diff --git a/lapack-netlib/SRC/VARIANTS/cholesky/TOP/zpotrf.f b/lapack-netlib/SRC/VARIANTS/cholesky/TOP/zpotrf.f index f8b9e253c..449c7ac95 100644 --- a/lapack-netlib/SRC/VARIANTS/cholesky/TOP/zpotrf.f +++ b/lapack-netlib/SRC/VARIANTS/cholesky/TOP/zpotrf.f @@ -24,7 +24,7 @@ C> \brief \b ZPOTRF VARIANT: top-looking block version of the algorithm, calling C>\details \b Purpose: C>\verbatim C> -C> ZPOTRF computes the Cholesky factorization of a real symmetric +C> ZPOTRF computes the Cholesky factorization of a complex Hermitian C> positive definite matrix A. C> C> The factorization has the form @@ -55,7 +55,7 @@ C> C> \param[in,out] A C> \verbatim C> A is COMPLEX*16 array, dimension (LDA,N) -C> On entry, the symmetric matrix A. If UPLO = 'U', the leading +C> On entry, the Hermitian matrix A. If UPLO = 'U', the leading C> N-by-N upper triangular part of A contains the upper C> triangular part of the matrix A, and the strictly lower C> triangular part of A is not referenced. If UPLO = 'L', the