NICB). The block
+*> reflectors are stored in compact form in NIRB block
+*> reflector sequences. Each of the NIRB block reflector
+*> sequences is stored in a larger NB-by-N column block of T
+*> and consists of NICB smaller NB-by-NB upper-triangular
+*> column blocks. See SLATSQR for more details on the format
+*> of T.
+*> \endverbatim
+*>
+*> \param[in] LDT
+*> \verbatim
+*> LDT is INTEGER
+*> The leading dimension of the array T.
+*> LDT >= max(1,min(NB,N)).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> (workspace) REAL array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> The dimension of the array WORK.
+*> LWORK >= NBLOCAL * MAX(NBLOCAL,(N-NBLOCAL)),
+*> where NBLOCAL=MIN(NB,N).
+*> If LWORK = -1, then a workspace query is assumed.
+*> The routine only calculates the optimal size of the WORK
+*> array, returns this value as the first entry of the WORK
+*> array, and no error message related to LWORK is issued
+*> by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> \endverbatim
+*>
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup sigleOTHERcomputational
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2020, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> \endverbatim
+*>
+* =====================================================================
+ SUBROUTINE SORGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK,
+ $ LWORK, INFO )
+ IMPLICIT NONE
+*
+* -- LAPACK computational routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
+* ..
+* .. Array Arguments ..
+ REAL A( LDA, * ), T( LDT, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ONE, ZERO
+ PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY
+ INTEGER NBLOCAL, MB2, M_PLUS_ONE, ITMP, IB_BOTTOM,
+ $ LWORKOPT, NUM_ALL_ROW_BLOCKS, JB_T, IB, IMB,
+ $ KB, KB_LAST, KNB, MB1
+* ..
+* .. Local Arrays ..
+ REAL DUMMY( 1, 1 )
+* ..
+* .. External Subroutines ..
+ EXTERNAL SLARFB_GETT, SLASET, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC REAL, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters
+*
+ INFO = 0
+ LQUERY = LWORK.EQ.-1
+ IF( M.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
+ INFO = -2
+ ELSE IF( MB.LE.N ) THEN
+ INFO = -3
+ ELSE IF( NB.LT.1 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -6
+ ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
+ INFO = -8
+ ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
+ INFO = -10
+ END IF
+*
+ NBLOCAL = MIN( NB, N )
+*
+* Determine the workspace size.
+*
+ IF( INFO.EQ.0 ) THEN
+ LWORKOPT = NBLOCAL * MAX( NBLOCAL, ( N - NBLOCAL ) )
+ END IF
+*
+* Handle error in the input parameters and handle the workspace query.
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'SORGTSQR_ROW', -INFO )
+ RETURN
+ ELSE IF ( LQUERY ) THEN
+ WORK( 1 ) = REAL( LWORKOPT )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( MIN( M, N ).EQ.0 ) THEN
+ WORK( 1 ) = REAL( LWORKOPT )
+ RETURN
+ END IF
+*
+* (0) Set the upper-triangular part of the matrix A to zero and
+* its diagonal elements to one.
+*
+ CALL SLASET('U', M, N, ZERO, ONE, A, LDA )
+*
+* KB_LAST is the column index of the last column block reflector
+* in the matrices T and V.
+*
+ KB_LAST = ( ( N-1 ) / NBLOCAL ) * NBLOCAL + 1
+*
+*
+* (1) Bottom-up loop over row blocks of A, except the top row block.
+* NOTE: If MB>=M, then the loop is never executed.
+*
+ IF ( MB.LT.M ) THEN
+*
+* MB2 is the row blocking size for the row blocks before the
+* first top row block in the matrix A. IB is the row index for
+* the row blocks in the matrix A before the first top row block.
+* IB_BOTTOM is the row index for the last bottom row block
+* in the matrix A. JB_T is the column index of the corresponding
+* column block in the matrix T.
+*
+* Initialize variables.
+*
+* NUM_ALL_ROW_BLOCKS is the number of row blocks in the matrix A
+* including the first row block.
+*
+ MB2 = MB - N
+ M_PLUS_ONE = M + 1
+ ITMP = ( M - MB - 1 ) / MB2
+ IB_BOTTOM = ITMP * MB2 + MB + 1
+ NUM_ALL_ROW_BLOCKS = ITMP + 2
+ JB_T = NUM_ALL_ROW_BLOCKS * N + 1
+*
+ DO IB = IB_BOTTOM, MB+1, -MB2
+*
+* Determine the block size IMB for the current row block
+* in the matrix A.
+*
+ IMB = MIN( M_PLUS_ONE - IB, MB2 )
+*
+* Determine the column index JB_T for the current column block
+* in the matrix T.
+*
+ JB_T = JB_T - N
+*
+* Apply column blocks of H in the row block from right to left.
+*
+* KB is the column index of the current column block reflector
+* in the matrices T and V.
+*
+ DO KB = KB_LAST, 1, -NBLOCAL
+*
+* Determine the size of the current column block KNB in
+* the matrices T and V.
+*
+ KNB = MIN( NBLOCAL, N - KB + 1 )
+*
+ CALL SLARFB_GETT( 'I', IMB, N-KB+1, KNB,
+ $ T( 1, JB_T+KB-1 ), LDT, A( KB, KB ), LDA,
+ $ A( IB, KB ), LDA, WORK, KNB )
+*
+ END DO
+*
+ END DO
+*
+ END IF
+*
+* (2) Top row block of A.
+* NOTE: If MB>=M, then we have only one row block of A of size M
+* and we work on the entire matrix A.
+*
+ MB1 = MIN( MB, M )
+*
+* Apply column blocks of H in the top row block from right to left.
+*
+* KB is the column index of the current block reflector in
+* the matrices T and V.
+*
+ DO KB = KB_LAST, 1, -NBLOCAL
+*
+* Determine the size of the current column block KNB in
+* the matrices T and V.
+*
+ KNB = MIN( NBLOCAL, N - KB + 1 )
+*
+ IF( MB1-KB-KNB+1.EQ.0 ) THEN
+*
+* In SLARFB_GETT parameters, when M=0, then the matrix B
+* does not exist, hence we need to pass a dummy array
+* reference DUMMY(1,1) to B with LDDUMMY=1.
+*
+ CALL SLARFB_GETT( 'N', 0, N-KB+1, KNB,
+ $ T( 1, KB ), LDT, A( KB, KB ), LDA,
+ $ DUMMY( 1, 1 ), 1, WORK, KNB )
+ ELSE
+ CALL SLARFB_GETT( 'N', MB1-KB-KNB+1, N-KB+1, KNB,
+ $ T( 1, KB ), LDT, A( KB, KB ), LDA,
+ $ A( KB+KNB, KB), LDA, WORK, KNB )
+
+ END IF
+*
+ END DO
+*
+ WORK( 1 ) = REAL( LWORKOPT )
+ RETURN
+*
+* End of SORGTSQR_ROW
+*
+ END
diff --git a/lapack-netlib/SRC/zgetsqrhrt.f b/lapack-netlib/SRC/zgetsqrhrt.f
new file mode 100644
index 000000000..5f0167937
--- /dev/null
+++ b/lapack-netlib/SRC/zgetsqrhrt.f
@@ -0,0 +1,349 @@
+*> \brief \b ZGETSQRHRT
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download ZGETSQRHRT + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK,
+* $ LWORK, INFO )
+* IMPLICIT NONE
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDT, LWORK, M, N, NB1, NB2, MB1
+* ..
+* .. Array Arguments ..
+* COMPLEX*16 A( LDA, * ), T( LDT, * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZGETSQRHRT computes a NB2-sized column blocked QR-factorization
+*> of a complex M-by-N matrix A with M >= N,
+*>
+*> A = Q * R.
+*>
+*> The routine uses internally a NB1-sized column blocked and MB1-sized
+*> row blocked TSQR-factorization and perfors the reconstruction
+*> of the Householder vectors from the TSQR output. The routine also
+*> converts the R_tsqr factor from the TSQR-factorization output into
+*> the R factor that corresponds to the Householder QR-factorization,
+*>
+*> A = Q_tsqr * R_tsqr = Q * R.
+*>
+*> The output Q and R factors are stored in the same format as in ZGEQRT
+*> (Q is in blocked compact WY-representation). See the documentation
+*> of ZGEQRT for more details on the format.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. M >= N >= 0.
+*> \endverbatim
+*>
+*> \param[in] MB1
+*> \verbatim
+*> MB1 is INTEGER
+*> The row block size to be used in the blocked TSQR.
+*> MB1 > N.
+*> \endverbatim
+*>
+*> \param[in] NB1
+*> \verbatim
+*> NB1 is INTEGER
+*> The column block size to be used in the blocked TSQR.
+*> N >= NB1 >= 1.
+*> \endverbatim
+*>
+*> \param[in] NB2
+*> \verbatim
+*> NB2 is INTEGER
+*> The block size to be used in the blocked QR that is
+*> output. NB2 >= 1.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX*16 array, dimension (LDA,N)
+*>
+*> On entry: an M-by-N matrix A.
+*>
+*> On exit:
+*> a) the elements on and above the diagonal
+*> of the array contain the N-by-N upper-triangular
+*> matrix R corresponding to the Householder QR;
+*> b) the elements below the diagonal represent Q by
+*> the columns of blocked V (compact WY-representation).
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[out] T
+*> \verbatim
+*> T is COMPLEX*16 array, dimension (LDT,N))
+*> The upper triangular block reflectors stored in compact form
+*> as a sequence of upper triangular blocks.
+*> \endverbatim
+*>
+*> \param[in] LDT
+*> \verbatim
+*> LDT is INTEGER
+*> The leading dimension of the array T. LDT >= NB2.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> The dimension of the array WORK.
+*> LWORK >= MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ),
+*> where
+*> NUM_ALL_ROW_BLOCKS = CEIL((M-N)/(MB1-N)),
+*> NB1LOCAL = MIN(NB1,N).
+*> LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL,
+*> LW1 = NB1LOCAL * N,
+*> LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ),
+*> If LWORK = -1, then a workspace query is assumed.
+*> The routine only calculates the optimal size of the WORK
+*> array, returns this value as the first entry of the WORK
+*> array, and no error message related to LWORK is issued
+*> by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup comlpex16OTHERcomputational
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2020, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> \endverbatim
+*>
+* =====================================================================
+ SUBROUTINE ZGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK,
+ $ LWORK, INFO )
+ IMPLICIT NONE
+*
+* -- LAPACK computational routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDT, LWORK, M, N, NB1, NB2, MB1
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 A( LDA, * ), T( LDT, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ COMPLEX*16 CONE
+ PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY
+ INTEGER I, IINFO, J, LW1, LW2, LWT, LDWT, LWORKOPT,
+ $ NB1LOCAL, NB2LOCAL, NUM_ALL_ROW_BLOCKS
+* ..
+* .. External Subroutines ..
+ EXTERNAL ZCOPY, ZLATSQR, ZUNGTSQR_ROW, ZUNHR_COL,
+ $ XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC CEILING, DBLE, DCMPLX, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments
+*
+ INFO = 0
+ LQUERY = LWORK.EQ.-1
+ IF( M.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
+ INFO = -2
+ ELSE IF( MB1.LE.N ) THEN
+ INFO = -3
+ ELSE IF( NB1.LT.1 ) THEN
+ INFO = -4
+ ELSE IF( NB2.LT.1 ) THEN
+ INFO = -5
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -7
+ ELSE IF( LDT.LT.MAX( 1, MIN( NB2, N ) ) ) THEN
+ INFO = -9
+ ELSE
+*
+* Test the input LWORK for the dimension of the array WORK.
+* This workspace is used to store array:
+* a) Matrix T and WORK for ZLATSQR;
+* b) N-by-N upper-triangular factor R_tsqr;
+* c) Matrix T and array WORK for ZUNGTSQR_ROW;
+* d) Diagonal D for ZUNHR_COL.
+*
+ IF( LWORK.LT.N*N+1 .AND. .NOT.LQUERY ) THEN
+ INFO = -11
+ ELSE
+*
+* Set block size for column blocks
+*
+ NB1LOCAL = MIN( NB1, N )
+*
+ NUM_ALL_ROW_BLOCKS = MAX( 1,
+ $ CEILING( DBLE( M - N ) / DBLE( MB1 - N ) ) )
+*
+* Length and leading dimension of WORK array to place
+* T array in TSQR.
+*
+ LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL
+
+ LDWT = NB1LOCAL
+*
+* Length of TSQR work array
+*
+ LW1 = NB1LOCAL * N
+*
+* Length of ZUNGTSQR_ROW work array.
+*
+ LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) )
+*
+ LWORKOPT = MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) )
+*
+ IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN
+ INFO = -11
+ END IF
+*
+ END IF
+ END IF
+*
+* Handle error in the input parameters and return workspace query.
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZGETSQRHRT', -INFO )
+ RETURN
+ ELSE IF ( LQUERY ) THEN
+ WORK( 1 ) = DCMPLX( LWORKOPT )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( MIN( M, N ).EQ.0 ) THEN
+ WORK( 1 ) = DCMPLX( LWORKOPT )
+ RETURN
+ END IF
+*
+ NB2LOCAL = MIN( NB2, N )
+*
+*
+* (1) Perform TSQR-factorization of the M-by-N matrix A.
+*
+ CALL ZLATSQR( M, N, MB1, NB1LOCAL, A, LDA, WORK, LDWT,
+ $ WORK(LWT+1), LW1, IINFO )
+*
+* (2) Copy the factor R_tsqr stored in the upper-triangular part
+* of A into the square matrix in the work array
+* WORK(LWT+1:LWT+N*N) column-by-column.
+*
+ DO J = 1, N
+ CALL ZCOPY( J, A( 1, J ), 1, WORK( LWT + N*(J-1)+1 ), 1 )
+ END DO
+*
+* (3) Generate a M-by-N matrix Q with orthonormal columns from
+* the result stored below the diagonal in the array A in place.
+*
+
+ CALL ZUNGTSQR_ROW( M, N, MB1, NB1LOCAL, A, LDA, WORK, LDWT,
+ $ WORK( LWT+N*N+1 ), LW2, IINFO )
+*
+* (4) Perform the reconstruction of Householder vectors from
+* the matrix Q (stored in A) in place.
+*
+ CALL ZUNHR_COL( M, N, NB2LOCAL, A, LDA, T, LDT,
+ $ WORK( LWT+N*N+1 ), IINFO )
+*
+* (5) Copy the factor R_tsqr stored in the square matrix in the
+* work array WORK(LWT+1:LWT+N*N) into the upper-triangular
+* part of A.
+*
+* (6) Compute from R_tsqr the factor R_hr corresponding to
+* the reconstructed Householder vectors, i.e. R_hr = S * R_tsqr.
+* This multiplication by the sign matrix S on the left means
+* changing the sign of I-th row of the matrix R_tsqr according
+* to sign of the I-th diagonal element DIAG(I) of the matrix S.
+* DIAG is stored in WORK( LWT+N*N+1 ) from the ZUNHR_COL output.
+*
+* (5) and (6) can be combined in a single loop, so the rows in A
+* are accessed only once.
+*
+ DO I = 1, N
+ IF( WORK( LWT+N*N+I ).EQ.-CONE ) THEN
+ DO J = I, N
+ A( I, J ) = -CONE * WORK( LWT+N*(J-1)+I )
+ END DO
+ ELSE
+ CALL ZCOPY( N-I+1, WORK(LWT+N*(I-1)+I), N, A( I, I ), LDA )
+ END IF
+ END DO
+*
+ WORK( 1 ) = DCMPLX( LWORKOPT )
+ RETURN
+*
+* End of ZGETSQRHRT
+*
+ END
\ No newline at end of file
diff --git a/lapack-netlib/SRC/zlarfb_gett.f b/lapack-netlib/SRC/zlarfb_gett.f
new file mode 100644
index 000000000..4a3c4dcf1
--- /dev/null
+++ b/lapack-netlib/SRC/zlarfb_gett.f
@@ -0,0 +1,597 @@
+*> \brief \b ZLARFB_GETT
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download ZLARFB_GETT + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZLARFB_GETT( IDENT, M, N, K, T, LDT, A, LDA, B, LDB,
+* $ WORK, LDWORK )
+* IMPLICIT NONE
+*
+* .. Scalar Arguments ..
+* CHARACTER IDENT
+* INTEGER K, LDA, LDB, LDT, LDWORK, M, N
+* ..
+* .. Array Arguments ..
+* COMPLEX*16 A( LDA, * ), B( LDB, * ), T( LDT, * ),
+* $ WORK( LDWORK, * )
+* ..
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZLARFB_GETT applies a complex Householder block reflector H from the
+*> left to a complex (K+M)-by-N "triangular-pentagonal" matrix
+*> composed of two block matrices: an upper trapezoidal K-by-N matrix A
+*> stored in the array A, and a rectangular M-by-(N-K) matrix B, stored
+*> in the array B. The block reflector H is stored in a compact
+*> WY-representation, where the elementary reflectors are in the
+*> arrays A, B and T. See Further Details section.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] IDENT
+*> \verbatim
+*> IDENT is CHARACTER*1
+*> If IDENT = not 'I', or not 'i', then V1 is unit
+*> lower-triangular and stored in the left K-by-K block of
+*> the input matrix A,
+*> If IDENT = 'I' or 'i', then V1 is an identity matrix and
+*> not stored.
+*> See Further Details section.
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix B.
+*> M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrices A and B.
+*> N >= 0.
+*> \endverbatim
+*>
+*> \param[in] K
+*> \verbatim
+*> K is INTEGER
+*> The number or rows of the matrix A.
+*> K is also order of the matrix T, i.e. the number of
+*> elementary reflectors whose product defines the block
+*> reflector. 0 <= K <= N.
+*> \endverbatim
+*>
+*> \param[in] T
+*> \verbatim
+*> T is COMPLEX*16 array, dimension (LDT,K)
+*> The upper-triangular K-by-K matrix T in the representation
+*> of the block reflector.
+*> \endverbatim
+*>
+*> \param[in] LDT
+*> \verbatim
+*> LDT is INTEGER
+*> The leading dimension of the array T. LDT >= K.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX*16 array, dimension (LDA,N)
+*>
+*> On entry:
+*> a) In the K-by-N upper-trapezoidal part A: input matrix A.
+*> b) In the columns below the diagonal: columns of V1
+*> (ones are not stored on the diagonal).
+*>
+*> On exit:
+*> A is overwritten by rectangular K-by-N product H*A.
+*>
+*> See Further Details section.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,K).
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is COMPLEX*16 array, dimension (LDB,N)
+*>
+*> On entry:
+*> a) In the M-by-(N-K) right block: input matrix B.
+*> b) In the M-by-N left block: columns of V2.
+*>
+*> On exit:
+*> B is overwritten by rectangular M-by-N product H*B.
+*>
+*> See Further Details section.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= max(1,M).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX*16 array,
+*> dimension (LDWORK,max(K,N-K))
+*> \endverbatim
+*>
+*> \param[in] LDWORK
+*> \verbatim
+*> LDWORK is INTEGER
+*> The leading dimension of the array WORK. LDWORK>=max(1,K).
+*>
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup complex16OTHERauxiliary
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2020, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> \endverbatim
+*
+*> \par Further Details:
+* =====================
+*>
+*> \verbatim
+*>
+*> (1) Description of the Algebraic Operation.
+*>
+*> The matrix A is a K-by-N matrix composed of two column block
+*> matrices, A1, which is K-by-K, and A2, which is K-by-(N-K):
+*> A = ( A1, A2 ).
+*> The matrix B is an M-by-N matrix composed of two column block
+*> matrices, B1, which is M-by-K, and B2, which is M-by-(N-K):
+*> B = ( B1, B2 ).
+*>
+*> Perform the operation:
+*>
+*> ( A_out ) := H * ( A_in ) = ( I - V * T * V**H ) * ( A_in ) =
+*> ( B_out ) ( B_in ) ( B_in )
+*> = ( I - ( V1 ) * T * ( V1**H, V2**H ) ) * ( A_in )
+*> ( V2 ) ( B_in )
+*> On input:
+*>
+*> a) ( A_in ) consists of two block columns:
+*> ( B_in )
+*>
+*> ( A_in ) = (( A1_in ) ( A2_in )) = (( A1_in ) ( A2_in ))
+*> ( B_in ) (( B1_in ) ( B2_in )) (( 0 ) ( B2_in )),
+*>
+*> where the column blocks are:
+*>
+*> ( A1_in ) is a K-by-K upper-triangular matrix stored in the
+*> upper triangular part of the array A(1:K,1:K).
+*> ( B1_in ) is an M-by-K rectangular ZERO matrix and not stored.
+*>
+*> ( A2_in ) is a K-by-(N-K) rectangular matrix stored
+*> in the array A(1:K,K+1:N).
+*> ( B2_in ) is an M-by-(N-K) rectangular matrix stored
+*> in the array B(1:M,K+1:N).
+*>
+*> b) V = ( V1 )
+*> ( V2 )
+*>
+*> where:
+*> 1) if IDENT == 'I',V1 is a K-by-K identity matrix, not stored;
+*> 2) if IDENT != 'I',V1 is a K-by-K unit lower-triangular matrix,
+*> stored in the lower-triangular part of the array
+*> A(1:K,1:K) (ones are not stored),
+*> and V2 is an M-by-K rectangular stored the array B(1:M,1:K),
+*> (because on input B1_in is a rectangular zero
+*> matrix that is not stored and the space is
+*> used to store V2).
+*>
+*> c) T is a K-by-K upper-triangular matrix stored
+*> in the array T(1:K,1:K).
+*>
+*> On output:
+*>
+*> a) ( A_out ) consists of two block columns:
+*> ( B_out )
+*>
+*> ( A_out ) = (( A1_out ) ( A2_out ))
+*> ( B_out ) (( B1_out ) ( B2_out )),
+*>
+*> where the column blocks are:
+*>
+*> ( A1_out ) is a K-by-K square matrix, or a K-by-K
+*> upper-triangular matrix, if V1 is an
+*> identity matrix. AiOut is stored in
+*> the array A(1:K,1:K).
+*> ( B1_out ) is an M-by-K rectangular matrix stored
+*> in the array B(1:M,K:N).
+*>
+*> ( A2_out ) is a K-by-(N-K) rectangular matrix stored
+*> in the array A(1:K,K+1:N).
+*> ( B2_out ) is an M-by-(N-K) rectangular matrix stored
+*> in the array B(1:M,K+1:N).
+*>
+*>
+*> The operation above can be represented as the same operation
+*> on each block column:
+*>
+*> ( A1_out ) := H * ( A1_in ) = ( I - V * T * V**H ) * ( A1_in )
+*> ( B1_out ) ( 0 ) ( 0 )
+*>
+*> ( A2_out ) := H * ( A2_in ) = ( I - V * T * V**H ) * ( A2_in )
+*> ( B2_out ) ( B2_in ) ( B2_in )
+*>
+*> If IDENT != 'I':
+*>
+*> The computation for column block 1:
+*>
+*> A1_out: = A1_in - V1*T*(V1**H)*A1_in
+*>
+*> B1_out: = - V2*T*(V1**H)*A1_in
+*>
+*> The computation for column block 2, which exists if N > K:
+*>
+*> A2_out: = A2_in - V1*T*( (V1**H)*A2_in + (V2**H)*B2_in )
+*>
+*> B2_out: = B2_in - V2*T*( (V1**H)*A2_in + (V2**H)*B2_in )
+*>
+*> If IDENT == 'I':
+*>
+*> The operation for column block 1:
+*>
+*> A1_out: = A1_in - V1*T*A1_in
+*>
+*> B1_out: = - V2*T*A1_in
+*>
+*> The computation for column block 2, which exists if N > K:
+*>
+*> A2_out: = A2_in - T*( A2_in + (V2**H)*B2_in )
+*>
+*> B2_out: = B2_in - V2*T*( A2_in + (V2**H)*B2_in )
+*>
+*> (2) Description of the Algorithmic Computation.
+*>
+*> In the first step, we compute column block 2, i.e. A2 and B2.
+*> Here, we need to use the K-by-(N-K) rectangular workspace
+*> matrix W2 that is of the same size as the matrix A2.
+*> W2 is stored in the array WORK(1:K,1:(N-K)).
+*>
+*> In the second step, we compute column block 1, i.e. A1 and B1.
+*> Here, we need to use the K-by-K square workspace matrix W1
+*> that is of the same size as the as the matrix A1.
+*> W1 is stored in the array WORK(1:K,1:K).
+*>
+*> NOTE: Hence, in this routine, we need the workspace array WORK
+*> only of size WORK(1:K,1:max(K,N-K)) so it can hold both W2 from
+*> the first step and W1 from the second step.
+*>
+*> Case (A), when V1 is unit lower-triangular, i.e. IDENT != 'I',
+*> more computations than in the Case (B).
+*>
+*> if( IDENT != 'I' ) then
+*> if ( N > K ) then
+*> (First Step - column block 2)
+*> col2_(1) W2: = A2
+*> col2_(2) W2: = (V1**H) * W2 = (unit_lower_tr_of_(A1)**H) * W2
+*> col2_(3) W2: = W2 + (V2**H) * B2 = W2 + (B1**H) * B2
+*> col2_(4) W2: = T * W2
+*> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2
+*> col2_(6) W2: = V1 * W2 = unit_lower_tr_of_(A1) * W2
+*> col2_(7) A2: = A2 - W2
+*> else
+*> (Second Step - column block 1)
+*> col1_(1) W1: = A1
+*> col1_(2) W1: = (V1**H) * W1 = (unit_lower_tr_of_(A1)**H) * W1
+*> col1_(3) W1: = T * W1
+*> col1_(4) B1: = - V2 * W1 = - B1 * W1
+*> col1_(5) square W1: = V1 * W1 = unit_lower_tr_of_(A1) * W1
+*> col1_(6) square A1: = A1 - W1
+*> end if
+*> end if
+*>
+*> Case (B), when V1 is an identity matrix, i.e. IDENT == 'I',
+*> less computations than in the Case (A)
+*>
+*> if( IDENT == 'I' ) then
+*> if ( N > K ) then
+*> (First Step - column block 2)
+*> col2_(1) W2: = A2
+*> col2_(3) W2: = W2 + (V2**H) * B2 = W2 + (B1**H) * B2
+*> col2_(4) W2: = T * W2
+*> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2
+*> col2_(7) A2: = A2 - W2
+*> else
+*> (Second Step - column block 1)
+*> col1_(1) W1: = A1
+*> col1_(3) W1: = T * W1
+*> col1_(4) B1: = - V2 * W1 = - B1 * W1
+*> col1_(6) upper-triangular_of_(A1): = A1 - W1
+*> end if
+*> end if
+*>
+*> Combine these cases (A) and (B) together, this is the resulting
+*> algorithm:
+*>
+*> if ( N > K ) then
+*>
+*> (First Step - column block 2)
+*>
+*> col2_(1) W2: = A2
+*> if( IDENT != 'I' ) then
+*> col2_(2) W2: = (V1**H) * W2
+*> = (unit_lower_tr_of_(A1)**H) * W2
+*> end if
+*> col2_(3) W2: = W2 + (V2**H) * B2 = W2 + (B1**H) * B2]
+*> col2_(4) W2: = T * W2
+*> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2
+*> if( IDENT != 'I' ) then
+*> col2_(6) W2: = V1 * W2 = unit_lower_tr_of_(A1) * W2
+*> end if
+*> col2_(7) A2: = A2 - W2
+*>
+*> else
+*>
+*> (Second Step - column block 1)
+*>
+*> col1_(1) W1: = A1
+*> if( IDENT != 'I' ) then
+*> col1_(2) W1: = (V1**H) * W1
+*> = (unit_lower_tr_of_(A1)**H) * W1
+*> end if
+*> col1_(3) W1: = T * W1
+*> col1_(4) B1: = - V2 * W1 = - B1 * W1
+*> if( IDENT != 'I' ) then
+*> col1_(5) square W1: = V1 * W1 = unit_lower_tr_of_(A1) * W1
+*> col1_(6_a) below_diag_of_(A1): = - below_diag_of_(W1)
+*> end if
+*> col1_(6_b) up_tr_of_(A1): = up_tr_of_(A1) - up_tr_of_(W1)
+*>
+*> end if
+*>
+*> \endverbatim
+*>
+* =====================================================================
+ SUBROUTINE ZLARFB_GETT( IDENT, M, N, K, T, LDT, A, LDA, B, LDB,
+ $ WORK, LDWORK )
+ IMPLICIT NONE
+*
+* -- LAPACK auxiliary routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ CHARACTER IDENT
+ INTEGER K, LDA, LDB, LDT, LDWORK, M, N
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 A( LDA, * ), B( LDB, * ), T( LDT, * ),
+ $ WORK( LDWORK, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ COMPLEX*16 CONE, CZERO
+ PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ),
+ $ CZERO = ( 0.0D+0, 0.0D+0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL LNOTIDENT
+ INTEGER I, J
+* ..
+* .. EXTERNAL FUNCTIONS ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL ZCOPY, ZGEMM, ZTRMM
+* ..
+* .. Executable Statements ..
+*
+* Quick return if possible
+*
+ IF( M.LT.0 .OR. N.LE.0 .OR. K.EQ.0 .OR. K.GT.N )
+ $ RETURN
+*
+ LNOTIDENT = .NOT.LSAME( IDENT, 'I' )
+*
+* ------------------------------------------------------------------
+*
+* First Step. Computation of the Column Block 2:
+*
+* ( A2 ) := H * ( A2 )
+* ( B2 ) ( B2 )
+*
+* ------------------------------------------------------------------
+*
+ IF( N.GT.K ) THEN
+*
+* col2_(1) Compute W2: = A2. Therefore, copy A2 = A(1:K, K+1:N)
+* into W2=WORK(1:K, 1:N-K) column-by-column.
+*
+ DO J = 1, N-K
+ CALL ZCOPY( K, A( 1, K+J ), 1, WORK( 1, J ), 1 )
+ END DO
+
+ IF( LNOTIDENT ) THEN
+*
+* col2_(2) Compute W2: = (V1**H) * W2 = (A1**H) * W2,
+* V1 is not an identy matrix, but unit lower-triangular
+* V1 stored in A1 (diagonal ones are not stored).
+*
+*
+ CALL ZTRMM( 'L', 'L', 'C', 'U', K, N-K, CONE, A, LDA,
+ $ WORK, LDWORK )
+ END IF
+*
+* col2_(3) Compute W2: = W2 + (V2**H) * B2 = W2 + (B1**H) * B2
+* V2 stored in B1.
+*
+ IF( M.GT.0 ) THEN
+ CALL ZGEMM( 'C', 'N', K, N-K, M, CONE, B, LDB,
+ $ B( 1, K+1 ), LDB, CONE, WORK, LDWORK )
+ END IF
+*
+* col2_(4) Compute W2: = T * W2,
+* T is upper-triangular.
+*
+ CALL ZTRMM( 'L', 'U', 'N', 'N', K, N-K, CONE, T, LDT,
+ $ WORK, LDWORK )
+*
+* col2_(5) Compute B2: = B2 - V2 * W2 = B2 - B1 * W2,
+* V2 stored in B1.
+*
+ IF( M.GT.0 ) THEN
+ CALL ZGEMM( 'N', 'N', M, N-K, K, -CONE, B, LDB,
+ $ WORK, LDWORK, CONE, B( 1, K+1 ), LDB )
+ END IF
+*
+ IF( LNOTIDENT ) THEN
+*
+* col2_(6) Compute W2: = V1 * W2 = A1 * W2,
+* V1 is not an identity matrix, but unit lower-triangular,
+* V1 stored in A1 (diagonal ones are not stored).
+*
+ CALL ZTRMM( 'L', 'L', 'N', 'U', K, N-K, CONE, A, LDA,
+ $ WORK, LDWORK )
+ END IF
+*
+* col2_(7) Compute A2: = A2 - W2 =
+* = A(1:K, K+1:N-K) - WORK(1:K, 1:N-K),
+* column-by-column.
+*
+ DO J = 1, N-K
+ DO I = 1, K
+ A( I, K+J ) = A( I, K+J ) - WORK( I, J )
+ END DO
+ END DO
+*
+ END IF
+*
+* ------------------------------------------------------------------
+*
+* Second Step. Computation of the Column Block 1:
+*
+* ( A1 ) := H * ( A1 )
+* ( B1 ) ( 0 )
+*
+* ------------------------------------------------------------------
+*
+* col1_(1) Compute W1: = A1. Copy the upper-triangular
+* A1 = A(1:K, 1:K) into the upper-triangular
+* W1 = WORK(1:K, 1:K) column-by-column.
+*
+ DO J = 1, K
+ CALL ZCOPY( J, A( 1, J ), 1, WORK( 1, J ), 1 )
+ END DO
+*
+* Set the subdiagonal elements of W1 to zero column-by-column.
+*
+ DO J = 1, K - 1
+ DO I = J + 1, K
+ WORK( I, J ) = CZERO
+ END DO
+ END DO
+*
+ IF( LNOTIDENT ) THEN
+*
+* col1_(2) Compute W1: = (V1**H) * W1 = (A1**H) * W1,
+* V1 is not an identity matrix, but unit lower-triangular
+* V1 stored in A1 (diagonal ones are not stored),
+* W1 is upper-triangular with zeroes below the diagonal.
+*
+ CALL ZTRMM( 'L', 'L', 'C', 'U', K, K, CONE, A, LDA,
+ $ WORK, LDWORK )
+ END IF
+*
+* col1_(3) Compute W1: = T * W1,
+* T is upper-triangular,
+* W1 is upper-triangular with zeroes below the diagonal.
+*
+ CALL ZTRMM( 'L', 'U', 'N', 'N', K, K, CONE, T, LDT,
+ $ WORK, LDWORK )
+*
+* col1_(4) Compute B1: = - V2 * W1 = - B1 * W1,
+* V2 = B1, W1 is upper-triangular with zeroes below the diagonal.
+*
+ IF( M.GT.0 ) THEN
+ CALL ZTRMM( 'R', 'U', 'N', 'N', M, K, -CONE, WORK, LDWORK,
+ $ B, LDB )
+ END IF
+*
+ IF( LNOTIDENT ) THEN
+*
+* col1_(5) Compute W1: = V1 * W1 = A1 * W1,
+* V1 is not an identity matrix, but unit lower-triangular
+* V1 stored in A1 (diagonal ones are not stored),
+* W1 is upper-triangular on input with zeroes below the diagonal,
+* and square on output.
+*
+ CALL ZTRMM( 'L', 'L', 'N', 'U', K, K, CONE, A, LDA,
+ $ WORK, LDWORK )
+*
+* col1_(6) Compute A1: = A1 - W1 = A(1:K, 1:K) - WORK(1:K, 1:K)
+* column-by-column. A1 is upper-triangular on input.
+* If IDENT, A1 is square on output, and W1 is square,
+* if NOT IDENT, A1 is upper-triangular on output,
+* W1 is upper-triangular.
+*
+* col1_(6)_a Compute elements of A1 below the diagonal.
+*
+ DO J = 1, K - 1
+ DO I = J + 1, K
+ A( I, J ) = - WORK( I, J )
+ END DO
+ END DO
+*
+ END IF
+*
+* col1_(6)_b Compute elements of A1 on and above the diagonal.
+*
+ DO J = 1, K
+ DO I = 1, J
+ A( I, J ) = A( I, J ) - WORK( I, J )
+ END DO
+ END DO
+*
+ RETURN
+*
+* End of ZLARFB_GETT
+*
+ END
diff --git a/lapack-netlib/SRC/zungtsqr_row.f b/lapack-netlib/SRC/zungtsqr_row.f
new file mode 100644
index 000000000..0d32ad6ce
--- /dev/null
+++ b/lapack-netlib/SRC/zungtsqr_row.f
@@ -0,0 +1,380 @@
+*> \brief \b ZUNGTSQR_ROW
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download ZUNGTSQR_ROW + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZUNGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK,
+* $ LWORK, INFO )
+* IMPLICIT NONE
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
+* ..
+* .. Array Arguments ..
+* COMPLEX*16 A( LDA, * ), T( LDT, * ), WORK( * )
+* ..
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZUNGTSQR_ROW generates an M-by-N complex matrix Q_out with
+*> orthonormal columns from the output of ZLATSQR. These N orthonormal
+*> columns are the first N columns of a product of complex unitary
+*> matrices Q(k)_in of order M, which are returned by ZLATSQR in
+*> a special format.
+*>
+*> Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).
+*>
+*> The input matrices Q(k)_in are stored in row and column blocks in A.
+*> See the documentation of ZLATSQR for more details on the format of
+*> Q(k)_in, where each Q(k)_in is represented by block Householder
+*> transformations. This routine calls an auxiliary routine ZLARFB_GETT,
+*> where the computation is performed on each individual block. The
+*> algorithm first sweeps NB-sized column blocks from the right to left
+*> starting in the bottom row block and continues to the top row block
+*> (hence _ROW in the routine name). This sweep is in reverse order of
+*> the order in which ZLATSQR generates the output blocks.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. M >= N >= 0.
+*> \endverbatim
+*>
+*> \param[in] MB
+*> \verbatim
+*> MB is INTEGER
+*> The row block size used by ZLATSQR to return
+*> arrays A and T. MB > N.
+*> (Note that if MB > M, then M is used instead of MB
+*> as the row block size).
+*> \endverbatim
+*>
+*> \param[in] NB
+*> \verbatim
+*> NB is INTEGER
+*> The column block size used by ZLATSQR to return
+*> arrays A and T. NB >= 1.
+*> (Note that if NB > N, then N is used instead of NB
+*> as the column block size).
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX*16 array, dimension (LDA,N)
+*>
+*> On entry:
+*>
+*> The elements on and above the diagonal are not used as
+*> input. The elements below the diagonal represent the unit
+*> lower-trapezoidal blocked matrix V computed by ZLATSQR
+*> that defines the input matrices Q_in(k) (ones on the
+*> diagonal are not stored). See ZLATSQR for more details.
+*>
+*> On exit:
+*>
+*> The array A contains an M-by-N orthonormal matrix Q_out,
+*> i.e the columns of A are orthogonal unit vectors.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in] T
+*> \verbatim
+*> T is COMPLEX*16 array,
+*> dimension (LDT, N * NIRB)
+*> where NIRB = Number_of_input_row_blocks
+*> = MAX( 1, CEIL((M-N)/(MB-N)) )
+*> Let NICB = Number_of_input_col_blocks
+*> = CEIL(N/NB)
+*>
+*> The upper-triangular block reflectors used to define the
+*> input matrices Q_in(k), k=(1:NIRB*NICB). The block
+*> reflectors are stored in compact form in NIRB block
+*> reflector sequences. Each of the NIRB block reflector
+*> sequences is stored in a larger NB-by-N column block of T
+*> and consists of NICB smaller NB-by-NB upper-triangular
+*> column blocks. See ZLATSQR for more details on the format
+*> of T.
+*> \endverbatim
+*>
+*> \param[in] LDT
+*> \verbatim
+*> LDT is INTEGER
+*> The leading dimension of the array T.
+*> LDT >= max(1,min(NB,N)).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> The dimension of the array WORK.
+*> LWORK >= NBLOCAL * MAX(NBLOCAL,(N-NBLOCAL)),
+*> where NBLOCAL=MIN(NB,N).
+*> If LWORK = -1, then a workspace query is assumed.
+*> The routine only calculates the optimal size of the WORK
+*> array, returns this value as the first entry of the WORK
+*> array, and no error message related to LWORK is issued
+*> by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> \endverbatim
+*>
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \ingroup complex16OTHERcomputational
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2020, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> \endverbatim
+*>
+* =====================================================================
+ SUBROUTINE ZUNGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK,
+ $ LWORK, INFO )
+ IMPLICIT NONE
+*
+* -- LAPACK computational routine --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 A( LDA, * ), T( LDT, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ COMPLEX*16 CONE, CZERO
+ PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ),
+ $ CZERO = ( 0.0D+0, 0.0D+0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY
+ INTEGER NBLOCAL, MB2, M_PLUS_ONE, ITMP, IB_BOTTOM,
+ $ LWORKOPT, NUM_ALL_ROW_BLOCKS, JB_T, IB, IMB,
+ $ KB, KB_LAST, KNB, MB1
+* ..
+* .. Local Arrays ..
+ COMPLEX*16 DUMMY( 1, 1 )
+* ..
+* .. External Subroutines ..
+ EXTERNAL ZLARFB_GETT, ZLASET, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC DCMPLX, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters
+*
+ INFO = 0
+ LQUERY = LWORK.EQ.-1
+ IF( M.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
+ INFO = -2
+ ELSE IF( MB.LE.N ) THEN
+ INFO = -3
+ ELSE IF( NB.LT.1 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -6
+ ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
+ INFO = -8
+ ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
+ INFO = -10
+ END IF
+*
+ NBLOCAL = MIN( NB, N )
+*
+* Determine the workspace size.
+*
+ IF( INFO.EQ.0 ) THEN
+ LWORKOPT = NBLOCAL * MAX( NBLOCAL, ( N - NBLOCAL ) )
+ END IF
+*
+* Handle error in the input parameters and handle the workspace query.
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZUNGTSQR_ROW', -INFO )
+ RETURN
+ ELSE IF ( LQUERY ) THEN
+ WORK( 1 ) = DCMPLX( LWORKOPT )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( MIN( M, N ).EQ.0 ) THEN
+ WORK( 1 ) = DCMPLX( LWORKOPT )
+ RETURN
+ END IF
+*
+* (0) Set the upper-triangular part of the matrix A to zero and
+* its diagonal elements to one.
+*
+ CALL ZLASET('U', M, N, CZERO, CONE, A, LDA )
+*
+* KB_LAST is the column index of the last column block reflector
+* in the matrices T and V.
+*
+ KB_LAST = ( ( N-1 ) / NBLOCAL ) * NBLOCAL + 1
+*
+*
+* (1) Bottom-up loop over row blocks of A, except the top row block.
+* NOTE: If MB>=M, then the loop is never executed.
+*
+ IF ( MB.LT.M ) THEN
+*
+* MB2 is the row blocking size for the row blocks before the
+* first top row block in the matrix A. IB is the row index for
+* the row blocks in the matrix A before the first top row block.
+* IB_BOTTOM is the row index for the last bottom row block
+* in the matrix A. JB_T is the column index of the corresponding
+* column block in the matrix T.
+*
+* Initialize variables.
+*
+* NUM_ALL_ROW_BLOCKS is the number of row blocks in the matrix A
+* including the first row block.
+*
+ MB2 = MB - N
+ M_PLUS_ONE = M + 1
+ ITMP = ( M - MB - 1 ) / MB2
+ IB_BOTTOM = ITMP * MB2 + MB + 1
+ NUM_ALL_ROW_BLOCKS = ITMP + 2
+ JB_T = NUM_ALL_ROW_BLOCKS * N + 1
+*
+ DO IB = IB_BOTTOM, MB+1, -MB2
+*
+* Determine the block size IMB for the current row block
+* in the matrix A.
+*
+ IMB = MIN( M_PLUS_ONE - IB, MB2 )
+*
+* Determine the column index JB_T for the current column block
+* in the matrix T.
+*
+ JB_T = JB_T - N
+*
+* Apply column blocks of H in the row block from right to left.
+*
+* KB is the column index of the current column block reflector
+* in the matrices T and V.
+*
+ DO KB = KB_LAST, 1, -NBLOCAL
+*
+* Determine the size of the current column block KNB in
+* the matrices T and V.
+*
+ KNB = MIN( NBLOCAL, N - KB + 1 )
+*
+ CALL ZLARFB_GETT( 'I', IMB, N-KB+1, KNB,
+ $ T( 1, JB_T+KB-1 ), LDT, A( KB, KB ), LDA,
+ $ A( IB, KB ), LDA, WORK, KNB )
+*
+ END DO
+*
+ END DO
+*
+ END IF
+*
+* (2) Top row block of A.
+* NOTE: If MB>=M, then we have only one row block of A of size M
+* and we work on the entire matrix A.
+*
+ MB1 = MIN( MB, M )
+*
+* Apply column blocks of H in the top row block from right to left.
+*
+* KB is the column index of the current block reflector in
+* the matrices T and V.
+*
+ DO KB = KB_LAST, 1, -NBLOCAL
+*
+* Determine the size of the current column block KNB in
+* the matrices T and V.
+*
+ KNB = MIN( NBLOCAL, N - KB + 1 )
+*
+ IF( MB1-KB-KNB+1.EQ.0 ) THEN
+*
+* In SLARFB_GETT parameters, when M=0, then the matrix B
+* does not exist, hence we need to pass a dummy array
+* reference DUMMY(1,1) to B with LDDUMMY=1.
+*
+ CALL ZLARFB_GETT( 'N', 0, N-KB+1, KNB,
+ $ T( 1, KB ), LDT, A( KB, KB ), LDA,
+ $ DUMMY( 1, 1 ), 1, WORK, KNB )
+ ELSE
+ CALL ZLARFB_GETT( 'N', MB1-KB-KNB+1, N-KB+1, KNB,
+ $ T( 1, KB ), LDT, A( KB, KB ), LDA,
+ $ A( KB+KNB, KB), LDA, WORK, KNB )
+
+ END IF
+*
+ END DO
+*
+ WORK( 1 ) = DCMPLX( LWORKOPT )
+ RETURN
+*
+* End of ZUNGTSQR_ROW
+*
+ END