Handle corner cases of LWORK (Reference-LAPACK PR 942)

This commit is contained in:
Martin Kroeker 2023-12-23 20:16:33 +01:00 committed by GitHub
parent c082669ad4
commit 45ef0d7361
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
42 changed files with 733 additions and 504 deletions

View File

@ -122,7 +122,8 @@
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of the array WORK. LWORK >= max(1,M,N).
*> The length of the array WORK.
*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= MAX(M,N), otherwise.
*> For optimum performance LWORK >= (M+N)*NB, where NB
*> is the optimal blocksize.
*>
@ -147,7 +148,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16GEcomputational
*> \ingroup gebrd
*
*> \par Further Details:
* =====================
@ -223,8 +224,8 @@
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, IINFO, J, LDWRKX, LDWRKY, LWKOPT, MINMN, NB,
$ NBMIN, NX, WS
INTEGER I, IINFO, J, LDWRKX, LDWRKY, LWKMIN, LWKOPT,
$ MINMN, NB, NBMIN, NX, WS
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZGEBD2, ZGEMM, ZLABRD
@ -241,9 +242,17 @@
* Test the input parameters
*
INFO = 0
MINMN = MIN( M, N )
IF( MINMN.EQ.0 ) THEN
LWKMIN = 1
LWKOPT = 1
ELSE
LWKMIN = MAX( M, N )
NB = MAX( 1, ILAENV( 1, 'ZGEBRD', ' ', M, N, -1, -1 ) )
LWKOPT = ( M+N )*NB
END IF
WORK( 1 ) = DBLE( LWKOPT )
*
LQUERY = ( LWORK.EQ.-1 )
IF( M.LT.0 ) THEN
INFO = -1
@ -251,7 +260,7 @@
INFO = -2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -4
ELSE IF( LWORK.LT.MAX( 1, M, N ) .AND. .NOT.LQUERY ) THEN
ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
INFO = -10
END IF
IF( INFO.LT.0 ) THEN
@ -263,7 +272,6 @@
*
* Quick return if possible
*
MINMN = MIN( M, N )
IF( MINMN.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN
@ -282,7 +290,7 @@
* Determine when to switch from blocked to unblocked code.
*
IF( NX.LT.MINMN ) THEN
WS = ( M+N )*NB
WS = LWKOPT
IF( LWORK.LT.WS ) THEN
*
* Not enough work space for the optimal NB, consider using

View File

@ -89,7 +89,7 @@
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (LWORK)
*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
@ -120,7 +120,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16GEcomputational
*> \ingroup gehrd
*
*> \par Further Details:
* =====================
@ -221,12 +221,18 @@
INFO = -8
END IF
*
NH = IHI - ILO + 1
IF( INFO.EQ.0 ) THEN
*
* Compute the workspace requirements
*
NB = MIN( NBMAX, ILAENV( 1, 'ZGEHRD', ' ', N, ILO, IHI, -1 ) )
IF( NH.LE.1 ) THEN
LWKOPT = 1
ELSE
NB = MIN( NBMAX, ILAENV( 1, 'ZGEHRD', ' ', N, ILO, IHI,
$ -1 ) )
LWKOPT = N*NB + TSIZE
END IF
WORK( 1 ) = LWKOPT
ENDIF
*
@ -248,7 +254,6 @@
*
* Quick return if possible
*
NH = IHI - ILO + 1
IF( NH.LE.1 ) THEN
WORK( 1 ) = 1
RETURN
@ -268,7 +273,7 @@
*
* Determine if workspace is large enough for blocked code
*
IF( LWORK.LT.N*NB+TSIZE ) THEN
IF( LWORK.LT.LWKOPT ) THEN
*
* Not enough workspace to use optimal NB: determine the
* minimum value of NB, and reduce NB or force use of

View File

@ -98,7 +98,7 @@
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> The dimension of the array WORK. LWORK >= 1.
*> If LWORK = -1 or -2, then a workspace query is assumed. The routine
*> only calculates the sizes of the T and WORK arrays, returns these
*> values as the first entries of the T and WORK arrays, and no error
@ -166,6 +166,8 @@
*> the LQ factorization.
*> \endverbatim
*>
*> \ingroup gelq
*>
* =====================================================================
SUBROUTINE ZGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK,
$ INFO )

View File

@ -93,7 +93,8 @@
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,M).
*> The dimension of the array WORK.
*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= M, otherwise.
*> For optimum performance LWORK >= M*NB, where NB is the
*> optimal blocksize.
*>
@ -118,7 +119,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16GEcomputational
*> \ingroup gelqf
*
*> \par Further Details:
* =====================
@ -174,9 +175,8 @@
* Test the input arguments
*
INFO = 0
K = MIN( M, N )
NB = ILAENV( 1, 'ZGELQF', ' ', M, N, -1, -1 )
LWKOPT = M*NB
WORK( 1 ) = LWKOPT
LQUERY = ( LWORK.EQ.-1 )
IF( M.LT.0 ) THEN
INFO = -1
@ -184,19 +184,25 @@
INFO = -2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -4
ELSE IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
INFO = -7
ELSE IF( .NOT.LQUERY ) THEN
IF( LWORK.LE.0 .OR. ( N.GT.0 .AND. LWORK.LT.MAX( 1, M ) ) )
$ INFO = -7
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZGELQF', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
IF( K.EQ.0 ) THEN
LWKOPT = 1
ELSE
LWKOPT = M*NB
END IF
WORK( 1 ) = LWKOPT
RETURN
END IF
*
* Quick return if possible
*
K = MIN( M, N )
IF( K.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN

View File

@ -110,12 +110,13 @@
*> \param[out] WORK
*> \verbatim
*> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> The dimension of the array WORK. LWORK >= 1.
*> If LWORK = -1, then a workspace query is assumed. The routine
*> only calculates the size of the WORK array, returns this
*> value as WORK(1), and no error message related to WORK
@ -163,6 +164,8 @@
*> Further Details in ZLAMSWLQ or ZGEMLQT.
*> \endverbatim
*>
*> \ingroup gemlq
*>
* =====================================================================
SUBROUTINE ZGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE,
$ C, LDC, WORK, LWORK, INFO )
@ -184,7 +187,7 @@
* ..
* .. Local Scalars ..
LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY
INTEGER MB, NB, LW, NBLCKS, MN
INTEGER MB, NB, LW, NBLCKS, MN, MINMNK, LWMIN
* ..
* .. External Functions ..
LOGICAL LSAME
@ -200,7 +203,7 @@
*
* Test the input arguments
*
LQUERY = LWORK.EQ.-1
LQUERY = ( LWORK.EQ.-1 )
NOTRAN = LSAME( TRANS, 'N' )
TRAN = LSAME( TRANS, 'C' )
LEFT = LSAME( SIDE, 'L' )
@ -215,6 +218,13 @@
LW = M * MB
MN = N
END IF
*
MINMNK = MIN( M, N, K )
IF( MINMNK.EQ.0 ) THEN
LWMIN = 1
ELSE
LWMIN = MAX( 1, LW )
END IF
*
IF( ( NB.GT.K ) .AND. ( MN.GT.K ) ) THEN
IF( MOD( MN - K, NB - K ) .EQ. 0 ) THEN
@ -243,7 +253,7 @@
INFO = -9
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
INFO = -11
ELSE IF( ( LWORK.LT.MAX( 1, LW ) ) .AND. ( .NOT.LQUERY ) ) THEN
ELSE IF( ( LWORK.LT.LWMIN ) .AND. ( .NOT.LQUERY ) ) THEN
INFO = -13
END IF
*
@ -260,7 +270,7 @@
*
* Quick return if possible
*
IF( MIN( M, N, K ).EQ.0 ) THEN
IF( MINMNK.EQ.0 ) THEN
RETURN
END IF
*

View File

@ -112,12 +112,13 @@
*> \param[out] WORK
*> \verbatim
*> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> The dimension of the array WORK. LWORK >= 1.
*> If LWORK = -1, then a workspace query is assumed. The routine
*> only calculates the size of the WORK array, returns this
*> value as WORK(1), and no error message related to WORK
@ -166,6 +167,8 @@
*>
*> \endverbatim
*>
*> \ingroup gemqr
*>
* =====================================================================
SUBROUTINE ZGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE,
$ C, LDC, WORK, LWORK, INFO )
@ -187,7 +190,7 @@
* ..
* .. Local Scalars ..
LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY
INTEGER MB, NB, LW, NBLCKS, MN
INTEGER MB, NB, LW, NBLCKS, MN, MINMNK, LWMIN
* ..
* .. External Functions ..
LOGICAL LSAME
@ -203,7 +206,7 @@
*
* Test the input arguments
*
LQUERY = LWORK.EQ.-1
LQUERY = ( LWORK.EQ.-1 )
NOTRAN = LSAME( TRANS, 'N' )
TRAN = LSAME( TRANS, 'C' )
LEFT = LSAME( SIDE, 'L' )
@ -218,6 +221,13 @@
LW = MB * NB
MN = N
END IF
*
MINMNK = MIN( M, N, K )
IF( MINMNK.EQ.0 ) THEN
LWMIN = 1
ELSE
LWMIN = MAX( 1, LW )
END IF
*
IF( ( MB.GT.K ) .AND. ( MN.GT.K ) ) THEN
IF( MOD( MN - K, MB - K ).EQ.0 ) THEN
@ -246,12 +256,12 @@
INFO = -9
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
INFO = -11
ELSE IF( ( LWORK.LT.MAX( 1, LW ) ) .AND. ( .NOT.LQUERY ) ) THEN
ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
INFO = -13
END IF
*
IF( INFO.EQ.0 ) THEN
WORK( 1 ) = LW
WORK( 1 ) = LWMIN
END IF
*
IF( INFO.NE.0 ) THEN
@ -263,7 +273,7 @@
*
* Quick return if possible
*
IF( MIN( M, N, K ).EQ.0 ) THEN
IF( MINMNK.EQ.0 ) THEN
RETURN
END IF
*
@ -276,7 +286,7 @@
$ NB, C, LDC, WORK, LWORK, INFO )
END IF
*
WORK( 1 ) = LW
WORK( 1 ) = LWMIN
*
RETURN
*

View File

@ -88,7 +88,8 @@
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,N).
*> The dimension of the array WORK.
*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= N, otherwise.
*> For optimum performance LWORK >= N*NB, where NB is
*> the optimal blocksize.
*>
@ -113,7 +114,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16GEcomputational
*> \ingroup geqlf
*
*> \par Further Details:
* =====================
@ -188,8 +189,9 @@
END IF
WORK( 1 ) = LWKOPT
*
IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
INFO = -7
IF( .NOT.LQUERY ) THEN
IF( LWORK.LE.0 .OR. ( M.GT.0 .AND. LWORK.LT.MAX( 1, N ) ) )
$ INFO = -7
END IF
END IF
*

View File

@ -428,7 +428,8 @@
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*. LWORK >= N+NRHS-1
*> LWORK >= 1, if MIN(M,N) = 0, and
*> LWORK >= N+NRHS-1, otherwise.
*> For optimal performance LWORK >= NB*( N+NRHS+1 ),
*> where NB is the optimal block size for ZGEQP3RK returned
*> by ILAENV. Minimal block size MINNB=2.

View File

@ -99,7 +99,7 @@
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> The dimension of the array WORK. LWORK >= 1.
*> If LWORK = -1 or -2, then a workspace query is assumed. The routine
*> only calculates the sizes of the T and WORK arrays, returns these
*> values as the first entries of the T and WORK arrays, and no error
@ -168,6 +168,8 @@
*>
*> \endverbatim
*>
*> \ingroup geqr
*>
* =====================================================================
SUBROUTINE ZGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK,
$ INFO )
@ -188,7 +190,7 @@
* ..
* .. Local Scalars ..
LOGICAL LQUERY, LMINWS, MINT, MINW
INTEGER MB, NB, MINTSZ, NBLCKS
INTEGER MB, NB, MINTSZ, NBLCKS, LWMIN, LWREQ
* ..
* .. External Functions ..
LOGICAL LSAME
@ -244,8 +246,10 @@
*
* Determine if the workspace size satisfies minimal size
*
LWMIN = MAX( 1, N )
LWREQ = MAX( 1, N*NB )
LMINWS = .FALSE.
IF( ( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) .OR. LWORK.LT.NB*N )
IF( ( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) .OR. LWORK.LT.LWREQ )
$ .AND. ( LWORK.GE.N ) .AND. ( TSIZE.GE.MINTSZ )
$ .AND. ( .NOT.LQUERY ) ) THEN
IF( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) ) THEN
@ -253,7 +257,7 @@
NB = 1
MB = M
END IF
IF( LWORK.LT.NB*N ) THEN
IF( LWORK.LT.LWREQ ) THEN
LMINWS = .TRUE.
NB = 1
END IF
@ -268,7 +272,7 @@
ELSE IF( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 )
$ .AND. ( .NOT.LQUERY ) .AND. ( .NOT.LMINWS ) ) THEN
INFO = -6
ELSE IF( ( LWORK.LT.MAX( 1, N*NB ) ) .AND. ( .NOT.LQUERY )
ELSE IF( ( LWORK.LT.LWREQ ) .AND. ( .NOT.LQUERY )
$ .AND. ( .NOT.LMINWS ) ) THEN
INFO = -8
END IF
@ -282,9 +286,9 @@
T( 2 ) = MB
T( 3 ) = NB
IF( MINW ) THEN
WORK( 1 ) = MAX( 1, N )
WORK( 1 ) = LWMIN
ELSE
WORK( 1 ) = MAX( 1, NB*N )
WORK( 1 ) = LWREQ
END IF
END IF
IF( INFO.NE.0 ) THEN
@ -309,7 +313,7 @@
$ LWORK, INFO )
END IF
*
WORK( 1 ) = MAX( 1, NB*N )
WORK( 1 ) = LWREQ
*
RETURN
*

View File

@ -97,7 +97,8 @@
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,N).
*> The dimension of the array WORK.
*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= N, otherwise.
*> For optimum performance LWORK >= N*NB, where NB is
*> the optimal blocksize.
*>
@ -122,7 +123,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16GEcomputational
*> \ingroup geqrfp
*
*> \par Further Details:
* =====================
@ -162,8 +163,8 @@
*
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
$ NBMIN, NX
INTEGER I, IB, IINFO, IWS, K, LDWORK, LWKMIN, LWKOPT,
$ NB, NBMIN, NX
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZGEQR2P, ZLARFB, ZLARFT
@ -181,8 +182,16 @@
*
INFO = 0
NB = ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
K = MIN( M, N )
IF( K.EQ.0 ) THEN
LWKMIN = 1
LWKOPT = 1
ELSE
LWKMIN = N
LWKOPT = N*NB
END IF
WORK( 1 ) = LWKOPT
*
LQUERY = ( LWORK.EQ.-1 )
IF( M.LT.0 ) THEN
INFO = -1
@ -190,7 +199,7 @@
INFO = -2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -4
ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
INFO = -7
END IF
IF( INFO.NE.0 ) THEN
@ -202,7 +211,6 @@
*
* Quick return if possible
*
K = MIN( M, N )
IF( K.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN
@ -210,7 +218,7 @@
*
NBMIN = 2
NX = 0
IWS = N
IWS = LWKMIN
IF( NB.GT.1 .AND. NB.LT.K ) THEN
*
* Determine when to cross over from blocked to unblocked code.

View File

@ -200,23 +200,25 @@
*> \verbatim
*> LDV is INTEGER
*> The leading dimension of the array V, LDV >= 1.
*> If JOBV = 'V', then LDV >= max(1,N).
*> If JOBV = 'A', then LDV >= max(1,MV) .
*> If JOBV = 'V', then LDV >= MAX(1,N).
*> If JOBV = 'A', then LDV >= MAX(1,MV) .
*> \endverbatim
*>
*> \param[in,out] CWORK
*> \verbatim
*> CWORK is COMPLEX*16 array, dimension (max(1,LWORK))
*> CWORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
*> Used as workspace.
*> If on entry LWORK = -1, then a workspace query is assumed and
*> no computation is done; CWORK(1) is set to the minial (and optimal)
*> length of CWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER.
*> Length of CWORK, LWORK >= M+N.
*> Length of CWORK.
*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= M+N, otherwise.
*>
*> If on entry LWORK = -1, then a workspace query is assumed and
*> no computation is done; CWORK(1) is set to the minial (and optimal)
*> length of CWORK.
*> \endverbatim
*>
*> \param[in,out] RWORK
@ -247,15 +249,17 @@
*> RWORK(6) = the largest absolute value over all sines of the
*> Jacobi rotation angles in the last sweep. It can be
*> useful for a post festum analysis.
*> If on entry LRWORK = -1, then a workspace query is assumed and
*> no computation is done; RWORK(1) is set to the minial (and optimal)
*> length of RWORK.
*> \endverbatim
*>
*> \param[in] LRWORK
*> \verbatim
*> LRWORK is INTEGER
*> Length of RWORK, LRWORK >= MAX(6,N).
*> Length of RWORK.
*> LRWORK >= 1, if MIN(M,N) = 0, and LRWORK >= MAX(6,N), otherwise.
*>
*> If on entry LRWORK = -1, then a workspace query is assumed and
*> no computation is done; RWORK(1) is set to the minial (and optimal)
*> length of RWORK.
*> \endverbatim
*>
*> \param[out] INFO
@ -276,7 +280,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16GEcomputational
*> \ingroup gesvj
*
*> \par Further Details:
* =====================
@ -378,12 +382,14 @@
DOUBLE PRECISION AAPP, AAPP0, AAPQ1, AAQQ, APOAQ, AQOAP, BIG,
$ BIGTHETA, CS, CTOL, EPSLN, MXAAPQ,
$ MXSINJ, ROOTBIG, ROOTEPS, ROOTSFMIN, ROOTTOL,
$ SKL, SFMIN, SMALL, SN, T, TEMP1, THETA, THSIGN, TOL
$ SKL, SFMIN, SMALL, SN, T, TEMP1, THETA, THSIGN,
$ TOL
INTEGER BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1,
$ ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, N2, N34,
$ N4, NBL, NOTROT, p, PSKIPPED, q, ROWSKIP, SWBAND
LOGICAL APPLV, GOSCALE, LOWER, LQUERY, LSVEC, NOSCALE, ROTOK,
$ RSVEC, UCTOL, UPPER
$ N4, NBL, NOTROT, p, PSKIPPED, q, ROWSKIP,
$ SWBAND, MINMN, LWMIN, LRWMIN
LOGICAL APPLV, GOSCALE, LOWER, LQUERY, LSVEC, NOSCALE,
$ ROTOK, RSVEC, UCTOL, UPPER
* ..
* ..
* .. Intrinsic Functions ..
@ -422,7 +428,16 @@
UPPER = LSAME( JOBA, 'U' )
LOWER = LSAME( JOBA, 'L' )
*
LQUERY = ( LWORK .EQ. -1 ) .OR. ( LRWORK .EQ. -1 )
MINMN = MIN( M, N )
IF( MINMN.EQ.0 ) THEN
LWMIN = 1
LRWMIN = 1
ELSE
LWMIN = M+N
LRWMIN = MAX( 6, N )
END IF
*
LQUERY = ( LWORK.EQ.-1 ) .OR. ( LRWORK.EQ.-1 )
IF( .NOT.( UPPER .OR. LOWER .OR. LSAME( JOBA, 'G' ) ) ) THEN
INFO = -1
ELSE IF( .NOT.( LSVEC .OR. UCTOL .OR. LSAME( JOBU, 'N' ) ) ) THEN
@ -442,9 +457,9 @@
INFO = -11
ELSE IF( UCTOL .AND. ( RWORK( 1 ).LE.ONE ) ) THEN
INFO = -12
ELSE IF( ( LWORK.LT.( M+N ) ) .AND. ( .NOT.LQUERY ) ) THEN
ELSE IF( LWORK.LT.LWMIN .AND. ( .NOT.LQUERY ) ) THEN
INFO = -13
ELSE IF( ( LRWORK.LT.MAX( N, 6 ) ) .AND. ( .NOT.LQUERY ) ) THEN
ELSE IF( LRWORK.LT.LRWMIN .AND. ( .NOT.LQUERY ) ) THEN
INFO = -15
ELSE
INFO = 0
@ -454,15 +469,15 @@
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZGESVJ', -INFO )
RETURN
ELSE IF ( LQUERY ) THEN
CWORK(1) = M + N
RWORK(1) = MAX( N, 6 )
ELSE IF( LQUERY ) THEN
CWORK( 1 ) = LWMIN
RWORK( 1 ) = LRWMIN
RETURN
END IF
*
* #:) Quick return for void matrix
*
IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )RETURN
IF( MINMN.EQ.0 ) RETURN
*
* Set numerical parameters
* The stopping criterion for Jacobi rotations is

View File

@ -107,7 +107,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16GEcomputational
*> \ingroup getri
*
* =====================================================================
SUBROUTINE ZGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
@ -152,7 +152,7 @@
*
INFO = 0
NB = ILAENV( 1, 'ZGETRI', ' ', N, -1, -1, -1 )
LWKOPT = N*NB
LWKOPT = MAX( 1, N*NB )
WORK( 1 ) = LWKOPT
LQUERY = ( LWORK.EQ.-1 )
IF( N.LT.0 ) THEN

View File

@ -127,7 +127,7 @@
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> The dimension of the array WORK. LWORK >= 1.
*> If LWORK = -1 or -2, then a workspace query is assumed.
*> If LWORK = -1, the routine calculates optimal size of WORK for the
*> optimal performance and returns this value in WORK(1).
@ -154,7 +154,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16GEsolve
*> \ingroup getsls
*
* =====================================================================
SUBROUTINE ZGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
@ -192,7 +192,7 @@
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, ZLANGE
EXTERNAL LSAME, DLABAD, DLAMCH, ZLANGE
EXTERNAL LSAME, DLAMCH, ZLANGE
* ..
* .. External Subroutines ..
EXTERNAL ZGEQR, ZGEMQR, ZLASCL, ZLASET,
@ -229,7 +229,10 @@
*
* Determine the optimum and minimum LWORK
*
IF( M.GE.N ) THEN
IF( MIN( M, N, NRHS ).EQ.0 ) THEN
WSIZEO = 1
WSIZEM = 1
ELSE IF( M.GE.N ) THEN
CALL ZGEQR( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
TSZO = INT( TQ( 1 ) )
LWO = INT( WORKQ( 1 ) )
@ -297,7 +300,6 @@
*
SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
*
* Scale A, B if max element outside range [SMLNUM,BIGNUM]
*

View File

@ -131,13 +131,15 @@
*> \param[in] LWORK
*> \verbatim
*> The dimension of the array WORK.
*> LWORK >= MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ),
*> If MIN(M,N) = 0, LWORK >= 1, else
*> LWORK >= MAX( 1, LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ),
*> where
*> NUM_ALL_ROW_BLOCKS = CEIL((M-N)/(MB1-N)),
*> NB1LOCAL = MIN(NB1,N).
*> LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL,
*> LW1 = NB1LOCAL * N,
*> LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ),
*> LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ).
*>
*> If LWORK = -1, then a workspace query is assumed.
*> The routine only calculates the optimal size of the WORK
*> array, returns this value as the first entry of the WORK
@ -160,7 +162,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup comlpex16OTHERcomputational
*> \ingroup getsqrhrt
*
*> \par Contributors:
* ==================
@ -212,7 +214,7 @@
* Test the input arguments
*
INFO = 0
LQUERY = LWORK.EQ.-1
LQUERY = ( LWORK.EQ.-1 )
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
@ -263,8 +265,9 @@
LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) )
*
LWORKOPT = MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) )
LWORKOPT = MAX( 1, LWORKOPT )
*
IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN
IF( LWORK.LT.LWORKOPT .AND. .NOT.LQUERY ) THEN
INFO = -11
END IF
*

View File

@ -215,7 +215,8 @@
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> The dimension of the array WORK. LWORK >= MAX(1,2*N)
*> For good performance, LWORK must generally be larger.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
@ -260,7 +261,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16GEeigen
*> \ingroup gges3
*
* =====================================================================
SUBROUTINE ZGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B,
@ -300,7 +301,8 @@
LOGICAL CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
$ LQUERY, WANTST
INTEGER I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
$ ILO, IRIGHT, IROWS, IRWRK, ITAU, IWRK, LWKOPT
$ ILO, IRIGHT, IROWS, IRWRK, ITAU, IWRK, LWKOPT,
$ LWKMIN
DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
$ PVSR, SMLNUM
* ..
@ -309,9 +311,8 @@
DOUBLE PRECISION DIF( 2 )
* ..
* .. External Subroutines ..
EXTERNAL DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHD3,
$ ZLAQZ0, ZLACPY, ZLASCL, ZLASET, ZTGSEN, ZUNGQR,
$ ZUNMQR
EXTERNAL XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHD3, ZLAQZ0,
$ ZLACPY, ZLASCL, ZLASET, ZTGSEN, ZUNGQR, ZUNMQR
* ..
* .. External Functions ..
LOGICAL LSAME
@ -353,6 +354,8 @@
*
INFO = 0
LQUERY = ( LWORK.EQ.-1 )
LWKMIN = MAX( 1, 2*N )
*
IF( IJOBVL.LE.0 ) THEN
INFO = -1
ELSE IF( IJOBVR.LE.0 ) THEN
@ -369,7 +372,7 @@
INFO = -14
ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
INFO = -16
ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
INFO = -18
END IF
*
@ -377,29 +380,33 @@
*
IF( INFO.EQ.0 ) THEN
CALL ZGEQRF( N, N, B, LDB, WORK, WORK, -1, IERR )
LWKOPT = MAX( 1, N + INT ( WORK( 1 ) ) )
LWKOPT = MAX( LWKMIN, N + INT( WORK( 1 ) ) )
CALL ZUNMQR( 'L', 'C', N, N, N, B, LDB, WORK, A, LDA, WORK,
$ -1, IERR )
LWKOPT = MAX( LWKOPT, N + INT ( WORK( 1 ) ) )
LWKOPT = MAX( LWKOPT, N + INT( WORK( 1 ) ) )
IF( ILVSL ) THEN
CALL ZUNGQR( N, N, N, VSL, LDVSL, WORK, WORK, -1, IERR )
LWKOPT = MAX( LWKOPT, N + INT ( WORK( 1 ) ) )
END IF
CALL ZGGHD3( JOBVSL, JOBVSR, N, 1, N, A, LDA, B, LDB, VSL,
$ LDVSL, VSR, LDVSR, WORK, -1, IERR )
LWKOPT = MAX( LWKOPT, N + INT ( WORK( 1 ) ) )
LWKOPT = MAX( LWKOPT, N + INT( WORK( 1 ) ) )
CALL ZLAQZ0( 'S', JOBVSL, JOBVSR, N, 1, N, A, LDA, B, LDB,
$ ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK, -1,
$ RWORK, 0, IERR )
LWKOPT = MAX( LWKOPT, INT ( WORK( 1 ) ) )
LWKOPT = MAX( LWKOPT, INT( WORK( 1 ) ) )
IF( WANTST ) THEN
CALL ZTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB,
$ ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, SDIM,
$ PVSL, PVSR, DIF, WORK, -1, IDUM, 1, IERR )
LWKOPT = MAX( LWKOPT, INT ( WORK( 1 ) ) )
LWKOPT = MAX( LWKOPT, INT( WORK( 1 ) ) )
END IF
IF( N.EQ.0 ) THEN
WORK( 1 ) = 1
ELSE
WORK( 1 ) = DCMPLX( LWKOPT )
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZGGES3 ', -INFO )
@ -420,7 +427,6 @@
EPS = DLAMCH( 'P' )
SMLNUM = DLAMCH( 'S' )
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
SMLNUM = SQRT( SMLNUM ) / EPS
BIGNUM = ONE / SMLNUM
*

View File

@ -174,7 +174,8 @@
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> The dimension of the array WORK. LWORK >= MAX(1,2*N).
*> For good performance, LWORK must generally be larger.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
@ -208,7 +209,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16GEeigen
*> \ingroup ggev3
*
* =====================================================================
SUBROUTINE ZGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
@ -243,7 +244,7 @@
CHARACTER CHTEMP
INTEGER ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO,
$ IN, IRIGHT, IROWS, IRWRK, ITAU, IWRK, JC, JR,
$ LWKOPT
$ LWKMIN, LWKOPT
DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
$ SMLNUM, TEMP
COMPLEX*16 X
@ -252,9 +253,8 @@
LOGICAL LDUMMA( 1 )
* ..
* .. External Subroutines ..
EXTERNAL DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHD3,
$ ZLAQZ0, ZLACPY, ZLASCL, ZLASET, ZTGEVC, ZUNGQR,
$ ZUNMQR
EXTERNAL XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHD3, ZLAQZ0,
$ ZLACPY, ZLASCL, ZLASET, ZTGEVC, ZUNGQR, ZUNMQR
* ..
* .. External Functions ..
LOGICAL LSAME
@ -301,6 +301,7 @@
*
INFO = 0
LQUERY = ( LWORK.EQ.-1 )
LWKMIN = MAX( 1, 2*N )
IF( IJOBVL.LE.0 ) THEN
INFO = -1
ELSE IF( IJOBVR.LE.0 ) THEN
@ -315,7 +316,7 @@
INFO = -11
ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
INFO = -13
ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
INFO = -15
END IF
*
@ -323,7 +324,7 @@
*
IF( INFO.EQ.0 ) THEN
CALL ZGEQRF( N, N, B, LDB, WORK, WORK, -1, IERR )
LWKOPT = MAX( 1, N+INT( WORK( 1 ) ) )
LWKOPT = MAX( LWKMIN, N+INT( WORK( 1 ) ) )
CALL ZUNMQR( 'L', 'C', N, N, N, B, LDB, WORK, A, LDA, WORK,
$ -1, IERR )
LWKOPT = MAX( LWKOPT, N+INT( WORK( 1 ) ) )
@ -348,8 +349,12 @@
$ RWORK, 0, IERR )
LWKOPT = MAX( LWKOPT, N+INT( WORK( 1 ) ) )
END IF
IF( N.EQ.0 ) THEN
WORK( 1 ) = 1
ELSE
WORK( 1 ) = DCMPLX( LWKOPT )
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZGGEV3 ', -INFO )
@ -368,7 +373,6 @@
EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
SMLNUM = DLAMCH( 'S' )
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
SMLNUM = SQRT( SMLNUM ) / EPS
BIGNUM = ONE / SMLNUM
*

View File

@ -176,7 +176,7 @@
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (LWORK)
*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
@ -208,7 +208,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16OTHERcomputational
*> \ingroup gghd3
*
*> \par Further Details:
* =====================
@ -275,7 +275,12 @@
*
INFO = 0
NB = ILAENV( 1, 'ZGGHD3', ' ', N, ILO, IHI, -1 )
LWKOPT = MAX( 6*N*NB, 1 )
NH = IHI - ILO + 1
IF( NH.LE.1 ) THEN
LWKOPT = 1
ELSE
LWKOPT = 6*N*NB
END IF
WORK( 1 ) = DCMPLX( LWKOPT )
INITQ = LSAME( COMPQ, 'I' )
WANTQ = INITQ .OR. LSAME( COMPQ, 'V' )
@ -325,7 +330,6 @@
*
* Quick return if possible
*
NH = IHI - ILO + 1
IF( NH.LE.1 ) THEN
WORK( 1 ) = CONE
RETURN
@ -883,6 +887,7 @@
IF ( JCOL.LT.IHI )
$ CALL ZGGHRD( COMPQ2, COMPZ2, N, JCOL, IHI, A, LDA, B, LDB, Q,
$ LDQ, Z, LDZ, IERR )
*
WORK( 1 ) = DCMPLX( LWKOPT )
*
RETURN

View File

@ -173,7 +173,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16OTHERcomputational
*> \ingroup ggqrf
*
*> \par Further Details:
* =====================
@ -250,7 +250,7 @@
NB2 = ILAENV( 1, 'ZGERQF', ' ', N, P, -1, -1 )
NB3 = ILAENV( 1, 'ZUNMQR', ' ', N, M, P, -1 )
NB = MAX( NB1, NB2, NB3 )
LWKOPT = MAX( N, M, P )*NB
LWKOPT = MAX( 1, MAX( N, M, P )*NB )
WORK( 1 ) = LWKOPT
LQUERY = ( LWORK.EQ.-1 )
IF( N.LT.0 ) THEN

View File

@ -172,7 +172,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16OTHERcomputational
*> \ingroup ggrqf
*
*> \par Further Details:
* =====================
@ -249,7 +249,7 @@
NB2 = ILAENV( 1, 'ZGEQRF', ' ', P, N, -1, -1 )
NB3 = ILAENV( 1, 'ZUNMRQ', ' ', M, N, P, -1 )
NB = MAX( NB1, NB2, NB3 )
LWKOPT = MAX( N, M, P )*NB
LWKOPT = MAX( 1, MAX( N, M, P )*NB )
WORK( 1 ) = LWKOPT
LQUERY = ( LWORK.EQ.-1 )
IF( M.LT.0 ) THEN

View File

@ -277,7 +277,7 @@
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> The dimension of the array WORK. LWORK >= 1.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
@ -332,7 +332,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16GEsing
*> \ingroup ggsvd3
*
*> \par Contributors:
* ==================

View File

@ -233,7 +233,7 @@
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> The dimension of the array WORK. LWORK >= 1.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
@ -256,7 +256,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16OTHERcomputational
*> \ingroup ggsvp3
*
*> \par Further Details:
* =====================

View File

@ -116,8 +116,7 @@
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array,
*> dimension (LRWORK)
*> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
*> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
*> \endverbatim
*>
@ -180,7 +179,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16HEeigen
*> \ingroup heevd
*
*> \par Further Details:
* =====================

View File

@ -272,7 +272,8 @@
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of the array WORK. LWORK >= max(1,2*N).
*> The length of the array WORK.
*> If N <= 1, LWORK >= 1, else LWORK >= 2*N.
*> For optimal efficiency, LWORK >= (NB+1)*N,
*> where NB is the max of the blocksize for ZHETRD and for
*> ZUNMTR as returned by ILAENV.
@ -294,7 +295,8 @@
*> \param[in] LRWORK
*> \verbatim
*> LRWORK is INTEGER
*> The length of the array RWORK. LRWORK >= max(1,24*N).
*> The length of the array RWORK.
*> If N <= 1, LRWORK >= 1, else LRWORK >= 24*N.
*>
*> If LRWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
@ -313,7 +315,8 @@
*> \param[in] LIWORK
*> \verbatim
*> LIWORK is INTEGER
*> The dimension of the array IWORK. LIWORK >= max(1,10*N).
*> The dimension of the array IWORK.
*> If N <= 1, LIWORK >= 1, else LIWORK >= 10*N.
*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
@ -338,7 +341,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16HEeigen
*> \ingroup heevr
*
*> \par Contributors:
* ==================
@ -417,9 +420,15 @@
LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LRWORK.EQ.-1 ) .OR.
$ ( LIWORK.EQ.-1 ) )
*
LRWMIN = MAX( 1, 24*N )
LIWMIN = MAX( 1, 10*N )
LWMIN = MAX( 1, 2*N )
IF( N.LE.1 ) THEN
LWMIN = 1
LRWMIN = 1
LIWMIN = 1
ELSE
LWMIN = 2*N
LRWMIN = 24*N
LIWMIN = 10*N
END IF
*
INFO = 0
IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
@ -483,7 +492,7 @@
END IF
*
IF( N.EQ.1 ) THEN
WORK( 1 ) = 2
WORK( 1 ) = 1
IF( ALLEIG .OR. INDEIG ) THEN
M = 1
W( 1 ) = DBLE( A( 1, 1 ) )

View File

@ -280,6 +280,7 @@
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> If N <= 1, LWORK must be at least 1.
*> If JOBZ = 'N' and N > 1, LWORK must be queried.
*> LWORK = MAX(1, 26*N, dimension) where
*> dimension = max(stage1,stage2) + (KD+1)*N + N
@ -310,7 +311,8 @@
*> \param[in] LRWORK
*> \verbatim
*> LRWORK is INTEGER
*> The length of the array RWORK. LRWORK >= max(1,24*N).
*> The length of the array RWORK.
*> If N <= 1, LRWORK >= 1, else LRWORK >= 24*N.
*>
*> If LRWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
@ -329,7 +331,8 @@
*> \param[in] LIWORK
*> \verbatim
*> LIWORK is INTEGER
*> The dimension of the array IWORK. LIWORK >= max(1,10*N).
*> The dimension of the array IWORK.
*> If N <= 1, LIWORK >= 1, else LIWORK >= 10*N.
*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
@ -354,7 +357,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16HEeigen
*> \ingroup heevr_2stage
*
*> \par Contributors:
* ==================
@ -472,9 +475,16 @@
IB = ILAENV2STAGE( 2, 'ZHETRD_2STAGE', JOBZ, N, KD, -1, -1 )
LHTRD = ILAENV2STAGE( 3, 'ZHETRD_2STAGE', JOBZ, N, KD, IB, -1 )
LWTRD = ILAENV2STAGE( 4, 'ZHETRD_2STAGE', JOBZ, N, KD, IB, -1 )
*
IF( N.LE.1 ) THEN
LWMIN = 1
LRWMIN = 1
LIWMIN = 1
ELSE
LWMIN = N + LHTRD + LWTRD
LRWMIN = MAX( 1, 24*N )
LIWMIN = MAX( 1, 10*N )
LRWMIN = 24*N
LIWMIN = 10*N
END IF
*
INFO = 0
IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
@ -535,7 +545,7 @@
END IF
*
IF( N.EQ.1 ) THEN
WORK( 1 ) = 2
WORK( 1 ) = 1
IF( ALLEIG .OR. INDEIG ) THEN
M = 1
W( 1 ) = DBLE( A( 1, 1 ) )

View File

@ -128,7 +128,7 @@
*> LWORK is INTEGER
*> The length of WORK. LWORK >= MAX(1,2*N,3*N-2), and for best
*> performance LWORK >= max(1,N*NB), where NB is the optimal
*> blocksize for ZHETRF.
*> blocksize for ZHETRF_AA.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
@ -154,7 +154,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16HEsolve
*> \ingroup hesv_aa
*
* =====================================================================
SUBROUTINE ZHESV_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
@ -177,7 +177,7 @@
*
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER LWKOPT, LWKOPT_HETRF, LWKOPT_HETRS
INTEGER LWKMIN, LWKOPT, LWKOPT_HETRF, LWKOPT_HETRS
* ..
* .. External Functions ..
LOGICAL LSAME
@ -196,6 +196,7 @@
*
INFO = 0
LQUERY = ( LWORK.EQ.-1 )
LWKMIN = MAX( 1, 2*N, 3*N-2 )
IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
@ -206,17 +207,17 @@
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( LWORK.LT.MAX(2*N, 3*N-2) .AND. .NOT.LQUERY ) THEN
ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
INFO = -10
END IF
*
IF( INFO.EQ.0 ) THEN
CALL ZHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, -1, INFO )
LWKOPT_HETRF = INT( WORK(1) )
LWKOPT_HETRF = INT( WORK( 1 ) )
CALL ZHETRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
$ -1, INFO )
LWKOPT_HETRS = INT( WORK(1) )
LWKOPT = MAX( LWKOPT_HETRF, LWKOPT_HETRS )
LWKOPT_HETRS = INT( WORK( 1 ) )
LWKOPT = MAX( LWKMIN, LWKOPT_HETRF, LWKOPT_HETRS )
WORK( 1 ) = LWKOPT
END IF
*

View File

@ -100,14 +100,14 @@
*>
*> \param[out] TB
*> \verbatim
*> TB is COMPLEX*16 array, dimension (LTB)
*> TB is COMPLEX*16 array, dimension (MAX(1,LTB)).
*> On exit, details of the LU factorization of the band matrix.
*> \endverbatim
*>
*> \param[in] LTB
*> \verbatim
*> LTB is INTEGER
*> The size of the array TB. LTB >= 4*N, internally
*> The size of the array TB. LTB >= MAX(1,4*N), internally
*> used to select NB such that LTB >= (3*NB+1)*N.
*>
*> If LTB = -1, then a workspace query is assumed; the
@ -147,14 +147,15 @@
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 workspace of size LWORK
*> WORK is COMPLEX*16 workspace of size (MAX(1,LWORK)).
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The size of WORK. LWORK >= N, internally used to select NB
*> such that LWORK >= N*NB.
*> The size of WORK. LWORK >= MAX(1,N), internally used to
*> select NB such that LWORK >= N*NB.
*>
*> If LWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal size of the WORK array,
@ -178,7 +179,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16HEsolve
*> \ingroup hesv_aa_2stage
*
* =====================================================================
SUBROUTINE ZHESV_AA_2STAGE( UPLO, N, NRHS, A, LDA, TB, LTB,
@ -208,7 +209,7 @@
*
* .. Local Scalars ..
LOGICAL UPPER, TQUERY, WQUERY
INTEGER LWKOPT
INTEGER LWKOPT, LWKMIN
* ..
* .. External Functions ..
LOGICAL LSAME
@ -229,6 +230,7 @@
UPPER = LSAME( UPLO, 'U' )
WQUERY = ( LWORK.EQ.-1 )
TQUERY = ( LTB.EQ.-1 )
LWKMIN = MAX( 1, N )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
@ -237,18 +239,19 @@
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LTB.LT.( 4*N ) .AND. .NOT.TQUERY ) THEN
ELSE IF( LTB.LT.MAX( 1, 4*N ) .AND. .NOT.TQUERY ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -11
ELSE IF( LWORK.LT.N .AND. .NOT.WQUERY ) THEN
ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.WQUERY ) THEN
INFO = -13
END IF
*
IF( INFO.EQ.0 ) THEN
CALL ZHETRF_AA_2STAGE( UPLO, N, A, LDA, TB, -1, IPIV,
$ IPIV2, WORK, -1, INFO )
LWKOPT = INT( WORK(1) )
LWKOPT = MAX( LWKMIN, INT( WORK( 1 ) ) )
WORK( 1 ) = LWKOPT
END IF
*
IF( INFO.NE.0 ) THEN

View File

@ -234,8 +234,8 @@
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of WORK. LWORK >= max(1,2*N), and for best
*> performance, when FACT = 'N', LWORK >= max(1,2*N,N*NB), where
*> The length of WORK. LWORK >= MAX(1,2*N), and for best
*> performance, when FACT = 'N', LWORK >= MAX(1,2*N,N*NB), where
*> NB is the optimal blocksize for ZHETRF.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
@ -276,7 +276,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16HEsolve
*> \ingroup hesvx
*
* =====================================================================
SUBROUTINE ZHESVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B,
@ -307,7 +307,7 @@
* ..
* .. Local Scalars ..
LOGICAL LQUERY, NOFACT
INTEGER LWKOPT, NB
INTEGER LWKOPT, LWKMIN, NB
DOUBLE PRECISION ANORM
* ..
* .. External Functions ..
@ -329,6 +329,7 @@
INFO = 0
NOFACT = LSAME( FACT, 'N' )
LQUERY = ( LWORK.EQ.-1 )
LWKMIN = MAX( 1, 2*N )
IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
INFO = -1
ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
@ -346,12 +347,12 @@
INFO = -11
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
INFO = -13
ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
INFO = -18
END IF
*
IF( INFO.EQ.0 ) THEN
LWKOPT = MAX( 1, 2*N )
LWKOPT = LWKMIN
IF( NOFACT ) THEN
NB = ILAENV( 1, 'ZHETRF', UPLO, N, -1, -1, -1 )
LWKOPT = MAX( LWKOPT, N*NB )

View File

@ -123,7 +123,7 @@
*>
*> \param[out] HOUS2
*> \verbatim
*> HOUS2 is COMPLEX*16 array, dimension (LHOUS2)
*> HOUS2 is COMPLEX*16 array, dimension (MAX(1,LHOUS2))
*> Stores the Householder representation of the stage2
*> band to tridiagonal.
*> \endverbatim
@ -132,6 +132,8 @@
*> \verbatim
*> LHOUS2 is INTEGER
*> The dimension of the array HOUS2.
*> LHOUS2 >= 1.
*>
*> If LWORK = -1, or LHOUS2 = -1,
*> then a query is assumed; the routine
*> only calculates the optimal size of the HOUS2 array, returns
@ -143,14 +145,17 @@
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (LWORK)
*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK = MAX(1, dimension)
*> If LWORK = -1, or LHOUS2=-1,
*> The dimension of the array WORK.
*> If N = 0, LWORK >= 1, else LWORK = MAX(1, dimension).
*>
*> If LWORK = -1, or LHOUS2 = -1,
*> then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
@ -182,7 +187,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16HEcomputational
*> \ingroup hetrd_2stage
*
*> \par Further Details:
* =====================
@ -265,10 +270,13 @@
*
KD = ILAENV2STAGE( 1, 'ZHETRD_2STAGE', VECT, N, -1, -1, -1 )
IB = ILAENV2STAGE( 2, 'ZHETRD_2STAGE', VECT, N, KD, -1, -1 )
IF( N.EQ.0 ) THEN
LHMIN = 1
LWMIN = 1
ELSE
LHMIN = ILAENV2STAGE( 3, 'ZHETRD_2STAGE', VECT, N, KD, IB, -1 )
LWMIN = ILAENV2STAGE( 4, 'ZHETRD_2STAGE', VECT, N, KD, IB, -1 )
* WRITE(*,*),'ZHETRD_2STAGE N KD UPLO LHMIN LWMIN ',N, KD, UPLO,
* $ LHMIN, LWMIN
END IF
*
IF( .NOT.LSAME( VECT, 'N' ) ) THEN
INFO = -1
@ -324,7 +332,6 @@
END IF
*
*
HOUS2( 1 ) = LHMIN
WORK( 1 ) = LWMIN
RETURN
*

View File

@ -132,15 +132,17 @@
*>
*> \param[out] HOUS
*> \verbatim
*> HOUS is COMPLEX*16 array, dimension LHOUS, that
*> store the Householder representation.
*> HOUS is COMPLEX*16 array, dimension (MAX(1,LHOUS))
*> Stores the Householder representation.
*> \endverbatim
*>
*> \param[in] LHOUS
*> \verbatim
*> LHOUS is INTEGER
*> The dimension of the array HOUS. LHOUS = MAX(1, dimension)
*> If LWORK = -1, or LHOUS=-1,
*> The dimension of the array HOUS.
*> If N = 0 or KD <= 1, LHOUS >= 1, else LHOUS = MAX(1, dimension).
*>
*> If LWORK = -1, or LHOUS = -1,
*> then a query is assumed; the routine
*> only calculates the optimal size of the HOUS array, returns
*> this value as the first entry of the HOUS array, and no error
@ -152,14 +154,17 @@
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension LWORK.
*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)).
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK = MAX(1, dimension)
*> If LWORK = -1, or LHOUS=-1,
*> The dimension of the array WORK.
*> If N = 0 or KD <= 1, LWORK >= 1, else LWORK = MAX(1, dimension).
*>
*> If LWORK = -1, or LHOUS = -1,
*> then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
@ -188,7 +193,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16OTHERcomputational
*> \ingroup hetrd_hb2st
*
*> \par Further Details:
* =====================
@ -262,7 +267,7 @@
INTEGER I, M, K, IB, SWEEPID, MYID, SHIFT, STT, ST,
$ ED, STIND, EDIND, BLKLASTIND, COLPT, THED,
$ STEPERCOL, GRSIZ, THGRSIZ, THGRNB, THGRID,
$ NBTILES, TTYPE, TID, NTHREADS, DEBUG,
$ NBTILES, TTYPE, TID, NTHREADS,
$ ABDPOS, ABOFDPOS, DPOS, OFDPOS, AWPOS,
$ INDA, INDW, APOS, SIZEA, LDA, INDV, INDTAU,
$ SIZEV, SIZETAU, LDV, LHMIN, LWMIN
@ -285,7 +290,6 @@
* Determine the minimal workspace size required.
* Test the input parameters
*
DEBUG = 0
INFO = 0
AFTERS1 = LSAME( STAGE1, 'Y' )
WANTQ = LSAME( VECT, 'V' )
@ -295,8 +299,13 @@
* Determine the block size, the workspace size and the hous size.
*
IB = ILAENV2STAGE( 2, 'ZHETRD_HB2ST', VECT, N, KD, -1, -1 )
IF( N.EQ.0 .OR. KD.LE.1 ) THEN
LHMIN = 1
LWMIN = 1
ELSE
LHMIN = ILAENV2STAGE( 3, 'ZHETRD_HB2ST', VECT, N, KD, IB, -1 )
LWMIN = ILAENV2STAGE( 4, 'ZHETRD_HB2ST', VECT, N, KD, IB, -1 )
END IF
*
IF( .NOT.AFTERS1 .AND. .NOT.LSAME( STAGE1, 'N' ) ) THEN
INFO = -1
@ -575,7 +584,6 @@ C END IF
170 CONTINUE
ENDIF
*
HOUS( 1 ) = LHMIN
WORK( 1 ) = LWMIN
RETURN
*

View File

@ -123,8 +123,8 @@
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (LWORK)
*> On exit, if INFO = 0, or if LWORK=-1,
*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, or if LWORK = -1,
*> WORK(1) returns the size of LWORK.
*> \endverbatim
*>
@ -132,7 +132,9 @@
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK which should be calculated
*> by a workspace query. LWORK = MAX(1, LWORK_QUERY)
*> by a workspace query.
*> If N <= KD+1, LWORK >= 1, else LWORK = MAX(1, LWORK_QUERY).
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
@ -158,7 +160,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16HEcomputational
*> \ingroup hetrd_he2hb
*
*> \par Further Details:
* =====================
@ -293,8 +295,12 @@
INFO = 0
UPPER = LSAME( UPLO, 'U' )
LQUERY = ( LWORK.EQ.-1 )
IF( N.LE.KD+1 ) THEN
LWMIN = 1
ELSE
LWMIN = ILAENV2STAGE( 4, 'ZHETRD_HE2HB', '', N, KD, -1, -1 )
END IF
*
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN

View File

@ -107,7 +107,7 @@
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of WORK. LWORK >=1. For best performance
*> The length of WORK. LWORK >= 1. For best performance
*> LWORK >= N*NB, where NB is the block size returned by ILAENV.
*> \endverbatim
*>
@ -130,7 +130,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16HEcomputational
*> \ingroup hetrf
*
*> \par Further Details:
* =====================
@ -227,7 +227,7 @@
* Determine the block size
*
NB = ILAENV( 1, 'ZHETRF', UPLO, N, -1, -1, -1 )
LWKOPT = N*NB
LWKOPT = MAX( 1, N*NB )
WORK( 1 ) = LWKOPT
END IF
*
@ -346,6 +346,7 @@
END IF
*
40 CONTINUE
*
WORK( 1 ) = LWKOPT
RETURN
*

View File

@ -101,8 +101,10 @@
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of WORK. LWORK >= MAX(1,2*N). For optimum performance
*> LWORK >= N*(1+NB), where NB is the optimal blocksize.
*> The length of WORK.
*> LWORK >= 1, if N >= 1, and LWORK >= 2*N, otherwise.
*> For optimum performance LWORK >= N*(1+NB), where NB is
*> the optimal blocksize, returned by ILAENV.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
@ -125,10 +127,10 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16HEcomputational
*> \ingroup hetrf_aa
*
* =====================================================================
SUBROUTINE ZHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
SUBROUTINE ZHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
@ -152,7 +154,7 @@
*
* .. Local Scalars ..
LOGICAL LQUERY, UPPER
INTEGER J, LWKOPT
INTEGER J, LWKMIN, LWKOPT
INTEGER NB, MJ, NJ, K1, K2, J1, J2, J3, JB
COMPLEX*16 ALPHA
* ..
@ -178,18 +180,25 @@
INFO = 0
UPPER = LSAME( UPLO, 'U' )
LQUERY = ( LWORK.EQ.-1 )
IF( N.LE.1 ) THEN
LWKMIN = 1
LWKOPT = 1
ELSE
LWKMIN = 2*N
LWKOPT = (NB+1)*N
END IF
*
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
INFO = -7
END IF
*
IF( INFO.EQ.0 ) THEN
LWKOPT = (NB+1)*N
WORK( 1 ) = LWKOPT
END IF
*
@ -202,11 +211,11 @@
*
* Quick return
*
IF ( N.EQ.0 ) THEN
IF( N.EQ.0 ) THEN
RETURN
ENDIF
IPIV( 1 ) = 1
IF ( N.EQ.1 ) THEN
IF( N.EQ.1 ) THEN
A( 1, 1 ) = DBLE( A( 1, 1 ) )
RETURN
END IF

View File

@ -87,14 +87,14 @@
*>
*> \param[out] TB
*> \verbatim
*> TB is COMPLEX*16 array, dimension (LTB)
*> TB is COMPLEX*16 array, dimension (MAX(1,LTB))
*> On exit, details of the LU factorization of the band matrix.
*> \endverbatim
*>
*> \param[in] LTB
*> \verbatim
*> LTB is INTEGER
*> The size of the array TB. LTB >= 4*N, internally
*> The size of the array TB. LTB >= MAX(1,4*N), internally
*> used to select NB such that LTB >= (3*NB+1)*N.
*>
*> If LTB = -1, then a workspace query is assumed; the
@ -121,14 +121,14 @@
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 workspace of size LWORK
*> WORK is COMPLEX*16 workspace of size (MAX(1,LWORK))
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The size of WORK. LWORK >= N, internally used to select NB
*> such that LWORK >= N*NB.
*> The size of WORK. LWORK >= MAX(1,N), internally used to
*> select NB such that LWORK >= N*NB.
*>
*> If LWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal size of the WORK array,
@ -152,7 +152,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16SYcomputational
*> \ingroup hetrf_aa_2stage
*
* =====================================================================
SUBROUTINE ZHETRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV,
@ -182,7 +182,7 @@
* .. Local Scalars ..
LOGICAL UPPER, TQUERY, WQUERY
INTEGER I, J, K, I1, I2, TD
INTEGER LDTB, NB, KB, JB, NT, IINFO
INTEGER LWKOPT, LDTB, NB, KB, JB, NT, IINFO
COMPLEX*16 PIV
* ..
* .. External Functions ..
@ -212,9 +212,9 @@
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF ( LTB .LT. 4*N .AND. .NOT.TQUERY ) THEN
ELSE IF( LTB.LT.MAX( 1, 4*N ) .AND. .NOT.TQUERY ) THEN
INFO = -6
ELSE IF ( LWORK .LT. N .AND. .NOT.WQUERY ) THEN
ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.WQUERY ) THEN
INFO = -10
END IF
*
@ -228,10 +228,10 @@
NB = ILAENV( 1, 'ZHETRF_AA_2STAGE', UPLO, N, -1, -1, -1 )
IF( INFO.EQ.0 ) THEN
IF( TQUERY ) THEN
TB( 1 ) = (3*NB+1)*N
TB( 1 ) = MAX( 1, (3*NB+1)*N )
END IF
IF( WQUERY ) THEN
WORK( 1 ) = N*NB
WORK( 1 ) = MAX( 1, N*NB )
END IF
END IF
IF( TQUERY .OR. WQUERY ) THEN
@ -240,7 +240,7 @@
*
* Quick return
*
IF ( N.EQ.0 ) THEN
IF( N.EQ.0 ) THEN
RETURN
ENDIF
*
@ -392,7 +392,7 @@
CALL ZGETRF( N-(J+1)*NB, NB,
$ WORK, N,
$ IPIV( (J+1)*NB+1 ), IINFO )
c IF (IINFO.NE.0 .AND. INFO.EQ.0) THEN
c IF( IINFO.NE.0 .AND. INFO.EQ.0 ) THEN
c INFO = IINFO+(J+1)*NB
c END IF
*
@ -587,7 +587,7 @@ c END IF
CALL ZGETRF( N-(J+1)*NB, NB,
$ A( (J+1)*NB+1, J*NB+1 ), LDA,
$ IPIV( (J+1)*NB+1 ), IINFO )
c IF (IINFO.NE.0 .AND. INFO.EQ.0) THEN
c IF( IINFO.NE.0 .AND. INFO.EQ.0 ) THEN
c INFO = IINFO+(J+1)*NB
c END IF
*

View File

@ -177,14 +177,14 @@
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension ( MAX(1,LWORK) ).
*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)).
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of WORK. LWORK >=1. For best performance
*> The length of WORK. LWORK >= 1. For best performance
*> LWORK >= N*NB, where NB is the block size returned
*> by ILAENV.
*>
@ -229,7 +229,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16HEcomputational
*> \ingroup hetrf_rk
*
*> \par Further Details:
* =====================
@ -310,7 +310,7 @@
* Determine the block size
*
NB = ILAENV( 1, 'ZHETRF_RK', UPLO, N, -1, -1, -1 )
LWKOPT = N*NB
LWKOPT = MAX( 1, N*NB )
WORK( 1 ) = LWKOPT
END IF
*

View File

@ -122,7 +122,7 @@
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of WORK. LWORK >=1. For best performance
*> The length of WORK. LWORK >= 1. For best performance
*> LWORK >= N*NB, where NB is the block size returned by ILAENV.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
@ -150,7 +150,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16HEcomputational
*> \ingroup hetrf_rook
*
*> \par Further Details:
* =====================

View File

@ -88,14 +88,14 @@
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (N+NB+1)*(NB+3)
*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)).
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> WORK is size >= (N+NB+1)*(NB+3)
*> If N = 0, LWORK >= 1, else LWORK >= (N+NB+1)*(NB+3).
*> If LWORK = -1, then a workspace query is assumed; the routine
*> calculates:
*> - the optimal size of the WORK array, returns
@ -120,7 +120,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16HEcomputational
*> \ingroup hetri2
*
* =====================================================================
SUBROUTINE ZHETRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
@ -159,9 +159,13 @@
INFO = 0
UPPER = LSAME( UPLO, 'U' )
LQUERY = ( LWORK.EQ.-1 )
*
* Get blocksize
*
NBMAX = ILAENV( 1, 'ZHETRF', UPLO, N, -1, -1, -1 )
IF ( NBMAX .GE. N ) THEN
IF( N.EQ.0 ) THEN
MINSIZE = 1
ELSE IF( NBMAX.GE.N ) THEN
MINSIZE = N
ELSE
MINSIZE = (N+NBMAX+1)*(NBMAX+3)
@ -173,28 +177,29 @@
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF (LWORK .LT. MINSIZE .AND. .NOT.LQUERY ) THEN
ELSE IF( LWORK.LT.MINSIZE .AND. .NOT.LQUERY ) THEN
INFO = -7
END IF
*
* Quick return if possible
*
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZHETRI2', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
WORK(1)=MINSIZE
WORK( 1 ) = MINSIZE
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
IF( NBMAX .GE. N ) THEN
IF( NBMAX.GE.N ) THEN
CALL ZHETRI( UPLO, N, A, LDA, IPIV, WORK, INFO )
ELSE
CALL ZHETRI2X( UPLO, N, A, LDA, IPIV, WORK, NBMAX, INFO )
END IF
*
RETURN
*
* End of ZHETRI2

View File

@ -106,7 +106,13 @@
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,3*N-2).
*> The dimension of the array WORK.
*> If MIN(N,NRHS) = 0, LWORK >= 1, else LWORK >= 3*N-2.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the minimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
@ -124,7 +130,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16HEcomputational
*> \ingroup hetrs_aa
*
* =====================================================================
SUBROUTINE ZHETRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
@ -152,7 +158,7 @@
* ..
* .. Local Scalars ..
LOGICAL LQUERY, UPPER
INTEGER K, KP, LWKOPT
INTEGER K, KP, LWKMIN
* ..
* .. External Functions ..
LOGICAL LSAME
@ -162,13 +168,19 @@
EXTERNAL ZGTSV, ZSWAP, ZTRSM, ZLACGV, ZLACPY, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
INTRINSIC MIN, MAX
* ..
* .. Executable Statements ..
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
LQUERY = ( LWORK.EQ.-1 )
IF( MIN( N, NRHS ).EQ.0 ) THEN
LWKMIN = 1
ELSE
LWKMIN = 3*N-2
END IF
*
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
@ -179,21 +191,20 @@
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( LWORK.LT.MAX( 1, 3*N-2 ) .AND. .NOT.LQUERY ) THEN
ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
INFO = -10
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZHETRS_AA', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
LWKOPT = (3*N-2)
WORK( 1 ) = LWKOPT
WORK( 1 ) = LWKMIN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 .OR. NRHS.EQ.0 )
IF( MIN( N, NRHS ).EQ.0 )
$ RETURN
*
IF( UPPER ) THEN

View File

@ -128,16 +128,19 @@
*> \param[out] WORK
*> \verbatim
*> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> If SIDE = 'L', LWORK >= max(1,NB) * MB;
*> if SIDE = 'R', LWORK >= max(1,M) * MB.
*> If MIN(M,N,K) = 0, LWORK >= 1.
*> If SIDE = 'L', LWORK >= max(1,NB*MB).
*> If SIDE = 'R', LWORK >= max(1,M*MB).
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> only calculates the minimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
@ -189,6 +192,8 @@
*> SIAM J. Sci. Comput, vol. 34, no. 1, 2012
*> \endverbatim
*>
*> \ingroup lamswlq
*>
* =====================================================================
SUBROUTINE ZLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
$ LDT, C, LDC, WORK, LWORK, INFO )
@ -202,7 +207,7 @@
INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), WORK( * ), C(LDC, * ),
COMPLEX*16 A( LDA, * ), WORK( * ), C( LDC, * ),
$ T( LDT, * )
* ..
*
@ -211,11 +216,12 @@
* ..
* .. Local Scalars ..
LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY
INTEGER I, II, KK, LW, CTR
INTEGER I, II, KK, LW, CTR, MINMNK, LWMIN
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL ZTPMLQT, ZGEMLQT, XERBLA
* ..
@ -223,18 +229,25 @@
*
* Test the input arguments
*
LQUERY = LWORK.LT.0
INFO = 0
LQUERY = ( LWORK.EQ.-1 )
NOTRAN = LSAME( TRANS, 'N' )
TRAN = LSAME( TRANS, 'C' )
LEFT = LSAME( SIDE, 'L' )
RIGHT = LSAME( SIDE, 'R' )
IF (LEFT) THEN
IF( LEFT ) THEN
LW = N * MB
ELSE
LW = M * MB
END IF
*
INFO = 0
MINMNK = MIN( M, N, K )
IF( MINMNK.EQ.0 ) THEN
LWMIN = 1
ELSE
LWMIN = MAX( 1, LW )
END IF
*
IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
INFO = -1
ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
@ -245,36 +258,37 @@
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( K.LT.MB .OR. MB.LT.1) THEN
ELSE IF( K.LT.MB .OR. MB.LT.1 ) THEN
INFO = -6
ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
INFO = -9
ELSE IF( LDT.LT.MAX( 1, MB) ) THEN
ELSE IF( LDT.LT.MAX( 1, MB ) ) THEN
INFO = -11
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
INFO = -13
ELSE IF(( LWORK.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN
ELSE IF( LWORK.LT.LWMIN .AND. (.NOT.LQUERY) ) THEN
INFO = -15
END IF
*
IF( INFO.EQ.0 ) THEN
WORK( 1 ) = LWMIN
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZLAMSWLQ', -INFO )
WORK(1) = LW
RETURN
ELSE IF (LQUERY) THEN
WORK(1) = LW
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( MIN(M,N,K).EQ.0 ) THEN
IF( MINMNK.EQ.0 ) THEN
RETURN
END IF
*
IF((NB.LE.K).OR.(NB.GE.MAX(M,N,K))) THEN
CALL ZGEMLQT( SIDE, TRANS, M, N, K, MB, A, LDA,
$ T, LDT, C, LDC, WORK, INFO)
$ T, LDT, C, LDC, WORK, INFO )
RETURN
END IF
*
@ -403,7 +417,7 @@
*
END IF
*
WORK(1) = LW
WORK( 1 ) = LWMIN
RETURN
*
* End of ZLAMSWLQ

View File

@ -129,21 +129,23 @@
*> \param[out] WORK
*> \verbatim
*> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
*>
*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> If MIN(M,N,K) = 0, LWORK >= 1.
*> If SIDE = 'L', LWORK >= max(1,N*NB).
*> If SIDE = 'R', LWORK >= max(1,MB*NB).
*>
*> If SIDE = 'L', LWORK >= max(1,N)*NB;
*> if SIDE = 'R', LWORK >= max(1,MB)*NB.
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> only calculates the minimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*>
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
@ -191,6 +193,8 @@
*> SIAM J. Sci. Comput, vol. 34, no. 1, 2012
*> \endverbatim
*>
*> \ingroup lamtsqr
*>
* =====================================================================
SUBROUTINE ZLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
$ LDT, C, LDC, WORK, LWORK, INFO )
@ -204,7 +208,7 @@
INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), WORK( * ), C(LDC, * ),
COMPLEX*16 A( LDA, * ), WORK( * ), C( LDC, * ),
$ T( LDT, * )
* ..
*
@ -213,11 +217,12 @@
* ..
* .. Local Scalars ..
LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY
INTEGER I, II, KK, LW, CTR, Q
INTEGER I, II, KK, LW, CTR, Q, MINMNK, LWMIN
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL ZGEMQRT, ZTPMQRT, XERBLA
* ..
@ -225,12 +230,13 @@
*
* Test the input arguments
*
LQUERY = LWORK.LT.0
INFO = 0
LQUERY = ( LWORK.EQ.-1 )
NOTRAN = LSAME( TRANS, 'N' )
TRAN = LSAME( TRANS, 'C' )
LEFT = LSAME( SIDE, 'L' )
RIGHT = LSAME( SIDE, 'R' )
IF (LEFT) THEN
IF( LEFT ) THEN
LW = N * NB
Q = M
ELSE
@ -238,7 +244,13 @@
Q = N
END IF
*
INFO = 0
MINMNK = MIN( M, N, K )
IF( MINMNK.EQ.0 ) THEN
LWMIN = 1
ELSE
LWMIN = MAX( 1, LW )
END IF
*
IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
INFO = -1
ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
@ -253,36 +265,36 @@
INFO = -7
ELSE IF( LDA.LT.MAX( 1, Q ) ) THEN
INFO = -9
ELSE IF( LDT.LT.MAX( 1, NB) ) THEN
ELSE IF( LDT.LT.MAX( 1, NB ) ) THEN
INFO = -11
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
INFO = -13
ELSE IF(( LWORK.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN
ELSE IF( LWORK.LT.LWMIN .AND. (.NOT.LQUERY) ) THEN
INFO = -15
END IF
*
* Determine the block size if it is tall skinny or short and wide
*
IF( INFO.EQ.0) THEN
WORK(1) = LW
IF( INFO.EQ.0 ) THEN
WORK( 1 ) = LWMIN
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZLAMTSQR', -INFO )
RETURN
ELSE IF (LQUERY) THEN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( MIN(M,N,K).EQ.0 ) THEN
IF( MINMNK.EQ.0 ) THEN
RETURN
END IF
*
* Determine the block size if it is tall skinny or short and wide
*
IF((MB.LE.K).OR.(MB.GE.MAX(M,N,K))) THEN
CALL ZGEMQRT( SIDE, TRANS, M, N, K, NB, A, LDA,
$ T, LDT, C, LDC, WORK, INFO)
$ T, LDT, C, LDC, WORK, INFO )
RETURN
END IF
*
@ -410,7 +422,7 @@
*
END IF
*
WORK(1) = LW
WORK( 1 ) = LWMIN
RETURN
*
* End of ZLAMTSQR

View File

@ -96,22 +96,23 @@
*> The leading dimension of the array T. LDT >= MB.
*> \endverbatim
*>
*>
*> \param[out] WORK
*> \verbatim
*> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
*>
*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK.
*> \endverbatim
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= MB*M.
*> The dimension of the array WORK.
*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= MB*M, otherwise.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> only calculates the minimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*>
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
@ -159,9 +160,11 @@
*> SIAM J. Sci. Comput, vol. 34, no. 1, 2012
*> \endverbatim
*>
*> \ingroup laswlq
*>
* =====================================================================
SUBROUTINE ZLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
$ INFO)
$ INFO )
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
@ -171,7 +174,7 @@
INTEGER INFO, LDA, M, N, MB, NB, LWORK, LDT
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), WORK( * ), T( LDT, *)
COMPLEX*16 A( LDA, * ), WORK( * ), T( LDT, * )
* ..
*
* =====================================================================
@ -179,13 +182,15 @@
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, II, KK, CTR
INTEGER I, II, KK, CTR, MINMN, LWMIN
* ..
* .. EXTERNAL FUNCTIONS ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. EXTERNAL SUBROUTINES ..
EXTERNAL ZGELQT, ZTPLQT, XERBLA
* ..
* .. INTRINSIC FUNCTIONS ..
INTRINSIC MAX, MIN, MOD
* ..
@ -196,12 +201,19 @@
INFO = 0
*
LQUERY = ( LWORK.EQ.-1 )
*
MINMN = MIN( M, N )
IF( MINMN.EQ.0 ) THEN
LWMIN = 1
ELSE
LWMIN = M*MB
END IF
*
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 .OR. N.LT.M ) THEN
INFO = -2
ELSE IF( MB.LT.1 .OR. ( MB.GT.M .AND. M.GT.0 )) THEN
ELSE IF( MB.LT.1 .OR. ( MB.GT.M .AND. M.GT.0 ) ) THEN
INFO = -3
ELSE IF( NB.LE.0 ) THEN
INFO = -4
@ -209,42 +221,43 @@
INFO = -6
ELSE IF( LDT.LT.MB ) THEN
INFO = -8
ELSE IF( ( LWORK.LT.M*MB) .AND. (.NOT.LQUERY) ) THEN
ELSE IF( LWORK.LT.LWMIN .AND. (.NOT.LQUERY) ) THEN
INFO = -10
END IF
IF( INFO.EQ.0) THEN
WORK(1) = MB*M
*
IF( INFO.EQ.0 ) THEN
WORK( 1 ) = LWMIN
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZLASWLQ', -INFO )
RETURN
ELSE IF (LQUERY) THEN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( MIN(M,N).EQ.0 ) THEN
IF( MINMN.EQ.0 ) THEN
RETURN
END IF
*
* The LQ Decomposition
*
IF((M.GE.N).OR.(NB.LE.M).OR.(NB.GE.N)) THEN
CALL ZGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO)
IF( (M.GE.N) .OR. (NB.LE.M) .OR. (NB.GE.N) ) THEN
CALL ZGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO )
RETURN
END IF
*
KK = MOD((N-M),(NB-M))
II=N-KK+1
II = N-KK+1
*
* Compute the LQ factorization of the first block A(1:M,1:NB)
*
CALL ZGELQT( M, NB, MB, A(1,1), LDA, T, LDT, WORK, INFO)
CALL ZGELQT( M, NB, MB, A(1,1), LDA, T, LDT, WORK, INFO )
CTR = 1
*
DO I = NB+1, II-NB+M , (NB-M)
DO I = NB+1, II-NB+M, (NB-M)
*
* Compute the QR factorization of the current block A(1:M,I:I+NB-M)
*
@ -256,13 +269,13 @@
*
* Compute the QR factorization of the last block A(1:M,II:N)
*
IF (II.LE.N) THEN
IF( II.LE.N ) THEN
CALL ZTPLQT( M, KK, 0, MB, A(1,1), LDA, A( 1, II ),
$ LDA, T(1, CTR * M + 1), LDT,
$ WORK, INFO )
END IF
*
WORK( 1 ) = M * MB
WORK( 1 ) = LWMIN
RETURN
*
* End of ZLASWLQ

View File

@ -158,7 +158,11 @@
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*>
*> If MIN(N,NRHS) = 0, LWORK >= 1, else
*> LWORK >= MAX(1, 2*NBA * MAX(NBA, MIN(NRHS, 32)), where
*> NBA = (N + NB - 1)/NB and NB is the optimal block size.
*>
@ -166,6 +170,7 @@
*> only calculates the optimal dimensions of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
@ -182,7 +187,7 @@
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup doubleOTHERauxiliary
*> \ingroup latrs3
*> \par Further Details:
* =====================
* \verbatim
@ -257,7 +262,7 @@
LOGICAL LQUERY, NOTRAN, NOUNIT, UPPER
INTEGER AWRK, I, IFIRST, IINC, ILAST, II, I1, I2, J,
$ JFIRST, JINC, JLAST, J1, J2, K, KK, K1, K2,
$ LANRM, LDS, LSCALE, NB, NBA, NBX, RHS
$ LANRM, LDS, LSCALE, NB, NBA, NBX, RHS, LWMIN
DOUBLE PRECISION ANRM, BIGNUM, BNRM, RSCAL, SCAL, SCALOC,
$ SCAMIN, SMLNUM, TMAX
* ..
@ -296,15 +301,24 @@
* row. WORK( I + KK * LDS ) is the scale factor of the vector
* segment associated with the I-th block row and the KK-th vector
* in the block column.
*
LSCALE = NBA * MAX( NBA, MIN( NRHS, NBRHS ) )
LDS = NBA
*
* The second part stores upper bounds of the triangular A. There are
* a total of NBA x NBA blocks, of which only the upper triangular
* part or the lower triangular part is referenced. The upper bound of
* the block A( I, J ) is stored as WORK( AWRK + I + J * NBA ).
*
LANRM = NBA * NBA
AWRK = LSCALE
WORK( 1 ) = LSCALE + LANRM
*
IF( MIN( N, NRHS ).EQ.0 ) THEN
LWMIN = 1
ELSE
LWMIN = LSCALE + LANRM
END IF
WORK( 1 ) = LWMIN
*
* Test the input parameters.
*
@ -326,7 +340,7 @@
INFO = -8
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
INFO = -10
ELSE IF( .NOT.LQUERY .AND. LWORK.LT.WORK( 1 ) ) THEN
ELSE IF( .NOT.LQUERY .AND. LWORK.LT.LWMIN ) THEN
INFO = -14
END IF
IF( INFO.NE.0 ) THEN

View File

@ -102,14 +102,17 @@
*> \param[out] WORK
*> \verbatim
*> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= NB*N.
*> The dimension of the array WORK.
*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= NB*N, otherwise.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> only calculates the minimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
@ -161,9 +164,11 @@
*> SIAM J. Sci. Comput, vol. 34, no. 1, 2012
*> \endverbatim
*>
*> \ingroup latsqr
*>
* =====================================================================
SUBROUTINE ZLATSQR( M, N, MB, NB, A, LDA, T, LDT, WORK,
$ LWORK, INFO)
$ LWORK, INFO )
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
@ -173,7 +178,7 @@
INTEGER INFO, LDA, M, N, MB, NB, LDT, LWORK
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), WORK( * ), T(LDT, *)
COMPLEX*16 A( LDA, * ), WORK( * ), T( LDT, * )
* ..
*
* =====================================================================
@ -181,13 +186,15 @@
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, II, KK, CTR
INTEGER I, II, KK, CTR, LWMIN, MINMN
* ..
* .. EXTERNAL FUNCTIONS ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. EXTERNAL SUBROUTINES ..
EXTERNAL ZGEQRT, ZTPQRT, XERBLA
* ..
* .. INTRINSIC FUNCTIONS ..
INTRINSIC MAX, MIN, MOD
* ..
@ -198,6 +205,13 @@
INFO = 0
*
LQUERY = ( LWORK.EQ.-1 )
*
MINMN = MIN( M, N )
IF( MINMN.EQ.0 ) THEN
LWMIN = 1
ELSE
LWMIN = N*NB
END IF
*
IF( M.LT.0 ) THEN
INFO = -1
@ -205,46 +219,47 @@
INFO = -2
ELSE IF( MB.LT.1 ) THEN
INFO = -3
ELSE IF( NB.LT.1 .OR. ( NB.GT.N .AND. N.GT.0 )) THEN
ELSE IF( NB.LT.1 .OR. ( NB.GT.N .AND. N.GT.0 ) ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -6
ELSE IF( LDT.LT.NB ) THEN
INFO = -8
ELSE IF( LWORK.LT.(N*NB) .AND. (.NOT.LQUERY) ) THEN
ELSE IF( LWORK.LT.LWMIN .AND. (.NOT.LQUERY) ) THEN
INFO = -10
END IF
IF( INFO.EQ.0) THEN
WORK(1) = NB*N
*
IF( INFO.EQ.0 ) THEN
WORK( 1 ) = LWMIN
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZLATSQR', -INFO )
RETURN
ELSE IF (LQUERY) THEN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( MIN(M,N).EQ.0 ) THEN
IF( MINMN.EQ.0 ) THEN
RETURN
END IF
*
* The QR Decomposition
*
IF ((MB.LE.N).OR.(MB.GE.M)) THEN
CALL ZGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO)
IF( (MB.LE.N) .OR. (MB.GE.M) ) THEN
CALL ZGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO )
RETURN
END IF
KK = MOD((M-N),(MB-N))
II=M-KK+1
II = M-KK+1
*
* Compute the QR factorization of the first block A(1:MB,1:N)
*
CALL ZGEQRT( MB, N, NB, A(1,1), LDA, T, LDT, WORK, INFO )
CTR = 1
*
DO I = MB+1, II-MB+N , (MB-N)
DO I = MB+1, II-MB+N, (MB-N)
*
* Compute the QR factorization of the current block A(I:I+MB-N,1:N)
*
@ -256,13 +271,13 @@
*
* Compute the QR factorization of the last block A(II:M,1:N)
*
IF (II.LE.M) THEN
IF( II.LE.M ) THEN
CALL ZTPQRT( KK, N, 0, NB, A(1,1), LDA, A( II, 1 ), LDA,
$ T(1,CTR * N + 1), LDT,
$ WORK, INFO )
END IF
*
work( 1 ) = N*NB
WORK( 1 ) = LWMIN
RETURN
*
* End of ZLATSQR