diff --git a/lapack-netlib/TESTING/EIG/zchkee.f b/lapack-netlib/TESTING/EIG/zchkee.f deleted file mode 100644 index 6807ef7e4..000000000 --- a/lapack-netlib/TESTING/EIG/zchkee.f +++ /dev/null @@ -1,2505 +0,0 @@ -*> \brief \b ZCHKEE -* -* =========== DOCUMENTATION =========== -* -* Online html documentation available at -* http://www.netlib.org/lapack/explore-html/ -* -* Definition: -* =========== -* -* PROGRAM ZCHKEE -* -* -*> \par Purpose: -* ============= -*> -*> \verbatim -*> -*> ZCHKEE tests the COMPLEX*16 LAPACK subroutines for the matrix -*> eigenvalue problem. The test paths in this version are -*> -*> NEP (Nonsymmetric Eigenvalue Problem): -*> Test ZGEHRD, ZUNGHR, ZHSEQR, ZTREVC, ZHSEIN, and ZUNMHR -*> -*> SEP (Hermitian Eigenvalue Problem): -*> Test ZHETRD, ZUNGTR, ZSTEQR, ZSTERF, ZSTEIN, ZSTEDC, -*> and drivers ZHEEV(X), ZHBEV(X), ZHPEV(X), -*> ZHEEVD, ZHBEVD, ZHPEVD -*> -*> SVD (Singular Value Decomposition): -*> Test ZGEBRD, ZUNGBR, and ZBDSQR -*> and the drivers ZGESVD, ZGESDD -*> -*> ZEV (Nonsymmetric Eigenvalue/eigenvector Driver): -*> Test ZGEEV -*> -*> ZES (Nonsymmetric Schur form Driver): -*> Test ZGEES -*> -*> ZVX (Nonsymmetric Eigenvalue/eigenvector Expert Driver): -*> Test ZGEEVX -*> -*> ZSX (Nonsymmetric Schur form Expert Driver): -*> Test ZGEESX -*> -*> ZGG (Generalized Nonsymmetric Eigenvalue Problem): -*> Test ZGGHD3, ZGGBAL, ZGGBAK, ZHGEQZ, and ZTGEVC -*> -*> ZGS (Generalized Nonsymmetric Schur form Driver): -*> Test ZGGES -*> -*> ZGV (Generalized Nonsymmetric Eigenvalue/eigenvector Driver): -*> Test ZGGEV -*> -*> ZGX (Generalized Nonsymmetric Schur form Expert Driver): -*> Test ZGGESX -*> -*> ZXV (Generalized Nonsymmetric Eigenvalue/eigenvector Expert Driver): -*> Test ZGGEVX -*> -*> ZSG (Hermitian Generalized Eigenvalue Problem): -*> Test ZHEGST, ZHEGV, ZHEGVD, ZHEGVX, ZHPGST, ZHPGV, ZHPGVD, -*> ZHPGVX, ZHBGST, ZHBGV, ZHBGVD, and ZHBGVX -*> -*> ZHB (Hermitian Band Eigenvalue Problem): -*> Test ZHBTRD -*> -*> ZBB (Band Singular Value Decomposition): -*> Test ZGBBRD -*> -*> ZEC (Eigencondition estimation): -*> Test ZTRSYL, ZTREXC, ZTRSNA, and ZTRSEN -*> -*> ZBL (Balancing a general matrix) -*> Test ZGEBAL -*> -*> ZBK (Back transformation on a balanced matrix) -*> Test ZGEBAK -*> -*> ZGL (Balancing a matrix pair) -*> Test ZGGBAL -*> -*> ZGK (Back transformation on a matrix pair) -*> Test ZGGBAK -*> -*> GLM (Generalized Linear Regression Model): -*> Tests ZGGGLM -*> -*> GQR (Generalized QR and RQ factorizations): -*> Tests ZGGQRF and ZGGRQF -*> -*> GSV (Generalized Singular Value Decomposition): -*> Tests ZGGSVD, ZGGSVP, ZTGSJA, ZLAGS2, ZLAPLL, and ZLAPMT -*> -*> CSD (CS decomposition): -*> Tests ZUNCSD -*> -*> LSE (Constrained Linear Least Squares): -*> Tests ZGGLSE -*> -*> Each test path has a different set of inputs, but the data sets for -*> the driver routines xEV, xES, xVX, and xSX can be concatenated in a -*> single input file. The first line of input should contain one of the -*> 3-character path names in columns 1-3. The number of remaining lines -*> depends on what is found on the first line. -*> -*> The number of matrix types used in testing is often controllable from -*> the input file. The number of matrix types for each path, and the -*> test routine that describes them, is as follows: -*> -*> Path name(s) Types Test routine -*> -*> ZHS or NEP 21 ZCHKHS -*> ZST or SEP 21 ZCHKST (routines) -*> 18 ZDRVST (drivers) -*> ZBD or SVD 16 ZCHKBD (routines) -*> 5 ZDRVBD (drivers) -*> ZEV 21 ZDRVEV -*> ZES 21 ZDRVES -*> ZVX 21 ZDRVVX -*> ZSX 21 ZDRVSX -*> ZGG 26 ZCHKGG (routines) -*> ZGS 26 ZDRGES -*> ZGX 5 ZDRGSX -*> ZGV 26 ZDRGEV -*> ZXV 2 ZDRGVX -*> ZSG 21 ZDRVSG -*> ZHB 15 ZCHKHB -*> ZBB 15 ZCHKBB -*> ZEC - ZCHKEC -*> ZBL - ZCHKBL -*> ZBK - ZCHKBK -*> ZGL - ZCHKGL -*> ZGK - ZCHKGK -*> GLM 8 ZCKGLM -*> GQR 8 ZCKGQR -*> GSV 8 ZCKGSV -*> CSD 3 ZCKCSD -*> LSE 8 ZCKLSE -*> -*>----------------------------------------------------------------------- -*> -*> NEP input file: -*> -*> line 2: NN, INTEGER -*> Number of values of N. -*> -*> line 3: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix dimension N. -*> -*> line 4: NPARMS, INTEGER -*> Number of values of the parameters NB, NBMIN, NX, NS, and -*> MAXB. -*> -*> line 5: NBVAL, INTEGER array, dimension (NPARMS) -*> The values for the blocksize NB. -*> -*> line 6: NBMIN, INTEGER array, dimension (NPARMS) -*> The values for the minimum blocksize NBMIN. -*> -*> line 7: NXVAL, INTEGER array, dimension (NPARMS) -*> The values for the crossover point NX. -*> -*> line 8: INMIN, INTEGER array, dimension (NPARMS) -*> LAHQR vs TTQRE crossover point, >= 11 -*> -*> line 9: INWIN, INTEGER array, dimension (NPARMS) -*> recommended deflation window size -*> -*> line 10: INIBL, INTEGER array, dimension (NPARMS) -*> nibble crossover point -*> -*> line 11: ISHFTS, INTEGER array, dimension (NPARMS) -*> number of simultaneous shifts) -*> -*> line 12: IACC22, INTEGER array, dimension (NPARMS) -*> select structured matrix multiply: 0, 1 or 2) -*> -*> line 13: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. To have all of the test -*> ratios printed, use THRESH = 0.0 . -*> -*> line 14: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 14 was 2: -*> -*> line 15: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 15-EOF: The remaining lines occur in sets of 1 or 2 and allow -*> the user to specify the matrix types. Each line contains -*> a 3-character path name in columns 1-3, and the number -*> of matrix types must be the first nonblank item in columns -*> 4-80. If the number of matrix types is at least 1 but is -*> less than the maximum number of possible types, a second -*> line will be read to get the numbers of the matrix types to -*> be used. For example, -*> NEP 21 -*> requests all of the matrix types for the nonsymmetric -*> eigenvalue problem, while -*> NEP 4 -*> 9 10 11 12 -*> requests only matrices of type 9, 10, 11, and 12. -*> -*> The valid 3-character path names are 'NEP' or 'ZHS' for the -*> nonsymmetric eigenvalue routines. -*> -*>----------------------------------------------------------------------- -*> -*> SEP or ZSG input file: -*> -*> line 2: NN, INTEGER -*> Number of values of N. -*> -*> line 3: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix dimension N. -*> -*> line 4: NPARMS, INTEGER -*> Number of values of the parameters NB, NBMIN, and NX. -*> -*> line 5: NBVAL, INTEGER array, dimension (NPARMS) -*> The values for the blocksize NB. -*> -*> line 6: NBMIN, INTEGER array, dimension (NPARMS) -*> The values for the minimum blocksize NBMIN. -*> -*> line 7: NXVAL, INTEGER array, dimension (NPARMS) -*> The values for the crossover point NX. -*> -*> line 8: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 9: TSTCHK, LOGICAL -*> Flag indicating whether or not to test the LAPACK routines. -*> -*> line 10: TSTDRV, LOGICAL -*> Flag indicating whether or not to test the driver routines. -*> -*> line 11: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 12: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 12 was 2: -*> -*> line 13: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 13-EOF: Lines specifying matrix types, as for NEP. -*> The valid 3-character path names are 'SEP' or 'ZST' for the -*> Hermitian eigenvalue routines and driver routines, and -*> 'ZSG' for the routines for the Hermitian generalized -*> eigenvalue problem. -*> -*>----------------------------------------------------------------------- -*> -*> SVD input file: -*> -*> line 2: NN, INTEGER -*> Number of values of M and N. -*> -*> line 3: MVAL, INTEGER array, dimension (NN) -*> The values for the matrix row dimension M. -*> -*> line 4: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix column dimension N. -*> -*> line 5: NPARMS, INTEGER -*> Number of values of the parameter NB, NBMIN, NX, and NRHS. -*> -*> line 6: NBVAL, INTEGER array, dimension (NPARMS) -*> The values for the blocksize NB. -*> -*> line 7: NBMIN, INTEGER array, dimension (NPARMS) -*> The values for the minimum blocksize NBMIN. -*> -*> line 8: NXVAL, INTEGER array, dimension (NPARMS) -*> The values for the crossover point NX. -*> -*> line 9: NSVAL, INTEGER array, dimension (NPARMS) -*> The values for the number of right hand sides NRHS. -*> -*> line 10: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 11: TSTCHK, LOGICAL -*> Flag indicating whether or not to test the LAPACK routines. -*> -*> line 12: TSTDRV, LOGICAL -*> Flag indicating whether or not to test the driver routines. -*> -*> line 13: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 14: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 14 was 2: -*> -*> line 15: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 15-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path names are 'SVD' or 'ZBD' for both the -*> SVD routines and the SVD driver routines. -*> -*>----------------------------------------------------------------------- -*> -*> ZEV and ZES data files: -*> -*> line 1: 'ZEV' or 'ZES' in columns 1 to 3. -*> -*> line 2: NSIZES, INTEGER -*> Number of sizes of matrices to use. Should be at least 0 -*> and at most 20. If NSIZES = 0, no testing is done -*> (although the remaining 3 lines are still read). -*> -*> line 3: NN, INTEGER array, dimension(NSIZES) -*> Dimensions of matrices to be tested. -*> -*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> These integer parameters determine how blocking is done -*> (see ILAENV for details) -*> NB : block size -*> NBMIN : minimum block size -*> NX : minimum dimension for blocking -*> NS : number of shifts in xHSEQR -*> NBCOL : minimum column dimension for blocking -*> -*> line 5: THRESH, REAL -*> The test threshold against which computed residuals are -*> compared. Should generally be in the range from 10. to 20. -*> If it is 0., all test case data will be printed. -*> -*> line 6: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 6 was 2: -*> -*> line 7: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 8 and following: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'ZEV' to test CGEEV, or -*> 'ZES' to test CGEES. -*> -*>----------------------------------------------------------------------- -*> -*> The ZVX data has two parts. The first part is identical to ZEV, -*> and the second part consists of test matrices with precomputed -*> solutions. -*> -*> line 1: 'ZVX' in columns 1-3. -*> -*> line 2: NSIZES, INTEGER -*> If NSIZES = 0, no testing of randomly generated examples -*> is done, but any precomputed examples are tested. -*> -*> line 3: NN, INTEGER array, dimension(NSIZES) -*> -*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> -*> line 5: THRESH, REAL -*> -*> line 6: NEWSD, INTEGER -*> -*> If line 6 was 2: -*> -*> line 7: INTEGER array, dimension (4) -*> -*> lines 8 and following: The first line contains 'ZVX' in columns 1-3 -*> followed by the number of matrix types, possibly with -*> a second line to specify certain matrix types. -*> If the number of matrix types = 0, no testing of randomly -*> generated examples is done, but any precomputed examples -*> are tested. -*> -*> remaining lines : Each matrix is stored on 1+N+N**2 lines, where N is -*> its dimension. The first line contains the dimension N and -*> ISRT (two integers). ISRT indicates whether the last N lines -*> are sorted by increasing real part of the eigenvalue -*> (ISRT=0) or by increasing imaginary part (ISRT=1). The next -*> N**2 lines contain the matrix rowwise, one entry per line. -*> The last N lines correspond to each eigenvalue. Each of -*> these last N lines contains 4 real values: the real part of -*> the eigenvalues, the imaginary part of the eigenvalue, the -*> reciprocal condition number of the eigenvalues, and the -*> reciprocal condition number of the vector eigenvector. The -*> end of data is indicated by dimension N=0. Even if no data -*> is to be tested, there must be at least one line containing -*> N=0. -*> -*>----------------------------------------------------------------------- -*> -*> The ZSX data is like ZVX. The first part is identical to ZEV, and the -*> second part consists of test matrices with precomputed solutions. -*> -*> line 1: 'ZSX' in columns 1-3. -*> -*> line 2: NSIZES, INTEGER -*> If NSIZES = 0, no testing of randomly generated examples -*> is done, but any precomputed examples are tested. -*> -*> line 3: NN, INTEGER array, dimension(NSIZES) -*> -*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> -*> line 5: THRESH, REAL -*> -*> line 6: NEWSD, INTEGER -*> -*> If line 6 was 2: -*> -*> line 7: INTEGER array, dimension (4) -*> -*> lines 8 and following: The first line contains 'ZSX' in columns 1-3 -*> followed by the number of matrix types, possibly with -*> a second line to specify certain matrix types. -*> If the number of matrix types = 0, no testing of randomly -*> generated examples is done, but any precomputed examples -*> are tested. -*> -*> remaining lines : Each matrix is stored on 3+N**2 lines, where N is -*> its dimension. The first line contains the dimension N, the -*> dimension M of an invariant subspace, and ISRT. The second -*> line contains M integers, identifying the eigenvalues in the -*> invariant subspace (by their position in a list of -*> eigenvalues ordered by increasing real part (if ISRT=0) or -*> by increasing imaginary part (if ISRT=1)). The next N**2 -*> lines contain the matrix rowwise. The last line contains the -*> reciprocal condition number for the average of the selected -*> eigenvalues, and the reciprocal condition number for the -*> corresponding right invariant subspace. The end of data in -*> indicated by a line containing N=0, M=0, and ISRT = 0. Even -*> if no data is to be tested, there must be at least one line -*> containing N=0, M=0 and ISRT=0. -*> -*>----------------------------------------------------------------------- -*> -*> ZGG input file: -*> -*> line 2: NN, INTEGER -*> Number of values of N. -*> -*> line 3: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix dimension N. -*> -*> line 4: NPARMS, INTEGER -*> Number of values of the parameters NB, NBMIN, NBCOL, NS, and -*> MAXB. -*> -*> line 5: NBVAL, INTEGER array, dimension (NPARMS) -*> The values for the blocksize NB. -*> -*> line 6: NBMIN, INTEGER array, dimension (NPARMS) -*> The values for NBMIN, the minimum row dimension for blocks. -*> -*> line 7: NSVAL, INTEGER array, dimension (NPARMS) -*> The values for the number of shifts. -*> -*> line 8: MXBVAL, INTEGER array, dimension (NPARMS) -*> The values for MAXB, used in determining minimum blocksize. -*> -*> line 9: IACC22, INTEGER array, dimension (NPARMS) -*> select structured matrix multiply: 1 or 2) -*> -*> line 10: NBCOL, INTEGER array, dimension (NPARMS) -*> The values for NBCOL, the minimum column dimension for -*> blocks. -*> -*> line 11: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 12: TSTCHK, LOGICAL -*> Flag indicating whether or not to test the LAPACK routines. -*> -*> line 13: TSTDRV, LOGICAL -*> Flag indicating whether or not to test the driver routines. -*> -*> line 14: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 15: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 15 was 2: -*> -*> line 16: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 17-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'ZGG' for the generalized -*> eigenvalue problem routines and driver routines. -*> -*>----------------------------------------------------------------------- -*> -*> ZGS and ZGV input files: -*> -*> line 1: 'ZGS' or 'ZGV' in columns 1 to 3. -*> -*> line 2: NN, INTEGER -*> Number of values of N. -*> -*> line 3: NVAL, INTEGER array, dimension(NN) -*> Dimensions of matrices to be tested. -*> -*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> These integer parameters determine how blocking is done -*> (see ILAENV for details) -*> NB : block size -*> NBMIN : minimum block size -*> NX : minimum dimension for blocking -*> NS : number of shifts in xHGEQR -*> NBCOL : minimum column dimension for blocking -*> -*> line 5: THRESH, REAL -*> The test threshold against which computed residuals are -*> compared. Should generally be in the range from 10. to 20. -*> If it is 0., all test case data will be printed. -*> -*> line 6: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits. -*> -*> line 7: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 17 was 2: -*> -*> line 7: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 7-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'ZGS' for the generalized -*> eigenvalue problem routines and driver routines. -*> -*>----------------------------------------------------------------------- -*> -*> ZGX input file: -*> line 1: 'ZGX' in columns 1 to 3. -*> -*> line 2: N, INTEGER -*> Value of N. -*> -*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> These integer parameters determine how blocking is done -*> (see ILAENV for details) -*> NB : block size -*> NBMIN : minimum block size -*> NX : minimum dimension for blocking -*> NS : number of shifts in xHGEQR -*> NBCOL : minimum column dimension for blocking -*> -*> line 4: THRESH, REAL -*> The test threshold against which computed residuals are -*> compared. Should generally be in the range from 10. to 20. -*> Information will be printed about each test for which the -*> test ratio is greater than or equal to the threshold. -*> -*> line 5: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 6: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 6 was 2: -*> -*> line 7: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> If line 2 was 0: -*> -*> line 7-EOF: Precomputed examples are tested. -*> -*> remaining lines : Each example is stored on 3+2*N*N lines, where N is -*> its dimension. The first line contains the dimension (a -*> single integer). The next line contains an integer k such -*> that only the last k eigenvalues will be selected and appear -*> in the leading diagonal blocks of $A$ and $B$. The next N*N -*> lines contain the matrix A, one element per line. The next N*N -*> lines contain the matrix B. The last line contains the -*> reciprocal of the eigenvalue cluster condition number and the -*> reciprocal of the deflating subspace (associated with the -*> selected eigencluster) condition number. The end of data is -*> indicated by dimension N=0. Even if no data is to be tested, -*> there must be at least one line containing N=0. -*> -*>----------------------------------------------------------------------- -*> -*> ZXV input files: -*> line 1: 'ZXV' in columns 1 to 3. -*> -*> line 2: N, INTEGER -*> Value of N. -*> -*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs -*> These integer parameters determine how blocking is done -*> (see ILAENV for details) -*> NB : block size -*> NBMIN : minimum block size -*> NX : minimum dimension for blocking -*> NS : number of shifts in xHGEQR -*> NBCOL : minimum column dimension for blocking -*> -*> line 4: THRESH, REAL -*> The test threshold against which computed residuals are -*> compared. Should generally be in the range from 10. to 20. -*> Information will be printed about each test for which the -*> test ratio is greater than or equal to the threshold. -*> -*> line 5: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 6: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 6 was 2: -*> -*> line 7: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> If line 2 was 0: -*> -*> line 7-EOF: Precomputed examples are tested. -*> -*> remaining lines : Each example is stored on 3+2*N*N lines, where N is -*> its dimension. The first line contains the dimension (a -*> single integer). The next N*N lines contain the matrix A, one -*> element per line. The next N*N lines contain the matrix B. -*> The next line contains the reciprocals of the eigenvalue -*> condition numbers. The last line contains the reciprocals of -*> the eigenvector condition numbers. The end of data is -*> indicated by dimension N=0. Even if no data is to be tested, -*> there must be at least one line containing N=0. -*> -*>----------------------------------------------------------------------- -*> -*> ZHB input file: -*> -*> line 2: NN, INTEGER -*> Number of values of N. -*> -*> line 3: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix dimension N. -*> -*> line 4: NK, INTEGER -*> Number of values of K. -*> -*> line 5: KVAL, INTEGER array, dimension (NK) -*> The values for the matrix dimension K. -*> -*> line 6: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 7 was 2: -*> -*> line 8: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 8-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'ZHB'. -*> -*>----------------------------------------------------------------------- -*> -*> ZBB input file: -*> -*> line 2: NN, INTEGER -*> Number of values of M and N. -*> -*> line 3: MVAL, INTEGER array, dimension (NN) -*> The values for the matrix row dimension M. -*> -*> line 4: NVAL, INTEGER array, dimension (NN) -*> The values for the matrix column dimension N. -*> -*> line 4: NK, INTEGER -*> Number of values of K. -*> -*> line 5: KVAL, INTEGER array, dimension (NK) -*> The values for the matrix bandwidth K. -*> -*> line 6: NPARMS, INTEGER -*> Number of values of the parameter NRHS -*> -*> line 7: NSVAL, INTEGER array, dimension (NPARMS) -*> The values for the number of right hand sides NRHS. -*> -*> line 8: THRESH -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 9: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 9 was 2: -*> -*> line 10: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 10-EOF: Lines specifying matrix types, as for SVD. -*> The 3-character path name is 'ZBB'. -*> -*>----------------------------------------------------------------------- -*> -*> ZEC input file: -*> -*> line 2: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> lines 3-EOF: -*> -*> Input for testing the eigencondition routines consists of a set of -*> specially constructed test cases and their solutions. The data -*> format is not intended to be modified by the user. -*> -*>----------------------------------------------------------------------- -*> -*> ZBL and ZBK input files: -*> -*> line 1: 'ZBL' in columns 1-3 to test CGEBAL, or 'ZBK' in -*> columns 1-3 to test CGEBAK. -*> -*> The remaining lines consist of specially constructed test cases. -*> -*>----------------------------------------------------------------------- -*> -*> ZGL and ZGK input files: -*> -*> line 1: 'ZGL' in columns 1-3 to test ZGGBAL, or 'ZGK' in -*> columns 1-3 to test ZGGBAK. -*> -*> The remaining lines consist of specially constructed test cases. -*> -*>----------------------------------------------------------------------- -*> -*> GLM data file: -*> -*> line 1: 'GLM' in columns 1 to 3. -*> -*> line 2: NN, INTEGER -*> Number of values of M, P, and N. -*> -*> line 3: MVAL, INTEGER array, dimension(NN) -*> Values of M (row dimension). -*> -*> line 4: PVAL, INTEGER array, dimension(NN) -*> Values of P (row dimension). -*> -*> line 5: NVAL, INTEGER array, dimension(NN) -*> Values of N (column dimension), note M <= N <= M+P. -*> -*> line 6: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 8: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 8 was 2: -*> -*> line 9: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'GLM' for the generalized -*> linear regression model routines. -*> -*>----------------------------------------------------------------------- -*> -*> GQR data file: -*> -*> line 1: 'GQR' in columns 1 to 3. -*> -*> line 2: NN, INTEGER -*> Number of values of M, P, and N. -*> -*> line 3: MVAL, INTEGER array, dimension(NN) -*> Values of M. -*> -*> line 4: PVAL, INTEGER array, dimension(NN) -*> Values of P. -*> -*> line 5: NVAL, INTEGER array, dimension(NN) -*> Values of N. -*> -*> line 6: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 8: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 8 was 2: -*> -*> line 9: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'GQR' for the generalized -*> QR and RQ routines. -*> -*>----------------------------------------------------------------------- -*> -*> GSV data file: -*> -*> line 1: 'GSV' in columns 1 to 3. -*> -*> line 2: NN, INTEGER -*> Number of values of M, P, and N. -*> -*> line 3: MVAL, INTEGER array, dimension(NN) -*> Values of M (row dimension). -*> -*> line 4: PVAL, INTEGER array, dimension(NN) -*> Values of P (row dimension). -*> -*> line 5: NVAL, INTEGER array, dimension(NN) -*> Values of N (column dimension). -*> -*> line 6: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 8: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 8 was 2: -*> -*> line 9: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'GSV' for the generalized -*> SVD routines. -*> -*>----------------------------------------------------------------------- -*> -*> CSD data file: -*> -*> line 1: 'CSD' in columns 1 to 3. -*> -*> line 2: NM, INTEGER -*> Number of values of M, P, and N. -*> -*> line 3: MVAL, INTEGER array, dimension(NM) -*> Values of M (row and column dimension of orthogonal matrix). -*> -*> line 4: PVAL, INTEGER array, dimension(NM) -*> Values of P (row dimension of top-left block). -*> -*> line 5: NVAL, INTEGER array, dimension(NM) -*> Values of N (column dimension of top-left block). -*> -*> line 6: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 8: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 8 was 2: -*> -*> line 9: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'CSD' for the CSD routine. -*> -*>----------------------------------------------------------------------- -*> -*> LSE data file: -*> -*> line 1: 'LSE' in columns 1 to 3. -*> -*> line 2: NN, INTEGER -*> Number of values of M, P, and N. -*> -*> line 3: MVAL, INTEGER array, dimension(NN) -*> Values of M. -*> -*> line 4: PVAL, INTEGER array, dimension(NN) -*> Values of P. -*> -*> line 5: NVAL, INTEGER array, dimension(NN) -*> Values of N, note P <= N <= P+M. -*> -*> line 6: THRESH, REAL -*> Threshold value for the test ratios. Information will be -*> printed about each test for which the test ratio is greater -*> than or equal to the threshold. -*> -*> line 7: TSTERR, LOGICAL -*> Flag indicating whether or not to test the error exits for -*> the LAPACK routines and driver routines. -*> -*> line 8: NEWSD, INTEGER -*> A code indicating how to set the random number seed. -*> = 0: Set the seed to a default value before each run -*> = 1: Initialize the seed to a default value only before the -*> first run -*> = 2: Like 1, but use the seed values on the next line -*> -*> If line 8 was 2: -*> -*> line 9: INTEGER array, dimension (4) -*> Four integer values for the random number seed. -*> -*> lines 9-EOF: Lines specifying matrix types, as for NEP. -*> The 3-character path name is 'GSV' for the generalized -*> SVD routines. -*> -*>----------------------------------------------------------------------- -*> -*> NMAX is currently set to 132 and must be at least 12 for some of the -*> precomputed examples, and LWORK = NMAX*(5*NMAX+20) in the parameter -*> statements below. For SVD, we assume NRHS may be as big as N. The -*> parameter NEED is set to 14 to allow for 14 N-by-N matrices for ZGG. -*> \endverbatim -* -* Arguments: -* ========== -* -* -* Authors: -* ======== -* -*> \author Univ. of Tennessee -*> \author Univ. of California Berkeley -*> \author Univ. of Colorado Denver -*> \author NAG Ltd. -* -*> \date June 2016 -* -*> \ingroup complex16_eig -* -* ===================================================================== - PROGRAM ZCHKEE -* -* -- LAPACK test routine (version 3.7.0) -- -* -- LAPACK is a software package provided by Univ. of Tennessee, -- -* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* June 2016 -* -* ===================================================================== -* -* .. Parameters .. - INTEGER NMAX - PARAMETER ( NMAX = 132 ) - INTEGER NCMAX - PARAMETER ( NCMAX = 20 ) - INTEGER NEED - PARAMETER ( NEED = 14 ) - INTEGER LWORK - PARAMETER ( LWORK = NMAX*( 5*NMAX+20 ) ) - INTEGER LIWORK - PARAMETER ( LIWORK = NMAX*( NMAX+20 ) ) - INTEGER MAXIN - PARAMETER ( MAXIN = 20 ) - INTEGER MAXT - PARAMETER ( MAXT = 30 ) - INTEGER NIN, NOUT - PARAMETER ( NIN = 5, NOUT = 6 ) -* .. -* .. Local Scalars .. - LOGICAL ZBK, ZBL, ZES, ZEV, ZGK, ZGL, ZGS, ZGV, ZGX, - $ ZSX, ZVX, ZXV, CSD, FATAL, GLM, GQR, GSV, LSE, - $ NEP, SEP, SVD, TSTCHK, TSTDIF, TSTDRV, TSTERR, - $ ZBB, ZGG, ZHB - CHARACTER C1 - CHARACTER*3 C3, PATH - CHARACTER*32 VNAME - CHARACTER*10 INTSTR - CHARACTER*80 LINE - INTEGER I, I1, IC, INFO, ITMP, K, LENP, MAXTYP, NEWSD, - $ NK, NN, NPARMS, NRHS, NTYPES, - $ VERS_MAJOR, VERS_MINOR, VERS_PATCH - DOUBLE PRECISION EPS, S1, S2, THRESH, THRSHN -* .. -* .. Local Arrays .. - LOGICAL DOTYPE( MAXT ), LOGWRK( NMAX ) - INTEGER IOLDSD( 4 ), ISEED( 4 ), IWORK( LIWORK ), - $ KVAL( MAXIN ), MVAL( MAXIN ), MXBVAL( MAXIN ), - $ NBCOL( MAXIN ), NBMIN( MAXIN ), NBVAL( MAXIN ), - $ NSVAL( MAXIN ), NVAL( MAXIN ), NXVAL( MAXIN ), - $ PVAL( MAXIN ) - INTEGER INMIN( MAXIN ), INWIN( MAXIN ), INIBL( MAXIN ), - $ ISHFTS( MAXIN ), IACC22( MAXIN ) - DOUBLE PRECISION ALPHA( NMAX ), BETA( NMAX ), DR( NMAX, 12 ), - $ RESULT( 500 ), RWORK( LWORK ), S( NMAX*NMAX ) - COMPLEX*16 A( NMAX*NMAX, NEED ), B( NMAX*NMAX, 5 ), - $ C( NCMAX*NCMAX, NCMAX*NCMAX ), DC( NMAX, 6 ), - $ TAUA( NMAX ), TAUB( NMAX ), WORK( LWORK ), - $ X( 5*NMAX ) -* .. -* .. External Functions .. - LOGICAL LSAMEN - DOUBLE PRECISION DLAMCH, DSECND - EXTERNAL LSAMEN, DLAMCH, DSECND -* .. -* .. External Subroutines .. - EXTERNAL ALAREQ, XLAENV, ZCHKBB, ZCHKBD, ZCHKBK, ZCHKBL, - $ ZCHKEC, ZCHKGG, ZCHKGK, ZCHKGL, ZCHKHB, ZCHKHS, - $ ZCHKST, ZCKCSD, ZCKGLM, ZCKGQR, ZCKGSV, ZCKLSE, - $ ZDRGES, ZDRGEV, ZDRGSX, ZDRGVX, ZDRVBD, ZDRVES, - $ ZDRVEV, ZDRVSG, ZDRVST, ZDRVSX, ZDRVVX, - $ ZERRBD, ZERRED, ZERRGG, ZERRHS, ZERRST, ILAVER, - $ ZDRGES3, ZDRGEV3, - $ ZCHKST2STG, ZDRVST2STG, ZCHKHB2STG -* .. -* .. Intrinsic Functions .. - INTRINSIC LEN, MIN -* .. -* .. Scalars in Common .. - LOGICAL LERR, OK - CHARACTER*32 SRNAMT - INTEGER INFOT, MAXB, NPROC, NSHIFT, NUNIT, SELDIM, - $ SELOPT -* .. -* .. Arrays in Common .. - LOGICAL SELVAL( 20 ) - INTEGER IPARMS( 100 ) - DOUBLE PRECISION SELWI( 20 ), SELWR( 20 ) -* .. -* .. Common blocks .. - COMMON / CENVIR / NPROC, NSHIFT, MAXB - COMMON / INFOC / INFOT, NUNIT, OK, LERR - COMMON / SRNAMC / SRNAMT - COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI - COMMON / CLAENV / IPARMS -* .. -* .. Data statements .. - DATA INTSTR / '0123456789' / - DATA IOLDSD / 0, 0, 0, 1 / -* .. -* .. Executable Statements .. -* - A = 0.0 - B = 0.0 - C = 0.0 - DC = 0.0 - S1 = DSECND( ) - FATAL = .FALSE. - NUNIT = NOUT -* -* Return to here to read multiple sets of data -* - 10 CONTINUE -* -* Read the first line and set the 3-character test path -* - READ( NIN, FMT = '(A80)', END = 380 )LINE - PATH = LINE( 1: 3 ) - NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'ZHS' ) - SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'ZST' ) .OR. - $ LSAMEN( 3, PATH, 'ZSG' ) .OR. LSAMEN( 3, PATH, 'SE2' ) - SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'ZBD' ) - ZEV = LSAMEN( 3, PATH, 'ZEV' ) - ZES = LSAMEN( 3, PATH, 'ZES' ) - ZVX = LSAMEN( 3, PATH, 'ZVX' ) - ZSX = LSAMEN( 3, PATH, 'ZSX' ) - ZGG = LSAMEN( 3, PATH, 'ZGG' ) - ZGS = LSAMEN( 3, PATH, 'ZGS' ) - ZGX = LSAMEN( 3, PATH, 'ZGX' ) - ZGV = LSAMEN( 3, PATH, 'ZGV' ) - ZXV = LSAMEN( 3, PATH, 'ZXV' ) - ZHB = LSAMEN( 3, PATH, 'ZHB' ) - ZBB = LSAMEN( 3, PATH, 'ZBB' ) - GLM = LSAMEN( 3, PATH, 'GLM' ) - GQR = LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' ) - GSV = LSAMEN( 3, PATH, 'GSV' ) - CSD = LSAMEN( 3, PATH, 'CSD' ) - LSE = LSAMEN( 3, PATH, 'LSE' ) - ZBL = LSAMEN( 3, PATH, 'ZBL' ) - ZBK = LSAMEN( 3, PATH, 'ZBK' ) - ZGL = LSAMEN( 3, PATH, 'ZGL' ) - ZGK = LSAMEN( 3, PATH, 'ZGK' ) -* -* Report values of parameters. -* - IF( PATH.EQ.' ' ) THEN - GO TO 10 - ELSE IF( NEP ) THEN - WRITE( NOUT, FMT = 9987 ) - ELSE IF( SEP ) THEN - WRITE( NOUT, FMT = 9986 ) - ELSE IF( SVD ) THEN - WRITE( NOUT, FMT = 9985 ) - ELSE IF( ZEV ) THEN - WRITE( NOUT, FMT = 9979 ) - ELSE IF( ZES ) THEN - WRITE( NOUT, FMT = 9978 ) - ELSE IF( ZVX ) THEN - WRITE( NOUT, FMT = 9977 ) - ELSE IF( ZSX ) THEN - WRITE( NOUT, FMT = 9976 ) - ELSE IF( ZGG ) THEN - WRITE( NOUT, FMT = 9975 ) - ELSE IF( ZGS ) THEN - WRITE( NOUT, FMT = 9964 ) - ELSE IF( ZGX ) THEN - WRITE( NOUT, FMT = 9965 ) - ELSE IF( ZGV ) THEN - WRITE( NOUT, FMT = 9963 ) - ELSE IF( ZXV ) THEN - WRITE( NOUT, FMT = 9962 ) - ELSE IF( ZHB ) THEN - WRITE( NOUT, FMT = 9974 ) - ELSE IF( ZBB ) THEN - WRITE( NOUT, FMT = 9967 ) - ELSE IF( GLM ) THEN - WRITE( NOUT, FMT = 9971 ) - ELSE IF( GQR ) THEN - WRITE( NOUT, FMT = 9970 ) - ELSE IF( GSV ) THEN - WRITE( NOUT, FMT = 9969 ) - ELSE IF( CSD ) THEN - WRITE( NOUT, FMT = 9960 ) - ELSE IF( LSE ) THEN - WRITE( NOUT, FMT = 9968 ) - ELSE IF( ZBL ) THEN -* -* ZGEBAL: Balancing -* - CALL ZCHKBL( NIN, NOUT ) - GO TO 380 - ELSE IF( ZBK ) THEN -* -* ZGEBAK: Back transformation -* - CALL ZCHKBK( NIN, NOUT ) - GO TO 380 - ELSE IF( ZGL ) THEN -* -* ZGGBAL: Balancing -* - CALL ZCHKGL( NIN, NOUT ) - GO TO 380 - ELSE IF( ZGK ) THEN -* -* ZGGBAK: Back transformation -* - CALL ZCHKGK( NIN, NOUT ) - GO TO 380 - ELSE IF( LSAMEN( 3, PATH, 'ZEC' ) ) THEN -* -* ZEC: Eigencondition estimation -* - READ( NIN, FMT = * )THRESH - CALL XLAENV( 1, 1 ) - CALL XLAENV( 12, 1 ) - TSTERR = .TRUE. - CALL ZCHKEC( THRESH, TSTERR, NIN, NOUT ) - GO TO 380 - ELSE - WRITE( NOUT, FMT = 9992 )PATH - GO TO 380 - END IF - CALL ILAVER( VERS_MAJOR, VERS_MINOR, VERS_PATCH ) - WRITE( NOUT, FMT = 9972 ) VERS_MAJOR, VERS_MINOR, VERS_PATCH - WRITE( NOUT, FMT = 9984 ) -* -* Read the number of values of M, P, and N. -* - READ( NIN, FMT = * )NN - IF( NN.LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' NN ', NN, 1 - NN = 0 - FATAL = .TRUE. - ELSE IF( NN.GT.MAXIN ) THEN - WRITE( NOUT, FMT = 9988 )' NN ', NN, MAXIN - NN = 0 - FATAL = .TRUE. - END IF -* -* Read the values of M -* - IF( .NOT.( ZGX .OR. ZXV ) ) THEN - READ( NIN, FMT = * )( MVAL( I ), I = 1, NN ) - IF( SVD ) THEN - VNAME = ' M ' - ELSE - VNAME = ' N ' - END IF - DO 20 I = 1, NN - IF( MVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )VNAME, MVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( MVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )VNAME, MVAL( I ), NMAX - FATAL = .TRUE. - END IF - 20 CONTINUE - WRITE( NOUT, FMT = 9983 )'M: ', ( MVAL( I ), I = 1, NN ) - END IF -* -* Read the values of P -* - IF( GLM .OR. GQR .OR. GSV .OR. CSD .OR. LSE ) THEN - READ( NIN, FMT = * )( PVAL( I ), I = 1, NN ) - DO 30 I = 1, NN - IF( PVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' P ', PVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( PVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' P ', PVAL( I ), NMAX - FATAL = .TRUE. - END IF - 30 CONTINUE - WRITE( NOUT, FMT = 9983 )'P: ', ( PVAL( I ), I = 1, NN ) - END IF -* -* Read the values of N -* - IF( SVD .OR. ZBB .OR. GLM .OR. GQR .OR. GSV .OR. CSD .OR. - $ LSE ) THEN - READ( NIN, FMT = * )( NVAL( I ), I = 1, NN ) - DO 40 I = 1, NN - IF( NVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' N ', NVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( NVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' N ', NVAL( I ), NMAX - FATAL = .TRUE. - END IF - 40 CONTINUE - ELSE - DO 50 I = 1, NN - NVAL( I ) = MVAL( I ) - 50 CONTINUE - END IF - IF( .NOT.( ZGX .OR. ZXV ) ) THEN - WRITE( NOUT, FMT = 9983 )'N: ', ( NVAL( I ), I = 1, NN ) - ELSE - WRITE( NOUT, FMT = 9983 )'N: ', NN - END IF -* -* Read the number of values of K, followed by the values of K -* - IF( ZHB .OR. ZBB ) THEN - READ( NIN, FMT = * )NK - READ( NIN, FMT = * )( KVAL( I ), I = 1, NK ) - DO 60 I = 1, NK - IF( KVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' K ', KVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( KVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' K ', KVAL( I ), NMAX - FATAL = .TRUE. - END IF - 60 CONTINUE - WRITE( NOUT, FMT = 9983 )'K: ', ( KVAL( I ), I = 1, NK ) - END IF -* - IF( ZEV .OR. ZES .OR. ZVX .OR. ZSX ) THEN -* -* For the nonsymmetric QR driver routines, only one set of -* parameters is allowed. -* - READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ), - $ INMIN( 1 ), INWIN( 1 ), INIBL(1), ISHFTS(1), IACC22(1) - IF( NBVAL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1 - FATAL = .TRUE. - ELSE IF( NBMIN( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1 - FATAL = .TRUE. - ELSE IF( NXVAL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1 - FATAL = .TRUE. - ELSE IF( INMIN( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( 1 ), 1 - FATAL = .TRUE. - ELSE IF( INWIN( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( 1 ), 1 - FATAL = .TRUE. - ELSE IF( INIBL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( 1 ), 1 - FATAL = .TRUE. - ELSE IF( ISHFTS( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( 1 ), 1 - FATAL = .TRUE. - ELSE IF( IACC22( 1 ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( 1 ), 0 - FATAL = .TRUE. - END IF - CALL XLAENV( 1, NBVAL( 1 ) ) - CALL XLAENV( 2, NBMIN( 1 ) ) - CALL XLAENV( 3, NXVAL( 1 ) ) - CALL XLAENV(12, MAX( 11, INMIN( 1 ) ) ) - CALL XLAENV(13, INWIN( 1 ) ) - CALL XLAENV(14, INIBL( 1 ) ) - CALL XLAENV(15, ISHFTS( 1 ) ) - CALL XLAENV(16, IACC22( 1 ) ) - WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 ) - WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 ) - WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 ) - WRITE( NOUT, FMT = 9983 )'INMIN: ', INMIN( 1 ) - WRITE( NOUT, FMT = 9983 )'INWIN: ', INWIN( 1 ) - WRITE( NOUT, FMT = 9983 )'INIBL: ', INIBL( 1 ) - WRITE( NOUT, FMT = 9983 )'ISHFTS: ', ISHFTS( 1 ) - WRITE( NOUT, FMT = 9983 )'IACC22: ', IACC22( 1 ) -* - ELSE IF( ZGS .OR. ZGX .OR. ZGV .OR. ZXV ) THEN -* -* For the nonsymmetric generalized driver routines, only one set of -* parameters is allowed. -* - READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ), - $ NSVAL( 1 ), MXBVAL( 1 ) - IF( NBVAL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1 - FATAL = .TRUE. - ELSE IF( NBMIN( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1 - FATAL = .TRUE. - ELSE IF( NXVAL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1 - FATAL = .TRUE. - ELSE IF( NSVAL( 1 ).LT.2 ) THEN - WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( 1 ), 2 - FATAL = .TRUE. - ELSE IF( MXBVAL( 1 ).LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( 1 ), 1 - FATAL = .TRUE. - END IF - CALL XLAENV( 1, NBVAL( 1 ) ) - CALL XLAENV( 2, NBMIN( 1 ) ) - CALL XLAENV( 3, NXVAL( 1 ) ) - CALL XLAENV( 4, NSVAL( 1 ) ) - CALL XLAENV( 8, MXBVAL( 1 ) ) - WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 ) - WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 ) - WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 ) - WRITE( NOUT, FMT = 9983 )'NS: ', NSVAL( 1 ) - WRITE( NOUT, FMT = 9983 )'MAXB: ', MXBVAL( 1 ) - ELSE IF( .NOT.ZHB .AND. .NOT.GLM .AND. .NOT.GQR .AND. .NOT. - $ GSV .AND. .NOT.CSD .AND. .NOT.LSE ) THEN -* -* For the other paths, the number of parameters can be varied -* from the input file. Read the number of parameter values. -* - READ( NIN, FMT = * )NPARMS - IF( NPARMS.LT.1 ) THEN - WRITE( NOUT, FMT = 9989 )'NPARMS', NPARMS, 1 - NPARMS = 0 - FATAL = .TRUE. - ELSE IF( NPARMS.GT.MAXIN ) THEN - WRITE( NOUT, FMT = 9988 )'NPARMS', NPARMS, MAXIN - NPARMS = 0 - FATAL = .TRUE. - END IF -* -* Read the values of NB -* - IF( .NOT.ZBB ) THEN - READ( NIN, FMT = * )( NBVAL( I ), I = 1, NPARMS ) - DO 70 I = 1, NPARMS - IF( NBVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( NBVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' NB ', NBVAL( I ), NMAX - FATAL = .TRUE. - END IF - 70 CONTINUE - WRITE( NOUT, FMT = 9983 )'NB: ', - $ ( NBVAL( I ), I = 1, NPARMS ) - END IF -* -* Read the values of NBMIN -* - IF( NEP .OR. SEP .OR. SVD .OR. ZGG ) THEN - READ( NIN, FMT = * )( NBMIN( I ), I = 1, NPARMS ) - DO 80 I = 1, NPARMS - IF( NBMIN( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( I ), 0 - FATAL = .TRUE. - ELSE IF( NBMIN( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )'NBMIN ', NBMIN( I ), NMAX - FATAL = .TRUE. - END IF - 80 CONTINUE - WRITE( NOUT, FMT = 9983 )'NBMIN:', - $ ( NBMIN( I ), I = 1, NPARMS ) - ELSE - DO 90 I = 1, NPARMS - NBMIN( I ) = 1 - 90 CONTINUE - END IF -* -* Read the values of NX -* - IF( NEP .OR. SEP .OR. SVD ) THEN - READ( NIN, FMT = * )( NXVAL( I ), I = 1, NPARMS ) - DO 100 I = 1, NPARMS - IF( NXVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( NXVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' NX ', NXVAL( I ), NMAX - FATAL = .TRUE. - END IF - 100 CONTINUE - WRITE( NOUT, FMT = 9983 )'NX: ', - $ ( NXVAL( I ), I = 1, NPARMS ) - ELSE - DO 110 I = 1, NPARMS - NXVAL( I ) = 1 - 110 CONTINUE - END IF -* -* Read the values of NSHIFT (if ZGG) or NRHS (if SVD -* or ZBB). -* - IF( SVD .OR. ZBB .OR. ZGG ) THEN - READ( NIN, FMT = * )( NSVAL( I ), I = 1, NPARMS ) - DO 120 I = 1, NPARMS - IF( NSVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( NSVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' NS ', NSVAL( I ), NMAX - FATAL = .TRUE. - END IF - 120 CONTINUE - WRITE( NOUT, FMT = 9983 )'NS: ', - $ ( NSVAL( I ), I = 1, NPARMS ) - ELSE - DO 130 I = 1, NPARMS - NSVAL( I ) = 1 - 130 CONTINUE - END IF -* -* Read the values for MAXB. -* - IF( ZGG ) THEN - READ( NIN, FMT = * )( MXBVAL( I ), I = 1, NPARMS ) - DO 140 I = 1, NPARMS - IF( MXBVAL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( I ), 0 - FATAL = .TRUE. - ELSE IF( MXBVAL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )' MAXB ', MXBVAL( I ), NMAX - FATAL = .TRUE. - END IF - 140 CONTINUE - WRITE( NOUT, FMT = 9983 )'MAXB: ', - $ ( MXBVAL( I ), I = 1, NPARMS ) - ELSE - DO 150 I = 1, NPARMS - MXBVAL( I ) = 1 - 150 CONTINUE - END IF -* -* Read the values for INMIN. -* - IF( NEP ) THEN - READ( NIN, FMT = * )( INMIN( I ), I = 1, NPARMS ) - DO 540 I = 1, NPARMS - IF( INMIN( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( I ), 0 - FATAL = .TRUE. - END IF - 540 CONTINUE - WRITE( NOUT, FMT = 9983 )'INMIN: ', - $ ( INMIN( I ), I = 1, NPARMS ) - ELSE - DO 550 I = 1, NPARMS - INMIN( I ) = 1 - 550 CONTINUE - END IF -* -* Read the values for INWIN. -* - IF( NEP ) THEN - READ( NIN, FMT = * )( INWIN( I ), I = 1, NPARMS ) - DO 560 I = 1, NPARMS - IF( INWIN( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( I ), 0 - FATAL = .TRUE. - END IF - 560 CONTINUE - WRITE( NOUT, FMT = 9983 )'INWIN: ', - $ ( INWIN( I ), I = 1, NPARMS ) - ELSE - DO 570 I = 1, NPARMS - INWIN( I ) = 1 - 570 CONTINUE - END IF -* -* Read the values for INIBL. -* - IF( NEP ) THEN - READ( NIN, FMT = * )( INIBL( I ), I = 1, NPARMS ) - DO 580 I = 1, NPARMS - IF( INIBL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( I ), 0 - FATAL = .TRUE. - END IF - 580 CONTINUE - WRITE( NOUT, FMT = 9983 )'INIBL: ', - $ ( INIBL( I ), I = 1, NPARMS ) - ELSE - DO 590 I = 1, NPARMS - INIBL( I ) = 1 - 590 CONTINUE - END IF -* -* Read the values for ISHFTS. -* - IF( NEP ) THEN - READ( NIN, FMT = * )( ISHFTS( I ), I = 1, NPARMS ) - DO 600 I = 1, NPARMS - IF( ISHFTS( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( I ), 0 - FATAL = .TRUE. - END IF - 600 CONTINUE - WRITE( NOUT, FMT = 9983 )'ISHFTS: ', - $ ( ISHFTS( I ), I = 1, NPARMS ) - ELSE - DO 610 I = 1, NPARMS - ISHFTS( I ) = 1 - 610 CONTINUE - END IF -* -* Read the values for IACC22. -* - IF( NEP .OR. ZGG ) THEN - READ( NIN, FMT = * )( IACC22( I ), I = 1, NPARMS ) - DO 620 I = 1, NPARMS - IF( IACC22( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( I ), 0 - FATAL = .TRUE. - END IF - 620 CONTINUE - WRITE( NOUT, FMT = 9983 )'IACC22: ', - $ ( IACC22( I ), I = 1, NPARMS ) - ELSE - DO 630 I = 1, NPARMS - IACC22( I ) = 1 - 630 CONTINUE - END IF -* -* Read the values for NBCOL. -* - IF( ZGG ) THEN - READ( NIN, FMT = * )( NBCOL( I ), I = 1, NPARMS ) - DO 160 I = 1, NPARMS - IF( NBCOL( I ).LT.0 ) THEN - WRITE( NOUT, FMT = 9989 )'NBCOL ', NBCOL( I ), 0 - FATAL = .TRUE. - ELSE IF( NBCOL( I ).GT.NMAX ) THEN - WRITE( NOUT, FMT = 9988 )'NBCOL ', NBCOL( I ), NMAX - FATAL = .TRUE. - END IF - 160 CONTINUE - WRITE( NOUT, FMT = 9983 )'NBCOL:', - $ ( NBCOL( I ), I = 1, NPARMS ) - ELSE - DO 170 I = 1, NPARMS - NBCOL( I ) = 1 - 170 CONTINUE - END IF - END IF -* -* Calculate and print the machine dependent constants. -* - WRITE( NOUT, FMT = * ) - EPS = DLAMCH( 'Underflow threshold' ) - WRITE( NOUT, FMT = 9981 )'underflow', EPS - EPS = DLAMCH( 'Overflow threshold' ) - WRITE( NOUT, FMT = 9981 )'overflow ', EPS - EPS = DLAMCH( 'Epsilon' ) - WRITE( NOUT, FMT = 9981 )'precision', EPS -* -* Read the threshold value for the test ratios. -* - READ( NIN, FMT = * )THRESH - WRITE( NOUT, FMT = 9982 )THRESH - IF( SEP .OR. SVD .OR. ZGG ) THEN -* -* Read the flag that indicates whether to test LAPACK routines. -* - READ( NIN, FMT = * )TSTCHK -* -* Read the flag that indicates whether to test driver routines. -* - READ( NIN, FMT = * )TSTDRV - END IF -* -* Read the flag that indicates whether to test the error exits. -* - READ( NIN, FMT = * )TSTERR -* -* Read the code describing how to set the random number seed. -* - READ( NIN, FMT = * )NEWSD -* -* If NEWSD = 2, read another line with 4 integers for the seed. -* - IF( NEWSD.EQ.2 ) - $ READ( NIN, FMT = * )( IOLDSD( I ), I = 1, 4 ) -* - DO 180 I = 1, 4 - ISEED( I ) = IOLDSD( I ) - 180 CONTINUE -* - IF( FATAL ) THEN - WRITE( NOUT, FMT = 9999 ) - STOP - END IF -* -* Read the input lines indicating the test path and its parameters. -* The first three characters indicate the test path, and the number -* of test matrix types must be the first nonblank item in columns -* 4-80. -* - 190 CONTINUE -* - IF( .NOT.( ZGX .OR. ZXV ) ) THEN -* - 200 CONTINUE - READ( NIN, FMT = '(A80)', END = 380 )LINE - C3 = LINE( 1: 3 ) - LENP = LEN( LINE ) - I = 3 - ITMP = 0 - I1 = 0 - 210 CONTINUE - I = I + 1 - IF( I.GT.LENP ) THEN - IF( I1.GT.0 ) THEN - GO TO 240 - ELSE - NTYPES = MAXT - GO TO 240 - END IF - END IF - IF( LINE( I: I ).NE.' ' .AND. LINE( I: I ).NE.',' ) THEN - I1 = I - C1 = LINE( I1: I1 ) -* -* Check that a valid integer was read -* - DO 220 K = 1, 10 - IF( C1.EQ.INTSTR( K: K ) ) THEN - IC = K - 1 - GO TO 230 - END IF - 220 CONTINUE - WRITE( NOUT, FMT = 9991 )I, LINE - GO TO 200 - 230 CONTINUE - ITMP = 10*ITMP + IC - GO TO 210 - ELSE IF( I1.GT.0 ) THEN - GO TO 240 - ELSE - GO TO 210 - END IF - 240 CONTINUE - NTYPES = ITMP -* -* Skip the tests if NTYPES is <= 0. -* - IF( .NOT.( ZEV .OR. ZES .OR. ZVX .OR. ZSX .OR. ZGV .OR. - $ ZGS ) .AND. NTYPES.LE.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - GO TO 200 - END IF -* - ELSE - IF( ZGX ) - $ C3 = 'ZGX' - IF( ZXV ) - $ C3 = 'ZXV' - END IF -* -* Reset the random number seed. -* - IF( NEWSD.EQ.0 ) THEN - DO 250 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 250 CONTINUE - END IF -* - IF( LSAMEN( 3, C3, 'ZHS' ) .OR. LSAMEN( 3, C3, 'NEP' ) ) THEN -* -* ------------------------------------- -* NEP: Nonsymmetric Eigenvalue Problem -* ------------------------------------- -* Vary the parameters -* NB = block size -* NBMIN = minimum block size -* NX = crossover point -* NS = number of shifts -* MAXB = minimum submatrix size -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV( 1, 1 ) - IF( TSTERR ) - $ CALL ZERRHS( 'ZHSEQR', NOUT ) - DO 270 I = 1, NPARMS - CALL XLAENV( 1, NBVAL( I ) ) - CALL XLAENV( 2, NBMIN( I ) ) - CALL XLAENV( 3, NXVAL( I ) ) - CALL XLAENV(12, MAX( 11, INMIN( I ) ) ) - CALL XLAENV(13, INWIN( I ) ) - CALL XLAENV(14, INIBL( I ) ) - CALL XLAENV(15, ISHFTS( I ) ) - CALL XLAENV(16, IACC22( I ) ) -* - IF( NEWSD.EQ.0 ) THEN - DO 260 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 260 CONTINUE - END IF - WRITE( NOUT, FMT = 9961 )C3, NBVAL( I ), NBMIN( I ), - $ NXVAL( I ), MAX( 11, INMIN(I)), - $ INWIN( I ), INIBL( I ), ISHFTS( I ), IACC22( I ) - CALL ZCHKHS( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), A( 1, 5 ), NMAX, A( 1, 6 ), - $ A( 1, 7 ), DC( 1, 1 ), DC( 1, 2 ), A( 1, 8 ), - $ A( 1, 9 ), A( 1, 10 ), A( 1, 11 ), A( 1, 12 ), - $ DC( 1, 3 ), WORK, LWORK, RWORK, IWORK, LOGWRK, - $ RESULT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZCHKHS', INFO - 270 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'ZST' ) .OR. LSAMEN( 3, C3, 'SEP' ) - $ .OR. LSAMEN( 3, C3, 'SE2' ) ) THEN -* -* ---------------------------------- -* SEP: Symmetric Eigenvalue Problem -* ---------------------------------- -* Vary the parameters -* NB = block size -* NBMIN = minimum block size -* NX = crossover point -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV( 1, 1 ) - CALL XLAENV( 9, 25 ) - IF( TSTERR ) - $ CALL ZERRST( 'ZST', NOUT ) - DO 290 I = 1, NPARMS - CALL XLAENV( 1, NBVAL( I ) ) - CALL XLAENV( 2, NBMIN( I ) ) - CALL XLAENV( 3, NXVAL( I ) ) -* - IF( NEWSD.EQ.0 ) THEN - DO 280 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 280 CONTINUE - END IF - WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ), - $ NXVAL( I ) - IF( TSTCHK ) THEN - IF( LSAMEN( 3, C3, 'SE2' ) ) THEN - CALL ZCHKST2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, - $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), - $ DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ), - $ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), - $ DR( 1, 7 ), DR( 1, 8 ), DR( 1, 9 ), - $ DR( 1, 10 ), DR( 1, 11 ), A( 1, 3 ), NMAX, - $ A( 1, 4 ), A( 1, 5 ), DC( 1, 1 ), A( 1, 6 ), - $ WORK, LWORK, RWORK, LWORK, IWORK, LIWORK, - $ RESULT, INFO ) - ELSE - CALL ZCHKST( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, - $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), - $ DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ), - $ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), - $ DR( 1, 7 ), DR( 1, 8 ), DR( 1, 9 ), - $ DR( 1, 10 ), DR( 1, 11 ), A( 1, 3 ), NMAX, - $ A( 1, 4 ), A( 1, 5 ), DC( 1, 1 ), A( 1, 6 ), - $ WORK, LWORK, RWORK, LWORK, IWORK, LIWORK, - $ RESULT, INFO ) - ENDIF - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZCHKST', INFO - END IF - IF( TSTDRV ) THEN - IF( LSAMEN( 3, C3, 'SE2' ) ) THEN - CALL ZDRVST2STG( NN, NVAL, 18, DOTYPE, ISEED, THRESH, - $ NOUT, A( 1, 1 ), NMAX, DR( 1, 3 ), DR( 1, 4 ), - $ DR( 1, 5 ), DR( 1, 8 ), DR( 1, 9 ), - $ DR( 1, 10 ), A( 1, 2 ), NMAX, A( 1, 3 ), - $ DC( 1, 1 ), A( 1, 4 ), WORK, LWORK, RWORK, - $ LWORK, IWORK, LIWORK, RESULT, INFO ) - ELSE - CALL ZDRVST( NN, NVAL, 18, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, DR( 1, 3 ), DR( 1, 4 ), - $ DR( 1, 5 ), DR( 1, 8 ), DR( 1, 9 ), - $ DR( 1, 10 ), A( 1, 2 ), NMAX, A( 1, 3 ), - $ DC( 1, 1 ), A( 1, 4 ), WORK, LWORK, RWORK, - $ LWORK, IWORK, LIWORK, RESULT, INFO ) - ENDIF - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZDRVST', INFO - END IF - 290 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'ZSG' ) ) THEN -* -* ---------------------------------------------- -* ZSG: Hermitian Generalized Eigenvalue Problem -* ---------------------------------------------- -* Vary the parameters -* NB = block size -* NBMIN = minimum block size -* NX = crossover point -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV( 9, 25 ) - DO 310 I = 1, NPARMS - CALL XLAENV( 1, NBVAL( I ) ) - CALL XLAENV( 2, NBMIN( I ) ) - CALL XLAENV( 3, NXVAL( I ) ) -* - IF( NEWSD.EQ.0 ) THEN - DO 300 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 300 CONTINUE - END IF - WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ), - $ NXVAL( I ) - IF( TSTCHK ) THEN -* CALL ZDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, -* $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, -* $ DR( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ), -* $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK, -* $ LWORK, RWORK, LWORK, IWORK, LIWORK, RESULT, -* $ INFO ) - CALL ZDRVSG2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, - $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, - $ DR( 1, 3 ), DR( 1, 4 ), A( 1, 3 ), NMAX, - $ A( 1, 4 ), A( 1, 5 ), A( 1, 6 ), - $ A( 1, 7 ), WORK, LWORK, RWORK, LWORK, - $ IWORK, LIWORK, RESULT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZDRVSG', INFO - END IF - 310 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'ZBD' ) .OR. LSAMEN( 3, C3, 'SVD' ) ) THEN -* -* ---------------------------------- -* SVD: Singular Value Decomposition -* ---------------------------------- -* Vary the parameters -* NB = block size -* NBMIN = minimum block size -* NX = crossover point -* NRHS = number of right hand sides -* - MAXTYP = 16 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV( 9, 25 ) -* -* Test the error exits -* - CALL XLAENV( 1, 1 ) - IF( TSTERR .AND. TSTCHK ) - $ CALL ZERRBD( 'ZBD', NOUT ) - IF( TSTERR .AND. TSTDRV ) - $ CALL ZERRED( 'ZBD', NOUT ) -* - DO 330 I = 1, NPARMS - NRHS = NSVAL( I ) - CALL XLAENV( 1, NBVAL( I ) ) - CALL XLAENV( 2, NBMIN( I ) ) - CALL XLAENV( 3, NXVAL( I ) ) - IF( NEWSD.EQ.0 ) THEN - DO 320 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 320 CONTINUE - END IF - WRITE( NOUT, FMT = 9995 )C3, NBVAL( I ), NBMIN( I ), - $ NXVAL( I ), NRHS - IF( TSTCHK ) THEN - CALL ZCHKBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, NRHS, ISEED, - $ THRESH, A( 1, 1 ), NMAX, DR( 1, 1 ), - $ DR( 1, 2 ), DR( 1, 3 ), DR( 1, 4 ), - $ A( 1, 2 ), NMAX, A( 1, 3 ), A( 1, 4 ), - $ A( 1, 5 ), NMAX, A( 1, 6 ), NMAX, A( 1, 7 ), - $ A( 1, 8 ), WORK, LWORK, RWORK, NOUT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZCHKBD', INFO - END IF - IF( TSTDRV ) - $ CALL ZDRVBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, ISEED, - $ THRESH, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, - $ A( 1, 3 ), NMAX, A( 1, 4 ), A( 1, 5 ), - $ A( 1, 6 ), DR( 1, 1 ), DR( 1, 2 ), - $ DR( 1, 3 ), WORK, LWORK, RWORK, IWORK, NOUT, - $ INFO ) - 330 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'ZEV' ) ) THEN -* -* -------------------------------------------- -* ZEV: Nonsymmetric Eigenvalue Problem Driver -* ZGEEV (eigenvalues and eigenvectors) -* -------------------------------------------- -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LE.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL ZERRED( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL ZDRVEV( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), DC( 1, 1 ), - $ DC( 1, 2 ), A( 1, 3 ), NMAX, A( 1, 4 ), NMAX, - $ A( 1, 5 ), NMAX, RESULT, WORK, LWORK, RWORK, - $ IWORK, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZGEEV', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'ZES' ) ) THEN -* -* -------------------------------------------- -* ZES: Nonsymmetric Eigenvalue Problem Driver -* ZGEES (Schur form) -* -------------------------------------------- -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LE.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL ZERRED( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL ZDRVES( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ DC( 1, 1 ), DC( 1, 2 ), A( 1, 4 ), NMAX, - $ RESULT, WORK, LWORK, RWORK, IWORK, LOGWRK, - $ INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZGEES', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'ZVX' ) ) THEN -* -* -------------------------------------------------------------- -* ZVX: Nonsymmetric Eigenvalue Problem Expert Driver -* ZGEEVX (eigenvalues, eigenvectors and condition numbers) -* -------------------------------------------------------------- -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LT.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL ZERRED( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL ZDRVVX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN, - $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), DC( 1, 1 ), - $ DC( 1, 2 ), A( 1, 3 ), NMAX, A( 1, 4 ), NMAX, - $ A( 1, 5 ), NMAX, DR( 1, 1 ), DR( 1, 2 ), - $ DR( 1, 3 ), DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), - $ DR( 1, 7 ), DR( 1, 8 ), RESULT, WORK, LWORK, - $ RWORK, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZGEEVX', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'ZSX' ) ) THEN -* -* --------------------------------------------------- -* ZSX: Nonsymmetric Eigenvalue Problem Expert Driver -* ZGEESX (Schur form and condition numbers) -* --------------------------------------------------- -* - MAXTYP = 21 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LT.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL ZERRED( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL ZDRVSX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN, - $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ DC( 1, 1 ), DC( 1, 2 ), DC( 1, 3 ), A( 1, 4 ), - $ NMAX, A( 1, 5 ), RESULT, WORK, LWORK, RWORK, - $ LOGWRK, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZGEESX', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'ZGG' ) ) THEN -* -* ------------------------------------------------- -* ZGG: Generalized Nonsymmetric Eigenvalue Problem -* ------------------------------------------------- -* Vary the parameters -* NB = block size -* NBMIN = minimum block size -* NS = number of shifts -* MAXB = minimum submatrix size -* IACC22: structured matrix multiply -* NBCOL = minimum column dimension for blocks -* - MAXTYP = 26 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV(1,1) - IF( TSTCHK .AND. TSTERR ) - $ CALL ZERRGG( C3, NOUT ) - DO 350 I = 1, NPARMS - CALL XLAENV( 1, NBVAL( I ) ) - CALL XLAENV( 2, NBMIN( I ) ) - CALL XLAENV( 4, NSVAL( I ) ) - CALL XLAENV( 8, MXBVAL( I ) ) - CALL XLAENV( 16, IACC22( I ) ) - CALL XLAENV( 5, NBCOL( I ) ) -* - IF( NEWSD.EQ.0 ) THEN - DO 340 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 340 CONTINUE - END IF - WRITE( NOUT, FMT = 9996 )C3, NBVAL( I ), NBMIN( I ), - $ NSVAL( I ), MXBVAL( I ), IACC22( I ), NBCOL( I ) - TSTDIF = .FALSE. - THRSHN = 10.D0 - IF( TSTCHK ) THEN - CALL ZCHKGG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, - $ TSTDIF, THRSHN, NOUT, A( 1, 1 ), NMAX, - $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), - $ A( 1, 6 ), A( 1, 7 ), A( 1, 8 ), A( 1, 9 ), - $ NMAX, A( 1, 10 ), A( 1, 11 ), A( 1, 12 ), - $ DC( 1, 1 ), DC( 1, 2 ), DC( 1, 3 ), - $ DC( 1, 4 ), A( 1, 13 ), A( 1, 14 ), WORK, - $ LWORK, RWORK, LOGWRK, RESULT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZCHKGG', INFO - END IF - 350 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'ZGS' ) ) THEN -* -* ------------------------------------------------- -* ZGS: Generalized Nonsymmetric Eigenvalue Problem -* ZGGES (Schur form) -* ------------------------------------------------- -* - MAXTYP = 26 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LE.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL ZERRGG( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL ZDRGES( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), - $ DC( 1, 1 ), DC( 1, 2 ), WORK, LWORK, RWORK, - $ RESULT, LOGWRK, INFO ) -* - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZDRGES', INFO -* -* Blocked version -* - CALL ZDRGES3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), - $ DC( 1, 1 ), DC( 1, 2 ), WORK, LWORK, RWORK, - $ RESULT, LOGWRK, INFO ) -* - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZDRGES3', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( ZGX ) THEN -* -* ------------------------------------------------- -* ZGX Generalized Nonsymmetric Eigenvalue Problem -* ZGGESX (Schur form and condition numbers) -* ------------------------------------------------- -* - MAXTYP = 5 - NTYPES = MAXTYP - IF( NN.LT.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL ZERRGG( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL XLAENV( 5, 2 ) - CALL ZDRGSX( NN, NCMAX, THRESH, NIN, NOUT, A( 1, 1 ), NMAX, - $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), - $ A( 1, 6 ), DC( 1, 1 ), DC( 1, 2 ), C, - $ NCMAX*NCMAX, S, WORK, LWORK, RWORK, IWORK, - $ LIWORK, LOGWRK, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZDRGSX', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'ZGV' ) ) THEN -* -* ------------------------------------------------- -* ZGV: Generalized Nonsymmetric Eigenvalue Problem -* ZGGEV (Eigenvalue/vector form) -* ------------------------------------------------- -* - MAXTYP = 26 - NTYPES = MIN( MAXTYP, NTYPES ) - IF( NTYPES.LE.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL ZERRGG( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL ZDRGEV( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), - $ A( 1, 9 ), NMAX, DC( 1, 1 ), DC( 1, 2 ), - $ DC( 1, 3 ), DC( 1, 4 ), WORK, LWORK, RWORK, - $ RESULT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZDRGEV', INFO -* -* Blocked version -* - CALL XLAENV(16,2) - CALL ZDRGEV3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, - $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), - $ A( 1, 9 ), NMAX, DC( 1, 1 ), DC( 1, 2 ), - $ DC( 1, 3 ), DC( 1, 4 ), WORK, LWORK, RWORK, - $ RESULT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZDRGEV3', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( ZXV ) THEN -* -* ------------------------------------------------- -* ZXV: Generalized Nonsymmetric Eigenvalue Problem -* ZGGEVX (eigenvalue/vector with condition numbers) -* ------------------------------------------------- -* - MAXTYP = 2 - NTYPES = MAXTYP - IF( NN.LT.0 ) THEN - WRITE( NOUT, FMT = 9990 )C3 - ELSE - IF( TSTERR ) - $ CALL ZERRGG( C3, NOUT ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - CALL ZDRGVX( NN, THRESH, NIN, NOUT, A( 1, 1 ), NMAX, - $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), DC( 1, 1 ), - $ DC( 1, 2 ), A( 1, 5 ), A( 1, 6 ), IWORK( 1 ), - $ IWORK( 2 ), DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ), - $ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), WORK, - $ LWORK, RWORK, IWORK( 3 ), LIWORK-2, RESULT, - $ LOGWRK, INFO ) -* - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZDRGVX', INFO - END IF - WRITE( NOUT, FMT = 9973 ) - GO TO 10 -* - ELSE IF( LSAMEN( 3, C3, 'ZHB' ) ) THEN -* -* ------------------------------ -* ZHB: Hermitian Band Reduction -* ------------------------------ -* - MAXTYP = 15 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - IF( TSTERR ) - $ CALL ZERRST( 'ZHB', NOUT ) -* CALL ZCHKHB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH, -* $ NOUT, A( 1, 1 ), NMAX, DR( 1, 1 ), DR( 1, 2 ), -* $ A( 1, 2 ), NMAX, WORK, LWORK, RWORK, RESULT, -* $ INFO ) - CALL ZCHKHB2STG( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, - $ THRESH, NOUT, A( 1, 1 ), NMAX, DR( 1, 1 ), - $ DR( 1, 2 ), DR( 1, 3 ), DR( 1, 4 ), DR( 1, 5 ), - $ A( 1, 2 ), NMAX, WORK, LWORK, RWORK, RESULT, - $ INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZCHKHB', INFO -* - ELSE IF( LSAMEN( 3, C3, 'ZBB' ) ) THEN -* -* ------------------------------ -* ZBB: General Band Reduction -* ------------------------------ -* - MAXTYP = 15 - NTYPES = MIN( MAXTYP, NTYPES ) - CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) - DO 370 I = 1, NPARMS - NRHS = NSVAL( I ) -* - IF( NEWSD.EQ.0 ) THEN - DO 360 K = 1, 4 - ISEED( K ) = IOLDSD( K ) - 360 CONTINUE - END IF - WRITE( NOUT, FMT = 9966 )C3, NRHS - CALL ZCHKBB( NN, MVAL, NVAL, NK, KVAL, MAXTYP, DOTYPE, NRHS, - $ ISEED, THRESH, NOUT, A( 1, 1 ), NMAX, - $ A( 1, 2 ), 2*NMAX, DR( 1, 1 ), DR( 1, 2 ), - $ A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, A( 1, 6 ), - $ NMAX, A( 1, 7 ), WORK, LWORK, RWORK, RESULT, - $ INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZCHKBB', INFO - 370 CONTINUE -* - ELSE IF( LSAMEN( 3, C3, 'GLM' ) ) THEN -* -* ----------------------------------------- -* GLM: Generalized Linear Regression Model -* ----------------------------------------- -* - CALL XLAENV( 1, 1 ) - IF( TSTERR ) - $ CALL ZERRGG( 'GLM', NOUT ) - CALL ZCKGLM( NN, NVAL, MVAL, PVAL, NTYPES, ISEED, THRESH, NMAX, - $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X, - $ WORK, DR( 1, 1 ), NIN, NOUT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZCKGLM', INFO -* - ELSE IF( LSAMEN( 3, C3, 'GQR' ) ) THEN -* -* ------------------------------------------ -* GQR: Generalized QR and RQ factorizations -* ------------------------------------------ -* - CALL XLAENV( 1, 1 ) - IF( TSTERR ) - $ CALL ZERRGG( 'GQR', NOUT ) - CALL ZCKGQR( NN, MVAL, NN, PVAL, NN, NVAL, NTYPES, ISEED, - $ THRESH, NMAX, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), - $ A( 1, 4 ), TAUA, B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), - $ B( 1, 4 ), B( 1, 5 ), TAUB, WORK, DR( 1, 1 ), NIN, - $ NOUT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZCKGQR', INFO -* - ELSE IF( LSAMEN( 3, C3, 'GSV' ) ) THEN -* -* ---------------------------------------------- -* GSV: Generalized Singular Value Decomposition -* ---------------------------------------------- -* - CALL XLAENV(1,1) - IF( TSTERR ) - $ CALL ZERRGG( 'GSV', NOUT ) - CALL ZCKGSV( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, - $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), - $ A( 1, 3 ), B( 1, 3 ), A( 1, 4 ), ALPHA, BETA, - $ B( 1, 4 ), IWORK, WORK, DR( 1, 1 ), NIN, NOUT, - $ INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZCKGSV', INFO -* - ELSE IF( LSAMEN( 3, C3, 'CSD' ) ) THEN -* -* ---------------------------------------------- -* CSD: CS Decomposition -* ---------------------------------------------- -* - CALL XLAENV(1,1) - IF( TSTERR ) - $ CALL ZERRGG( 'CSD', NOUT ) - CALL ZCKCSD( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, - $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), - $ A( 1, 5 ), A( 1, 6 ), RWORK, IWORK, WORK, - $ DR( 1, 1 ), NIN, NOUT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZCKCSD', INFO -* - ELSE IF( LSAMEN( 3, C3, 'LSE' ) ) THEN -* -* -------------------------------------- -* LSE: Constrained Linear Least Squares -* -------------------------------------- -* - CALL XLAENV( 1, 1 ) - IF( TSTERR ) - $ CALL ZERRGG( 'LSE', NOUT ) - CALL ZCKLSE( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, - $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X, - $ WORK, DR( 1, 1 ), NIN, NOUT, INFO ) - IF( INFO.NE.0 ) - $ WRITE( NOUT, FMT = 9980 )'ZCKLSE', INFO - ELSE - WRITE( NOUT, FMT = * ) - WRITE( NOUT, FMT = * ) - WRITE( NOUT, FMT = 9992 )C3 - END IF - IF( .NOT.( ZGX .OR. ZXV ) ) - $ GO TO 190 - 380 CONTINUE - WRITE( NOUT, FMT = 9994 ) - S2 = DSECND( ) - WRITE( NOUT, FMT = 9993 )S2 - S1 -* - 9999 FORMAT( / ' Execution not attempted due to input errors' ) - 9997 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4 ) - 9996 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NS =', I4, - $ ', MAXB =', I4, ', IACC22 =', I4, ', NBCOL =', I4 ) - 9995 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4, - $ ', NRHS =', I4 ) - 9994 FORMAT( / / ' End of tests' ) - 9993 FORMAT( ' Total time used = ', F12.2, ' seconds', / ) - 9992 FORMAT( 1X, A3, ': Unrecognized path name' ) - 9991 FORMAT( / / ' *** Invalid integer value in column ', I2, - $ ' of input', ' line:', / A79 ) - 9990 FORMAT( / / 1X, A3, ' routines were not tested' ) - 9989 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be >=', - $ I6 ) - 9988 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be <=', - $ I6 ) - 9987 FORMAT( ' Tests of the Nonsymmetric Eigenvalue Problem routines' ) - 9986 FORMAT( ' Tests of the Hermitian Eigenvalue Problem routines' ) - 9985 FORMAT( ' Tests of the Singular Value Decomposition routines' ) - 9984 FORMAT( / ' The following parameter values will be used:' ) - 9983 FORMAT( 4X, A, 10I6, / 10X, 10I6 ) - 9982 FORMAT( / ' Routines pass computational tests if test ratio is ', - $ 'less than', F8.2, / ) - 9981 FORMAT( ' Relative machine ', A, ' is taken to be', D16.6 ) - 9980 FORMAT( ' *** Error code from ', A, ' = ', I4 ) - 9979 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver', - $ / ' ZGEEV (eigenvalues and eigevectors)' ) - 9978 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver', - $ / ' ZGEES (Schur form)' ) - 9977 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert', - $ ' Driver', / ' ZGEEVX (eigenvalues, eigenvectors and', - $ ' condition numbers)' ) - 9976 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert', - $ ' Driver', / ' ZGEESX (Schur form and condition', - $ ' numbers)' ) - 9975 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', - $ 'Problem routines' ) - 9974 FORMAT( ' Tests of ZHBTRD', / ' (reduction of a Hermitian band ', - $ 'matrix to real tridiagonal form)' ) - 9973 FORMAT( / 1X, 71( '-' ) ) - 9972 FORMAT( / ' LAPACK VERSION ', I1, '.', I1, '.', I1 ) - 9971 FORMAT( / ' Tests of the Generalized Linear Regression Model ', - $ 'routines' ) - 9970 FORMAT( / ' Tests of the Generalized QR and RQ routines' ) - 9969 FORMAT( / ' Tests of the Generalized Singular Value', - $ ' Decomposition routines' ) - 9968 FORMAT( / ' Tests of the Linear Least Squares routines' ) - 9967 FORMAT( ' Tests of ZGBBRD', / ' (reduction of a general band ', - $ 'matrix to real bidiagonal form)' ) - 9966 FORMAT( / / 1X, A3, ': NRHS =', I4 ) - 9965 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', - $ 'Problem Expert Driver ZGGESX' ) - 9964 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', - $ 'Problem Driver ZGGES' ) - 9963 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', - $ 'Problem Driver ZGGEV' ) - 9962 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', - $ 'Problem Expert Driver ZGGEVX' ) - 9961 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4, - $ ', INMIN=', I4, - $ ', INWIN =', I4, ', INIBL =', I4, ', ISHFTS =', I4, - $ ', IACC22 =', I4) - 9960 FORMAT( / ' Tests of the CS Decomposition routines' ) -* -* End of ZCHKEE -* - END