Fix issues related to ?GEDMD (Reference-LAPACK PR 959)

This commit is contained in:
Martin Kroeker 2023-12-23 23:27:38 +01:00 committed by GitHub
parent 05dde8ef04
commit 201f22f49a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 2124 additions and 1512 deletions

View File

@ -1,22 +1,526 @@
!> \brief \b CGEDMD computes the Dynamic Mode Decomposition (DMD) for a pair of data snapshot matrices.
!
! =========== DOCUMENTATION ===========
!
! Definition:
! ===========
!
! SUBROUTINE CGEDMD( JOBS, JOBZ, JOBR, JOBF, WHTSVD, &
! M, N, X, LDX, Y, LDY, NRNK, TOL, &
! K, EIGS, Z, LDZ, RES, B, LDB, &
! W, LDW, S, LDS, ZWORK, LZWORK, &
! RWORK, LRWORK, IWORK, LIWORK, INFO )
!.....
! USE iso_fortran_env
! IMPLICIT NONE
! INTEGER, PARAMETER :: WP = real32
!
!.....
! Scalar arguments
! CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBF
! INTEGER, INTENT(IN) :: WHTSVD, M, N, LDX, LDY, &
! NRNK, LDZ, LDB, LDW, LDS, &
! LIWORK, LRWORK, LZWORK
! INTEGER, INTENT(OUT) :: K, INFO
! REAL(KIND=WP), INTENT(IN) :: TOL
! Array arguments
! COMPLEX(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*)
! COMPLEX(KIND=WP), INTENT(OUT) :: Z(LDZ,*), B(LDB,*), &
! W(LDW,*), S(LDS,*)
! COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*)
! COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*)
! REAL(KIND=WP), INTENT(OUT) :: RES(*)
! REAL(KIND=WP), INTENT(OUT) :: RWORK(*)
! INTEGER, INTENT(OUT) :: IWORK(*)
!
!............................................................
!> \par Purpose:
! =============
!> \verbatim
!> CGEDMD computes the Dynamic Mode Decomposition (DMD) for
!> a pair of data snapshot matrices. For the input matrices
!> X and Y such that Y = A*X with an unaccessible matrix
!> A, CGEDMD computes a certain number of Ritz pairs of A using
!> the standard Rayleigh-Ritz extraction from a subspace of
!> range(X) that is determined using the leading left singular
!> vectors of X. Optionally, CGEDMD returns the residuals
!> of the computed Ritz pairs, the information needed for
!> a refinement of the Ritz vectors, or the eigenvectors of
!> the Exact DMD.
!> For further details see the references listed
!> below. For more details of the implementation see [3].
!> \endverbatim
!............................................................
!> \par References:
! ================
!> \verbatim
!> [1] P. Schmid: Dynamic mode decomposition of numerical
!> and experimental data,
!> Journal of Fluid Mechanics 656, 5-28, 2010.
!> [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
!> decompositions: analysis and enhancements,
!> SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
!> [3] Z. Drmac: A LAPACK implementation of the Dynamic
!> Mode Decomposition I. Technical report. AIMDyn Inc.
!> and LAPACK Working Note 298.
!> [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
!> Brunton, N. Kutz: On Dynamic Mode Decomposition:
!> Theory and Applications, Journal of Computational
!> Dynamics 1(2), 391 -421, 2014.
!> \endverbatim
!......................................................................
!> \par Developed and supported by:
! ================================
!> \verbatim
!> Developed and coded by Zlatko Drmac, Faculty of Science,
!> University of Zagreb; drmac@math.hr
!> In cooperation with
!> AIMdyn Inc., Santa Barbara, CA.
!> and supported by
!> - DARPA SBIR project "Koopman Operator-Based Forecasting
!> for Nonstationary Processes from Near-Term, Limited
!> Observational Data" Contract No: W31P4Q-21-C-0007
!> - DARPA PAI project "Physics-Informed Machine Learning
!> Methodologies" Contract No: HR0011-18-9-0033
!> - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
!> Framework for Space-Time Analysis of Process Dynamics"
!> Contract No: HR0011-16-C-0116
!> Any opinions, findings and conclusions or recommendations
!> expressed in this material are those of the author and
!> do not necessarily reflect the views of the DARPA SBIR
!> Program Office
!> \endverbatim
!......................................................................
!> \par Distribution Statement A:
! ==============================
!> \verbatim
!> Approved for Public Release, Distribution Unlimited.
!> Cleared by DARPA on September 29, 2022
!> \endverbatim
!......................................................................
! Arguments
! =========
!
!> \param[in] JOBS
!> \verbatim
!> JOBS (input) CHARACTER*1
!> Determines whether the initial data snapshots are scaled
!> by a diagonal matrix.
!> 'S' :: The data snapshots matrices X and Y are multiplied
!> with a diagonal matrix D so that X*D has unit
!> nonzero columns (in the Euclidean 2-norm)
!> 'C' :: The snapshots are scaled as with the 'S' option.
!> If it is found that an i-th column of X is zero
!> vector and the corresponding i-th column of Y is
!> non-zero, then the i-th column of Y is set to
!> zero and a warning flag is raised.
!> 'Y' :: The data snapshots matrices X and Y are multiplied
!> by a diagonal matrix D so that Y*D has unit
!> nonzero columns (in the Euclidean 2-norm)
!> 'N' :: No data scaling.
!> \endverbatim
!.....
!> \param[in] JOBZ
!> \verbatim
!> JOBZ (input) CHARACTER*1
!> Determines whether the eigenvectors (Koopman modes) will
!> be computed.
!> 'V' :: The eigenvectors (Koopman modes) will be computed
!> and returned in the matrix Z.
!> See the description of Z.
!> 'F' :: The eigenvectors (Koopman modes) will be returned
!> in factored form as the product X(:,1:K)*W, where X
!> contains a POD basis (leading left singular vectors
!> of the data matrix X) and W contains the eigenvectors
!> of the corresponding Rayleigh quotient.
!> See the descriptions of K, X, W, Z.
!> 'N' :: The eigenvectors are not computed.
!> \endverbatim
!.....
!> \param[in] JOBR
!> \verbatim
!> JOBR (input) CHARACTER*1
!> Determines whether to compute the residuals.
!> 'R' :: The residuals for the computed eigenpairs will be
!> computed and stored in the array RES.
!> See the description of RES.
!> For this option to be legal, JOBZ must be 'V'.
!> 'N' :: The residuals are not computed.
!> \endverbatim
!.....
!> \param[in] JOBF
!> \verbatim
!> JOBF (input) CHARACTER*1
!> Specifies whether to store information needed for post-
!> processing (e.g. computing refined Ritz vectors)
!> 'R' :: The matrix needed for the refinement of the Ritz
!> vectors is computed and stored in the array B.
!> See the description of B.
!> 'E' :: The unscaled eigenvectors of the Exact DMD are
!> computed and returned in the array B. See the
!> description of B.
!> 'N' :: No eigenvector refinement data is computed.
!> \endverbatim
!.....
!> \param[in] WHTSVD
!> \verbatim
!> WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
!> Allows for a selection of the SVD algorithm from the
!> LAPACK library.
!> 1 :: CGESVD (the QR SVD algorithm)
!> 2 :: CGESDD (the Divide and Conquer algorithm; if enough
!> workspace available, this is the fastest option)
!> 3 :: CGESVDQ (the preconditioned QR SVD ; this and 4
!> are the most accurate options)
!> 4 :: CGEJSV (the preconditioned Jacobi SVD; this and 3
!> are the most accurate options)
!> For the four methods above, a significant difference in
!> the accuracy of small singular values is possible if
!> the snapshots vary in norm so that X is severely
!> ill-conditioned. If small (smaller than EPS*||X||)
!> singular values are of interest and JOBS=='N', then
!> the options (3, 4) give the most accurate results, where
!> the option 4 is slightly better and with stronger
!> theoretical background.
!> If JOBS=='S', i.e. the columns of X will be normalized,
!> then all methods give nearly equally accurate results.
!> \endverbatim
!.....
!> \param[in] M
!> \verbatim
!> M (input) INTEGER, M>= 0
!> The state space dimension (the row dimension of X, Y).
!> \endverbatim
!.....
!> \param[in] N
!> \verbatim
!> N (input) INTEGER, 0 <= N <= M
!> The number of data snapshot pairs
!> (the number of columns of X and Y).
!> \endverbatim
!.....
!> \param[in,out] X
!> \verbatim
!> X (input/output) COMPLEX(KIND=WP) M-by-N array
!> > On entry, X contains the data snapshot matrix X. It is
!> assumed that the column norms of X are in the range of
!> the normalized floating point numbers.
!> < On exit, the leading K columns of X contain a POD basis,
!> i.e. the leading K left singular vectors of the input
!> data matrix X, U(:,1:K). All N columns of X contain all
!> left singular vectors of the input matrix X.
!> See the descriptions of K, Z and W.
!> \endverbatim
!.....
!> \param[in] LDX
!> \verbatim
!> LDX (input) INTEGER, LDX >= M
!> The leading dimension of the array X.
!> \endverbatim
!.....
!> \param[in,out] Y
!> \verbatim
!> Y (input/workspace/output) COMPLEX(KIND=WP) M-by-N array
!> > On entry, Y contains the data snapshot matrix Y
!> < On exit,
!> If JOBR == 'R', the leading K columns of Y contain
!> the residual vectors for the computed Ritz pairs.
!> See the description of RES.
!> If JOBR == 'N', Y contains the original input data,
!> scaled according to the value of JOBS.
!> \endverbatim
!.....
!> \param[in] LDY
!> \verbatim
!> LDY (input) INTEGER , LDY >= M
!> The leading dimension of the array Y.
!> \endverbatim
!.....
!> \param[in] NRNK
!> \verbatim
!> NRNK (input) INTEGER
!> Determines the mode how to compute the numerical rank,
!> i.e. how to truncate small singular values of the input
!> matrix X. On input, if
!> NRNK = -1 :: i-th singular value sigma(i) is truncated
!> if sigma(i) <= TOL*sigma(1)
!> This option is recommended.
!> NRNK = -2 :: i-th singular value sigma(i) is truncated
!> if sigma(i) <= TOL*sigma(i-1)
!> This option is included for R&D purposes.
!> It requires highly accurate SVD, which
!> may not be feasible.
!> The numerical rank can be enforced by using positive
!> value of NRNK as follows:
!> 0 < NRNK <= N :: at most NRNK largest singular values
!> will be used. If the number of the computed nonzero
!> singular values is less than NRNK, then only those
!> nonzero values will be used and the actually used
!> dimension is less than NRNK. The actual number of
!> the nonzero singular values is returned in the variable
!> K. See the descriptions of TOL and K.
!> \endverbatim
!.....
!> \param[in] TOL
!> \verbatim
!> TOL (input) REAL(KIND=WP), 0 <= TOL < 1
!> The tolerance for truncating small singular values.
!> See the description of NRNK.
!> \endverbatim
!.....
!> \param[out] K
!> \verbatim
!> K (output) INTEGER, 0 <= K <= N
!> The dimension of the POD basis for the data snapshot
!> matrix X and the number of the computed Ritz pairs.
!> The value of K is determined according to the rule set
!> by the parameters NRNK and TOL.
!> See the descriptions of NRNK and TOL.
!> \endverbatim
!.....
!> \param[out] EIGS
!> \verbatim
!> EIGS (output) COMPLEX(KIND=WP) N-by-1 array
!> The leading K (K<=N) entries of EIGS contain
!> the computed eigenvalues (Ritz values).
!> See the descriptions of K, and Z.
!> \endverbatim
!.....
!> \param[out] Z
!> \verbatim
!> Z (workspace/output) COMPLEX(KIND=WP) M-by-N array
!> If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i)
!> is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1.
!> If JOBZ == 'F', then the Z(:,i)'s are given implicitly as
!> the columns of X(:,1:K)*W(1:K,1:K), i.e. X(:,1:K)*W(:,i)
!> is an eigenvector corresponding to EIGS(i). The columns
!> of W(1:k,1:K) are the computed eigenvectors of the
!> K-by-K Rayleigh quotient.
!> See the descriptions of EIGS, X and W.
!> \endverbatim
!.....
!> \param[in] LDZ
!> \verbatim
!> LDZ (input) INTEGER , LDZ >= M
!> The leading dimension of the array Z.
!> \endverbatim
!.....
!> \param[out] RES
!> \verbatim
!> RES (output) REAL(KIND=WP) N-by-1 array
!> RES(1:K) contains the residuals for the K computed
!> Ritz pairs,
!> RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2.
!> See the description of EIGS and Z.
!> \endverbatim
!.....
!> \param[out] B
!> \verbatim
!> B (output) COMPLEX(KIND=WP) M-by-N array.
!> IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can
!> be used for computing the refined vectors; see further
!> details in the provided references.
!> If JOBF == 'E', B(1:M,1:K) contains
!> A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
!> Exact DMD, up to scaling by the inverse eigenvalues.
!> If JOBF =='N', then B is not referenced.
!> See the descriptions of X, W, K.
!> \endverbatim
!.....
!> \param[in] LDB
!> \verbatim
!> LDB (input) INTEGER, LDB >= M
!> The leading dimension of the array B.
!> \endverbatim
!.....
!> \param[out] W
!> \verbatim
!> W (workspace/output) COMPLEX(KIND=WP) N-by-N array
!> On exit, W(1:K,1:K) contains the K computed
!> eigenvectors of the matrix Rayleigh quotient.
!> The Ritz vectors (returned in Z) are the
!> product of X (containing a POD basis for the input
!> matrix X) and W. See the descriptions of K, S, X and Z.
!> W is also used as a workspace to temporarily store the
!> right singular vectors of X.
!> \endverbatim
!.....
!> \param[in] LDW
!> \verbatim
!> LDW (input) INTEGER, LDW >= N
!> The leading dimension of the array W.
!> \endverbatim
!.....
!> \param[out] S
!> \verbatim
!> S (workspace/output) COMPLEX(KIND=WP) N-by-N array
!> The array S(1:K,1:K) is used for the matrix Rayleigh
!> quotient. This content is overwritten during
!> the eigenvalue decomposition by CGEEV.
!> See the description of K.
!> \endverbatim
!.....
!> \param[in] LDS
!> \verbatim
!> LDS (input) INTEGER, LDS >= N
!> The leading dimension of the array S.
!> \endverbatim
!.....
!> \param[out] ZWORK
!> \verbatim
!> ZWORK (workspace/output) COMPLEX(KIND=WP) LZWORK-by-1 array
!> ZWORK is used as complex workspace in the complex SVD, as
!> specified by WHTSVD (1,2, 3 or 4) and for CGEEV for computing
!> the eigenvalues of a Rayleigh quotient.
!> If the call to CGEDMD is only workspace query, then
!> ZWORK(1) contains the minimal complex workspace length and
!> ZWORK(2) is the optimal complex workspace length.
!> Hence, the length of work is at least 2.
!> See the description of LZWORK.
!> \endverbatim
!.....
!> \param[in] LZWORK
!> \verbatim
!> LZWORK (input) INTEGER
!> The minimal length of the workspace vector ZWORK.
!> LZWORK is calculated as MAX(LZWORK_SVD, LZWORK_CGEEV),
!> where LZWORK_CGEEV = MAX( 1, 2*N ) and the minimal
!> LZWORK_SVD is calculated as follows
!> If WHTSVD == 1 :: CGESVD ::
!> LZWORK_SVD = MAX(1,2*MIN(M,N)+MAX(M,N))
!> If WHTSVD == 2 :: CGESDD ::
!> LZWORK_SVD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N)
!> If WHTSVD == 3 :: CGESVDQ ::
!> LZWORK_SVD = obtainable by a query
!> If WHTSVD == 4 :: CGEJSV ::
!> LZWORK_SVD = obtainable by a query
!> If on entry LZWORK = -1, then a workspace query is
!> assumed and the procedure only computes the minimal
!> and the optimal workspace lengths and returns them in
!> LZWORK(1) and LZWORK(2), respectively.
!> \endverbatim
!.....
!> \param[out] RWORK
!> \verbatim
!> RWORK (workspace/output) REAL(KIND=WP) LRWORK-by-1 array
!> On exit, RWORK(1:N) contains the singular values of
!> X (for JOBS=='N') or column scaled X (JOBS=='S', 'C').
!> If WHTSVD==4, then RWORK(N+1) and RWORK(N+2) contain
!> scaling factor RWORK(N+2)/RWORK(N+1) used to scale X
!> and Y to avoid overflow in the SVD of X.
!> This may be of interest if the scaling option is off
!> and as many as possible smallest eigenvalues are
!> desired to the highest feasible accuracy.
!> If the call to CGEDMD is only workspace query, then
!> RWORK(1) contains the minimal workspace length.
!> See the description of LRWORK.
!> \endverbatim
!.....
!> \param[in] LRWORK
!> \verbatim
!> LRWORK (input) INTEGER
!> The minimal length of the workspace vector RWORK.
!> LRWORK is calculated as follows:
!> LRWORK = MAX(1, N+LRWORK_SVD,N+LRWORK_CGEEV), where
!> LRWORK_CGEEV = MAX(1,2*N) and RWORK_SVD is the real workspace
!> for the SVD subroutine determined by the input parameter
!> WHTSVD.
!> If WHTSVD == 1 :: CGESVD ::
!> LRWORK_SVD = 5*MIN(M,N)
!> If WHTSVD == 2 :: CGESDD ::
!> LRWORK_SVD = MAX(5*MIN(M,N)*MIN(M,N)+7*MIN(M,N),
!> 2*MAX(M,N)*MIN(M,N)+2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) )
!> If WHTSVD == 3 :: CGESVDQ ::
!> LRWORK_SVD = obtainable by a query
!> If WHTSVD == 4 :: CGEJSV ::
!> LRWORK_SVD = obtainable by a query
!> If on entry LRWORK = -1, then a workspace query is
!> assumed and the procedure only computes the minimal
!> real workspace length and returns it in RWORK(1).
!> \endverbatim
!.....
!> \param[out] IWORK
!> \verbatim
!> IWORK (workspace/output) INTEGER LIWORK-by-1 array
!> Workspace that is required only if WHTSVD equals
!> 2 , 3 or 4. (See the description of WHTSVD).
!> If on entry LWORK =-1 or LIWORK=-1, then the
!> minimal length of IWORK is computed and returned in
!> IWORK(1). See the description of LIWORK.
!> \endverbatim
!.....
!> \param[in] LIWORK
!> \verbatim
!> LIWORK (input) INTEGER
!> The minimal length of the workspace vector IWORK.
!> If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
!> If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N))
!> If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1)
!> If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N)
!> If on entry LIWORK = -1, then a workspace query is
!> assumed and the procedure only computes the minimal
!> and the optimal workspace lengths for ZWORK, RWORK and
!> IWORK. See the descriptions of ZWORK, RWORK and IWORK.
!> \endverbatim
!.....
!> \param[out] INFO
!> \verbatim
!> INFO (output) INTEGER
!> -i < 0 :: On entry, the i-th argument had an
!> illegal value
!> = 0 :: Successful return.
!> = 1 :: Void input. Quick exit (M=0 or N=0).
!> = 2 :: The SVD computation of X did not converge.
!> Suggestion: Check the input data and/or
!> repeat with different WHTSVD.
!> = 3 :: The computation of the eigenvalues did not
!> converge.
!> = 4 :: If data scaling was requested on input and
!> the procedure found inconsistency in the data
!> such that for some column index i,
!> X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
!> to zero if JOBS=='C'. The computation proceeds
!> with original or modified data and warning
!> flag is set with INFO=4.
!> \endverbatim
!
! Authors:
! ========
!
!> \author Zlatko Drmac
!
!> \ingroup gedmd
!
!.............................................................
!.............................................................
SUBROUTINE CGEDMD( JOBS, JOBZ, JOBR, JOBF, WHTSVD, &
M, N, X, LDX, Y, LDY, NRNK, TOL, &
K, EIGS, Z, LDZ, RES, B, LDB, &
W, LDW, S, LDS, ZWORK, LZWORK, &
RWORK, LRWORK, IWORK, LIWORK, INFO )
! March 2023
!
! -- LAPACK driver routine --
!
! -- LAPACK is a software package provided by University of --
! -- Tennessee, University of California Berkeley, University of --
! -- Colorado Denver and NAG Ltd.. --
!
!.....
USE iso_fortran_env
IMPLICIT NONE
INTEGER, PARAMETER :: WP = real32
!.....
!
! Scalar arguments
! ~~~~~~~~~~~~~~~~
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBF
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDX, LDY, &
NRNK, LDZ, LDB, LDW, LDS, &
LIWORK, LRWORK, LZWORK
INTEGER, INTENT(OUT) :: K, INFO
REAL(KIND=WP), INTENT(IN) :: TOL
!
! Array arguments
! ~~~~~~~~~~~~~~~
COMPLEX(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*)
COMPLEX(KIND=WP), INTENT(OUT) :: Z(LDZ,*), B(LDB,*), &
W(LDW,*), S(LDS,*)
@ -25,364 +529,14 @@
REAL(KIND=WP), INTENT(OUT) :: RES(*)
REAL(KIND=WP), INTENT(OUT) :: RWORK(*)
INTEGER, INTENT(OUT) :: IWORK(*)
!............................................................
! Purpose
! =======
! CGEDMD computes the Dynamic Mode Decomposition (DMD) for
! a pair of data snapshot matrices. For the input matrices
! X and Y such that Y = A*X with an unaccessible matrix
! A, CGEDMD computes a certain number of Ritz pairs of A using
! the standard Rayleigh-Ritz extraction from a subspace of
! range(X) that is determined using the leading left singular
! vectors of X. Optionally, CGEDMD returns the residuals
! of the computed Ritz pairs, the information needed for
! a refinement of the Ritz vectors, or the eigenvectors of
! the Exact DMD.
! For further details see the references listed
! below. For more details of the implementation see [3].
!
! References
! ==========
! [1] P. Schmid: Dynamic mode decomposition of numerical
! and experimental data,
! Journal of Fluid Mechanics 656, 5-28, 2010.
! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
! decompositions: analysis and enhancements,
! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
! [3] Z. Drmac: A LAPACK implementation of the Dynamic
! Mode Decomposition I. Technical report. AIMDyn Inc.
! and LAPACK Working Note 298.
! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
! Brunton, N. Kutz: On Dynamic Mode Decomposition:
! Theory and Applications, Journal of Computational
! Dynamics 1(2), 391 -421, 2014.
!
!......................................................................
! Developed and supported by:
! ===========================
! Developed and coded by Zlatko Drmac, Faculty of Science,
! University of Zagreb; drmac@math.hr
! In cooperation with
! AIMdyn Inc., Santa Barbara, CA.
! and supported by
! - DARPA SBIR project "Koopman Operator-Based Forecasting
! for Nonstationary Processes from Near-Term, Limited
! Observational Data" Contract No: W31P4Q-21-C-0007
! - DARPA PAI project "Physics-Informed Machine Learning
! Methodologies" Contract No: HR0011-18-9-0033
! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
! Framework for Space-Time Analysis of Process Dynamics"
! Contract No: HR0011-16-C-0116
! Any opinions, findings and conclusions or recommendations
! expressed in this material are those of the author and
! do not necessarily reflect the views of the DARPA SBIR
! Program Office
!============================================================
! Distribution Statement A:
! Approved for Public Release, Distribution Unlimited.
! Cleared by DARPA on September 29, 2022
!============================================================
!......................................................................
! Arguments
! =========
! JOBS (input) CHARACTER*1
! Determines whether the initial data snapshots are scaled
! by a diagonal matrix.
! 'S' :: The data snapshots matrices X and Y are multiplied
! with a diagonal matrix D so that X*D has unit
! nonzero columns (in the Euclidean 2-norm)
! 'C' :: The snapshots are scaled as with the 'S' option.
! If it is found that an i-th column of X is zero
! vector and the corresponding i-th column of Y is
! non-zero, then the i-th column of Y is set to
! zero and a warning flag is raised.
! 'Y' :: The data snapshots matrices X and Y are multiplied
! by a diagonal matrix D so that Y*D has unit
! nonzero columns (in the Euclidean 2-norm)
! 'N' :: No data scaling.
!.....
! JOBZ (input) CHARACTER*1
! Determines whether the eigenvectors (Koopman modes) will
! be computed.
! 'V' :: The eigenvectors (Koopman modes) will be computed
! and returned in the matrix Z.
! See the description of Z.
! 'F' :: The eigenvectors (Koopman modes) will be returned
! in factored form as the product X(:,1:K)*W, where X
! contains a POD basis (leading left singular vectors
! of the data matrix X) and W contains the eigenvectors
! of the corresponding Rayleigh quotient.
! See the descriptions of K, X, W, Z.
! 'N' :: The eigenvectors are not computed.
!.....
! JOBR (input) CHARACTER*1
! Determines whether to compute the residuals.
! 'R' :: The residuals for the computed eigenpairs will be
! computed and stored in the array RES.
! See the description of RES.
! For this option to be legal, JOBZ must be 'V'.
! 'N' :: The residuals are not computed.
!.....
! JOBF (input) CHARACTER*1
! Specifies whether to store information needed for post-
! processing (e.g. computing refined Ritz vectors)
! 'R' :: The matrix needed for the refinement of the Ritz
! vectors is computed and stored in the array B.
! See the description of B.
! 'E' :: The unscaled eigenvectors of the Exact DMD are
! computed and returned in the array B. See the
! description of B.
! 'N' :: No eigenvector refinement data is computed.
!.....
! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
! Allows for a selection of the SVD algorithm from the
! LAPACK library.
! 1 :: CGESVD (the QR SVD algorithm)
! 2 :: CGESDD (the Divide and Conquer algorithm; if enough
! workspace available, this is the fastest option)
! 3 :: CGESVDQ (the preconditioned QR SVD ; this and 4
! are the most accurate options)
! 4 :: CGEJSV (the preconditioned Jacobi SVD; this and 3
! are the most accurate options)
! For the four methods above, a significant difference in
! the accuracy of small singular values is possible if
! the snapshots vary in norm so that X is severely
! ill-conditioned. If small (smaller than EPS*||X||)
! singular values are of interest and JOBS=='N', then
! the options (3, 4) give the most accurate results, where
! the option 4 is slightly better and with stronger
! theoretical background.
! If JOBS=='S', i.e. the columns of X will be normalized,
! then all methods give nearly equally accurate results.
!.....
! M (input) INTEGER, M>= 0
! The state space dimension (the row dimension of X, Y).
!.....
! N (input) INTEGER, 0 <= N <= M
! The number of data snapshot pairs
! (the number of columns of X and Y).
!.....
! X (input/output) COMPLEX(KIND=WP) M-by-N array
! > On entry, X contains the data snapshot matrix X. It is
! assumed that the column norms of X are in the range of
! the normalized floating point numbers.
! < On exit, the leading K columns of X contain a POD basis,
! i.e. the leading K left singular vectors of the input
! data matrix X, U(:,1:K). All N columns of X contain all
! left singular vectors of the input matrix X.
! See the descriptions of K, Z and W.
!.....
! LDX (input) INTEGER, LDX >= M
! The leading dimension of the array X.
!.....
! Y (input/workspace/output) COMPLEX(KIND=WP) M-by-N array
! > On entry, Y contains the data snapshot matrix Y
! < On exit,
! If JOBR == 'R', the leading K columns of Y contain
! the residual vectors for the computed Ritz pairs.
! See the description of RES.
! If JOBR == 'N', Y contains the original input data,
! scaled according to the value of JOBS.
!.....
! LDY (input) INTEGER , LDY >= M
! The leading dimension of the array Y.
!.....
! NRNK (input) INTEGER
! Determines the mode how to compute the numerical rank,
! i.e. how to truncate small singular values of the input
! matrix X. On input, if
! NRNK = -1 :: i-th singular value sigma(i) is truncated
! if sigma(i) <= TOL*sigma(1)
! This option is recommended.
! NRNK = -2 :: i-th singular value sigma(i) is truncated
! if sigma(i) <= TOL*sigma(i-1)
! This option is included for R&D purposes.
! It requires highly accurate SVD, which
! may not be feasible.
! The numerical rank can be enforced by using positive
! value of NRNK as follows:
! 0 < NRNK <= N :: at most NRNK largest singular values
! will be used. If the number of the computed nonzero
! singular values is less than NRNK, then only those
! nonzero values will be used and the actually used
! dimension is less than NRNK. The actual number of
! the nonzero singular values is returned in the variable
! K. See the descriptions of TOL and K.
!.....
! TOL (input) REAL(KIND=WP), 0 <= TOL < 1
! The tolerance for truncating small singular values.
! See the description of NRNK.
!.....
! K (output) INTEGER, 0 <= K <= N
! The dimension of the POD basis for the data snapshot
! matrix X and the number of the computed Ritz pairs.
! The value of K is determined according to the rule set
! by the parameters NRNK and TOL.
! See the descriptions of NRNK and TOL.
!.....
! EIGS (output) COMPLEX(KIND=WP) N-by-1 array
! The leading K (K<=N) entries of EIGS contain
! the computed eigenvalues (Ritz values).
! See the descriptions of K, and Z.
!.....
! Z (workspace/output) COMPLEX(KIND=WP) M-by-N array
! If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i)
! is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1.
! If JOBZ == 'F', then the Z(:,i)'s are given implicitly as
! the columns of X(:,1:K)*W(1:K,1:K), i.e. X(:,1:K)*W(:,i)
! is an eigenvector corresponding to EIGS(i). The columns
! of W(1:k,1:K) are the computed eigenvectors of the
! K-by-K Rayleigh quotient.
! See the descriptions of EIGS, X and W.
!.....
! LDZ (input) INTEGER , LDZ >= M
! The leading dimension of the array Z.
!.....
! RES (output) REAL(KIND=WP) N-by-1 array
! RES(1:K) contains the residuals for the K computed
! Ritz pairs,
! RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2.
! See the description of EIGS and Z.
!.....
! B (output) COMPLEX(KIND=WP) M-by-N array.
! IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can
! be used for computing the refined vectors; see further
! details in the provided references.
! If JOBF == 'E', B(1:M,1:K) contains
! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
! Exact DMD, up to scaling by the inverse eigenvalues.
! If JOBF =='N', then B is not referenced.
! See the descriptions of X, W, K.
!.....
! LDB (input) INTEGER, LDB >= M
! The leading dimension of the array B.
!.....
! W (workspace/output) COMPLEX(KIND=WP) N-by-N array
! On exit, W(1:K,1:K) contains the K computed
! eigenvectors of the matrix Rayleigh quotient.
! The Ritz vectors (returned in Z) are the
! product of X (containing a POD basis for the input
! matrix X) and W. See the descriptions of K, S, X and Z.
! W is also used as a workspace to temporarily store the
! right singular vectors of X.
!.....
! LDW (input) INTEGER, LDW >= N
! The leading dimension of the array W.
!.....
! S (workspace/output) COMPLEX(KIND=WP) N-by-N array
! The array S(1:K,1:K) is used for the matrix Rayleigh
! quotient. This content is overwritten during
! the eigenvalue decomposition by CGEEV.
! See the description of K.
!.....
! LDS (input) INTEGER, LDS >= N
! The leading dimension of the array S.
!.....
! ZWORK (workspace/output) COMPLEX(KIND=WP) LZWORK-by-1 array
! ZWORK is used as complex workspace in the complex SVD, as
! specified by WHTSVD (1,2, 3 or 4) and for CGEEV for computing
! the eigenvalues of a Rayleigh quotient.
! If the call to CGEDMD is only workspace query, then
! ZWORK(1) contains the minimal complex workspace length and
! ZWORK(2) is the optimal complex workspace length.
! Hence, the length of work is at least 2.
! See the description of LZWORK.
!.....
! LZWORK (input) INTEGER
! The minimal length of the workspace vector ZWORK.
! LZWORK is calculated as MAX(LZWORK_SVD, LZWORK_CGEEV),
! where LZWORK_CGEEV = MAX( 1, 2*N ) and the minimal
! LZWORK_SVD is calculated as follows
! If WHTSVD == 1 :: CGESVD ::
! LZWORK_SVD = MAX(1,2*MIN(M,N)+MAX(M,N))
! If WHTSVD == 2 :: CGESDD ::
! LZWORK_SVD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N)
! If WHTSVD == 3 :: CGESVDQ ::
! LZWORK_SVD = obtainable by a query
! If WHTSVD == 4 :: CGEJSV ::
! LZWORK_SVD = obtainable by a query
! If on entry LZWORK = -1, then a workspace query is
! assumed and the procedure only computes the minimal
! and the optimal workspace lengths and returns them in
! LZWORK(1) and LZWORK(2), respectively.
!.....
! RWORK (workspace/output) REAL(KIND=WP) LRWORK-by-1 array
! On exit, RWORK(1:N) contains the singular values of
! X (for JOBS=='N') or column scaled X (JOBS=='S', 'C').
! If WHTSVD==4, then RWORK(N+1) and RWORK(N+2) contain
! scaling factor RWORK(N+2)/RWORK(N+1) used to scale X
! and Y to avoid overflow in the SVD of X.
! This may be of interest if the scaling option is off
! and as many as possible smallest eigenvalues are
! desired to the highest feasible accuracy.
! If the call to CGEDMD is only workspace query, then
! RWORK(1) contains the minimal workspace length.
! See the description of LRWORK.
!.....
! LRWORK (input) INTEGER
! The minimal length of the workspace vector RWORK.
! LRWORK is calculated as follows:
! LRWORK = MAX(1, N+LRWORK_SVD,N+LRWORK_CGEEV), where
! LRWORK_CGEEV = MAX(1,2*N) and RWORK_SVD is the real workspace
! for the SVD subroutine determined by the input parameter
! WHTSVD.
! If WHTSVD == 1 :: CGESVD ::
! LRWORK_SVD = 5*MIN(M,N)
! If WHTSVD == 2 :: CGESDD ::
! LRWORK_SVD = MAX(5*MIN(M,N)*MIN(M,N)+7*MIN(M,N),
! 2*MAX(M,N)*MIN(M,N)+2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) )
! If WHTSVD == 3 :: CGESVDQ ::
! LRWORK_SVD = obtainable by a query
! If WHTSVD == 4 :: CGEJSV ::
! LRWORK_SVD = obtainable by a query
! If on entry LRWORK = -1, then a workspace query is
! assumed and the procedure only computes the minimal
! real workspace length and returns it in RWORK(1).
!.....
! IWORK (workspace/output) INTEGER LIWORK-by-1 array
! Workspace that is required only if WHTSVD equals
! 2 , 3 or 4. (See the description of WHTSVD).
! If on entry LWORK =-1 or LIWORK=-1, then the
! minimal length of IWORK is computed and returned in
! IWORK(1). See the description of LIWORK.
!.....
! LIWORK (input) INTEGER
! The minimal length of the workspace vector IWORK.
! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N))
! If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1)
! If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N)
! If on entry LIWORK = -1, then a workspace query is
! assumed and the procedure only computes the minimal
! and the optimal workspace lengths for ZWORK, RWORK and
! IWORK. See the descriptions of ZWORK, RWORK and IWORK.
!.....
! INFO (output) INTEGER
! -i < 0 :: On entry, the i-th argument had an
! illegal value
! = 0 :: Successful return.
! = 1 :: Void input. Quick exit (M=0 or N=0).
! = 2 :: The SVD computation of X did not converge.
! Suggestion: Check the input data and/or
! repeat with different WHTSVD.
! = 3 :: The computation of the eigenvalues did not
! converge.
! = 4 :: If data scaling was requested on input and
! the procedure found inconsistency in the data
! such that for some column index i,
! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
! to zero if JOBS=='C'. The computation proceeds
! with original or modified data and warning
! flag is set with INFO=4.
!.............................................................
!.............................................................
! Parameters
! ~~~~~~~~~~
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP
COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP )
COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP )
!
! Local scalars
! ~~~~~~~~~~~~~
REAL(KIND=WP) :: OFL, ROOTSC, SCALE, SMALL, &
@ -400,7 +554,7 @@
! Local arrays
! ~~~~~~~~~~~~
REAL(KIND=WP) :: RDUMMY(2)
!
! External functions (BLAS and LAPACK)
! ~~~~~~~~~~~~~~~~~
REAL(KIND=WP) CLANGE, SLAMCH, SCNRM2
@ -408,13 +562,13 @@
INTEGER ICAMAX
LOGICAL SISNAN, LSAME
EXTERNAL SISNAN, LSAME
!
! External subroutines (BLAS and LAPACK)
! ~~~~~~~~~~~~~~~~~~~~
EXTERNAL CAXPY, CGEMM, CSSCAL
EXTERNAL CGEEV, CGEJSV, CGESDD, CGESVD, CGESVDQ, &
CLACPY, CLASCL, CLASSQ, XERBLA
!
! Intrinsic functions
! ~~~~~~~~~~~~~~~~~~~
INTRINSIC FLOAT, INT, MAX, SQRT
@ -607,7 +761,8 @@
K = 0
DO i = 1, N
!WORK(i) = SCNRM2( M, X(1,i), 1 )
SCALE = ZERO
SSUM = ONE
SCALE = ZERO
CALL CLASSQ( M, X(1,i), 1, SCALE, SSUM )
IF ( SISNAN(SCALE) .OR. SISNAN(SSUM) ) THEN
K = 0
@ -680,7 +835,8 @@
! carefully computed using CLASSQ.
DO i = 1, N
!RWORK(i) = SCNRM2( M, Y(1,i), 1 )
SCALE = ZERO
SSUM = ONE
SCALE = ZERO
CALL CLASSQ( M, Y(1,i), 1, SCALE, SSUM )
IF ( SISNAN(SCALE) .OR. SISNAN(SSUM) ) THEN
K = 0

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,23 +1,523 @@
!> \brief \b ZGEDMD computes the Dynamic Mode Decomposition (DMD) for a pair of data snapshot matrices.
!
! =========== DOCUMENTATION ===========
!
! Definition:
! ===========
!
! SUBROUTINE ZGEDMD( JOBS, JOBZ, JOBR, JOBF, WHTSVD, &
! M, N, X, LDX, Y, LDY, NRNK, TOL, &
! K, EIGS, Z, LDZ, RES, B, LDB, &
! W, LDW, S, LDS, ZWORK, LZWORK, &
! RWORK, LRWORK, IWORK, LIWORK, INFO )
!......
! USE iso_fortran_env
! IMPLICIT NONE
! INTEGER, PARAMETER :: WP = real64
!
!......
! Scalar arguments
! CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBF
! INTEGER, INTENT(IN) :: WHTSVD, M, N, LDX, LDY, &
! NRNK, LDZ, LDB, LDW, LDS, &
! LIWORK, LRWORK, LZWORK
! INTEGER, INTENT(OUT) :: K, INFO
! REAL(KIND=WP), INTENT(IN) :: TOL
! Array arguments
! COMPLEX(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*)
! COMPLEX(KIND=WP), INTENT(OUT) :: Z(LDZ,*), B(LDB,*), &
! W(LDW,*), S(LDS,*)
! COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*)
! COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*)
! REAL(KIND=WP), INTENT(OUT) :: RES(*)
! REAL(KIND=WP), INTENT(OUT) :: RWORK(*)
! INTEGER, INTENT(OUT) :: IWORK(*)
!
!............................................................
!> \par Purpose:
! =============
!> \verbatim
!> ZGEDMD computes the Dynamic Mode Decomposition (DMD) for
!> a pair of data snapshot matrices. For the input matrices
!> X and Y such that Y = A*X with an unaccessible matrix
!> A, ZGEDMD computes a certain number of Ritz pairs of A using
!> the standard Rayleigh-Ritz extraction from a subspace of
!> range(X) that is determined using the leading left singular
!> vectors of X. Optionally, ZGEDMD returns the residuals
!> of the computed Ritz pairs, the information needed for
!> a refinement of the Ritz vectors, or the eigenvectors of
!> the Exact DMD.
!> For further details see the references listed
!> below. For more details of the implementation see [3].
!> \endverbatim
!............................................................
!> \par References:
! ================
!> \verbatim
!> [1] P. Schmid: Dynamic mode decomposition of numerical
!> and experimental data,
!> Journal of Fluid Mechanics 656, 5-28, 2010.
!> [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
!> decompositions: analysis and enhancements,
!> SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
!> [3] Z. Drmac: A LAPACK implementation of the Dynamic
!> Mode Decomposition I. Technical report. AIMDyn Inc.
!> and LAPACK Working Note 298.
!> [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
!> Brunton, N. Kutz: On Dynamic Mode Decomposition:
!> Theory and Applications, Journal of Computational
!> Dynamics 1(2), 391 -421, 2014.
!> \endverbatim
!......................................................................
!> \par Developed and supported by:
! ================================
!> \verbatim
!> Developed and coded by Zlatko Drmac, Faculty of Science,
!> University of Zagreb; drmac@math.hr
!> In cooperation with
!> AIMdyn Inc., Santa Barbara, CA.
!> and supported by
!> - DARPA SBIR project "Koopman Operator-Based Forecasting
!> for Nonstationary Processes from Near-Term, Limited
!> Observational Data" Contract No: W31P4Q-21-C-0007
!> - DARPA PAI project "Physics-Informed Machine Learning
!> Methodologies" Contract No: HR0011-18-9-0033
!> - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
!> Framework for Space-Time Analysis of Process Dynamics"
!> Contract No: HR0011-16-C-0116
!> Any opinions, findings and conclusions or recommendations
!> expressed in this material are those of the author and
!> do not necessarily reflect the views of the DARPA SBIR
!> Program Office
!> \endverbatim
!......................................................................
!> \par Distribution Statement A:
! ==============================
!> \verbatim
!> Approved for Public Release, Distribution Unlimited.
!> Cleared by DARPA on September 29, 2022
!> \endverbatim
!............................................................
! Arguments
! =========
!
!> \param[in] JOBS
!> \verbatim
!> JOBS (input) CHARACTER*1
!> Determines whether the initial data snapshots are scaled
!> by a diagonal matrix.
!> 'S' :: The data snapshots matrices X and Y are multiplied
!> with a diagonal matrix D so that X*D has unit
!> nonzero columns (in the Euclidean 2-norm)
!> 'C' :: The snapshots are scaled as with the 'S' option.
!> If it is found that an i-th column of X is zero
!> vector and the corresponding i-th column of Y is
!> non-zero, then the i-th column of Y is set to
!> zero and a warning flag is raised.
!> 'Y' :: The data snapshots matrices X and Y are multiplied
!> by a diagonal matrix D so that Y*D has unit
!> nonzero columns (in the Euclidean 2-norm)
!> 'N' :: No data scaling.
!> \endverbatim
!.....
!> \param[in] JOBZ
!> \verbatim
!> JOBZ (input) CHARACTER*1
!> Determines whether the eigenvectors (Koopman modes) will
!> be computed.
!> 'V' :: The eigenvectors (Koopman modes) will be computed
!> and returned in the matrix Z.
!> See the description of Z.
!> 'F' :: The eigenvectors (Koopman modes) will be returned
!> in factored form as the product X(:,1:K)*W, where X
!> contains a POD basis (leading left singular vectors
!> of the data matrix X) and W contains the eigenvectors
!> of the corresponding Rayleigh quotient.
!> See the descriptions of K, X, W, Z.
!> 'N' :: The eigenvectors are not computed.
!> \endverbatim
!.....
!> \param[in] JOBR
!> \verbatim
!> JOBR (input) CHARACTER*1
!> Determines whether to compute the residuals.
!> 'R' :: The residuals for the computed eigenpairs will be
!> computed and stored in the array RES.
!> See the description of RES.
!> For this option to be legal, JOBZ must be 'V'.
!> 'N' :: The residuals are not computed.
!> \endverbatim
!.....
!> \param[in] JOBF
!> \verbatim
!> JOBF (input) CHARACTER*1
!> Specifies whether to store information needed for post-
!> processing (e.g. computing refined Ritz vectors)
!> 'R' :: The matrix needed for the refinement of the Ritz
!> vectors is computed and stored in the array B.
!> See the description of B.
!> 'E' :: The unscaled eigenvectors of the Exact DMD are
!> computed and returned in the array B. See the
!> description of B.
!> 'N' :: No eigenvector refinement data is computed.
!> \endverbatim
!.....
!> \param[in] WHTSVD
!> \verbatim
!> WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
!> Allows for a selection of the SVD algorithm from the
!> LAPACK library.
!> 1 :: ZGESVD (the QR SVD algorithm)
!> 2 :: ZGESDD (the Divide and Conquer algorithm; if enough
!> workspace available, this is the fastest option)
!> 3 :: ZGESVDQ (the preconditioned QR SVD ; this and 4
!> are the most accurate options)
!> 4 :: ZGEJSV (the preconditioned Jacobi SVD; this and 3
!> are the most accurate options)
!> For the four methods above, a significant difference in
!> the accuracy of small singular values is possible if
!> the snapshots vary in norm so that X is severely
!> ill-conditioned. If small (smaller than EPS*||X||)
!> singular values are of interest and JOBS=='N', then
!> the options (3, 4) give the most accurate results, where
!> the option 4 is slightly better and with stronger
!> theoretical background.
!> If JOBS=='S', i.e. the columns of X will be normalized,
!> then all methods give nearly equally accurate results.
!> \endverbatim
!.....
!> \param[in] M
!> \verbatim
!> M (input) INTEGER, M>= 0
!> The state space dimension (the row dimension of X, Y).
!> \endverbatim
!.....
!> \param[in] N
!> \verbatim
!> N (input) INTEGER, 0 <= N <= M
!> The number of data snapshot pairs
!> (the number of columns of X and Y).
!> \endverbatim
!.....
!> \param[in] LDX
!> \verbatim
!> X (input/output) COMPLEX(KIND=WP) M-by-N array
!> > On entry, X contains the data snapshot matrix X. It is
!> assumed that the column norms of X are in the range of
!> the normalized floating point numbers.
!> < On exit, the leading K columns of X contain a POD basis,
!> i.e. the leading K left singular vectors of the input
!> data matrix X, U(:,1:K). All N columns of X contain all
!> left singular vectors of the input matrix X.
!> See the descriptions of K, Z and W.
!.....
!> LDX (input) INTEGER, LDX >= M
!> The leading dimension of the array X.
!> \endverbatim
!.....
!> \param[in,out] Y
!> \verbatim
!> Y (input/workspace/output) COMPLEX(KIND=WP) M-by-N array
!> > On entry, Y contains the data snapshot matrix Y
!> < On exit,
!> If JOBR == 'R', the leading K columns of Y contain
!> the residual vectors for the computed Ritz pairs.
!> See the description of RES.
!> If JOBR == 'N', Y contains the original input data,
!> scaled according to the value of JOBS.
!> \endverbatim
!.....
!> \param[in] LDY
!> \verbatim
!> LDY (input) INTEGER , LDY >= M
!> The leading dimension of the array Y.
!> \endverbatim
!.....
!> \param[in] NRNK
!> \verbatim
!> NRNK (input) INTEGER
!> Determines the mode how to compute the numerical rank,
!> i.e. how to truncate small singular values of the input
!> matrix X. On input, if
!> NRNK = -1 :: i-th singular value sigma(i) is truncated
!> if sigma(i) <= TOL*sigma(1)
!> This option is recommended.
!> NRNK = -2 :: i-th singular value sigma(i) is truncated
!> if sigma(i) <= TOL*sigma(i-1)
!> This option is included for R&D purposes.
!> It requires highly accurate SVD, which
!> may not be feasible.
!> The numerical rank can be enforced by using positive
!> value of NRNK as follows:
!> 0 < NRNK <= N :: at most NRNK largest singular values
!> will be used. If the number of the computed nonzero
!> singular values is less than NRNK, then only those
!> nonzero values will be used and the actually used
!> dimension is less than NRNK. The actual number of
!> the nonzero singular values is returned in the variable
!> K. See the descriptions of TOL and K.
!> \endverbatim
!.....
!> \param[in] TOL
!> \verbatim
!> TOL (input) REAL(KIND=WP), 0 <= TOL < 1
!> The tolerance for truncating small singular values.
!> See the description of NRNK.
!> \endverbatim
!.....
!> \param[out] K
!> \verbatim
!> K (output) INTEGER, 0 <= K <= N
!> The dimension of the POD basis for the data snapshot
!> matrix X and the number of the computed Ritz pairs.
!> The value of K is determined according to the rule set
!> by the parameters NRNK and TOL.
!> See the descriptions of NRNK and TOL.
!> \endverbatim
!.....
!> \param[out] EIGS
!> \verbatim
!> EIGS (output) COMPLEX(KIND=WP) N-by-1 array
!> The leading K (K<=N) entries of EIGS contain
!> the computed eigenvalues (Ritz values).
!> See the descriptions of K, and Z.
!> \endverbatim
!.....
!> \param[out] Z
!> \verbatim
!> Z (workspace/output) COMPLEX(KIND=WP) M-by-N array
!> If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i)
!> is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1.
!> If JOBZ == 'F', then the Z(:,i)'s are given implicitly as
!> the columns of X(:,1:K)*W(1:K,1:K), i.e. X(:,1:K)*W(:,i)
!> is an eigenvector corresponding to EIGS(i). The columns
!> of W(1:k,1:K) are the computed eigenvectors of the
!> K-by-K Rayleigh quotient.
!> See the descriptions of EIGS, X and W.
!> \endverbatim
!.....
!> \param[in] LDZ
!> \verbatim
!> LDZ (input) INTEGER , LDZ >= M
!> The leading dimension of the array Z.
!> \endverbatim
!.....
!> \param[out] RES
!> \verbatim
!> RES (output) REAL(KIND=WP) N-by-1 array
!> RES(1:K) contains the residuals for the K computed
!> Ritz pairs,
!> RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2.
!> See the description of EIGS and Z.
!> \endverbatim
!.....
!> \param[out] B
!> \verbatim
!> B (output) COMPLEX(KIND=WP) M-by-N array.
!> IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can
!> be used for computing the refined vectors; see further
!> details in the provided references.
!> If JOBF == 'E', B(1:M,1:K) contains
!> A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
!> Exact DMD, up to scaling by the inverse eigenvalues.
!> If JOBF =='N', then B is not referenced.
!> See the descriptions of X, W, K.
!> \endverbatim
!.....
!> \param[in] LDB
!> \verbatim
!> LDB (input) INTEGER, LDB >= M
!> The leading dimension of the array B.
!> \endverbatim
!.....
!> \param[out] W
!> \verbatim
!> W (workspace/output) COMPLEX(KIND=WP) N-by-N array
!> On exit, W(1:K,1:K) contains the K computed
!> eigenvectors of the matrix Rayleigh quotient.
!> The Ritz vectors (returned in Z) are the
!> product of X (containing a POD basis for the input
!> matrix X) and W. See the descriptions of K, S, X and Z.
!> W is also used as a workspace to temporarily store the
!> right singular vectors of X.
!> \endverbatim
!.....
!> \param[in] LDW
!> \verbatim
!> LDW (input) INTEGER, LDW >= N
!> The leading dimension of the array W.
!> \endverbatim
!.....
!> \param[out] S
!> \verbatim
!> S (workspace/output) COMPLEX(KIND=WP) N-by-N array
!> The array S(1:K,1:K) is used for the matrix Rayleigh
!> quotient. This content is overwritten during
!> the eigenvalue decomposition by ZGEEV.
!> See the description of K.
!> \endverbatim
!.....
!> \param[in] LDS
!> \verbatim
!> LDS (input) INTEGER, LDS >= N
!> The leading dimension of the array S.
!> \endverbatim
!.....
!> \param[out] ZWORK
!> \verbatim
!> ZWORK (workspace/output) COMPLEX(KIND=WP) LZWORK-by-1 array
!> ZWORK is used as complex workspace in the complex SVD, as
!> specified by WHTSVD (1,2, 3 or 4) and for ZGEEV for computing
!> the eigenvalues of a Rayleigh quotient.
!> If the call to ZGEDMD is only workspace query, then
!> ZWORK(1) contains the minimal complex workspace length and
!> ZWORK(2) is the optimal complex workspace length.
!> Hence, the length of work is at least 2.
!> See the description of LZWORK.
!> \endverbatim
!.....
!> \param[in] LZWORK
!> \verbatim
!> LZWORK (input) INTEGER
!> The minimal length of the workspace vector ZWORK.
!> LZWORK is calculated as MAX(LZWORK_SVD, LZWORK_ZGEEV),
!> where LZWORK_ZGEEV = MAX( 1, 2*N ) and the minimal
!> LZWORK_SVD is calculated as follows
!> If WHTSVD == 1 :: ZGESVD ::
!> LZWORK_SVD = MAX(1,2*MIN(M,N)+MAX(M,N))
!> If WHTSVD == 2 :: ZGESDD ::
!> LZWORK_SVD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N)
!> If WHTSVD == 3 :: ZGESVDQ ::
!> LZWORK_SVD = obtainable by a query
!> If WHTSVD == 4 :: ZGEJSV ::
!> LZWORK_SVD = obtainable by a query
!> If on entry LZWORK = -1, then a workspace query is
!> assumed and the procedure only computes the minimal
!> and the optimal workspace lengths and returns them in
!> LZWORK(1) and LZWORK(2), respectively.
!> \endverbatim
!.....
!> \param[out] RWORK
!> \verbatim
!> RWORK (workspace/output) REAL(KIND=WP) LRWORK-by-1 array
!> On exit, RWORK(1:N) contains the singular values of
!> X (for JOBS=='N') or column scaled X (JOBS=='S', 'C').
!> If WHTSVD==4, then RWORK(N+1) and RWORK(N+2) contain
!> scaling factor RWORK(N+2)/RWORK(N+1) used to scale X
!> and Y to avoid overflow in the SVD of X.
!> This may be of interest if the scaling option is off
!> and as many as possible smallest eigenvalues are
!> desired to the highest feasible accuracy.
!> If the call to ZGEDMD is only workspace query, then
!> RWORK(1) contains the minimal workspace length.
!> See the description of LRWORK.
!> \endverbatim
!.....
!> \param[in] LRWORK
!> \verbatim
!> LRWORK (input) INTEGER
!> The minimal length of the workspace vector RWORK.
!> LRWORK is calculated as follows:
!> LRWORK = MAX(1, N+LRWORK_SVD,N+LRWORK_ZGEEV), where
!> LRWORK_ZGEEV = MAX(1,2*N) and RWORK_SVD is the real workspace
!> for the SVD subroutine determined by the input parameter
!> WHTSVD.
!> If WHTSVD == 1 :: ZGESVD ::
!> LRWORK_SVD = 5*MIN(M,N)
!> If WHTSVD == 2 :: ZGESDD ::
!> LRWORK_SVD = MAX(5*MIN(M,N)*MIN(M,N)+7*MIN(M,N),
!> 2*MAX(M,N)*MIN(M,N)+2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) )
!> If WHTSVD == 3 :: ZGESVDQ ::
!> LRWORK_SVD = obtainable by a query
!> If WHTSVD == 4 :: ZGEJSV ::
!> LRWORK_SVD = obtainable by a query
!> If on entry LRWORK = -1, then a workspace query is
!> assumed and the procedure only computes the minimal
!> real workspace length and returns it in RWORK(1).
!> \endverbatim
!.....
!> \param[out] IWORK
!> \verbatim
!> IWORK (workspace/output) INTEGER LIWORK-by-1 array
!> Workspace that is required only if WHTSVD equals
!> 2 , 3 or 4. (See the description of WHTSVD).
!> If on entry LWORK =-1 or LIWORK=-1, then the
!> minimal length of IWORK is computed and returned in
!> IWORK(1). See the description of LIWORK.
!> \endverbatim
!.....
!> \param[in] LIWORK
!> \verbatim
!> LIWORK (input) INTEGER
!> The minimal length of the workspace vector IWORK.
!> If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
!> If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N))
!> If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1)
!> If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N)
!> If on entry LIWORK = -1, then a workspace query is
!> assumed and the procedure only computes the minimal
!> and the optimal workspace lengths for ZWORK, RWORK and
!> IWORK. See the descriptions of ZWORK, RWORK and IWORK.
!> \endverbatim
!.....
!> \param[out] INFO
!> \verbatim
!> INFO (output) INTEGER
!> -i < 0 :: On entry, the i-th argument had an
!> illegal value
!> = 0 :: Successful return.
!> = 1 :: Void input. Quick exit (M=0 or N=0).
!> = 2 :: The SVD computation of X did not converge.
!> Suggestion: Check the input data and/or
!> repeat with different WHTSVD.
!> = 3 :: The computation of the eigenvalues did not
!> converge.
!> = 4 :: If data scaling was requested on input and
!> the procedure found inconsistency in the data
!> such that for some column index i,
!> X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
!> to zero if JOBS=='C'. The computation proceeds
!> with original or modified data and warning
!> flag is set with INFO=4.
!> \endverbatim
!
! Authors:
! ========
!
!> \author Zlatko Drmac
!
!> \ingroup gedmd
!
!.............................................................
!.............................................................
SUBROUTINE ZGEDMD( JOBS, JOBZ, JOBR, JOBF, WHTSVD, &
M, N, X, LDX, Y, LDY, NRNK, TOL, &
K, EIGS, Z, LDZ, RES, B, LDB, &
W, LDW, S, LDS, ZWORK, LZWORK, &
RWORK, LRWORK, IWORK, LIWORK, INFO )
! March 2023
!
! -- LAPACK driver routine --
!
! -- LAPACK is a software package provided by University of --
! -- Tennessee, University of California Berkeley, University of --
! -- Colorado Denver and NAG Ltd.. --
!
!.....
USE iso_fortran_env
IMPLICIT NONE
INTEGER, PARAMETER :: WP = real64
!.....
!
! Scalar arguments
! ~~~~~~~~~~~~~~~~
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBF
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDX, LDY, &
NRNK, LDZ, LDB, LDW, LDS, &
LIWORK, LRWORK, LZWORK
INTEGER, INTENT(OUT) :: K, INFO
REAL(KIND=WP), INTENT(IN) :: TOL
!
! Array arguments
! ~~~~~~~~~~~~~~~
COMPLEX(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*)
COMPLEX(KIND=WP), INTENT(OUT) :: Z(LDZ,*), B(LDB,*), &
W(LDW,*), S(LDS,*)
@ -26,364 +526,14 @@
REAL(KIND=WP), INTENT(OUT) :: RES(*)
REAL(KIND=WP), INTENT(OUT) :: RWORK(*)
INTEGER, INTENT(OUT) :: IWORK(*)
!............................................................
! Purpose
! =======
! ZGEDMD computes the Dynamic Mode Decomposition (DMD) for
! a pair of data snapshot matrices. For the input matrices
! X and Y such that Y = A*X with an unaccessible matrix
! A, ZGEDMD computes a certain number of Ritz pairs of A using
! the standard Rayleigh-Ritz extraction from a subspace of
! range(X) that is determined using the leading left singular
! vectors of X. Optionally, ZGEDMD returns the residuals
! of the computed Ritz pairs, the information needed for
! a refinement of the Ritz vectors, or the eigenvectors of
! the Exact DMD.
! For further details see the references listed
! below. For more details of the implementation see [3].
!
! References
! ==========
! [1] P. Schmid: Dynamic mode decomposition of numerical
! and experimental data,
! Journal of Fluid Mechanics 656, 5-28, 2010.
! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
! decompositions: analysis and enhancements,
! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
! [3] Z. Drmac: A LAPACK implementation of the Dynamic
! Mode Decomposition I. Technical report. AIMDyn Inc.
! and LAPACK Working Note 298.
! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
! Brunton, N. Kutz: On Dynamic Mode Decomposition:
! Theory and Applications, Journal of Computational
! Dynamics 1(2), 391 -421, 2014.
!
!......................................................................
! Developed and supported by:
! ===========================
! Developed and coded by Zlatko Drmac, Faculty of Science,
! University of Zagreb; drmac@math.hr
! In cooperation with
! AIMdyn Inc., Santa Barbara, CA.
! and supported by
! - DARPA SBIR project "Koopman Operator-Based Forecasting
! for Nonstationary Processes from Near-Term, Limited
! Observational Data" Contract No: W31P4Q-21-C-0007
! - DARPA PAI project "Physics-Informed Machine Learning
! Methodologies" Contract No: HR0011-18-9-0033
! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
! Framework for Space-Time Analysis of Process Dynamics"
! Contract No: HR0011-16-C-0116
! Any opinions, findings and conclusions or recommendations
! expressed in this material are those of the author and
! do not necessarily reflect the views of the DARPA SBIR
! Program Office
!============================================================
! Distribution Statement A:
! Approved for Public Release, Distribution Unlimited.
! Cleared by DARPA on September 29, 2022
!============================================================
!............................................................
! Arguments
! =========
! JOBS (input) CHARACTER*1
! Determines whether the initial data snapshots are scaled
! by a diagonal matrix.
! 'S' :: The data snapshots matrices X and Y are multiplied
! with a diagonal matrix D so that X*D has unit
! nonzero columns (in the Euclidean 2-norm)
! 'C' :: The snapshots are scaled as with the 'S' option.
! If it is found that an i-th column of X is zero
! vector and the corresponding i-th column of Y is
! non-zero, then the i-th column of Y is set to
! zero and a warning flag is raised.
! 'Y' :: The data snapshots matrices X and Y are multiplied
! by a diagonal matrix D so that Y*D has unit
! nonzero columns (in the Euclidean 2-norm)
! 'N' :: No data scaling.
!.....
! JOBZ (input) CHARACTER*1
! Determines whether the eigenvectors (Koopman modes) will
! be computed.
! 'V' :: The eigenvectors (Koopman modes) will be computed
! and returned in the matrix Z.
! See the description of Z.
! 'F' :: The eigenvectors (Koopman modes) will be returned
! in factored form as the product X(:,1:K)*W, where X
! contains a POD basis (leading left singular vectors
! of the data matrix X) and W contains the eigenvectors
! of the corresponding Rayleigh quotient.
! See the descriptions of K, X, W, Z.
! 'N' :: The eigenvectors are not computed.
!.....
! JOBR (input) CHARACTER*1
! Determines whether to compute the residuals.
! 'R' :: The residuals for the computed eigenpairs will be
! computed and stored in the array RES.
! See the description of RES.
! For this option to be legal, JOBZ must be 'V'.
! 'N' :: The residuals are not computed.
!.....
! JOBF (input) CHARACTER*1
! Specifies whether to store information needed for post-
! processing (e.g. computing refined Ritz vectors)
! 'R' :: The matrix needed for the refinement of the Ritz
! vectors is computed and stored in the array B.
! See the description of B.
! 'E' :: The unscaled eigenvectors of the Exact DMD are
! computed and returned in the array B. See the
! description of B.
! 'N' :: No eigenvector refinement data is computed.
!.....
! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
! Allows for a selection of the SVD algorithm from the
! LAPACK library.
! 1 :: ZGESVD (the QR SVD algorithm)
! 2 :: ZGESDD (the Divide and Conquer algorithm; if enough
! workspace available, this is the fastest option)
! 3 :: ZGESVDQ (the preconditioned QR SVD ; this and 4
! are the most accurate options)
! 4 :: ZGEJSV (the preconditioned Jacobi SVD; this and 3
! are the most accurate options)
! For the four methods above, a significant difference in
! the accuracy of small singular values is possible if
! the snapshots vary in norm so that X is severely
! ill-conditioned. If small (smaller than EPS*||X||)
! singular values are of interest and JOBS=='N', then
! the options (3, 4) give the most accurate results, where
! the option 4 is slightly better and with stronger
! theoretical background.
! If JOBS=='S', i.e. the columns of X will be normalized,
! then all methods give nearly equally accurate results.
!.....
! M (input) INTEGER, M>= 0
! The state space dimension (the row dimension of X, Y).
!.....
! N (input) INTEGER, 0 <= N <= M
! The number of data snapshot pairs
! (the number of columns of X and Y).
!.....
! X (input/output) COMPLEX(KIND=WP) M-by-N array
! > On entry, X contains the data snapshot matrix X. It is
! assumed that the column norms of X are in the range of
! the normalized floating point numbers.
! < On exit, the leading K columns of X contain a POD basis,
! i.e. the leading K left singular vectors of the input
! data matrix X, U(:,1:K). All N columns of X contain all
! left singular vectors of the input matrix X.
! See the descriptions of K, Z and W.
!.....
! LDX (input) INTEGER, LDX >= M
! The leading dimension of the array X.
!.....
! Y (input/workspace/output) COMPLEX(KIND=WP) M-by-N array
! > On entry, Y contains the data snapshot matrix Y
! < On exit,
! If JOBR == 'R', the leading K columns of Y contain
! the residual vectors for the computed Ritz pairs.
! See the description of RES.
! If JOBR == 'N', Y contains the original input data,
! scaled according to the value of JOBS.
!.....
! LDY (input) INTEGER , LDY >= M
! The leading dimension of the array Y.
!.....
! NRNK (input) INTEGER
! Determines the mode how to compute the numerical rank,
! i.e. how to truncate small singular values of the input
! matrix X. On input, if
! NRNK = -1 :: i-th singular value sigma(i) is truncated
! if sigma(i) <= TOL*sigma(1)
! This option is recommended.
! NRNK = -2 :: i-th singular value sigma(i) is truncated
! if sigma(i) <= TOL*sigma(i-1)
! This option is included for R&D purposes.
! It requires highly accurate SVD, which
! may not be feasible.
! The numerical rank can be enforced by using positive
! value of NRNK as follows:
! 0 < NRNK <= N :: at most NRNK largest singular values
! will be used. If the number of the computed nonzero
! singular values is less than NRNK, then only those
! nonzero values will be used and the actually used
! dimension is less than NRNK. The actual number of
! the nonzero singular values is returned in the variable
! K. See the descriptions of TOL and K.
!.....
! TOL (input) REAL(KIND=WP), 0 <= TOL < 1
! The tolerance for truncating small singular values.
! See the description of NRNK.
!.....
! K (output) INTEGER, 0 <= K <= N
! The dimension of the POD basis for the data snapshot
! matrix X and the number of the computed Ritz pairs.
! The value of K is determined according to the rule set
! by the parameters NRNK and TOL.
! See the descriptions of NRNK and TOL.
!.....
! EIGS (output) COMPLEX(KIND=WP) N-by-1 array
! The leading K (K<=N) entries of EIGS contain
! the computed eigenvalues (Ritz values).
! See the descriptions of K, and Z.
!.....
! Z (workspace/output) COMPLEX(KIND=WP) M-by-N array
! If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i)
! is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1.
! If JOBZ == 'F', then the Z(:,i)'s are given implicitly as
! the columns of X(:,1:K)*W(1:K,1:K), i.e. X(:,1:K)*W(:,i)
! is an eigenvector corresponding to EIGS(i). The columns
! of W(1:k,1:K) are the computed eigenvectors of the
! K-by-K Rayleigh quotient.
! See the descriptions of EIGS, X and W.
!.....
! LDZ (input) INTEGER , LDZ >= M
! The leading dimension of the array Z.
!.....
! RES (output) REAL(KIND=WP) N-by-1 array
! RES(1:K) contains the residuals for the K computed
! Ritz pairs,
! RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2.
! See the description of EIGS and Z.
!.....
! B (output) COMPLEX(KIND=WP) M-by-N array.
! IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can
! be used for computing the refined vectors; see further
! details in the provided references.
! If JOBF == 'E', B(1:M,1:K) contains
! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
! Exact DMD, up to scaling by the inverse eigenvalues.
! If JOBF =='N', then B is not referenced.
! See the descriptions of X, W, K.
!.....
! LDB (input) INTEGER, LDB >= M
! The leading dimension of the array B.
!.....
! W (workspace/output) COMPLEX(KIND=WP) N-by-N array
! On exit, W(1:K,1:K) contains the K computed
! eigenvectors of the matrix Rayleigh quotient.
! The Ritz vectors (returned in Z) are the
! product of X (containing a POD basis for the input
! matrix X) and W. See the descriptions of K, S, X and Z.
! W is also used as a workspace to temporarily store the
! right singular vectors of X.
!.....
! LDW (input) INTEGER, LDW >= N
! The leading dimension of the array W.
!.....
! S (workspace/output) COMPLEX(KIND=WP) N-by-N array
! The array S(1:K,1:K) is used for the matrix Rayleigh
! quotient. This content is overwritten during
! the eigenvalue decomposition by ZGEEV.
! See the description of K.
!.....
! LDS (input) INTEGER, LDS >= N
! The leading dimension of the array S.
!.....
! ZWORK (workspace/output) COMPLEX(KIND=WP) LZWORK-by-1 array
! ZWORK is used as complex workspace in the complex SVD, as
! specified by WHTSVD (1,2, 3 or 4) and for ZGEEV for computing
! the eigenvalues of a Rayleigh quotient.
! If the call to ZGEDMD is only workspace query, then
! ZWORK(1) contains the minimal complex workspace length and
! ZWORK(2) is the optimal complex workspace length.
! Hence, the length of work is at least 2.
! See the description of LZWORK.
!.....
! LZWORK (input) INTEGER
! The minimal length of the workspace vector ZWORK.
! LZWORK is calculated as MAX(LZWORK_SVD, LZWORK_ZGEEV),
! where LZWORK_ZGEEV = MAX( 1, 2*N ) and the minimal
! LZWORK_SVD is calculated as follows
! If WHTSVD == 1 :: ZGESVD ::
! LZWORK_SVD = MAX(1,2*MIN(M,N)+MAX(M,N))
! If WHTSVD == 2 :: ZGESDD ::
! LZWORK_SVD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N)
! If WHTSVD == 3 :: ZGESVDQ ::
! LZWORK_SVD = obtainable by a query
! If WHTSVD == 4 :: ZGEJSV ::
! LZWORK_SVD = obtainable by a query
! If on entry LZWORK = -1, then a workspace query is
! assumed and the procedure only computes the minimal
! and the optimal workspace lengths and returns them in
! LZWORK(1) and LZWORK(2), respectively.
!.....
! RWORK (workspace/output) REAL(KIND=WP) LRWORK-by-1 array
! On exit, RWORK(1:N) contains the singular values of
! X (for JOBS=='N') or column scaled X (JOBS=='S', 'C').
! If WHTSVD==4, then RWORK(N+1) and RWORK(N+2) contain
! scaling factor RWORK(N+2)/RWORK(N+1) used to scale X
! and Y to avoid overflow in the SVD of X.
! This may be of interest if the scaling option is off
! and as many as possible smallest eigenvalues are
! desired to the highest feasible accuracy.
! If the call to ZGEDMD is only workspace query, then
! RWORK(1) contains the minimal workspace length.
! See the description of LRWORK.
!.....
! LRWORK (input) INTEGER
! The minimal length of the workspace vector RWORK.
! LRWORK is calculated as follows:
! LRWORK = MAX(1, N+LRWORK_SVD,N+LRWORK_ZGEEV), where
! LRWORK_ZGEEV = MAX(1,2*N) and RWORK_SVD is the real workspace
! for the SVD subroutine determined by the input parameter
! WHTSVD.
! If WHTSVD == 1 :: ZGESVD ::
! LRWORK_SVD = 5*MIN(M,N)
! If WHTSVD == 2 :: ZGESDD ::
! LRWORK_SVD = MAX(5*MIN(M,N)*MIN(M,N)+7*MIN(M,N),
! 2*MAX(M,N)*MIN(M,N)+2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) )
! If WHTSVD == 3 :: ZGESVDQ ::
! LRWORK_SVD = obtainable by a query
! If WHTSVD == 4 :: ZGEJSV ::
! LRWORK_SVD = obtainable by a query
! If on entry LRWORK = -1, then a workspace query is
! assumed and the procedure only computes the minimal
! real workspace length and returns it in RWORK(1).
!.....
! IWORK (workspace/output) INTEGER LIWORK-by-1 array
! Workspace that is required only if WHTSVD equals
! 2 , 3 or 4. (See the description of WHTSVD).
! If on entry LWORK =-1 or LIWORK=-1, then the
! minimal length of IWORK is computed and returned in
! IWORK(1). See the description of LIWORK.
!.....
! LIWORK (input) INTEGER
! The minimal length of the workspace vector IWORK.
! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N))
! If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1)
! If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N)
! If on entry LIWORK = -1, then a workspace query is
! assumed and the procedure only computes the minimal
! and the optimal workspace lengths for ZWORK, RWORK and
! IWORK. See the descriptions of ZWORK, RWORK and IWORK.
!.....
! INFO (output) INTEGER
! -i < 0 :: On entry, the i-th argument had an
! illegal value
! = 0 :: Successful return.
! = 1 :: Void input. Quick exit (M=0 or N=0).
! = 2 :: The SVD computation of X did not converge.
! Suggestion: Check the input data and/or
! repeat with different WHTSVD.
! = 3 :: The computation of the eigenvalues did not
! converge.
! = 4 :: If data scaling was requested on input and
! the procedure found inconsistency in the data
! such that for some column index i,
! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
! to zero if JOBS=='C'. The computation proceeds
! with original or modified data and warning
! flag is set with INFO=4.
!.............................................................
!.............................................................
! Parameters
! ~~~~~~~~~~
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP
COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP )
COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP )
!
! Local scalars
! ~~~~~~~~~~~~~
REAL(KIND=WP) :: OFL, ROOTSC, SCALE, SMALL, &
@ -401,7 +551,7 @@
! Local arrays
! ~~~~~~~~~~~~
REAL(KIND=WP) :: RDUMMY(2)
!
! External functions (BLAS and LAPACK)
! ~~~~~~~~~~~~~~~~~
REAL(KIND=WP) ZLANGE, DLAMCH, DZNRM2
@ -409,13 +559,13 @@
INTEGER IZAMAX
LOGICAL DISNAN, LSAME
EXTERNAL DISNAN, LSAME
!
! External subroutines (BLAS and LAPACK)
! ~~~~~~~~~~~~~~~~~~~~
EXTERNAL ZAXPY, ZGEMM, ZDSCAL
EXTERNAL ZGEEV, ZGEJSV, ZGESDD, ZGESVD, ZGESVDQ, &
ZLACPY, ZLASCL, ZLASSQ, XERBLA
!
! Intrinsic functions
! ~~~~~~~~~~~~~~~~~~~
INTRINSIC DBLE, INT, MAX, SQRT
@ -608,7 +758,8 @@
K = 0
DO i = 1, N
!WORK(i) = DZNRM2( M, X(1,i), 1 )
SCALE = ZERO
SSUM = ONE
SCALE = ZERO
CALL ZLASSQ( M, X(1,i), 1, SCALE, SSUM )
IF ( DISNAN(SCALE) .OR. DISNAN(SSUM) ) THEN
K = 0
@ -681,7 +832,8 @@
! carefully computed using ZLASSQ.
DO i = 1, N
!RWORK(i) = DZNRM2( M, Y(1,i), 1 )
SCALE = ZERO
SSUM = ONE
SCALE = ZERO
CALL ZLASSQ( M, Y(1,i), 1, SCALE, SSUM )
IF ( DISNAN(SCALE) .OR. DISNAN(SSUM) ) THEN
K = 0