Fix issues related to ?GEDMD (Reference-LAPACK PR 959)
This commit is contained in:
parent
05dde8ef04
commit
201f22f49a
|
@ -1,22 +1,526 @@
|
||||||
|
!> \brief \b CGEDMD computes the Dynamic Mode Decomposition (DMD) for a pair of data snapshot matrices.
|
||||||
|
!
|
||||||
|
! =========== DOCUMENTATION ===========
|
||||||
|
!
|
||||||
|
! Definition:
|
||||||
|
! ===========
|
||||||
|
!
|
||||||
|
! SUBROUTINE CGEDMD( JOBS, JOBZ, JOBR, JOBF, WHTSVD, &
|
||||||
|
! M, N, X, LDX, Y, LDY, NRNK, TOL, &
|
||||||
|
! K, EIGS, Z, LDZ, RES, B, LDB, &
|
||||||
|
! W, LDW, S, LDS, ZWORK, LZWORK, &
|
||||||
|
! RWORK, LRWORK, IWORK, LIWORK, INFO )
|
||||||
|
!.....
|
||||||
|
! USE iso_fortran_env
|
||||||
|
! IMPLICIT NONE
|
||||||
|
! INTEGER, PARAMETER :: WP = real32
|
||||||
|
!
|
||||||
|
!.....
|
||||||
|
! Scalar arguments
|
||||||
|
! CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBF
|
||||||
|
! INTEGER, INTENT(IN) :: WHTSVD, M, N, LDX, LDY, &
|
||||||
|
! NRNK, LDZ, LDB, LDW, LDS, &
|
||||||
|
! LIWORK, LRWORK, LZWORK
|
||||||
|
! INTEGER, INTENT(OUT) :: K, INFO
|
||||||
|
! REAL(KIND=WP), INTENT(IN) :: TOL
|
||||||
|
! Array arguments
|
||||||
|
! COMPLEX(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*)
|
||||||
|
! COMPLEX(KIND=WP), INTENT(OUT) :: Z(LDZ,*), B(LDB,*), &
|
||||||
|
! W(LDW,*), S(LDS,*)
|
||||||
|
! COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*)
|
||||||
|
! COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*)
|
||||||
|
! REAL(KIND=WP), INTENT(OUT) :: RES(*)
|
||||||
|
! REAL(KIND=WP), INTENT(OUT) :: RWORK(*)
|
||||||
|
! INTEGER, INTENT(OUT) :: IWORK(*)
|
||||||
|
!
|
||||||
|
!............................................................
|
||||||
|
!> \par Purpose:
|
||||||
|
! =============
|
||||||
|
!> \verbatim
|
||||||
|
!> CGEDMD computes the Dynamic Mode Decomposition (DMD) for
|
||||||
|
!> a pair of data snapshot matrices. For the input matrices
|
||||||
|
!> X and Y such that Y = A*X with an unaccessible matrix
|
||||||
|
!> A, CGEDMD computes a certain number of Ritz pairs of A using
|
||||||
|
!> the standard Rayleigh-Ritz extraction from a subspace of
|
||||||
|
!> range(X) that is determined using the leading left singular
|
||||||
|
!> vectors of X. Optionally, CGEDMD returns the residuals
|
||||||
|
!> of the computed Ritz pairs, the information needed for
|
||||||
|
!> a refinement of the Ritz vectors, or the eigenvectors of
|
||||||
|
!> the Exact DMD.
|
||||||
|
!> For further details see the references listed
|
||||||
|
!> below. For more details of the implementation see [3].
|
||||||
|
!> \endverbatim
|
||||||
|
!............................................................
|
||||||
|
!> \par References:
|
||||||
|
! ================
|
||||||
|
!> \verbatim
|
||||||
|
!> [1] P. Schmid: Dynamic mode decomposition of numerical
|
||||||
|
!> and experimental data,
|
||||||
|
!> Journal of Fluid Mechanics 656, 5-28, 2010.
|
||||||
|
!> [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
|
||||||
|
!> decompositions: analysis and enhancements,
|
||||||
|
!> SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
|
||||||
|
!> [3] Z. Drmac: A LAPACK implementation of the Dynamic
|
||||||
|
!> Mode Decomposition I. Technical report. AIMDyn Inc.
|
||||||
|
!> and LAPACK Working Note 298.
|
||||||
|
!> [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
|
||||||
|
!> Brunton, N. Kutz: On Dynamic Mode Decomposition:
|
||||||
|
!> Theory and Applications, Journal of Computational
|
||||||
|
!> Dynamics 1(2), 391 -421, 2014.
|
||||||
|
!> \endverbatim
|
||||||
|
!......................................................................
|
||||||
|
!> \par Developed and supported by:
|
||||||
|
! ================================
|
||||||
|
!> \verbatim
|
||||||
|
!> Developed and coded by Zlatko Drmac, Faculty of Science,
|
||||||
|
!> University of Zagreb; drmac@math.hr
|
||||||
|
!> In cooperation with
|
||||||
|
!> AIMdyn Inc., Santa Barbara, CA.
|
||||||
|
!> and supported by
|
||||||
|
!> - DARPA SBIR project "Koopman Operator-Based Forecasting
|
||||||
|
!> for Nonstationary Processes from Near-Term, Limited
|
||||||
|
!> Observational Data" Contract No: W31P4Q-21-C-0007
|
||||||
|
!> - DARPA PAI project "Physics-Informed Machine Learning
|
||||||
|
!> Methodologies" Contract No: HR0011-18-9-0033
|
||||||
|
!> - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
|
||||||
|
!> Framework for Space-Time Analysis of Process Dynamics"
|
||||||
|
!> Contract No: HR0011-16-C-0116
|
||||||
|
!> Any opinions, findings and conclusions or recommendations
|
||||||
|
!> expressed in this material are those of the author and
|
||||||
|
!> do not necessarily reflect the views of the DARPA SBIR
|
||||||
|
!> Program Office
|
||||||
|
!> \endverbatim
|
||||||
|
!......................................................................
|
||||||
|
!> \par Distribution Statement A:
|
||||||
|
! ==============================
|
||||||
|
!> \verbatim
|
||||||
|
!> Approved for Public Release, Distribution Unlimited.
|
||||||
|
!> Cleared by DARPA on September 29, 2022
|
||||||
|
!> \endverbatim
|
||||||
|
!......................................................................
|
||||||
|
! Arguments
|
||||||
|
! =========
|
||||||
|
!
|
||||||
|
!> \param[in] JOBS
|
||||||
|
!> \verbatim
|
||||||
|
!> JOBS (input) CHARACTER*1
|
||||||
|
!> Determines whether the initial data snapshots are scaled
|
||||||
|
!> by a diagonal matrix.
|
||||||
|
!> 'S' :: The data snapshots matrices X and Y are multiplied
|
||||||
|
!> with a diagonal matrix D so that X*D has unit
|
||||||
|
!> nonzero columns (in the Euclidean 2-norm)
|
||||||
|
!> 'C' :: The snapshots are scaled as with the 'S' option.
|
||||||
|
!> If it is found that an i-th column of X is zero
|
||||||
|
!> vector and the corresponding i-th column of Y is
|
||||||
|
!> non-zero, then the i-th column of Y is set to
|
||||||
|
!> zero and a warning flag is raised.
|
||||||
|
!> 'Y' :: The data snapshots matrices X and Y are multiplied
|
||||||
|
!> by a diagonal matrix D so that Y*D has unit
|
||||||
|
!> nonzero columns (in the Euclidean 2-norm)
|
||||||
|
!> 'N' :: No data scaling.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] JOBZ
|
||||||
|
!> \verbatim
|
||||||
|
!> JOBZ (input) CHARACTER*1
|
||||||
|
!> Determines whether the eigenvectors (Koopman modes) will
|
||||||
|
!> be computed.
|
||||||
|
!> 'V' :: The eigenvectors (Koopman modes) will be computed
|
||||||
|
!> and returned in the matrix Z.
|
||||||
|
!> See the description of Z.
|
||||||
|
!> 'F' :: The eigenvectors (Koopman modes) will be returned
|
||||||
|
!> in factored form as the product X(:,1:K)*W, where X
|
||||||
|
!> contains a POD basis (leading left singular vectors
|
||||||
|
!> of the data matrix X) and W contains the eigenvectors
|
||||||
|
!> of the corresponding Rayleigh quotient.
|
||||||
|
!> See the descriptions of K, X, W, Z.
|
||||||
|
!> 'N' :: The eigenvectors are not computed.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] JOBR
|
||||||
|
!> \verbatim
|
||||||
|
!> JOBR (input) CHARACTER*1
|
||||||
|
!> Determines whether to compute the residuals.
|
||||||
|
!> 'R' :: The residuals for the computed eigenpairs will be
|
||||||
|
!> computed and stored in the array RES.
|
||||||
|
!> See the description of RES.
|
||||||
|
!> For this option to be legal, JOBZ must be 'V'.
|
||||||
|
!> 'N' :: The residuals are not computed.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] JOBF
|
||||||
|
!> \verbatim
|
||||||
|
!> JOBF (input) CHARACTER*1
|
||||||
|
!> Specifies whether to store information needed for post-
|
||||||
|
!> processing (e.g. computing refined Ritz vectors)
|
||||||
|
!> 'R' :: The matrix needed for the refinement of the Ritz
|
||||||
|
!> vectors is computed and stored in the array B.
|
||||||
|
!> See the description of B.
|
||||||
|
!> 'E' :: The unscaled eigenvectors of the Exact DMD are
|
||||||
|
!> computed and returned in the array B. See the
|
||||||
|
!> description of B.
|
||||||
|
!> 'N' :: No eigenvector refinement data is computed.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] WHTSVD
|
||||||
|
!> \verbatim
|
||||||
|
!> WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
|
||||||
|
!> Allows for a selection of the SVD algorithm from the
|
||||||
|
!> LAPACK library.
|
||||||
|
!> 1 :: CGESVD (the QR SVD algorithm)
|
||||||
|
!> 2 :: CGESDD (the Divide and Conquer algorithm; if enough
|
||||||
|
!> workspace available, this is the fastest option)
|
||||||
|
!> 3 :: CGESVDQ (the preconditioned QR SVD ; this and 4
|
||||||
|
!> are the most accurate options)
|
||||||
|
!> 4 :: CGEJSV (the preconditioned Jacobi SVD; this and 3
|
||||||
|
!> are the most accurate options)
|
||||||
|
!> For the four methods above, a significant difference in
|
||||||
|
!> the accuracy of small singular values is possible if
|
||||||
|
!> the snapshots vary in norm so that X is severely
|
||||||
|
!> ill-conditioned. If small (smaller than EPS*||X||)
|
||||||
|
!> singular values are of interest and JOBS=='N', then
|
||||||
|
!> the options (3, 4) give the most accurate results, where
|
||||||
|
!> the option 4 is slightly better and with stronger
|
||||||
|
!> theoretical background.
|
||||||
|
!> If JOBS=='S', i.e. the columns of X will be normalized,
|
||||||
|
!> then all methods give nearly equally accurate results.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] M
|
||||||
|
!> \verbatim
|
||||||
|
!> M (input) INTEGER, M>= 0
|
||||||
|
!> The state space dimension (the row dimension of X, Y).
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] N
|
||||||
|
!> \verbatim
|
||||||
|
!> N (input) INTEGER, 0 <= N <= M
|
||||||
|
!> The number of data snapshot pairs
|
||||||
|
!> (the number of columns of X and Y).
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in,out] X
|
||||||
|
!> \verbatim
|
||||||
|
!> X (input/output) COMPLEX(KIND=WP) M-by-N array
|
||||||
|
!> > On entry, X contains the data snapshot matrix X. It is
|
||||||
|
!> assumed that the column norms of X are in the range of
|
||||||
|
!> the normalized floating point numbers.
|
||||||
|
!> < On exit, the leading K columns of X contain a POD basis,
|
||||||
|
!> i.e. the leading K left singular vectors of the input
|
||||||
|
!> data matrix X, U(:,1:K). All N columns of X contain all
|
||||||
|
!> left singular vectors of the input matrix X.
|
||||||
|
!> See the descriptions of K, Z and W.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] LDX
|
||||||
|
!> \verbatim
|
||||||
|
!> LDX (input) INTEGER, LDX >= M
|
||||||
|
!> The leading dimension of the array X.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in,out] Y
|
||||||
|
!> \verbatim
|
||||||
|
!> Y (input/workspace/output) COMPLEX(KIND=WP) M-by-N array
|
||||||
|
!> > On entry, Y contains the data snapshot matrix Y
|
||||||
|
!> < On exit,
|
||||||
|
!> If JOBR == 'R', the leading K columns of Y contain
|
||||||
|
!> the residual vectors for the computed Ritz pairs.
|
||||||
|
!> See the description of RES.
|
||||||
|
!> If JOBR == 'N', Y contains the original input data,
|
||||||
|
!> scaled according to the value of JOBS.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] LDY
|
||||||
|
!> \verbatim
|
||||||
|
!> LDY (input) INTEGER , LDY >= M
|
||||||
|
!> The leading dimension of the array Y.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] NRNK
|
||||||
|
!> \verbatim
|
||||||
|
!> NRNK (input) INTEGER
|
||||||
|
!> Determines the mode how to compute the numerical rank,
|
||||||
|
!> i.e. how to truncate small singular values of the input
|
||||||
|
!> matrix X. On input, if
|
||||||
|
!> NRNK = -1 :: i-th singular value sigma(i) is truncated
|
||||||
|
!> if sigma(i) <= TOL*sigma(1)
|
||||||
|
!> This option is recommended.
|
||||||
|
!> NRNK = -2 :: i-th singular value sigma(i) is truncated
|
||||||
|
!> if sigma(i) <= TOL*sigma(i-1)
|
||||||
|
!> This option is included for R&D purposes.
|
||||||
|
!> It requires highly accurate SVD, which
|
||||||
|
!> may not be feasible.
|
||||||
|
!> The numerical rank can be enforced by using positive
|
||||||
|
!> value of NRNK as follows:
|
||||||
|
!> 0 < NRNK <= N :: at most NRNK largest singular values
|
||||||
|
!> will be used. If the number of the computed nonzero
|
||||||
|
!> singular values is less than NRNK, then only those
|
||||||
|
!> nonzero values will be used and the actually used
|
||||||
|
!> dimension is less than NRNK. The actual number of
|
||||||
|
!> the nonzero singular values is returned in the variable
|
||||||
|
!> K. See the descriptions of TOL and K.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] TOL
|
||||||
|
!> \verbatim
|
||||||
|
!> TOL (input) REAL(KIND=WP), 0 <= TOL < 1
|
||||||
|
!> The tolerance for truncating small singular values.
|
||||||
|
!> See the description of NRNK.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[out] K
|
||||||
|
!> \verbatim
|
||||||
|
!> K (output) INTEGER, 0 <= K <= N
|
||||||
|
!> The dimension of the POD basis for the data snapshot
|
||||||
|
!> matrix X and the number of the computed Ritz pairs.
|
||||||
|
!> The value of K is determined according to the rule set
|
||||||
|
!> by the parameters NRNK and TOL.
|
||||||
|
!> See the descriptions of NRNK and TOL.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[out] EIGS
|
||||||
|
!> \verbatim
|
||||||
|
!> EIGS (output) COMPLEX(KIND=WP) N-by-1 array
|
||||||
|
!> The leading K (K<=N) entries of EIGS contain
|
||||||
|
!> the computed eigenvalues (Ritz values).
|
||||||
|
!> See the descriptions of K, and Z.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[out] Z
|
||||||
|
!> \verbatim
|
||||||
|
!> Z (workspace/output) COMPLEX(KIND=WP) M-by-N array
|
||||||
|
!> If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i)
|
||||||
|
!> is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1.
|
||||||
|
!> If JOBZ == 'F', then the Z(:,i)'s are given implicitly as
|
||||||
|
!> the columns of X(:,1:K)*W(1:K,1:K), i.e. X(:,1:K)*W(:,i)
|
||||||
|
!> is an eigenvector corresponding to EIGS(i). The columns
|
||||||
|
!> of W(1:k,1:K) are the computed eigenvectors of the
|
||||||
|
!> K-by-K Rayleigh quotient.
|
||||||
|
!> See the descriptions of EIGS, X and W.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] LDZ
|
||||||
|
!> \verbatim
|
||||||
|
!> LDZ (input) INTEGER , LDZ >= M
|
||||||
|
!> The leading dimension of the array Z.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[out] RES
|
||||||
|
!> \verbatim
|
||||||
|
!> RES (output) REAL(KIND=WP) N-by-1 array
|
||||||
|
!> RES(1:K) contains the residuals for the K computed
|
||||||
|
!> Ritz pairs,
|
||||||
|
!> RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2.
|
||||||
|
!> See the description of EIGS and Z.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[out] B
|
||||||
|
!> \verbatim
|
||||||
|
!> B (output) COMPLEX(KIND=WP) M-by-N array.
|
||||||
|
!> IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can
|
||||||
|
!> be used for computing the refined vectors; see further
|
||||||
|
!> details in the provided references.
|
||||||
|
!> If JOBF == 'E', B(1:M,1:K) contains
|
||||||
|
!> A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
|
||||||
|
!> Exact DMD, up to scaling by the inverse eigenvalues.
|
||||||
|
!> If JOBF =='N', then B is not referenced.
|
||||||
|
!> See the descriptions of X, W, K.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] LDB
|
||||||
|
!> \verbatim
|
||||||
|
!> LDB (input) INTEGER, LDB >= M
|
||||||
|
!> The leading dimension of the array B.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[out] W
|
||||||
|
!> \verbatim
|
||||||
|
!> W (workspace/output) COMPLEX(KIND=WP) N-by-N array
|
||||||
|
!> On exit, W(1:K,1:K) contains the K computed
|
||||||
|
!> eigenvectors of the matrix Rayleigh quotient.
|
||||||
|
!> The Ritz vectors (returned in Z) are the
|
||||||
|
!> product of X (containing a POD basis for the input
|
||||||
|
!> matrix X) and W. See the descriptions of K, S, X and Z.
|
||||||
|
!> W is also used as a workspace to temporarily store the
|
||||||
|
!> right singular vectors of X.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] LDW
|
||||||
|
!> \verbatim
|
||||||
|
!> LDW (input) INTEGER, LDW >= N
|
||||||
|
!> The leading dimension of the array W.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[out] S
|
||||||
|
!> \verbatim
|
||||||
|
!> S (workspace/output) COMPLEX(KIND=WP) N-by-N array
|
||||||
|
!> The array S(1:K,1:K) is used for the matrix Rayleigh
|
||||||
|
!> quotient. This content is overwritten during
|
||||||
|
!> the eigenvalue decomposition by CGEEV.
|
||||||
|
!> See the description of K.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] LDS
|
||||||
|
!> \verbatim
|
||||||
|
!> LDS (input) INTEGER, LDS >= N
|
||||||
|
!> The leading dimension of the array S.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[out] ZWORK
|
||||||
|
!> \verbatim
|
||||||
|
!> ZWORK (workspace/output) COMPLEX(KIND=WP) LZWORK-by-1 array
|
||||||
|
!> ZWORK is used as complex workspace in the complex SVD, as
|
||||||
|
!> specified by WHTSVD (1,2, 3 or 4) and for CGEEV for computing
|
||||||
|
!> the eigenvalues of a Rayleigh quotient.
|
||||||
|
!> If the call to CGEDMD is only workspace query, then
|
||||||
|
!> ZWORK(1) contains the minimal complex workspace length and
|
||||||
|
!> ZWORK(2) is the optimal complex workspace length.
|
||||||
|
!> Hence, the length of work is at least 2.
|
||||||
|
!> See the description of LZWORK.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] LZWORK
|
||||||
|
!> \verbatim
|
||||||
|
!> LZWORK (input) INTEGER
|
||||||
|
!> The minimal length of the workspace vector ZWORK.
|
||||||
|
!> LZWORK is calculated as MAX(LZWORK_SVD, LZWORK_CGEEV),
|
||||||
|
!> where LZWORK_CGEEV = MAX( 1, 2*N ) and the minimal
|
||||||
|
!> LZWORK_SVD is calculated as follows
|
||||||
|
!> If WHTSVD == 1 :: CGESVD ::
|
||||||
|
!> LZWORK_SVD = MAX(1,2*MIN(M,N)+MAX(M,N))
|
||||||
|
!> If WHTSVD == 2 :: CGESDD ::
|
||||||
|
!> LZWORK_SVD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N)
|
||||||
|
!> If WHTSVD == 3 :: CGESVDQ ::
|
||||||
|
!> LZWORK_SVD = obtainable by a query
|
||||||
|
!> If WHTSVD == 4 :: CGEJSV ::
|
||||||
|
!> LZWORK_SVD = obtainable by a query
|
||||||
|
!> If on entry LZWORK = -1, then a workspace query is
|
||||||
|
!> assumed and the procedure only computes the minimal
|
||||||
|
!> and the optimal workspace lengths and returns them in
|
||||||
|
!> LZWORK(1) and LZWORK(2), respectively.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[out] RWORK
|
||||||
|
!> \verbatim
|
||||||
|
!> RWORK (workspace/output) REAL(KIND=WP) LRWORK-by-1 array
|
||||||
|
!> On exit, RWORK(1:N) contains the singular values of
|
||||||
|
!> X (for JOBS=='N') or column scaled X (JOBS=='S', 'C').
|
||||||
|
!> If WHTSVD==4, then RWORK(N+1) and RWORK(N+2) contain
|
||||||
|
!> scaling factor RWORK(N+2)/RWORK(N+1) used to scale X
|
||||||
|
!> and Y to avoid overflow in the SVD of X.
|
||||||
|
!> This may be of interest if the scaling option is off
|
||||||
|
!> and as many as possible smallest eigenvalues are
|
||||||
|
!> desired to the highest feasible accuracy.
|
||||||
|
!> If the call to CGEDMD is only workspace query, then
|
||||||
|
!> RWORK(1) contains the minimal workspace length.
|
||||||
|
!> See the description of LRWORK.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] LRWORK
|
||||||
|
!> \verbatim
|
||||||
|
!> LRWORK (input) INTEGER
|
||||||
|
!> The minimal length of the workspace vector RWORK.
|
||||||
|
!> LRWORK is calculated as follows:
|
||||||
|
!> LRWORK = MAX(1, N+LRWORK_SVD,N+LRWORK_CGEEV), where
|
||||||
|
!> LRWORK_CGEEV = MAX(1,2*N) and RWORK_SVD is the real workspace
|
||||||
|
!> for the SVD subroutine determined by the input parameter
|
||||||
|
!> WHTSVD.
|
||||||
|
!> If WHTSVD == 1 :: CGESVD ::
|
||||||
|
!> LRWORK_SVD = 5*MIN(M,N)
|
||||||
|
!> If WHTSVD == 2 :: CGESDD ::
|
||||||
|
!> LRWORK_SVD = MAX(5*MIN(M,N)*MIN(M,N)+7*MIN(M,N),
|
||||||
|
!> 2*MAX(M,N)*MIN(M,N)+2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) )
|
||||||
|
!> If WHTSVD == 3 :: CGESVDQ ::
|
||||||
|
!> LRWORK_SVD = obtainable by a query
|
||||||
|
!> If WHTSVD == 4 :: CGEJSV ::
|
||||||
|
!> LRWORK_SVD = obtainable by a query
|
||||||
|
!> If on entry LRWORK = -1, then a workspace query is
|
||||||
|
!> assumed and the procedure only computes the minimal
|
||||||
|
!> real workspace length and returns it in RWORK(1).
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[out] IWORK
|
||||||
|
!> \verbatim
|
||||||
|
!> IWORK (workspace/output) INTEGER LIWORK-by-1 array
|
||||||
|
!> Workspace that is required only if WHTSVD equals
|
||||||
|
!> 2 , 3 or 4. (See the description of WHTSVD).
|
||||||
|
!> If on entry LWORK =-1 or LIWORK=-1, then the
|
||||||
|
!> minimal length of IWORK is computed and returned in
|
||||||
|
!> IWORK(1). See the description of LIWORK.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] LIWORK
|
||||||
|
!> \verbatim
|
||||||
|
!> LIWORK (input) INTEGER
|
||||||
|
!> The minimal length of the workspace vector IWORK.
|
||||||
|
!> If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
|
||||||
|
!> If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N))
|
||||||
|
!> If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1)
|
||||||
|
!> If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N)
|
||||||
|
!> If on entry LIWORK = -1, then a workspace query is
|
||||||
|
!> assumed and the procedure only computes the minimal
|
||||||
|
!> and the optimal workspace lengths for ZWORK, RWORK and
|
||||||
|
!> IWORK. See the descriptions of ZWORK, RWORK and IWORK.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[out] INFO
|
||||||
|
!> \verbatim
|
||||||
|
!> INFO (output) INTEGER
|
||||||
|
!> -i < 0 :: On entry, the i-th argument had an
|
||||||
|
!> illegal value
|
||||||
|
!> = 0 :: Successful return.
|
||||||
|
!> = 1 :: Void input. Quick exit (M=0 or N=0).
|
||||||
|
!> = 2 :: The SVD computation of X did not converge.
|
||||||
|
!> Suggestion: Check the input data and/or
|
||||||
|
!> repeat with different WHTSVD.
|
||||||
|
!> = 3 :: The computation of the eigenvalues did not
|
||||||
|
!> converge.
|
||||||
|
!> = 4 :: If data scaling was requested on input and
|
||||||
|
!> the procedure found inconsistency in the data
|
||||||
|
!> such that for some column index i,
|
||||||
|
!> X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
|
||||||
|
!> to zero if JOBS=='C'. The computation proceeds
|
||||||
|
!> with original or modified data and warning
|
||||||
|
!> flag is set with INFO=4.
|
||||||
|
!> \endverbatim
|
||||||
|
!
|
||||||
|
! Authors:
|
||||||
|
! ========
|
||||||
|
!
|
||||||
|
!> \author Zlatko Drmac
|
||||||
|
!
|
||||||
|
!> \ingroup gedmd
|
||||||
|
!
|
||||||
|
!.............................................................
|
||||||
|
!.............................................................
|
||||||
SUBROUTINE CGEDMD( JOBS, JOBZ, JOBR, JOBF, WHTSVD, &
|
SUBROUTINE CGEDMD( JOBS, JOBZ, JOBR, JOBF, WHTSVD, &
|
||||||
M, N, X, LDX, Y, LDY, NRNK, TOL, &
|
M, N, X, LDX, Y, LDY, NRNK, TOL, &
|
||||||
K, EIGS, Z, LDZ, RES, B, LDB, &
|
K, EIGS, Z, LDZ, RES, B, LDB, &
|
||||||
W, LDW, S, LDS, ZWORK, LZWORK, &
|
W, LDW, S, LDS, ZWORK, LZWORK, &
|
||||||
RWORK, LRWORK, IWORK, LIWORK, INFO )
|
RWORK, LRWORK, IWORK, LIWORK, INFO )
|
||||||
! March 2023
|
!
|
||||||
|
! -- LAPACK driver routine --
|
||||||
|
!
|
||||||
|
! -- LAPACK is a software package provided by University of --
|
||||||
|
! -- Tennessee, University of California Berkeley, University of --
|
||||||
|
! -- Colorado Denver and NAG Ltd.. --
|
||||||
|
!
|
||||||
!.....
|
!.....
|
||||||
USE iso_fortran_env
|
USE iso_fortran_env
|
||||||
IMPLICIT NONE
|
IMPLICIT NONE
|
||||||
INTEGER, PARAMETER :: WP = real32
|
INTEGER, PARAMETER :: WP = real32
|
||||||
!.....
|
!
|
||||||
! Scalar arguments
|
! Scalar arguments
|
||||||
|
! ~~~~~~~~~~~~~~~~
|
||||||
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBF
|
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBF
|
||||||
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDX, LDY, &
|
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDX, LDY, &
|
||||||
NRNK, LDZ, LDB, LDW, LDS, &
|
NRNK, LDZ, LDB, LDW, LDS, &
|
||||||
LIWORK, LRWORK, LZWORK
|
LIWORK, LRWORK, LZWORK
|
||||||
INTEGER, INTENT(OUT) :: K, INFO
|
INTEGER, INTENT(OUT) :: K, INFO
|
||||||
REAL(KIND=WP), INTENT(IN) :: TOL
|
REAL(KIND=WP), INTENT(IN) :: TOL
|
||||||
|
!
|
||||||
! Array arguments
|
! Array arguments
|
||||||
|
! ~~~~~~~~~~~~~~~
|
||||||
COMPLEX(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*)
|
COMPLEX(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*)
|
||||||
COMPLEX(KIND=WP), INTENT(OUT) :: Z(LDZ,*), B(LDB,*), &
|
COMPLEX(KIND=WP), INTENT(OUT) :: Z(LDZ,*), B(LDB,*), &
|
||||||
W(LDW,*), S(LDS,*)
|
W(LDW,*), S(LDS,*)
|
||||||
|
@ -25,364 +529,14 @@
|
||||||
REAL(KIND=WP), INTENT(OUT) :: RES(*)
|
REAL(KIND=WP), INTENT(OUT) :: RES(*)
|
||||||
REAL(KIND=WP), INTENT(OUT) :: RWORK(*)
|
REAL(KIND=WP), INTENT(OUT) :: RWORK(*)
|
||||||
INTEGER, INTENT(OUT) :: IWORK(*)
|
INTEGER, INTENT(OUT) :: IWORK(*)
|
||||||
!............................................................
|
|
||||||
! Purpose
|
|
||||||
! =======
|
|
||||||
! CGEDMD computes the Dynamic Mode Decomposition (DMD) for
|
|
||||||
! a pair of data snapshot matrices. For the input matrices
|
|
||||||
! X and Y such that Y = A*X with an unaccessible matrix
|
|
||||||
! A, CGEDMD computes a certain number of Ritz pairs of A using
|
|
||||||
! the standard Rayleigh-Ritz extraction from a subspace of
|
|
||||||
! range(X) that is determined using the leading left singular
|
|
||||||
! vectors of X. Optionally, CGEDMD returns the residuals
|
|
||||||
! of the computed Ritz pairs, the information needed for
|
|
||||||
! a refinement of the Ritz vectors, or the eigenvectors of
|
|
||||||
! the Exact DMD.
|
|
||||||
! For further details see the references listed
|
|
||||||
! below. For more details of the implementation see [3].
|
|
||||||
!
|
!
|
||||||
! References
|
|
||||||
! ==========
|
|
||||||
! [1] P. Schmid: Dynamic mode decomposition of numerical
|
|
||||||
! and experimental data,
|
|
||||||
! Journal of Fluid Mechanics 656, 5-28, 2010.
|
|
||||||
! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
|
|
||||||
! decompositions: analysis and enhancements,
|
|
||||||
! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
|
|
||||||
! [3] Z. Drmac: A LAPACK implementation of the Dynamic
|
|
||||||
! Mode Decomposition I. Technical report. AIMDyn Inc.
|
|
||||||
! and LAPACK Working Note 298.
|
|
||||||
! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
|
|
||||||
! Brunton, N. Kutz: On Dynamic Mode Decomposition:
|
|
||||||
! Theory and Applications, Journal of Computational
|
|
||||||
! Dynamics 1(2), 391 -421, 2014.
|
|
||||||
!
|
|
||||||
!......................................................................
|
|
||||||
! Developed and supported by:
|
|
||||||
! ===========================
|
|
||||||
! Developed and coded by Zlatko Drmac, Faculty of Science,
|
|
||||||
! University of Zagreb; drmac@math.hr
|
|
||||||
! In cooperation with
|
|
||||||
! AIMdyn Inc., Santa Barbara, CA.
|
|
||||||
! and supported by
|
|
||||||
! - DARPA SBIR project "Koopman Operator-Based Forecasting
|
|
||||||
! for Nonstationary Processes from Near-Term, Limited
|
|
||||||
! Observational Data" Contract No: W31P4Q-21-C-0007
|
|
||||||
! - DARPA PAI project "Physics-Informed Machine Learning
|
|
||||||
! Methodologies" Contract No: HR0011-18-9-0033
|
|
||||||
! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
|
|
||||||
! Framework for Space-Time Analysis of Process Dynamics"
|
|
||||||
! Contract No: HR0011-16-C-0116
|
|
||||||
! Any opinions, findings and conclusions or recommendations
|
|
||||||
! expressed in this material are those of the author and
|
|
||||||
! do not necessarily reflect the views of the DARPA SBIR
|
|
||||||
! Program Office
|
|
||||||
!============================================================
|
|
||||||
! Distribution Statement A:
|
|
||||||
! Approved for Public Release, Distribution Unlimited.
|
|
||||||
! Cleared by DARPA on September 29, 2022
|
|
||||||
!============================================================
|
|
||||||
!......................................................................
|
|
||||||
! Arguments
|
|
||||||
! =========
|
|
||||||
! JOBS (input) CHARACTER*1
|
|
||||||
! Determines whether the initial data snapshots are scaled
|
|
||||||
! by a diagonal matrix.
|
|
||||||
! 'S' :: The data snapshots matrices X and Y are multiplied
|
|
||||||
! with a diagonal matrix D so that X*D has unit
|
|
||||||
! nonzero columns (in the Euclidean 2-norm)
|
|
||||||
! 'C' :: The snapshots are scaled as with the 'S' option.
|
|
||||||
! If it is found that an i-th column of X is zero
|
|
||||||
! vector and the corresponding i-th column of Y is
|
|
||||||
! non-zero, then the i-th column of Y is set to
|
|
||||||
! zero and a warning flag is raised.
|
|
||||||
! 'Y' :: The data snapshots matrices X and Y are multiplied
|
|
||||||
! by a diagonal matrix D so that Y*D has unit
|
|
||||||
! nonzero columns (in the Euclidean 2-norm)
|
|
||||||
! 'N' :: No data scaling.
|
|
||||||
!.....
|
|
||||||
! JOBZ (input) CHARACTER*1
|
|
||||||
! Determines whether the eigenvectors (Koopman modes) will
|
|
||||||
! be computed.
|
|
||||||
! 'V' :: The eigenvectors (Koopman modes) will be computed
|
|
||||||
! and returned in the matrix Z.
|
|
||||||
! See the description of Z.
|
|
||||||
! 'F' :: The eigenvectors (Koopman modes) will be returned
|
|
||||||
! in factored form as the product X(:,1:K)*W, where X
|
|
||||||
! contains a POD basis (leading left singular vectors
|
|
||||||
! of the data matrix X) and W contains the eigenvectors
|
|
||||||
! of the corresponding Rayleigh quotient.
|
|
||||||
! See the descriptions of K, X, W, Z.
|
|
||||||
! 'N' :: The eigenvectors are not computed.
|
|
||||||
!.....
|
|
||||||
! JOBR (input) CHARACTER*1
|
|
||||||
! Determines whether to compute the residuals.
|
|
||||||
! 'R' :: The residuals for the computed eigenpairs will be
|
|
||||||
! computed and stored in the array RES.
|
|
||||||
! See the description of RES.
|
|
||||||
! For this option to be legal, JOBZ must be 'V'.
|
|
||||||
! 'N' :: The residuals are not computed.
|
|
||||||
!.....
|
|
||||||
! JOBF (input) CHARACTER*1
|
|
||||||
! Specifies whether to store information needed for post-
|
|
||||||
! processing (e.g. computing refined Ritz vectors)
|
|
||||||
! 'R' :: The matrix needed for the refinement of the Ritz
|
|
||||||
! vectors is computed and stored in the array B.
|
|
||||||
! See the description of B.
|
|
||||||
! 'E' :: The unscaled eigenvectors of the Exact DMD are
|
|
||||||
! computed and returned in the array B. See the
|
|
||||||
! description of B.
|
|
||||||
! 'N' :: No eigenvector refinement data is computed.
|
|
||||||
!.....
|
|
||||||
! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
|
|
||||||
! Allows for a selection of the SVD algorithm from the
|
|
||||||
! LAPACK library.
|
|
||||||
! 1 :: CGESVD (the QR SVD algorithm)
|
|
||||||
! 2 :: CGESDD (the Divide and Conquer algorithm; if enough
|
|
||||||
! workspace available, this is the fastest option)
|
|
||||||
! 3 :: CGESVDQ (the preconditioned QR SVD ; this and 4
|
|
||||||
! are the most accurate options)
|
|
||||||
! 4 :: CGEJSV (the preconditioned Jacobi SVD; this and 3
|
|
||||||
! are the most accurate options)
|
|
||||||
! For the four methods above, a significant difference in
|
|
||||||
! the accuracy of small singular values is possible if
|
|
||||||
! the snapshots vary in norm so that X is severely
|
|
||||||
! ill-conditioned. If small (smaller than EPS*||X||)
|
|
||||||
! singular values are of interest and JOBS=='N', then
|
|
||||||
! the options (3, 4) give the most accurate results, where
|
|
||||||
! the option 4 is slightly better and with stronger
|
|
||||||
! theoretical background.
|
|
||||||
! If JOBS=='S', i.e. the columns of X will be normalized,
|
|
||||||
! then all methods give nearly equally accurate results.
|
|
||||||
!.....
|
|
||||||
! M (input) INTEGER, M>= 0
|
|
||||||
! The state space dimension (the row dimension of X, Y).
|
|
||||||
!.....
|
|
||||||
! N (input) INTEGER, 0 <= N <= M
|
|
||||||
! The number of data snapshot pairs
|
|
||||||
! (the number of columns of X and Y).
|
|
||||||
!.....
|
|
||||||
! X (input/output) COMPLEX(KIND=WP) M-by-N array
|
|
||||||
! > On entry, X contains the data snapshot matrix X. It is
|
|
||||||
! assumed that the column norms of X are in the range of
|
|
||||||
! the normalized floating point numbers.
|
|
||||||
! < On exit, the leading K columns of X contain a POD basis,
|
|
||||||
! i.e. the leading K left singular vectors of the input
|
|
||||||
! data matrix X, U(:,1:K). All N columns of X contain all
|
|
||||||
! left singular vectors of the input matrix X.
|
|
||||||
! See the descriptions of K, Z and W.
|
|
||||||
!.....
|
|
||||||
! LDX (input) INTEGER, LDX >= M
|
|
||||||
! The leading dimension of the array X.
|
|
||||||
!.....
|
|
||||||
! Y (input/workspace/output) COMPLEX(KIND=WP) M-by-N array
|
|
||||||
! > On entry, Y contains the data snapshot matrix Y
|
|
||||||
! < On exit,
|
|
||||||
! If JOBR == 'R', the leading K columns of Y contain
|
|
||||||
! the residual vectors for the computed Ritz pairs.
|
|
||||||
! See the description of RES.
|
|
||||||
! If JOBR == 'N', Y contains the original input data,
|
|
||||||
! scaled according to the value of JOBS.
|
|
||||||
!.....
|
|
||||||
! LDY (input) INTEGER , LDY >= M
|
|
||||||
! The leading dimension of the array Y.
|
|
||||||
!.....
|
|
||||||
! NRNK (input) INTEGER
|
|
||||||
! Determines the mode how to compute the numerical rank,
|
|
||||||
! i.e. how to truncate small singular values of the input
|
|
||||||
! matrix X. On input, if
|
|
||||||
! NRNK = -1 :: i-th singular value sigma(i) is truncated
|
|
||||||
! if sigma(i) <= TOL*sigma(1)
|
|
||||||
! This option is recommended.
|
|
||||||
! NRNK = -2 :: i-th singular value sigma(i) is truncated
|
|
||||||
! if sigma(i) <= TOL*sigma(i-1)
|
|
||||||
! This option is included for R&D purposes.
|
|
||||||
! It requires highly accurate SVD, which
|
|
||||||
! may not be feasible.
|
|
||||||
! The numerical rank can be enforced by using positive
|
|
||||||
! value of NRNK as follows:
|
|
||||||
! 0 < NRNK <= N :: at most NRNK largest singular values
|
|
||||||
! will be used. If the number of the computed nonzero
|
|
||||||
! singular values is less than NRNK, then only those
|
|
||||||
! nonzero values will be used and the actually used
|
|
||||||
! dimension is less than NRNK. The actual number of
|
|
||||||
! the nonzero singular values is returned in the variable
|
|
||||||
! K. See the descriptions of TOL and K.
|
|
||||||
!.....
|
|
||||||
! TOL (input) REAL(KIND=WP), 0 <= TOL < 1
|
|
||||||
! The tolerance for truncating small singular values.
|
|
||||||
! See the description of NRNK.
|
|
||||||
!.....
|
|
||||||
! K (output) INTEGER, 0 <= K <= N
|
|
||||||
! The dimension of the POD basis for the data snapshot
|
|
||||||
! matrix X and the number of the computed Ritz pairs.
|
|
||||||
! The value of K is determined according to the rule set
|
|
||||||
! by the parameters NRNK and TOL.
|
|
||||||
! See the descriptions of NRNK and TOL.
|
|
||||||
!.....
|
|
||||||
! EIGS (output) COMPLEX(KIND=WP) N-by-1 array
|
|
||||||
! The leading K (K<=N) entries of EIGS contain
|
|
||||||
! the computed eigenvalues (Ritz values).
|
|
||||||
! See the descriptions of K, and Z.
|
|
||||||
!.....
|
|
||||||
! Z (workspace/output) COMPLEX(KIND=WP) M-by-N array
|
|
||||||
! If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i)
|
|
||||||
! is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1.
|
|
||||||
! If JOBZ == 'F', then the Z(:,i)'s are given implicitly as
|
|
||||||
! the columns of X(:,1:K)*W(1:K,1:K), i.e. X(:,1:K)*W(:,i)
|
|
||||||
! is an eigenvector corresponding to EIGS(i). The columns
|
|
||||||
! of W(1:k,1:K) are the computed eigenvectors of the
|
|
||||||
! K-by-K Rayleigh quotient.
|
|
||||||
! See the descriptions of EIGS, X and W.
|
|
||||||
!.....
|
|
||||||
! LDZ (input) INTEGER , LDZ >= M
|
|
||||||
! The leading dimension of the array Z.
|
|
||||||
!.....
|
|
||||||
! RES (output) REAL(KIND=WP) N-by-1 array
|
|
||||||
! RES(1:K) contains the residuals for the K computed
|
|
||||||
! Ritz pairs,
|
|
||||||
! RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2.
|
|
||||||
! See the description of EIGS and Z.
|
|
||||||
!.....
|
|
||||||
! B (output) COMPLEX(KIND=WP) M-by-N array.
|
|
||||||
! IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can
|
|
||||||
! be used for computing the refined vectors; see further
|
|
||||||
! details in the provided references.
|
|
||||||
! If JOBF == 'E', B(1:M,1:K) contains
|
|
||||||
! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
|
|
||||||
! Exact DMD, up to scaling by the inverse eigenvalues.
|
|
||||||
! If JOBF =='N', then B is not referenced.
|
|
||||||
! See the descriptions of X, W, K.
|
|
||||||
!.....
|
|
||||||
! LDB (input) INTEGER, LDB >= M
|
|
||||||
! The leading dimension of the array B.
|
|
||||||
!.....
|
|
||||||
! W (workspace/output) COMPLEX(KIND=WP) N-by-N array
|
|
||||||
! On exit, W(1:K,1:K) contains the K computed
|
|
||||||
! eigenvectors of the matrix Rayleigh quotient.
|
|
||||||
! The Ritz vectors (returned in Z) are the
|
|
||||||
! product of X (containing a POD basis for the input
|
|
||||||
! matrix X) and W. See the descriptions of K, S, X and Z.
|
|
||||||
! W is also used as a workspace to temporarily store the
|
|
||||||
! right singular vectors of X.
|
|
||||||
!.....
|
|
||||||
! LDW (input) INTEGER, LDW >= N
|
|
||||||
! The leading dimension of the array W.
|
|
||||||
!.....
|
|
||||||
! S (workspace/output) COMPLEX(KIND=WP) N-by-N array
|
|
||||||
! The array S(1:K,1:K) is used for the matrix Rayleigh
|
|
||||||
! quotient. This content is overwritten during
|
|
||||||
! the eigenvalue decomposition by CGEEV.
|
|
||||||
! See the description of K.
|
|
||||||
!.....
|
|
||||||
! LDS (input) INTEGER, LDS >= N
|
|
||||||
! The leading dimension of the array S.
|
|
||||||
!.....
|
|
||||||
! ZWORK (workspace/output) COMPLEX(KIND=WP) LZWORK-by-1 array
|
|
||||||
! ZWORK is used as complex workspace in the complex SVD, as
|
|
||||||
! specified by WHTSVD (1,2, 3 or 4) and for CGEEV for computing
|
|
||||||
! the eigenvalues of a Rayleigh quotient.
|
|
||||||
! If the call to CGEDMD is only workspace query, then
|
|
||||||
! ZWORK(1) contains the minimal complex workspace length and
|
|
||||||
! ZWORK(2) is the optimal complex workspace length.
|
|
||||||
! Hence, the length of work is at least 2.
|
|
||||||
! See the description of LZWORK.
|
|
||||||
!.....
|
|
||||||
! LZWORK (input) INTEGER
|
|
||||||
! The minimal length of the workspace vector ZWORK.
|
|
||||||
! LZWORK is calculated as MAX(LZWORK_SVD, LZWORK_CGEEV),
|
|
||||||
! where LZWORK_CGEEV = MAX( 1, 2*N ) and the minimal
|
|
||||||
! LZWORK_SVD is calculated as follows
|
|
||||||
! If WHTSVD == 1 :: CGESVD ::
|
|
||||||
! LZWORK_SVD = MAX(1,2*MIN(M,N)+MAX(M,N))
|
|
||||||
! If WHTSVD == 2 :: CGESDD ::
|
|
||||||
! LZWORK_SVD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N)
|
|
||||||
! If WHTSVD == 3 :: CGESVDQ ::
|
|
||||||
! LZWORK_SVD = obtainable by a query
|
|
||||||
! If WHTSVD == 4 :: CGEJSV ::
|
|
||||||
! LZWORK_SVD = obtainable by a query
|
|
||||||
! If on entry LZWORK = -1, then a workspace query is
|
|
||||||
! assumed and the procedure only computes the minimal
|
|
||||||
! and the optimal workspace lengths and returns them in
|
|
||||||
! LZWORK(1) and LZWORK(2), respectively.
|
|
||||||
!.....
|
|
||||||
! RWORK (workspace/output) REAL(KIND=WP) LRWORK-by-1 array
|
|
||||||
! On exit, RWORK(1:N) contains the singular values of
|
|
||||||
! X (for JOBS=='N') or column scaled X (JOBS=='S', 'C').
|
|
||||||
! If WHTSVD==4, then RWORK(N+1) and RWORK(N+2) contain
|
|
||||||
! scaling factor RWORK(N+2)/RWORK(N+1) used to scale X
|
|
||||||
! and Y to avoid overflow in the SVD of X.
|
|
||||||
! This may be of interest if the scaling option is off
|
|
||||||
! and as many as possible smallest eigenvalues are
|
|
||||||
! desired to the highest feasible accuracy.
|
|
||||||
! If the call to CGEDMD is only workspace query, then
|
|
||||||
! RWORK(1) contains the minimal workspace length.
|
|
||||||
! See the description of LRWORK.
|
|
||||||
!.....
|
|
||||||
! LRWORK (input) INTEGER
|
|
||||||
! The minimal length of the workspace vector RWORK.
|
|
||||||
! LRWORK is calculated as follows:
|
|
||||||
! LRWORK = MAX(1, N+LRWORK_SVD,N+LRWORK_CGEEV), where
|
|
||||||
! LRWORK_CGEEV = MAX(1,2*N) and RWORK_SVD is the real workspace
|
|
||||||
! for the SVD subroutine determined by the input parameter
|
|
||||||
! WHTSVD.
|
|
||||||
! If WHTSVD == 1 :: CGESVD ::
|
|
||||||
! LRWORK_SVD = 5*MIN(M,N)
|
|
||||||
! If WHTSVD == 2 :: CGESDD ::
|
|
||||||
! LRWORK_SVD = MAX(5*MIN(M,N)*MIN(M,N)+7*MIN(M,N),
|
|
||||||
! 2*MAX(M,N)*MIN(M,N)+2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) )
|
|
||||||
! If WHTSVD == 3 :: CGESVDQ ::
|
|
||||||
! LRWORK_SVD = obtainable by a query
|
|
||||||
! If WHTSVD == 4 :: CGEJSV ::
|
|
||||||
! LRWORK_SVD = obtainable by a query
|
|
||||||
! If on entry LRWORK = -1, then a workspace query is
|
|
||||||
! assumed and the procedure only computes the minimal
|
|
||||||
! real workspace length and returns it in RWORK(1).
|
|
||||||
!.....
|
|
||||||
! IWORK (workspace/output) INTEGER LIWORK-by-1 array
|
|
||||||
! Workspace that is required only if WHTSVD equals
|
|
||||||
! 2 , 3 or 4. (See the description of WHTSVD).
|
|
||||||
! If on entry LWORK =-1 or LIWORK=-1, then the
|
|
||||||
! minimal length of IWORK is computed and returned in
|
|
||||||
! IWORK(1). See the description of LIWORK.
|
|
||||||
!.....
|
|
||||||
! LIWORK (input) INTEGER
|
|
||||||
! The minimal length of the workspace vector IWORK.
|
|
||||||
! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
|
|
||||||
! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N))
|
|
||||||
! If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1)
|
|
||||||
! If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N)
|
|
||||||
! If on entry LIWORK = -1, then a workspace query is
|
|
||||||
! assumed and the procedure only computes the minimal
|
|
||||||
! and the optimal workspace lengths for ZWORK, RWORK and
|
|
||||||
! IWORK. See the descriptions of ZWORK, RWORK and IWORK.
|
|
||||||
!.....
|
|
||||||
! INFO (output) INTEGER
|
|
||||||
! -i < 0 :: On entry, the i-th argument had an
|
|
||||||
! illegal value
|
|
||||||
! = 0 :: Successful return.
|
|
||||||
! = 1 :: Void input. Quick exit (M=0 or N=0).
|
|
||||||
! = 2 :: The SVD computation of X did not converge.
|
|
||||||
! Suggestion: Check the input data and/or
|
|
||||||
! repeat with different WHTSVD.
|
|
||||||
! = 3 :: The computation of the eigenvalues did not
|
|
||||||
! converge.
|
|
||||||
! = 4 :: If data scaling was requested on input and
|
|
||||||
! the procedure found inconsistency in the data
|
|
||||||
! such that for some column index i,
|
|
||||||
! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
|
|
||||||
! to zero if JOBS=='C'. The computation proceeds
|
|
||||||
! with original or modified data and warning
|
|
||||||
! flag is set with INFO=4.
|
|
||||||
!.............................................................
|
|
||||||
!.............................................................
|
|
||||||
! Parameters
|
! Parameters
|
||||||
! ~~~~~~~~~~
|
! ~~~~~~~~~~
|
||||||
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP
|
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP
|
||||||
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP
|
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP
|
||||||
COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP )
|
COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP )
|
||||||
COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP )
|
COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP )
|
||||||
|
!
|
||||||
! Local scalars
|
! Local scalars
|
||||||
! ~~~~~~~~~~~~~
|
! ~~~~~~~~~~~~~
|
||||||
REAL(KIND=WP) :: OFL, ROOTSC, SCALE, SMALL, &
|
REAL(KIND=WP) :: OFL, ROOTSC, SCALE, SMALL, &
|
||||||
|
@ -400,7 +554,7 @@
|
||||||
! Local arrays
|
! Local arrays
|
||||||
! ~~~~~~~~~~~~
|
! ~~~~~~~~~~~~
|
||||||
REAL(KIND=WP) :: RDUMMY(2)
|
REAL(KIND=WP) :: RDUMMY(2)
|
||||||
|
!
|
||||||
! External functions (BLAS and LAPACK)
|
! External functions (BLAS and LAPACK)
|
||||||
! ~~~~~~~~~~~~~~~~~
|
! ~~~~~~~~~~~~~~~~~
|
||||||
REAL(KIND=WP) CLANGE, SLAMCH, SCNRM2
|
REAL(KIND=WP) CLANGE, SLAMCH, SCNRM2
|
||||||
|
@ -408,13 +562,13 @@
|
||||||
INTEGER ICAMAX
|
INTEGER ICAMAX
|
||||||
LOGICAL SISNAN, LSAME
|
LOGICAL SISNAN, LSAME
|
||||||
EXTERNAL SISNAN, LSAME
|
EXTERNAL SISNAN, LSAME
|
||||||
|
!
|
||||||
! External subroutines (BLAS and LAPACK)
|
! External subroutines (BLAS and LAPACK)
|
||||||
! ~~~~~~~~~~~~~~~~~~~~
|
! ~~~~~~~~~~~~~~~~~~~~
|
||||||
EXTERNAL CAXPY, CGEMM, CSSCAL
|
EXTERNAL CAXPY, CGEMM, CSSCAL
|
||||||
EXTERNAL CGEEV, CGEJSV, CGESDD, CGESVD, CGESVDQ, &
|
EXTERNAL CGEEV, CGEJSV, CGESDD, CGESVD, CGESVDQ, &
|
||||||
CLACPY, CLASCL, CLASSQ, XERBLA
|
CLACPY, CLASCL, CLASSQ, XERBLA
|
||||||
|
!
|
||||||
! Intrinsic functions
|
! Intrinsic functions
|
||||||
! ~~~~~~~~~~~~~~~~~~~
|
! ~~~~~~~~~~~~~~~~~~~
|
||||||
INTRINSIC FLOAT, INT, MAX, SQRT
|
INTRINSIC FLOAT, INT, MAX, SQRT
|
||||||
|
@ -607,7 +761,8 @@
|
||||||
K = 0
|
K = 0
|
||||||
DO i = 1, N
|
DO i = 1, N
|
||||||
!WORK(i) = SCNRM2( M, X(1,i), 1 )
|
!WORK(i) = SCNRM2( M, X(1,i), 1 )
|
||||||
SCALE = ZERO
|
SSUM = ONE
|
||||||
|
SCALE = ZERO
|
||||||
CALL CLASSQ( M, X(1,i), 1, SCALE, SSUM )
|
CALL CLASSQ( M, X(1,i), 1, SCALE, SSUM )
|
||||||
IF ( SISNAN(SCALE) .OR. SISNAN(SSUM) ) THEN
|
IF ( SISNAN(SCALE) .OR. SISNAN(SSUM) ) THEN
|
||||||
K = 0
|
K = 0
|
||||||
|
@ -680,7 +835,8 @@
|
||||||
! carefully computed using CLASSQ.
|
! carefully computed using CLASSQ.
|
||||||
DO i = 1, N
|
DO i = 1, N
|
||||||
!RWORK(i) = SCNRM2( M, Y(1,i), 1 )
|
!RWORK(i) = SCNRM2( M, Y(1,i), 1 )
|
||||||
SCALE = ZERO
|
SSUM = ONE
|
||||||
|
SCALE = ZERO
|
||||||
CALL CLASSQ( M, Y(1,i), 1, SCALE, SSUM )
|
CALL CLASSQ( M, Y(1,i), 1, SCALE, SSUM )
|
||||||
IF ( SISNAN(SCALE) .OR. SISNAN(SSUM) ) THEN
|
IF ( SISNAN(SCALE) .OR. SISNAN(SSUM) ) THEN
|
||||||
K = 0
|
K = 0
|
||||||
|
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
@ -1,23 +1,523 @@
|
||||||
|
!> \brief \b ZGEDMD computes the Dynamic Mode Decomposition (DMD) for a pair of data snapshot matrices.
|
||||||
|
!
|
||||||
|
! =========== DOCUMENTATION ===========
|
||||||
|
!
|
||||||
|
! Definition:
|
||||||
|
! ===========
|
||||||
|
!
|
||||||
|
! SUBROUTINE ZGEDMD( JOBS, JOBZ, JOBR, JOBF, WHTSVD, &
|
||||||
|
! M, N, X, LDX, Y, LDY, NRNK, TOL, &
|
||||||
|
! K, EIGS, Z, LDZ, RES, B, LDB, &
|
||||||
|
! W, LDW, S, LDS, ZWORK, LZWORK, &
|
||||||
|
! RWORK, LRWORK, IWORK, LIWORK, INFO )
|
||||||
|
!......
|
||||||
|
! USE iso_fortran_env
|
||||||
|
! IMPLICIT NONE
|
||||||
|
! INTEGER, PARAMETER :: WP = real64
|
||||||
|
!
|
||||||
|
!......
|
||||||
|
! Scalar arguments
|
||||||
|
! CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBF
|
||||||
|
! INTEGER, INTENT(IN) :: WHTSVD, M, N, LDX, LDY, &
|
||||||
|
! NRNK, LDZ, LDB, LDW, LDS, &
|
||||||
|
! LIWORK, LRWORK, LZWORK
|
||||||
|
! INTEGER, INTENT(OUT) :: K, INFO
|
||||||
|
! REAL(KIND=WP), INTENT(IN) :: TOL
|
||||||
|
! Array arguments
|
||||||
|
! COMPLEX(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*)
|
||||||
|
! COMPLEX(KIND=WP), INTENT(OUT) :: Z(LDZ,*), B(LDB,*), &
|
||||||
|
! W(LDW,*), S(LDS,*)
|
||||||
|
! COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*)
|
||||||
|
! COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*)
|
||||||
|
! REAL(KIND=WP), INTENT(OUT) :: RES(*)
|
||||||
|
! REAL(KIND=WP), INTENT(OUT) :: RWORK(*)
|
||||||
|
! INTEGER, INTENT(OUT) :: IWORK(*)
|
||||||
|
!
|
||||||
|
!............................................................
|
||||||
|
!> \par Purpose:
|
||||||
|
! =============
|
||||||
|
!> \verbatim
|
||||||
|
!> ZGEDMD computes the Dynamic Mode Decomposition (DMD) for
|
||||||
|
!> a pair of data snapshot matrices. For the input matrices
|
||||||
|
!> X and Y such that Y = A*X with an unaccessible matrix
|
||||||
|
!> A, ZGEDMD computes a certain number of Ritz pairs of A using
|
||||||
|
!> the standard Rayleigh-Ritz extraction from a subspace of
|
||||||
|
!> range(X) that is determined using the leading left singular
|
||||||
|
!> vectors of X. Optionally, ZGEDMD returns the residuals
|
||||||
|
!> of the computed Ritz pairs, the information needed for
|
||||||
|
!> a refinement of the Ritz vectors, or the eigenvectors of
|
||||||
|
!> the Exact DMD.
|
||||||
|
!> For further details see the references listed
|
||||||
|
!> below. For more details of the implementation see [3].
|
||||||
|
!> \endverbatim
|
||||||
|
!............................................................
|
||||||
|
!> \par References:
|
||||||
|
! ================
|
||||||
|
!> \verbatim
|
||||||
|
!> [1] P. Schmid: Dynamic mode decomposition of numerical
|
||||||
|
!> and experimental data,
|
||||||
|
!> Journal of Fluid Mechanics 656, 5-28, 2010.
|
||||||
|
!> [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
|
||||||
|
!> decompositions: analysis and enhancements,
|
||||||
|
!> SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
|
||||||
|
!> [3] Z. Drmac: A LAPACK implementation of the Dynamic
|
||||||
|
!> Mode Decomposition I. Technical report. AIMDyn Inc.
|
||||||
|
!> and LAPACK Working Note 298.
|
||||||
|
!> [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
|
||||||
|
!> Brunton, N. Kutz: On Dynamic Mode Decomposition:
|
||||||
|
!> Theory and Applications, Journal of Computational
|
||||||
|
!> Dynamics 1(2), 391 -421, 2014.
|
||||||
|
!> \endverbatim
|
||||||
|
!......................................................................
|
||||||
|
!> \par Developed and supported by:
|
||||||
|
! ================================
|
||||||
|
!> \verbatim
|
||||||
|
!> Developed and coded by Zlatko Drmac, Faculty of Science,
|
||||||
|
!> University of Zagreb; drmac@math.hr
|
||||||
|
!> In cooperation with
|
||||||
|
!> AIMdyn Inc., Santa Barbara, CA.
|
||||||
|
!> and supported by
|
||||||
|
!> - DARPA SBIR project "Koopman Operator-Based Forecasting
|
||||||
|
!> for Nonstationary Processes from Near-Term, Limited
|
||||||
|
!> Observational Data" Contract No: W31P4Q-21-C-0007
|
||||||
|
!> - DARPA PAI project "Physics-Informed Machine Learning
|
||||||
|
!> Methodologies" Contract No: HR0011-18-9-0033
|
||||||
|
!> - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
|
||||||
|
!> Framework for Space-Time Analysis of Process Dynamics"
|
||||||
|
!> Contract No: HR0011-16-C-0116
|
||||||
|
!> Any opinions, findings and conclusions or recommendations
|
||||||
|
!> expressed in this material are those of the author and
|
||||||
|
!> do not necessarily reflect the views of the DARPA SBIR
|
||||||
|
!> Program Office
|
||||||
|
!> \endverbatim
|
||||||
|
!......................................................................
|
||||||
|
!> \par Distribution Statement A:
|
||||||
|
! ==============================
|
||||||
|
!> \verbatim
|
||||||
|
!> Approved for Public Release, Distribution Unlimited.
|
||||||
|
!> Cleared by DARPA on September 29, 2022
|
||||||
|
!> \endverbatim
|
||||||
|
!............................................................
|
||||||
|
! Arguments
|
||||||
|
! =========
|
||||||
|
!
|
||||||
|
!> \param[in] JOBS
|
||||||
|
!> \verbatim
|
||||||
|
!> JOBS (input) CHARACTER*1
|
||||||
|
!> Determines whether the initial data snapshots are scaled
|
||||||
|
!> by a diagonal matrix.
|
||||||
|
!> 'S' :: The data snapshots matrices X and Y are multiplied
|
||||||
|
!> with a diagonal matrix D so that X*D has unit
|
||||||
|
!> nonzero columns (in the Euclidean 2-norm)
|
||||||
|
!> 'C' :: The snapshots are scaled as with the 'S' option.
|
||||||
|
!> If it is found that an i-th column of X is zero
|
||||||
|
!> vector and the corresponding i-th column of Y is
|
||||||
|
!> non-zero, then the i-th column of Y is set to
|
||||||
|
!> zero and a warning flag is raised.
|
||||||
|
!> 'Y' :: The data snapshots matrices X and Y are multiplied
|
||||||
|
!> by a diagonal matrix D so that Y*D has unit
|
||||||
|
!> nonzero columns (in the Euclidean 2-norm)
|
||||||
|
!> 'N' :: No data scaling.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] JOBZ
|
||||||
|
!> \verbatim
|
||||||
|
!> JOBZ (input) CHARACTER*1
|
||||||
|
!> Determines whether the eigenvectors (Koopman modes) will
|
||||||
|
!> be computed.
|
||||||
|
!> 'V' :: The eigenvectors (Koopman modes) will be computed
|
||||||
|
!> and returned in the matrix Z.
|
||||||
|
!> See the description of Z.
|
||||||
|
!> 'F' :: The eigenvectors (Koopman modes) will be returned
|
||||||
|
!> in factored form as the product X(:,1:K)*W, where X
|
||||||
|
!> contains a POD basis (leading left singular vectors
|
||||||
|
!> of the data matrix X) and W contains the eigenvectors
|
||||||
|
!> of the corresponding Rayleigh quotient.
|
||||||
|
!> See the descriptions of K, X, W, Z.
|
||||||
|
!> 'N' :: The eigenvectors are not computed.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] JOBR
|
||||||
|
!> \verbatim
|
||||||
|
!> JOBR (input) CHARACTER*1
|
||||||
|
!> Determines whether to compute the residuals.
|
||||||
|
!> 'R' :: The residuals for the computed eigenpairs will be
|
||||||
|
!> computed and stored in the array RES.
|
||||||
|
!> See the description of RES.
|
||||||
|
!> For this option to be legal, JOBZ must be 'V'.
|
||||||
|
!> 'N' :: The residuals are not computed.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] JOBF
|
||||||
|
!> \verbatim
|
||||||
|
!> JOBF (input) CHARACTER*1
|
||||||
|
!> Specifies whether to store information needed for post-
|
||||||
|
!> processing (e.g. computing refined Ritz vectors)
|
||||||
|
!> 'R' :: The matrix needed for the refinement of the Ritz
|
||||||
|
!> vectors is computed and stored in the array B.
|
||||||
|
!> See the description of B.
|
||||||
|
!> 'E' :: The unscaled eigenvectors of the Exact DMD are
|
||||||
|
!> computed and returned in the array B. See the
|
||||||
|
!> description of B.
|
||||||
|
!> 'N' :: No eigenvector refinement data is computed.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] WHTSVD
|
||||||
|
!> \verbatim
|
||||||
|
!> WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
|
||||||
|
!> Allows for a selection of the SVD algorithm from the
|
||||||
|
!> LAPACK library.
|
||||||
|
!> 1 :: ZGESVD (the QR SVD algorithm)
|
||||||
|
!> 2 :: ZGESDD (the Divide and Conquer algorithm; if enough
|
||||||
|
!> workspace available, this is the fastest option)
|
||||||
|
!> 3 :: ZGESVDQ (the preconditioned QR SVD ; this and 4
|
||||||
|
!> are the most accurate options)
|
||||||
|
!> 4 :: ZGEJSV (the preconditioned Jacobi SVD; this and 3
|
||||||
|
!> are the most accurate options)
|
||||||
|
!> For the four methods above, a significant difference in
|
||||||
|
!> the accuracy of small singular values is possible if
|
||||||
|
!> the snapshots vary in norm so that X is severely
|
||||||
|
!> ill-conditioned. If small (smaller than EPS*||X||)
|
||||||
|
!> singular values are of interest and JOBS=='N', then
|
||||||
|
!> the options (3, 4) give the most accurate results, where
|
||||||
|
!> the option 4 is slightly better and with stronger
|
||||||
|
!> theoretical background.
|
||||||
|
!> If JOBS=='S', i.e. the columns of X will be normalized,
|
||||||
|
!> then all methods give nearly equally accurate results.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] M
|
||||||
|
!> \verbatim
|
||||||
|
!> M (input) INTEGER, M>= 0
|
||||||
|
!> The state space dimension (the row dimension of X, Y).
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] N
|
||||||
|
!> \verbatim
|
||||||
|
!> N (input) INTEGER, 0 <= N <= M
|
||||||
|
!> The number of data snapshot pairs
|
||||||
|
!> (the number of columns of X and Y).
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] LDX
|
||||||
|
!> \verbatim
|
||||||
|
!> X (input/output) COMPLEX(KIND=WP) M-by-N array
|
||||||
|
!> > On entry, X contains the data snapshot matrix X. It is
|
||||||
|
!> assumed that the column norms of X are in the range of
|
||||||
|
!> the normalized floating point numbers.
|
||||||
|
!> < On exit, the leading K columns of X contain a POD basis,
|
||||||
|
!> i.e. the leading K left singular vectors of the input
|
||||||
|
!> data matrix X, U(:,1:K). All N columns of X contain all
|
||||||
|
!> left singular vectors of the input matrix X.
|
||||||
|
!> See the descriptions of K, Z and W.
|
||||||
|
!.....
|
||||||
|
!> LDX (input) INTEGER, LDX >= M
|
||||||
|
!> The leading dimension of the array X.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in,out] Y
|
||||||
|
!> \verbatim
|
||||||
|
!> Y (input/workspace/output) COMPLEX(KIND=WP) M-by-N array
|
||||||
|
!> > On entry, Y contains the data snapshot matrix Y
|
||||||
|
!> < On exit,
|
||||||
|
!> If JOBR == 'R', the leading K columns of Y contain
|
||||||
|
!> the residual vectors for the computed Ritz pairs.
|
||||||
|
!> See the description of RES.
|
||||||
|
!> If JOBR == 'N', Y contains the original input data,
|
||||||
|
!> scaled according to the value of JOBS.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] LDY
|
||||||
|
!> \verbatim
|
||||||
|
!> LDY (input) INTEGER , LDY >= M
|
||||||
|
!> The leading dimension of the array Y.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] NRNK
|
||||||
|
!> \verbatim
|
||||||
|
!> NRNK (input) INTEGER
|
||||||
|
!> Determines the mode how to compute the numerical rank,
|
||||||
|
!> i.e. how to truncate small singular values of the input
|
||||||
|
!> matrix X. On input, if
|
||||||
|
!> NRNK = -1 :: i-th singular value sigma(i) is truncated
|
||||||
|
!> if sigma(i) <= TOL*sigma(1)
|
||||||
|
!> This option is recommended.
|
||||||
|
!> NRNK = -2 :: i-th singular value sigma(i) is truncated
|
||||||
|
!> if sigma(i) <= TOL*sigma(i-1)
|
||||||
|
!> This option is included for R&D purposes.
|
||||||
|
!> It requires highly accurate SVD, which
|
||||||
|
!> may not be feasible.
|
||||||
|
!> The numerical rank can be enforced by using positive
|
||||||
|
!> value of NRNK as follows:
|
||||||
|
!> 0 < NRNK <= N :: at most NRNK largest singular values
|
||||||
|
!> will be used. If the number of the computed nonzero
|
||||||
|
!> singular values is less than NRNK, then only those
|
||||||
|
!> nonzero values will be used and the actually used
|
||||||
|
!> dimension is less than NRNK. The actual number of
|
||||||
|
!> the nonzero singular values is returned in the variable
|
||||||
|
!> K. See the descriptions of TOL and K.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] TOL
|
||||||
|
!> \verbatim
|
||||||
|
!> TOL (input) REAL(KIND=WP), 0 <= TOL < 1
|
||||||
|
!> The tolerance for truncating small singular values.
|
||||||
|
!> See the description of NRNK.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[out] K
|
||||||
|
!> \verbatim
|
||||||
|
!> K (output) INTEGER, 0 <= K <= N
|
||||||
|
!> The dimension of the POD basis for the data snapshot
|
||||||
|
!> matrix X and the number of the computed Ritz pairs.
|
||||||
|
!> The value of K is determined according to the rule set
|
||||||
|
!> by the parameters NRNK and TOL.
|
||||||
|
!> See the descriptions of NRNK and TOL.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[out] EIGS
|
||||||
|
!> \verbatim
|
||||||
|
!> EIGS (output) COMPLEX(KIND=WP) N-by-1 array
|
||||||
|
!> The leading K (K<=N) entries of EIGS contain
|
||||||
|
!> the computed eigenvalues (Ritz values).
|
||||||
|
!> See the descriptions of K, and Z.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[out] Z
|
||||||
|
!> \verbatim
|
||||||
|
!> Z (workspace/output) COMPLEX(KIND=WP) M-by-N array
|
||||||
|
!> If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i)
|
||||||
|
!> is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1.
|
||||||
|
!> If JOBZ == 'F', then the Z(:,i)'s are given implicitly as
|
||||||
|
!> the columns of X(:,1:K)*W(1:K,1:K), i.e. X(:,1:K)*W(:,i)
|
||||||
|
!> is an eigenvector corresponding to EIGS(i). The columns
|
||||||
|
!> of W(1:k,1:K) are the computed eigenvectors of the
|
||||||
|
!> K-by-K Rayleigh quotient.
|
||||||
|
!> See the descriptions of EIGS, X and W.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] LDZ
|
||||||
|
!> \verbatim
|
||||||
|
!> LDZ (input) INTEGER , LDZ >= M
|
||||||
|
!> The leading dimension of the array Z.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[out] RES
|
||||||
|
!> \verbatim
|
||||||
|
!> RES (output) REAL(KIND=WP) N-by-1 array
|
||||||
|
!> RES(1:K) contains the residuals for the K computed
|
||||||
|
!> Ritz pairs,
|
||||||
|
!> RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2.
|
||||||
|
!> See the description of EIGS and Z.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[out] B
|
||||||
|
!> \verbatim
|
||||||
|
!> B (output) COMPLEX(KIND=WP) M-by-N array.
|
||||||
|
!> IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can
|
||||||
|
!> be used for computing the refined vectors; see further
|
||||||
|
!> details in the provided references.
|
||||||
|
!> If JOBF == 'E', B(1:M,1:K) contains
|
||||||
|
!> A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
|
||||||
|
!> Exact DMD, up to scaling by the inverse eigenvalues.
|
||||||
|
!> If JOBF =='N', then B is not referenced.
|
||||||
|
!> See the descriptions of X, W, K.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] LDB
|
||||||
|
!> \verbatim
|
||||||
|
!> LDB (input) INTEGER, LDB >= M
|
||||||
|
!> The leading dimension of the array B.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[out] W
|
||||||
|
!> \verbatim
|
||||||
|
!> W (workspace/output) COMPLEX(KIND=WP) N-by-N array
|
||||||
|
!> On exit, W(1:K,1:K) contains the K computed
|
||||||
|
!> eigenvectors of the matrix Rayleigh quotient.
|
||||||
|
!> The Ritz vectors (returned in Z) are the
|
||||||
|
!> product of X (containing a POD basis for the input
|
||||||
|
!> matrix X) and W. See the descriptions of K, S, X and Z.
|
||||||
|
!> W is also used as a workspace to temporarily store the
|
||||||
|
!> right singular vectors of X.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] LDW
|
||||||
|
!> \verbatim
|
||||||
|
!> LDW (input) INTEGER, LDW >= N
|
||||||
|
!> The leading dimension of the array W.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[out] S
|
||||||
|
!> \verbatim
|
||||||
|
!> S (workspace/output) COMPLEX(KIND=WP) N-by-N array
|
||||||
|
!> The array S(1:K,1:K) is used for the matrix Rayleigh
|
||||||
|
!> quotient. This content is overwritten during
|
||||||
|
!> the eigenvalue decomposition by ZGEEV.
|
||||||
|
!> See the description of K.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] LDS
|
||||||
|
!> \verbatim
|
||||||
|
!> LDS (input) INTEGER, LDS >= N
|
||||||
|
!> The leading dimension of the array S.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[out] ZWORK
|
||||||
|
!> \verbatim
|
||||||
|
!> ZWORK (workspace/output) COMPLEX(KIND=WP) LZWORK-by-1 array
|
||||||
|
!> ZWORK is used as complex workspace in the complex SVD, as
|
||||||
|
!> specified by WHTSVD (1,2, 3 or 4) and for ZGEEV for computing
|
||||||
|
!> the eigenvalues of a Rayleigh quotient.
|
||||||
|
!> If the call to ZGEDMD is only workspace query, then
|
||||||
|
!> ZWORK(1) contains the minimal complex workspace length and
|
||||||
|
!> ZWORK(2) is the optimal complex workspace length.
|
||||||
|
!> Hence, the length of work is at least 2.
|
||||||
|
!> See the description of LZWORK.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] LZWORK
|
||||||
|
!> \verbatim
|
||||||
|
!> LZWORK (input) INTEGER
|
||||||
|
!> The minimal length of the workspace vector ZWORK.
|
||||||
|
!> LZWORK is calculated as MAX(LZWORK_SVD, LZWORK_ZGEEV),
|
||||||
|
!> where LZWORK_ZGEEV = MAX( 1, 2*N ) and the minimal
|
||||||
|
!> LZWORK_SVD is calculated as follows
|
||||||
|
!> If WHTSVD == 1 :: ZGESVD ::
|
||||||
|
!> LZWORK_SVD = MAX(1,2*MIN(M,N)+MAX(M,N))
|
||||||
|
!> If WHTSVD == 2 :: ZGESDD ::
|
||||||
|
!> LZWORK_SVD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N)
|
||||||
|
!> If WHTSVD == 3 :: ZGESVDQ ::
|
||||||
|
!> LZWORK_SVD = obtainable by a query
|
||||||
|
!> If WHTSVD == 4 :: ZGEJSV ::
|
||||||
|
!> LZWORK_SVD = obtainable by a query
|
||||||
|
!> If on entry LZWORK = -1, then a workspace query is
|
||||||
|
!> assumed and the procedure only computes the minimal
|
||||||
|
!> and the optimal workspace lengths and returns them in
|
||||||
|
!> LZWORK(1) and LZWORK(2), respectively.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[out] RWORK
|
||||||
|
!> \verbatim
|
||||||
|
!> RWORK (workspace/output) REAL(KIND=WP) LRWORK-by-1 array
|
||||||
|
!> On exit, RWORK(1:N) contains the singular values of
|
||||||
|
!> X (for JOBS=='N') or column scaled X (JOBS=='S', 'C').
|
||||||
|
!> If WHTSVD==4, then RWORK(N+1) and RWORK(N+2) contain
|
||||||
|
!> scaling factor RWORK(N+2)/RWORK(N+1) used to scale X
|
||||||
|
!> and Y to avoid overflow in the SVD of X.
|
||||||
|
!> This may be of interest if the scaling option is off
|
||||||
|
!> and as many as possible smallest eigenvalues are
|
||||||
|
!> desired to the highest feasible accuracy.
|
||||||
|
!> If the call to ZGEDMD is only workspace query, then
|
||||||
|
!> RWORK(1) contains the minimal workspace length.
|
||||||
|
!> See the description of LRWORK.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] LRWORK
|
||||||
|
!> \verbatim
|
||||||
|
!> LRWORK (input) INTEGER
|
||||||
|
!> The minimal length of the workspace vector RWORK.
|
||||||
|
!> LRWORK is calculated as follows:
|
||||||
|
!> LRWORK = MAX(1, N+LRWORK_SVD,N+LRWORK_ZGEEV), where
|
||||||
|
!> LRWORK_ZGEEV = MAX(1,2*N) and RWORK_SVD is the real workspace
|
||||||
|
!> for the SVD subroutine determined by the input parameter
|
||||||
|
!> WHTSVD.
|
||||||
|
!> If WHTSVD == 1 :: ZGESVD ::
|
||||||
|
!> LRWORK_SVD = 5*MIN(M,N)
|
||||||
|
!> If WHTSVD == 2 :: ZGESDD ::
|
||||||
|
!> LRWORK_SVD = MAX(5*MIN(M,N)*MIN(M,N)+7*MIN(M,N),
|
||||||
|
!> 2*MAX(M,N)*MIN(M,N)+2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) )
|
||||||
|
!> If WHTSVD == 3 :: ZGESVDQ ::
|
||||||
|
!> LRWORK_SVD = obtainable by a query
|
||||||
|
!> If WHTSVD == 4 :: ZGEJSV ::
|
||||||
|
!> LRWORK_SVD = obtainable by a query
|
||||||
|
!> If on entry LRWORK = -1, then a workspace query is
|
||||||
|
!> assumed and the procedure only computes the minimal
|
||||||
|
!> real workspace length and returns it in RWORK(1).
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[out] IWORK
|
||||||
|
!> \verbatim
|
||||||
|
!> IWORK (workspace/output) INTEGER LIWORK-by-1 array
|
||||||
|
!> Workspace that is required only if WHTSVD equals
|
||||||
|
!> 2 , 3 or 4. (See the description of WHTSVD).
|
||||||
|
!> If on entry LWORK =-1 or LIWORK=-1, then the
|
||||||
|
!> minimal length of IWORK is computed and returned in
|
||||||
|
!> IWORK(1). See the description of LIWORK.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[in] LIWORK
|
||||||
|
!> \verbatim
|
||||||
|
!> LIWORK (input) INTEGER
|
||||||
|
!> The minimal length of the workspace vector IWORK.
|
||||||
|
!> If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
|
||||||
|
!> If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N))
|
||||||
|
!> If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1)
|
||||||
|
!> If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N)
|
||||||
|
!> If on entry LIWORK = -1, then a workspace query is
|
||||||
|
!> assumed and the procedure only computes the minimal
|
||||||
|
!> and the optimal workspace lengths for ZWORK, RWORK and
|
||||||
|
!> IWORK. See the descriptions of ZWORK, RWORK and IWORK.
|
||||||
|
!> \endverbatim
|
||||||
|
!.....
|
||||||
|
!> \param[out] INFO
|
||||||
|
!> \verbatim
|
||||||
|
!> INFO (output) INTEGER
|
||||||
|
!> -i < 0 :: On entry, the i-th argument had an
|
||||||
|
!> illegal value
|
||||||
|
!> = 0 :: Successful return.
|
||||||
|
!> = 1 :: Void input. Quick exit (M=0 or N=0).
|
||||||
|
!> = 2 :: The SVD computation of X did not converge.
|
||||||
|
!> Suggestion: Check the input data and/or
|
||||||
|
!> repeat with different WHTSVD.
|
||||||
|
!> = 3 :: The computation of the eigenvalues did not
|
||||||
|
!> converge.
|
||||||
|
!> = 4 :: If data scaling was requested on input and
|
||||||
|
!> the procedure found inconsistency in the data
|
||||||
|
!> such that for some column index i,
|
||||||
|
!> X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
|
||||||
|
!> to zero if JOBS=='C'. The computation proceeds
|
||||||
|
!> with original or modified data and warning
|
||||||
|
!> flag is set with INFO=4.
|
||||||
|
!> \endverbatim
|
||||||
|
!
|
||||||
|
! Authors:
|
||||||
|
! ========
|
||||||
|
!
|
||||||
|
!> \author Zlatko Drmac
|
||||||
|
!
|
||||||
|
!> \ingroup gedmd
|
||||||
|
!
|
||||||
|
!.............................................................
|
||||||
|
!.............................................................
|
||||||
SUBROUTINE ZGEDMD( JOBS, JOBZ, JOBR, JOBF, WHTSVD, &
|
SUBROUTINE ZGEDMD( JOBS, JOBZ, JOBR, JOBF, WHTSVD, &
|
||||||
M, N, X, LDX, Y, LDY, NRNK, TOL, &
|
M, N, X, LDX, Y, LDY, NRNK, TOL, &
|
||||||
K, EIGS, Z, LDZ, RES, B, LDB, &
|
K, EIGS, Z, LDZ, RES, B, LDB, &
|
||||||
W, LDW, S, LDS, ZWORK, LZWORK, &
|
W, LDW, S, LDS, ZWORK, LZWORK, &
|
||||||
RWORK, LRWORK, IWORK, LIWORK, INFO )
|
RWORK, LRWORK, IWORK, LIWORK, INFO )
|
||||||
! March 2023
|
!
|
||||||
|
! -- LAPACK driver routine --
|
||||||
|
!
|
||||||
|
! -- LAPACK is a software package provided by University of --
|
||||||
|
! -- Tennessee, University of California Berkeley, University of --
|
||||||
|
! -- Colorado Denver and NAG Ltd.. --
|
||||||
|
!
|
||||||
!.....
|
!.....
|
||||||
USE iso_fortran_env
|
USE iso_fortran_env
|
||||||
IMPLICIT NONE
|
IMPLICIT NONE
|
||||||
INTEGER, PARAMETER :: WP = real64
|
INTEGER, PARAMETER :: WP = real64
|
||||||
|
!
|
||||||
!.....
|
|
||||||
! Scalar arguments
|
! Scalar arguments
|
||||||
|
! ~~~~~~~~~~~~~~~~
|
||||||
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBF
|
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBF
|
||||||
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDX, LDY, &
|
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDX, LDY, &
|
||||||
NRNK, LDZ, LDB, LDW, LDS, &
|
NRNK, LDZ, LDB, LDW, LDS, &
|
||||||
LIWORK, LRWORK, LZWORK
|
LIWORK, LRWORK, LZWORK
|
||||||
INTEGER, INTENT(OUT) :: K, INFO
|
INTEGER, INTENT(OUT) :: K, INFO
|
||||||
REAL(KIND=WP), INTENT(IN) :: TOL
|
REAL(KIND=WP), INTENT(IN) :: TOL
|
||||||
|
!
|
||||||
! Array arguments
|
! Array arguments
|
||||||
|
! ~~~~~~~~~~~~~~~
|
||||||
COMPLEX(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*)
|
COMPLEX(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*)
|
||||||
COMPLEX(KIND=WP), INTENT(OUT) :: Z(LDZ,*), B(LDB,*), &
|
COMPLEX(KIND=WP), INTENT(OUT) :: Z(LDZ,*), B(LDB,*), &
|
||||||
W(LDW,*), S(LDS,*)
|
W(LDW,*), S(LDS,*)
|
||||||
|
@ -26,364 +526,14 @@
|
||||||
REAL(KIND=WP), INTENT(OUT) :: RES(*)
|
REAL(KIND=WP), INTENT(OUT) :: RES(*)
|
||||||
REAL(KIND=WP), INTENT(OUT) :: RWORK(*)
|
REAL(KIND=WP), INTENT(OUT) :: RWORK(*)
|
||||||
INTEGER, INTENT(OUT) :: IWORK(*)
|
INTEGER, INTENT(OUT) :: IWORK(*)
|
||||||
!............................................................
|
|
||||||
! Purpose
|
|
||||||
! =======
|
|
||||||
! ZGEDMD computes the Dynamic Mode Decomposition (DMD) for
|
|
||||||
! a pair of data snapshot matrices. For the input matrices
|
|
||||||
! X and Y such that Y = A*X with an unaccessible matrix
|
|
||||||
! A, ZGEDMD computes a certain number of Ritz pairs of A using
|
|
||||||
! the standard Rayleigh-Ritz extraction from a subspace of
|
|
||||||
! range(X) that is determined using the leading left singular
|
|
||||||
! vectors of X. Optionally, ZGEDMD returns the residuals
|
|
||||||
! of the computed Ritz pairs, the information needed for
|
|
||||||
! a refinement of the Ritz vectors, or the eigenvectors of
|
|
||||||
! the Exact DMD.
|
|
||||||
! For further details see the references listed
|
|
||||||
! below. For more details of the implementation see [3].
|
|
||||||
!
|
!
|
||||||
! References
|
|
||||||
! ==========
|
|
||||||
! [1] P. Schmid: Dynamic mode decomposition of numerical
|
|
||||||
! and experimental data,
|
|
||||||
! Journal of Fluid Mechanics 656, 5-28, 2010.
|
|
||||||
! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
|
|
||||||
! decompositions: analysis and enhancements,
|
|
||||||
! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
|
|
||||||
! [3] Z. Drmac: A LAPACK implementation of the Dynamic
|
|
||||||
! Mode Decomposition I. Technical report. AIMDyn Inc.
|
|
||||||
! and LAPACK Working Note 298.
|
|
||||||
! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
|
|
||||||
! Brunton, N. Kutz: On Dynamic Mode Decomposition:
|
|
||||||
! Theory and Applications, Journal of Computational
|
|
||||||
! Dynamics 1(2), 391 -421, 2014.
|
|
||||||
!
|
|
||||||
!......................................................................
|
|
||||||
! Developed and supported by:
|
|
||||||
! ===========================
|
|
||||||
! Developed and coded by Zlatko Drmac, Faculty of Science,
|
|
||||||
! University of Zagreb; drmac@math.hr
|
|
||||||
! In cooperation with
|
|
||||||
! AIMdyn Inc., Santa Barbara, CA.
|
|
||||||
! and supported by
|
|
||||||
! - DARPA SBIR project "Koopman Operator-Based Forecasting
|
|
||||||
! for Nonstationary Processes from Near-Term, Limited
|
|
||||||
! Observational Data" Contract No: W31P4Q-21-C-0007
|
|
||||||
! - DARPA PAI project "Physics-Informed Machine Learning
|
|
||||||
! Methodologies" Contract No: HR0011-18-9-0033
|
|
||||||
! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
|
|
||||||
! Framework for Space-Time Analysis of Process Dynamics"
|
|
||||||
! Contract No: HR0011-16-C-0116
|
|
||||||
! Any opinions, findings and conclusions or recommendations
|
|
||||||
! expressed in this material are those of the author and
|
|
||||||
! do not necessarily reflect the views of the DARPA SBIR
|
|
||||||
! Program Office
|
|
||||||
!============================================================
|
|
||||||
! Distribution Statement A:
|
|
||||||
! Approved for Public Release, Distribution Unlimited.
|
|
||||||
! Cleared by DARPA on September 29, 2022
|
|
||||||
!============================================================
|
|
||||||
!............................................................
|
|
||||||
! Arguments
|
|
||||||
! =========
|
|
||||||
! JOBS (input) CHARACTER*1
|
|
||||||
! Determines whether the initial data snapshots are scaled
|
|
||||||
! by a diagonal matrix.
|
|
||||||
! 'S' :: The data snapshots matrices X and Y are multiplied
|
|
||||||
! with a diagonal matrix D so that X*D has unit
|
|
||||||
! nonzero columns (in the Euclidean 2-norm)
|
|
||||||
! 'C' :: The snapshots are scaled as with the 'S' option.
|
|
||||||
! If it is found that an i-th column of X is zero
|
|
||||||
! vector and the corresponding i-th column of Y is
|
|
||||||
! non-zero, then the i-th column of Y is set to
|
|
||||||
! zero and a warning flag is raised.
|
|
||||||
! 'Y' :: The data snapshots matrices X and Y are multiplied
|
|
||||||
! by a diagonal matrix D so that Y*D has unit
|
|
||||||
! nonzero columns (in the Euclidean 2-norm)
|
|
||||||
! 'N' :: No data scaling.
|
|
||||||
!.....
|
|
||||||
! JOBZ (input) CHARACTER*1
|
|
||||||
! Determines whether the eigenvectors (Koopman modes) will
|
|
||||||
! be computed.
|
|
||||||
! 'V' :: The eigenvectors (Koopman modes) will be computed
|
|
||||||
! and returned in the matrix Z.
|
|
||||||
! See the description of Z.
|
|
||||||
! 'F' :: The eigenvectors (Koopman modes) will be returned
|
|
||||||
! in factored form as the product X(:,1:K)*W, where X
|
|
||||||
! contains a POD basis (leading left singular vectors
|
|
||||||
! of the data matrix X) and W contains the eigenvectors
|
|
||||||
! of the corresponding Rayleigh quotient.
|
|
||||||
! See the descriptions of K, X, W, Z.
|
|
||||||
! 'N' :: The eigenvectors are not computed.
|
|
||||||
!.....
|
|
||||||
! JOBR (input) CHARACTER*1
|
|
||||||
! Determines whether to compute the residuals.
|
|
||||||
! 'R' :: The residuals for the computed eigenpairs will be
|
|
||||||
! computed and stored in the array RES.
|
|
||||||
! See the description of RES.
|
|
||||||
! For this option to be legal, JOBZ must be 'V'.
|
|
||||||
! 'N' :: The residuals are not computed.
|
|
||||||
!.....
|
|
||||||
! JOBF (input) CHARACTER*1
|
|
||||||
! Specifies whether to store information needed for post-
|
|
||||||
! processing (e.g. computing refined Ritz vectors)
|
|
||||||
! 'R' :: The matrix needed for the refinement of the Ritz
|
|
||||||
! vectors is computed and stored in the array B.
|
|
||||||
! See the description of B.
|
|
||||||
! 'E' :: The unscaled eigenvectors of the Exact DMD are
|
|
||||||
! computed and returned in the array B. See the
|
|
||||||
! description of B.
|
|
||||||
! 'N' :: No eigenvector refinement data is computed.
|
|
||||||
!.....
|
|
||||||
! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
|
|
||||||
! Allows for a selection of the SVD algorithm from the
|
|
||||||
! LAPACK library.
|
|
||||||
! 1 :: ZGESVD (the QR SVD algorithm)
|
|
||||||
! 2 :: ZGESDD (the Divide and Conquer algorithm; if enough
|
|
||||||
! workspace available, this is the fastest option)
|
|
||||||
! 3 :: ZGESVDQ (the preconditioned QR SVD ; this and 4
|
|
||||||
! are the most accurate options)
|
|
||||||
! 4 :: ZGEJSV (the preconditioned Jacobi SVD; this and 3
|
|
||||||
! are the most accurate options)
|
|
||||||
! For the four methods above, a significant difference in
|
|
||||||
! the accuracy of small singular values is possible if
|
|
||||||
! the snapshots vary in norm so that X is severely
|
|
||||||
! ill-conditioned. If small (smaller than EPS*||X||)
|
|
||||||
! singular values are of interest and JOBS=='N', then
|
|
||||||
! the options (3, 4) give the most accurate results, where
|
|
||||||
! the option 4 is slightly better and with stronger
|
|
||||||
! theoretical background.
|
|
||||||
! If JOBS=='S', i.e. the columns of X will be normalized,
|
|
||||||
! then all methods give nearly equally accurate results.
|
|
||||||
!.....
|
|
||||||
! M (input) INTEGER, M>= 0
|
|
||||||
! The state space dimension (the row dimension of X, Y).
|
|
||||||
!.....
|
|
||||||
! N (input) INTEGER, 0 <= N <= M
|
|
||||||
! The number of data snapshot pairs
|
|
||||||
! (the number of columns of X and Y).
|
|
||||||
!.....
|
|
||||||
! X (input/output) COMPLEX(KIND=WP) M-by-N array
|
|
||||||
! > On entry, X contains the data snapshot matrix X. It is
|
|
||||||
! assumed that the column norms of X are in the range of
|
|
||||||
! the normalized floating point numbers.
|
|
||||||
! < On exit, the leading K columns of X contain a POD basis,
|
|
||||||
! i.e. the leading K left singular vectors of the input
|
|
||||||
! data matrix X, U(:,1:K). All N columns of X contain all
|
|
||||||
! left singular vectors of the input matrix X.
|
|
||||||
! See the descriptions of K, Z and W.
|
|
||||||
!.....
|
|
||||||
! LDX (input) INTEGER, LDX >= M
|
|
||||||
! The leading dimension of the array X.
|
|
||||||
!.....
|
|
||||||
! Y (input/workspace/output) COMPLEX(KIND=WP) M-by-N array
|
|
||||||
! > On entry, Y contains the data snapshot matrix Y
|
|
||||||
! < On exit,
|
|
||||||
! If JOBR == 'R', the leading K columns of Y contain
|
|
||||||
! the residual vectors for the computed Ritz pairs.
|
|
||||||
! See the description of RES.
|
|
||||||
! If JOBR == 'N', Y contains the original input data,
|
|
||||||
! scaled according to the value of JOBS.
|
|
||||||
!.....
|
|
||||||
! LDY (input) INTEGER , LDY >= M
|
|
||||||
! The leading dimension of the array Y.
|
|
||||||
!.....
|
|
||||||
! NRNK (input) INTEGER
|
|
||||||
! Determines the mode how to compute the numerical rank,
|
|
||||||
! i.e. how to truncate small singular values of the input
|
|
||||||
! matrix X. On input, if
|
|
||||||
! NRNK = -1 :: i-th singular value sigma(i) is truncated
|
|
||||||
! if sigma(i) <= TOL*sigma(1)
|
|
||||||
! This option is recommended.
|
|
||||||
! NRNK = -2 :: i-th singular value sigma(i) is truncated
|
|
||||||
! if sigma(i) <= TOL*sigma(i-1)
|
|
||||||
! This option is included for R&D purposes.
|
|
||||||
! It requires highly accurate SVD, which
|
|
||||||
! may not be feasible.
|
|
||||||
! The numerical rank can be enforced by using positive
|
|
||||||
! value of NRNK as follows:
|
|
||||||
! 0 < NRNK <= N :: at most NRNK largest singular values
|
|
||||||
! will be used. If the number of the computed nonzero
|
|
||||||
! singular values is less than NRNK, then only those
|
|
||||||
! nonzero values will be used and the actually used
|
|
||||||
! dimension is less than NRNK. The actual number of
|
|
||||||
! the nonzero singular values is returned in the variable
|
|
||||||
! K. See the descriptions of TOL and K.
|
|
||||||
!.....
|
|
||||||
! TOL (input) REAL(KIND=WP), 0 <= TOL < 1
|
|
||||||
! The tolerance for truncating small singular values.
|
|
||||||
! See the description of NRNK.
|
|
||||||
!.....
|
|
||||||
! K (output) INTEGER, 0 <= K <= N
|
|
||||||
! The dimension of the POD basis for the data snapshot
|
|
||||||
! matrix X and the number of the computed Ritz pairs.
|
|
||||||
! The value of K is determined according to the rule set
|
|
||||||
! by the parameters NRNK and TOL.
|
|
||||||
! See the descriptions of NRNK and TOL.
|
|
||||||
!.....
|
|
||||||
! EIGS (output) COMPLEX(KIND=WP) N-by-1 array
|
|
||||||
! The leading K (K<=N) entries of EIGS contain
|
|
||||||
! the computed eigenvalues (Ritz values).
|
|
||||||
! See the descriptions of K, and Z.
|
|
||||||
!.....
|
|
||||||
! Z (workspace/output) COMPLEX(KIND=WP) M-by-N array
|
|
||||||
! If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i)
|
|
||||||
! is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1.
|
|
||||||
! If JOBZ == 'F', then the Z(:,i)'s are given implicitly as
|
|
||||||
! the columns of X(:,1:K)*W(1:K,1:K), i.e. X(:,1:K)*W(:,i)
|
|
||||||
! is an eigenvector corresponding to EIGS(i). The columns
|
|
||||||
! of W(1:k,1:K) are the computed eigenvectors of the
|
|
||||||
! K-by-K Rayleigh quotient.
|
|
||||||
! See the descriptions of EIGS, X and W.
|
|
||||||
!.....
|
|
||||||
! LDZ (input) INTEGER , LDZ >= M
|
|
||||||
! The leading dimension of the array Z.
|
|
||||||
!.....
|
|
||||||
! RES (output) REAL(KIND=WP) N-by-1 array
|
|
||||||
! RES(1:K) contains the residuals for the K computed
|
|
||||||
! Ritz pairs,
|
|
||||||
! RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2.
|
|
||||||
! See the description of EIGS and Z.
|
|
||||||
!.....
|
|
||||||
! B (output) COMPLEX(KIND=WP) M-by-N array.
|
|
||||||
! IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can
|
|
||||||
! be used for computing the refined vectors; see further
|
|
||||||
! details in the provided references.
|
|
||||||
! If JOBF == 'E', B(1:M,1:K) contains
|
|
||||||
! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
|
|
||||||
! Exact DMD, up to scaling by the inverse eigenvalues.
|
|
||||||
! If JOBF =='N', then B is not referenced.
|
|
||||||
! See the descriptions of X, W, K.
|
|
||||||
!.....
|
|
||||||
! LDB (input) INTEGER, LDB >= M
|
|
||||||
! The leading dimension of the array B.
|
|
||||||
!.....
|
|
||||||
! W (workspace/output) COMPLEX(KIND=WP) N-by-N array
|
|
||||||
! On exit, W(1:K,1:K) contains the K computed
|
|
||||||
! eigenvectors of the matrix Rayleigh quotient.
|
|
||||||
! The Ritz vectors (returned in Z) are the
|
|
||||||
! product of X (containing a POD basis for the input
|
|
||||||
! matrix X) and W. See the descriptions of K, S, X and Z.
|
|
||||||
! W is also used as a workspace to temporarily store the
|
|
||||||
! right singular vectors of X.
|
|
||||||
!.....
|
|
||||||
! LDW (input) INTEGER, LDW >= N
|
|
||||||
! The leading dimension of the array W.
|
|
||||||
!.....
|
|
||||||
! S (workspace/output) COMPLEX(KIND=WP) N-by-N array
|
|
||||||
! The array S(1:K,1:K) is used for the matrix Rayleigh
|
|
||||||
! quotient. This content is overwritten during
|
|
||||||
! the eigenvalue decomposition by ZGEEV.
|
|
||||||
! See the description of K.
|
|
||||||
!.....
|
|
||||||
! LDS (input) INTEGER, LDS >= N
|
|
||||||
! The leading dimension of the array S.
|
|
||||||
!.....
|
|
||||||
! ZWORK (workspace/output) COMPLEX(KIND=WP) LZWORK-by-1 array
|
|
||||||
! ZWORK is used as complex workspace in the complex SVD, as
|
|
||||||
! specified by WHTSVD (1,2, 3 or 4) and for ZGEEV for computing
|
|
||||||
! the eigenvalues of a Rayleigh quotient.
|
|
||||||
! If the call to ZGEDMD is only workspace query, then
|
|
||||||
! ZWORK(1) contains the minimal complex workspace length and
|
|
||||||
! ZWORK(2) is the optimal complex workspace length.
|
|
||||||
! Hence, the length of work is at least 2.
|
|
||||||
! See the description of LZWORK.
|
|
||||||
!.....
|
|
||||||
! LZWORK (input) INTEGER
|
|
||||||
! The minimal length of the workspace vector ZWORK.
|
|
||||||
! LZWORK is calculated as MAX(LZWORK_SVD, LZWORK_ZGEEV),
|
|
||||||
! where LZWORK_ZGEEV = MAX( 1, 2*N ) and the minimal
|
|
||||||
! LZWORK_SVD is calculated as follows
|
|
||||||
! If WHTSVD == 1 :: ZGESVD ::
|
|
||||||
! LZWORK_SVD = MAX(1,2*MIN(M,N)+MAX(M,N))
|
|
||||||
! If WHTSVD == 2 :: ZGESDD ::
|
|
||||||
! LZWORK_SVD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N)
|
|
||||||
! If WHTSVD == 3 :: ZGESVDQ ::
|
|
||||||
! LZWORK_SVD = obtainable by a query
|
|
||||||
! If WHTSVD == 4 :: ZGEJSV ::
|
|
||||||
! LZWORK_SVD = obtainable by a query
|
|
||||||
! If on entry LZWORK = -1, then a workspace query is
|
|
||||||
! assumed and the procedure only computes the minimal
|
|
||||||
! and the optimal workspace lengths and returns them in
|
|
||||||
! LZWORK(1) and LZWORK(2), respectively.
|
|
||||||
!.....
|
|
||||||
! RWORK (workspace/output) REAL(KIND=WP) LRWORK-by-1 array
|
|
||||||
! On exit, RWORK(1:N) contains the singular values of
|
|
||||||
! X (for JOBS=='N') or column scaled X (JOBS=='S', 'C').
|
|
||||||
! If WHTSVD==4, then RWORK(N+1) and RWORK(N+2) contain
|
|
||||||
! scaling factor RWORK(N+2)/RWORK(N+1) used to scale X
|
|
||||||
! and Y to avoid overflow in the SVD of X.
|
|
||||||
! This may be of interest if the scaling option is off
|
|
||||||
! and as many as possible smallest eigenvalues are
|
|
||||||
! desired to the highest feasible accuracy.
|
|
||||||
! If the call to ZGEDMD is only workspace query, then
|
|
||||||
! RWORK(1) contains the minimal workspace length.
|
|
||||||
! See the description of LRWORK.
|
|
||||||
!.....
|
|
||||||
! LRWORK (input) INTEGER
|
|
||||||
! The minimal length of the workspace vector RWORK.
|
|
||||||
! LRWORK is calculated as follows:
|
|
||||||
! LRWORK = MAX(1, N+LRWORK_SVD,N+LRWORK_ZGEEV), where
|
|
||||||
! LRWORK_ZGEEV = MAX(1,2*N) and RWORK_SVD is the real workspace
|
|
||||||
! for the SVD subroutine determined by the input parameter
|
|
||||||
! WHTSVD.
|
|
||||||
! If WHTSVD == 1 :: ZGESVD ::
|
|
||||||
! LRWORK_SVD = 5*MIN(M,N)
|
|
||||||
! If WHTSVD == 2 :: ZGESDD ::
|
|
||||||
! LRWORK_SVD = MAX(5*MIN(M,N)*MIN(M,N)+7*MIN(M,N),
|
|
||||||
! 2*MAX(M,N)*MIN(M,N)+2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) )
|
|
||||||
! If WHTSVD == 3 :: ZGESVDQ ::
|
|
||||||
! LRWORK_SVD = obtainable by a query
|
|
||||||
! If WHTSVD == 4 :: ZGEJSV ::
|
|
||||||
! LRWORK_SVD = obtainable by a query
|
|
||||||
! If on entry LRWORK = -1, then a workspace query is
|
|
||||||
! assumed and the procedure only computes the minimal
|
|
||||||
! real workspace length and returns it in RWORK(1).
|
|
||||||
!.....
|
|
||||||
! IWORK (workspace/output) INTEGER LIWORK-by-1 array
|
|
||||||
! Workspace that is required only if WHTSVD equals
|
|
||||||
! 2 , 3 or 4. (See the description of WHTSVD).
|
|
||||||
! If on entry LWORK =-1 or LIWORK=-1, then the
|
|
||||||
! minimal length of IWORK is computed and returned in
|
|
||||||
! IWORK(1). See the description of LIWORK.
|
|
||||||
!.....
|
|
||||||
! LIWORK (input) INTEGER
|
|
||||||
! The minimal length of the workspace vector IWORK.
|
|
||||||
! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
|
|
||||||
! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N))
|
|
||||||
! If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1)
|
|
||||||
! If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N)
|
|
||||||
! If on entry LIWORK = -1, then a workspace query is
|
|
||||||
! assumed and the procedure only computes the minimal
|
|
||||||
! and the optimal workspace lengths for ZWORK, RWORK and
|
|
||||||
! IWORK. See the descriptions of ZWORK, RWORK and IWORK.
|
|
||||||
!.....
|
|
||||||
! INFO (output) INTEGER
|
|
||||||
! -i < 0 :: On entry, the i-th argument had an
|
|
||||||
! illegal value
|
|
||||||
! = 0 :: Successful return.
|
|
||||||
! = 1 :: Void input. Quick exit (M=0 or N=0).
|
|
||||||
! = 2 :: The SVD computation of X did not converge.
|
|
||||||
! Suggestion: Check the input data and/or
|
|
||||||
! repeat with different WHTSVD.
|
|
||||||
! = 3 :: The computation of the eigenvalues did not
|
|
||||||
! converge.
|
|
||||||
! = 4 :: If data scaling was requested on input and
|
|
||||||
! the procedure found inconsistency in the data
|
|
||||||
! such that for some column index i,
|
|
||||||
! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
|
|
||||||
! to zero if JOBS=='C'. The computation proceeds
|
|
||||||
! with original or modified data and warning
|
|
||||||
! flag is set with INFO=4.
|
|
||||||
!.............................................................
|
|
||||||
!.............................................................
|
|
||||||
! Parameters
|
! Parameters
|
||||||
! ~~~~~~~~~~
|
! ~~~~~~~~~~
|
||||||
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP
|
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP
|
||||||
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP
|
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP
|
||||||
COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP )
|
COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP )
|
||||||
COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP )
|
COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP )
|
||||||
|
!
|
||||||
! Local scalars
|
! Local scalars
|
||||||
! ~~~~~~~~~~~~~
|
! ~~~~~~~~~~~~~
|
||||||
REAL(KIND=WP) :: OFL, ROOTSC, SCALE, SMALL, &
|
REAL(KIND=WP) :: OFL, ROOTSC, SCALE, SMALL, &
|
||||||
|
@ -401,7 +551,7 @@
|
||||||
! Local arrays
|
! Local arrays
|
||||||
! ~~~~~~~~~~~~
|
! ~~~~~~~~~~~~
|
||||||
REAL(KIND=WP) :: RDUMMY(2)
|
REAL(KIND=WP) :: RDUMMY(2)
|
||||||
|
!
|
||||||
! External functions (BLAS and LAPACK)
|
! External functions (BLAS and LAPACK)
|
||||||
! ~~~~~~~~~~~~~~~~~
|
! ~~~~~~~~~~~~~~~~~
|
||||||
REAL(KIND=WP) ZLANGE, DLAMCH, DZNRM2
|
REAL(KIND=WP) ZLANGE, DLAMCH, DZNRM2
|
||||||
|
@ -409,13 +559,13 @@
|
||||||
INTEGER IZAMAX
|
INTEGER IZAMAX
|
||||||
LOGICAL DISNAN, LSAME
|
LOGICAL DISNAN, LSAME
|
||||||
EXTERNAL DISNAN, LSAME
|
EXTERNAL DISNAN, LSAME
|
||||||
|
!
|
||||||
! External subroutines (BLAS and LAPACK)
|
! External subroutines (BLAS and LAPACK)
|
||||||
! ~~~~~~~~~~~~~~~~~~~~
|
! ~~~~~~~~~~~~~~~~~~~~
|
||||||
EXTERNAL ZAXPY, ZGEMM, ZDSCAL
|
EXTERNAL ZAXPY, ZGEMM, ZDSCAL
|
||||||
EXTERNAL ZGEEV, ZGEJSV, ZGESDD, ZGESVD, ZGESVDQ, &
|
EXTERNAL ZGEEV, ZGEJSV, ZGESDD, ZGESVD, ZGESVDQ, &
|
||||||
ZLACPY, ZLASCL, ZLASSQ, XERBLA
|
ZLACPY, ZLASCL, ZLASSQ, XERBLA
|
||||||
|
!
|
||||||
! Intrinsic functions
|
! Intrinsic functions
|
||||||
! ~~~~~~~~~~~~~~~~~~~
|
! ~~~~~~~~~~~~~~~~~~~
|
||||||
INTRINSIC DBLE, INT, MAX, SQRT
|
INTRINSIC DBLE, INT, MAX, SQRT
|
||||||
|
@ -608,7 +758,8 @@
|
||||||
K = 0
|
K = 0
|
||||||
DO i = 1, N
|
DO i = 1, N
|
||||||
!WORK(i) = DZNRM2( M, X(1,i), 1 )
|
!WORK(i) = DZNRM2( M, X(1,i), 1 )
|
||||||
SCALE = ZERO
|
SSUM = ONE
|
||||||
|
SCALE = ZERO
|
||||||
CALL ZLASSQ( M, X(1,i), 1, SCALE, SSUM )
|
CALL ZLASSQ( M, X(1,i), 1, SCALE, SSUM )
|
||||||
IF ( DISNAN(SCALE) .OR. DISNAN(SSUM) ) THEN
|
IF ( DISNAN(SCALE) .OR. DISNAN(SSUM) ) THEN
|
||||||
K = 0
|
K = 0
|
||||||
|
@ -681,7 +832,8 @@
|
||||||
! carefully computed using ZLASSQ.
|
! carefully computed using ZLASSQ.
|
||||||
DO i = 1, N
|
DO i = 1, N
|
||||||
!RWORK(i) = DZNRM2( M, Y(1,i), 1 )
|
!RWORK(i) = DZNRM2( M, Y(1,i), 1 )
|
||||||
SCALE = ZERO
|
SSUM = ONE
|
||||||
|
SCALE = ZERO
|
||||||
CALL ZLASSQ( M, Y(1,i), 1, SCALE, SSUM )
|
CALL ZLASSQ( M, Y(1,i), 1, SCALE, SSUM )
|
||||||
IF ( DISNAN(SCALE) .OR. DISNAN(SSUM) ) THEN
|
IF ( DISNAN(SCALE) .OR. DISNAN(SSUM) ) THEN
|
||||||
K = 0
|
K = 0
|
||||||
|
|
Loading…
Reference in New Issue