Merge pull request #3829 from martin-frbg/lapack684+739

Cast workspace sizes for ?GELSS and add new ?GELST functions (Reference-LAPACK PRs 684+739)
This commit is contained in:
Martin Kroeker 2022-11-20 13:06:51 +01:00 committed by GitHub
commit 1714d640f1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
22 changed files with 7871 additions and 440 deletions

View File

@ -124,7 +124,7 @@ set(SLASRC
ssbev_2stage.f ssbevx_2stage.f ssbevd_2stage.f ssygv_2stage.f
sgesvdq.f slaorhr_col_getrfnp.f
slaorhr_col_getrfnp2.f sorgtsqr.f sorgtsqr_row.f sorhr_col.f
slarmm.f slatrs3.f strsyl3.f)
slarmm.f slatrs3.f strsyl3.f sgelst.f)
set(SXLASRC sgesvxx.f sgerfsx.f sla_gerfsx_extended.f sla_geamv.f
sla_gercond.f sla_gerpvgrw.f ssysvxx.f ssyrfsx.f
@ -223,7 +223,7 @@ set(CLASRC
chbev_2stage.f chbevx_2stage.f chbevd_2stage.f chegv_2stage.f
cgesvdq.f claunhr_col_getrfnp.f claunhr_col_getrfnp2.f
cungtsqr.f cungtsqr_row.f cunhr_col.f
clatrs3.f ctrsyl3.f )
clatrs3.f ctrsyl3.f cgelst.f)
set(CXLASRC cgesvxx.f cgerfsx.f cla_gerfsx_extended.f cla_geamv.f
cla_gercond_c.f cla_gercond_x.f cla_gerpvgrw.f
@ -316,7 +316,7 @@ set(DLASRC
dsbev_2stage.f dsbevx_2stage.f dsbevd_2stage.f dsygv_2stage.f
dcombssq.f dgesvdq.f dlaorhr_col_getrfnp.f
dlaorhr_col_getrfnp2.f dorgtsqr.f dorgtsqr_row.f dorhr_col.f
dlarmm.f dlatrs3.f dtrsyl3.f)
dlarmm.f dlatrs3.f dtrsyl3.f dgelst.f)
set(DXLASRC dgesvxx.f dgerfsx.f dla_gerfsx_extended.f dla_geamv.f
dla_gercond.f dla_gerpvgrw.f dsysvxx.f dsyrfsx.f
@ -419,7 +419,7 @@ set(ZLASRC
zhbev_2stage.f zhbevx_2stage.f zhbevd_2stage.f zhegv_2stage.f
zgesvdq.f zlaunhr_col_getrfnp.f zlaunhr_col_getrfnp2.f
zungtsqr.f zungtsqr_row.f zunhr_col.f
zlatrs3.f ztrsyl3.f)
zlatrs3.f ztrsyl3.f zgelst.f)
set(ZXLASRC zgesvxx.f zgerfsx.f zla_gerfsx_extended.f zla_geamv.f
zla_gercond_c.f zla_gercond_x.f zla_gerpvgrw.f zsysvxx.f zsyrfsx.f
@ -622,7 +622,7 @@ set(SLASRC
ssbev_2stage.c ssbevx_2stage.c ssbevd_2stage.c ssygv_2stage.c
sgesvdq.c slaorhr_col_getrfnp.c
slaorhr_col_getrfnp2.c sorgtsqr.c sorgtsqr_row.c sorhr_col.c
slarmm.c slatrs3.c strsyl3.c)
slarmm.c slatrs3.c strsyl3.c sgelst.c)
set(SXLASRC sgesvxx.c sgerfsx.c sla_gerfsx_extended.c sla_geamv.c
sla_gercond.c sla_gerpvgrw.c ssysvxx.c ssyrfsx.c
@ -720,7 +720,7 @@ set(CLASRC
chbev_2stage.c chbevx_2stage.c chbevd_2stage.c chegv_2stage.c
cgesvdq.c claunhr_col_getrfnp.c claunhr_col_getrfnp2.c
cungtsqr.c cungtsqr_row.c cunhr_col.c
clatrs3.c ctrsyl3.c)
clatrs3.c ctrsyl3.c cgelst.c)
set(CXLASRC cgesvxx.c cgerfsx.c cla_gerfsx_extended.c cla_geamv.c
cla_gercond_c.c cla_gercond_x.c cla_gerpvgrw.c
@ -812,7 +812,7 @@ set(DLASRC
dsbev_2stage.c dsbevx_2stage.c dsbevd_2stage.c dsygv_2stage.c
dcombssq.c dgesvdq.c dlaorhr_col_getrfnp.c
dlaorhr_col_getrfnp2.c dorgtsqr.c dorgtsqr_row.c dorhr_col.c
dlarmm.c dlatrs3.c dtrsyl3.c)
dlarmm.c dlatrs3.c dtrsyl3.c dgelst.c)
set(DXLASRC dgesvxx.c dgerfsx.c dla_gerfsx_extended.c dla_geamv.c
dla_gercond.c dla_gerpvgrw.c dsysvxx.c dsyrfsx.c
@ -913,7 +913,7 @@ set(ZLASRC
zheevd_2stage.c zheev_2stage.c zheevx_2stage.c zheevr_2stage.c
zhbev_2stage.c zhbevx_2stage.c zhbevd_2stage.c zhegv_2stage.c
zgesvdq.c zlaunhr_col_getrfnp.c zlaunhr_col_getrfnp2.c
zungtsqr.c zungtsqr_row.c zunhr_col.c zlatrs3.c ztrsyl3.c)
zungtsqr.c zungtsqr_row.c zunhr_col.c zlatrs3.c ztrsyl3.c zgelst.c)
set(ZXLASRC zgesvxx.c zgerfsx.c zla_gerfsx_extended.c zla_geamv.c
zla_gercond_c.c zla_gercond_x.c zla_gerpvgrw.c zsysvxx.c zsyrfsx.c

View File

@ -207,7 +207,7 @@ SLASRC_O = \
ssytrd_2stage.o ssytrd_sy2sb.o ssytrd_sb2st.o ssb2st_kernels.o \
ssyevd_2stage.o ssyev_2stage.o ssyevx_2stage.o ssyevr_2stage.o \
ssbev_2stage.o ssbevx_2stage.o ssbevd_2stage.o ssygv_2stage.o \
sgesvdq.o slarmm.o slatrs3.o strsyl3.o
sgesvdq.o slarmm.o slatrs3.o strsyl3.o sgelst.o
endif
@ -316,7 +316,7 @@ CLASRC_O = \
chetrd_2stage.o chetrd_he2hb.o chetrd_hb2st.o chb2st_kernels.o \
cheevd_2stage.o cheev_2stage.o cheevx_2stage.o cheevr_2stage.o \
chbev_2stage.o chbevx_2stage.o chbevd_2stage.o chegv_2stage.o \
cgesvdq.o clatrs3.o ctrsyl3.o
cgesvdq.o clatrs3.o ctrsyl3.o cgelst.o
endif
ifdef USEXBLAS
@ -417,7 +417,7 @@ DLASRC_O = \
dsytrd_2stage.o dsytrd_sy2sb.o dsytrd_sb2st.o dsb2st_kernels.o \
dsyevd_2stage.o dsyev_2stage.o dsyevx_2stage.o dsyevr_2stage.o \
dsbev_2stage.o dsbevx_2stage.o dsbevd_2stage.o dsygv_2stage.o \
dgesvdq.o dlarmm.o dlatrs3.o dtrsyl3.o
dgesvdq.o dlarmm.o dlatrs3.o dtrsyl3.o dgelst.o
endif
ifdef USEXBLAS
@ -526,7 +526,7 @@ ZLASRC_O = \
zhetrd_2stage.o zhetrd_he2hb.o zhetrd_hb2st.o zhb2st_kernels.o \
zheevd_2stage.o zheev_2stage.o zheevx_2stage.o zheevr_2stage.o \
zhbev_2stage.o zhbevx_2stage.o zhbevd_2stage.o zhegv_2stage.o \
zgesvdq.o zlatrs3.o ztrsyl3.o
zgesvdq.o zlatrs3.o ztrsyl3.o zgelst.o
endif
ifdef USEXBLAS

View File

@ -266,11 +266,11 @@
*
* Compute space needed for CGEQRF
CALL CGEQRF( M, N, A, LDA, DUM(1), DUM(1), -1, INFO )
LWORK_CGEQRF = REAL( DUM(1) )
LWORK_CGEQRF = INT( DUM(1) )
* Compute space needed for CUNMQR
CALL CUNMQR( 'L', 'C', M, NRHS, N, A, LDA, DUM(1), B,
$ LDB, DUM(1), -1, INFO )
LWORK_CUNMQR = REAL( DUM(1) )
LWORK_CUNMQR = INT( DUM(1) )
MM = N
MAXWRK = MAX( MAXWRK, N + N*ILAENV( 1, 'CGEQRF', ' ', M,
$ N, -1, -1 ) )
@ -284,15 +284,15 @@
* Compute space needed for CGEBRD
CALL CGEBRD( MM, N, A, LDA, S, S, DUM(1), DUM(1), DUM(1),
$ -1, INFO )
LWORK_CGEBRD = REAL( DUM(1) )
LWORK_CGEBRD = INT( DUM(1) )
* Compute space needed for CUNMBR
CALL CUNMBR( 'Q', 'L', 'C', MM, NRHS, N, A, LDA, DUM(1),
$ B, LDB, DUM(1), -1, INFO )
LWORK_CUNMBR = REAL( DUM(1) )
LWORK_CUNMBR = INT( DUM(1) )
* Compute space needed for CUNGBR
CALL CUNGBR( 'P', N, N, N, A, LDA, DUM(1),
$ DUM(1), -1, INFO )
LWORK_CUNGBR = REAL( DUM(1) )
LWORK_CUNGBR = INT( DUM(1) )
* Compute total workspace needed
MAXWRK = MAX( MAXWRK, 2*N + LWORK_CGEBRD )
MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNMBR )
@ -310,23 +310,23 @@
* Compute space needed for CGELQF
CALL CGELQF( M, N, A, LDA, DUM(1), DUM(1),
$ -1, INFO )
LWORK_CGELQF = REAL( DUM(1) )
LWORK_CGELQF = INT( DUM(1) )
* Compute space needed for CGEBRD
CALL CGEBRD( M, M, A, LDA, S, S, DUM(1), DUM(1),
$ DUM(1), -1, INFO )
LWORK_CGEBRD = REAL( DUM(1) )
LWORK_CGEBRD = INT( DUM(1) )
* Compute space needed for CUNMBR
CALL CUNMBR( 'Q', 'L', 'C', M, NRHS, N, A, LDA,
$ DUM(1), B, LDB, DUM(1), -1, INFO )
LWORK_CUNMBR = REAL( DUM(1) )
LWORK_CUNMBR = INT( DUM(1) )
* Compute space needed for CUNGBR
CALL CUNGBR( 'P', M, M, M, A, LDA, DUM(1),
$ DUM(1), -1, INFO )
LWORK_CUNGBR = REAL( DUM(1) )
LWORK_CUNGBR = INT( DUM(1) )
* Compute space needed for CUNMLQ
CALL CUNMLQ( 'L', 'C', N, NRHS, M, A, LDA, DUM(1),
$ B, LDB, DUM(1), -1, INFO )
LWORK_CUNMLQ = REAL( DUM(1) )
LWORK_CUNMLQ = INT( DUM(1) )
* Compute total workspace needed
MAXWRK = M + LWORK_CGELQF
MAXWRK = MAX( MAXWRK, 3*M + M*M + LWORK_CGEBRD )
@ -345,15 +345,15 @@
* Compute space needed for CGEBRD
CALL CGEBRD( M, N, A, LDA, S, S, DUM(1), DUM(1),
$ DUM(1), -1, INFO )
LWORK_CGEBRD = REAL( DUM(1) )
LWORK_CGEBRD = INT( DUM(1) )
* Compute space needed for CUNMBR
CALL CUNMBR( 'Q', 'L', 'C', M, NRHS, M, A, LDA,
$ DUM(1), B, LDB, DUM(1), -1, INFO )
LWORK_CUNMBR = REAL( DUM(1) )
LWORK_CUNMBR = INT( DUM(1) )
* Compute space needed for CUNGBR
CALL CUNGBR( 'P', M, N, M, A, LDA, DUM(1),
$ DUM(1), -1, INFO )
LWORK_CUNGBR = REAL( DUM(1) )
LWORK_CUNGBR = INT( DUM(1) )
MAXWRK = 2*M + LWORK_CGEBRD
MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNMBR )
MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNGBR )

1108
lapack-netlib/SRC/cgelst.c Normal file

File diff suppressed because it is too large Load Diff

533
lapack-netlib/SRC/cgelst.f Normal file
View File

@ -0,0 +1,533 @@
*> \brief <b> CGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q.</b>
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CGELST + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelst.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelst.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelst.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
* INFO )
*
* .. Scalar Arguments ..
* CHARACTER TRANS
* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
* ..
* .. Array Arguments ..
* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CGELST solves overdetermined or underdetermined real linear systems
*> involving an M-by-N matrix A, or its conjugate-transpose, using a QR
*> or LQ factorization of A with compact WY representation of Q.
*> It is assumed that A has full rank.
*>
*> The following options are provided:
*>
*> 1. If TRANS = 'N' and m >= n: find the least squares solution of
*> an overdetermined system, i.e., solve the least squares problem
*> minimize || B - A*X ||.
*>
*> 2. If TRANS = 'N' and m < n: find the minimum norm solution of
*> an underdetermined system A * X = B.
*>
*> 3. If TRANS = 'C' and m >= n: find the minimum norm solution of
*> an underdetermined system A**T * X = B.
*>
*> 4. If TRANS = 'C' and m < n: find the least squares solution of
*> an overdetermined system, i.e., solve the least squares problem
*> minimize || B - A**T * X ||.
*>
*> Several right hand side vectors b and solution vectors x can be
*> handled in a single call; they are stored as the columns of the
*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
*> matrix X.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> = 'N': the linear system involves A;
*> = 'C': the linear system involves A**H.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of
*> columns of the matrices B and X. NRHS >=0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the M-by-N matrix A.
*> On exit,
*> if M >= N, A is overwritten by details of its QR
*> factorization as returned by CGEQRT;
*> if M < N, A is overwritten by details of its LQ
*> factorization as returned by CGELQT.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX array, dimension (LDB,NRHS)
*> On entry, the matrix B of right hand side vectors, stored
*> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
*> if TRANS = 'C'.
*> On exit, if INFO = 0, B is overwritten by the solution
*> vectors, stored columnwise:
*> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
*> squares solution vectors; the residual sum of squares for the
*> solution in each column is given by the sum of squares of
*> modulus of elements N+1 to M in that column;
*> if TRANS = 'N' and m < n, rows 1 to N of B contain the
*> minimum norm solution vectors;
*> if TRANS = 'C' and m >= n, rows 1 to M of B contain the
*> minimum norm solution vectors;
*> if TRANS = 'C' and m < n, rows 1 to M of B contain the
*> least squares solution vectors; the residual sum of squares
*> for the solution in each column is given by the sum of
*> squares of the modulus of elements M+1 to N in that column.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= MAX(1,M,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> LWORK >= max( 1, MN + max( MN, NRHS ) ).
*> For optimal performance,
*> LWORK >= max( 1, (MN + max( MN, NRHS ))*NB ).
*> where MN = min(M,N) and NB is the optimum block size.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, the i-th diagonal element of the
*> triangular factor of A is zero, so that A does not have
*> full rank; the least squares solution could not be
*> computed.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complexGEsolve
*
*> \par Contributors:
* ==================
*>
*> \verbatim
*>
*> November 2022, Igor Kozachenko,
*> Computer Science Division,
*> University of California, Berkeley
*> \endverbatim
*
* =====================================================================
SUBROUTINE CGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
$ INFO )
*
* -- LAPACK driver routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
COMPLEX CZERO
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
LOGICAL LQUERY, TPSD
INTEGER BROW, I, IASCL, IBSCL, J, LWOPT, MN, MNNRHS,
$ NB, NBMIN, SCLLEN
REAL ANRM, BIGNUM, BNRM, SMLNUM
* ..
* .. Local Arrays ..
REAL RWORK( 1 )
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
REAL SLAMCH, CLANGE
EXTERNAL LSAME, ILAENV, SLAMCH, CLANGE
* ..
* .. External Subroutines ..
EXTERNAL CGELQT, CGEQRT, CGEMLQT, CGEMQRT, SLABAD,
$ CLASCL, CLASET, CTRTRS, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC REAL, MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input arguments.
*
INFO = 0
MN = MIN( M, N )
LQUERY = ( LWORK.EQ.-1 )
IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'C' ) ) ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( NRHS.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -6
ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
INFO = -8
ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
$ THEN
INFO = -10
END IF
*
* Figure out optimal block size and optimal workspace size
*
IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
*
TPSD = .TRUE.
IF( LSAME( TRANS, 'N' ) )
$ TPSD = .FALSE.
*
NB = ILAENV( 1, 'CGELST', ' ', M, N, -1, -1 )
*
MNNRHS = MAX( MN, NRHS )
LWOPT = MAX( 1, (MN+MNNRHS)*NB )
WORK( 1 ) = REAL( LWOPT )
*
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CGELST ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( MIN( M, N, NRHS ).EQ.0 ) THEN
CALL CLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
WORK( 1 ) = REAL( LWOPT )
RETURN
END IF
*
* *GEQRT and *GELQT routines cannot accept NB larger than min(M,N)
*
IF( NB.GT.MN ) NB = MN
*
* Determine the block size from the supplied LWORK
* ( at this stage we know that LWORK >= (minimum required workspace,
* but it may be less than optimal)
*
NB = MIN( NB, LWORK/( MN + MNNRHS ) )
*
* The minimum value of NB, when blocked code is used
*
NBMIN = MAX( 2, ILAENV( 2, 'CGELST', ' ', M, N, -1, -1 ) )
*
IF( NB.LT.NBMIN ) THEN
NB = 1
END IF
*
* Get machine parameters
*
SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' )
BIGNUM = ONE / SMLNUM
CALL SLABAD( SMLNUM, BIGNUM )
*
* Scale A, B if max element outside range [SMLNUM,BIGNUM]
*
ANRM = CLANGE( 'M', M, N, A, LDA, RWORK )
IASCL = 0
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
*
* Scale matrix norm up to SMLNUM
*
CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
IASCL = 1
ELSE IF( ANRM.GT.BIGNUM ) THEN
*
* Scale matrix norm down to BIGNUM
*
CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
IASCL = 2
ELSE IF( ANRM.EQ.ZERO ) THEN
*
* Matrix all zero. Return zero solution.
*
CALL CLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
WORK( 1 ) = REAL( LWOPT )
RETURN
END IF
*
BROW = M
IF( TPSD )
$ BROW = N
BNRM = CLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
IBSCL = 0
IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
*
* Scale matrix norm up to SMLNUM
*
CALL CLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
$ INFO )
IBSCL = 1
ELSE IF( BNRM.GT.BIGNUM ) THEN
*
* Scale matrix norm down to BIGNUM
*
CALL CLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
$ INFO )
IBSCL = 2
END IF
*
IF( M.GE.N ) THEN
*
* M > N:
* Compute the blocked QR factorization of A,
* using the compact WY representation of Q,
* workspace at least N, optimally N*NB.
*
CALL CGEQRT( M, N, NB, A, LDA, WORK( 1 ), NB,
$ WORK( MN*NB+1 ), INFO )
*
IF( .NOT.TPSD ) THEN
*
* M > N, A is not transposed:
* Overdetermined system of equations,
* least-squares problem, min || A * X - B ||.
*
* Compute B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS),
* using the compact WY representation of Q,
* workspace at least NRHS, optimally NRHS*NB.
*
CALL CGEMQRT( 'Left', 'Conjugate transpose', M, NRHS, N, NB,
$ A, LDA, WORK( 1 ), NB, B, LDB,
$ WORK( MN*NB+1 ), INFO )
*
* Compute B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
*
CALL CTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
$ A, LDA, B, LDB, INFO )
*
IF( INFO.GT.0 ) THEN
RETURN
END IF
*
SCLLEN = N
*
ELSE
*
* M > N, A is transposed:
* Underdetermined system of equations,
* minimum norm solution of A**T * X = B.
*
* Compute B := inv(R**T) * B in two row blocks of B.
*
* Block 1: B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
*
CALL CTRTRS( 'Upper', 'Conjugate transpose', 'Non-unit',
$ N, NRHS, A, LDA, B, LDB, INFO )
*
IF( INFO.GT.0 ) THEN
RETURN
END IF
*
* Block 2: Zero out all rows below the N-th row in B:
* B(N+1:M,1:NRHS) = ZERO
*
DO J = 1, NRHS
DO I = N + 1, M
B( I, J ) = ZERO
END DO
END DO
*
* Compute B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS),
* using the compact WY representation of Q,
* workspace at least NRHS, optimally NRHS*NB.
*
CALL CGEMQRT( 'Left', 'No transpose', M, NRHS, N, NB,
$ A, LDA, WORK( 1 ), NB, B, LDB,
$ WORK( MN*NB+1 ), INFO )
*
SCLLEN = M
*
END IF
*
ELSE
*
* M < N:
* Compute the blocked LQ factorization of A,
* using the compact WY representation of Q,
* workspace at least M, optimally M*NB.
*
CALL CGELQT( M, N, NB, A, LDA, WORK( 1 ), NB,
$ WORK( MN*NB+1 ), INFO )
*
IF( .NOT.TPSD ) THEN
*
* M < N, A is not transposed:
* Underdetermined system of equations,
* minimum norm solution of A * X = B.
*
* Compute B := inv(L) * B in two row blocks of B.
*
* Block 1: B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
*
CALL CTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
$ A, LDA, B, LDB, INFO )
*
IF( INFO.GT.0 ) THEN
RETURN
END IF
*
* Block 2: Zero out all rows below the M-th row in B:
* B(M+1:N,1:NRHS) = ZERO
*
DO J = 1, NRHS
DO I = M + 1, N
B( I, J ) = ZERO
END DO
END DO
*
* Compute B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS),
* using the compact WY representation of Q,
* workspace at least NRHS, optimally NRHS*NB.
*
CALL CGEMLQT( 'Left', 'Conjugate transpose', N, NRHS, M, NB,
$ A, LDA, WORK( 1 ), NB, B, LDB,
$ WORK( MN*NB+1 ), INFO )
*
SCLLEN = N
*
ELSE
*
* M < N, A is transposed:
* Overdetermined system of equations,
* least-squares problem, min || A**T * X - B ||.
*
* Compute B(1:N,1:NRHS) := Q * B(1:N,1:NRHS),
* using the compact WY representation of Q,
* workspace at least NRHS, optimally NRHS*NB.
*
CALL CGEMLQT( 'Left', 'No transpose', N, NRHS, M, NB,
$ A, LDA, WORK( 1 ), NB, B, LDB,
$ WORK( MN*NB+1), INFO )
*
* Compute B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
*
CALL CTRTRS( 'Lower', 'Conjugate transpose', 'Non-unit',
$ M, NRHS, A, LDA, B, LDB, INFO )
*
IF( INFO.GT.0 ) THEN
RETURN
END IF
*
SCLLEN = M
*
END IF
*
END IF
*
* Undo scaling
*
IF( IASCL.EQ.1 ) THEN
CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
$ INFO )
ELSE IF( IASCL.EQ.2 ) THEN
CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
$ INFO )
END IF
IF( IBSCL.EQ.1 ) THEN
CALL CLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
$ INFO )
ELSE IF( IBSCL.EQ.2 ) THEN
CALL CLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
$ INFO )
END IF
*
WORK( 1 ) = REAL( LWOPT )
*
RETURN
*
* End of CGELST
*
END

1104
lapack-netlib/SRC/dgelst.c Normal file

File diff suppressed because it is too large Load Diff

531
lapack-netlib/SRC/dgelst.f Normal file
View File

@ -0,0 +1,531 @@
*> \brief <b> DGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q.</b>
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DGELST + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelst.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelst.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelst.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
* INFO )
*
* .. Scalar Arguments ..
* CHARACTER TRANS
* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DGELST solves overdetermined or underdetermined real linear systems
*> involving an M-by-N matrix A, or its transpose, using a QR or LQ
*> factorization of A with compact WY representation of Q.
*> It is assumed that A has full rank.
*>
*> The following options are provided:
*>
*> 1. If TRANS = 'N' and m >= n: find the least squares solution of
*> an overdetermined system, i.e., solve the least squares problem
*> minimize || B - A*X ||.
*>
*> 2. If TRANS = 'N' and m < n: find the minimum norm solution of
*> an underdetermined system A * X = B.
*>
*> 3. If TRANS = 'T' and m >= n: find the minimum norm solution of
*> an underdetermined system A**T * X = B.
*>
*> 4. If TRANS = 'T' and m < n: find the least squares solution of
*> an overdetermined system, i.e., solve the least squares problem
*> minimize || B - A**T * X ||.
*>
*> Several right hand side vectors b and solution vectors x can be
*> handled in a single call; they are stored as the columns of the
*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
*> matrix X.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> = 'N': the linear system involves A;
*> = 'T': the linear system involves A**T.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of
*> columns of the matrices B and X. NRHS >=0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> On entry, the M-by-N matrix A.
*> On exit,
*> if M >= N, A is overwritten by details of its QR
*> factorization as returned by DGEQRT;
*> if M < N, A is overwritten by details of its LQ
*> factorization as returned by DGELQT.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
*> On entry, the matrix B of right hand side vectors, stored
*> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
*> if TRANS = 'T'.
*> On exit, if INFO = 0, B is overwritten by the solution
*> vectors, stored columnwise:
*> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
*> squares solution vectors; the residual sum of squares for the
*> solution in each column is given by the sum of squares of
*> elements N+1 to M in that column;
*> if TRANS = 'N' and m < n, rows 1 to N of B contain the
*> minimum norm solution vectors;
*> if TRANS = 'T' and m >= n, rows 1 to M of B contain the
*> minimum norm solution vectors;
*> if TRANS = 'T' and m < n, rows 1 to M of B contain the
*> least squares solution vectors; the residual sum of squares
*> for the solution in each column is given by the sum of
*> squares of elements M+1 to N in that column.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= MAX(1,M,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> LWORK >= max( 1, MN + max( MN, NRHS ) ).
*> For optimal performance,
*> LWORK >= max( 1, (MN + max( MN, NRHS ))*NB ).
*> where MN = min(M,N) and NB is the optimum block size.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, the i-th diagonal element of the
*> triangular factor of A is zero, so that A does not have
*> full rank; the least squares solution could not be
*> computed.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup doubleGEsolve
*
*> \par Contributors:
* ==================
*>
*> \verbatim
*>
*> November 2022, Igor Kozachenko,
*> Computer Science Division,
*> University of California, Berkeley
*> \endverbatim
*
* =====================================================================
SUBROUTINE DGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
$ INFO )
*
* -- LAPACK driver routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY, TPSD
INTEGER BROW, I, IASCL, IBSCL, J, LWOPT, MN, MNNRHS,
$ NB, NBMIN, SCLLEN
DOUBLE PRECISION ANRM, BIGNUM, BNRM, SMLNUM
* ..
* .. Local Arrays ..
DOUBLE PRECISION RWORK( 1 )
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
DOUBLE PRECISION DLAMCH, DLANGE
EXTERNAL LSAME, ILAENV, DLAMCH, DLANGE
* ..
* .. External Subroutines ..
EXTERNAL DGELQT, DGEQRT, DGEMLQT, DGEMQRT, DLABAD,
$ DLASCL, DLASET, DTRTRS, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input arguments.
*
INFO = 0
MN = MIN( M, N )
LQUERY = ( LWORK.EQ.-1 )
IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' ) ) ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( NRHS.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -6
ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
INFO = -8
ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
$ THEN
INFO = -10
END IF
*
* Figure out optimal block size and optimal workspace size
*
IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
*
TPSD = .TRUE.
IF( LSAME( TRANS, 'N' ) )
$ TPSD = .FALSE.
*
NB = ILAENV( 1, 'DGELST', ' ', M, N, -1, -1 )
*
MNNRHS = MAX( MN, NRHS )
LWOPT = MAX( 1, (MN+MNNRHS)*NB )
WORK( 1 ) = DBLE( LWOPT )
*
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGELST ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( MIN( M, N, NRHS ).EQ.0 ) THEN
CALL DLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
WORK( 1 ) = DBLE( LWOPT )
RETURN
END IF
*
* *GEQRT and *GELQT routines cannot accept NB larger than min(M,N)
*
IF( NB.GT.MN ) NB = MN
*
* Determine the block size from the supplied LWORK
* ( at this stage we know that LWORK >= (minimum required workspace,
* but it may be less than optimal)
*
NB = MIN( NB, LWORK/( MN + MNNRHS ) )
*
* The minimum value of NB, when blocked code is used
*
NBMIN = MAX( 2, ILAENV( 2, 'DGELST', ' ', M, N, -1, -1 ) )
*
IF( NB.LT.NBMIN ) THEN
NB = 1
END IF
*
* Get machine parameters
*
SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
*
* Scale A, B if max element outside range [SMLNUM,BIGNUM]
*
ANRM = DLANGE( 'M', M, N, A, LDA, RWORK )
IASCL = 0
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
*
* Scale matrix norm up to SMLNUM
*
CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
IASCL = 1
ELSE IF( ANRM.GT.BIGNUM ) THEN
*
* Scale matrix norm down to BIGNUM
*
CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
IASCL = 2
ELSE IF( ANRM.EQ.ZERO ) THEN
*
* Matrix all zero. Return zero solution.
*
CALL DLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
WORK( 1 ) = DBLE( LWOPT )
RETURN
END IF
*
BROW = M
IF( TPSD )
$ BROW = N
BNRM = DLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
IBSCL = 0
IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
*
* Scale matrix norm up to SMLNUM
*
CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
$ INFO )
IBSCL = 1
ELSE IF( BNRM.GT.BIGNUM ) THEN
*
* Scale matrix norm down to BIGNUM
*
CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
$ INFO )
IBSCL = 2
END IF
*
IF( M.GE.N ) THEN
*
* M > N:
* Compute the blocked QR factorization of A,
* using the compact WY representation of Q,
* workspace at least N, optimally N*NB.
*
CALL DGEQRT( M, N, NB, A, LDA, WORK( 1 ), NB,
$ WORK( MN*NB+1 ), INFO )
*
IF( .NOT.TPSD ) THEN
*
* M > N, A is not transposed:
* Overdetermined system of equations,
* least-squares problem, min || A * X - B ||.
*
* Compute B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS),
* using the compact WY representation of Q,
* workspace at least NRHS, optimally NRHS*NB.
*
CALL DGEMQRT( 'Left', 'Transpose', M, NRHS, N, NB, A, LDA,
$ WORK( 1 ), NB, B, LDB, WORK( MN*NB+1 ),
$ INFO )
*
* Compute B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
*
CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
$ A, LDA, B, LDB, INFO )
*
IF( INFO.GT.0 ) THEN
RETURN
END IF
*
SCLLEN = N
*
ELSE
*
* M > N, A is transposed:
* Underdetermined system of equations,
* minimum norm solution of A**T * X = B.
*
* Compute B := inv(R**T) * B in two row blocks of B.
*
* Block 1: B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
*
CALL DTRTRS( 'Upper', 'Transpose', 'Non-unit', N, NRHS,
$ A, LDA, B, LDB, INFO )
*
IF( INFO.GT.0 ) THEN
RETURN
END IF
*
* Block 2: Zero out all rows below the N-th row in B:
* B(N+1:M,1:NRHS) = ZERO
*
DO J = 1, NRHS
DO I = N + 1, M
B( I, J ) = ZERO
END DO
END DO
*
* Compute B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS),
* using the compact WY representation of Q,
* workspace at least NRHS, optimally NRHS*NB.
*
CALL DGEMQRT( 'Left', 'No transpose', M, NRHS, N, NB,
$ A, LDA, WORK( 1 ), NB, B, LDB,
$ WORK( MN*NB+1 ), INFO )
*
SCLLEN = M
*
END IF
*
ELSE
*
* M < N:
* Compute the blocked LQ factorization of A,
* using the compact WY representation of Q,
* workspace at least M, optimally M*NB.
*
CALL DGELQT( M, N, NB, A, LDA, WORK( 1 ), NB,
$ WORK( MN*NB+1 ), INFO )
*
IF( .NOT.TPSD ) THEN
*
* M < N, A is not transposed:
* Underdetermined system of equations,
* minimum norm solution of A * X = B.
*
* Compute B := inv(L) * B in two row blocks of B.
*
* Block 1: B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
*
CALL DTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
$ A, LDA, B, LDB, INFO )
*
IF( INFO.GT.0 ) THEN
RETURN
END IF
*
* Block 2: Zero out all rows below the M-th row in B:
* B(M+1:N,1:NRHS) = ZERO
*
DO J = 1, NRHS
DO I = M + 1, N
B( I, J ) = ZERO
END DO
END DO
*
* Compute B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS),
* using the compact WY representation of Q,
* workspace at least NRHS, optimally NRHS*NB.
*
CALL DGEMLQT( 'Left', 'Transpose', N, NRHS, M, NB, A, LDA,
$ WORK( 1 ), NB, B, LDB,
$ WORK( MN*NB+1 ), INFO )
*
SCLLEN = N
*
ELSE
*
* M < N, A is transposed:
* Overdetermined system of equations,
* least-squares problem, min || A**T * X - B ||.
*
* Compute B(1:N,1:NRHS) := Q * B(1:N,1:NRHS),
* using the compact WY representation of Q,
* workspace at least NRHS, optimally NRHS*NB.
*
CALL DGEMLQT( 'Left', 'No transpose', N, NRHS, M, NB,
$ A, LDA, WORK( 1 ), NB, B, LDB,
$ WORK( MN*NB+1), INFO )
*
* Compute B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
*
CALL DTRTRS( 'Lower', 'Transpose', 'Non-unit', M, NRHS,
$ A, LDA, B, LDB, INFO )
*
IF( INFO.GT.0 ) THEN
RETURN
END IF
*
SCLLEN = M
*
END IF
*
END IF
*
* Undo scaling
*
IF( IASCL.EQ.1 ) THEN
CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
$ INFO )
ELSE IF( IASCL.EQ.2 ) THEN
CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
$ INFO )
END IF
IF( IBSCL.EQ.1 ) THEN
CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
$ INFO )
ELSE IF( IBSCL.EQ.2 ) THEN
CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
$ INFO )
END IF
*
WORK( 1 ) = DBLE( LWOPT )
*
RETURN
*
* End of DGELST
*
END

View File

@ -253,11 +253,11 @@
*
* Compute space needed for SGEQRF
CALL SGEQRF( M, N, A, LDA, DUM(1), DUM(1), -1, INFO )
LWORK_SGEQRF=DUM(1)
LWORK_SGEQRF = INT( DUM(1) )
* Compute space needed for SORMQR
CALL SORMQR( 'L', 'T', M, NRHS, N, A, LDA, DUM(1), B,
$ LDB, DUM(1), -1, INFO )
LWORK_SORMQR=DUM(1)
LWORK_SORMQR = INT( DUM(1) )
MM = N
MAXWRK = MAX( MAXWRK, N + LWORK_SGEQRF )
MAXWRK = MAX( MAXWRK, N + LWORK_SORMQR )
@ -272,15 +272,15 @@
* Compute space needed for SGEBRD
CALL SGEBRD( MM, N, A, LDA, S, DUM(1), DUM(1),
$ DUM(1), DUM(1), -1, INFO )
LWORK_SGEBRD=DUM(1)
LWORK_SGEBRD = INT( DUM(1) )
* Compute space needed for SORMBR
CALL SORMBR( 'Q', 'L', 'T', MM, NRHS, N, A, LDA, DUM(1),
$ B, LDB, DUM(1), -1, INFO )
LWORK_SORMBR=DUM(1)
LWORK_SORMBR = INT( DUM(1) )
* Compute space needed for SORGBR
CALL SORGBR( 'P', N, N, N, A, LDA, DUM(1),
$ DUM(1), -1, INFO )
LWORK_SORGBR=DUM(1)
LWORK_SORGBR = INT( DUM(1) )
* Compute total workspace needed
MAXWRK = MAX( MAXWRK, 3*N + LWORK_SGEBRD )
MAXWRK = MAX( MAXWRK, 3*N + LWORK_SORMBR )
@ -304,19 +304,19 @@
* Compute space needed for SGEBRD
CALL SGEBRD( M, M, A, LDA, S, DUM(1), DUM(1),
$ DUM(1), DUM(1), -1, INFO )
LWORK_SGEBRD=DUM(1)
LWORK_SGEBRD = INT( DUM(1) )
* Compute space needed for SORMBR
CALL SORMBR( 'Q', 'L', 'T', M, NRHS, N, A, LDA,
$ DUM(1), B, LDB, DUM(1), -1, INFO )
LWORK_SORMBR=DUM(1)
LWORK_SORMBR = INT( DUM(1) )
* Compute space needed for SORGBR
CALL SORGBR( 'P', M, M, M, A, LDA, DUM(1),
$ DUM(1), -1, INFO )
LWORK_SORGBR=DUM(1)
LWORK_SORGBR = INT( DUM(1) )
* Compute space needed for SORMLQ
CALL SORMLQ( 'L', 'T', N, NRHS, M, A, LDA, DUM(1),
$ B, LDB, DUM(1), -1, INFO )
LWORK_SORMLQ=DUM(1)
LWORK_SORMLQ = INT( DUM(1) )
* Compute total workspace needed
MAXWRK = M + M*ILAENV( 1, 'SGELQF', ' ', M, N, -1,
$ -1 )
@ -337,15 +337,15 @@
* Compute space needed for SGEBRD
CALL SGEBRD( M, N, A, LDA, S, DUM(1), DUM(1),
$ DUM(1), DUM(1), -1, INFO )
LWORK_SGEBRD=DUM(1)
LWORK_SGEBRD = INT( DUM(1) )
* Compute space needed for SORMBR
CALL SORMBR( 'Q', 'L', 'T', M, NRHS, M, A, LDA,
$ DUM(1), B, LDB, DUM(1), -1, INFO )
LWORK_SORMBR=DUM(1)
LWORK_SORMBR = INT( DUM(1) )
* Compute space needed for SORGBR
CALL SORGBR( 'P', M, N, M, A, LDA, DUM(1),
$ DUM(1), -1, INFO )
LWORK_SORGBR=DUM(1)
LWORK_SORGBR = INT( DUM(1) )
MAXWRK = 3*M + LWORK_SGEBRD
MAXWRK = MAX( MAXWRK, 3*M + LWORK_SORMBR )
MAXWRK = MAX( MAXWRK, 3*M + LWORK_SORGBR )

1099
lapack-netlib/SRC/sgelst.c Normal file

File diff suppressed because it is too large Load Diff

531
lapack-netlib/SRC/sgelst.f Normal file
View File

@ -0,0 +1,531 @@
*> \brief <b> SGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q.</b>
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SGELST + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgelst.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgelst.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgelst.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
* INFO )
*
* .. Scalar Arguments ..
* CHARACTER TRANS
* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
* ..
* .. Array Arguments ..
* REAL A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SGELST solves overdetermined or underdetermined real linear systems
*> involving an M-by-N matrix A, or its transpose, using a QR or LQ
*> factorization of A with compact WY representation of Q.
*> It is assumed that A has full rank.
*>
*> The following options are provided:
*>
*> 1. If TRANS = 'N' and m >= n: find the least squares solution of
*> an overdetermined system, i.e., solve the least squares problem
*> minimize || B - A*X ||.
*>
*> 2. If TRANS = 'N' and m < n: find the minimum norm solution of
*> an underdetermined system A * X = B.
*>
*> 3. If TRANS = 'T' and m >= n: find the minimum norm solution of
*> an underdetermined system A**T * X = B.
*>
*> 4. If TRANS = 'T' and m < n: find the least squares solution of
*> an overdetermined system, i.e., solve the least squares problem
*> minimize || B - A**T * X ||.
*>
*> Several right hand side vectors b and solution vectors x can be
*> handled in a single call; they are stored as the columns of the
*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
*> matrix X.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> = 'N': the linear system involves A;
*> = 'T': the linear system involves A**T.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of
*> columns of the matrices B and X. NRHS >=0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is REAL array, dimension (LDA,N)
*> On entry, the M-by-N matrix A.
*> On exit,
*> if M >= N, A is overwritten by details of its QR
*> factorization as returned by SGEQRT;
*> if M < N, A is overwritten by details of its LQ
*> factorization as returned by SGELQT.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is REAL array, dimension (LDB,NRHS)
*> On entry, the matrix B of right hand side vectors, stored
*> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
*> if TRANS = 'T'.
*> On exit, if INFO = 0, B is overwritten by the solution
*> vectors, stored columnwise:
*> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
*> squares solution vectors; the residual sum of squares for the
*> solution in each column is given by the sum of squares of
*> elements N+1 to M in that column;
*> if TRANS = 'N' and m < n, rows 1 to N of B contain the
*> minimum norm solution vectors;
*> if TRANS = 'T' and m >= n, rows 1 to M of B contain the
*> minimum norm solution vectors;
*> if TRANS = 'T' and m < n, rows 1 to M of B contain the
*> least squares solution vectors; the residual sum of squares
*> for the solution in each column is given by the sum of
*> squares of elements M+1 to N in that column.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= MAX(1,M,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> LWORK >= max( 1, MN + max( MN, NRHS ) ).
*> For optimal performance,
*> LWORK >= max( 1, (MN + max( MN, NRHS ))*NB ).
*> where MN = min(M,N) and NB is the optimum block size.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, the i-th diagonal element of the
*> triangular factor of A is zero, so that A does not have
*> full rank; the least squares solution could not be
*> computed.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup realGEsolve
*
*> \par Contributors:
* ==================
*>
*> \verbatim
*>
*> November 2022, Igor Kozachenko,
*> Computer Science Division,
*> University of California, Berkeley
*> \endverbatim
*
* =====================================================================
SUBROUTINE SGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
$ INFO )
*
* -- LAPACK driver routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
* ..
* .. Array Arguments ..
REAL A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY, TPSD
INTEGER BROW, I, IASCL, IBSCL, J, LWOPT, MN, MNNRHS,
$ NB, NBMIN, SCLLEN
REAL ANRM, BIGNUM, BNRM, SMLNUM
* ..
* .. Local Arrays ..
REAL RWORK( 1 )
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
REAL SLAMCH, SLANGE
EXTERNAL LSAME, ILAENV, SLAMCH, SLANGE
* ..
* .. External Subroutines ..
EXTERNAL SGELQT, SGEQRT, SGEMLQT, SGEMQRT, SLABAD,
$ SLASCL, SLASET, STRTRS, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC REAL, MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input arguments.
*
INFO = 0
MN = MIN( M, N )
LQUERY = ( LWORK.EQ.-1 )
IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' ) ) ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( NRHS.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -6
ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
INFO = -8
ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
$ THEN
INFO = -10
END IF
*
* Figure out optimal block size and optimal workspace size
*
IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
*
TPSD = .TRUE.
IF( LSAME( TRANS, 'N' ) )
$ TPSD = .FALSE.
*
NB = ILAENV( 1, 'SGELST', ' ', M, N, -1, -1 )
*
MNNRHS = MAX( MN, NRHS )
LWOPT = MAX( 1, (MN+MNNRHS)*NB )
WORK( 1 ) = REAL( LWOPT )
*
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SGELST ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( MIN( M, N, NRHS ).EQ.0 ) THEN
CALL SLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
WORK( 1 ) = REAL( LWOPT )
RETURN
END IF
*
* *GEQRT and *GELQT routines cannot accept NB larger than min(M,N)
*
IF( NB.GT.MN ) NB = MN
*
* Determine the block size from the supplied LWORK
* ( at this stage we know that LWORK >= (minimum required workspace,
* but it may be less than optimal)
*
NB = MIN( NB, LWORK/( MN + MNNRHS ) )
*
* The minimum value of NB, when blocked code is used
*
NBMIN = MAX( 2, ILAENV( 2, 'SGELST', ' ', M, N, -1, -1 ) )
*
IF( NB.LT.NBMIN ) THEN
NB = 1
END IF
*
* Get machine parameters
*
SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' )
BIGNUM = ONE / SMLNUM
CALL SLABAD( SMLNUM, BIGNUM )
*
* Scale A, B if max element outside range [SMLNUM,BIGNUM]
*
ANRM = SLANGE( 'M', M, N, A, LDA, RWORK )
IASCL = 0
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
*
* Scale matrix norm up to SMLNUM
*
CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
IASCL = 1
ELSE IF( ANRM.GT.BIGNUM ) THEN
*
* Scale matrix norm down to BIGNUM
*
CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
IASCL = 2
ELSE IF( ANRM.EQ.ZERO ) THEN
*
* Matrix all zero. Return zero solution.
*
CALL SLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
WORK( 1 ) = REAL( LWOPT )
RETURN
END IF
*
BROW = M
IF( TPSD )
$ BROW = N
BNRM = SLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
IBSCL = 0
IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
*
* Scale matrix norm up to SMLNUM
*
CALL SLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
$ INFO )
IBSCL = 1
ELSE IF( BNRM.GT.BIGNUM ) THEN
*
* Scale matrix norm down to BIGNUM
*
CALL SLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
$ INFO )
IBSCL = 2
END IF
*
IF( M.GE.N ) THEN
*
* M > N:
* Compute the blocked QR factorization of A,
* using the compact WY representation of Q,
* workspace at least N, optimally N*NB.
*
CALL SGEQRT( M, N, NB, A, LDA, WORK( 1 ), NB,
$ WORK( MN*NB+1 ), INFO )
*
IF( .NOT.TPSD ) THEN
*
* M > N, A is not transposed:
* Overdetermined system of equations,
* least-squares problem, min || A * X - B ||.
*
* Compute B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS),
* using the compact WY representation of Q,
* workspace at least NRHS, optimally NRHS*NB.
*
CALL SGEMQRT( 'Left', 'Transpose', M, NRHS, N, NB, A, LDA,
$ WORK( 1 ), NB, B, LDB, WORK( MN*NB+1 ),
$ INFO )
*
* Compute B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
*
CALL STRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
$ A, LDA, B, LDB, INFO )
*
IF( INFO.GT.0 ) THEN
RETURN
END IF
*
SCLLEN = N
*
ELSE
*
* M > N, A is transposed:
* Underdetermined system of equations,
* minimum norm solution of A**T * X = B.
*
* Compute B := inv(R**T) * B in two row blocks of B.
*
* Block 1: B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
*
CALL STRTRS( 'Upper', 'Transpose', 'Non-unit', N, NRHS,
$ A, LDA, B, LDB, INFO )
*
IF( INFO.GT.0 ) THEN
RETURN
END IF
*
* Block 2: Zero out all rows below the N-th row in B:
* B(N+1:M,1:NRHS) = ZERO
*
DO J = 1, NRHS
DO I = N + 1, M
B( I, J ) = ZERO
END DO
END DO
*
* Compute B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS),
* using the compact WY representation of Q,
* workspace at least NRHS, optimally NRHS*NB.
*
CALL SGEMQRT( 'Left', 'No transpose', M, NRHS, N, NB,
$ A, LDA, WORK( 1 ), NB, B, LDB,
$ WORK( MN*NB+1 ), INFO )
*
SCLLEN = M
*
END IF
*
ELSE
*
* M < N:
* Compute the blocked LQ factorization of A,
* using the compact WY representation of Q,
* workspace at least M, optimally M*NB.
*
CALL SGELQT( M, N, NB, A, LDA, WORK( 1 ), NB,
$ WORK( MN*NB+1 ), INFO )
*
IF( .NOT.TPSD ) THEN
*
* M < N, A is not transposed:
* Underdetermined system of equations,
* minimum norm solution of A * X = B.
*
* Compute B := inv(L) * B in two row blocks of B.
*
* Block 1: B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
*
CALL STRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
$ A, LDA, B, LDB, INFO )
*
IF( INFO.GT.0 ) THEN
RETURN
END IF
*
* Block 2: Zero out all rows below the M-th row in B:
* B(M+1:N,1:NRHS) = ZERO
*
DO J = 1, NRHS
DO I = M + 1, N
B( I, J ) = ZERO
END DO
END DO
*
* Compute B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS),
* using the compact WY representation of Q,
* workspace at least NRHS, optimally NRHS*NB.
*
CALL SGEMLQT( 'Left', 'Transpose', N, NRHS, M, NB, A, LDA,
$ WORK( 1 ), NB, B, LDB,
$ WORK( MN*NB+1 ), INFO )
*
SCLLEN = N
*
ELSE
*
* M < N, A is transposed:
* Overdetermined system of equations,
* least-squares problem, min || A**T * X - B ||.
*
* Compute B(1:N,1:NRHS) := Q * B(1:N,1:NRHS),
* using the compact WY representation of Q,
* workspace at least NRHS, optimally NRHS*NB.
*
CALL SGEMLQT( 'Left', 'No transpose', N, NRHS, M, NB,
$ A, LDA, WORK( 1 ), NB, B, LDB,
$ WORK( MN*NB+1), INFO )
*
* Compute B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
*
CALL STRTRS( 'Lower', 'Transpose', 'Non-unit', M, NRHS,
$ A, LDA, B, LDB, INFO )
*
IF( INFO.GT.0 ) THEN
RETURN
END IF
*
SCLLEN = M
*
END IF
*
END IF
*
* Undo scaling
*
IF( IASCL.EQ.1 ) THEN
CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
$ INFO )
ELSE IF( IASCL.EQ.2 ) THEN
CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
$ INFO )
END IF
IF( IBSCL.EQ.1 ) THEN
CALL SLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
$ INFO )
ELSE IF( IBSCL.EQ.2 ) THEN
CALL SLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
$ INFO )
END IF
*
WORK( 1 ) = REAL( LWOPT )
*
RETURN
*
* End of SGELST
*
END

View File

@ -266,11 +266,11 @@
*
* Compute space needed for ZGEQRF
CALL ZGEQRF( M, N, A, LDA, DUM(1), DUM(1), -1, INFO )
LWORK_ZGEQRF = DBLE( DUM(1) )
LWORK_ZGEQRF = INT( DUM(1) )
* Compute space needed for ZUNMQR
CALL ZUNMQR( 'L', 'C', M, NRHS, N, A, LDA, DUM(1), B,
$ LDB, DUM(1), -1, INFO )
LWORK_ZUNMQR = DBLE( DUM(1) )
LWORK_ZUNMQR = INT( DUM(1) )
MM = N
MAXWRK = MAX( MAXWRK, N + N*ILAENV( 1, 'ZGEQRF', ' ', M,
$ N, -1, -1 ) )
@ -284,15 +284,15 @@
* Compute space needed for ZGEBRD
CALL ZGEBRD( MM, N, A, LDA, S, S, DUM(1), DUM(1), DUM(1),
$ -1, INFO )
LWORK_ZGEBRD = DBLE( DUM(1) )
LWORK_ZGEBRD = INT( DUM(1) )
* Compute space needed for ZUNMBR
CALL ZUNMBR( 'Q', 'L', 'C', MM, NRHS, N, A, LDA, DUM(1),
$ B, LDB, DUM(1), -1, INFO )
LWORK_ZUNMBR = DBLE( DUM(1) )
LWORK_ZUNMBR = INT( DUM(1) )
* Compute space needed for ZUNGBR
CALL ZUNGBR( 'P', N, N, N, A, LDA, DUM(1),
$ DUM(1), -1, INFO )
LWORK_ZUNGBR = DBLE( DUM(1) )
LWORK_ZUNGBR = INT( DUM(1) )
* Compute total workspace needed
MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZGEBRD )
MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZUNMBR )
@ -310,23 +310,23 @@
* Compute space needed for ZGELQF
CALL ZGELQF( M, N, A, LDA, DUM(1), DUM(1),
$ -1, INFO )
LWORK_ZGELQF = DBLE( DUM(1) )
LWORK_ZGELQF = INT( DUM(1) )
* Compute space needed for ZGEBRD
CALL ZGEBRD( M, M, A, LDA, S, S, DUM(1), DUM(1),
$ DUM(1), -1, INFO )
LWORK_ZGEBRD = DBLE( DUM(1) )
LWORK_ZGEBRD = INT( DUM(1) )
* Compute space needed for ZUNMBR
CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, N, A, LDA,
$ DUM(1), B, LDB, DUM(1), -1, INFO )
LWORK_ZUNMBR = DBLE( DUM(1) )
LWORK_ZUNMBR = INT( DUM(1) )
* Compute space needed for ZUNGBR
CALL ZUNGBR( 'P', M, M, M, A, LDA, DUM(1),
$ DUM(1), -1, INFO )
LWORK_ZUNGBR = DBLE( DUM(1) )
LWORK_ZUNGBR = INT( DUM(1) )
* Compute space needed for ZUNMLQ
CALL ZUNMLQ( 'L', 'C', N, NRHS, M, A, LDA, DUM(1),
$ B, LDB, DUM(1), -1, INFO )
LWORK_ZUNMLQ = DBLE( DUM(1) )
LWORK_ZUNMLQ = INT( DUM(1) )
* Compute total workspace needed
MAXWRK = M + LWORK_ZGELQF
MAXWRK = MAX( MAXWRK, 3*M + M*M + LWORK_ZGEBRD )
@ -345,15 +345,15 @@
* Compute space needed for ZGEBRD
CALL ZGEBRD( M, N, A, LDA, S, S, DUM(1), DUM(1),
$ DUM(1), -1, INFO )
LWORK_ZGEBRD = DBLE( DUM(1) )
LWORK_ZGEBRD = INT( DUM(1) )
* Compute space needed for ZUNMBR
CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, M, A, LDA,
$ DUM(1), B, LDB, DUM(1), -1, INFO )
LWORK_ZUNMBR = DBLE( DUM(1) )
LWORK_ZUNMBR = INT( DUM(1) )
* Compute space needed for ZUNGBR
CALL ZUNGBR( 'P', M, N, M, A, LDA, DUM(1),
$ DUM(1), -1, INFO )
LWORK_ZUNGBR = DBLE( DUM(1) )
LWORK_ZUNGBR = INT( DUM(1) )
MAXWRK = 2*M + LWORK_ZGEBRD
MAXWRK = MAX( MAXWRK, 2*M + LWORK_ZUNMBR )
MAXWRK = MAX( MAXWRK, 2*M + LWORK_ZUNGBR )

1115
lapack-netlib/SRC/zgelst.c Normal file

File diff suppressed because it is too large Load Diff

533
lapack-netlib/SRC/zgelst.f Normal file
View File

@ -0,0 +1,533 @@
*> \brief <b> ZGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q.</b>
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZGELST + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelst.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelst.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelst.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
* INFO )
*
* .. Scalar Arguments ..
* CHARACTER TRANS
* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
* ..
* .. Array Arguments ..
* COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZGELST solves overdetermined or underdetermined real linear systems
*> involving an M-by-N matrix A, or its conjugate-transpose, using a QR
*> or LQ factorization of A with compact WY representation of Q.
*> It is assumed that A has full rank.
*>
*> The following options are provided:
*>
*> 1. If TRANS = 'N' and m >= n: find the least squares solution of
*> an overdetermined system, i.e., solve the least squares problem
*> minimize || B - A*X ||.
*>
*> 2. If TRANS = 'N' and m < n: find the minimum norm solution of
*> an underdetermined system A * X = B.
*>
*> 3. If TRANS = 'C' and m >= n: find the minimum norm solution of
*> an underdetermined system A**T * X = B.
*>
*> 4. If TRANS = 'C' and m < n: find the least squares solution of
*> an overdetermined system, i.e., solve the least squares problem
*> minimize || B - A**T * X ||.
*>
*> Several right hand side vectors b and solution vectors x can be
*> handled in a single call; they are stored as the columns of the
*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
*> matrix X.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> = 'N': the linear system involves A;
*> = 'C': the linear system involves A**H.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of
*> columns of the matrices B and X. NRHS >=0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the M-by-N matrix A.
*> On exit,
*> if M >= N, A is overwritten by details of its QR
*> factorization as returned by ZGEQRT;
*> if M < N, A is overwritten by details of its LQ
*> factorization as returned by ZGELQT.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (LDB,NRHS)
*> On entry, the matrix B of right hand side vectors, stored
*> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
*> if TRANS = 'C'.
*> On exit, if INFO = 0, B is overwritten by the solution
*> vectors, stored columnwise:
*> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
*> squares solution vectors; the residual sum of squares for the
*> solution in each column is given by the sum of squares of
*> modulus of elements N+1 to M in that column;
*> if TRANS = 'N' and m < n, rows 1 to N of B contain the
*> minimum norm solution vectors;
*> if TRANS = 'C' and m >= n, rows 1 to M of B contain the
*> minimum norm solution vectors;
*> if TRANS = 'C' and m < n, rows 1 to M of B contain the
*> least squares solution vectors; the residual sum of squares
*> for the solution in each column is given by the sum of
*> squares of the modulus of elements M+1 to N in that column.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= MAX(1,M,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> LWORK >= max( 1, MN + max( MN, NRHS ) ).
*> For optimal performance,
*> LWORK >= max( 1, (MN + max( MN, NRHS ))*NB ).
*> where MN = min(M,N) and NB is the optimum block size.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, the i-th diagonal element of the
*> triangular factor of A is zero, so that A does not have
*> full rank; the least squares solution could not be
*> computed.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16GEsolve
*
*> \par Contributors:
* ==================
*>
*> \verbatim
*>
*> November 2022, Igor Kozachenko,
*> Computer Science Division,
*> University of California, Berkeley
*> \endverbatim
*
* =====================================================================
SUBROUTINE ZGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
$ INFO )
*
* -- LAPACK driver routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
COMPLEX*16 CZERO
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL LQUERY, TPSD
INTEGER BROW, I, IASCL, IBSCL, J, LWOPT, MN, MNNRHS,
$ NB, NBMIN, SCLLEN
DOUBLE PRECISION ANRM, BIGNUM, BNRM, SMLNUM
* ..
* .. Local Arrays ..
DOUBLE PRECISION RWORK( 1 )
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
DOUBLE PRECISION DLAMCH, ZLANGE
EXTERNAL LSAME, ILAENV, DLAMCH, ZLANGE
* ..
* .. External Subroutines ..
EXTERNAL ZGELQT, ZGEQRT, ZGEMLQT, ZGEMQRT, DLABAD,
$ ZLASCL, ZLASET, ZTRTRS, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input arguments.
*
INFO = 0
MN = MIN( M, N )
LQUERY = ( LWORK.EQ.-1 )
IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'C' ) ) ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( NRHS.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -6
ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
INFO = -8
ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
$ THEN
INFO = -10
END IF
*
* Figure out optimal block size and optimal workspace size
*
IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
*
TPSD = .TRUE.
IF( LSAME( TRANS, 'N' ) )
$ TPSD = .FALSE.
*
NB = ILAENV( 1, 'ZGELST', ' ', M, N, -1, -1 )
*
MNNRHS = MAX( MN, NRHS )
LWOPT = MAX( 1, (MN+MNNRHS)*NB )
WORK( 1 ) = DBLE( LWOPT )
*
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZGELST ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( MIN( M, N, NRHS ).EQ.0 ) THEN
CALL ZLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
WORK( 1 ) = DBLE( LWOPT )
RETURN
END IF
*
* *GEQRT and *GELQT routines cannot accept NB larger than min(M,N)
*
IF( NB.GT.MN ) NB = MN
*
* Determine the block size from the supplied LWORK
* ( at this stage we know that LWORK >= (minimum required workspace,
* but it may be less than optimal)
*
NB = MIN( NB, LWORK/( MN + MNNRHS ) )
*
* The minimum value of NB, when blocked code is used
*
NBMIN = MAX( 2, ILAENV( 2, 'ZGELST', ' ', M, N, -1, -1 ) )
*
IF( NB.LT.NBMIN ) THEN
NB = 1
END IF
*
* Get machine parameters
*
SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
*
* Scale A, B if max element outside range [SMLNUM,BIGNUM]
*
ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
IASCL = 0
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
*
* Scale matrix norm up to SMLNUM
*
CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
IASCL = 1
ELSE IF( ANRM.GT.BIGNUM ) THEN
*
* Scale matrix norm down to BIGNUM
*
CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
IASCL = 2
ELSE IF( ANRM.EQ.ZERO ) THEN
*
* Matrix all zero. Return zero solution.
*
CALL ZLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
WORK( 1 ) = DBLE( LWOPT )
RETURN
END IF
*
BROW = M
IF( TPSD )
$ BROW = N
BNRM = ZLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
IBSCL = 0
IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
*
* Scale matrix norm up to SMLNUM
*
CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
$ INFO )
IBSCL = 1
ELSE IF( BNRM.GT.BIGNUM ) THEN
*
* Scale matrix norm down to BIGNUM
*
CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
$ INFO )
IBSCL = 2
END IF
*
IF( M.GE.N ) THEN
*
* M > N:
* Compute the blocked QR factorization of A,
* using the compact WY representation of Q,
* workspace at least N, optimally N*NB.
*
CALL ZGEQRT( M, N, NB, A, LDA, WORK( 1 ), NB,
$ WORK( MN*NB+1 ), INFO )
*
IF( .NOT.TPSD ) THEN
*
* M > N, A is not transposed:
* Overdetermined system of equations,
* least-squares problem, min || A * X - B ||.
*
* Compute B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS),
* using the compact WY representation of Q,
* workspace at least NRHS, optimally NRHS*NB.
*
CALL ZGEMQRT( 'Left', 'Conjugate transpose', M, NRHS, N, NB,
$ A, LDA, WORK( 1 ), NB, B, LDB,
$ WORK( MN*NB+1 ), INFO )
*
* Compute B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
*
CALL ZTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
$ A, LDA, B, LDB, INFO )
*
IF( INFO.GT.0 ) THEN
RETURN
END IF
*
SCLLEN = N
*
ELSE
*
* M > N, A is transposed:
* Underdetermined system of equations,
* minimum norm solution of A**T * X = B.
*
* Compute B := inv(R**T) * B in two row blocks of B.
*
* Block 1: B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
*
CALL ZTRTRS( 'Upper', 'Conjugate transpose', 'Non-unit',
$ N, NRHS, A, LDA, B, LDB, INFO )
*
IF( INFO.GT.0 ) THEN
RETURN
END IF
*
* Block 2: Zero out all rows below the N-th row in B:
* B(N+1:M,1:NRHS) = ZERO
*
DO J = 1, NRHS
DO I = N + 1, M
B( I, J ) = ZERO
END DO
END DO
*
* Compute B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS),
* using the compact WY representation of Q,
* workspace at least NRHS, optimally NRHS*NB.
*
CALL ZGEMQRT( 'Left', 'No transpose', M, NRHS, N, NB,
$ A, LDA, WORK( 1 ), NB, B, LDB,
$ WORK( MN*NB+1 ), INFO )
*
SCLLEN = M
*
END IF
*
ELSE
*
* M < N:
* Compute the blocked LQ factorization of A,
* using the compact WY representation of Q,
* workspace at least M, optimally M*NB.
*
CALL ZGELQT( M, N, NB, A, LDA, WORK( 1 ), NB,
$ WORK( MN*NB+1 ), INFO )
*
IF( .NOT.TPSD ) THEN
*
* M < N, A is not transposed:
* Underdetermined system of equations,
* minimum norm solution of A * X = B.
*
* Compute B := inv(L) * B in two row blocks of B.
*
* Block 1: B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
*
CALL ZTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
$ A, LDA, B, LDB, INFO )
*
IF( INFO.GT.0 ) THEN
RETURN
END IF
*
* Block 2: Zero out all rows below the M-th row in B:
* B(M+1:N,1:NRHS) = ZERO
*
DO J = 1, NRHS
DO I = M + 1, N
B( I, J ) = ZERO
END DO
END DO
*
* Compute B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS),
* using the compact WY representation of Q,
* workspace at least NRHS, optimally NRHS*NB.
*
CALL ZGEMLQT( 'Left', 'Conjugate transpose', N, NRHS, M, NB,
$ A, LDA, WORK( 1 ), NB, B, LDB,
$ WORK( MN*NB+1 ), INFO )
*
SCLLEN = N
*
ELSE
*
* M < N, A is transposed:
* Overdetermined system of equations,
* least-squares problem, min || A**T * X - B ||.
*
* Compute B(1:N,1:NRHS) := Q * B(1:N,1:NRHS),
* using the compact WY representation of Q,
* workspace at least NRHS, optimally NRHS*NB.
*
CALL ZGEMLQT( 'Left', 'No transpose', N, NRHS, M, NB,
$ A, LDA, WORK( 1 ), NB, B, LDB,
$ WORK( MN*NB+1), INFO )
*
* Compute B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
*
CALL ZTRTRS( 'Lower', 'Conjugate transpose', 'Non-unit',
$ M, NRHS, A, LDA, B, LDB, INFO )
*
IF( INFO.GT.0 ) THEN
RETURN
END IF
*
SCLLEN = M
*
END IF
*
END IF
*
* Undo scaling
*
IF( IASCL.EQ.1 ) THEN
CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
$ INFO )
ELSE IF( IASCL.EQ.2 ) THEN
CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
$ INFO )
END IF
IF( IBSCL.EQ.1 ) THEN
CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
$ INFO )
ELSE IF( IBSCL.EQ.2 ) THEN
CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
$ INFO )
END IF
*
WORK( 1 ) = DBLE( LWOPT )
*
RETURN
*
* End of ZGELST
*
END

View File

@ -608,17 +608,18 @@
ELSE IF( LSAMEN( 2, P2, 'LS' ) ) THEN
*
* LS: Least Squares driver routines for
* LS, LSD, LSS, LSX and LSY.
* LS, LST, TSLS, LSD, LSS, LSX and LSY.
*
WRITE( IOUNIT, FMT = 9984 )PATH
WRITE( IOUNIT, FMT = 9967 )
WRITE( IOUNIT, FMT = 9921 )C1, C1, C1, C1
WRITE( IOUNIT, FMT = 9921 )C1, C1, C1, C1, C1, C1
WRITE( IOUNIT, FMT = 9935 )1
WRITE( IOUNIT, FMT = 9931 )2
WRITE( IOUNIT, FMT = 9933 )3
WRITE( IOUNIT, FMT = 9935 )4
WRITE( IOUNIT, FMT = 9934 )5
WRITE( IOUNIT, FMT = 9932 )6
WRITE( IOUNIT, FMT = 9919 )
WRITE( IOUNIT, FMT = 9933 )7
WRITE( IOUNIT, FMT = 9935 )8
WRITE( IOUNIT, FMT = 9934 )9
WRITE( IOUNIT, FMT = 9932 )10
WRITE( IOUNIT, FMT = 9920 )
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
*
@ -1048,10 +1049,11 @@
$ 'check if X is in the row space of A or A'' ',
$ '(overdetermined case)' )
9929 FORMAT( ' Test ratios (1-3: ', A1, 'TZRZF):' )
9920 FORMAT( 3X, ' 7-10: same as 3-6', 3X, ' 11-14: same as 3-6' )
9921 FORMAT( ' Test ratios:', / ' (1-2: ', A1, 'GELS, 3-6: ', A1,
$ 'GELSY, 7-10: ', A1, 'GELSS, 11-14: ', A1, 'GELSD, 15-16: ',
$ A1, 'GETSLS)')
9919 FORMAT( 3X, ' 3-4: same as 1-2', 3X, ' 5-6: same as 1-2' )
9920 FORMAT( 3X, ' 11-14: same as 7-10', 3X, ' 15-18: same as 7-10' )
9921 FORMAT( ' Test ratios:', / ' (1-2: ', A1, 'GELS, 3-4: ', A1,
$ 'GELST, 5-6: ', A1, 'GETSLS, 7-10: ', A1, 'GELSY, 11-14: ',
$ A1, 'GETSS, 15-18: ', A1, 'GELSD)' )
9928 FORMAT( 7X, 'where ALPHA = ( 1 + SQRT( 17 ) ) / 8' )
9927 FORMAT( 3X, I2, ': ABS( Largest element in L )', / 12X,
$ ' - ( 1 / ( 1 - ALPHA ) ) + THRESH' )

View File

@ -31,7 +31,8 @@
*>
*> \verbatim
*>
*> CDRVLS tests the least squares driver routines CGELS, CGETSLS, CGELSS, CGELSY
*> CDRVLS tests the least squares driver routines CGELS, CGELST,
*> CGETSLS, CGELSS, CGELSY
*> and CGELSD.
*> \endverbatim
*
@ -211,7 +212,7 @@
*
* .. Parameters ..
INTEGER NTESTS
PARAMETER ( NTESTS = 16 )
PARAMETER ( NTESTS = 18 )
INTEGER SMLSIZ
PARAMETER ( SMLSIZ = 25 )
REAL ONE, ZERO
@ -228,8 +229,8 @@
$ LWLSY, LWORK, M, MNMIN, N, NB, NCOLS, NERRS,
$ NFAIL, NRHS, NROWS, NRUN, RANK, MB,
$ MMAX, NMAX, NSMAX, LIWORK, LRWORK,
$ LWORK_CGELS, LWORK_CGETSLS, LWORK_CGELSS,
$ LWORK_CGELSY, LWORK_CGELSD,
$ LWORK_CGELS, LWORK_CGELST, LWORK_CGETSLS,
$ LWORK_CGELSS, LWORK_CGELSY, LWORK_CGELSD,
$ LRWORK_CGELSY, LRWORK_CGELSS, LRWORK_CGELSD
REAL EPS, NORMA, NORMB, RCOND
* ..
@ -249,7 +250,7 @@
* ..
* .. External Subroutines ..
EXTERNAL ALAERH, ALAHD, ALASVM, CERRLS, CGELS, CGELSD,
$ CGELSS, CGELSY, CGEMM, CGETSLS, CLACPY,
$ CGELSS, CGELST, CGELSY, CGEMM, CGETSLS, CLACPY,
$ CLARNV, CQRT13, CQRT15, CQRT16, CSSCAL,
$ SAXPY, XLAENV
* ..
@ -334,7 +335,8 @@
LIWORK = 1
*
* Iterate through all test cases and compute necessary workspace
* sizes for ?GELS, ?GETSLS, ?GELSY, ?GELSS and ?GELSD routines.
* sizes for ?GELS, ?GELST, ?GETSLS, ?GELSY, ?GELSS and ?GELSD
* routines.
*
DO IM = 1, NM
M = MVAL( IM )
@ -361,6 +363,10 @@
CALL CGELS( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ, -1, INFO )
LWORK_CGELS = INT( WQ( 1 ) )
* Compute workspace needed for CGELST
CALL CGELST( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ, -1, INFO )
LWORK_CGELST = INT ( WQ ( 1 ) )
* Compute workspace needed for CGETSLS
CALL CGETSLS( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ, -1, INFO )
@ -425,21 +431,26 @@
ITYPE = ( IRANK-1 )*3 + ISCALE
IF( .NOT.DOTYPE( ITYPE ) )
$ GO TO 100
*
* =====================================================
* Begin test CGELS
* =====================================================
IF( IRANK.EQ.1 ) THEN
*
* Test CGELS
*
* Generate a matrix of scaling type ISCALE
*
CALL CQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
DO 40 INB = 1, NNB
*
* Loop for testing different block sizes.
*
DO INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
CALL XLAENV( 3, NXVAL( INB ) )
*
DO 30 ITRAN = 1, 2
* Loop for testing non-transposed and transposed.
*
DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
@ -484,15 +495,20 @@
$ ITYPE, NFAIL, NERRS,
$ NOUT )
*
* Check correctness of results
* Test 1: Check correctness of results
* for CGELS, compute the residual:
* RESID = norm(B - A*X) /
* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
LDWORK = MAX( 1, NROWS )
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL CLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL CQRT16( TRANS, M, N, NRHS, COPYA,
$ LDA, B, LDB, C, LDB, RWORK,
$ RESULT( 1 ) )
*
* Test 2: Check correctness of results
* for CGELS.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
@ -515,7 +531,7 @@
* Print information about the tests that
* did not pass the threshold.
*
DO 20 K = 1, 2
DO K = 1, 2
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
@ -524,26 +540,157 @@
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
20 CONTINUE
END DO
NRUN = NRUN + 2
30 CONTINUE
40 CONTINUE
*
*
* Test CGETSLS
END DO
END DO
END IF
* =====================================================
* End test CGELS
* =====================================================
* =====================================================
* Begin test CGELST
* =====================================================
IF( IRANK.EQ.1 ) THEN
*
* Generate a matrix of scaling type ISCALE
*
CALL CQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
DO 65 INB = 1, NNB
*
* Loop for testing different block sizes.
*
DO INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
CALL XLAENV( 3, NXVAL( INB ) )
*
* Loop for testing non-transposed and transposed.
*
DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
NCOLS = N
ELSE
TRANS = 'C'
NROWS = N
NCOLS = M
END IF
LDWORK = MAX( 1, NCOLS )
*
* Set up a consistent rhs
*
IF( NCOLS.GT.0 ) THEN
CALL CLARNV( 2, ISEED, NCOLS*NRHS,
$ WORK )
CALL CSSCAL( NCOLS*NRHS,
$ ONE / REAL( NCOLS ), WORK,
$ 1 )
END IF
CALL CGEMM( TRANS, 'No transpose', NROWS,
$ NRHS, NCOLS, CONE, COPYA, LDA,
$ WORK, LDWORK, CZERO, B, LDB )
CALL CLACPY( 'Full', NROWS, NRHS, B, LDB,
$ COPYB, LDB )
*
* Solve LS or overdetermined system
*
IF( M.GT.0 .AND. N.GT.0 ) THEN
CALL CLACPY( 'Full', M, N, COPYA, LDA,
$ A, LDA )
CALL CLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, B, LDB )
END IF
SRNAMT = 'CGELST'
CALL CGELST( TRANS, M, N, NRHS, A, LDA, B,
$ LDB, WORK, LWORK, INFO )
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'CGELST', INFO, 0,
$ TRANS, M, N, NRHS, -1, NB,
$ ITYPE, NFAIL, NERRS,
$ NOUT )
*
* Test 3: Check correctness of results
* for CGELST, compute the residual:
* RESID = norm(B - A*X) /
* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL CLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL CQRT16( TRANS, M, N, NRHS, COPYA,
$ LDA, B, LDB, C, LDB, RWORK,
$ RESULT( 3 ) )
*
* Test 4: Check correctness of results
* for CGELST.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
*
* Solving LS system
*
RESULT( 4 ) = CQRT17( TRANS, 1, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK,
$ LWORK )
ELSE
*
* Solving overdetermined system
*
RESULT( 4 ) = CQRT14( TRANS, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
END IF
*
* Print information about the tests that
* did not pass the threshold.
*
DO K = 3, 4
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9999 )TRANS, M,
$ N, NRHS, NB, ITYPE, K,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
END DO
NRUN = NRUN + 2
END DO
END DO
END IF
* =====================================================
* End test CGELST
* =====================================================
* =====================================================
* Begin test CGELSTSLS
* =====================================================
IF( IRANK.EQ.1 ) THEN
*
* Generate a matrix of scaling type ISCALE
*
CALL CQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
*
* Loop for testing different block sizes MB.
*
DO INB = 1, NNB
MB = NBVAL( INB )
CALL XLAENV( 1, MB )
DO 62 IMB = 1, NNB
*
* Loop for testing different block sizes NB.
*
DO IMB = 1, NNB
NB = NBVAL( IMB )
CALL XLAENV( 2, NB )
*
DO 60 ITRAN = 1, 2
* Loop for testing non-transposed
* and transposed.
*
DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
@ -561,78 +708,91 @@
CALL CLARNV( 2, ISEED, NCOLS*NRHS,
$ WORK )
CALL CSCAL( NCOLS*NRHS,
$ CONE / REAL( NCOLS ), WORK,
$ 1 )
$ CONE / REAL( NCOLS ),
$ WORK, 1 )
END IF
CALL CGEMM( TRANS, 'No transpose', NROWS,
$ NRHS, NCOLS, CONE, COPYA, LDA,
$ WORK, LDWORK, CZERO, B, LDB )
CALL CLACPY( 'Full', NROWS, NRHS, B, LDB,
$ COPYB, LDB )
CALL CGEMM( TRANS, 'No transpose',
$ NROWS, NRHS, NCOLS, CONE,
$ COPYA, LDA, WORK, LDWORK,
$ CZERO, B, LDB )
CALL CLACPY( 'Full', NROWS, NRHS,
$ B, LDB, COPYB, LDB )
*
* Solve LS or overdetermined system
*
IF( M.GT.0 .AND. N.GT.0 ) THEN
CALL CLACPY( 'Full', M, N, COPYA, LDA,
$ A, LDA )
CALL CLACPY( 'Full', M, N,
$ COPYA, LDA, A, LDA )
CALL CLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, B, LDB )
END IF
SRNAMT = 'CGETSLS '
CALL CGETSLS( TRANS, M, N, NRHS, A,
$ LDA, B, LDB, WORK, LWORK, INFO )
$ LDA, B, LDB, WORK, LWORK,
$ INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'CGETSLS ', INFO, 0,
$ TRANS, M, N, NRHS, -1, NB,
$ ITYPE, NFAIL, NERRS,
$ NOUT )
$ CALL ALAERH( PATH, 'CGETSLS ', INFO,
$ 0, TRANS, M, N, NRHS,
$ -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* Check correctness of results
* Test 5: Check correctness of results
* for CGETSLS, compute the residual:
* RESID = norm(B - A*X) /
* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
LDWORK = MAX( 1, NROWS )
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL CLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL CQRT16( TRANS, M, N, NRHS, COPYA,
$ LDA, B, LDB, C, LDB, WORK2,
$ RESULT( 15 ) )
CALL CQRT16( TRANS, M, N, NRHS,
$ COPYA, LDA, B, LDB,
$ C, LDB, WORK2,
$ RESULT( 5 ) )
*
* Test 6: Check correctness of results
* for CGETSLS.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
*
* Solving LS system
* Solving LS system, compute:
* r = norm((B- A*X)**T * A) /
* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS)
*
RESULT( 16 ) = CQRT17( TRANS, 1, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK,
$ LWORK )
RESULT( 6 ) = CQRT17( TRANS, 1, M,
$ N, NRHS, COPYA, LDA,
$ B, LDB, COPYB, LDB,
$ C, WORK, LWORK )
ELSE
*
* Solving overdetermined system
*
RESULT( 16 ) = CQRT14( TRANS, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
RESULT( 6 ) = CQRT14( TRANS, M, N,
$ NRHS, COPYA, LDA, B,
$ LDB, WORK, LWORK )
END IF
*
* Print information about the tests that
* did not pass the threshold.
*
DO 50 K = 15, 16
DO K = 5, 6
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9997 )TRANS, M,
$ N, NRHS, MB, NB, ITYPE, K,
WRITE( NOUT, FMT = 9997 )TRANS,
$ M, N, NRHS, MB, NB, ITYPE, K,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
50 CONTINUE
END DO
NRUN = NRUN + 2
60 CONTINUE
62 CONTINUE
65 CONTINUE
END DO
END DO
END DO
END IF
* =====================================================
* End test CGELSTSLS
* ====================================================
*
* Generate a matrix of scaling type ISCALE and rank
* type IRANK.
@ -680,37 +840,37 @@
*
* workspace used: 2*MNMIN+NB*NB+NB*MAX(N,NRHS)
*
* Test 3: Compute relative error in svd
* Test 7: Compute relative error in svd
* workspace: M*N + 4*MIN(M,N) + MAX(M,N)
*
RESULT( 3 ) = CQRT12( CRANK, CRANK, A, LDA,
RESULT( 7 ) = CQRT12( CRANK, CRANK, A, LDA,
$ COPYS, WORK, LWORK, RWORK )
*
* Test 4: Compute error in solution
* Test 8: Compute error in solution
* workspace: M*NRHS + M
*
CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL CQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK, RWORK,
$ RESULT( 4 ) )
$ RESULT( 8 ) )
*
* Test 5: Check norm of r'*A
* Test 9: Check norm of r'*A
* workspace: NRHS*(M+N)
*
RESULT( 5 ) = ZERO
RESULT( 9 ) = ZERO
IF( M.GT.CRANK )
$ RESULT( 5 ) = CQRT17( 'No transpose', 1, M,
$ RESULT( 9 ) = CQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
* Test 6: Check if x is in the rowspace of A
* Test 10: Check if x is in the rowspace of A
* workspace: (M+NRHS)*(N+2)
*
RESULT( 6 ) = ZERO
RESULT( 10 ) = ZERO
*
IF( N.GT.CRANK )
$ RESULT( 6 ) = CQRT14( 'No transpose', M, N,
$ RESULT( 10 ) = CQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
@ -736,62 +896,6 @@
* workspace used: 3*min(m,n) +
* max(2*min(m,n),nrhs,max(m,n))
*
* Test 7: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
CALL SAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
RESULT( 7 ) = SASUM( MNMIN, S, 1 ) /
$ SASUM( MNMIN, COPYS, 1 ) /
$ ( EPS*REAL( MNMIN ) )
ELSE
RESULT( 7 ) = ZERO
END IF
*
* Test 8: Compute error in solution
*
CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL CQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK, RWORK,
$ RESULT( 8 ) )
*
* Test 9: Check norm of r'*A
*
RESULT( 9 ) = ZERO
IF( M.GT.CRANK )
$ RESULT( 9 ) = CQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
* Test 10: Check if x is in the rowspace of A
*
RESULT( 10 ) = ZERO
IF( N.GT.CRANK )
$ RESULT( 10 ) = CQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Test CGELSD
*
* CGELSD: Compute the minimum-norm solution X
* to min( norm( A * X - B ) ) using a
* divide and conquer SVD.
*
CALL XLAENV( 9, 25 )
*
CALL CLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, B,
$ LDB )
*
SRNAMT = 'CGELSD'
CALL CGELSD( M, N, NRHS, A, LDA, B, LDB, S,
$ RCOND, CRANK, WORK, LWORK, RWORK,
$ IWORK, INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'CGELSD', INFO, 0, ' ', M,
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* Test 11: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
@ -827,10 +931,66 @@
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Test CGELSD
*
* CGELSD: Compute the minimum-norm solution X
* to min( norm( A * X - B ) ) using a
* divide and conquer SVD.
*
CALL XLAENV( 9, 25 )
*
CALL CLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, B,
$ LDB )
*
SRNAMT = 'CGELSD'
CALL CGELSD( M, N, NRHS, A, LDA, B, LDB, S,
$ RCOND, CRANK, WORK, LWORK, RWORK,
$ IWORK, INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'CGELSD', INFO, 0, ' ', M,
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* Test 15: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
CALL SAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
RESULT( 15 ) = SASUM( MNMIN, S, 1 ) /
$ SASUM( MNMIN, COPYS, 1 ) /
$ ( EPS*REAL( MNMIN ) )
ELSE
RESULT( 15 ) = ZERO
END IF
*
* Test 16: Compute error in solution
*
CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL CQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK, RWORK,
$ RESULT( 16 ) )
*
* Test 17: Check norm of r'*A
*
RESULT( 17 ) = ZERO
IF( M.GT.CRANK )
$ RESULT( 17 ) = CQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
* Test 18: Check if x is in the rowspace of A
*
RESULT( 18 ) = ZERO
IF( N.GT.CRANK )
$ RESULT( 18 ) = CQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Print information about the tests that did not
* pass the threshold.
*
DO 80 K = 3, 14
DO 80 K = 7, 18
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )

View File

@ -22,7 +22,7 @@
*> \verbatim
*>
*> CERRLS tests the error exits for the COMPLEX least squares
*> driver routines (CGELS, CGELSS, CGELSY, CGELSD).
*> driver routines (CGELS, CGELST, CGETSLS, CGELSS, CGELSY, CGELSD).
*> \endverbatim
*
* Arguments:
@ -83,7 +83,8 @@
EXTERNAL LSAMEN
* ..
* .. External Subroutines ..
EXTERNAL ALAESM, CGELS, CGELSD, CGELSS, CGELSY, CHKXER
EXTERNAL ALAESM, CHKXER, CGELS, CGELSD, CGELSS, CGELST,
$ CGELSY, CGETSLS
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
@ -130,10 +131,66 @@
INFOT = 8
CALL CGELS( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
CALL CHKXER( 'CGELS ', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CGELS( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
CALL CHKXER( 'CGELS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CGELS( 'N', 1, 1, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'CGELS ', INFOT, NOUT, LERR, OK )
*
* CGELST
*
SRNAMT = 'CGELST'
INFOT = 1
CALL CGELST( '/', 0, 0, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'CGELST', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CGELST( 'N', -1, 0, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'CGELST', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CGELST( 'N', 0, -1, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'CGELST', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CGELST( 'N', 0, 0, -1, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'CGELST', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CGELST( 'N', 2, 0, 0, A, 1, B, 2, W, 2, INFO )
CALL CHKXER( 'CGELST', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CGELST( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
CALL CHKXER( 'CGELST', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CGELST( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
CALL CHKXER( 'CGELST', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CGELST( 'N', 1, 1, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'CGELST', INFOT, NOUT, LERR, OK )
*
* CGETSLS
*
SRNAMT = 'CGETSLS'
INFOT = 1
CALL CGETSLS( '/', 0, 0, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'CGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CGETSLS( 'N', -1, 0, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'CGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CGETSLS( 'N', 0, -1, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'CGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CGETSLS( 'N', 0, 0, -1, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'CGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CGETSLS( 'N', 2, 0, 0, A, 1, B, 2, W, 2, INFO )
CALL CHKXER( 'CGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CGETSLS( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
CALL CHKXER( 'CGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CGETSLS( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
CALL CHKXER( 'CGETSLS', INFOT, NOUT, LERR, OK )
*
* CGELSS
*
SRNAMT = 'CGELSS'

View File

@ -31,8 +31,8 @@
*>
*> \verbatim
*>
*> DDRVLS tests the least squares driver routines DGELS, DGETSLS, DGELSS, DGELSY,
*> and DGELSD.
*> DDRVLS tests the least squares driver routines DGELS, DGELST,
*> DGETSLS, DGELSS, DGELSY, and DGELSD.
*> \endverbatim
*
* Arguments:
@ -211,7 +211,7 @@
*
* .. Parameters ..
INTEGER NTESTS
PARAMETER ( NTESTS = 16 )
PARAMETER ( NTESTS = 18 )
INTEGER SMLSIZ
PARAMETER ( SMLSIZ = 25 )
DOUBLE PRECISION ONE, TWO, ZERO
@ -225,8 +225,8 @@
$ LWLSY, LWORK, M, MNMIN, N, NB, NCOLS, NERRS,
$ NFAIL, NRHS, NROWS, NRUN, RANK, MB,
$ MMAX, NMAX, NSMAX, LIWORK,
$ LWORK_DGELS, LWORK_DGETSLS, LWORK_DGELSS,
$ LWORK_DGELSY, LWORK_DGELSD
$ LWORK_DGELS, LWORK_DGELST, LWORK_DGETSLS,
$ LWORK_DGELSS, LWORK_DGELSY, LWORK_DGELSD
DOUBLE PRECISION EPS, NORMA, NORMB, RCOND
* ..
* .. Local Arrays ..
@ -243,12 +243,12 @@
* ..
* .. External Subroutines ..
EXTERNAL ALAERH, ALAHD, ALASVM, DAXPY, DERRLS, DGELS,
$ DGELSD, DGELSS, DGELSY, DGEMM, DLACPY,
$ DLARNV, DLASRT, DQRT13, DQRT15, DQRT16, DSCAL,
$ XLAENV
$ DGELSD, DGELSS, DGELST, DGELSY, DGEMM,
$ DGETSLS, DLACPY, DLARNV, DQRT13, DQRT15,
$ DQRT16, DSCAL, XLAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, INT, LOG, MAX, MIN, SQRT
INTRINSIC DBLE, INT, MAX, MIN, SQRT
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
@ -330,7 +330,8 @@
LIWORK = 1
*
* Iterate through all test cases and compute necessary workspace
* sizes for ?GELS, ?GETSLS, ?GELSY, ?GELSS and ?GELSD routines.
* sizes for ?GELS, ?GELST, ?GETSLS, ?GELSY, ?GELSS and ?GELSD
* routines.
*
DO IM = 1, NM
M = MVAL( IM )
@ -357,6 +358,10 @@
CALL DGELS( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ, -1, INFO )
LWORK_DGELS = INT ( WQ ( 1 ) )
* Compute workspace needed for DGELST
CALL DGELST( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ, -1, INFO )
LWORK_DGELST = INT ( WQ ( 1 ) )
* Compute workspace needed for DGETSLS
CALL DGETSLS( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ, -1, INFO )
@ -378,9 +383,9 @@
* Compute LIWORK workspace needed for DGELSY and DGELSD
LIWORK = MAX( LIWORK, N, IWQ( 1 ) )
* Compute LWORK workspace needed for all functions
LWORK = MAX( LWORK, LWORK_DGELS, LWORK_DGETSLS,
$ LWORK_DGELSY, LWORK_DGELSS,
$ LWORK_DGELSD )
LWORK = MAX( LWORK, LWORK_DGELS, LWORK_DGELST,
$ LWORK_DGETSLS, LWORK_DGELSY,
$ LWORK_DGELSS, LWORK_DGELSD )
END IF
ENDDO
ENDDO
@ -411,21 +416,26 @@
ITYPE = ( IRANK-1 )*3 + ISCALE
IF( .NOT.DOTYPE( ITYPE ) )
$ GO TO 110
*
* =====================================================
* Begin test DGELS
* =====================================================
IF( IRANK.EQ.1 ) THEN
*
* Test DGELS
*
* Generate a matrix of scaling type ISCALE
*
CALL DQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
DO 40 INB = 1, NNB
*
* Loop for testing different block sizes.
*
DO INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
CALL XLAENV( 3, NXVAL( INB ) )
*
DO 30 ITRAN = 1, 2
* Loop for testing non-transposed and transposed.
*
DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
@ -469,20 +479,27 @@
$ ITYPE, NFAIL, NERRS,
$ NOUT )
*
* Check correctness of results
* Test 1: Check correctness of results
* for DGELS, compute the residual:
* RESID = norm(B - A*X) /
* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
LDWORK = MAX( 1, NROWS )
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL DLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL DQRT16( TRANS, M, N, NRHS, COPYA,
$ LDA, B, LDB, C, LDB, WORK,
$ RESULT( 1 ) )
*
* Test 2: Check correctness of results
* for DGELS.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
*
* Solving LS system
* Solving LS system, compute:
* r = norm((B- A*X)**T * A) /
* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS)
*
RESULT( 2 ) = DQRT17( TRANS, 1, M, N,
$ NRHS, COPYA, LDA, B, LDB,
@ -500,7 +517,7 @@
* Print information about the tests that
* did not pass the threshold.
*
DO 20 K = 1, 2
DO K = 1, 2
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
@ -509,26 +526,33 @@
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
20 CONTINUE
END DO
NRUN = NRUN + 2
30 CONTINUE
40 CONTINUE
*
*
* Test DGETSLS
END DO
END DO
END IF
* =====================================================
* End test DGELS
* =====================================================
* =====================================================
* Begin test DGELST
* =====================================================
IF( IRANK.EQ.1 ) THEN
*
* Generate a matrix of scaling type ISCALE
*
CALL DQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
DO 65 INB = 1, NNB
MB = NBVAL( INB )
CALL XLAENV( 1, MB )
DO 62 IMB = 1, NNB
NB = NBVAL( IMB )
CALL XLAENV( 2, NB )
*
DO 60 ITRAN = 1, 2
* Loop for testing different block sizes.
*
DO INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
*
* Loop for testing non-transposed and transposed.
*
DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
@ -563,31 +587,38 @@
CALL DLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, B, LDB )
END IF
SRNAMT = 'DGETSLS '
CALL DGETSLS( TRANS, M, N, NRHS, A,
$ LDA, B, LDB, WORK, LWORK, INFO )
SRNAMT = 'DGELST'
CALL DGELST( TRANS, M, N, NRHS, A, LDA, B,
$ LDB, WORK, LWORK, INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'DGETSLS ', INFO, 0,
$ CALL ALAERH( PATH, 'DGELST', INFO, 0,
$ TRANS, M, N, NRHS, -1, NB,
$ ITYPE, NFAIL, NERRS,
$ NOUT )
*
* Check correctness of results
* Test 3: Check correctness of results
* for DGELST, compute the residual:
* RESID = norm(B - A*X) /
* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
LDWORK = MAX( 1, NROWS )
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL DLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL DQRT16( TRANS, M, N, NRHS, COPYA,
$ LDA, B, LDB, C, LDB, WORK,
$ RESULT( 15 ) )
$ RESULT( 3 ) )
*
* Test 4: Check correctness of results
* for DGELST.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
*
* Solving LS system
* Solving LS system, compute:
* r = norm((B- A*X)**T * A) /
* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS)
*
RESULT( 16 ) = DQRT17( TRANS, 1, M, N,
RESULT( 4 ) = DQRT17( TRANS, 1, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK,
$ LWORK )
@ -595,7 +626,7 @@
*
* Solving overdetermined system
*
RESULT( 16 ) = DQRT14( TRANS, M, N,
RESULT( 4 ) = DQRT14( TRANS, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
END IF
@ -603,21 +634,151 @@
* Print information about the tests that
* did not pass the threshold.
*
DO 50 K = 15, 16
DO K = 3, 4
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9997 )TRANS, M,
$ N, NRHS, MB, NB, ITYPE, K,
WRITE( NOUT, FMT = 9999 ) TRANS, M,
$ N, NRHS, NB, ITYPE, K,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
50 CONTINUE
END DO
NRUN = NRUN + 2
60 CONTINUE
62 CONTINUE
65 CONTINUE
END DO
END DO
END IF
* =====================================================
* End test DGELST
* =====================================================
* =====================================================
* Begin test DGETSLS
* =====================================================
IF( IRANK.EQ.1 ) THEN
*
* Generate a matrix of scaling type ISCALE
*
CALL DQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
*
* Loop for testing different block sizes MB.
*
DO IMB = 1, NNB
MB = NBVAL( IMB )
CALL XLAENV( 1, MB )
*
* Loop for testing different block sizes NB.
*
DO INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 2, NB )
*
* Loop for testing non-transposed
* and transposed.
*
DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
NCOLS = N
ELSE
TRANS = 'T'
NROWS = N
NCOLS = M
END IF
LDWORK = MAX( 1, NCOLS )
*
* Set up a consistent rhs
*
IF( NCOLS.GT.0 ) THEN
CALL DLARNV( 2, ISEED, NCOLS*NRHS,
$ WORK )
CALL DSCAL( NCOLS*NRHS,
$ ONE / DBLE( NCOLS ),
$ WORK, 1 )
END IF
CALL DGEMM( TRANS, 'No transpose',
$ NROWS, NRHS, NCOLS, ONE,
$ COPYA, LDA, WORK, LDWORK,
$ ZERO, B, LDB )
CALL DLACPY( 'Full', NROWS, NRHS,
$ B, LDB, COPYB, LDB )
*
* Solve LS or overdetermined system
*
IF( M.GT.0 .AND. N.GT.0 ) THEN
CALL DLACPY( 'Full', M, N,
$ COPYA, LDA, A, LDA )
CALL DLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, B, LDB )
END IF
SRNAMT = 'DGETSLS'
CALL DGETSLS( TRANS, M, N, NRHS,
$ A, LDA, B, LDB, WORK, LWORK,
$ INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'DGETSLS', INFO,
$ 0, TRANS, M, N, NRHS,
$ -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* Test 5: Check correctness of results
* for DGETSLS, compute the residual:
* RESID = norm(B - A*X) /
* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL DLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL DQRT16( TRANS, M, N, NRHS,
$ COPYA, LDA, B, LDB,
$ C, LDB, WORK,
$ RESULT( 5 ) )
*
* Test 6: Check correctness of results
* for DGETSLS.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
*
* Solving LS system, compute:
* r = norm((B- A*X)**T * A) /
* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS)
*
RESULT( 6 ) = DQRT17( TRANS, 1, M,
$ N, NRHS, COPYA, LDA,
$ B, LDB, COPYB, LDB,
$ C, WORK, LWORK )
ELSE
*
* Solving overdetermined system
*
RESULT( 6 ) = DQRT14( TRANS, M, N,
$ NRHS, COPYA, LDA,
$ B, LDB, WORK, LWORK )
END IF
*
* Print information about the tests that
* did not pass the threshold.
*
DO K = 5, 6
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9997 ) TRANS,
$ M, N, NRHS, MB, NB, ITYPE,
$ K, RESULT( K )
NFAIL = NFAIL + 1
END IF
END DO
NRUN = NRUN + 2
END DO
END DO
END DO
END IF
* =====================================================
* End test DGETSLS
* =====================================================
*
* Generate a matrix of scaling type ISCALE and rank
* type IRANK.
@ -662,37 +823,37 @@
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* Test 3: Compute relative error in svd
* Test 7: Compute relative error in svd
* workspace: M*N + 4*MIN(M,N) + MAX(M,N)
*
RESULT( 3 ) = DQRT12( CRANK, CRANK, A, LDA,
RESULT( 7 ) = DQRT12( CRANK, CRANK, A, LDA,
$ COPYS, WORK, LWORK )
*
* Test 4: Compute error in solution
* Test 8: Compute error in solution
* workspace: M*NRHS + M
*
CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL DQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK,
$ WORK( M*NRHS+1 ), RESULT( 4 ) )
$ WORK( M*NRHS+1 ), RESULT( 8 ) )
*
* Test 5: Check norm of r'*A
* Test 9: Check norm of r'*A
* workspace: NRHS*(M+N)
*
RESULT( 5 ) = ZERO
RESULT( 9 ) = ZERO
IF( M.GT.CRANK )
$ RESULT( 5 ) = DQRT17( 'No transpose', 1, M,
$ RESULT( 9 ) = DQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
* Test 6: Check if x is in the rowspace of A
* Test 10: Check if x is in the rowspace of A
* workspace: (M+NRHS)*(N+2)
*
RESULT( 6 ) = ZERO
RESULT( 10 ) = ZERO
*
IF( N.GT.CRANK )
$ RESULT( 6 ) = DQRT14( 'No transpose', M, N,
$ RESULT( 10 ) = DQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
@ -716,66 +877,6 @@
* workspace used: 3*min(m,n) +
* max(2*min(m,n),nrhs,max(m,n))
*
* Test 7: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
CALL DAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
RESULT( 7 ) = DASUM( MNMIN, S, 1 ) /
$ DASUM( MNMIN, COPYS, 1 ) /
$ ( EPS*DBLE( MNMIN ) )
ELSE
RESULT( 7 ) = ZERO
END IF
*
* Test 8: Compute error in solution
*
CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL DQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK,
$ WORK( M*NRHS+1 ), RESULT( 8 ) )
*
* Test 9: Check norm of r'*A
*
RESULT( 9 ) = ZERO
IF( M.GT.CRANK )
$ RESULT( 9 ) = DQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
* Test 10: Check if x is in the rowspace of A
*
RESULT( 10 ) = ZERO
IF( N.GT.CRANK )
$ RESULT( 10 ) = DQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Test DGELSD
*
* DGELSD: Compute the minimum-norm solution X
* to min( norm( A * X - B ) ) using a
* divide and conquer SVD.
*
* Initialize vector IWORK.
*
DO 80 J = 1, N
IWORK( J ) = 0
80 CONTINUE
*
CALL DLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, B,
$ LDB )
*
SRNAMT = 'DGELSD'
CALL DGELSD( M, N, NRHS, A, LDA, B, LDB, S,
$ RCOND, CRANK, WORK, LWORK, IWORK,
$ INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'DGELSD', INFO, 0, ' ', M,
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* Test 11: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
@ -811,10 +912,70 @@
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Test DGELSD
*
* DGELSD: Compute the minimum-norm solution X
* to min( norm( A * X - B ) ) using a
* divide and conquer SVD.
*
* Initialize vector IWORK.
*
DO 80 J = 1, N
IWORK( J ) = 0
80 CONTINUE
*
CALL DLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, B,
$ LDB )
*
SRNAMT = 'DGELSD'
CALL DGELSD( M, N, NRHS, A, LDA, B, LDB, S,
$ RCOND, CRANK, WORK, LWORK, IWORK,
$ INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'DGELSD', INFO, 0, ' ', M,
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* Test 15: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
CALL DAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
RESULT( 15 ) = DASUM( MNMIN, S, 1 ) /
$ DASUM( MNMIN, COPYS, 1 ) /
$ ( EPS*DBLE( MNMIN ) )
ELSE
RESULT( 15 ) = ZERO
END IF
*
* Test 16: Compute error in solution
*
CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL DQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK,
$ WORK( M*NRHS+1 ), RESULT( 16 ) )
*
* Test 17: Check norm of r'*A
*
RESULT( 17 ) = ZERO
IF( M.GT.CRANK )
$ RESULT( 17 ) = DQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
* Test 18: Check if x is in the rowspace of A
*
RESULT( 18 ) = ZERO
IF( N.GT.CRANK )
$ RESULT( 18 ) = DQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Print information about the tests that did not
* pass the threshold.
*
DO 90 K = 3, 14
DO 90 K = 7, 18
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
@ -826,6 +987,12 @@
NRUN = NRUN + 12
*
100 CONTINUE
110 CONTINUE
120 CONTINUE
130 CONTINUE

View File

@ -22,7 +22,7 @@
*> \verbatim
*>
*> DERRLS tests the error exits for the DOUBLE PRECISION least squares
*> driver routines (DGELS, SGELSS, SGELSY, SGELSD).
*> driver routines (DGELS, DGELST, DGETSLS, SGELSS, SGELSY, SGELSD).
*> \endverbatim
*
* Arguments:
@ -83,7 +83,8 @@
EXTERNAL LSAMEN
* ..
* .. External Subroutines ..
EXTERNAL ALAESM, CHKXER, DGELS, DGELSD, DGELSS, DGELSY
EXTERNAL ALAESM, CHKXER, DGELS, DGELSD, DGELSS, DGELST,
$ DGELSY, DGETSLS
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
@ -130,10 +131,66 @@
INFOT = 8
CALL DGELS( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
CALL CHKXER( 'DGELS ', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL DGELS( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
CALL CHKXER( 'DGELS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL DGELS( 'N', 1, 1, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'DGELS ', INFOT, NOUT, LERR, OK )
*
* DGELST
*
SRNAMT = 'DGELST'
INFOT = 1
CALL DGELST( '/', 0, 0, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'DGELST', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DGELST( 'N', -1, 0, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'DGELST', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DGELST( 'N', 0, -1, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'DGELST', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DGELST( 'N', 0, 0, -1, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'DGELST', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DGELST( 'N', 2, 0, 0, A, 1, B, 2, W, 2, INFO )
CALL CHKXER( 'DGELST', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL DGELST( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
CALL CHKXER( 'DGELST', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL DGELST( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
CALL CHKXER( 'DGELST', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL DGELST( 'N', 1, 1, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'DGELST', INFOT, NOUT, LERR, OK )
*
* DGETSLS
*
SRNAMT = 'DGETSLS'
INFOT = 1
CALL DGETSLS( '/', 0, 0, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'DGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DGETSLS( 'N', -1, 0, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'DGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DGETSLS( 'N', 0, -1, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'DGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DGETSLS( 'N', 0, 0, -1, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'DGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DGETSLS( 'N', 2, 0, 0, A, 1, B, 2, W, 2, INFO )
CALL CHKXER( 'DGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL DGETSLS( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
CALL CHKXER( 'DGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL DGETSLS( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
CALL CHKXER( 'DGETSLS', INFOT, NOUT, LERR, OK )
*
* DGELSS
*
SRNAMT = 'DGELSS'

View File

@ -31,8 +31,8 @@
*>
*> \verbatim
*>
*> SDRVLS tests the least squares driver routines SGELS, SGETSLS, SGELSS, SGELSY,
*> and SGELSD.
*> SDRVLS tests the least squares driver routines SGELS, SGELST,
*> SGETSLS, SGELSS, SGELSY and SGELSD.
*> \endverbatim
*
* Arguments:
@ -211,7 +211,7 @@
*
* .. Parameters ..
INTEGER NTESTS
PARAMETER ( NTESTS = 16 )
PARAMETER ( NTESTS = 18 )
INTEGER SMLSIZ
PARAMETER ( SMLSIZ = 25 )
REAL ONE, TWO, ZERO
@ -225,8 +225,8 @@
$ LWLSY, LWORK, M, MNMIN, N, NB, NCOLS, NERRS,
$ NFAIL, NRHS, NROWS, NRUN, RANK, MB,
$ MMAX, NMAX, NSMAX, LIWORK,
$ LWORK_SGELS, LWORK_SGETSLS, LWORK_SGELSS,
$ LWORK_SGELSY, LWORK_SGELSD
$ LWORK_SGELS, LWORK_SGELST, LWORK_SGETSLS,
$ LWORK_SGELSS, LWORK_SGELSY, LWORK_SGELSD
REAL EPS, NORMA, NORMB, RCOND
* ..
* .. Local Arrays ..
@ -243,12 +243,12 @@
* ..
* .. External Subroutines ..
EXTERNAL ALAERH, ALAHD, ALASVM, SAXPY, SERRLS, SGELS,
$ SGELSD, SGELSS, SGELSY, SGEMM, SLACPY,
$ SLARNV, SQRT13, SQRT15, SQRT16, SSCAL,
$ XLAENV, SGETSLS
$ SGELSD, SGELSS, SGELST, SGELSY, SGEMM,
$ SGETSLS, SLACPY, SLARNV, SQRT13, SQRT15,
$ SQRT16, SSCAL, XLAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC INT, LOG, MAX, MIN, REAL, SQRT
INTRINSIC INT, MAX, MIN, REAL, SQRT
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
@ -330,7 +330,8 @@
LIWORK = 1
*
* Iterate through all test cases and compute necessary workspace
* sizes for ?GELS, ?GETSLS, ?GELSY, ?GELSS and ?GELSD routines.
* sizes for ?GELS, ?GELST, ?GETSLS, ?GELSY, ?GELSS and ?GELSD
* routines.
*
DO IM = 1, NM
M = MVAL( IM )
@ -357,6 +358,10 @@
CALL SGELS( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ( 1 ), -1, INFO )
LWORK_SGELS = INT ( WQ( 1 ) )
* Compute workspace needed for SGELST
CALL SGELST( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ, -1, INFO )
LWORK_SGELST = INT ( WQ ( 1 ) )
* Compute workspace needed for SGETSLS
CALL SGETSLS( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ( 1 ), -1, INFO )
@ -378,9 +383,9 @@
* Compute LIWORK workspace needed for SGELSY and SGELSD
LIWORK = MAX( LIWORK, N, IWQ( 1 ) )
* Compute LWORK workspace needed for all functions
LWORK = MAX( LWORK, LWORK_SGELS, LWORK_SGETSLS,
$ LWORK_SGELSY, LWORK_SGELSS,
$ LWORK_SGELSD )
LWORK = MAX( LWORK, LWORK_SGELS, LWORK_SGELST,
$ LWORK_SGETSLS, LWORK_SGELSY,
$ LWORK_SGELSS, LWORK_SGELSD )
END IF
ENDDO
ENDDO
@ -411,21 +416,26 @@
ITYPE = ( IRANK-1 )*3 + ISCALE
IF( .NOT.DOTYPE( ITYPE ) )
$ GO TO 110
*
* =====================================================
* Begin test SGELS
* =====================================================
IF( IRANK.EQ.1 ) THEN
*
* Test SGELS
*
* Generate a matrix of scaling type ISCALE
*
CALL SQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
DO 40 INB = 1, NNB
*
* Loop for testing different block sizes.
*
DO INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
CALL XLAENV( 3, NXVAL( INB ) )
*
DO 30 ITRAN = 1, 2
* Loop for testing non-transposed and transposed.
*
DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
@ -469,20 +479,27 @@
$ ITYPE, NFAIL, NERRS,
$ NOUT )
*
* Check correctness of results
* Test 1: Check correctness of results
* for SGELS, compute the residual:
* RESID = norm(B - A*X) /
* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
LDWORK = MAX( 1, NROWS )
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL SLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL SQRT16( TRANS, M, N, NRHS, COPYA,
$ LDA, B, LDB, C, LDB, WORK,
$ RESULT( 1 ) )
*
* Test 2: Check correctness of results
* for SGELS.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
*
* Solving LS system
* Solving LS system, compute:
* r = norm((B- A*X)**T * A) /
* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS)
*
RESULT( 2 ) = SQRT17( TRANS, 1, M, N,
$ NRHS, COPYA, LDA, B, LDB,
@ -500,7 +517,7 @@
* Print information about the tests that
* did not pass the threshold.
*
DO 20 K = 1, 2
DO K = 1, 2
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
@ -509,26 +526,33 @@
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
20 CONTINUE
END DO
NRUN = NRUN + 2
30 CONTINUE
40 CONTINUE
*
*
* Test SGETSLS
END DO
END DO
END IF
* =====================================================
* End test SGELS
* =====================================================
* =====================================================
* Begin test SGELST
* =====================================================
IF( IRANK.EQ.1 ) THEN
*
* Generate a matrix of scaling type ISCALE
*
CALL SQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
DO 65 INB = 1, NNB
MB = NBVAL( INB )
CALL XLAENV( 1, MB )
DO 62 IMB = 1, NNB
NB = NBVAL( IMB )
CALL XLAENV( 2, NB )
*
DO 60 ITRAN = 1, 2
* Loop for testing different block sizes.
*
DO INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
*
* Loop for testing non-transposed and transposed.
*
DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
@ -563,31 +587,38 @@
CALL SLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, B, LDB )
END IF
SRNAMT = 'SGETSLS '
CALL SGETSLS( TRANS, M, N, NRHS, A,
$ LDA, B, LDB, WORK, LWORK, INFO )
SRNAMT = 'SGELST'
CALL SGELST( TRANS, M, N, NRHS, A, LDA, B,
$ LDB, WORK, LWORK, INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'SGETSLS ', INFO, 0,
$ CALL ALAERH( PATH, 'SGELST', INFO, 0,
$ TRANS, M, N, NRHS, -1, NB,
$ ITYPE, NFAIL, NERRS,
$ NOUT )
*
* Check correctness of results
* Test 3: Check correctness of results
* for SGELST, compute the residual:
* RESID = norm(B - A*X) /
* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
LDWORK = MAX( 1, NROWS )
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL SLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL SQRT16( TRANS, M, N, NRHS, COPYA,
$ LDA, B, LDB, C, LDB, WORK,
$ RESULT( 15 ) )
$ RESULT( 3 ) )
*
* Test 4: Check correctness of results
* for SGELST.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
*
* Solving LS system
* Solving LS system, compute:
* r = norm((B- A*X)**T * A) /
* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS)
*
RESULT( 16 ) = SQRT17( TRANS, 1, M, N,
RESULT( 4 ) = SQRT17( TRANS, 1, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK,
$ LWORK )
@ -595,7 +626,7 @@
*
* Solving overdetermined system
*
RESULT( 16 ) = SQRT14( TRANS, M, N,
RESULT( 4 ) = SQRT14( TRANS, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
END IF
@ -603,21 +634,151 @@
* Print information about the tests that
* did not pass the threshold.
*
DO 50 K = 15, 16
DO K = 3, 4
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9997 )TRANS, M,
$ N, NRHS, MB, NB, ITYPE, K,
WRITE( NOUT, FMT = 9999 ) TRANS, M,
$ N, NRHS, NB, ITYPE, K,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
50 CONTINUE
END DO
NRUN = NRUN + 2
60 CONTINUE
62 CONTINUE
65 CONTINUE
END DO
END DO
END IF
* =====================================================
* End test SGELST
* =====================================================
* =====================================================
* Begin test SGETSLS
* =====================================================
IF( IRANK.EQ.1 ) THEN
*
* Generate a matrix of scaling type ISCALE
*
CALL SQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
*
* Loop for testing different block sizes MB.
*
DO IMB = 1, NNB
MB = NBVAL( IMB )
CALL XLAENV( 1, MB )
*
* Loop for testing different block sizes NB.
*
DO INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 2, NB )
*
* Loop for testing non-transposed
* and transposed.
*
DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
NCOLS = N
ELSE
TRANS = 'T'
NROWS = N
NCOLS = M
END IF
LDWORK = MAX( 1, NCOLS )
*
* Set up a consistent rhs
*
IF( NCOLS.GT.0 ) THEN
CALL SLARNV( 2, ISEED, NCOLS*NRHS,
$ WORK )
CALL SSCAL( NCOLS*NRHS,
$ ONE / REAL( NCOLS ),
$ WORK, 1 )
END IF
CALL SGEMM( TRANS, 'No transpose',
$ NROWS, NRHS, NCOLS, ONE,
$ COPYA, LDA, WORK, LDWORK,
$ ZERO, B, LDB )
CALL SLACPY( 'Full', NROWS, NRHS,
$ B, LDB, COPYB, LDB )
*
* Solve LS or overdetermined system
*
IF( M.GT.0 .AND. N.GT.0 ) THEN
CALL SLACPY( 'Full', M, N,
$ COPYA, LDA, A, LDA )
CALL SLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, B, LDB )
END IF
SRNAMT = 'SGETSLS'
CALL SGETSLS( TRANS, M, N, NRHS,
$ A, LDA, B, LDB, WORK, LWORK,
$ INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'SGETSLS', INFO,
$ 0, TRANS, M, N, NRHS,
$ -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* Test 5: Check correctness of results
* for SGETSLS, compute the residual:
* RESID = norm(B - A*X) /
* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL SLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL SQRT16( TRANS, M, N, NRHS,
$ COPYA, LDA, B, LDB,
$ C, LDB, WORK,
$ RESULT( 5 ) )
*
* Test 6: Check correctness of results
* for SGETSLS.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
*
* Solving LS system, compute:
* r = norm((B- A*X)**T * A) /
* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS)
*
RESULT( 6 ) = SQRT17( TRANS, 1, M,
$ N, NRHS, COPYA, LDA,
$ B, LDB, COPYB, LDB,
$ C, WORK, LWORK )
ELSE
*
* Solving overdetermined system
*
RESULT( 6 ) = SQRT14( TRANS, M, N,
$ NRHS, COPYA, LDA,
$ B, LDB, WORK, LWORK )
END IF
*
* Print information about the tests that
* did not pass the threshold.
*
DO K = 5, 6
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9997 ) TRANS,
$ M, N, NRHS, MB, NB, ITYPE,
$ K, RESULT( K )
NFAIL = NFAIL + 1
END IF
END DO
NRUN = NRUN + 2
END DO
END DO
END DO
END IF
* =====================================================
* End test SGETSLS
* =====================================================
*
* Generate a matrix of scaling type ISCALE and rank
* type IRANK.
@ -662,37 +823,37 @@
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* Test 3: Compute relative error in svd
* Test 7: Compute relative error in svd
* workspace: M*N + 4*MIN(M,N) + MAX(M,N)
*
RESULT( 3 ) = SQRT12( CRANK, CRANK, A, LDA,
RESULT( 7 ) = SQRT12( CRANK, CRANK, A, LDA,
$ COPYS, WORK, LWORK )
*
* Test 4: Compute error in solution
* Test 8: Compute error in solution
* workspace: M*NRHS + M
*
CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL SQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK,
$ WORK( M*NRHS+1 ), RESULT( 4 ) )
$ WORK( M*NRHS+1 ), RESULT( 8 ) )
*
* Test 5: Check norm of r'*A
* Test 9: Check norm of r'*A
* workspace: NRHS*(M+N)
*
RESULT( 5 ) = ZERO
RESULT( 9 ) = ZERO
IF( M.GT.CRANK )
$ RESULT( 5 ) = SQRT17( 'No transpose', 1, M,
$ RESULT( 9 ) = SQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
* Test 6: Check if x is in the rowspace of A
* Test 10: Check if x is in the rowspace of A
* workspace: (M+NRHS)*(N+2)
*
RESULT( 6 ) = ZERO
RESULT( 10 ) = ZERO
*
IF( N.GT.CRANK )
$ RESULT( 6 ) = SQRT14( 'No transpose', M, N,
$ RESULT( 10 ) = SQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
@ -716,66 +877,6 @@
* workspace used: 3*min(m,n) +
* max(2*min(m,n),nrhs,max(m,n))
*
* Test 7: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
CALL SAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
RESULT( 7 ) = SASUM( MNMIN, S, 1 ) /
$ SASUM( MNMIN, COPYS, 1 ) /
$ ( EPS*REAL( MNMIN ) )
ELSE
RESULT( 7 ) = ZERO
END IF
*
* Test 8: Compute error in solution
*
CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL SQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK,
$ WORK( M*NRHS+1 ), RESULT( 8 ) )
*
* Test 9: Check norm of r'*A
*
RESULT( 9 ) = ZERO
IF( M.GT.CRANK )
$ RESULT( 9 ) = SQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
* Test 10: Check if x is in the rowspace of A
*
RESULT( 10 ) = ZERO
IF( N.GT.CRANK )
$ RESULT( 10 ) = SQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Test SGELSD
*
* SGELSD: Compute the minimum-norm solution X
* to min( norm( A * X - B ) ) using a
* divide and conquer SVD.
*
* Initialize vector IWORK.
*
DO 80 J = 1, N
IWORK( J ) = 0
80 CONTINUE
*
CALL SLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, B,
$ LDB )
*
SRNAMT = 'SGELSD'
CALL SGELSD( M, N, NRHS, A, LDA, B, LDB, S,
$ RCOND, CRANK, WORK, LWORK, IWORK,
$ INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'SGELSD', INFO, 0, ' ', M,
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* Test 11: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
@ -811,10 +912,70 @@
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Test SGELSD
*
* SGELSD: Compute the minimum-norm solution X
* to min( norm( A * X - B ) ) using a
* divide and conquer SVD.
*
* Initialize vector IWORK.
*
DO 80 J = 1, N
IWORK( J ) = 0
80 CONTINUE
*
CALL SLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, B,
$ LDB )
*
SRNAMT = 'SGELSD'
CALL SGELSD( M, N, NRHS, A, LDA, B, LDB, S,
$ RCOND, CRANK, WORK, LWORK, IWORK,
$ INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'SGELSD', INFO, 0, ' ', M,
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* Test 15: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
CALL SAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
RESULT( 15 ) = SASUM( MNMIN, S, 1 ) /
$ SASUM( MNMIN, COPYS, 1 ) /
$ ( EPS*REAL( MNMIN ) )
ELSE
RESULT( 15 ) = ZERO
END IF
*
* Test 16: Compute error in solution
*
CALL SLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL SQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK,
$ WORK( M*NRHS+1 ), RESULT( 16 ) )
*
* Test 17: Check norm of r'*A
*
RESULT( 17 ) = ZERO
IF( M.GT.CRANK )
$ RESULT( 17 ) = SQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
* Test 18: Check if x is in the rowspace of A
*
RESULT( 18 ) = ZERO
IF( N.GT.CRANK )
$ RESULT( 18 ) = SQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Print information about the tests that did not
* pass the threshold.
*
DO 90 K = 3, 14
DO 90 K = 7, 18
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )

View File

@ -22,7 +22,7 @@
*> \verbatim
*>
*> SERRLS tests the error exits for the REAL least squares
*> driver routines (SGELS, SGELSS, SGELSY, SGELSD).
*> driver routines (SGELS, SGELST, SGETSLS, SGELSS, SGELSY, SGELSD).
*> \endverbatim
*
* Arguments:
@ -83,7 +83,8 @@
EXTERNAL LSAMEN
* ..
* .. External Subroutines ..
EXTERNAL ALAESM, CHKXER, SGELS, SGELSD, SGELSS, SGELSY
EXTERNAL ALAESM, CHKXER, SGELS, SGELSD, SGELSS, SGELST,
$ SGELSY, SGETSLS
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
@ -130,10 +131,66 @@
INFOT = 8
CALL SGELS( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
CALL CHKXER( 'SGELS ', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL SGELS( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
CALL CHKXER( 'DGELS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL SGELS( 'N', 1, 1, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'SGELS ', INFOT, NOUT, LERR, OK )
*
* SGELST
*
SRNAMT = 'SGELST'
INFOT = 1
CALL SGELST( '/', 0, 0, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'SGELST', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SGELST( 'N', -1, 0, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'SGELST', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SGELST( 'N', 0, -1, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'SGELST', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SGELST( 'N', 0, 0, -1, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'SGELST', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL SGELST( 'N', 2, 0, 0, A, 1, B, 2, W, 2, INFO )
CALL CHKXER( 'SGELST', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL SGELST( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
CALL CHKXER( 'SGELST', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL SGELST( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
CALL CHKXER( 'SGELST', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL SGELST( 'N', 1, 1, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'SGELST', INFOT, NOUT, LERR, OK )
*
* SGETSLS
*
SRNAMT = 'SGETSLS'
INFOT = 1
CALL SGETSLS( '/', 0, 0, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'SGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL SGETSLS( 'N', -1, 0, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'SGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL SGETSLS( 'N', 0, -1, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'SGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SGETSLS( 'N', 0, 0, -1, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'SGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL SGETSLS( 'N', 2, 0, 0, A, 1, B, 2, W, 2, INFO )
CALL CHKXER( 'SGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL SGETSLS( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
CALL CHKXER( 'SGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL SGETSLS( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
CALL CHKXER( 'SGETSLS', INFOT, NOUT, LERR, OK )
*
* SGELSS
*
SRNAMT = 'SGELSS'

View File

@ -31,8 +31,8 @@
*>
*> \verbatim
*>
*> ZDRVLS tests the least squares driver routines ZGELS, ZGETSLS, ZGELSS, ZGELSY
*> and ZGELSD.
*> ZDRVLS tests the least squares driver routines ZGELS, ZGELST,
*> ZGETSLS, ZGELSS, ZGELSY and ZGELSD.
*> \endverbatim
*
* Arguments:
@ -211,7 +211,7 @@
*
* .. Parameters ..
INTEGER NTESTS
PARAMETER ( NTESTS = 16 )
PARAMETER ( NTESTS = 18 )
INTEGER SMLSIZ
PARAMETER ( SMLSIZ = 25 )
DOUBLE PRECISION ONE, ZERO
@ -228,8 +228,8 @@
$ LWLSY, LWORK, M, MNMIN, N, NB, NCOLS, NERRS,
$ NFAIL, NRHS, NROWS, NRUN, RANK, MB,
$ MMAX, NMAX, NSMAX, LIWORK, LRWORK,
$ LWORK_ZGELS, LWORK_ZGETSLS, LWORK_ZGELSS,
$ LWORK_ZGELSY, LWORK_ZGELSD,
$ LWORK_ZGELS, LWORK_ZGELST, LWORK_ZGETSLS,
$ LWORK_ZGELSS, LWORK_ZGELSY, LWORK_ZGELSD,
$ LRWORK_ZGELSY, LRWORK_ZGELSS, LRWORK_ZGELSD
DOUBLE PRECISION EPS, NORMA, NORMB, RCOND
* ..
@ -248,10 +248,10 @@
EXTERNAL DASUM, DLAMCH, ZQRT12, ZQRT14, ZQRT17
* ..
* .. External Subroutines ..
EXTERNAL ALAERH, ALAHD, ALASVM, DAXPY, DLASRT, XLAENV,
$ ZDSCAL, ZERRLS, ZGELS, ZGELSD, ZGELSS,
$ ZGELSY, ZGEMM, ZLACPY, ZLARNV, ZQRT13, ZQRT15,
$ ZQRT16, ZGETSLS
EXTERNAL ALAERH, ALAHD, ALASVM, DAXPY, ZERRLS, ZGELS,
$ ZGELSD, ZGELSS, ZGELST, ZGELSY, ZGEMM,
$ ZGETSLS, ZLACPY, ZLARNV, ZQRT13, ZQRT15,
$ ZQRT16, ZDSCAL, XLAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN, INT, SQRT
@ -334,7 +334,8 @@
LIWORK = 1
*
* Iterate through all test cases and compute necessary workspace
* sizes for ?GELS, ?GETSLS, ?GELSY, ?GELSS and ?GELSD routines.
* sizes for ?GELS, ?GELST, ?GETSLS, ?GELSY, ?GELSS and ?GELSD
* routines.
*
DO IM = 1, NM
M = MVAL( IM )
@ -361,6 +362,10 @@
CALL ZGELS( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ, -1, INFO )
LWORK_ZGELS = INT ( WQ( 1 ) )
* Compute workspace needed for ZGELST
CALL ZGELST( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ, -1, INFO )
LWORK_ZGELST = INT ( WQ ( 1 ) )
* Compute workspace needed for ZGETSLS
CALL ZGETSLS( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ, -1, INFO )
@ -390,9 +395,9 @@
LRWORK = MAX( LRWORK, LRWORK_ZGELSY,
$ LRWORK_ZGELSS, LRWORK_ZGELSD )
* Compute LWORK workspace needed for all functions
LWORK = MAX( LWORK, LWORK_ZGELS, LWORK_ZGETSLS,
$ LWORK_ZGELSY, LWORK_ZGELSS,
$ LWORK_ZGELSD )
LWORK = MAX( LWORK, LWORK_ZGELS, LWORK_ZGELST,
$ LWORK_ZGETSLS, LWORK_ZGELSY,
$ LWORK_ZGELSS, LWORK_ZGELSD )
END IF
ENDDO
ENDDO
@ -425,21 +430,26 @@
ITYPE = ( IRANK-1 )*3 + ISCALE
IF( .NOT.DOTYPE( ITYPE ) )
$ GO TO 100
*
* =====================================================
* Begin test ZGELS
* =====================================================
IF( IRANK.EQ.1 ) THEN
*
* Test ZGELS
*
* Generate a matrix of scaling type ISCALE
*
CALL ZQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
DO 40 INB = 1, NNB
*
* Loop for testing different block sizes.
*
DO INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
CALL XLAENV( 3, NXVAL( INB ) )
*
DO 30 ITRAN = 1, 2
* Loop for testing non-transposed and transposed.
*
DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
@ -484,15 +494,20 @@
$ ITYPE, NFAIL, NERRS,
$ NOUT )
*
* Check correctness of results
* Test 1: Check correctness of results
* for ZGELS, compute the residual:
* RESID = norm(B - A*X) /
* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
LDWORK = MAX( 1, NROWS )
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL ZLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL ZQRT16( TRANS, M, N, NRHS, COPYA,
$ LDA, B, LDB, C, LDB, RWORK,
$ RESULT( 1 ) )
*
* Test 2: Check correctness of results
* for ZGELS.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
@ -515,7 +530,7 @@
* Print information about the tests that
* did not pass the threshold.
*
DO 20 K = 1, 2
DO K = 1, 2
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
@ -524,26 +539,157 @@
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
20 CONTINUE
END DO
NRUN = NRUN + 2
30 CONTINUE
40 CONTINUE
*
*
* Test ZGETSLS
END DO
END DO
END IF
* =====================================================
* End test ZGELS
* =====================================================
* =====================================================
* Begin test ZGELST
* =====================================================
IF( IRANK.EQ.1 ) THEN
*
* Generate a matrix of scaling type ISCALE
*
CALL ZQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
DO 65 INB = 1, NNB
*
* Loop for testing different block sizes.
*
DO INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
CALL XLAENV( 3, NXVAL( INB ) )
*
* Loop for testing non-transposed and transposed.
*
DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
NCOLS = N
ELSE
TRANS = 'C'
NROWS = N
NCOLS = M
END IF
LDWORK = MAX( 1, NCOLS )
*
* Set up a consistent rhs
*
IF( NCOLS.GT.0 ) THEN
CALL ZLARNV( 2, ISEED, NCOLS*NRHS,
$ WORK )
CALL ZDSCAL( NCOLS*NRHS,
$ ONE / DBLE( NCOLS ), WORK,
$ 1 )
END IF
CALL ZGEMM( TRANS, 'No transpose', NROWS,
$ NRHS, NCOLS, CONE, COPYA, LDA,
$ WORK, LDWORK, CZERO, B, LDB )
CALL ZLACPY( 'Full', NROWS, NRHS, B, LDB,
$ COPYB, LDB )
*
* Solve LS or overdetermined system
*
IF( M.GT.0 .AND. N.GT.0 ) THEN
CALL ZLACPY( 'Full', M, N, COPYA, LDA,
$ A, LDA )
CALL ZLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, B, LDB )
END IF
SRNAMT = 'ZGELST'
CALL ZGELST( TRANS, M, N, NRHS, A, LDA, B,
$ LDB, WORK, LWORK, INFO )
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'ZGELST', INFO, 0,
$ TRANS, M, N, NRHS, -1, NB,
$ ITYPE, NFAIL, NERRS,
$ NOUT )
*
* Test 3: Check correctness of results
* for ZGELST, compute the residual:
* RESID = norm(B - A*X) /
* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL ZLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL ZQRT16( TRANS, M, N, NRHS, COPYA,
$ LDA, B, LDB, C, LDB, RWORK,
$ RESULT( 3 ) )
*
* Test 4: Check correctness of results
* for ZGELST.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
*
* Solving LS system
*
RESULT( 4 ) = ZQRT17( TRANS, 1, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK,
$ LWORK )
ELSE
*
* Solving overdetermined system
*
RESULT( 4 ) = ZQRT14( TRANS, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
END IF
*
* Print information about the tests that
* did not pass the threshold.
*
DO K = 3, 4
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9999 )TRANS, M,
$ N, NRHS, NB, ITYPE, K,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
END DO
NRUN = NRUN + 2
END DO
END DO
END IF
* =====================================================
* End test ZGELST
* =====================================================
* =====================================================
* Begin test ZGELSTSLS
* =====================================================
IF( IRANK.EQ.1 ) THEN
*
* Generate a matrix of scaling type ISCALE
*
CALL ZQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
*
* Loop for testing different block sizes MB.
*
DO INB = 1, NNB
MB = NBVAL( INB )
CALL XLAENV( 1, MB )
DO 62 IMB = 1, NNB
*
* Loop for testing different block sizes NB.
*
DO IMB = 1, NNB
NB = NBVAL( IMB )
CALL XLAENV( 2, NB )
*
DO 60 ITRAN = 1, 2
* Loop for testing non-transposed
* and transposed.
*
DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
@ -561,78 +707,91 @@
CALL ZLARNV( 2, ISEED, NCOLS*NRHS,
$ WORK )
CALL ZSCAL( NCOLS*NRHS,
$ CONE / DBLE( NCOLS ), WORK,
$ 1 )
$ CONE / DBLE( NCOLS ),
$ WORK, 1 )
END IF
CALL ZGEMM( TRANS, 'No transpose', NROWS,
$ NRHS, NCOLS, CONE, COPYA, LDA,
$ WORK, LDWORK, CZERO, B, LDB )
CALL ZLACPY( 'Full', NROWS, NRHS, B, LDB,
$ COPYB, LDB )
CALL ZGEMM( TRANS, 'No transpose',
$ NROWS, NRHS, NCOLS, CONE,
$ COPYA, LDA, WORK, LDWORK,
$ CZERO, B, LDB )
CALL ZLACPY( 'Full', NROWS, NRHS,
$ B, LDB, COPYB, LDB )
*
* Solve LS or overdetermined system
*
IF( M.GT.0 .AND. N.GT.0 ) THEN
CALL ZLACPY( 'Full', M, N, COPYA, LDA,
$ A, LDA )
CALL ZLACPY( 'Full', M, N,
$ COPYA, LDA, A, LDA )
CALL ZLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, B, LDB )
END IF
SRNAMT = 'ZGETSLS '
CALL ZGETSLS( TRANS, M, N, NRHS, A,
$ LDA, B, LDB, WORK, LWORK, INFO )
$ LDA, B, LDB, WORK, LWORK,
$ INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'ZGETSLS ', INFO, 0,
$ TRANS, M, N, NRHS, -1, NB,
$ ITYPE, NFAIL, NERRS,
$ NOUT )
$ CALL ALAERH( PATH, 'ZGETSLS ', INFO,
$ 0, TRANS, M, N, NRHS,
$ -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* Check correctness of results
* Test 5: Check correctness of results
* for ZGETSLS, compute the residual:
* RESID = norm(B - A*X) /
* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
LDWORK = MAX( 1, NROWS )
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL ZLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL ZQRT16( TRANS, M, N, NRHS, COPYA,
$ LDA, B, LDB, C, LDB, WORK2,
$ RESULT( 15 ) )
CALL ZQRT16( TRANS, M, N, NRHS,
$ COPYA, LDA, B, LDB,
$ C, LDB, WORK2,
$ RESULT( 5 ) )
*
* Test 6: Check correctness of results
* for ZGETSLS.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
*
* Solving LS system
* Solving LS system, compute:
* r = norm((B- A*X)**T * A) /
* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS)
*
RESULT( 16 ) = ZQRT17( TRANS, 1, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK,
$ LWORK )
RESULT( 6 ) = ZQRT17( TRANS, 1, M,
$ N, NRHS, COPYA, LDA,
$ B, LDB, COPYB, LDB,
$ C, WORK, LWORK )
ELSE
*
* Solving overdetermined system
*
RESULT( 16 ) = ZQRT14( TRANS, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
RESULT( 6 ) = ZQRT14( TRANS, M, N,
$ NRHS, COPYA, LDA, B,
$ LDB, WORK, LWORK )
END IF
*
* Print information about the tests that
* did not pass the threshold.
*
DO 50 K = 15, 16
DO K = 5, 6
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9997 )TRANS, M,
$ N, NRHS, MB, NB, ITYPE, K,
WRITE( NOUT, FMT = 9997 )TRANS,
$ M, N, NRHS, MB, NB, ITYPE, K,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
50 CONTINUE
END DO
NRUN = NRUN + 2
60 CONTINUE
62 CONTINUE
65 CONTINUE
END DO
END DO
END DO
END IF
* =====================================================
* End test ZGELSTSLS
* =====================================================
*
* Generate a matrix of scaling type ISCALE and rank
* type IRANK.
@ -680,37 +839,37 @@
*
* workspace used: 2*MNMIN+NB*NB+NB*MAX(N,NRHS)
*
* Test 3: Compute relative error in svd
* Test 7: Compute relative error in svd
* workspace: M*N + 4*MIN(M,N) + MAX(M,N)
*
RESULT( 3 ) = ZQRT12( CRANK, CRANK, A, LDA,
RESULT( 7 ) = ZQRT12( CRANK, CRANK, A, LDA,
$ COPYS, WORK, LWORK, RWORK )
*
* Test 4: Compute error in solution
* Test 8: Compute error in solution
* workspace: M*NRHS + M
*
CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL ZQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK, RWORK,
$ RESULT( 4 ) )
$ RESULT( 8 ) )
*
* Test 5: Check norm of r'*A
* Test 9: Check norm of r'*A
* workspace: NRHS*(M+N)
*
RESULT( 5 ) = ZERO
RESULT( 9 ) = ZERO
IF( M.GT.CRANK )
$ RESULT( 5 ) = ZQRT17( 'No transpose', 1, M,
$ RESULT( 9 ) = ZQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
* Test 6: Check if x is in the rowspace of A
* Test 10: Check if x is in the rowspace of A
* workspace: (M+NRHS)*(N+2)
*
RESULT( 6 ) = ZERO
RESULT( 10 ) = ZERO
*
IF( N.GT.CRANK )
$ RESULT( 6 ) = ZQRT14( 'No transpose', M, N,
$ RESULT( 10 ) = ZQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
@ -736,62 +895,6 @@
* workspace used: 3*min(m,n) +
* max(2*min(m,n),nrhs,max(m,n))
*
* Test 7: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
CALL DAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
RESULT( 7 ) = DASUM( MNMIN, S, 1 ) /
$ DASUM( MNMIN, COPYS, 1 ) /
$ ( EPS*DBLE( MNMIN ) )
ELSE
RESULT( 7 ) = ZERO
END IF
*
* Test 8: Compute error in solution
*
CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL ZQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK, RWORK,
$ RESULT( 8 ) )
*
* Test 9: Check norm of r'*A
*
RESULT( 9 ) = ZERO
IF( M.GT.CRANK )
$ RESULT( 9 ) = ZQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
* Test 10: Check if x is in the rowspace of A
*
RESULT( 10 ) = ZERO
IF( N.GT.CRANK )
$ RESULT( 10 ) = ZQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Test ZGELSD
*
* ZGELSD: Compute the minimum-norm solution X
* to min( norm( A * X - B ) ) using a
* divide and conquer SVD.
*
CALL XLAENV( 9, 25 )
*
CALL ZLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, B,
$ LDB )
*
SRNAMT = 'ZGELSD'
CALL ZGELSD( M, N, NRHS, A, LDA, B, LDB, S,
$ RCOND, CRANK, WORK, LWORK, RWORK,
$ IWORK, INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'ZGELSD', INFO, 0, ' ', M,
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* Test 11: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
@ -827,10 +930,66 @@
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Test ZGELSD
*
* ZGELSD: Compute the minimum-norm solution X
* to min( norm( A * X - B ) ) using a
* divide and conquer SVD.
*
CALL XLAENV( 9, 25 )
*
CALL ZLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, B,
$ LDB )
*
SRNAMT = 'ZGELSD'
CALL ZGELSD( M, N, NRHS, A, LDA, B, LDB, S,
$ RCOND, CRANK, WORK, LWORK, RWORK,
$ IWORK, INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'ZGELSD', INFO, 0, ' ', M,
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* Test 15: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
CALL DAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
RESULT( 15 ) = DASUM( MNMIN, S, 1 ) /
$ DASUM( MNMIN, COPYS, 1 ) /
$ ( EPS*DBLE( MNMIN ) )
ELSE
RESULT( 15 ) = ZERO
END IF
*
* Test 16: Compute error in solution
*
CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL ZQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK, RWORK,
$ RESULT( 16 ) )
*
* Test 17: Check norm of r'*A
*
RESULT( 17 ) = ZERO
IF( M.GT.CRANK )
$ RESULT( 17 ) = ZQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
* Test 18: Check if x is in the rowspace of A
*
RESULT( 18 ) = ZERO
IF( N.GT.CRANK )
$ RESULT( 18 ) = ZQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Print information about the tests that did not
* pass the threshold.
*
DO 80 K = 3, 14
DO 80 K = 7, 18
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )

View File

@ -22,7 +22,7 @@
*> \verbatim
*>
*> ZERRLS tests the error exits for the COMPLEX*16 least squares
*> driver routines (ZGELS, CGELSS, CGELSY, CGELSD).
*> driver routines (ZGELS, ZGELST, ZGETSLS, CGELSS, CGELSY, CGELSD).
*> \endverbatim
*
* Arguments:
@ -83,7 +83,8 @@
EXTERNAL LSAMEN
* ..
* .. External Subroutines ..
EXTERNAL ALAESM, CHKXER, ZGELS, ZGELSD, ZGELSS, ZGELSY
EXTERNAL ALAESM, CHKXER, ZGELS, ZGELSD, ZGELSS, ZGELST,
$ ZGELSY, ZGETSLS
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
@ -130,10 +131,66 @@
INFOT = 8
CALL ZGELS( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
CALL CHKXER( 'ZGELS ', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZGELS( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
CALL CHKXER( 'ZGELS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZGELS( 'N', 1, 1, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'ZGELS ', INFOT, NOUT, LERR, OK )
*
* ZGELST
*
SRNAMT = 'ZGELST'
INFOT = 1
CALL ZGELST( '/', 0, 0, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZGELST( 'N', -1, 0, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZGELST( 'N', 0, -1, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZGELST( 'N', 0, 0, -1, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZGELST( 'N', 2, 0, 0, A, 1, B, 2, W, 2, INFO )
CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZGELST( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZGELST( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZGELST( 'N', 1, 1, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK )
*
* ZGETSLS
*
SRNAMT = 'ZGETSLS'
INFOT = 1
CALL ZGETSLS( '/', 0, 0, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZGETSLS( 'N', -1, 0, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZGETSLS( 'N', 0, -1, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZGETSLS( 'N', 0, 0, -1, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZGETSLS( 'N', 2, 0, 0, A, 1, B, 2, W, 2, INFO )
CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZGETSLS( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZGETSLS( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK )
*
* ZGELSS
*
SRNAMT = 'ZGELSS'