diff --git a/lapack-netlib/SRC/clahef_aa.f b/lapack-netlib/SRC/clahef_aa.f index 88bc3d216..934aa92f9 100644 --- a/lapack-netlib/SRC/clahef_aa.f +++ b/lapack-netlib/SRC/clahef_aa.f @@ -288,8 +288,9 @@ * * Swap A(I1, I2+1:N) with A(I2, I2+1:N) * - CALL CSWAP( M-I2, A( J1+I1-1, I2+1 ), LDA, - $ A( J1+I2-1, I2+1 ), LDA ) + IF( I2.LT.M ) + $ CALL CSWAP( M-I2, A( J1+I1-1, I2+1 ), LDA, + $ A( J1+I2-1, I2+1 ), LDA ) * * Swap A(I1, I1) with A(I2,I2) * @@ -329,13 +330,15 @@ * Compute L(J+2, J+1) = WORK( 3:N ) / T(J, J+1), * where A(J, J+1) = T(J, J+1) and A(J+2:N, J) = L(J+2:N, J+1) * - IF( A( K, J+1 ).NE.ZERO ) THEN - ALPHA = ONE / A( K, J+1 ) - CALL CCOPY( M-J-1, WORK( 3 ), 1, A( K, J+2 ), LDA ) - CALL CSCAL( M-J-1, ALPHA, A( K, J+2 ), LDA ) - ELSE - CALL CLASET( 'Full', 1, M-J-1, ZERO, ZERO, - $ A( K, J+2 ), LDA) + IF( J.LT.(M-1) ) THEN + IF( A( K, J+1 ).NE.ZERO ) THEN + ALPHA = ONE / A( K, J+1 ) + CALL CCOPY( M-J-1, WORK( 3 ), 1, A( K, J+2 ), LDA ) + CALL CSCAL( M-J-1, ALPHA, A( K, J+2 ), LDA ) + ELSE + CALL CLASET( 'Full', 1, M-J-1, ZERO, ZERO, + $ A( K, J+2 ), LDA) + END IF END IF END IF J = J + 1 @@ -440,8 +443,9 @@ * * Swap A(I2+1:N, I1) with A(I2+1:N, I2) * - CALL CSWAP( M-I2, A( I2+1, J1+I1-1 ), 1, - $ A( I2+1, J1+I2-1 ), 1 ) + IF( I2.LT.M ) + $ CALL CSWAP( M-I2, A( I2+1, J1+I1-1 ), 1, + $ A( I2+1, J1+I2-1 ), 1 ) * * Swap A(I1, I1) with A(I2, I2) * @@ -481,13 +485,15 @@ * Compute L(J+2, J+1) = WORK( 3:N ) / T(J, J+1), * where A(J, J+1) = T(J, J+1) and A(J+2:N, J) = L(J+2:N, J+1) * - IF( A( J+1, K ).NE.ZERO ) THEN - ALPHA = ONE / A( J+1, K ) - CALL CCOPY( M-J-1, WORK( 3 ), 1, A( J+2, K ), 1 ) - CALL CSCAL( M-J-1, ALPHA, A( J+2, K ), 1 ) - ELSE - CALL CLASET( 'Full', M-J-1, 1, ZERO, ZERO, - $ A( J+2, K ), LDA ) + IF( J.LT.(M-1) ) THEN + IF( A( J+1, K ).NE.ZERO ) THEN + ALPHA = ONE / A( J+1, K ) + CALL CCOPY( M-J-1, WORK( 3 ), 1, A( J+2, K ), 1 ) + CALL CSCAL( M-J-1, ALPHA, A( J+2, K ), 1 ) + ELSE + CALL CLASET( 'Full', M-J-1, 1, ZERO, ZERO, + $ A( J+2, K ), LDA ) + END IF END IF END IF J = J + 1 diff --git a/lapack-netlib/SRC/clahef_rk.f b/lapack-netlib/SRC/clahef_rk.f index 4d9dfbe8e..cc4603e9b 100644 --- a/lapack-netlib/SRC/clahef_rk.f +++ b/lapack-netlib/SRC/clahef_rk.f @@ -331,7 +331,7 @@ * of A and working backwards, and compute the matrix W = U12*D * for use in updating A11 (note that conjg(W) is actually stored) * -* Initilize the first entry of array E, where superdiagonal +* Initialize the first entry of array E, where superdiagonal * elements of D are stored * E( 1 ) = CZERO @@ -789,7 +789,7 @@ * of A and working forwards, and compute the matrix W = L21*D * for use in updating A22 (note that conjg(W) is actually stored) * -* Initilize the unused last entry of the subdiagonal array E. +* Initialize the unused last entry of the subdiagonal array E. * E( N ) = CZERO * diff --git a/lapack-netlib/SRC/clahqr.f b/lapack-netlib/SRC/clahqr.f index de2b3938b..ef50b5a56 100644 --- a/lapack-netlib/SRC/clahqr.f +++ b/lapack-netlib/SRC/clahqr.f @@ -138,26 +138,26 @@ *> \param[out] INFO *> \verbatim *> INFO is INTEGER -*> = 0: successful exit -*> .GT. 0: if INFO = i, CLAHQR failed to compute all the +*> = 0: successful exit +*> > 0: if INFO = i, CLAHQR failed to compute all the *> eigenvalues ILO to IHI in a total of 30 iterations *> per eigenvalue; elements i+1:ihi of W contain *> those eigenvalues which have been successfully *> computed. *> -*> If INFO .GT. 0 and WANTT is .FALSE., then on exit, +*> If INFO > 0 and WANTT is .FALSE., then on exit, *> the remaining unconverged eigenvalues are the *> eigenvalues of the upper Hessenberg matrix -*> rows and columns ILO thorugh INFO of the final, +*> rows and columns ILO through INFO of the final, *> output value of H. *> -*> If INFO .GT. 0 and WANTT is .TRUE., then on exit +*> If INFO > 0 and WANTT is .TRUE., then on exit *> (*) (initial value of H)*U = U*(final value of H) -*> where U is an orthognal matrix. The final +*> where U is an orthogonal matrix. The final *> value of H is upper Hessenberg and triangular in *> rows and columns INFO+1 through IHI. *> -*> If INFO .GT. 0 and WANTZ is .TRUE., then on exit +*> If INFO > 0 and WANTZ is .TRUE., then on exit *> (final value of Z) = (initial value of Z)*U *> where U is the orthogonal matrix in (*) *> (regardless of the value of WANTT.) diff --git a/lapack-netlib/SRC/clamswlq.f b/lapack-netlib/SRC/clamswlq.f index f2f9ab7f9..f6909b666 100644 --- a/lapack-netlib/SRC/clamswlq.f +++ b/lapack-netlib/SRC/clamswlq.f @@ -1,3 +1,4 @@ +*> \brief \b CLAMSWLQ * * Definition: * =========== diff --git a/lapack-netlib/SRC/clamtsqr.f b/lapack-netlib/SRC/clamtsqr.f index 77d09a573..c71e4aa7d 100644 --- a/lapack-netlib/SRC/clamtsqr.f +++ b/lapack-netlib/SRC/clamtsqr.f @@ -1,3 +1,4 @@ +*> \brief \b CLAMTSQR * * Definition: * =========== diff --git a/lapack-netlib/SRC/clangb.f b/lapack-netlib/SRC/clangb.f index 14a163ea7..9818360fe 100644 --- a/lapack-netlib/SRC/clangb.f +++ b/lapack-netlib/SRC/clangb.f @@ -130,6 +130,7 @@ * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * December 2016 * + IMPLICIT NONE * .. Scalar Arguments .. CHARACTER NORM INTEGER KL, KU, LDAB, N @@ -147,14 +148,17 @@ * .. * .. Local Scalars .. INTEGER I, J, K, L - REAL SCALE, SUM, VALUE, TEMP + REAL SUM, VALUE, TEMP +* .. +* .. Local Arrays .. + REAL SSQ( 2 ), COLSSQ( 2 ) * .. * .. External Functions .. LOGICAL LSAME, SISNAN EXTERNAL LSAME, SISNAN * .. * .. External Subroutines .. - EXTERNAL CLASSQ + EXTERNAL CLASSQ, SCOMBSSQ * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, SQRT @@ -207,15 +211,22 @@ ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN * * Find normF(A). +* SSQ(1) is scale +* SSQ(2) is sum-of-squares +* For better accuracy, sum each column separately. * - SCALE = ZERO - SUM = ONE + SSQ( 1 ) = ZERO + SSQ( 2 ) = ONE DO 90 J = 1, N L = MAX( 1, J-KU ) K = KU + 1 - J + L - CALL CLASSQ( MIN( N, J+KL )-L+1, AB( K, J ), 1, SCALE, SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL CLASSQ( MIN( N, J+KL )-L+1, AB( K, J ), 1, + $ COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) 90 CONTINUE - VALUE = SCALE*SQRT( SUM ) + VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) ) END IF * CLANGB = VALUE diff --git a/lapack-netlib/SRC/clange.f b/lapack-netlib/SRC/clange.f index 50f705a18..00895c8bc 100644 --- a/lapack-netlib/SRC/clange.f +++ b/lapack-netlib/SRC/clange.f @@ -120,6 +120,7 @@ * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * December 2016 * + IMPLICIT NONE * .. Scalar Arguments .. CHARACTER NORM INTEGER LDA, M, N @@ -137,14 +138,17 @@ * .. * .. Local Scalars .. INTEGER I, J - REAL SCALE, SUM, VALUE, TEMP + REAL SUM, VALUE, TEMP +* .. +* .. Local Arrays .. + REAL SSQ( 2 ), COLSSQ( 2 ) * .. * .. External Functions .. LOGICAL LSAME, SISNAN EXTERNAL LSAME, SISNAN * .. * .. External Subroutines .. - EXTERNAL CLASSQ + EXTERNAL CLASSQ, SCOMBSSQ * .. * .. Intrinsic Functions .. INTRINSIC ABS, MIN, SQRT @@ -196,13 +200,19 @@ ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN * * Find normF(A). +* SSQ(1) is scale +* SSQ(2) is sum-of-squares +* For better accuracy, sum each column separately. * - SCALE = ZERO - SUM = ONE + SSQ( 1 ) = ZERO + SSQ( 2 ) = ONE DO 90 J = 1, N - CALL CLASSQ( M, A( 1, J ), 1, SCALE, SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL CLASSQ( M, A( 1, J ), 1, COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) 90 CONTINUE - VALUE = SCALE*SQRT( SUM ) + VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) ) END IF * CLANGE = VALUE diff --git a/lapack-netlib/SRC/clanhb.f b/lapack-netlib/SRC/clanhb.f index 2b034b19b..f78de23df 100644 --- a/lapack-netlib/SRC/clanhb.f +++ b/lapack-netlib/SRC/clanhb.f @@ -137,6 +137,7 @@ * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * December 2016 * + IMPLICIT NONE * .. Scalar Arguments .. CHARACTER NORM, UPLO INTEGER K, LDAB, N @@ -154,14 +155,17 @@ * .. * .. Local Scalars .. INTEGER I, J, L - REAL ABSA, SCALE, SUM, VALUE + REAL ABSA, SUM, VALUE +* .. +* .. Local Arrays .. + REAL SSQ( 2 ), COLSSQ( 2 ) * .. * .. External Functions .. LOGICAL LSAME, SISNAN EXTERNAL LSAME, SISNAN * .. * .. External Subroutines .. - EXTERNAL CLASSQ + EXTERNAL CLASSQ, SCOMBSSQ * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, REAL, SQRT @@ -233,39 +237,57 @@ ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN * * Find normF(A). +* SSQ(1) is scale +* SSQ(2) is sum-of-squares +* For better accuracy, sum each column separately. +* + SSQ( 1 ) = ZERO + SSQ( 2 ) = ONE +* +* Sum off-diagonals * - SCALE = ZERO - SUM = ONE IF( K.GT.0 ) THEN IF( LSAME( UPLO, 'U' ) ) THEN DO 110 J = 2, N + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE CALL CLASSQ( MIN( J-1, K ), AB( MAX( K+2-J, 1 ), J ), - $ 1, SCALE, SUM ) + $ 1, COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) 110 CONTINUE L = K + 1 ELSE DO 120 J = 1, N - 1 - CALL CLASSQ( MIN( N-J, K ), AB( 2, J ), 1, SCALE, - $ SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL CLASSQ( MIN( N-J, K ), AB( 2, J ), 1, + $ COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) 120 CONTINUE L = 1 END IF - SUM = 2*SUM + SSQ( 2 ) = 2*SSQ( 2 ) ELSE L = 1 END IF +* +* Sum diagonal +* + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE DO 130 J = 1, N IF( REAL( AB( L, J ) ).NE.ZERO ) THEN ABSA = ABS( REAL( AB( L, J ) ) ) - IF( SCALE.LT.ABSA ) THEN - SUM = ONE + SUM*( SCALE / ABSA )**2 - SCALE = ABSA + IF( COLSSQ( 1 ).LT.ABSA ) THEN + COLSSQ( 2 ) = ONE + COLSSQ(2)*( COLSSQ(1) / ABSA )**2 + COLSSQ( 1 ) = ABSA ELSE - SUM = SUM + ( ABSA / SCALE )**2 + COLSSQ( 2 ) = COLSSQ( 2 ) + ( ABSA / COLSSQ( 1 ) )**2 END IF END IF 130 CONTINUE - VALUE = SCALE*SQRT( SUM ) + CALL SCOMBSSQ( SSQ, COLSSQ ) + VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) ) END IF * CLANHB = VALUE diff --git a/lapack-netlib/SRC/clanhe.f b/lapack-netlib/SRC/clanhe.f index 101d778eb..33d6c8b01 100644 --- a/lapack-netlib/SRC/clanhe.f +++ b/lapack-netlib/SRC/clanhe.f @@ -129,6 +129,7 @@ * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * December 2016 * + IMPLICIT NONE * .. Scalar Arguments .. CHARACTER NORM, UPLO INTEGER LDA, N @@ -146,14 +147,17 @@ * .. * .. Local Scalars .. INTEGER I, J - REAL ABSA, SCALE, SUM, VALUE + REAL ABSA, SUM, VALUE +* .. +* .. Local Arrays .. + REAL SSQ( 2 ), COLSSQ( 2 ) * .. * .. External Functions .. LOGICAL LSAME, SISNAN EXTERNAL LSAME, SISNAN * .. * .. External Subroutines .. - EXTERNAL CLASSQ + EXTERNAL CLASSQ, SCOMBSSQ * .. * .. Intrinsic Functions .. INTRINSIC ABS, REAL, SQRT @@ -223,31 +227,48 @@ ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN * * Find normF(A). +* SSQ(1) is scale +* SSQ(2) is sum-of-squares +* For better accuracy, sum each column separately. +* + SSQ( 1 ) = ZERO + SSQ( 2 ) = ONE +* +* Sum off-diagonals * - SCALE = ZERO - SUM = ONE IF( LSAME( UPLO, 'U' ) ) THEN DO 110 J = 2, N - CALL CLASSQ( J-1, A( 1, J ), 1, SCALE, SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL CLASSQ( J-1, A( 1, J ), 1, + $ COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) 110 CONTINUE ELSE DO 120 J = 1, N - 1 - CALL CLASSQ( N-J, A( J+1, J ), 1, SCALE, SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL CLASSQ( N-J, A( J+1, J ), 1, + $ COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) 120 CONTINUE END IF - SUM = 2*SUM + SSQ( 2 ) = 2*SSQ( 2 ) +* +* Sum diagonal +* DO 130 I = 1, N IF( REAL( A( I, I ) ).NE.ZERO ) THEN ABSA = ABS( REAL( A( I, I ) ) ) - IF( SCALE.LT.ABSA ) THEN - SUM = ONE + SUM*( SCALE / ABSA )**2 - SCALE = ABSA + IF( SSQ( 1 ).LT.ABSA ) THEN + SSQ( 2 ) = ONE + SSQ( 2 )*( SSQ( 1 ) / ABSA )**2 + SSQ( 1 ) = ABSA ELSE - SUM = SUM + ( ABSA / SCALE )**2 + SSQ( 2 ) = SSQ( 2 ) + ( ABSA / SSQ( 1 ) )**2 END IF END IF 130 CONTINUE - VALUE = SCALE*SQRT( SUM ) + VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) ) END IF * CLANHE = VALUE diff --git a/lapack-netlib/SRC/clanhp.f b/lapack-netlib/SRC/clanhp.f index c8927d503..e0e23abc7 100644 --- a/lapack-netlib/SRC/clanhp.f +++ b/lapack-netlib/SRC/clanhp.f @@ -122,6 +122,7 @@ * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * December 2016 * + IMPLICIT NONE * .. Scalar Arguments .. CHARACTER NORM, UPLO INTEGER N @@ -139,14 +140,17 @@ * .. * .. Local Scalars .. INTEGER I, J, K - REAL ABSA, SCALE, SUM, VALUE + REAL ABSA, SUM, VALUE +* .. +* .. Local Arrays .. + REAL SSQ( 2 ), COLSSQ( 2 ) * .. * .. External Functions .. LOGICAL LSAME, SISNAN EXTERNAL LSAME, SISNAN * .. * .. External Subroutines .. - EXTERNAL CLASSQ + EXTERNAL CLASSQ, SCOMBSSQ * .. * .. Intrinsic Functions .. INTRINSIC ABS, REAL, SQRT @@ -225,31 +229,48 @@ ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN * * Find normF(A). +* SSQ(1) is scale +* SSQ(2) is sum-of-squares +* For better accuracy, sum each column separately. +* + SSQ( 1 ) = ZERO + SSQ( 2 ) = ONE +* +* Sum off-diagonals * - SCALE = ZERO - SUM = ONE K = 2 IF( LSAME( UPLO, 'U' ) ) THEN DO 110 J = 2, N - CALL CLASSQ( J-1, AP( K ), 1, SCALE, SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL CLASSQ( J-1, AP( K ), 1, COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) K = K + J 110 CONTINUE ELSE DO 120 J = 1, N - 1 - CALL CLASSQ( N-J, AP( K ), 1, SCALE, SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL CLASSQ( N-J, AP( K ), 1, COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) K = K + N - J + 1 120 CONTINUE END IF - SUM = 2*SUM + SSQ( 2 ) = 2*SSQ( 2 ) +* +* Sum diagonal +* K = 1 + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE DO 130 I = 1, N IF( REAL( AP( K ) ).NE.ZERO ) THEN ABSA = ABS( REAL( AP( K ) ) ) - IF( SCALE.LT.ABSA ) THEN - SUM = ONE + SUM*( SCALE / ABSA )**2 - SCALE = ABSA + IF( COLSSQ( 1 ).LT.ABSA ) THEN + COLSSQ( 2 ) = ONE + COLSSQ(2)*( COLSSQ(1) / ABSA )**2 + COLSSQ( 1 ) = ABSA ELSE - SUM = SUM + ( ABSA / SCALE )**2 + COLSSQ( 2 ) = COLSSQ( 2 ) + ( ABSA / COLSSQ( 1 ) )**2 END IF END IF IF( LSAME( UPLO, 'U' ) ) THEN @@ -258,7 +279,8 @@ K = K + N - I + 1 END IF 130 CONTINUE - VALUE = SCALE*SQRT( SUM ) + CALL SCOMBSSQ( SSQ, COLSSQ ) + VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) ) END IF * CLANHP = VALUE diff --git a/lapack-netlib/SRC/clanhs.f b/lapack-netlib/SRC/clanhs.f index 35623b73d..661b4f901 100644 --- a/lapack-netlib/SRC/clanhs.f +++ b/lapack-netlib/SRC/clanhs.f @@ -114,6 +114,7 @@ * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * December 2016 * + IMPLICIT NONE * .. Scalar Arguments .. CHARACTER NORM INTEGER LDA, N @@ -131,14 +132,17 @@ * .. * .. Local Scalars .. INTEGER I, J - REAL SCALE, SUM, VALUE + REAL SUM, VALUE +* .. +* .. Local Arrays .. + REAL SSQ( 2 ), COLSSQ( 2 ) * .. * .. External Functions .. LOGICAL LSAME, SISNAN EXTERNAL LSAME, SISNAN * .. * .. External Subroutines .. - EXTERNAL CLASSQ + EXTERNAL CLASSQ, SCOMBSSQ * .. * .. Intrinsic Functions .. INTRINSIC ABS, MIN, SQRT @@ -190,13 +194,20 @@ ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN * * Find normF(A). +* SSQ(1) is scale +* SSQ(2) is sum-of-squares +* For better accuracy, sum each column separately. * - SCALE = ZERO - SUM = ONE + SSQ( 1 ) = ZERO + SSQ( 2 ) = ONE DO 90 J = 1, N - CALL CLASSQ( MIN( N, J+1 ), A( 1, J ), 1, SCALE, SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL CLASSQ( MIN( N, J+1 ), A( 1, J ), 1, + $ COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) 90 CONTINUE - VALUE = SCALE*SQRT( SUM ) + VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) ) END IF * CLANHS = VALUE diff --git a/lapack-netlib/SRC/clansb.f b/lapack-netlib/SRC/clansb.f index fbc50674c..1085fd880 100644 --- a/lapack-netlib/SRC/clansb.f +++ b/lapack-netlib/SRC/clansb.f @@ -135,6 +135,7 @@ * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * December 2016 * + IMPLICIT NONE * .. Scalar Arguments .. CHARACTER NORM, UPLO INTEGER K, LDAB, N @@ -152,14 +153,17 @@ * .. * .. Local Scalars .. INTEGER I, J, L - REAL ABSA, SCALE, SUM, VALUE + REAL ABSA, SUM, VALUE +* .. +* .. Local Arrays .. + REAL SSQ( 2 ), COLSSQ( 2 ) * .. * .. External Functions .. LOGICAL LSAME, SISNAN EXTERNAL LSAME, SISNAN * .. * .. External Subroutines .. - EXTERNAL CLASSQ + EXTERNAL CLASSQ, SCOMBSSQ * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, SQRT @@ -227,29 +231,47 @@ ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN * * Find normF(A). +* SSQ(1) is scale +* SSQ(2) is sum-of-squares +* For better accuracy, sum each column separately. +* + SSQ( 1 ) = ZERO + SSQ( 2 ) = ONE +* +* Sum off-diagonals * - SCALE = ZERO - SUM = ONE IF( K.GT.0 ) THEN IF( LSAME( UPLO, 'U' ) ) THEN DO 110 J = 2, N + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE CALL CLASSQ( MIN( J-1, K ), AB( MAX( K+2-J, 1 ), J ), - $ 1, SCALE, SUM ) + $ 1, COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) 110 CONTINUE L = K + 1 ELSE DO 120 J = 1, N - 1 - CALL CLASSQ( MIN( N-J, K ), AB( 2, J ), 1, SCALE, - $ SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL CLASSQ( MIN( N-J, K ), AB( 2, J ), 1, + $ COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) 120 CONTINUE L = 1 END IF - SUM = 2*SUM + SSQ( 2 ) = 2*SSQ( 2 ) ELSE L = 1 END IF - CALL CLASSQ( N, AB( L, 1 ), LDAB, SCALE, SUM ) - VALUE = SCALE*SQRT( SUM ) +* +* Sum diagonal +* + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL CLASSQ( N, AB( L, 1 ), LDAB, COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) + VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) ) END IF * CLANSB = VALUE diff --git a/lapack-netlib/SRC/clansp.f b/lapack-netlib/SRC/clansp.f index fd64366c6..628dc0a75 100644 --- a/lapack-netlib/SRC/clansp.f +++ b/lapack-netlib/SRC/clansp.f @@ -120,6 +120,7 @@ * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * December 2016 * + IMPLICIT NONE * .. Scalar Arguments .. CHARACTER NORM, UPLO INTEGER N @@ -137,14 +138,17 @@ * .. * .. Local Scalars .. INTEGER I, J, K - REAL ABSA, SCALE, SUM, VALUE + REAL ABSA, SUM, VALUE +* .. +* .. Local Arrays .. + REAL SSQ( 2 ), COLSSQ( 2 ) * .. * .. External Functions .. LOGICAL LSAME, SISNAN EXTERNAL LSAME, SISNAN * .. * .. External Subroutines .. - EXTERNAL CLASSQ + EXTERNAL CLASSQ, SCOMBSSQ * .. * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, REAL, SQRT @@ -219,40 +223,57 @@ ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN * * Find normF(A). +* SSQ(1) is scale +* SSQ(2) is sum-of-squares +* For better accuracy, sum each column separately. +* + SSQ( 1 ) = ZERO + SSQ( 2 ) = ONE +* +* Sum off-diagonals * - SCALE = ZERO - SUM = ONE K = 2 IF( LSAME( UPLO, 'U' ) ) THEN DO 110 J = 2, N - CALL CLASSQ( J-1, AP( K ), 1, SCALE, SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL CLASSQ( J-1, AP( K ), 1, COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) K = K + J 110 CONTINUE ELSE DO 120 J = 1, N - 1 - CALL CLASSQ( N-J, AP( K ), 1, SCALE, SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL CLASSQ( N-J, AP( K ), 1, COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) K = K + N - J + 1 120 CONTINUE END IF - SUM = 2*SUM + SSQ( 2 ) = 2*SSQ( 2 ) +* +* Sum diagonal +* K = 1 + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE DO 130 I = 1, N IF( REAL( AP( K ) ).NE.ZERO ) THEN ABSA = ABS( REAL( AP( K ) ) ) - IF( SCALE.LT.ABSA ) THEN - SUM = ONE + SUM*( SCALE / ABSA )**2 - SCALE = ABSA + IF( COLSSQ( 1 ).LT.ABSA ) THEN + COLSSQ( 2 ) = ONE + COLSSQ(2)*( COLSSQ(1) / ABSA )**2 + COLSSQ( 1 ) = ABSA ELSE - SUM = SUM + ( ABSA / SCALE )**2 + COLSSQ( 2 ) = COLSSQ( 2 ) + ( ABSA / COLSSQ( 1 ) )**2 END IF END IF IF( AIMAG( AP( K ) ).NE.ZERO ) THEN ABSA = ABS( AIMAG( AP( K ) ) ) - IF( SCALE.LT.ABSA ) THEN - SUM = ONE + SUM*( SCALE / ABSA )**2 - SCALE = ABSA + IF( COLSSQ( 1 ).LT.ABSA ) THEN + COLSSQ( 2 ) = ONE + COLSSQ(2)*( COLSSQ(1) / ABSA )**2 + COLSSQ( 1 ) = ABSA ELSE - SUM = SUM + ( ABSA / SCALE )**2 + COLSSQ( 2 ) = COLSSQ( 2 ) + ( ABSA / COLSSQ( 1 ) )**2 END IF END IF IF( LSAME( UPLO, 'U' ) ) THEN @@ -261,7 +282,8 @@ K = K + N - I + 1 END IF 130 CONTINUE - VALUE = SCALE*SQRT( SUM ) + CALL SCOMBSSQ( SSQ, COLSSQ ) + VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) ) END IF * CLANSP = VALUE diff --git a/lapack-netlib/SRC/clansy.f b/lapack-netlib/SRC/clansy.f index 3aa787410..537fb7ba9 100644 --- a/lapack-netlib/SRC/clansy.f +++ b/lapack-netlib/SRC/clansy.f @@ -128,6 +128,7 @@ * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * December 2016 * + IMPLICIT NONE * .. Scalar Arguments .. CHARACTER NORM, UPLO INTEGER LDA, N @@ -145,14 +146,17 @@ * .. * .. Local Scalars .. INTEGER I, J - REAL ABSA, SCALE, SUM, VALUE + REAL ABSA, SUM, VALUE +* .. +* .. Local Arrays .. + REAL SSQ( 2 ), COLSSQ( 2 ) * .. * .. External Functions .. LOGICAL LSAME, SISNAN EXTERNAL LSAME, SISNAN * .. * .. External Subroutines .. - EXTERNAL CLASSQ + EXTERNAL CLASSQ, SCOMBSSQ * .. * .. Intrinsic Functions .. INTRINSIC ABS, SQRT @@ -218,21 +222,39 @@ ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN * * Find normF(A). +* SSQ(1) is scale +* SSQ(2) is sum-of-squares +* For better accuracy, sum each column separately. +* + SSQ( 1 ) = ZERO + SSQ( 2 ) = ONE +* +* Sum off-diagonals * - SCALE = ZERO - SUM = ONE IF( LSAME( UPLO, 'U' ) ) THEN DO 110 J = 2, N - CALL CLASSQ( J-1, A( 1, J ), 1, SCALE, SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL CLASSQ( J-1, A( 1, J ), 1, COLSSQ(1), COLSSQ(2) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) 110 CONTINUE ELSE DO 120 J = 1, N - 1 - CALL CLASSQ( N-J, A( J+1, J ), 1, SCALE, SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL CLASSQ( N-J, A( J+1, J ), 1, COLSSQ(1), COLSSQ(2) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) 120 CONTINUE END IF - SUM = 2*SUM - CALL CLASSQ( N, A, LDA+1, SCALE, SUM ) - VALUE = SCALE*SQRT( SUM ) + SSQ( 2 ) = 2*SSQ( 2 ) +* +* Sum diagonal +* + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL CLASSQ( N, A, LDA+1, COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) + VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) ) END IF * CLANSY = VALUE diff --git a/lapack-netlib/SRC/clantb.f b/lapack-netlib/SRC/clantb.f index 4b4361c79..8066d0ef6 100644 --- a/lapack-netlib/SRC/clantb.f +++ b/lapack-netlib/SRC/clantb.f @@ -146,6 +146,7 @@ * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * December 2016 * + IMPLICIT NONE * .. Scalar Arguments .. CHARACTER DIAG, NORM, UPLO INTEGER K, LDAB, N @@ -164,14 +165,17 @@ * .. Local Scalars .. LOGICAL UDIAG INTEGER I, J, L - REAL SCALE, SUM, VALUE + REAL SUM, VALUE +* .. +* .. Local Arrays .. + REAL SSQ( 2 ), COLSSQ( 2 ) * .. * .. External Functions .. LOGICAL LSAME, SISNAN EXTERNAL LSAME, SISNAN * .. * .. External Subroutines .. - EXTERNAL CLASSQ + EXTERNAL CLASSQ, SCOMBSSQ * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, SQRT @@ -313,46 +317,61 @@ ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN * * Find normF(A). +* SSQ(1) is scale +* SSQ(2) is sum-of-squares +* For better accuracy, sum each column separately. * IF( LSAME( UPLO, 'U' ) ) THEN IF( LSAME( DIAG, 'U' ) ) THEN - SCALE = ONE - SUM = N + SSQ( 1 ) = ONE + SSQ( 2 ) = N IF( K.GT.0 ) THEN DO 280 J = 2, N + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE CALL CLASSQ( MIN( J-1, K ), - $ AB( MAX( K+2-J, 1 ), J ), 1, SCALE, - $ SUM ) + $ AB( MAX( K+2-J, 1 ), J ), 1, + $ COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) 280 CONTINUE END IF ELSE - SCALE = ZERO - SUM = ONE + SSQ( 1 ) = ZERO + SSQ( 2 ) = ONE DO 290 J = 1, N + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE CALL CLASSQ( MIN( J, K+1 ), AB( MAX( K+2-J, 1 ), J ), - $ 1, SCALE, SUM ) + $ 1, COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) 290 CONTINUE END IF ELSE IF( LSAME( DIAG, 'U' ) ) THEN - SCALE = ONE - SUM = N + SSQ( 1 ) = ONE + SSQ( 2 ) = N IF( K.GT.0 ) THEN DO 300 J = 1, N - 1 - CALL CLASSQ( MIN( N-J, K ), AB( 2, J ), 1, SCALE, - $ SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL CLASSQ( MIN( N-J, K ), AB( 2, J ), 1, + $ COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) 300 CONTINUE END IF ELSE - SCALE = ZERO - SUM = ONE + SSQ( 1 ) = ZERO + SSQ( 2 ) = ONE DO 310 J = 1, N - CALL CLASSQ( MIN( N-J+1, K+1 ), AB( 1, J ), 1, SCALE, - $ SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL CLASSQ( MIN( N-J+1, K+1 ), AB( 1, J ), 1, + $ COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) 310 CONTINUE END IF END IF - VALUE = SCALE*SQRT( SUM ) + VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) ) END IF * CLANTB = VALUE diff --git a/lapack-netlib/SRC/clantp.f b/lapack-netlib/SRC/clantp.f index 148ac5436..b0c48eb46 100644 --- a/lapack-netlib/SRC/clantp.f +++ b/lapack-netlib/SRC/clantp.f @@ -130,6 +130,7 @@ * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * December 2016 * + IMPLICIT NONE * .. Scalar Arguments .. CHARACTER DIAG, NORM, UPLO INTEGER N @@ -148,14 +149,17 @@ * .. Local Scalars .. LOGICAL UDIAG INTEGER I, J, K - REAL SCALE, SUM, VALUE + REAL SUM, VALUE +* .. +* .. Local Arrays .. + REAL SSQ( 2 ), COLSSQ( 2 ) * .. * .. External Functions .. LOGICAL LSAME, SISNAN EXTERNAL LSAME, SISNAN * .. * .. External Subroutines .. - EXTERNAL CLASSQ + EXTERNAL CLASSQ, SCOMBSSQ * .. * .. Intrinsic Functions .. INTRINSIC ABS, SQRT @@ -308,45 +312,64 @@ ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN * * Find normF(A). +* SSQ(1) is scale +* SSQ(2) is sum-of-squares +* For better accuracy, sum each column separately. * IF( LSAME( UPLO, 'U' ) ) THEN IF( LSAME( DIAG, 'U' ) ) THEN - SCALE = ONE - SUM = N + SSQ( 1 ) = ONE + SSQ( 2 ) = N K = 2 DO 280 J = 2, N - CALL CLASSQ( J-1, AP( K ), 1, SCALE, SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL CLASSQ( J-1, AP( K ), 1, + $ COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) K = K + J 280 CONTINUE ELSE - SCALE = ZERO - SUM = ONE + SSQ( 1 ) = ZERO + SSQ( 2 ) = ONE K = 1 DO 290 J = 1, N - CALL CLASSQ( J, AP( K ), 1, SCALE, SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL CLASSQ( J, AP( K ), 1, + $ COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) K = K + J 290 CONTINUE END IF ELSE IF( LSAME( DIAG, 'U' ) ) THEN - SCALE = ONE - SUM = N + SSQ( 1 ) = ONE + SSQ( 2 ) = N K = 2 DO 300 J = 1, N - 1 - CALL CLASSQ( N-J, AP( K ), 1, SCALE, SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL CLASSQ( N-J, AP( K ), 1, + $ COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) K = K + N - J + 1 300 CONTINUE ELSE - SCALE = ZERO - SUM = ONE + SSQ( 1 ) = ZERO + SSQ( 2 ) = ONE K = 1 DO 310 J = 1, N - CALL CLASSQ( N-J+1, AP( K ), 1, SCALE, SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL CLASSQ( N-J+1, AP( K ), 1, + $ COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) K = K + N - J + 1 310 CONTINUE END IF END IF - VALUE = SCALE*SQRT( SUM ) + VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) ) END IF * CLANTP = VALUE diff --git a/lapack-netlib/SRC/clantr.f b/lapack-netlib/SRC/clantr.f index 4e1843d3d..3b361cc97 100644 --- a/lapack-netlib/SRC/clantr.f +++ b/lapack-netlib/SRC/clantr.f @@ -147,6 +147,7 @@ * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * December 2016 * + IMPLICIT NONE * .. Scalar Arguments .. CHARACTER DIAG, NORM, UPLO INTEGER LDA, M, N @@ -165,14 +166,17 @@ * .. Local Scalars .. LOGICAL UDIAG INTEGER I, J - REAL SCALE, SUM, VALUE + REAL SUM, VALUE +* .. +* .. Local Arrays .. + REAL SSQ( 2 ), COLSSQ( 2 ) * .. * .. External Functions .. LOGICAL LSAME, SISNAN EXTERNAL LSAME, SISNAN * .. * .. External Subroutines .. - EXTERNAL CLASSQ + EXTERNAL CLASSQ, SCOMBSSQ * .. * .. Intrinsic Functions .. INTRINSIC ABS, MIN, SQRT @@ -283,7 +287,7 @@ END IF ELSE IF( LSAME( DIAG, 'U' ) ) THEN - DO 210 I = 1, N + DO 210 I = 1, MIN( M, N ) WORK( I ) = ONE 210 CONTINUE DO 220 I = N + 1, M @@ -313,38 +317,56 @@ ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN * * Find normF(A). +* SSQ(1) is scale +* SSQ(2) is sum-of-squares +* For better accuracy, sum each column separately. * IF( LSAME( UPLO, 'U' ) ) THEN IF( LSAME( DIAG, 'U' ) ) THEN - SCALE = ONE - SUM = MIN( M, N ) + SSQ( 1 ) = ONE + SSQ( 2 ) = MIN( M, N ) DO 290 J = 2, N - CALL CLASSQ( MIN( M, J-1 ), A( 1, J ), 1, SCALE, SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL CLASSQ( MIN( M, J-1 ), A( 1, J ), 1, + $ COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) 290 CONTINUE ELSE - SCALE = ZERO - SUM = ONE + SSQ( 1 ) = ZERO + SSQ( 2 ) = ONE DO 300 J = 1, N - CALL CLASSQ( MIN( M, J ), A( 1, J ), 1, SCALE, SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL CLASSQ( MIN( M, J ), A( 1, J ), 1, + $ COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) 300 CONTINUE END IF ELSE IF( LSAME( DIAG, 'U' ) ) THEN - SCALE = ONE - SUM = MIN( M, N ) + SSQ( 1 ) = ONE + SSQ( 2 ) = MIN( M, N ) DO 310 J = 1, N - CALL CLASSQ( M-J, A( MIN( M, J+1 ), J ), 1, SCALE, - $ SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL CLASSQ( M-J, A( MIN( M, J+1 ), J ), 1, + $ COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) 310 CONTINUE ELSE - SCALE = ZERO - SUM = ONE + SSQ( 1 ) = ZERO + SSQ( 2 ) = ONE DO 320 J = 1, N - CALL CLASSQ( M-J+1, A( J, J ), 1, SCALE, SUM ) + COLSSQ( 1 ) = ZERO + COLSSQ( 2 ) = ONE + CALL CLASSQ( M-J+1, A( J, J ), 1, + $ COLSSQ( 1 ), COLSSQ( 2 ) ) + CALL SCOMBSSQ( SSQ, COLSSQ ) 320 CONTINUE END IF END IF - VALUE = SCALE*SQRT( SUM ) + VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) ) END IF * CLANTR = VALUE diff --git a/lapack-netlib/SRC/claqps.f b/lapack-netlib/SRC/claqps.f index f47e852a0..d0b7efcd5 100644 --- a/lapack-netlib/SRC/claqps.f +++ b/lapack-netlib/SRC/claqps.f @@ -127,7 +127,7 @@ *> \param[in,out] AUXV *> \verbatim *> AUXV is COMPLEX array, dimension (NB) -*> Auxiliar vector. +*> Auxiliary vector. *> \endverbatim *> *> \param[in,out] F diff --git a/lapack-netlib/SRC/claqr0.f b/lapack-netlib/SRC/claqr0.f index b61c9f1e9..2f0ea20db 100644 --- a/lapack-netlib/SRC/claqr0.f +++ b/lapack-netlib/SRC/claqr0.f @@ -66,7 +66,7 @@ *> \param[in] N *> \verbatim *> N is INTEGER -*> The order of the matrix H. N .GE. 0. +*> The order of the matrix H. N >= 0. *> \endverbatim *> *> \param[in] ILO @@ -78,12 +78,12 @@ *> \verbatim *> IHI is INTEGER *> It is assumed that H is already upper triangular in rows -*> and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1, +*> and columns 1:ILO-1 and IHI+1:N and, if ILO > 1, *> H(ILO,ILO-1) is zero. ILO and IHI are normally set by a *> previous call to CGEBAL, and then passed to CGEHRD when the *> matrix output by CGEBAL is reduced to Hessenberg form. *> Otherwise, ILO and IHI should be set to 1 and N, -*> respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N. +*> respectively. If N > 0, then 1 <= ILO <= IHI <= N. *> If N = 0, then ILO = 1 and IHI = 0. *> \endverbatim *> @@ -95,17 +95,17 @@ *> contains the upper triangular matrix T from the Schur *> decomposition (the Schur form). If INFO = 0 and WANT is *> .FALSE., then the contents of H are unspecified on exit. -*> (The output value of H when INFO.GT.0 is given under the +*> (The output value of H when INFO > 0 is given under the *> description of INFO below.) *> -*> This subroutine may explicitly set H(i,j) = 0 for i.GT.j and +*> This subroutine may explicitly set H(i,j) = 0 for i > j and *> j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N. *> \endverbatim *> *> \param[in] LDH *> \verbatim *> LDH is INTEGER -*> The leading dimension of the array H. LDH .GE. max(1,N). +*> The leading dimension of the array H. LDH >= max(1,N). *> \endverbatim *> *> \param[out] W @@ -127,7 +127,7 @@ *> IHIZ is INTEGER *> Specify the rows of Z to which transformations must be *> applied if WANTZ is .TRUE.. -*> 1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N. +*> 1 <= ILOZ <= ILO; IHI <= IHIZ <= N. *> \endverbatim *> *> \param[in,out] Z @@ -137,7 +137,7 @@ *> If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is *> replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the *> orthogonal Schur factor of H(ILO:IHI,ILO:IHI). -*> (The output value of Z when INFO.GT.0 is given under +*> (The output value of Z when INFO > 0 is given under *> the description of INFO below.) *> \endverbatim *> @@ -145,7 +145,7 @@ *> \verbatim *> LDZ is INTEGER *> The leading dimension of the array Z. if WANTZ is .TRUE. -*> then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1. +*> then LDZ >= MAX(1,IHIZ). Otherwise, LDZ >= 1. *> \endverbatim *> *> \param[out] WORK @@ -158,7 +158,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK .GE. max(1,N) +*> The dimension of the array WORK. LWORK >= max(1,N) *> is sufficient, but LWORK typically as large as 6*N may *> be required for optimal performance. A workspace query *> to determine the optimal workspace size is recommended. @@ -174,19 +174,19 @@ *> \param[out] INFO *> \verbatim *> INFO is INTEGER -*> = 0: successful exit -*> .GT. 0: if INFO = i, CLAQR0 failed to compute all of +*> = 0: successful exit +*> > 0: if INFO = i, CLAQR0 failed to compute all of *> the eigenvalues. Elements 1:ilo-1 and i+1:n of WR *> and WI contain those eigenvalues which have been *> successfully computed. (Failures are rare.) *> -*> If INFO .GT. 0 and WANT is .FALSE., then on exit, +*> If INFO > 0 and WANT is .FALSE., then on exit, *> the remaining unconverged eigenvalues are the eigen- *> values of the upper Hessenberg matrix rows and *> columns ILO through INFO of the final, output *> value of H. *> -*> If INFO .GT. 0 and WANTT is .TRUE., then on exit +*> If INFO > 0 and WANTT is .TRUE., then on exit *> *> (*) (initial value of H)*U = U*(final value of H) *> @@ -194,7 +194,7 @@ *> value of H is upper Hessenberg and triangular in *> rows and columns INFO+1 through IHI. *> -*> If INFO .GT. 0 and WANTZ is .TRUE., then on exit +*> If INFO > 0 and WANTZ is .TRUE., then on exit *> *> (final value of Z(ILO:IHI,ILOZ:IHIZ) *> = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U @@ -202,7 +202,7 @@ *> where U is the unitary matrix in (*) (regard- *> less of the value of WANTT.) *> -*> If INFO .GT. 0 and WANTZ is .FALSE., then Z is not +*> If INFO > 0 and WANTZ is .FALSE., then Z is not *> accessed. *> \endverbatim * @@ -639,7 +639,7 @@ END IF END IF * -* ==== Use up to NS of the the smallest magnatiude +* ==== Use up to NS of the the smallest magnitude * . shifts. If there aren't NS shifts available, * . then use them all, possibly dropping one to * . make the number of shifts even. ==== diff --git a/lapack-netlib/SRC/claqr1.f b/lapack-netlib/SRC/claqr1.f index 977947196..87d53871a 100644 --- a/lapack-netlib/SRC/claqr1.f +++ b/lapack-netlib/SRC/claqr1.f @@ -64,7 +64,7 @@ *> \verbatim *> LDH is INTEGER *> The leading dimension of H as declared in -*> the calling procedure. LDH.GE.N +*> the calling procedure. LDH >= N *> \endverbatim *> *> \param[in] S1 diff --git a/lapack-netlib/SRC/claqr2.f b/lapack-netlib/SRC/claqr2.f index 03e9760cf..fc282b2d6 100644 --- a/lapack-netlib/SRC/claqr2.f +++ b/lapack-netlib/SRC/claqr2.f @@ -102,7 +102,7 @@ *> \param[in] NW *> \verbatim *> NW is INTEGER -*> Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1). +*> Deflation window size. 1 <= NW <= (KBOT-KTOP+1). *> \endverbatim *> *> \param[in,out] H @@ -120,7 +120,7 @@ *> \verbatim *> LDH is INTEGER *> Leading dimension of H just as declared in the calling -*> subroutine. N .LE. LDH +*> subroutine. N <= LDH *> \endverbatim *> *> \param[in] ILOZ @@ -132,7 +132,7 @@ *> \verbatim *> IHIZ is INTEGER *> Specify the rows of Z to which transformations must be -*> applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N. +*> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N. *> \endverbatim *> *> \param[in,out] Z @@ -148,7 +148,7 @@ *> \verbatim *> LDZ is INTEGER *> The leading dimension of Z just as declared in the -*> calling subroutine. 1 .LE. LDZ. +*> calling subroutine. 1 <= LDZ. *> \endverbatim *> *> \param[out] NS @@ -185,13 +185,13 @@ *> \verbatim *> LDV is INTEGER *> The leading dimension of V just as declared in the -*> calling subroutine. NW .LE. LDV +*> calling subroutine. NW <= LDV *> \endverbatim *> *> \param[in] NH *> \verbatim *> NH is INTEGER -*> The number of columns of T. NH.GE.NW. +*> The number of columns of T. NH >= NW. *> \endverbatim *> *> \param[out] T @@ -203,14 +203,14 @@ *> \verbatim *> LDT is INTEGER *> The leading dimension of T just as declared in the -*> calling subroutine. NW .LE. LDT +*> calling subroutine. NW <= LDT *> \endverbatim *> *> \param[in] NV *> \verbatim *> NV is INTEGER *> The number of rows of work array WV available for -*> workspace. NV.GE.NW. +*> workspace. NV >= NW. *> \endverbatim *> *> \param[out] WV @@ -222,7 +222,7 @@ *> \verbatim *> LDWV is INTEGER *> The leading dimension of W just as declared in the -*> calling subroutine. NW .LE. LDV +*> calling subroutine. NW <= LDV *> \endverbatim *> *> \param[out] WORK diff --git a/lapack-netlib/SRC/claqr3.f b/lapack-netlib/SRC/claqr3.f index 660a58376..84d57d4d6 100644 --- a/lapack-netlib/SRC/claqr3.f +++ b/lapack-netlib/SRC/claqr3.f @@ -99,7 +99,7 @@ *> \param[in] NW *> \verbatim *> NW is INTEGER -*> Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1). +*> Deflation window size. 1 <= NW <= (KBOT-KTOP+1). *> \endverbatim *> *> \param[in,out] H @@ -117,7 +117,7 @@ *> \verbatim *> LDH is INTEGER *> Leading dimension of H just as declared in the calling -*> subroutine. N .LE. LDH +*> subroutine. N <= LDH *> \endverbatim *> *> \param[in] ILOZ @@ -129,7 +129,7 @@ *> \verbatim *> IHIZ is INTEGER *> Specify the rows of Z to which transformations must be -*> applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N. +*> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N. *> \endverbatim *> *> \param[in,out] Z @@ -145,7 +145,7 @@ *> \verbatim *> LDZ is INTEGER *> The leading dimension of Z just as declared in the -*> calling subroutine. 1 .LE. LDZ. +*> calling subroutine. 1 <= LDZ. *> \endverbatim *> *> \param[out] NS @@ -182,13 +182,13 @@ *> \verbatim *> LDV is INTEGER *> The leading dimension of V just as declared in the -*> calling subroutine. NW .LE. LDV +*> calling subroutine. NW <= LDV *> \endverbatim *> *> \param[in] NH *> \verbatim *> NH is INTEGER -*> The number of columns of T. NH.GE.NW. +*> The number of columns of T. NH >= NW. *> \endverbatim *> *> \param[out] T @@ -200,14 +200,14 @@ *> \verbatim *> LDT is INTEGER *> The leading dimension of T just as declared in the -*> calling subroutine. NW .LE. LDT +*> calling subroutine. NW <= LDT *> \endverbatim *> *> \param[in] NV *> \verbatim *> NV is INTEGER *> The number of rows of work array WV available for -*> workspace. NV.GE.NW. +*> workspace. NV >= NW. *> \endverbatim *> *> \param[out] WV @@ -219,7 +219,7 @@ *> \verbatim *> LDWV is INTEGER *> The leading dimension of W just as declared in the -*> calling subroutine. NW .LE. LDV +*> calling subroutine. NW <= LDV *> \endverbatim *> *> \param[out] WORK diff --git a/lapack-netlib/SRC/claqr4.f b/lapack-netlib/SRC/claqr4.f index 647fa6774..fba286df7 100644 --- a/lapack-netlib/SRC/claqr4.f +++ b/lapack-netlib/SRC/claqr4.f @@ -74,7 +74,7 @@ *> \param[in] N *> \verbatim *> N is INTEGER -*> The order of the matrix H. N .GE. 0. +*> The order of the matrix H. N >= 0. *> \endverbatim *> *> \param[in] ILO @@ -86,12 +86,12 @@ *> \verbatim *> IHI is INTEGER *> It is assumed that H is already upper triangular in rows -*> and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1, +*> and columns 1:ILO-1 and IHI+1:N and, if ILO > 1, *> H(ILO,ILO-1) is zero. ILO and IHI are normally set by a *> previous call to CGEBAL, and then passed to CGEHRD when the *> matrix output by CGEBAL is reduced to Hessenberg form. *> Otherwise, ILO and IHI should be set to 1 and N, -*> respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N. +*> respectively. If N > 0, then 1 <= ILO <= IHI <= N. *> If N = 0, then ILO = 1 and IHI = 0. *> \endverbatim *> @@ -103,17 +103,17 @@ *> contains the upper triangular matrix T from the Schur *> decomposition (the Schur form). If INFO = 0 and WANT is *> .FALSE., then the contents of H are unspecified on exit. -*> (The output value of H when INFO.GT.0 is given under the +*> (The output value of H when INFO > 0 is given under the *> description of INFO below.) *> -*> This subroutine may explicitly set H(i,j) = 0 for i.GT.j and +*> This subroutine may explicitly set H(i,j) = 0 for i > j and *> j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N. *> \endverbatim *> *> \param[in] LDH *> \verbatim *> LDH is INTEGER -*> The leading dimension of the array H. LDH .GE. max(1,N). +*> The leading dimension of the array H. LDH >= max(1,N). *> \endverbatim *> *> \param[out] W @@ -135,7 +135,7 @@ *> IHIZ is INTEGER *> Specify the rows of Z to which transformations must be *> applied if WANTZ is .TRUE.. -*> 1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N. +*> 1 <= ILOZ <= ILO; IHI <= IHIZ <= N. *> \endverbatim *> *> \param[in,out] Z @@ -145,7 +145,7 @@ *> If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is *> replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the *> orthogonal Schur factor of H(ILO:IHI,ILO:IHI). -*> (The output value of Z when INFO.GT.0 is given under +*> (The output value of Z when INFO > 0 is given under *> the description of INFO below.) *> \endverbatim *> @@ -153,7 +153,7 @@ *> \verbatim *> LDZ is INTEGER *> The leading dimension of the array Z. if WANTZ is .TRUE. -*> then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1. +*> then LDZ >= MAX(1,IHIZ). Otherwise, LDZ >= 1. *> \endverbatim *> *> \param[out] WORK @@ -166,7 +166,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK .GE. max(1,N) +*> The dimension of the array WORK. LWORK >= max(1,N) *> is sufficient, but LWORK typically as large as 6*N may *> be required for optimal performance. A workspace query *> to determine the optimal workspace size is recommended. @@ -182,19 +182,19 @@ *> \param[out] INFO *> \verbatim *> INFO is INTEGER -*> = 0: successful exit -*> .GT. 0: if INFO = i, CLAQR4 failed to compute all of +*> = 0: successful exit +*> > 0: if INFO = i, CLAQR4 failed to compute all of *> the eigenvalues. Elements 1:ilo-1 and i+1:n of WR *> and WI contain those eigenvalues which have been *> successfully computed. (Failures are rare.) *> -*> If INFO .GT. 0 and WANT is .FALSE., then on exit, +*> If INFO > 0 and WANT is .FALSE., then on exit, *> the remaining unconverged eigenvalues are the eigen- *> values of the upper Hessenberg matrix rows and *> columns ILO through INFO of the final, output *> value of H. *> -*> If INFO .GT. 0 and WANTT is .TRUE., then on exit +*> If INFO > 0 and WANTT is .TRUE., then on exit *> *> (*) (initial value of H)*U = U*(final value of H) *> @@ -202,7 +202,7 @@ *> value of H is upper Hessenberg and triangular in *> rows and columns INFO+1 through IHI. *> -*> If INFO .GT. 0 and WANTZ is .TRUE., then on exit +*> If INFO > 0 and WANTZ is .TRUE., then on exit *> *> (final value of Z(ILO:IHI,ILOZ:IHIZ) *> = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U @@ -210,7 +210,7 @@ *> where U is the unitary matrix in (*) (regard- *> less of the value of WANTT.) *> -*> If INFO .GT. 0 and WANTZ is .FALSE., then Z is not +*> If INFO > 0 and WANTZ is .FALSE., then Z is not *> accessed. *> \endverbatim * @@ -643,7 +643,7 @@ END IF END IF * -* ==== Use up to NS of the the smallest magnatiude +* ==== Use up to NS of the the smallest magnitude * . shifts. If there aren't NS shifts available, * . then use them all, possibly dropping one to * . make the number of shifts even. ==== diff --git a/lapack-netlib/SRC/claqr5.f b/lapack-netlib/SRC/claqr5.f index 4c897895d..e4317a3ad 100644 --- a/lapack-netlib/SRC/claqr5.f +++ b/lapack-netlib/SRC/claqr5.f @@ -125,7 +125,7 @@ *> \verbatim *> LDH is INTEGER *> LDH is the leading dimension of H just as declared in the -*> calling procedure. LDH.GE.MAX(1,N). +*> calling procedure. LDH >= MAX(1,N). *> \endverbatim *> *> \param[in] ILOZ @@ -137,7 +137,7 @@ *> \verbatim *> IHIZ is INTEGER *> Specify the rows of Z to which transformations must be -*> applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N +*> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N *> \endverbatim *> *> \param[in,out] Z @@ -153,7 +153,7 @@ *> \verbatim *> LDZ is INTEGER *> LDA is the leading dimension of Z just as declared in -*> the calling procedure. LDZ.GE.N. +*> the calling procedure. LDZ >= N. *> \endverbatim *> *> \param[out] V @@ -165,7 +165,7 @@ *> \verbatim *> LDV is INTEGER *> LDV is the leading dimension of V as declared in the -*> calling procedure. LDV.GE.3. +*> calling procedure. LDV >= 3. *> \endverbatim *> *> \param[out] U @@ -177,33 +177,14 @@ *> \verbatim *> LDU is INTEGER *> LDU is the leading dimension of U just as declared in the -*> in the calling subroutine. LDU.GE.3*NSHFTS-3. -*> \endverbatim -*> -*> \param[in] NH -*> \verbatim -*> NH is INTEGER -*> NH is the number of columns in array WH available for -*> workspace. NH.GE.1. -*> \endverbatim -*> -*> \param[out] WH -*> \verbatim -*> WH is COMPLEX array, dimension (LDWH,NH) -*> \endverbatim -*> -*> \param[in] LDWH -*> \verbatim -*> LDWH is INTEGER -*> Leading dimension of WH just as declared in the -*> calling procedure. LDWH.GE.3*NSHFTS-3. +*> in the calling subroutine. LDU >= 3*NSHFTS-3. *> \endverbatim *> *> \param[in] NV *> \verbatim *> NV is INTEGER *> NV is the number of rows in WV agailable for workspace. -*> NV.GE.1. +*> NV >= 1. *> \endverbatim *> *> \param[out] WV @@ -215,9 +196,28 @@ *> \verbatim *> LDWV is INTEGER *> LDWV is the leading dimension of WV as declared in the -*> in the calling subroutine. LDWV.GE.NV. +*> in the calling subroutine. LDWV >= NV. *> \endverbatim * +*> \param[in] NH +*> \verbatim +*> NH is INTEGER +*> NH is the number of columns in array WH available for +*> workspace. NH >= 1. +*> \endverbatim +*> +*> \param[out] WH +*> \verbatim +*> WH is COMPLEX array, dimension (LDWH,NH) +*> \endverbatim +*> +*> \param[in] LDWH +*> \verbatim +*> LDWH is INTEGER +*> Leading dimension of WH just as declared in the +*> calling procedure. LDWH >= 3*NSHFTS-3. +*> \endverbatim +*> * Authors: * ======== * diff --git a/lapack-netlib/SRC/clarfb.f b/lapack-netlib/SRC/clarfb.f index 8fdd5c89c..a4d429c09 100644 --- a/lapack-netlib/SRC/clarfb.f +++ b/lapack-netlib/SRC/clarfb.f @@ -92,6 +92,8 @@ *> K is INTEGER *> The order of the matrix T (= the number of elementary *> reflectors whose product defines the block reflector). +*> If SIDE = 'L', M >= K >= 0; +*> if SIDE = 'R', N >= K >= 0. *> \endverbatim *> *> \param[in] V diff --git a/lapack-netlib/SRC/clarfx.f b/lapack-netlib/SRC/clarfx.f index 1111c80f7..ad284883d 100644 --- a/lapack-netlib/SRC/clarfx.f +++ b/lapack-netlib/SRC/clarfx.f @@ -94,7 +94,7 @@ *> \param[in] LDC *> \verbatim *> LDC is INTEGER -*> The leading dimension of the array C. LDA >= max(1,M). +*> The leading dimension of the array C. LDC >= max(1,M). *> \endverbatim *> *> \param[out] WORK diff --git a/lapack-netlib/SRC/clarfy.f b/lapack-netlib/SRC/clarfy.f index a5743858c..fccd136a8 100644 --- a/lapack-netlib/SRC/clarfy.f +++ b/lapack-netlib/SRC/clarfy.f @@ -103,7 +103,7 @@ * *> \date December 2016 * -*> \ingroup complex_eig +*> \ingroup complexOTHERauxiliary * * ===================================================================== SUBROUTINE CLARFY( UPLO, N, V, INCV, TAU, C, LDC, WORK ) diff --git a/lapack-netlib/SRC/clarrv.f b/lapack-netlib/SRC/clarrv.f index 72fe1f948..a45f55ac3 100644 --- a/lapack-netlib/SRC/clarrv.f +++ b/lapack-netlib/SRC/clarrv.f @@ -143,7 +143,7 @@ *> RTOL2 is REAL *> Parameters for bisection. *> An interval [LEFT,RIGHT] has converged if -*> RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) ) +*> RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) ) *> \endverbatim *> *> \param[in,out] W diff --git a/lapack-netlib/SRC/classq.f b/lapack-netlib/SRC/classq.f index 28398596f..92e407ff3 100644 --- a/lapack-netlib/SRC/classq.f +++ b/lapack-netlib/SRC/classq.f @@ -41,7 +41,7 @@ *> where x( i ) = abs( X( 1 + ( i - 1 )*INCX ) ). The value of sumsq is *> assumed to be at least unity and the value of ssq will then satisfy *> -*> 1.0 .le. ssq .le. ( sumsq + 2*n ). +*> 1.0 <= ssq <= ( sumsq + 2*n ). *> *> scale is assumed to be non-negative and scl returns the value *> @@ -65,7 +65,7 @@ *> *> \param[in] X *> \verbatim -*> X is COMPLEX array, dimension (N) +*> X is COMPLEX array, dimension (1+(N-1)*INCX) *> The vector x as described above. *> x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n. *> \endverbatim diff --git a/lapack-netlib/SRC/claswlq.f b/lapack-netlib/SRC/claswlq.f index 5fa2276e8..dcbdc0d52 100644 --- a/lapack-netlib/SRC/claswlq.f +++ b/lapack-netlib/SRC/claswlq.f @@ -1,3 +1,4 @@ +*> \brief \b CLASWLQ * * Definition: * =========== @@ -18,9 +19,20 @@ *> *> \verbatim *> -*> CLASWLQ computes a blocked Short-Wide LQ factorization of a -*> M-by-N matrix A, where N >= M: -*> A = L * Q +*> CLASWLQ computes a blocked Tall-Skinny LQ factorization of +*> a complex M-by-N matrix A for M <= N: +*> +*> A = ( L 0 ) * Q, +*> +*> where: +*> +*> Q is a n-by-N orthogonal matrix, stored on exit in an implicit +*> form in the elements above the digonal of the array A and in +*> the elemenst of the array T; +*> L is an lower-triangular M-by-M matrix stored on exit in +*> the elements on and below the diagonal of the array A. +*> 0 is a M-by-(N-M) zero matrix, if M < N, and is not stored. +*> *> \endverbatim * * Arguments: @@ -150,7 +162,7 @@ SUBROUTINE CLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK, $ INFO) * -* -- LAPACK computational routine (version 3.7.1) -- +* -- LAPACK computational routine (version 3.9.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. -- * June 2017 diff --git a/lapack-netlib/SRC/clasyf_aa.f b/lapack-netlib/SRC/clasyf_aa.f index 1bc96ee1b..a44a8f5b1 100644 --- a/lapack-netlib/SRC/clasyf_aa.f +++ b/lapack-netlib/SRC/clasyf_aa.f @@ -84,7 +84,7 @@ *> *> \param[in,out] A *> \verbatim -*> A is REAL array, dimension (LDA,M) for +*> A is COMPLEX array, dimension (LDA,M) for *> the first panel, while dimension (LDA,M+1) for the *> remaining panels. *> @@ -112,7 +112,7 @@ *> *> \param[in,out] H *> \verbatim -*> H is REAL workspace, dimension (LDH,NB). +*> H is COMPLEX workspace, dimension (LDH,NB). *> *> \endverbatim *> @@ -124,7 +124,7 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is REAL workspace, dimension (M). +*> WORK is COMPLEX workspace, dimension (M). *> \endverbatim *> * @@ -284,8 +284,9 @@ * * Swap A(I1, I2+1:M) with A(I2, I2+1:M) * - CALL CSWAP( M-I2, A( J1+I1-1, I2+1 ), LDA, - $ A( J1+I2-1, I2+1 ), LDA ) + IF( I2.LT.M ) + $ CALL CSWAP( M-I2, A( J1+I1-1, I2+1 ), LDA, + $ A( J1+I2-1, I2+1 ), LDA ) * * Swap A(I1, I1) with A(I2,I2) * @@ -325,13 +326,15 @@ * Compute L(J+2, J+1) = WORK( 3:M ) / T(J, J+1), * where A(J, J+1) = T(J, J+1) and A(J+2:M, J) = L(J+2:M, J+1) * - IF( A( K, J+1 ).NE.ZERO ) THEN - ALPHA = ONE / A( K, J+1 ) - CALL CCOPY( M-J-1, WORK( 3 ), 1, A( K, J+2 ), LDA ) - CALL CSCAL( M-J-1, ALPHA, A( K, J+2 ), LDA ) - ELSE - CALL CLASET( 'Full', 1, M-J-1, ZERO, ZERO, - $ A( K, J+2 ), LDA) + IF( J.LT.(M-1) ) THEN + IF( A( K, J+1 ).NE.ZERO ) THEN + ALPHA = ONE / A( K, J+1 ) + CALL CCOPY( M-J-1, WORK( 3 ), 1, A( K, J+2 ), LDA ) + CALL CSCAL( M-J-1, ALPHA, A( K, J+2 ), LDA ) + ELSE + CALL CLASET( 'Full', 1, M-J-1, ZERO, ZERO, + $ A( K, J+2 ), LDA) + END IF END IF END IF J = J + 1 @@ -432,8 +435,9 @@ * * Swap A(I2+1:M, I1) with A(I2+1:M, I2) * - CALL CSWAP( M-I2, A( I2+1, J1+I1-1 ), 1, - $ A( I2+1, J1+I2-1 ), 1 ) + IF( I2.LT.M ) + $ CALL CSWAP( M-I2, A( I2+1, J1+I1-1 ), 1, + $ A( I2+1, J1+I2-1 ), 1 ) * * Swap A(I1, I1) with A(I2, I2) * @@ -473,13 +477,15 @@ * Compute L(J+2, J+1) = WORK( 3:M ) / T(J, J+1), * where A(J, J+1) = T(J, J+1) and A(J+2:M, J) = L(J+2:M, J+1) * - IF( A( J+1, K ).NE.ZERO ) THEN - ALPHA = ONE / A( J+1, K ) - CALL CCOPY( M-J-1, WORK( 3 ), 1, A( J+2, K ), 1 ) - CALL CSCAL( M-J-1, ALPHA, A( J+2, K ), 1 ) - ELSE - CALL CLASET( 'Full', M-J-1, 1, ZERO, ZERO, - $ A( J+2, K ), LDA ) + IF( J.LT.(M-1) ) THEN + IF( A( J+1, K ).NE.ZERO ) THEN + ALPHA = ONE / A( J+1, K ) + CALL CCOPY( M-J-1, WORK( 3 ), 1, A( J+2, K ), 1 ) + CALL CSCAL( M-J-1, ALPHA, A( J+2, K ), 1 ) + ELSE + CALL CLASET( 'Full', M-J-1, 1, ZERO, ZERO, + $ A( J+2, K ), LDA ) + END IF END IF END IF J = J + 1 diff --git a/lapack-netlib/SRC/clasyf_rk.f b/lapack-netlib/SRC/clasyf_rk.f index 0700c5cc2..bd7a0fb45 100644 --- a/lapack-netlib/SRC/clasyf_rk.f +++ b/lapack-netlib/SRC/clasyf_rk.f @@ -330,7 +330,7 @@ * of A and working backwards, and compute the matrix W = U12*D * for use in updating A11 * -* Initilize the first entry of array E, where superdiagonal +* Initialize the first entry of array E, where superdiagonal * elements of D are stored * E( 1 ) = CZERO @@ -658,7 +658,7 @@ * of A and working forwards, and compute the matrix W = L21*D * for use in updating A22 * -* Initilize the unused last entry of the subdiagonal array E. +* Initialize the unused last entry of the subdiagonal array E. * E( N ) = CZERO * diff --git a/lapack-netlib/SRC/clatdf.f b/lapack-netlib/SRC/clatdf.f index 357f66422..557830d1c 100644 --- a/lapack-netlib/SRC/clatdf.f +++ b/lapack-netlib/SRC/clatdf.f @@ -261,7 +261,7 @@ * * Solve for U- part, lockahead for RHS(N) = +-1. This is not done * In BSOLVE and will hopefully give us a better estimate because -* any ill-conditioning of the original matrix is transfered to U +* any ill-conditioning of the original matrix is transferred to U * and not to L. U(N, N) is an approximation to sigma_min(LU). * CALL CCOPY( N-1, RHS, 1, WORK, 1 ) diff --git a/lapack-netlib/SRC/clatsqr.f b/lapack-netlib/SRC/clatsqr.f index dab5774c1..e9c6d77c2 100644 --- a/lapack-netlib/SRC/clatsqr.f +++ b/lapack-netlib/SRC/clatsqr.f @@ -1,3 +1,4 @@ +*> \brief \b CLATSQR * * Definition: * =========== @@ -18,9 +19,23 @@ *> *> \verbatim *> -*> SLATSQR computes a blocked Tall-Skinny QR factorization of -*> an M-by-N matrix A, where M >= N: -*> A = Q * R . +*> CLATSQR computes a blocked Tall-Skinny QR factorization of +*> a complex M-by-N matrix A for M >= N: +*> +*> A = Q * ( R ), +*> ( 0 ) +*> +*> where: +*> +*> Q is a M-by-M orthogonal matrix, stored on exit in an implicit +*> form in the elements below the digonal of the array A and in +*> the elemenst of the array T; +*> +*> R is an upper-triangular N-by-N matrix, stored on exit in +*> the elements on and above the diagonal of the array A. +*> +*> 0 is a (M-N)-by-N zero matrix, and is not stored. +*> *> \endverbatim * * Arguments: @@ -149,10 +164,10 @@ SUBROUTINE CLATSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, $ LWORK, INFO) * -* -- LAPACK computational routine (version 3.7.0) -- +* -- LAPACK computational routine (version 3.9.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. -- -* December 2016 +* November 2019 * * .. Scalar Arguments .. INTEGER INFO, LDA, M, N, MB, NB, LDT, LWORK diff --git a/lapack-netlib/SRC/claunhr_col_getrfnp.f b/lapack-netlib/SRC/claunhr_col_getrfnp.f new file mode 100644 index 000000000..66b9c0407 --- /dev/null +++ b/lapack-netlib/SRC/claunhr_col_getrfnp.f @@ -0,0 +1,248 @@ +*> \brief \b CLAUNHR_COL_GETRFNP +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download CLAUNHR_COL_GETRFNP + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE CLAUNHR_COL_GETRFNP( M, N, A, LDA, D, INFO ) +* +* .. Scalar Arguments .. +* INTEGER INFO, LDA, M, N +* .. +* .. Array Arguments .. +* COMPLEX A( LDA, * ), D( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> CLAUNHR_COL_GETRFNP computes the modified LU factorization without +*> pivoting of a complex general M-by-N matrix A. The factorization has +*> the form: +*> +*> A - S = L * U, +*> +*> where: +*> S is a m-by-n diagonal sign matrix with the diagonal D, so that +*> D(i) = S(i,i), 1 <= i <= min(M,N). The diagonal D is constructed +*> as D(i)=-SIGN(A(i,i)), where A(i,i) is the value after performing +*> i-1 steps of Gaussian elimination. This means that the diagonal +*> element at each step of "modified" Gaussian elimination is +*> at least one in absolute value (so that division-by-zero not +*> not possible during the division by the diagonal element); +*> +*> L is a M-by-N lower triangular matrix with unit diagonal elements +*> (lower trapezoidal if M > N); +*> +*> and U is a M-by-N upper triangular matrix +*> (upper trapezoidal if M < N). +*> +*> This routine is an auxiliary routine used in the Householder +*> reconstruction routine CUNHR_COL. In CUNHR_COL, this routine is +*> applied to an M-by-N matrix A with orthonormal columns, where each +*> element is bounded by one in absolute value. With the choice of +*> the matrix S above, one can show that the diagonal element at each +*> step of Gaussian elimination is the largest (in absolute value) in +*> the column on or below the diagonal, so that no pivoting is required +*> for numerical stability [1]. +*> +*> For more details on the Householder reconstruction algorithm, +*> including the modified LU factorization, see [1]. +*> +*> This is the blocked right-looking version of the algorithm, +*> calling Level 3 BLAS to update the submatrix. To factorize a block, +*> this routine calls the recursive routine CLAUNHR_COL_GETRFNP2. +*> +*> [1] "Reconstructing Householder vectors from tall-skinny QR", +*> G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen, +*> E. Solomonik, J. Parallel Distrib. Comput., +*> vol. 85, pp. 3-31, 2015. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] M +*> \verbatim +*> M is INTEGER +*> The number of rows of the matrix A. M >= 0. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of columns of the matrix A. N >= 0. +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is COMPLEX array, dimension (LDA,N) +*> On entry, the M-by-N matrix to be factored. +*> On exit, the factors L and U from the factorization +*> A-S=L*U; the unit diagonal elements of L are not stored. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,M). +*> \endverbatim +*> +*> \param[out] D +*> \verbatim +*> D is COMPLEX array, dimension min(M,N) +*> The diagonal elements of the diagonal M-by-N sign matrix S, +*> D(i) = S(i,i), where 1 <= i <= min(M,N). The elements can be +*> only ( +1.0, 0.0 ) or (-1.0, 0.0 ). +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value +*> \endverbatim +*> +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2019 +* +*> \ingroup complexGEcomputational +* +*> \par Contributors: +* ================== +*> +*> \verbatim +*> +*> November 2019, Igor Kozachenko, +*> Computer Science Division, +*> University of California, Berkeley +*> +*> \endverbatim +* +* ===================================================================== + SUBROUTINE CLAUNHR_COL_GETRFNP( M, N, A, LDA, D, INFO ) + IMPLICIT NONE +* +* -- LAPACK computational routine (version 3.9.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2019 +* +* .. Scalar Arguments .. + INTEGER INFO, LDA, M, N +* .. +* .. Array Arguments .. + COMPLEX A( LDA, * ), D( * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + COMPLEX CONE + PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) ) +* .. +* .. Local Scalars .. + INTEGER IINFO, J, JB, NB +* .. +* .. External Subroutines .. + EXTERNAL CGEMM, CLAUNHR_COL_GETRFNP2, CTRSM, XERBLA +* .. +* .. External Functions .. + INTEGER ILAENV + EXTERNAL ILAENV +* .. +* .. Intrinsic Functions .. + INTRINSIC MAX, MIN +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF( M.LT.0 ) THEN + INFO = -1 + ELSE IF( N.LT.0 ) THEN + INFO = -2 + ELSE IF( LDA.LT.MAX( 1, M ) ) THEN + INFO = -4 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'CLAUNHR_COL_GETRFNP', -INFO ) + RETURN + END IF +* +* Quick return if possible +* + IF( MIN( M, N ).EQ.0 ) + $ RETURN +* +* Determine the block size for this environment. +* + + NB = ILAENV( 1, 'CLAUNHR_COL_GETRFNP', ' ', M, N, -1, -1 ) + + IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN +* +* Use unblocked code. +* + CALL CLAUNHR_COL_GETRFNP2( M, N, A, LDA, D, INFO ) + ELSE +* +* Use blocked code. +* + DO J = 1, MIN( M, N ), NB + JB = MIN( MIN( M, N )-J+1, NB ) +* +* Factor diagonal and subdiagonal blocks. +* + CALL CLAUNHR_COL_GETRFNP2( M-J+1, JB, A( J, J ), LDA, + $ D( J ), IINFO ) +* + IF( J+JB.LE.N ) THEN +* +* Compute block row of U. +* + CALL CTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB, + $ N-J-JB+1, CONE, A( J, J ), LDA, A( J, J+JB ), + $ LDA ) + IF( J+JB.LE.M ) THEN +* +* Update trailing submatrix. +* + CALL CGEMM( 'No transpose', 'No transpose', M-J-JB+1, + $ N-J-JB+1, JB, -CONE, A( J+JB, J ), LDA, + $ A( J, J+JB ), LDA, CONE, A( J+JB, J+JB ), + $ LDA ) + END IF + END IF + END DO + END IF + RETURN +* +* End of CLAUNHR_COL_GETRFNP +* + END diff --git a/lapack-netlib/SRC/claunhr_col_getrfnp2.f b/lapack-netlib/SRC/claunhr_col_getrfnp2.f new file mode 100644 index 000000000..82fc329ee --- /dev/null +++ b/lapack-netlib/SRC/claunhr_col_getrfnp2.f @@ -0,0 +1,314 @@ +*> \brief \b CLAUNHR_COL_GETRFNP2 +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download CLAUNHR_COL_GETRFNP2 + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* RECURSIVE SUBROUTINE CLAUNHR_COL_GETRFNP2( M, N, A, LDA, D, INFO ) +* +* .. Scalar Arguments .. +* INTEGER INFO, LDA, M, N +* .. +* .. Array Arguments .. +* COMPLEX A( LDA, * ), D( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> CLAUNHR_COL_GETRFNP2 computes the modified LU factorization without +*> pivoting of a complex general M-by-N matrix A. The factorization has +*> the form: +*> +*> A - S = L * U, +*> +*> where: +*> S is a m-by-n diagonal sign matrix with the diagonal D, so that +*> D(i) = S(i,i), 1 <= i <= min(M,N). The diagonal D is constructed +*> as D(i)=-SIGN(A(i,i)), where A(i,i) is the value after performing +*> i-1 steps of Gaussian elimination. This means that the diagonal +*> element at each step of "modified" Gaussian elimination is at +*> least one in absolute value (so that division-by-zero not +*> possible during the division by the diagonal element); +*> +*> L is a M-by-N lower triangular matrix with unit diagonal elements +*> (lower trapezoidal if M > N); +*> +*> and U is a M-by-N upper triangular matrix +*> (upper trapezoidal if M < N). +*> +*> This routine is an auxiliary routine used in the Householder +*> reconstruction routine CUNHR_COL. In CUNHR_COL, this routine is +*> applied to an M-by-N matrix A with orthonormal columns, where each +*> element is bounded by one in absolute value. With the choice of +*> the matrix S above, one can show that the diagonal element at each +*> step of Gaussian elimination is the largest (in absolute value) in +*> the column on or below the diagonal, so that no pivoting is required +*> for numerical stability [1]. +*> +*> For more details on the Householder reconstruction algorithm, +*> including the modified LU factorization, see [1]. +*> +*> This is the recursive version of the LU factorization algorithm. +*> Denote A - S by B. The algorithm divides the matrix B into four +*> submatrices: +*> +*> [ B11 | B12 ] where B11 is n1 by n1, +*> B = [ -----|----- ] B21 is (m-n1) by n1, +*> [ B21 | B22 ] B12 is n1 by n2, +*> B22 is (m-n1) by n2, +*> with n1 = min(m,n)/2, n2 = n-n1. +*> +*> +*> The subroutine calls itself to factor B11, solves for B21, +*> solves for B12, updates B22, then calls itself to factor B22. +*> +*> For more details on the recursive LU algorithm, see [2]. +*> +*> CLAUNHR_COL_GETRFNP2 is called to factorize a block by the blocked +*> routine CLAUNHR_COL_GETRFNP, which uses blocked code calling +*. Level 3 BLAS to update the submatrix. However, CLAUNHR_COL_GETRFNP2 +*> is self-sufficient and can be used without CLAUNHR_COL_GETRFNP. +*> +*> [1] "Reconstructing Householder vectors from tall-skinny QR", +*> G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen, +*> E. Solomonik, J. Parallel Distrib. Comput., +*> vol. 85, pp. 3-31, 2015. +*> +*> [2] "Recursion leads to automatic variable blocking for dense linear +*> algebra algorithms", F. Gustavson, IBM J. of Res. and Dev., +*> vol. 41, no. 6, pp. 737-755, 1997. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] M +*> \verbatim +*> M is INTEGER +*> The number of rows of the matrix A. M >= 0. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of columns of the matrix A. N >= 0. +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is COMPLEX array, dimension (LDA,N) +*> On entry, the M-by-N matrix to be factored. +*> On exit, the factors L and U from the factorization +*> A-S=L*U; the unit diagonal elements of L are not stored. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,M). +*> \endverbatim +*> +*> \param[out] D +*> \verbatim +*> D is COMPLEX array, dimension min(M,N) +*> The diagonal elements of the diagonal M-by-N sign matrix S, +*> D(i) = S(i,i), where 1 <= i <= min(M,N). The elements can be +*> only ( +1.0, 0.0 ) or (-1.0, 0.0 ). +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value +*> \endverbatim +*> +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2019 +* +*> \ingroup complexGEcomputational +* +*> \par Contributors: +* ================== +*> +*> \verbatim +*> +*> November 2019, Igor Kozachenko, +*> Computer Science Division, +*> University of California, Berkeley +*> +*> \endverbatim +* +* ===================================================================== + RECURSIVE SUBROUTINE CLAUNHR_COL_GETRFNP2( M, N, A, LDA, D, INFO ) + IMPLICIT NONE +* +* -- LAPACK computational routine (version 3.9.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2019 +* +* .. Scalar Arguments .. + INTEGER INFO, LDA, M, N +* .. +* .. Array Arguments .. + COMPLEX A( LDA, * ), D( * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + REAL ONE + PARAMETER ( ONE = 1.0E+0 ) + COMPLEX CONE + PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) ) +* .. +* .. Local Scalars .. + REAL SFMIN + INTEGER I, IINFO, N1, N2 + COMPLEX Z +* .. +* .. External Functions .. + REAL SLAMCH + EXTERNAL SLAMCH +* .. +* .. External Subroutines .. + EXTERNAL CGEMM, CSCAL, CTRSM, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, REAL, CMPLX, AIMAG, SIGN, MAX, MIN +* .. +* .. Statement Functions .. + DOUBLE PRECISION CABS1 +* .. +* .. Statement Function definitions .. + CABS1( Z ) = ABS( REAL( Z ) ) + ABS( AIMAG( Z ) ) +* .. +* .. Executable Statements .. +* +* Test the input parameters +* + INFO = 0 + IF( M.LT.0 ) THEN + INFO = -1 + ELSE IF( N.LT.0 ) THEN + INFO = -2 + ELSE IF( LDA.LT.MAX( 1, M ) ) THEN + INFO = -4 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'CLAUNHR_COL_GETRFNP2', -INFO ) + RETURN + END IF +* +* Quick return if possible +* + IF( MIN( M, N ).EQ.0 ) + $ RETURN + + IF ( M.EQ.1 ) THEN +* +* One row case, (also recursion termination case), +* use unblocked code +* +* Transfer the sign +* + D( 1 ) = CMPLX( -SIGN( ONE, REAL( A( 1, 1 ) ) ) ) +* +* Construct the row of U +* + A( 1, 1 ) = A( 1, 1 ) - D( 1 ) +* + ELSE IF( N.EQ.1 ) THEN +* +* One column case, (also recursion termination case), +* use unblocked code +* +* Transfer the sign +* + D( 1 ) = CMPLX( -SIGN( ONE, REAL( A( 1, 1 ) ) ) ) +* +* Construct the row of U +* + A( 1, 1 ) = A( 1, 1 ) - D( 1 ) +* +* Scale the elements 2:M of the column +* +* Determine machine safe minimum +* + SFMIN = SLAMCH('S') +* +* Construct the subdiagonal elements of L +* + IF( CABS1( A( 1, 1 ) ) .GE. SFMIN ) THEN + CALL CSCAL( M-1, CONE / A( 1, 1 ), A( 2, 1 ), 1 ) + ELSE + DO I = 2, M + A( I, 1 ) = A( I, 1 ) / A( 1, 1 ) + END DO + END IF +* + ELSE +* +* Divide the matrix B into four submatrices +* + N1 = MIN( M, N ) / 2 + N2 = N-N1 + +* +* Factor B11, recursive call +* + CALL CLAUNHR_COL_GETRFNP2( N1, N1, A, LDA, D, IINFO ) +* +* Solve for B21 +* + CALL CTRSM( 'R', 'U', 'N', 'N', M-N1, N1, CONE, A, LDA, + $ A( N1+1, 1 ), LDA ) +* +* Solve for B12 +* + CALL CTRSM( 'L', 'L', 'N', 'U', N1, N2, CONE, A, LDA, + $ A( 1, N1+1 ), LDA ) +* +* Update B22, i.e. compute the Schur complement +* B22 := B22 - B21*B12 +* + CALL CGEMM( 'N', 'N', M-N1, N2, N1, -CONE, A( N1+1, 1 ), LDA, + $ A( 1, N1+1 ), LDA, CONE, A( N1+1, N1+1 ), LDA ) +* +* Factor B22, recursive call +* + CALL CLAUNHR_COL_GETRFNP2( M-N1, N2, A( N1+1, N1+1 ), LDA, + $ D( N1+1 ), IINFO ) +* + END IF + RETURN +* +* End of CLAUNHR_COL_GETRFNP2 +* + END diff --git a/lapack-netlib/SRC/cporfsx.f b/lapack-netlib/SRC/cporfsx.f index 872bad36c..3a2db7135 100644 --- a/lapack-netlib/SRC/cporfsx.f +++ b/lapack-netlib/SRC/cporfsx.f @@ -44,7 +44,7 @@ *> \verbatim *> *> CPORFSX improves the computed solution to a system of linear -*> equations when the coefficient matrix is symmetric positive +*> equations when the coefficient matrix is Hermitian positive *> definite, and provides error bounds and backward error estimates *> for the solution. In addition to normwise error bound, the code *> provides maximum componentwise error bound if possible. See @@ -103,7 +103,7 @@ *> \param[in] A *> \verbatim *> A is COMPLEX array, dimension (LDA,N) -*> The symmetric matrix A. If UPLO = 'U', the leading N-by-N +*> The Hermitian matrix A. If UPLO = 'U', the leading N-by-N *> upper triangular part of A contains the upper triangular part *> of the matrix A, and the strictly lower triangular part of A *> is not referenced. If UPLO = 'L', the leading N-by-N lower @@ -134,7 +134,7 @@ *> \param[in,out] S *> \verbatim *> S is REAL array, dimension (N) -*> The row scale factors for A. If EQUED = 'Y', A is multiplied on +*> The scale factors for A. If EQUED = 'Y', A is multiplied on *> the left and right by diag(S). S is an input argument if FACT = *> 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED *> = 'Y', each element of S must be positive. If S is output, each @@ -262,7 +262,7 @@ *> information as described below. There currently are up to three *> pieces of information returned for each right-hand side. If *> componentwise accuracy is not requested (PARAMS(3) = 0.0), then -*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most +*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most *> the first (:,N_ERR_BNDS) entries are returned. *> *> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith @@ -298,14 +298,14 @@ *> \param[in] NPARAMS *> \verbatim *> NPARAMS is INTEGER -*> Specifies the number of parameters set in PARAMS. If .LE. 0, the +*> Specifies the number of parameters set in PARAMS. If <= 0, the *> PARAMS array is never referenced and default values are used. *> \endverbatim *> *> \param[in,out] PARAMS *> \verbatim *> PARAMS is REAL array, dimension NPARAMS -*> Specifies algorithm parameters. If an entry is .LT. 0.0, then +*> Specifies algorithm parameters. If an entry is < 0.0, then *> that entry will be filled with default value used for that *> parameter. Only positions up to NPARAMS are accessed; defaults *> are used for higher-numbered parameters. @@ -313,9 +313,9 @@ *> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative *> refinement or not. *> Default: 1.0 -*> = 0.0 : No refinement is performed, and no error bounds are +*> = 0.0: No refinement is performed, and no error bounds are *> computed. -*> = 1.0 : Use the double-precision refinement algorithm, +*> = 1.0: Use the double-precision refinement algorithm, *> possibly with doubled-single computations if the *> compilation environment does not support DOUBLE *> PRECISION. diff --git a/lapack-netlib/SRC/cposvxx.f b/lapack-netlib/SRC/cposvxx.f index 64d1b67fa..57c2d3feb 100644 --- a/lapack-netlib/SRC/cposvxx.f +++ b/lapack-netlib/SRC/cposvxx.f @@ -45,7 +45,7 @@ *> *> CPOSVXX uses the Cholesky factorization A = U**T*U or A = L*L**T *> to compute the solution to a complex system of linear equations -*> A * X = B, where A is an N-by-N symmetric positive definite matrix +*> A * X = B, where A is an N-by-N Hermitian positive definite matrix *> and X and B are N-by-NRHS matrices. *> *> If requested, both normwise and maximum componentwise error bounds @@ -157,7 +157,7 @@ *> \param[in,out] A *> \verbatim *> A is COMPLEX array, dimension (LDA,N) -*> On entry, the symmetric matrix A, except if FACT = 'F' and EQUED = +*> On entry, the Hermitian matrix A, except if FACT = 'F' and EQUED = *> 'Y', then A must contain the equilibrated matrix *> diag(S)*A*diag(S). If UPLO = 'U', the leading N-by-N upper *> triangular part of A contains the upper triangular part of the @@ -365,7 +365,7 @@ *> information as described below. There currently are up to three *> pieces of information returned for each right-hand side. If *> componentwise accuracy is not requested (PARAMS(3) = 0.0), then -*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most +*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most *> the first (:,N_ERR_BNDS) entries are returned. *> *> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith @@ -401,14 +401,14 @@ *> \param[in] NPARAMS *> \verbatim *> NPARAMS is INTEGER -*> Specifies the number of parameters set in PARAMS. If .LE. 0, the +*> Specifies the number of parameters set in PARAMS. If <= 0, the *> PARAMS array is never referenced and default values are used. *> \endverbatim *> *> \param[in,out] PARAMS *> \verbatim *> PARAMS is REAL array, dimension NPARAMS -*> Specifies algorithm parameters. If an entry is .LT. 0.0, then +*> Specifies algorithm parameters. If an entry is < 0.0, then *> that entry will be filled with default value used for that *> parameter. Only positions up to NPARAMS are accessed; defaults *> are used for higher-numbered parameters. @@ -416,9 +416,9 @@ *> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative *> refinement or not. *> Default: 1.0 -*> = 0.0 : No refinement is performed, and no error bounds are +*> = 0.0: No refinement is performed, and no error bounds are *> computed. -*> = 1.0 : Use the double-precision refinement algorithm, +*> = 1.0: Use the double-precision refinement algorithm, *> possibly with doubled-single computations if the *> compilation environment does not support DOUBLE *> PRECISION. diff --git a/lapack-netlib/SRC/cpotrf2.f b/lapack-netlib/SRC/cpotrf2.f index 789843c41..ed4f12cba 100644 --- a/lapack-netlib/SRC/cpotrf2.f +++ b/lapack-netlib/SRC/cpotrf2.f @@ -24,7 +24,7 @@ *> *> \verbatim *> -*> CPOTRF2 computes the Cholesky factorization of a real symmetric +*> CPOTRF2 computes the Cholesky factorization of a Hermitian *> positive definite matrix A using the recursive algorithm. *> *> The factorization has the form @@ -63,7 +63,7 @@ *> \param[in,out] A *> \verbatim *> A is COMPLEX array, dimension (LDA,N) -*> On entry, the symmetric matrix A. If UPLO = 'U', the leading +*> On entry, the Hermitian matrix A. If UPLO = 'U', the leading *> N-by-N upper triangular part of A contains the upper *> triangular part of the matrix A, and the strictly lower *> triangular part of A is not referenced. If UPLO = 'L', the diff --git a/lapack-netlib/SRC/cstemr.f b/lapack-netlib/SRC/cstemr.f index 22ac842c9..8fb8131d8 100644 --- a/lapack-netlib/SRC/cstemr.f +++ b/lapack-netlib/SRC/cstemr.f @@ -250,13 +250,13 @@ *> \param[in,out] TRYRAC *> \verbatim *> TRYRAC is LOGICAL -*> If TRYRAC.EQ..TRUE., indicates that the code should check whether +*> If TRYRAC = .TRUE., indicates that the code should check whether *> the tridiagonal matrix defines its eigenvalues to high relative *> accuracy. If so, the code uses relative-accuracy preserving *> algorithms that might be (a bit) slower depending on the matrix. *> If the matrix does not define its eigenvalues to high relative *> accuracy, the code can uses possibly faster algorithms. -*> If TRYRAC.EQ..FALSE., the code is not required to guarantee +*> If TRYRAC = .FALSE., the code is not required to guarantee *> relatively accurate eigenvalues and can use the fastest possible *> techniques. *> On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix diff --git a/lapack-netlib/SRC/csycon_3.f b/lapack-netlib/SRC/csycon_3.f index 47d52dd15..5c1cb0491 100644 --- a/lapack-netlib/SRC/csycon_3.f +++ b/lapack-netlib/SRC/csycon_3.f @@ -19,7 +19,7 @@ * =========== * * SUBROUTINE CSYCON_3( UPLO, N, A, LDA, E, IPIV, ANORM, RCOND, -* WORK, IWORK, INFO ) +* WORK, INFO ) * * .. Scalar Arguments .. * CHARACTER UPLO @@ -27,7 +27,7 @@ * REAL ANORM, RCOND * .. * .. Array Arguments .. -* INTEGER IPIV( * ), IWORK( * ) +* INTEGER IPIV( * ) * COMPLEX A( LDA, * ), E ( * ), WORK( * ) * .. * @@ -129,11 +129,6 @@ *> WORK is COMPLEX array, dimension (2*N) *> \endverbatim *> -*> \param[out] IWORK -*> \verbatim -*> IWORK is INTEGER array, dimension (N) -*> \endverbatim -*> *> \param[out] INFO *> \verbatim *> INFO is INTEGER diff --git a/lapack-netlib/SRC/csyconvf.f b/lapack-netlib/SRC/csyconvf.f index 77ecf46b5..fd5a5e47f 100644 --- a/lapack-netlib/SRC/csyconvf.f +++ b/lapack-netlib/SRC/csyconvf.f @@ -294,7 +294,7 @@ * * Convert PERMUTATIONS and IPIV * -* Apply permutaions to submatrices of upper part of A +* Apply permutations to submatrices of upper part of A * in factorization order where i decreases from N to 1 * I = N @@ -347,7 +347,7 @@ * * Revert PERMUTATIONS and IPIV * -* Apply permutaions to submatrices of upper part of A +* Apply permutations to submatrices of upper part of A * in reverse factorization order where i increases from 1 to N * I = 1 @@ -438,7 +438,7 @@ * * Convert PERMUTATIONS and IPIV * -* Apply permutaions to submatrices of lower part of A +* Apply permutations to submatrices of lower part of A * in factorization order where k increases from 1 to N * I = 1 @@ -491,7 +491,7 @@ * * Revert PERMUTATIONS and IPIV * -* Apply permutaions to submatrices of lower part of A +* Apply permutations to submatrices of lower part of A * in reverse factorization order where i decreases from N to 1 * I = N diff --git a/lapack-netlib/SRC/csyconvf_rook.f b/lapack-netlib/SRC/csyconvf_rook.f index 1146a97c5..7ede26863 100644 --- a/lapack-netlib/SRC/csyconvf_rook.f +++ b/lapack-netlib/SRC/csyconvf_rook.f @@ -285,7 +285,7 @@ * * Convert PERMUTATIONS * -* Apply permutaions to submatrices of upper part of A +* Apply permutations to submatrices of upper part of A * in factorization order where i decreases from N to 1 * I = N @@ -336,7 +336,7 @@ * * Revert PERMUTATIONS * -* Apply permutaions to submatrices of upper part of A +* Apply permutations to submatrices of upper part of A * in reverse factorization order where i increases from 1 to N * I = 1 @@ -426,7 +426,7 @@ * * Convert PERMUTATIONS * -* Apply permutaions to submatrices of lower part of A +* Apply permutations to submatrices of lower part of A * in factorization order where i increases from 1 to N * I = 1 @@ -477,7 +477,7 @@ * * Revert PERMUTATIONS * -* Apply permutaions to submatrices of lower part of A +* Apply permutations to submatrices of lower part of A * in reverse factorization order where i decreases from N to 1 * I = N diff --git a/lapack-netlib/SRC/csyrfsx.f b/lapack-netlib/SRC/csyrfsx.f index 7323ba8eb..4d1bc3ccc 100644 --- a/lapack-netlib/SRC/csyrfsx.f +++ b/lapack-netlib/SRC/csyrfsx.f @@ -271,7 +271,7 @@ *> information as described below. There currently are up to three *> pieces of information returned for each right-hand side. If *> componentwise accuracy is not requested (PARAMS(3) = 0.0), then -*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most +*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most *> the first (:,N_ERR_BNDS) entries are returned. *> *> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith @@ -307,14 +307,14 @@ *> \param[in] NPARAMS *> \verbatim *> NPARAMS is INTEGER -*> Specifies the number of parameters set in PARAMS. If .LE. 0, the +*> Specifies the number of parameters set in PARAMS. If <= 0, the *> PARAMS array is never referenced and default values are used. *> \endverbatim *> *> \param[in,out] PARAMS *> \verbatim *> PARAMS is REAL array, dimension NPARAMS -*> Specifies algorithm parameters. If an entry is .LT. 0.0, then +*> Specifies algorithm parameters. If an entry is < 0.0, then *> that entry will be filled with default value used for that *> parameter. Only positions up to NPARAMS are accessed; defaults *> are used for higher-numbered parameters. @@ -322,9 +322,9 @@ *> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative *> refinement or not. *> Default: 1.0 -*> = 0.0 : No refinement is performed, and no error bounds are +*> = 0.0: No refinement is performed, and no error bounds are *> computed. -*> = 1.0 : Use the double-precision refinement algorithm, +*> = 1.0: Use the double-precision refinement algorithm, *> possibly with doubled-single computations if the *> compilation environment does not support DOUBLE *> PRECISION. diff --git a/lapack-netlib/SRC/csysv_aa.f b/lapack-netlib/SRC/csysv_aa.f index 87be734cc..2081644b1 100644 --- a/lapack-netlib/SRC/csysv_aa.f +++ b/lapack-netlib/SRC/csysv_aa.f @@ -42,7 +42,7 @@ *> matrices. *> *> Aasen's algorithm is used to factor A as -*> A = U * T * U**T, if UPLO = 'U', or +*> A = U**T * T * U, if UPLO = 'U', or *> A = L * T * L**T, if UPLO = 'L', *> where U (or L) is a product of permutation and unit upper (lower) *> triangular matrices, and T is symmetric tridiagonal. The factored @@ -75,7 +75,7 @@ *> *> \param[in,out] A *> \verbatim -*> A is REAL array, dimension (LDA,N) +*> A is COMPLEX array, dimension (LDA,N) *> On entry, the symmetric matrix A. If UPLO = 'U', the leading *> N-by-N upper triangular part of A contains the upper *> triangular part of the matrix A, and the strictly lower @@ -86,7 +86,7 @@ *> *> On exit, if INFO = 0, the tridiagonal matrix T and the *> multipliers used to obtain the factor U or L from the -*> factorization A = U*T*U**T or A = L*T*L**T as computed by +*> factorization A = U**T*T*U or A = L*T*L**T as computed by *> CSYTRF. *> \endverbatim *> @@ -106,7 +106,7 @@ *> *> \param[in,out] B *> \verbatim -*> B is REAL array, dimension (LDB,NRHS) +*> B is COMPLEX array, dimension (LDB,NRHS) *> On entry, the N-by-NRHS right hand side matrix B. *> On exit, if INFO = 0, the N-by-NRHS solution matrix X. *> \endverbatim @@ -119,7 +119,7 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is REAL array, dimension (MAX(1,LWORK)) +*> WORK is COMPLEX array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> @@ -230,7 +230,7 @@ RETURN END IF * -* Compute the factorization A = U*T*U**T or A = L*T*L**T. +* Compute the factorization A = U**T*T*U or A = L*T*L**T. * CALL CSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) IF( INFO.EQ.0 ) THEN diff --git a/lapack-netlib/SRC/csysv_aa_2stage.f b/lapack-netlib/SRC/csysv_aa_2stage.f index a13349824..c5c328c63 100644 --- a/lapack-netlib/SRC/csysv_aa_2stage.f +++ b/lapack-netlib/SRC/csysv_aa_2stage.f @@ -43,8 +43,8 @@ *> matrices. *> *> Aasen's 2-stage algorithm is used to factor A as -*> A = U * T * U**H, if UPLO = 'U', or -*> A = L * T * L**H, if UPLO = 'L', +*> A = U**T * T * U, if UPLO = 'U', or +*> A = L * T * L**T, if UPLO = 'L', *> where U (or L) is a product of permutation and unit upper (lower) *> triangular matrices, and T is symmetric and band. The matrix T is *> then LU-factored with partial pivoting. The factored form of A @@ -257,7 +257,7 @@ END IF * * -* Compute the factorization A = U*T*U**H or A = L*T*L**H. +* Compute the factorization A = U**T*T*U or A = L*T*L**T. * CALL CSYTRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, IPIV2, $ WORK, LWORK, INFO ) diff --git a/lapack-netlib/SRC/csysvxx.f b/lapack-netlib/SRC/csysvxx.f index 2fd2c8771..7a9aee105 100644 --- a/lapack-netlib/SRC/csysvxx.f +++ b/lapack-netlib/SRC/csysvxx.f @@ -378,7 +378,7 @@ *> information as described below. There currently are up to three *> pieces of information returned for each right-hand side. If *> componentwise accuracy is not requested (PARAMS(3) = 0.0), then -*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most +*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most *> the first (:,N_ERR_BNDS) entries are returned. *> *> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith @@ -414,14 +414,14 @@ *> \param[in] NPARAMS *> \verbatim *> NPARAMS is INTEGER -*> Specifies the number of parameters set in PARAMS. If .LE. 0, the +*> Specifies the number of parameters set in PARAMS. If <= 0, the *> PARAMS array is never referenced and default values are used. *> \endverbatim *> *> \param[in,out] PARAMS *> \verbatim *> PARAMS is REAL array, dimension NPARAMS -*> Specifies algorithm parameters. If an entry is .LT. 0.0, then +*> Specifies algorithm parameters. If an entry is < 0.0, then *> that entry will be filled with default value used for that *> parameter. Only positions up to NPARAMS are accessed; defaults *> are used for higher-numbered parameters. @@ -429,9 +429,9 @@ *> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative *> refinement or not. *> Default: 1.0 -*> = 0.0 : No refinement is performed, and no error bounds are +*> = 0.0: No refinement is performed, and no error bounds are *> computed. -*> = 1.0 : Use the double-precision refinement algorithm, +*> = 1.0: Use the double-precision refinement algorithm, *> possibly with doubled-single computations if the *> compilation environment does not support DOUBLE *> PRECISION. diff --git a/lapack-netlib/SRC/csytf2_rk.f b/lapack-netlib/SRC/csytf2_rk.f index 3b5e53a03..7e39c2dfd 100644 --- a/lapack-netlib/SRC/csytf2_rk.f +++ b/lapack-netlib/SRC/csytf2_rk.f @@ -321,7 +321,7 @@ * * Factorize A as U*D*U**T using the upper triangle of A * -* Initilize the first entry of array E, where superdiagonal +* Initialize the first entry of array E, where superdiagonal * elements of D are stored * E( 1 ) = CZERO @@ -632,7 +632,7 @@ * * Factorize A as L*D*L**T using the lower triangle of A * -* Initilize the unused last entry of the subdiagonal array E. +* Initialize the unused last entry of the subdiagonal array E. * E( N ) = CZERO * diff --git a/lapack-netlib/SRC/csytrf.f b/lapack-netlib/SRC/csytrf.f index c389725e9..af913b8f4 100644 --- a/lapack-netlib/SRC/csytrf.f +++ b/lapack-netlib/SRC/csytrf.f @@ -43,7 +43,7 @@ *> *> where U (or L) is a product of permutation and unit upper (lower) *> triangular matrices, and D is symmetric and block diagonal with -*> with 1-by-1 and 2-by-2 diagonal blocks. +*> 1-by-1 and 2-by-2 diagonal blocks. *> *> This is the blocked version of the algorithm, calling Level 3 BLAS. *> \endverbatim diff --git a/lapack-netlib/SRC/csytrf_aa.f b/lapack-netlib/SRC/csytrf_aa.f index 2f185b0c7..427235bda 100644 --- a/lapack-netlib/SRC/csytrf_aa.f +++ b/lapack-netlib/SRC/csytrf_aa.f @@ -37,7 +37,7 @@ *> CSYTRF_AA computes the factorization of a complex symmetric matrix A *> using the Aasen's algorithm. The form of the factorization is *> -*> A = U*T*U**T or A = L*T*L**T +*> A = U**T*T*U or A = L*T*L**T *> *> where U (or L) is a product of permutation and unit upper (lower) *> triangular matrices, and T is a complex symmetric tridiagonal matrix. @@ -63,7 +63,7 @@ *> *> \param[in,out] A *> \verbatim -*> A is REAL array, dimension (LDA,N) +*> A is COMPLEX array, dimension (LDA,N) *> On entry, the symmetric matrix A. If UPLO = 'U', the leading *> N-by-N upper triangular part of A contains the upper *> triangular part of the matrix A, and the strictly lower @@ -94,7 +94,7 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is REAL array, dimension (MAX(1,LWORK)) +*> WORK is COMPLEX array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> @@ -223,7 +223,7 @@ IF( UPPER ) THEN * * ..................................................... -* Factorize A as L*D*L**T using the upper triangle of A +* Factorize A as U**T*D*U using the upper triangle of A * ..................................................... * * Copy first row A(1, 1:N) into H(1:n) (stored in WORK(1:N)) @@ -256,7 +256,7 @@ $ A( MAX(1, J), J+1 ), LDA, $ IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) ) * -* Ajust IPIV and apply it back (J-th step picks (J+1)-th pivot) +* Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot) * DO J2 = J+2, MIN(N, J+JB+1) IPIV( J2 ) = IPIV( J2 ) + J @@ -375,7 +375,7 @@ $ A( J+1, MAX(1, J) ), LDA, $ IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) ) * -* Ajust IPIV and apply it back (J-th step picks (J+1)-th pivot) +* Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot) * DO J2 = J+2, MIN(N, J+JB+1) IPIV( J2 ) = IPIV( J2 ) + J diff --git a/lapack-netlib/SRC/csytrf_aa_2stage.f b/lapack-netlib/SRC/csytrf_aa_2stage.f index 0d0bd156c..0946d61b0 100644 --- a/lapack-netlib/SRC/csytrf_aa_2stage.f +++ b/lapack-netlib/SRC/csytrf_aa_2stage.f @@ -38,7 +38,7 @@ *> CSYTRF_AA_2STAGE computes the factorization of a complex symmetric matrix A *> using the Aasen's algorithm. The form of the factorization is *> -*> A = U*T*U**T or A = L*T*L**T +*> A = U**T*T*U or A = L*T*L**T *> *> where U (or L) is a product of permutation and unit upper (lower) *> triangular matrices, and T is a complex symmetric band matrix with the @@ -275,7 +275,7 @@ IF( UPPER ) THEN * * ..................................................... -* Factorize A as L*D*L**T using the upper triangle of A +* Factorize A as U**T*D*U using the upper triangle of A * ..................................................... * DO J = 0, NT-1 @@ -448,12 +448,14 @@ c END IF * > Apply pivots to previous columns of L CALL CSWAP( K-1, A( (J+1)*NB+1, I1 ), 1, $ A( (J+1)*NB+1, I2 ), 1 ) -* > Swap A(I1+1:M, I1) with A(I2, I1+1:M) - CALL CSWAP( I2-I1-1, A( I1, I1+1 ), LDA, - $ A( I1+1, I2 ), 1 ) +* > Swap A(I1+1:M, I1) with A(I2, I1+1:M) + IF( I2.GT.(I1+1) ) + $ CALL CSWAP( I2-I1-1, A( I1, I1+1 ), LDA, + $ A( I1+1, I2 ), 1 ) * > Swap A(I2+1:M, I1) with A(I2+1:M, I2) - CALL CSWAP( N-I2, A( I1, I2+1 ), LDA, - $ A( I2, I2+1 ), LDA ) + IF( I2.LT.N ) + $ CALL CSWAP( N-I2, A( I1, I2+1 ), LDA, + $ A( I2, I2+1 ), LDA ) * > Swap A(I1, I1) with A(I2, I2) PIV = A( I1, I1 ) A( I1, I1 ) = A( I2, I2 ) @@ -637,11 +639,13 @@ c END IF CALL CSWAP( K-1, A( I1, (J+1)*NB+1 ), LDA, $ A( I2, (J+1)*NB+1 ), LDA ) * > Swap A(I1+1:M, I1) with A(I2, I1+1:M) - CALL CSWAP( I2-I1-1, A( I1+1, I1 ), 1, - $ A( I2, I1+1 ), LDA ) + IF( I2.GT.(I1+1) ) + $ CALL CSWAP( I2-I1-1, A( I1+1, I1 ), 1, + $ A( I2, I1+1 ), LDA ) * > Swap A(I2+1:M, I1) with A(I2+1:M, I2) - CALL CSWAP( N-I2, A( I2+1, I1 ), 1, - $ A( I2+1, I2 ), 1 ) + IF( I2.LT.N ) + $ CALL CSWAP( N-I2, A( I2+1, I1 ), 1, + $ A( I2+1, I2 ), 1 ) * > Swap A(I1, I1) with A(I2, I2) PIV = A( I1, I1 ) A( I1, I1 ) = A( I2, I2 ) diff --git a/lapack-netlib/SRC/csytri2.f b/lapack-netlib/SRC/csytri2.f index 4bd8e4f99..8bee149c4 100644 --- a/lapack-netlib/SRC/csytri2.f +++ b/lapack-netlib/SRC/csytri2.f @@ -62,7 +62,7 @@ *> \param[in,out] A *> \verbatim *> A is COMPLEX array, dimension (LDA,N) -*> On entry, the NB diagonal matrix D and the multipliers +*> On entry, the block diagonal matrix D and the multipliers *> used to obtain the factor U or L as computed by CSYTRF. *> *> On exit, if INFO = 0, the (symmetric) inverse of the original @@ -82,7 +82,7 @@ *> \param[in] IPIV *> \verbatim *> IPIV is INTEGER array, dimension (N) -*> Details of the interchanges and the NB structure of D +*> Details of the interchanges and the block structure of D *> as determined by CSYTRF. *> \endverbatim *> diff --git a/lapack-netlib/SRC/csytrs2.f b/lapack-netlib/SRC/csytrs2.f index 1002b5461..93f2d6a1b 100644 --- a/lapack-netlib/SRC/csytrs2.f +++ b/lapack-netlib/SRC/csytrs2.f @@ -36,7 +36,7 @@ *> *> \verbatim *> -*> CSYTRS2 solves a system of linear equations A*X = B with a COMPLEX +*> CSYTRS2 solves a system of linear equations A*X = B with a complex *> symmetric matrix A using the factorization A = U*D*U**T or *> A = L*D*L**T computed by CSYTRF and converted by CSYCONV. *> \endverbatim diff --git a/lapack-netlib/SRC/csytrs_aa.f b/lapack-netlib/SRC/csytrs_aa.f index 7cf950492..981f8722a 100644 --- a/lapack-netlib/SRC/csytrs_aa.f +++ b/lapack-netlib/SRC/csytrs_aa.f @@ -37,7 +37,7 @@ *> \verbatim *> *> CSYTRS_AA solves a system of linear equations A*X = B with a complex -*> symmetric matrix A using the factorization A = U*T*U**T or +*> symmetric matrix A using the factorization A = U**T*T*U or *> A = L*T*L**T computed by CSYTRF_AA. *> \endverbatim * @@ -49,7 +49,7 @@ *> UPLO is CHARACTER*1 *> Specifies whether the details of the factorization are stored *> as an upper or lower triangular matrix. -*> = 'U': Upper triangular, form is A = U*T*U**T; +*> = 'U': Upper triangular, form is A = U**T*T*U; *> = 'L': Lower triangular, form is A = L*T*L**T. *> \endverbatim *> @@ -68,7 +68,7 @@ *> *> \param[in] A *> \verbatim -*> A is REAL array, dimension (LDA,N) +*> A is COMPLEX array, dimension (LDA,N) *> Details of factors computed by CSYTRF_AA. *> \endverbatim *> @@ -86,7 +86,7 @@ *> *> \param[in,out] B *> \verbatim -*> B is REAL array, dimension (LDB,NRHS) +*> B is COMPLEX array, dimension (LDB,NRHS) *> On entry, the right hand side matrix B. *> On exit, the solution matrix X. *> \endverbatim @@ -97,14 +97,16 @@ *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> -*> \param[in] WORK +*> \param[out] WORK *> \verbatim -*> WORK is DOUBLE array, dimension (MAX(1,LWORK)) +*> WORK is COMPLEX array, dimension (MAX(1,LWORK)) *> \endverbatim *> *> \param[in] LWORK *> \verbatim -*> LWORK is INTEGER, LWORK >= MAX(1,3*N-2). +*> LWORK is INTEGER +*> The dimension of the array WORK. LWORK >= max(1,3*N-2). +*> \endverbatim *> *> \param[out] INFO *> \verbatim @@ -198,22 +200,29 @@ * IF( UPPER ) THEN * -* Solve A*X = B, where A = U*T*U**T. +* Solve A*X = B, where A = U**T*T*U. * -* Pivot, P**T * B +* 1) Forward substitution with U**T * - DO K = 1, N - KP = IPIV( K ) - IF( KP.NE.K ) - $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) - END DO + IF( N.GT.1 ) THEN * -* Compute (U \P**T * B) -> B [ (U \P**T * B) ] +* Pivot, P**T * B -> B * - CALL CTRSM('L', 'U', 'T', 'U', N-1, NRHS, ONE, A( 1, 2 ), LDA, - $ B( 2, 1 ), LDB) + DO K = 1, N + KP = IPIV( K ) + IF( KP.NE.K ) + $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) + END DO * -* Compute T \ B -> B [ T \ (U \P**T * B) ] +* Compute U**T \ B -> B [ (U**T \P**T * B) ] +* + CALL CTRSM( 'L', 'U', 'T', 'U', N-1, NRHS, ONE, A( 1, 2 ), + $ LDA, B( 2, 1 ), LDB) + END IF +* +* 2) Solve with triangular matrix T +* +* Compute T \ B -> B [ T \ (U**T \P**T * B) ] * CALL CLACPY( 'F', 1, N, A( 1, 1 ), LDA+1, WORK( N ), 1) IF( N.GT.1 ) THEN @@ -223,35 +232,48 @@ CALL CGTSV( N, NRHS, WORK( 1 ), WORK( N ), WORK( 2*N ), B, LDB, $ INFO ) * -* Compute (U**T \ B) -> B [ U**T \ (T \ (U \P**T * B) ) ] +* 3) Backward substitution with U * - CALL CTRSM( 'L', 'U', 'N', 'U', N-1, NRHS, ONE, A( 1, 2 ), LDA, - $ B( 2, 1 ), LDB) + IF( N.GT.1 ) THEN * -* Pivot, P * B [ P * (U**T \ (T \ (U \P**T * B) )) ] +* Compute U \ B -> B [ U \ (T \ (U**T \P**T * B) ) ] * - DO K = N, 1, -1 - KP = IPIV( K ) - IF( KP.NE.K ) - $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) - END DO + CALL CTRSM( 'L', 'U', 'N', 'U', N-1, NRHS, ONE, A( 1, 2 ), + $ LDA, B( 2, 1 ), LDB) +* +* Pivot, P * B -> B [ P * (U**T \ (T \ (U \P**T * B) )) ] +* + DO K = N, 1, -1 + KP = IPIV( K ) + IF( KP.NE.K ) + $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) + END DO + END IF * ELSE * * Solve A*X = B, where A = L*T*L**T. * -* Pivot, P**T * B +* 1) Forward substitution with L * - DO K = 1, N - KP = IPIV( K ) - IF( KP.NE.K ) - $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) - END DO + IF( N.GT.1 ) THEN * -* Compute (L \P**T * B) -> B [ (L \P**T * B) ] +* Pivot, P**T * B -> B +* + DO K = 1, N + KP = IPIV( K ) + IF( KP.NE.K ) + $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) + END DO +* +* Compute L \ B -> B [ (L \P**T * B) ] +* + CALL CTRSM( 'L', 'L', 'N', 'U', N-1, NRHS, ONE, A( 2, 1 ), + $ LDA, B( 2, 1 ), LDB) + END IF +* +* 2) Solve with triangular matrix T * - CALL CTRSM( 'L', 'L', 'N', 'U', N-1, NRHS, ONE, A( 2, 1 ), LDA, - $ B( 2, 1 ), LDB) * * Compute T \ B -> B [ T \ (L \P**T * B) ] * @@ -263,18 +285,23 @@ CALL CGTSV( N, NRHS, WORK( 1 ), WORK(N), WORK( 2*N ), B, LDB, $ INFO) * -* Compute (L**T \ B) -> B [ L**T \ (T \ (L \P**T * B) ) ] +* 3) Backward substitution with L**T * - CALL CTRSM( 'L', 'L', 'T', 'U', N-1, NRHS, ONE, A( 2, 1 ), LDA, - $ B( 2, 1 ), LDB) + IF( N.GT.1 ) THEN * -* Pivot, P * B [ P * (L**T \ (T \ (L \P**T * B) )) ] +* Compute (L**T \ B) -> B [ L**T \ (T \ (L \P**T * B) ) ] * - DO K = N, 1, -1 - KP = IPIV( K ) - IF( KP.NE.K ) - $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) - END DO + CALL CTRSM( 'L', 'L', 'T', 'U', N-1, NRHS, ONE, A( 2, 1 ), + $ LDA, B( 2, 1 ), LDB) +* +* Pivot, P * B -> B [ P * (L**T \ (T \ (L \P**T * B) )) ] +* + DO K = N, 1, -1 + KP = IPIV( K ) + IF( KP.NE.K ) + $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) + END DO + END IF * END IF * diff --git a/lapack-netlib/SRC/csytrs_aa_2stage.f b/lapack-netlib/SRC/csytrs_aa_2stage.f index d025c08fe..581910933 100644 --- a/lapack-netlib/SRC/csytrs_aa_2stage.f +++ b/lapack-netlib/SRC/csytrs_aa_2stage.f @@ -36,7 +36,7 @@ *> \verbatim *> *> CSYTRS_AA_2STAGE solves a system of linear equations A*X = B with a complex -*> symmetric matrix A using the factorization A = U*T*U**T or +*> symmetric matrix A using the factorization A = U**T*T*U or *> A = L*T*L**T computed by CSYTRF_AA_2STAGE. *> \endverbatim * @@ -48,7 +48,7 @@ *> UPLO is CHARACTER*1 *> Specifies whether the details of the factorization are stored *> as an upper or lower triangular matrix. -*> = 'U': Upper triangular, form is A = U*T*U**T; +*> = 'U': Upper triangular, form is A = U**T*T*U; *> = 'L': Lower triangular, form is A = L*T*L**T. *> \endverbatim *> @@ -208,15 +208,15 @@ * IF( UPPER ) THEN * -* Solve A*X = B, where A = U*T*U**T. +* Solve A*X = B, where A = U**T*T*U. * IF( N.GT.NB ) THEN * -* Pivot, P**T * B +* Pivot, P**T * B -> B * CALL CLASWP( NRHS, B, LDB, NB+1, N, IPIV, 1 ) * -* Compute (U**T \P**T * B) -> B [ (U**T \P**T * B) ] +* Compute (U**T \ B) -> B [ (U**T \P**T * B) ] * CALL CTRSM( 'L', 'U', 'T', 'U', N-NB, NRHS, ONE, A(1, NB+1), $ LDA, B(NB+1, 1), LDB) @@ -234,7 +234,7 @@ CALL CTRSM( 'L', 'U', 'N', 'U', N-NB, NRHS, ONE, A(1, NB+1), $ LDA, B(NB+1, 1), LDB) * -* Pivot, P * B [ P * (U \ (T \ (U**T \P**T * B) )) ] +* Pivot, P * B -> B [ P * (U \ (T \ (U**T \P**T * B) )) ] * CALL CLASWP( NRHS, B, LDB, NB+1, N, IPIV, -1 ) * @@ -246,11 +246,11 @@ * IF( N.GT.NB ) THEN * -* Pivot, P**T * B +* Pivot, P**T * B -> B * CALL CLASWP( NRHS, B, LDB, NB+1, N, IPIV, 1 ) * -* Compute (L \P**T * B) -> B [ (L \P**T * B) ] +* Compute (L \ B) -> B [ (L \P**T * B) ] * CALL CTRSM( 'L', 'L', 'N', 'U', N-NB, NRHS, ONE, A(NB+1, 1), $ LDA, B(NB+1, 1), LDB) @@ -268,7 +268,7 @@ CALL CTRSM( 'L', 'L', 'T', 'U', N-NB, NRHS, ONE, A(NB+1, 1), $ LDA, B(NB+1, 1), LDB) * -* Pivot, P * B [ P * (L**T \ (T \ (L \P**T * B) )) ] +* Pivot, P * B -> B [ P * (L**T \ (T \ (L \P**T * B) )) ] * CALL CLASWP( NRHS, B, LDB, NB+1, N, IPIV, -1 ) * diff --git a/lapack-netlib/SRC/ctgsy2.f b/lapack-netlib/SRC/ctgsy2.f index 66a8980d0..5ccdfb1e1 100644 --- a/lapack-netlib/SRC/ctgsy2.f +++ b/lapack-netlib/SRC/ctgsy2.f @@ -67,7 +67,7 @@ *> R * B**H + L * E**H = scale * -F *> *> This case is used to compute an estimate of Dif[(A, D), (B, E)] = -*> = sigma_min(Z) using reverse communicaton with CLACON. +*> = sigma_min(Z) using reverse communication with CLACON. *> *> CTGSY2 also (IJOB >= 1) contributes to the computation in CTGSYL *> of an upper bound on the separation between to matrix pairs. Then @@ -81,7 +81,7 @@ *> \param[in] TRANS *> \verbatim *> TRANS is CHARACTER*1 -*> = 'N', solve the generalized Sylvester equation (1). +*> = 'N': solve the generalized Sylvester equation (1). *> = 'T': solve the 'transposed' system (3). *> \endverbatim *> @@ -89,13 +89,13 @@ *> \verbatim *> IJOB is INTEGER *> Specifies what kind of functionality to be performed. -*> =0: solve (1) only. -*> =1: A contribution from this subsystem to a Frobenius -*> norm-based estimate of the separation between two matrix -*> pairs is computed. (look ahead strategy is used). -*> =2: A contribution from this subsystem to a Frobenius -*> norm-based estimate of the separation between two matrix -*> pairs is computed. (SGECON on sub-systems is used.) +*> = 0: solve (1) only. +*> = 1: A contribution from this subsystem to a Frobenius +*> norm-based estimate of the separation between two matrix +*> pairs is computed. (look ahead strategy is used). +*> = 2: A contribution from this subsystem to a Frobenius +*> norm-based estimate of the separation between two matrix +*> pairs is computed. (SGECON on sub-systems is used.) *> Not referenced if TRANS = 'T'. *> \endverbatim *> diff --git a/lapack-netlib/SRC/ctplqt.f b/lapack-netlib/SRC/ctplqt.f index cb4d419b9..39893df48 100644 --- a/lapack-netlib/SRC/ctplqt.f +++ b/lapack-netlib/SRC/ctplqt.f @@ -1,3 +1,5 @@ +*> \brief \b CTPLQT +* * Definition: * =========== * diff --git a/lapack-netlib/SRC/ctplqt2.f b/lapack-netlib/SRC/ctplqt2.f index b16d6149a..d18452aec 100644 --- a/lapack-netlib/SRC/ctplqt2.f +++ b/lapack-netlib/SRC/ctplqt2.f @@ -1,3 +1,5 @@ +*> \brief \b CTPLQT2 +* * Definition: * =========== * diff --git a/lapack-netlib/SRC/ctpmlqt.f b/lapack-netlib/SRC/ctpmlqt.f index cb5f033ca..5899a5335 100644 --- a/lapack-netlib/SRC/ctpmlqt.f +++ b/lapack-netlib/SRC/ctpmlqt.f @@ -1,3 +1,5 @@ +*> \brief \b CTPMLQT +* * Definition: * =========== * @@ -77,7 +79,7 @@ *> *> \param[in] V *> \verbatim -*> V is COMPLEX array, dimension (LDA,K) +*> V is COMPLEX array, dimension (LDV,K) *> The i-th row must contain the vector which defines the *> elementary reflector H(i), for i = 1,2,...,k, as returned by *> DTPLQT in B. See Further Details. diff --git a/lapack-netlib/SRC/ctpmqrt.f b/lapack-netlib/SRC/ctpmqrt.f index fd3d1b109..8d4a36ca8 100644 --- a/lapack-netlib/SRC/ctpmqrt.f +++ b/lapack-netlib/SRC/ctpmqrt.f @@ -94,7 +94,7 @@ *> *> \param[in] V *> \verbatim -*> V is COMPLEX array, dimension (LDA,K) +*> V is COMPLEX array, dimension (LDV,K) *> The i-th column must contain the vector which defines the *> elementary reflector H(i), for i = 1,2,...,k, as returned by *> CTPQRT in B. See Further Details. diff --git a/lapack-netlib/SRC/ctprfb.f b/lapack-netlib/SRC/ctprfb.f index 1538deb56..0f45edaf8 100644 --- a/lapack-netlib/SRC/ctprfb.f +++ b/lapack-netlib/SRC/ctprfb.f @@ -152,8 +152,8 @@ *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. -*> If SIDE = 'L', LDC >= max(1,K); -*> If SIDE = 'R', LDC >= max(1,M). +*> If SIDE = 'L', LDA >= max(1,K); +*> If SIDE = 'R', LDA >= max(1,M). *> \endverbatim *> *> \param[in,out] B diff --git a/lapack-netlib/SRC/cungtsqr.f b/lapack-netlib/SRC/cungtsqr.f new file mode 100644 index 000000000..bc5305cf9 --- /dev/null +++ b/lapack-netlib/SRC/cungtsqr.f @@ -0,0 +1,307 @@ +*> \brief \b CUNGTSQR +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download CUNGTSQR + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> +* Definition: +* =========== +* +* SUBROUTINE CUNGTSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK, +* $ INFO ) +* +* .. Scalar Arguments .. +* INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB +* .. +* .. Array Arguments .. +* COMPLEX A( LDA, * ), T( LDT, * ), WORK( * ) +* .. +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> CUNGTSQR generates an M-by-N complex matrix Q_out with orthonormal +*> columns, which are the first N columns of a product of comlpex unitary +*> matrices of order M which are returned by CLATSQR +*> +*> Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ). +*> +*> See the documentation for CLATSQR. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] M +*> \verbatim +*> M is INTEGER +*> The number of rows of the matrix A. M >= 0. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of columns of the matrix A. M >= N >= 0. +*> \endverbatim +*> +*> \param[in] MB +*> \verbatim +*> MB is INTEGER +*> The row block size used by DLATSQR to return +*> arrays A and T. MB > N. +*> (Note that if MB > M, then M is used instead of MB +*> as the row block size). +*> \endverbatim +*> +*> \param[in] NB +*> \verbatim +*> NB is INTEGER +*> The column block size used by CLATSQR to return +*> arrays A and T. NB >= 1. +*> (Note that if NB > N, then N is used instead of NB +*> as the column block size). +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is COMPLEX array, dimension (LDA,N) +*> +*> On entry: +*> +*> The elements on and above the diagonal are not accessed. +*> The elements below the diagonal represent the unit +*> lower-trapezoidal blocked matrix V computed by CLATSQR +*> that defines the input matrices Q_in(k) (ones on the +*> diagonal are not stored) (same format as the output A +*> below the diagonal in CLATSQR). +*> +*> On exit: +*> +*> The array A contains an M-by-N orthonormal matrix Q_out, +*> i.e the columns of A are orthogonal unit vectors. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,M). +*> \endverbatim +*> +*> \param[in] T +*> \verbatim +*> T is COMPLEX array, +*> dimension (LDT, N * NIRB) +*> where NIRB = Number_of_input_row_blocks +*> = MAX( 1, CEIL((M-N)/(MB-N)) ) +*> Let NICB = Number_of_input_col_blocks +*> = CEIL(N/NB) +*> +*> The upper-triangular block reflectors used to define the +*> input matrices Q_in(k), k=(1:NIRB*NICB). The block +*> reflectors are stored in compact form in NIRB block +*> reflector sequences. Each of NIRB block reflector sequences +*> is stored in a larger NB-by-N column block of T and consists +*> of NICB smaller NB-by-NB upper-triangular column blocks. +*> (same format as the output T in CLATSQR). +*> \endverbatim +*> +*> \param[in] LDT +*> \verbatim +*> LDT is INTEGER +*> The leading dimension of the array T. +*> LDT >= max(1,min(NB1,N)). +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> (workspace) COMPLEX array, dimension (MAX(2,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. +*> \endverbatim +*> +*> \param[in] LWORK +*> \verbatim +*> The dimension of the array WORK. LWORK >= (M+NB)*N. +*> If LWORK = -1, then a workspace query is assumed. +*> The routine only calculates the optimal size of the WORK +*> array, returns this value as the first entry of the WORK +*> array, and no error message related to LWORK is issued +*> by XERBLA. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value +*> \endverbatim +*> +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2019 +* +*> \ingroup comlexOTHERcomputational +* +*> \par Contributors: +* ================== +*> +*> \verbatim +*> +*> November 2019, Igor Kozachenko, +*> Computer Science Division, +*> University of California, Berkeley +*> +*> \endverbatim +* +* ===================================================================== + SUBROUTINE CUNGTSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK, + $ INFO ) + IMPLICIT NONE +* +* -- LAPACK computational routine (version 3.9.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2019 +* +* .. Scalar Arguments .. + INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB +* .. +* .. Array Arguments .. + COMPLEX A( LDA, * ), T( LDT, * ), WORK( * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + COMPLEX CONE, CZERO + PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ), + $ CZERO = ( 0.0E+0, 0.0E+0 ) ) +* .. +* .. Local Scalars .. + LOGICAL LQUERY + INTEGER IINFO, LDC, LWORKOPT, LC, LW, NBLOCAL, J +* .. +* .. External Subroutines .. + EXTERNAL CCOPY, CLAMTSQR, CLASET, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC CMPLX, MAX, MIN +* .. +* .. Executable Statements .. +* +* Test the input parameters +* + LQUERY = LWORK.EQ.-1 + INFO = 0 + IF( M.LT.0 ) THEN + INFO = -1 + ELSE IF( N.LT.0 .OR. M.LT.N ) THEN + INFO = -2 + ELSE IF( MB.LE.N ) THEN + INFO = -3 + ELSE IF( NB.LT.1 ) THEN + INFO = -4 + ELSE IF( LDA.LT.MAX( 1, M ) ) THEN + INFO = -6 + ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN + INFO = -8 + ELSE +* +* Test the input LWORK for the dimension of the array WORK. +* This workspace is used to store array C(LDC, N) and WORK(LWORK) +* in the call to CLAMTSQR. See the documentation for CLAMTSQR. +* + IF( LWORK.LT.2 .AND. (.NOT.LQUERY) ) THEN + INFO = -10 + ELSE +* +* Set block size for column blocks +* + NBLOCAL = MIN( NB, N ) +* +* LWORK = -1, then set the size for the array C(LDC,N) +* in CLAMTSQR call and set the optimal size of the work array +* WORK(LWORK) in CLAMTSQR call. +* + LDC = M + LC = LDC*N + LW = N * NBLOCAL +* + LWORKOPT = LC+LW +* + IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN + INFO = -10 + END IF + END IF +* + END IF +* +* Handle error in the input parameters and return workspace query. +* + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'CUNGTSQR', -INFO ) + RETURN + ELSE IF ( LQUERY ) THEN + WORK( 1 ) = CMPLX( LWORKOPT ) + RETURN + END IF +* +* Quick return if possible +* + IF( MIN( M, N ).EQ.0 ) THEN + WORK( 1 ) = CMPLX( LWORKOPT ) + RETURN + END IF +* +* (1) Form explicitly the tall-skinny M-by-N left submatrix Q1_in +* of M-by-M orthogonal matrix Q_in, which is implicitly stored in +* the subdiagonal part of input array A and in the input array T. +* Perform by the following operation using the routine CLAMTSQR. +* +* Q1_in = Q_in * ( I ), where I is a N-by-N identity matrix, +* ( 0 ) 0 is a (M-N)-by-N zero matrix. +* +* (1a) Form M-by-N matrix in the array WORK(1:LDC*N) with ones +* on the diagonal and zeros elsewhere. +* + CALL CLASET( 'F', M, N, CZERO, CONE, WORK, LDC ) +* +* (1b) On input, WORK(1:LDC*N) stores ( I ); +* ( 0 ) +* +* On output, WORK(1:LDC*N) stores Q1_in. +* + CALL CLAMTSQR( 'L', 'N', M, N, N, MB, NBLOCAL, A, LDA, T, LDT, + $ WORK, LDC, WORK( LC+1 ), LW, IINFO ) +* +* (2) Copy the result from the part of the work array (1:M,1:N) +* with the leading dimension LDC that starts at WORK(1) into +* the output array A(1:M,1:N) column-by-column. +* + DO J = 1, N + CALL CCOPY( M, WORK( (J-1)*LDC + 1 ), 1, A( 1, J ), 1 ) + END DO +* + WORK( 1 ) = CMPLX( LWORKOPT ) + RETURN +* +* End of CUNGTSQR +* + END \ No newline at end of file diff --git a/lapack-netlib/SRC/cunhr_col.f b/lapack-netlib/SRC/cunhr_col.f new file mode 100644 index 000000000..15c31491e --- /dev/null +++ b/lapack-netlib/SRC/cunhr_col.f @@ -0,0 +1,441 @@ +*> \brief \b CUNHR_COL +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download CUNHR_COL + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> +* Definition: +* =========== +* +* SUBROUTINE CUNHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO ) +* +* .. Scalar Arguments .. +* INTEGER INFO, LDA, LDT, M, N, NB +* .. +* .. Array Arguments .. +* COMPLEX A( LDA, * ), D( * ), T( LDT, * ) +* .. +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> CUNHR_COL takes an M-by-N complex matrix Q_in with orthonormal columns +*> as input, stored in A, and performs Householder Reconstruction (HR), +*> i.e. reconstructs Householder vectors V(i) implicitly representing +*> another M-by-N matrix Q_out, with the property that Q_in = Q_out*S, +*> where S is an N-by-N diagonal matrix with diagonal entries +*> equal to +1 or -1. The Householder vectors (columns V(i) of V) are +*> stored in A on output, and the diagonal entries of S are stored in D. +*> Block reflectors are also returned in T +*> (same output format as CGEQRT). +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] M +*> \verbatim +*> M is INTEGER +*> The number of rows of the matrix A. M >= 0. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of columns of the matrix A. M >= N >= 0. +*> \endverbatim +*> +*> \param[in] NB +*> \verbatim +*> NB is INTEGER +*> The column block size to be used in the reconstruction +*> of Householder column vector blocks in the array A and +*> corresponding block reflectors in the array T. NB >= 1. +*> (Note that if NB > N, then N is used instead of NB +*> as the column block size.) +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is COMPLEX array, dimension (LDA,N) +*> +*> On entry: +*> +*> The array A contains an M-by-N orthonormal matrix Q_in, +*> i.e the columns of A are orthogonal unit vectors. +*> +*> On exit: +*> +*> The elements below the diagonal of A represent the unit +*> lower-trapezoidal matrix V of Householder column vectors +*> V(i). The unit diagonal entries of V are not stored +*> (same format as the output below the diagonal in A from +*> CGEQRT). The matrix T and the matrix V stored on output +*> in A implicitly define Q_out. +*> +*> The elements above the diagonal contain the factor U +*> of the "modified" LU-decomposition: +*> Q_in - ( S ) = V * U +*> ( 0 ) +*> where 0 is a (M-N)-by-(M-N) zero matrix. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,M). +*> \endverbatim +*> +*> \param[out] T +*> \verbatim +*> T is COMPLEX array, +*> dimension (LDT, N) +*> +*> Let NOCB = Number_of_output_col_blocks +*> = CEIL(N/NB) +*> +*> On exit, T(1:NB, 1:N) contains NOCB upper-triangular +*> block reflectors used to define Q_out stored in compact +*> form as a sequence of upper-triangular NB-by-NB column +*> blocks (same format as the output T in CGEQRT). +*> The matrix T and the matrix V stored on output in A +*> implicitly define Q_out. NOTE: The lower triangles +*> below the upper-triangular blcoks will be filled with +*> zeros. See Further Details. +*> \endverbatim +*> +*> \param[in] LDT +*> \verbatim +*> LDT is INTEGER +*> The leading dimension of the array T. +*> LDT >= max(1,min(NB,N)). +*> \endverbatim +*> +*> \param[out] D +*> \verbatim +*> D is COMPLEX array, dimension min(M,N). +*> The elements can be only plus or minus one. +*> +*> D(i) is constructed as D(i) = -SIGN(Q_in_i(i,i)), where +*> 1 <= i <= min(M,N), and Q_in_i is Q_in after performing +*> i-1 steps of “modified” Gaussian elimination. +*> See Further Details. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value +*> \endverbatim +*> +*> \par Further Details: +* ===================== +*> +*> \verbatim +*> +*> The computed M-by-M unitary factor Q_out is defined implicitly as +*> a product of unitary matrices Q_out(i). Each Q_out(i) is stored in +*> the compact WY-representation format in the corresponding blocks of +*> matrices V (stored in A) and T. +*> +*> The M-by-N unit lower-trapezoidal matrix V stored in the M-by-N +*> matrix A contains the column vectors V(i) in NB-size column +*> blocks VB(j). For example, VB(1) contains the columns +*> V(1), V(2), ... V(NB). NOTE: The unit entries on +*> the diagonal of Y are not stored in A. +*> +*> The number of column blocks is +*> +*> NOCB = Number_of_output_col_blocks = CEIL(N/NB) +*> +*> where each block is of order NB except for the last block, which +*> is of order LAST_NB = N - (NOCB-1)*NB. +*> +*> For example, if M=6, N=5 and NB=2, the matrix V is +*> +*> +*> V = ( VB(1), VB(2), VB(3) ) = +*> +*> = ( 1 ) +*> ( v21 1 ) +*> ( v31 v32 1 ) +*> ( v41 v42 v43 1 ) +*> ( v51 v52 v53 v54 1 ) +*> ( v61 v62 v63 v54 v65 ) +*> +*> +*> For each of the column blocks VB(i), an upper-triangular block +*> reflector TB(i) is computed. These blocks are stored as +*> a sequence of upper-triangular column blocks in the NB-by-N +*> matrix T. The size of each TB(i) block is NB-by-NB, except +*> for the last block, whose size is LAST_NB-by-LAST_NB. +*> +*> For example, if M=6, N=5 and NB=2, the matrix T is +*> +*> T = ( TB(1), TB(2), TB(3) ) = +*> +*> = ( t11 t12 t13 t14 t15 ) +*> ( t22 t24 ) +*> +*> +*> The M-by-M factor Q_out is given as a product of NOCB +*> unitary M-by-M matrices Q_out(i). +*> +*> Q_out = Q_out(1) * Q_out(2) * ... * Q_out(NOCB), +*> +*> where each matrix Q_out(i) is given by the WY-representation +*> using corresponding blocks from the matrices V and T: +*> +*> Q_out(i) = I - VB(i) * TB(i) * (VB(i))**T, +*> +*> where I is the identity matrix. Here is the formula with matrix +*> dimensions: +*> +*> Q(i){M-by-M} = I{M-by-M} - +*> VB(i){M-by-INB} * TB(i){INB-by-INB} * (VB(i))**T {INB-by-M}, +*> +*> where INB = NB, except for the last block NOCB +*> for which INB=LAST_NB. +*> +*> ===== +*> NOTE: +*> ===== +*> +*> If Q_in is the result of doing a QR factorization +*> B = Q_in * R_in, then: +*> +*> B = (Q_out*S) * R_in = Q_out * (S * R_in) = O_out * R_out. +*> +*> So if one wants to interpret Q_out as the result +*> of the QR factorization of B, then corresponding R_out +*> should be obtained by R_out = S * R_in, i.e. some rows of R_in +*> should be multiplied by -1. +*> +*> For the details of the algorithm, see [1]. +*> +*> [1] "Reconstructing Householder vectors from tall-skinny QR", +*> G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen, +*> E. Solomonik, J. Parallel Distrib. Comput., +*> vol. 85, pp. 3-31, 2015. +*> \endverbatim +*> +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2019 +* +*> \ingroup complexOTHERcomputational +* +*> \par Contributors: +* ================== +*> +*> \verbatim +*> +*> November 2019, Igor Kozachenko, +*> Computer Science Division, +*> University of California, Berkeley +*> +*> \endverbatim +* +* ===================================================================== + SUBROUTINE CUNHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO ) + IMPLICIT NONE +* +* -- LAPACK computational routine (version 3.9.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2019 +* +* .. Scalar Arguments .. + INTEGER INFO, LDA, LDT, M, N, NB +* .. +* .. Array Arguments .. + COMPLEX A( LDA, * ), D( * ), T( LDT, * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + COMPLEX CONE, CZERO + PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ), + $ CZERO = ( 0.0E+0, 0.0E+0 ) ) +* .. +* .. Local Scalars .. + INTEGER I, IINFO, J, JB, JBTEMP1, JBTEMP2, JNB, + $ NPLUSONE +* .. +* .. External Subroutines .. + EXTERNAL CCOPY, CLAUNHR_COL_GETRFNP, CSCAL, CTRSM, + $ XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC MAX, MIN +* .. +* .. Executable Statements .. +* +* Test the input parameters +* + INFO = 0 + IF( M.LT.0 ) THEN + INFO = -1 + ELSE IF( N.LT.0 .OR. N.GT.M ) THEN + INFO = -2 + ELSE IF( NB.LT.1 ) THEN + INFO = -3 + ELSE IF( LDA.LT.MAX( 1, M ) ) THEN + INFO = -5 + ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN + INFO = -7 + END IF +* +* Handle error in the input parameters. +* + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'CUNHR_COL', -INFO ) + RETURN + END IF +* +* Quick return if possible +* + IF( MIN( M, N ).EQ.0 ) THEN + RETURN + END IF +* +* On input, the M-by-N matrix A contains the unitary +* M-by-N matrix Q_in. +* +* (1) Compute the unit lower-trapezoidal V (ones on the diagonal +* are not stored) by performing the "modified" LU-decomposition. +* +* Q_in - ( S ) = V * U = ( V1 ) * U, +* ( 0 ) ( V2 ) +* +* where 0 is an (M-N)-by-N zero matrix. +* +* (1-1) Factor V1 and U. + + CALL CLAUNHR_COL_GETRFNP( N, N, A, LDA, D, IINFO ) +* +* (1-2) Solve for V2. +* + IF( M.GT.N ) THEN + CALL CTRSM( 'R', 'U', 'N', 'N', M-N, N, CONE, A, LDA, + $ A( N+1, 1 ), LDA ) + END IF +* +* (2) Reconstruct the block reflector T stored in T(1:NB, 1:N) +* as a sequence of upper-triangular blocks with NB-size column +* blocking. +* +* Loop over the column blocks of size NB of the array A(1:M,1:N) +* and the array T(1:NB,1:N), JB is the column index of a column +* block, JNB is the column block size at each step JB. +* + NPLUSONE = N + 1 + DO JB = 1, N, NB +* +* (2-0) Determine the column block size JNB. +* + JNB = MIN( NPLUSONE-JB, NB ) +* +* (2-1) Copy the upper-triangular part of the current JNB-by-JNB +* diagonal block U(JB) (of the N-by-N matrix U) stored +* in A(JB:JB+JNB-1,JB:JB+JNB-1) into the upper-triangular part +* of the current JNB-by-JNB block T(1:JNB,JB:JB+JNB-1) +* column-by-column, total JNB*(JNB+1)/2 elements. +* + JBTEMP1 = JB - 1 + DO J = JB, JB+JNB-1 + CALL CCOPY( J-JBTEMP1, A( JB, J ), 1, T( 1, J ), 1 ) + END DO +* +* (2-2) Perform on the upper-triangular part of the current +* JNB-by-JNB diagonal block U(JB) (of the N-by-N matrix U) stored +* in T(1:JNB,JB:JB+JNB-1) the following operation in place: +* (-1)*U(JB)*S(JB), i.e the result will be stored in the upper- +* triangular part of T(1:JNB,JB:JB+JNB-1). This multiplication +* of the JNB-by-JNB diagonal block U(JB) by the JNB-by-JNB +* diagonal block S(JB) of the N-by-N sign matrix S from the +* right means changing the sign of each J-th column of the block +* U(JB) according to the sign of the diagonal element of the block +* S(JB), i.e. S(J,J) that is stored in the array element D(J). +* + DO J = JB, JB+JNB-1 + IF( D( J ).EQ.CONE ) THEN + CALL CSCAL( J-JBTEMP1, -CONE, T( 1, J ), 1 ) + END IF + END DO +* +* (2-3) Perform the triangular solve for the current block +* matrix X(JB): +* +* X(JB) * (A(JB)**T) = B(JB), where: +* +* A(JB)**T is a JNB-by-JNB unit upper-triangular +* coefficient block, and A(JB)=V1(JB), which +* is a JNB-by-JNB unit lower-triangular block +* stored in A(JB:JB+JNB-1,JB:JB+JNB-1). +* The N-by-N matrix V1 is the upper part +* of the M-by-N lower-trapezoidal matrix V +* stored in A(1:M,1:N); +* +* B(JB) is a JNB-by-JNB upper-triangular right-hand +* side block, B(JB) = (-1)*U(JB)*S(JB), and +* B(JB) is stored in T(1:JNB,JB:JB+JNB-1); +* +* X(JB) is a JNB-by-JNB upper-triangular solution +* block, X(JB) is the upper-triangular block +* reflector T(JB), and X(JB) is stored +* in T(1:JNB,JB:JB+JNB-1). +* +* In other words, we perform the triangular solve for the +* upper-triangular block T(JB): +* +* T(JB) * (V1(JB)**T) = (-1)*U(JB)*S(JB). +* +* Even though the blocks X(JB) and B(JB) are upper- +* triangular, the routine CTRSM will access all JNB**2 +* elements of the square T(1:JNB,JB:JB+JNB-1). Therefore, +* we need to set to zero the elements of the block +* T(1:JNB,JB:JB+JNB-1) below the diagonal before the call +* to CTRSM. +* +* (2-3a) Set the elements to zero. +* + JBTEMP2 = JB - 2 + DO J = JB, JB+JNB-2 + DO I = J-JBTEMP2, NB + T( I, J ) = CZERO + END DO + END DO +* +* (2-3b) Perform the triangular solve. +* + CALL CTRSM( 'R', 'L', 'C', 'U', JNB, JNB, CONE, + $ A( JB, JB ), LDA, T( 1, JB ), LDT ) +* + END DO +* + RETURN +* +* End of CUNHR_COL +* + END \ No newline at end of file