Merge pull request #3832 from martin-frbg/lapack681+698
Improve ?LAQR5 and use normwise criterion in ?LAQZ0 (Reference-LAPACK PRs 681+698)
This commit is contained in:
commit
1d5a3aff0d
|
@ -279,7 +279,7 @@
|
|||
PARAMETER ( RZERO = 0.0e0, RONE = 1.0e0 )
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
COMPLEX ALPHA, BETA, CDUM, REFSUM
|
||||
COMPLEX ALPHA, BETA, CDUM, REFSUM, T1, T2, T3
|
||||
REAL H11, H12, H21, H22, SAFMAX, SAFMIN, SCL,
|
||||
$ SMLNUM, TST1, TST2, ULP
|
||||
INTEGER I2, I4, INCOL, J, JBOT, JCOL, JLEN,
|
||||
|
@ -424,12 +424,12 @@
|
|||
* ==== Perform update from right within
|
||||
* . computational window. ====
|
||||
*
|
||||
T1 = V( 1, M22 )
|
||||
T2 = T1*CONJG( V( 2, M22 ) )
|
||||
DO 30 J = JTOP, MIN( KBOT, K+3 )
|
||||
REFSUM = V( 1, M22 )*( H( J, K+1 )+V( 2, M22 )*
|
||||
$ H( J, K+2 ) )
|
||||
H( J, K+1 ) = H( J, K+1 ) - REFSUM
|
||||
H( J, K+2 ) = H( J, K+2 ) -
|
||||
$ REFSUM*CONJG( V( 2, M22 ) )
|
||||
REFSUM = H( J, K+1 ) + V( 2, M22 )*H( J, K+2 )
|
||||
H( J, K+1 ) = H( J, K+1 ) - REFSUM*T1
|
||||
H( J, K+2 ) = H( J, K+2 ) - REFSUM*T2
|
||||
30 CONTINUE
|
||||
*
|
||||
* ==== Perform update from left within
|
||||
|
@ -442,12 +442,13 @@
|
|||
ELSE
|
||||
JBOT = KBOT
|
||||
END IF
|
||||
T1 = CONJG( V( 1, M22 ) )
|
||||
T2 = T1*V( 2, M22 )
|
||||
DO 40 J = K+1, JBOT
|
||||
REFSUM = CONJG( V( 1, M22 ) )*
|
||||
$ ( H( K+1, J )+CONJG( V( 2, M22 ) )*
|
||||
$ H( K+2, J ) )
|
||||
H( K+1, J ) = H( K+1, J ) - REFSUM
|
||||
H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M22 )
|
||||
REFSUM = H( K+1, J ) +
|
||||
$ CONJG( V( 2, M22 ) )*H( K+2, J )
|
||||
H( K+1, J ) = H( K+1, J ) - REFSUM*T1
|
||||
H( K+2, J ) = H( K+2, J ) - REFSUM*T2
|
||||
40 CONTINUE
|
||||
*
|
||||
* ==== The following convergence test requires that
|
||||
|
@ -610,25 +611,28 @@
|
|||
* . deflation check. We still delay most of the
|
||||
* . updates from the left for efficiency. ====
|
||||
*
|
||||
T1 = V( 1, M )
|
||||
T2 = T1*CONJG( V( 2, M ) )
|
||||
T3 = T1*CONJG( V( 3, M ) )
|
||||
DO 70 J = JTOP, MIN( KBOT, K+3 )
|
||||
REFSUM = V( 1, M )*( H( J, K+1 )+V( 2, M )*
|
||||
$ H( J, K+2 )+V( 3, M )*H( J, K+3 ) )
|
||||
H( J, K+1 ) = H( J, K+1 ) - REFSUM
|
||||
H( J, K+2 ) = H( J, K+2 ) -
|
||||
$ REFSUM*CONJG( V( 2, M ) )
|
||||
H( J, K+3 ) = H( J, K+3 ) -
|
||||
$ REFSUM*CONJG( V( 3, M ) )
|
||||
REFSUM = H( J, K+1 ) + V( 2, M )*H( J, K+2 )
|
||||
$ + V( 3, M )*H( J, K+3 )
|
||||
H( J, K+1 ) = H( J, K+1 ) - REFSUM*T1
|
||||
H( J, K+2 ) = H( J, K+2 ) - REFSUM*T2
|
||||
H( J, K+3 ) = H( J, K+3 ) - REFSUM*T3
|
||||
70 CONTINUE
|
||||
*
|
||||
* ==== Perform update from left for subsequent
|
||||
* . column. ====
|
||||
*
|
||||
REFSUM = CONJG( V( 1, M ) )*( H( K+1, K+1 )
|
||||
$ +CONJG( V( 2, M ) )*H( K+2, K+1 )
|
||||
$ +CONJG( V( 3, M ) )*H( K+3, K+1 ) )
|
||||
H( K+1, K+1 ) = H( K+1, K+1 ) - REFSUM
|
||||
H( K+2, K+1 ) = H( K+2, K+1 ) - REFSUM*V( 2, M )
|
||||
H( K+3, K+1 ) = H( K+3, K+1 ) - REFSUM*V( 3, M )
|
||||
T1 = CONJG( V( 1, M ) )
|
||||
T2 = T1*V( 2, M )
|
||||
T3 = T1*V( 3, M )
|
||||
REFSUM = H( K+1, K+1 ) + CONJG( V( 2, M ) )*H( K+2, K+1 )
|
||||
$ + CONJG( V( 3, M ) )*H( K+3, K+1 )
|
||||
H( K+1, K+1 ) = H( K+1, K+1 ) - REFSUM*T1
|
||||
H( K+2, K+1 ) = H( K+2, K+1 ) - REFSUM*T2
|
||||
H( K+3, K+1 ) = H( K+3, K+1 ) - REFSUM*T3
|
||||
*
|
||||
* ==== The following convergence test requires that
|
||||
* . the tradition small-compared-to-nearby-diagonals
|
||||
|
@ -688,13 +692,15 @@
|
|||
*
|
||||
DO 100 M = MBOT, MTOP, -1
|
||||
K = KRCOL + 2*( M-1 )
|
||||
T1 = CONJG( V( 1, M ) )
|
||||
T2 = T1*V( 2, M )
|
||||
T3 = T1*V( 3, M )
|
||||
DO 90 J = MAX( KTOP, KRCOL + 2*M ), JBOT
|
||||
REFSUM = CONJG( V( 1, M ) )*
|
||||
$ ( H( K+1, J )+CONJG( V( 2, M ) )*
|
||||
$ H( K+2, J )+CONJG( V( 3, M ) )*H( K+3, J ) )
|
||||
H( K+1, J ) = H( K+1, J ) - REFSUM
|
||||
H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M )
|
||||
H( K+3, J ) = H( K+3, J ) - REFSUM*V( 3, M )
|
||||
REFSUM = H( K+1, J ) + CONJG( V( 2, M ) )*
|
||||
$ H( K+2, J ) + CONJG( V( 3, M ) )*H( K+3, J )
|
||||
H( K+1, J ) = H( K+1, J ) - REFSUM*T1
|
||||
H( K+2, J ) = H( K+2, J ) - REFSUM*T2
|
||||
H( K+3, J ) = H( K+3, J ) - REFSUM*T3
|
||||
90 CONTINUE
|
||||
100 CONTINUE
|
||||
*
|
||||
|
@ -712,14 +718,15 @@
|
|||
I2 = MAX( 1, KTOP-INCOL )
|
||||
I2 = MAX( I2, KMS-(KRCOL-INCOL)+1 )
|
||||
I4 = MIN( KDU, KRCOL + 2*( MBOT-1 ) - INCOL + 5 )
|
||||
T1 = V( 1, M )
|
||||
T2 = T1*CONJG( V( 2, M ) )
|
||||
T3 = T1*CONJG( V( 3, M ) )
|
||||
DO 110 J = I2, I4
|
||||
REFSUM = V( 1, M )*( U( J, KMS+1 )+V( 2, M )*
|
||||
$ U( J, KMS+2 )+V( 3, M )*U( J, KMS+3 ) )
|
||||
U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
|
||||
U( J, KMS+2 ) = U( J, KMS+2 ) -
|
||||
$ REFSUM*CONJG( V( 2, M ) )
|
||||
U( J, KMS+3 ) = U( J, KMS+3 ) -
|
||||
$ REFSUM*CONJG( V( 3, M ) )
|
||||
REFSUM = U( J, KMS+1 ) + V( 2, M )*U( J, KMS+2 )
|
||||
$ + V( 3, M )*U( J, KMS+3 )
|
||||
U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM*T1
|
||||
U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*T2
|
||||
U( J, KMS+3 ) = U( J, KMS+3 ) - REFSUM*T3
|
||||
110 CONTINUE
|
||||
120 CONTINUE
|
||||
ELSE IF( WANTZ ) THEN
|
||||
|
@ -730,14 +737,15 @@
|
|||
*
|
||||
DO 140 M = MBOT, MTOP, -1
|
||||
K = KRCOL + 2*( M-1 )
|
||||
T1 = V( 1, M )
|
||||
T2 = T1*CONJG( V( 2, M ) )
|
||||
T3 = T1*CONJG( V( 3, M ) )
|
||||
DO 130 J = ILOZ, IHIZ
|
||||
REFSUM = V( 1, M )*( Z( J, K+1 )+V( 2, M )*
|
||||
$ Z( J, K+2 )+V( 3, M )*Z( J, K+3 ) )
|
||||
Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
|
||||
Z( J, K+2 ) = Z( J, K+2 ) -
|
||||
$ REFSUM*CONJG( V( 2, M ) )
|
||||
Z( J, K+3 ) = Z( J, K+3 ) -
|
||||
$ REFSUM*CONJG( V( 3, M ) )
|
||||
REFSUM = Z( J, K+1 ) + V( 2, M )*Z( J, K+2 )
|
||||
$ + V( 3, M )*Z( J, K+3 )
|
||||
Z( J, K+1 ) = Z( J, K+1 ) - REFSUM*T1
|
||||
Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*T2
|
||||
Z( J, K+3 ) = Z( J, K+3 ) - REFSUM*T3
|
||||
130 CONTINUE
|
||||
140 CONTINUE
|
||||
END IF
|
||||
|
|
|
@ -299,7 +299,7 @@
|
|||
PARAMETER( ZERO = 0.0, ONE = 1.0, HALF = 0.5 )
|
||||
|
||||
* Local scalars
|
||||
REAL :: SMLNUM, ULP, SAFMIN, SAFMAX, C1, TEMPR
|
||||
REAL :: SMLNUM, ULP, SAFMIN, SAFMAX, C1, TEMPR, BNORM, BTOL
|
||||
COMPLEX :: ESHIFT, S1, TEMP
|
||||
INTEGER :: ISTART, ISTOP, IITER, MAXIT, ISTART2, K, LD, NSHIFTS,
|
||||
$ NBLOCK, NW, NMIN, NIBBLE, N_UNDEFLATED, N_DEFLATED,
|
||||
|
@ -312,7 +312,7 @@
|
|||
* External Functions
|
||||
EXTERNAL :: XERBLA, CHGEQZ, CLAQZ2, CLAQZ3, CLASET, SLABAD,
|
||||
$ CLARTG, CROT
|
||||
REAL, EXTERNAL :: SLAMCH
|
||||
REAL, EXTERNAL :: SLAMCH, CLANHS
|
||||
LOGICAL, EXTERNAL :: LSAME
|
||||
INTEGER, EXTERNAL :: ILAENV
|
||||
|
||||
|
@ -466,6 +466,9 @@
|
|||
ULP = SLAMCH( 'PRECISION' )
|
||||
SMLNUM = SAFMIN*( REAL( N )/ULP )
|
||||
|
||||
BNORM = CLANHS( 'F', IHI-ILO+1, B( ILO, ILO ), LDB, RWORK )
|
||||
BTOL = MAX( SAFMIN, ULP*BNORM )
|
||||
|
||||
ISTART = ILO
|
||||
ISTOP = IHI
|
||||
MAXIT = 30*( IHI-ILO+1 )
|
||||
|
@ -528,15 +531,8 @@
|
|||
* slow down the method when many infinite eigenvalues are present
|
||||
K = ISTOP
|
||||
DO WHILE ( K.GE.ISTART2 )
|
||||
TEMPR = ZERO
|
||||
IF( K .LT. ISTOP ) THEN
|
||||
TEMPR = TEMPR+ABS( B( K, K+1 ) )
|
||||
END IF
|
||||
IF( K .GT. ISTART2 ) THEN
|
||||
TEMPR = TEMPR+ABS( B( K-1, K ) )
|
||||
END IF
|
||||
|
||||
IF( ABS( B( K, K ) ) .LT. MAX( SMLNUM, ULP*TEMPR ) ) THEN
|
||||
IF( ABS( B( K, K ) ) .LT. BTOL ) THEN
|
||||
* A diagonal element of B is negligable, move it
|
||||
* to the top and deflate it
|
||||
|
||||
|
|
|
@ -286,8 +286,8 @@
|
|||
* ..
|
||||
* .. Local Scalars ..
|
||||
DOUBLE PRECISION ALPHA, BETA, H11, H12, H21, H22, REFSUM,
|
||||
$ SAFMAX, SAFMIN, SCL, SMLNUM, SWAP, TST1, TST2,
|
||||
$ ULP
|
||||
$ SAFMAX, SAFMIN, SCL, SMLNUM, SWAP, T1, T2,
|
||||
$ T3, TST1, TST2, ULP
|
||||
INTEGER I, I2, I4, INCOL, J, JBOT, JCOL, JLEN,
|
||||
$ JROW, JTOP, K, K1, KDU, KMS, KRCOL,
|
||||
$ M, M22, MBOT, MTOP, NBMPS, NDCOL,
|
||||
|
@ -447,11 +447,12 @@
|
|||
* ==== Perform update from right within
|
||||
* . computational window. ====
|
||||
*
|
||||
T1 = V( 1, M22 )
|
||||
T2 = T1*V( 2, M22 )
|
||||
DO 30 J = JTOP, MIN( KBOT, K+3 )
|
||||
REFSUM = V( 1, M22 )*( H( J, K+1 )+V( 2, M22 )*
|
||||
$ H( J, K+2 ) )
|
||||
H( J, K+1 ) = H( J, K+1 ) - REFSUM
|
||||
H( J, K+2 ) = H( J, K+2 ) - REFSUM*V( 2, M22 )
|
||||
REFSUM = H( J, K+1 ) + V( 2, M22 )*H( J, K+2 )
|
||||
H( J, K+1 ) = H( J, K+1 ) - REFSUM*T1
|
||||
H( J, K+2 ) = H( J, K+2 ) - REFSUM*T2
|
||||
30 CONTINUE
|
||||
*
|
||||
* ==== Perform update from left within
|
||||
|
@ -464,11 +465,12 @@
|
|||
ELSE
|
||||
JBOT = KBOT
|
||||
END IF
|
||||
T1 = V( 1, M22 )
|
||||
T2 = T1*V( 2, M22 )
|
||||
DO 40 J = K+1, JBOT
|
||||
REFSUM = V( 1, M22 )*( H( K+1, J )+V( 2, M22 )*
|
||||
$ H( K+2, J ) )
|
||||
H( K+1, J ) = H( K+1, J ) - REFSUM
|
||||
H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M22 )
|
||||
REFSUM = H( K+1, J ) + V( 2, M22 )*H( K+2, J )
|
||||
H( K+1, J ) = H( K+1, J ) - REFSUM*T1
|
||||
H( K+2, J ) = H( K+2, J ) - REFSUM*T2
|
||||
40 CONTINUE
|
||||
*
|
||||
* ==== The following convergence test requires that
|
||||
|
@ -522,18 +524,20 @@
|
|||
*
|
||||
IF( ACCUM ) THEN
|
||||
KMS = K - INCOL
|
||||
T1 = V( 1, M22 )
|
||||
T2 = T1*V( 2, M22 )
|
||||
DO 50 J = MAX( 1, KTOP-INCOL ), KDU
|
||||
REFSUM = V( 1, M22 )*( U( J, KMS+1 )+
|
||||
$ V( 2, M22 )*U( J, KMS+2 ) )
|
||||
U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
|
||||
U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*V( 2, M22 )
|
||||
REFSUM = U( J, KMS+1 ) + V( 2, M22 )*U( J, KMS+2 )
|
||||
U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM*T1
|
||||
U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*T2
|
||||
50 CONTINUE
|
||||
ELSE IF( WANTZ ) THEN
|
||||
T1 = V( 1, M22 )
|
||||
T2 = T1*V( 2, M22 )
|
||||
DO 60 J = ILOZ, IHIZ
|
||||
REFSUM = V( 1, M22 )*( Z( J, K+1 )+V( 2, M22 )*
|
||||
$ Z( J, K+2 ) )
|
||||
Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
|
||||
Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*V( 2, M22 )
|
||||
REFSUM = Z( J, K+1 )+V( 2, M22 )*Z( J, K+2 )
|
||||
Z( J, K+1 ) = Z( J, K+1 ) - REFSUM*T1
|
||||
Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*T2
|
||||
60 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
|
@ -631,22 +635,25 @@
|
|||
* . deflation check. We still delay most of the
|
||||
* . updates from the left for efficiency. ====
|
||||
*
|
||||
T1 = V( 1, M )
|
||||
T2 = T1*V( 2, M )
|
||||
T3 = T1*V( 3, M )
|
||||
DO 70 J = JTOP, MIN( KBOT, K+3 )
|
||||
REFSUM = V( 1, M )*( H( J, K+1 )+V( 2, M )*
|
||||
$ H( J, K+2 )+V( 3, M )*H( J, K+3 ) )
|
||||
H( J, K+1 ) = H( J, K+1 ) - REFSUM
|
||||
H( J, K+2 ) = H( J, K+2 ) - REFSUM*V( 2, M )
|
||||
H( J, K+3 ) = H( J, K+3 ) - REFSUM*V( 3, M )
|
||||
REFSUM = H( J, K+1 ) + V( 2, M )*H( J, K+2 )
|
||||
$ + V( 3, M )*H( J, K+3 )
|
||||
H( J, K+1 ) = H( J, K+1 ) - REFSUM*T1
|
||||
H( J, K+2 ) = H( J, K+2 ) - REFSUM*T2
|
||||
H( J, K+3 ) = H( J, K+3 ) - REFSUM*T3
|
||||
70 CONTINUE
|
||||
*
|
||||
* ==== Perform update from left for subsequent
|
||||
* . column. ====
|
||||
*
|
||||
REFSUM = V( 1, M )*( H( K+1, K+1 )+V( 2, M )*
|
||||
$ H( K+2, K+1 )+V( 3, M )*H( K+3, K+1 ) )
|
||||
H( K+1, K+1 ) = H( K+1, K+1 ) - REFSUM
|
||||
H( K+2, K+1 ) = H( K+2, K+1 ) - REFSUM*V( 2, M )
|
||||
H( K+3, K+1 ) = H( K+3, K+1 ) - REFSUM*V( 3, M )
|
||||
REFSUM = H( K+1, K+1 ) + V( 2, M )*H( K+2, K+1 )
|
||||
$ + V( 3, M )*H( K+3, K+1 )
|
||||
H( K+1, K+1 ) = H( K+1, K+1 ) - REFSUM*T1
|
||||
H( K+2, K+1 ) = H( K+2, K+1 ) - REFSUM*T2
|
||||
H( K+3, K+1 ) = H( K+3, K+1 ) - REFSUM*T3
|
||||
*
|
||||
* ==== The following convergence test requires that
|
||||
* . the tradition small-compared-to-nearby-diagonals
|
||||
|
@ -706,12 +713,15 @@
|
|||
*
|
||||
DO 100 M = MBOT, MTOP, -1
|
||||
K = KRCOL + 2*( M-1 )
|
||||
T1 = V( 1, M )
|
||||
T2 = T1*V( 2, M )
|
||||
T3 = T1*V( 3, M )
|
||||
DO 90 J = MAX( KTOP, KRCOL + 2*M ), JBOT
|
||||
REFSUM = V( 1, M )*( H( K+1, J )+V( 2, M )*
|
||||
$ H( K+2, J )+V( 3, M )*H( K+3, J ) )
|
||||
H( K+1, J ) = H( K+1, J ) - REFSUM
|
||||
H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M )
|
||||
H( K+3, J ) = H( K+3, J ) - REFSUM*V( 3, M )
|
||||
REFSUM = H( K+1, J ) + V( 2, M )*H( K+2, J )
|
||||
$ + V( 3, M )*H( K+3, J )
|
||||
H( K+1, J ) = H( K+1, J ) - REFSUM*T1
|
||||
H( K+2, J ) = H( K+2, J ) - REFSUM*T2
|
||||
H( K+3, J ) = H( K+3, J ) - REFSUM*T3
|
||||
90 CONTINUE
|
||||
100 CONTINUE
|
||||
*
|
||||
|
@ -729,12 +739,15 @@
|
|||
I2 = MAX( 1, KTOP-INCOL )
|
||||
I2 = MAX( I2, KMS-(KRCOL-INCOL)+1 )
|
||||
I4 = MIN( KDU, KRCOL + 2*( MBOT-1 ) - INCOL + 5 )
|
||||
T1 = V( 1, M )
|
||||
T2 = T1*V( 2, M )
|
||||
T3 = T1*V( 3, M )
|
||||
DO 110 J = I2, I4
|
||||
REFSUM = V( 1, M )*( U( J, KMS+1 )+V( 2, M )*
|
||||
$ U( J, KMS+2 )+V( 3, M )*U( J, KMS+3 ) )
|
||||
U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
|
||||
U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*V( 2, M )
|
||||
U( J, KMS+3 ) = U( J, KMS+3 ) - REFSUM*V( 3, M )
|
||||
REFSUM = U( J, KMS+1 ) + V( 2, M )*U( J, KMS+2 )
|
||||
$ + V( 3, M )*U( J, KMS+3 )
|
||||
U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM*T1
|
||||
U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*T2
|
||||
U( J, KMS+3 ) = U( J, KMS+3 ) - REFSUM*T3
|
||||
110 CONTINUE
|
||||
120 CONTINUE
|
||||
ELSE IF( WANTZ ) THEN
|
||||
|
@ -745,12 +758,15 @@
|
|||
*
|
||||
DO 140 M = MBOT, MTOP, -1
|
||||
K = KRCOL + 2*( M-1 )
|
||||
T1 = V( 1, M )
|
||||
T2 = T1*V( 2, M )
|
||||
T3 = T1*V( 3, M )
|
||||
DO 130 J = ILOZ, IHIZ
|
||||
REFSUM = V( 1, M )*( Z( J, K+1 )+V( 2, M )*
|
||||
$ Z( J, K+2 )+V( 3, M )*Z( J, K+3 ) )
|
||||
Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
|
||||
Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*V( 2, M )
|
||||
Z( J, K+3 ) = Z( J, K+3 ) - REFSUM*V( 3, M )
|
||||
REFSUM = Z( J, K+1 ) + V( 2, M )*Z( J, K+2 )
|
||||
$ + V( 3, M )*Z( J, K+3 )
|
||||
Z( J, K+1 ) = Z( J, K+1 ) - REFSUM*T1
|
||||
Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*T2
|
||||
Z( J, K+3 ) = Z( J, K+3 ) - REFSUM*T3
|
||||
130 CONTINUE
|
||||
140 CONTINUE
|
||||
END IF
|
||||
|
|
|
@ -322,7 +322,7 @@
|
|||
|
||||
* Local scalars
|
||||
DOUBLE PRECISION :: SMLNUM, ULP, ESHIFT, SAFMIN, SAFMAX, C1, S1,
|
||||
$ TEMP, SWAP
|
||||
$ TEMP, SWAP, BNORM, BTOL
|
||||
INTEGER :: ISTART, ISTOP, IITER, MAXIT, ISTART2, K, LD, NSHIFTS,
|
||||
$ NBLOCK, NW, NMIN, NIBBLE, N_UNDEFLATED, N_DEFLATED,
|
||||
$ NS, SWEEP_INFO, SHIFTPOS, LWORKREQ, K2, ISTARTM,
|
||||
|
@ -334,7 +334,7 @@
|
|||
* External Functions
|
||||
EXTERNAL :: XERBLA, DHGEQZ, DLASET, DLAQZ3, DLAQZ4, DLABAD,
|
||||
$ DLARTG, DROT
|
||||
DOUBLE PRECISION, EXTERNAL :: DLAMCH
|
||||
DOUBLE PRECISION, EXTERNAL :: DLAMCH, DLANHS
|
||||
LOGICAL, EXTERNAL :: LSAME
|
||||
INTEGER, EXTERNAL :: ILAENV
|
||||
|
||||
|
@ -486,6 +486,9 @@
|
|||
ULP = DLAMCH( 'PRECISION' )
|
||||
SMLNUM = SAFMIN*( DBLE( N )/ULP )
|
||||
|
||||
BNORM = DLANHS( 'F', IHI-ILO+1, B( ILO, ILO ), LDB, WORK )
|
||||
BTOL = MAX( SAFMIN, ULP*BNORM )
|
||||
|
||||
ISTART = ILO
|
||||
ISTOP = IHI
|
||||
MAXIT = 3*( IHI-ILO+1 )
|
||||
|
@ -562,15 +565,8 @@
|
|||
* slow down the method when many infinite eigenvalues are present
|
||||
K = ISTOP
|
||||
DO WHILE ( K.GE.ISTART2 )
|
||||
TEMP = ZERO
|
||||
IF( K .LT. ISTOP ) THEN
|
||||
TEMP = TEMP+ABS( B( K, K+1 ) )
|
||||
END IF
|
||||
IF( K .GT. ISTART2 ) THEN
|
||||
TEMP = TEMP+ABS( B( K-1, K ) )
|
||||
END IF
|
||||
|
||||
IF( ABS( B( K, K ) ) .LT. MAX( SMLNUM, ULP*TEMP ) ) THEN
|
||||
IF( ABS( B( K, K ) ) .LT. BTOL ) THEN
|
||||
* A diagonal element of B is negligable, move it
|
||||
* to the top and deflate it
|
||||
|
||||
|
|
|
@ -286,8 +286,8 @@
|
|||
* ..
|
||||
* .. Local Scalars ..
|
||||
REAL ALPHA, BETA, H11, H12, H21, H22, REFSUM,
|
||||
$ SAFMAX, SAFMIN, SCL, SMLNUM, SWAP, TST1, TST2,
|
||||
$ ULP
|
||||
$ SAFMAX, SAFMIN, SCL, SMLNUM, SWAP, T1, T2,
|
||||
$ T3, TST1, TST2, ULP
|
||||
INTEGER I, I2, I4, INCOL, J, JBOT, JCOL, JLEN,
|
||||
$ JROW, JTOP, K, K1, KDU, KMS, KRCOL,
|
||||
$ M, M22, MBOT, MTOP, NBMPS, NDCOL,
|
||||
|
@ -447,11 +447,12 @@
|
|||
* ==== Perform update from right within
|
||||
* . computational window. ====
|
||||
*
|
||||
T1 = V( 1, M22 )
|
||||
T2 = T1*V( 2, M22 )
|
||||
DO 30 J = JTOP, MIN( KBOT, K+3 )
|
||||
REFSUM = V( 1, M22 )*( H( J, K+1 )+V( 2, M22 )*
|
||||
$ H( J, K+2 ) )
|
||||
H( J, K+1 ) = H( J, K+1 ) - REFSUM
|
||||
H( J, K+2 ) = H( J, K+2 ) - REFSUM*V( 2, M22 )
|
||||
REFSUM = H( J, K+1 ) + V( 2, M22 )*H( J, K+2 )
|
||||
H( J, K+1 ) = H( J, K+1 ) - REFSUM*T1
|
||||
H( J, K+2 ) = H( J, K+2 ) - REFSUM*T2
|
||||
30 CONTINUE
|
||||
*
|
||||
* ==== Perform update from left within
|
||||
|
@ -464,11 +465,12 @@
|
|||
ELSE
|
||||
JBOT = KBOT
|
||||
END IF
|
||||
T1 = V( 1, M22 )
|
||||
T2 = T1*V( 2, M22 )
|
||||
DO 40 J = K+1, JBOT
|
||||
REFSUM = V( 1, M22 )*( H( K+1, J )+V( 2, M22 )*
|
||||
$ H( K+2, J ) )
|
||||
H( K+1, J ) = H( K+1, J ) - REFSUM
|
||||
H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M22 )
|
||||
REFSUM = H( K+1, J ) + V( 2, M22 )*H( K+2, J )
|
||||
H( K+1, J ) = H( K+1, J ) - REFSUM*T1
|
||||
H( K+2, J ) = H( K+2, J ) - REFSUM*T2
|
||||
40 CONTINUE
|
||||
*
|
||||
* ==== The following convergence test requires that
|
||||
|
@ -522,18 +524,20 @@
|
|||
*
|
||||
IF( ACCUM ) THEN
|
||||
KMS = K - INCOL
|
||||
T1 = V( 1, M22 )
|
||||
T2 = T1*V( 2, M22 )
|
||||
DO 50 J = MAX( 1, KTOP-INCOL ), KDU
|
||||
REFSUM = V( 1, M22 )*( U( J, KMS+1 )+
|
||||
$ V( 2, M22 )*U( J, KMS+2 ) )
|
||||
U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
|
||||
U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*V( 2, M22 )
|
||||
REFSUM = U( J, KMS+1 ) + V( 2, M22 )*U( J, KMS+2 )
|
||||
U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM*T1
|
||||
U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*T2
|
||||
50 CONTINUE
|
||||
ELSE IF( WANTZ ) THEN
|
||||
T1 = V( 1, M22 )
|
||||
T2 = T1*V( 2, M22 )
|
||||
DO 60 J = ILOZ, IHIZ
|
||||
REFSUM = V( 1, M22 )*( Z( J, K+1 )+V( 2, M22 )*
|
||||
$ Z( J, K+2 ) )
|
||||
Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
|
||||
Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*V( 2, M22 )
|
||||
REFSUM = Z( J, K+1 )+V( 2, M22 )*Z( J, K+2 )
|
||||
Z( J, K+1 ) = Z( J, K+1 ) - REFSUM*T1
|
||||
Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*T2
|
||||
60 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
|
@ -631,22 +635,25 @@
|
|||
* . deflation check. We still delay most of the
|
||||
* . updates from the left for efficiency. ====
|
||||
*
|
||||
T1 = V( 1, M )
|
||||
T2 = T1*V( 2, M )
|
||||
T3 = T1*V( 3, M )
|
||||
DO 70 J = JTOP, MIN( KBOT, K+3 )
|
||||
REFSUM = V( 1, M )*( H( J, K+1 )+V( 2, M )*
|
||||
$ H( J, K+2 )+V( 3, M )*H( J, K+3 ) )
|
||||
H( J, K+1 ) = H( J, K+1 ) - REFSUM
|
||||
H( J, K+2 ) = H( J, K+2 ) - REFSUM*V( 2, M )
|
||||
H( J, K+3 ) = H( J, K+3 ) - REFSUM*V( 3, M )
|
||||
REFSUM = H( J, K+1 ) + V( 2, M )*H( J, K+2 )
|
||||
$ + V( 3, M )*H( J, K+3 )
|
||||
H( J, K+1 ) = H( J, K+1 ) - REFSUM*T1
|
||||
H( J, K+2 ) = H( J, K+2 ) - REFSUM*T2
|
||||
H( J, K+3 ) = H( J, K+3 ) - REFSUM*T3
|
||||
70 CONTINUE
|
||||
*
|
||||
* ==== Perform update from left for subsequent
|
||||
* . column. ====
|
||||
*
|
||||
REFSUM = V( 1, M )*( H( K+1, K+1 )+V( 2, M )*
|
||||
$ H( K+2, K+1 )+V( 3, M )*H( K+3, K+1 ) )
|
||||
H( K+1, K+1 ) = H( K+1, K+1 ) - REFSUM
|
||||
H( K+2, K+1 ) = H( K+2, K+1 ) - REFSUM*V( 2, M )
|
||||
H( K+3, K+1 ) = H( K+3, K+1 ) - REFSUM*V( 3, M )
|
||||
REFSUM = H( K+1, K+1 ) + V( 2, M )*H( K+2, K+1 )
|
||||
$ + V( 3, M )*H( K+3, K+1 )
|
||||
H( K+1, K+1 ) = H( K+1, K+1 ) - REFSUM*T1
|
||||
H( K+2, K+1 ) = H( K+2, K+1 ) - REFSUM*T2
|
||||
H( K+3, K+1 ) = H( K+3, K+1 ) - REFSUM*T3
|
||||
*
|
||||
* ==== The following convergence test requires that
|
||||
* . the tradition small-compared-to-nearby-diagonals
|
||||
|
@ -706,12 +713,15 @@
|
|||
*
|
||||
DO 100 M = MBOT, MTOP, -1
|
||||
K = KRCOL + 2*( M-1 )
|
||||
T1 = V( 1, M )
|
||||
T2 = T1*V( 2, M )
|
||||
T3 = T1*V( 3, M )
|
||||
DO 90 J = MAX( KTOP, KRCOL + 2*M ), JBOT
|
||||
REFSUM = V( 1, M )*( H( K+1, J )+V( 2, M )*
|
||||
$ H( K+2, J )+V( 3, M )*H( K+3, J ) )
|
||||
H( K+1, J ) = H( K+1, J ) - REFSUM
|
||||
H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M )
|
||||
H( K+3, J ) = H( K+3, J ) - REFSUM*V( 3, M )
|
||||
REFSUM = H( K+1, J ) + V( 2, M )*H( K+2, J )
|
||||
$ + V( 3, M )*H( K+3, J )
|
||||
H( K+1, J ) = H( K+1, J ) - REFSUM*T1
|
||||
H( K+2, J ) = H( K+2, J ) - REFSUM*T2
|
||||
H( K+3, J ) = H( K+3, J ) - REFSUM*T3
|
||||
90 CONTINUE
|
||||
100 CONTINUE
|
||||
*
|
||||
|
@ -729,12 +739,15 @@
|
|||
I2 = MAX( 1, KTOP-INCOL )
|
||||
I2 = MAX( I2, KMS-(KRCOL-INCOL)+1 )
|
||||
I4 = MIN( KDU, KRCOL + 2*( MBOT-1 ) - INCOL + 5 )
|
||||
T1 = V( 1, M )
|
||||
T2 = T1*V( 2, M )
|
||||
T3 = T1*V( 3, M )
|
||||
DO 110 J = I2, I4
|
||||
REFSUM = V( 1, M )*( U( J, KMS+1 )+V( 2, M )*
|
||||
$ U( J, KMS+2 )+V( 3, M )*U( J, KMS+3 ) )
|
||||
U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
|
||||
U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*V( 2, M )
|
||||
U( J, KMS+3 ) = U( J, KMS+3 ) - REFSUM*V( 3, M )
|
||||
REFSUM = U( J, KMS+1 ) + V( 2, M )*U( J, KMS+2 )
|
||||
$ + V( 3, M )*U( J, KMS+3 )
|
||||
U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM*T1
|
||||
U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*T2
|
||||
U( J, KMS+3 ) = U( J, KMS+3 ) - REFSUM*T3
|
||||
110 CONTINUE
|
||||
120 CONTINUE
|
||||
ELSE IF( WANTZ ) THEN
|
||||
|
@ -745,12 +758,15 @@
|
|||
*
|
||||
DO 140 M = MBOT, MTOP, -1
|
||||
K = KRCOL + 2*( M-1 )
|
||||
T1 = V( 1, M )
|
||||
T2 = T1*V( 2, M )
|
||||
T3 = T1*V( 3, M )
|
||||
DO 130 J = ILOZ, IHIZ
|
||||
REFSUM = V( 1, M )*( Z( J, K+1 )+V( 2, M )*
|
||||
$ Z( J, K+2 )+V( 3, M )*Z( J, K+3 ) )
|
||||
Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
|
||||
Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*V( 2, M )
|
||||
Z( J, K+3 ) = Z( J, K+3 ) - REFSUM*V( 3, M )
|
||||
REFSUM = Z( J, K+1 ) + V( 2, M )*Z( J, K+2 )
|
||||
$ + V( 3, M )*Z( J, K+3 )
|
||||
Z( J, K+1 ) = Z( J, K+1 ) - REFSUM*T1
|
||||
Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*T2
|
||||
Z( J, K+3 ) = Z( J, K+3 ) - REFSUM*T3
|
||||
130 CONTINUE
|
||||
140 CONTINUE
|
||||
END IF
|
||||
|
|
|
@ -318,7 +318,8 @@
|
|||
PARAMETER( ZERO = 0.0, ONE = 1.0, HALF = 0.5 )
|
||||
|
||||
* Local scalars
|
||||
REAL :: SMLNUM, ULP, ESHIFT, SAFMIN, SAFMAX, C1, S1, TEMP, SWAP
|
||||
REAL :: SMLNUM, ULP, ESHIFT, SAFMIN, SAFMAX, C1, S1, TEMP, SWAP,
|
||||
$ BNORM, BTOL
|
||||
INTEGER :: ISTART, ISTOP, IITER, MAXIT, ISTART2, K, LD, NSHIFTS,
|
||||
$ NBLOCK, NW, NMIN, NIBBLE, N_UNDEFLATED, N_DEFLATED,
|
||||
$ NS, SWEEP_INFO, SHIFTPOS, LWORKREQ, K2, ISTARTM,
|
||||
|
@ -330,7 +331,7 @@
|
|||
* External Functions
|
||||
EXTERNAL :: XERBLA, SHGEQZ, SLAQZ3, SLAQZ4, SLASET, SLABAD,
|
||||
$ SLARTG, SROT
|
||||
REAL, EXTERNAL :: SLAMCH
|
||||
REAL, EXTERNAL :: SLAMCH, SLANHS
|
||||
LOGICAL, EXTERNAL :: LSAME
|
||||
INTEGER, EXTERNAL :: ILAENV
|
||||
|
||||
|
@ -482,6 +483,9 @@
|
|||
ULP = SLAMCH( 'PRECISION' )
|
||||
SMLNUM = SAFMIN*( REAL( N )/ULP )
|
||||
|
||||
BNORM = SLANHS( 'F', IHI-ILO+1, B( ILO, ILO ), LDB, WORK )
|
||||
BTOL = MAX( SAFMIN, ULP*BNORM )
|
||||
|
||||
ISTART = ILO
|
||||
ISTOP = IHI
|
||||
MAXIT = 3*( IHI-ILO+1 )
|
||||
|
@ -558,15 +562,8 @@
|
|||
* slow down the method when many infinite eigenvalues are present
|
||||
K = ISTOP
|
||||
DO WHILE ( K.GE.ISTART2 )
|
||||
TEMP = ZERO
|
||||
IF( K .LT. ISTOP ) THEN
|
||||
TEMP = TEMP+ABS( B( K, K+1 ) )
|
||||
END IF
|
||||
IF( K .GT. ISTART2 ) THEN
|
||||
TEMP = TEMP+ABS( B( K-1, K ) )
|
||||
END IF
|
||||
|
||||
IF( ABS( B( K, K ) ) .LT. MAX( SMLNUM, ULP*TEMP ) ) THEN
|
||||
IF( ABS( B( K, K ) ) .LT. BTOL ) THEN
|
||||
* A diagonal element of B is negligable, move it
|
||||
* to the top and deflate it
|
||||
|
||||
|
|
|
@ -279,7 +279,7 @@
|
|||
PARAMETER ( RZERO = 0.0d0, RONE = 1.0d0 )
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
COMPLEX*16 ALPHA, BETA, CDUM, REFSUM
|
||||
COMPLEX*16 ALPHA, BETA, CDUM, REFSUM, T1, T2, T3
|
||||
DOUBLE PRECISION H11, H12, H21, H22, SAFMAX, SAFMIN, SCL,
|
||||
$ SMLNUM, TST1, TST2, ULP
|
||||
INTEGER I2, I4, INCOL, J, JBOT, JCOL, JLEN,
|
||||
|
@ -424,12 +424,12 @@
|
|||
* ==== Perform update from right within
|
||||
* . computational window. ====
|
||||
*
|
||||
T1 = V( 1, M22 )
|
||||
T2 = T1*DCONJG( V( 2, M22 ) )
|
||||
DO 30 J = JTOP, MIN( KBOT, K+3 )
|
||||
REFSUM = V( 1, M22 )*( H( J, K+1 )+V( 2, M22 )*
|
||||
$ H( J, K+2 ) )
|
||||
H( J, K+1 ) = H( J, K+1 ) - REFSUM
|
||||
H( J, K+2 ) = H( J, K+2 ) -
|
||||
$ REFSUM*DCONJG( V( 2, M22 ) )
|
||||
REFSUM = H( J, K+1 ) + V( 2, M22 )*H( J, K+2 )
|
||||
H( J, K+1 ) = H( J, K+1 ) - REFSUM*T1
|
||||
H( J, K+2 ) = H( J, K+2 ) - REFSUM*T2
|
||||
30 CONTINUE
|
||||
*
|
||||
* ==== Perform update from left within
|
||||
|
@ -442,12 +442,13 @@
|
|||
ELSE
|
||||
JBOT = KBOT
|
||||
END IF
|
||||
T1 = DCONJG( V( 1, M22 ) )
|
||||
T2 = T1*V( 2, M22 )
|
||||
DO 40 J = K+1, JBOT
|
||||
REFSUM = DCONJG( V( 1, M22 ) )*
|
||||
$ ( H( K+1, J )+DCONJG( V( 2, M22 ) )*
|
||||
$ H( K+2, J ) )
|
||||
H( K+1, J ) = H( K+1, J ) - REFSUM
|
||||
H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M22 )
|
||||
REFSUM = H( K+1, J ) +
|
||||
$ DCONJG( V( 2, M22 ) )*H( K+2, J )
|
||||
H( K+1, J ) = H( K+1, J ) - REFSUM*T1
|
||||
H( K+2, J ) = H( K+2, J ) - REFSUM*T2
|
||||
40 CONTINUE
|
||||
*
|
||||
* ==== The following convergence test requires that
|
||||
|
@ -610,25 +611,29 @@
|
|||
* . deflation check. We still delay most of the
|
||||
* . updates from the left for efficiency. ====
|
||||
*
|
||||
T1 = V( 1, M )
|
||||
T2 = T1*DCONJG( V( 2, M ) )
|
||||
T3 = T1*DCONJG( V( 3, M ) )
|
||||
DO 70 J = JTOP, MIN( KBOT, K+3 )
|
||||
REFSUM = V( 1, M )*( H( J, K+1 )+V( 2, M )*
|
||||
$ H( J, K+2 )+V( 3, M )*H( J, K+3 ) )
|
||||
H( J, K+1 ) = H( J, K+1 ) - REFSUM
|
||||
H( J, K+2 ) = H( J, K+2 ) -
|
||||
$ REFSUM*DCONJG( V( 2, M ) )
|
||||
H( J, K+3 ) = H( J, K+3 ) -
|
||||
$ REFSUM*DCONJG( V( 3, M ) )
|
||||
REFSUM = H( J, K+1 ) + V( 2, M )*H( J, K+2 )
|
||||
$ + V( 3, M )*H( J, K+3 )
|
||||
H( J, K+1 ) = H( J, K+1 ) - REFSUM*T1
|
||||
H( J, K+2 ) = H( J, K+2 ) - REFSUM*T2
|
||||
H( J, K+3 ) = H( J, K+3 ) - REFSUM*T3
|
||||
70 CONTINUE
|
||||
*
|
||||
* ==== Perform update from left for subsequent
|
||||
* . column. ====
|
||||
*
|
||||
REFSUM = DCONJG( V( 1, M ) )*( H( K+1, K+1 )
|
||||
$ +DCONJG( V( 2, M ) )*H( K+2, K+1 )
|
||||
$ +DCONJG( V( 3, M ) )*H( K+3, K+1 ) )
|
||||
H( K+1, K+1 ) = H( K+1, K+1 ) - REFSUM
|
||||
H( K+2, K+1 ) = H( K+2, K+1 ) - REFSUM*V( 2, M )
|
||||
H( K+3, K+1 ) = H( K+3, K+1 ) - REFSUM*V( 3, M )
|
||||
T1 = DCONJG( V( 1, M ) )
|
||||
T2 = T1*V( 2, M )
|
||||
T3 = T1*V( 3, M )
|
||||
REFSUM = H( K+1, K+1 )
|
||||
$ + DCONJG( V( 2, M ) )*H( K+2, K+1 )
|
||||
$ + DCONJG( V( 3, M ) )*H( K+3, K+1 )
|
||||
H( K+1, K+1 ) = H( K+1, K+1 ) - REFSUM*T1
|
||||
H( K+2, K+1 ) = H( K+2, K+1 ) - REFSUM*T2
|
||||
H( K+3, K+1 ) = H( K+3, K+1 ) - REFSUM*T3
|
||||
*
|
||||
* ==== The following convergence test requires that
|
||||
* . the tradition small-compared-to-nearby-diagonals
|
||||
|
@ -688,13 +693,15 @@
|
|||
*
|
||||
DO 100 M = MBOT, MTOP, -1
|
||||
K = KRCOL + 2*( M-1 )
|
||||
T1 = DCONJG( V( 1, M ) )
|
||||
T2 = T1*V( 2, M )
|
||||
T3 = T1*V( 3, M )
|
||||
DO 90 J = MAX( KTOP, KRCOL + 2*M ), JBOT
|
||||
REFSUM = DCONJG( V( 1, M ) )*
|
||||
$ ( H( K+1, J )+DCONJG( V( 2, M ) )*
|
||||
$ H( K+2, J )+DCONJG( V( 3, M ) )*H( K+3, J ) )
|
||||
H( K+1, J ) = H( K+1, J ) - REFSUM
|
||||
H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M )
|
||||
H( K+3, J ) = H( K+3, J ) - REFSUM*V( 3, M )
|
||||
REFSUM = H( K+1, J ) + DCONJG( V( 2, M ) )*H( K+2, J )
|
||||
$ + DCONJG( V( 3, M ) )*H( K+3, J )
|
||||
H( K+1, J ) = H( K+1, J ) - REFSUM*T1
|
||||
H( K+2, J ) = H( K+2, J ) - REFSUM*T2
|
||||
H( K+3, J ) = H( K+3, J ) - REFSUM*T3
|
||||
90 CONTINUE
|
||||
100 CONTINUE
|
||||
*
|
||||
|
@ -712,14 +719,15 @@
|
|||
I2 = MAX( 1, KTOP-INCOL )
|
||||
I2 = MAX( I2, KMS-(KRCOL-INCOL)+1 )
|
||||
I4 = MIN( KDU, KRCOL + 2*( MBOT-1 ) - INCOL + 5 )
|
||||
T1 = V( 1, M )
|
||||
T2 = T1*DCONJG( V( 2, M ) )
|
||||
T3 = T1*DCONJG( V( 3, M ) )
|
||||
DO 110 J = I2, I4
|
||||
REFSUM = V( 1, M )*( U( J, KMS+1 )+V( 2, M )*
|
||||
$ U( J, KMS+2 )+V( 3, M )*U( J, KMS+3 ) )
|
||||
U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
|
||||
U( J, KMS+2 ) = U( J, KMS+2 ) -
|
||||
$ REFSUM*DCONJG( V( 2, M ) )
|
||||
U( J, KMS+3 ) = U( J, KMS+3 ) -
|
||||
$ REFSUM*DCONJG( V( 3, M ) )
|
||||
REFSUM = U( J, KMS+1 ) + V( 2, M )*U( J, KMS+2 )
|
||||
$ + V( 3, M )*U( J, KMS+3 )
|
||||
U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM*T1
|
||||
U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*T2
|
||||
U( J, KMS+3 ) = U( J, KMS+3 ) - REFSUM*T3
|
||||
110 CONTINUE
|
||||
120 CONTINUE
|
||||
ELSE IF( WANTZ ) THEN
|
||||
|
@ -730,14 +738,15 @@
|
|||
*
|
||||
DO 140 M = MBOT, MTOP, -1
|
||||
K = KRCOL + 2*( M-1 )
|
||||
T1 = V( 1, M )
|
||||
T2 = T1*DCONJG( V( 2, M ) )
|
||||
T3 = T1*DCONJG( V( 3, M ) )
|
||||
DO 130 J = ILOZ, IHIZ
|
||||
REFSUM = V( 1, M )*( Z( J, K+1 )+V( 2, M )*
|
||||
$ Z( J, K+2 )+V( 3, M )*Z( J, K+3 ) )
|
||||
Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
|
||||
Z( J, K+2 ) = Z( J, K+2 ) -
|
||||
$ REFSUM*DCONJG( V( 2, M ) )
|
||||
Z( J, K+3 ) = Z( J, K+3 ) -
|
||||
$ REFSUM*DCONJG( V( 3, M ) )
|
||||
REFSUM = Z( J, K+1 ) + V( 2, M )*Z( J, K+2 )
|
||||
$ + V( 3, M )*Z( J, K+3 )
|
||||
Z( J, K+1 ) = Z( J, K+1 ) - REFSUM*T1
|
||||
Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*T2
|
||||
Z( J, K+3 ) = Z( J, K+3 ) - REFSUM*T3
|
||||
130 CONTINUE
|
||||
140 CONTINUE
|
||||
END IF
|
||||
|
|
|
@ -300,7 +300,8 @@
|
|||
PARAMETER( ZERO = 0.0D0, ONE = 1.0D0, HALF = 0.5D0 )
|
||||
|
||||
* Local scalars
|
||||
DOUBLE PRECISION :: SMLNUM, ULP, SAFMIN, SAFMAX, C1, TEMPR
|
||||
DOUBLE PRECISION :: SMLNUM, ULP, SAFMIN, SAFMAX, C1, TEMPR,
|
||||
$ BNORM, BTOL
|
||||
COMPLEX*16 :: ESHIFT, S1, TEMP
|
||||
INTEGER :: ISTART, ISTOP, IITER, MAXIT, ISTART2, K, LD, NSHIFTS,
|
||||
$ NBLOCK, NW, NMIN, NIBBLE, N_UNDEFLATED, N_DEFLATED,
|
||||
|
@ -313,7 +314,7 @@
|
|||
* External Functions
|
||||
EXTERNAL :: XERBLA, ZHGEQZ, ZLAQZ2, ZLAQZ3, ZLASET, DLABAD,
|
||||
$ ZLARTG, ZROT
|
||||
DOUBLE PRECISION, EXTERNAL :: DLAMCH
|
||||
DOUBLE PRECISION, EXTERNAL :: DLAMCH, ZLANHS
|
||||
LOGICAL, EXTERNAL :: LSAME
|
||||
INTEGER, EXTERNAL :: ILAENV
|
||||
|
||||
|
@ -467,6 +468,9 @@
|
|||
ULP = DLAMCH( 'PRECISION' )
|
||||
SMLNUM = SAFMIN*( DBLE( N )/ULP )
|
||||
|
||||
BNORM = ZLANHS( 'F', IHI-ILO+1, B( ILO, ILO ), LDB, RWORK )
|
||||
BTOL = MAX( SAFMIN, ULP*BNORM )
|
||||
|
||||
ISTART = ILO
|
||||
ISTOP = IHI
|
||||
MAXIT = 30*( IHI-ILO+1 )
|
||||
|
@ -529,15 +533,8 @@
|
|||
* slow down the method when many infinite eigenvalues are present
|
||||
K = ISTOP
|
||||
DO WHILE ( K.GE.ISTART2 )
|
||||
TEMPR = ZERO
|
||||
IF( K .LT. ISTOP ) THEN
|
||||
TEMPR = TEMPR+ABS( B( K, K+1 ) )
|
||||
END IF
|
||||
IF( K .GT. ISTART2 ) THEN
|
||||
TEMPR = TEMPR+ABS( B( K-1, K ) )
|
||||
END IF
|
||||
|
||||
IF( ABS( B( K, K ) ) .LT. MAX( SMLNUM, ULP*TEMPR ) ) THEN
|
||||
IF( ABS( B( K, K ) ) .LT. BTOL ) THEN
|
||||
* A diagonal element of B is negligable, move it
|
||||
* to the top and deflate it
|
||||
|
||||
|
|
Loading…
Reference in New Issue